Univerzita Karlova v Praze
Matematicko-fyzikalni fakulta

DIPLOMOVA PRACE

: ‘?‘*‘m\ ¥
TET LS

Bc. Jan Hronik

Nejkratsi cesty pri vyhledavani dopravniho spojeni

Katedra aplikované matematiky

Vedouci diplomové préce: Mgr. Petr Kolman, Ph.D.
Studijni program: Informatika

Studijni obor: Teoretickd informatika

Charles University in Prague
Faculty of Mathematics and Physics

DIPLOMA THESIS

Bc. Jan Hronik

Shortest paths when searching for travel connections

Department of Applied Mathematics

Supervisor: Mgr. Petr Kolman, Ph.D.
Program of study: Computer Science

Specialization: Theoretical Computer Science

Dé&kuji vedoucimu diplomové prace Mgr. Petru Kolmanovi, Ph.D., za ochotné vedeni
mé diplomové price a za jeho cCetné piipominky, které prispély ke zkvalitnéni
vysledného textu. Zarovenl dékuji Mgr. Robertu Babilonovi za poskytnuti cennych
informaci v pocatecni fazi prace a Dominiku Schultesovi za pohotové poskytnuti dikazi
ke své praci. RovnéZ bych chtél pod€kovat svym rodicim a piitelkyni Lucy za
projevenou podporu.

Prohlasuji, zZe jsem svou diplomovou praci napsal samostatné a vyhradné s pouzitim
citovanych prament. Souhlasim se zapij¢ovanim prace.

V Praze dne 9. srpna 2007 Jan Hronik

Table of Contents

LI 00 ¢ Ta LT 5 10 3 PSPPI 1
2 Shortest Paths and Train CONNECHONS.cccuueiiiirieriieiieeieeie ettt 2
2.1 DEEINITIONS. ¢eeeiieiiieeeiiiee ettt eee e et e e et e e e e tate e e e sateeeesensaeeeesnssaeessnnsseeessnnsssnnns 2
2.2 Shortest path ProbIemIS.cccueiiiiiieiiieeiiie ettt e e e e errree e e e e s 3
2.3 TTainN CONNECHIONS. ..cccviieeirreeireeeiteeeireesteeesreeessreeessseeesseessseesseeessseeessseeesssssssseees 4
2.3.1 DfINITIONS. ...eeueieiiiieiieeiieeite ettt ettt st e s 4

2.3.2 Cheapest cONNection ProbleM...........ccueeeriieeriieeniieeiiee et eiieee e e e eseiveeeeeeens 6

2.3.3 Graph representation of a transportation network............cccceevvveeniveenineennnen. 8

2.3.4 TranSportation ETaPh.........ceccueeerieeeiieeeiieeeieeeesieeessireesteeessnreaeeessessnnsreeeens 11

2.3.5 Shortest paths and cheapest CONNECtIONS...........eevuveeriiieeriiiiiniiieiriee e e 12

2.3.6 Restricted tiMEtabIes.covueirieiriiiiieiiieeieeee e 16

3 Shortest Path AIGOTithmS.......cccoooiiiiiiiiii e 17
3.1 Dijkstra's AIGOTItRML......ccciiiiiiiiiiieiie e e e 17
3.1.1 Time complexity of the Dijkstra's Algorithm........c.c.ccccevviiniiiiniiiinnieians 20

3.1.2 Multi-Source Dijkstra's Algorithm...........coocveeviiiiniiiiniiiiieeieeeeeee, 20

3.1.3 Bidirectional DIJKStra.......ccccooviriiiiiiiiiiiieeeenecceee e 23

3.1.4 Combining the MOdifiCaAtIONS.......c..eerriieiriiiieiiiieriie et 24

3.2 A% (A-Star) ALZOTItRMLeiiiiiiiiiiiiiiee et 25
3.3 Highway hierarchi€scoocceiiiiiiiiiiiiiie et 26
3.3.1 Definition of Highway Hierarchy..........cccccccoooiiiiiiiiiiiiiicee 27

3.3.2 CONSIIUCTION. ..eeeiuitrieeeeitieeeeeitreeeesireeeeetteeeessreeeeessseeeeannsseesesssssseeseeeaeaeeeens 29

3.3.3 SCATCH. ...ttt e e e e e e e e e e aaaaaeeeas 31

4 Cheapest Connection Search.............ooviiiiiiiiiiiiiic e 33
4.1 Performance iMPrOVEIMENLS.c.ueeruieeriieerieeerieeesreeesreeesereeessreessseesssseessseeeaeaans 34
4.1.1 Earliest arrival OptimIZation.........ccooueiriieiriieeniieeeieeeeiee et eeiree e 34

4.1.2 Lazy backward search for highway hierarchies............ccccceeevvieeiiirieerennnnn. 35

4.2 Search results IMPrOVEIMENES.eiiuttiriieeriteeriee ettt et esitee st esbeeesreeeeeeas 37
4.2.1 Stay at source station as long as possible...........ccceervuierriieriiiiiiiee e, 37

4.2.2 Prefer fEWET tTaINS....ccccuvieiiieeeiieerieeeeteeeiteeeiee e et e e e aeeesbaeeeeesesnsasaeeeeeeennens 39

4.3 Search CONSIIAINES.ceeutieiieriieeiieeieet ettt ettt et e et esaeesnee e e 41
4.3.1 Limit number of Changes..........ccccuvieiiieriiieiiie et 41

4.3.2 TTAIN CTILETIA .eevteeeieriieeiieeite ettt ettt ettt et sat et sate e bt e sate e b e saneeneeeens 42

4.4 Restricted tImMEtabIEs.cooiiiiiiriiiiieieeeeeeeeee et 43

S Performance ReSUILS.........cc.eoiiiiiiiiiiiiicieeeeee e 45
5.1 TRE TESES. ettt et et e st e et e e e 45
S22 TESE AALA...c.eeeiiiiiieiieeee ettt st e e e e 46
5.3 ThE TESULLS. c...eeiiiiiieeeeeeee ettt ettt et et e e 48

5.3.1 Dijkstra's AIGOTItRIM.......c..ooiiiiiiiiiiiiiiieeeee e 49

il

5.3.2 A SCAICH. ...eiiiiiieee e e 51

5.3.3 Highway hierarchies search.............ccoccueeriiiiiiiiiniiiiniecceceee e 54

5.4 COMPATISON. .. uteeiiieeiiieeitteeitee et ee ettt e sttt e s bteesbteesabteessaeeesabeessabeesaneeesnnteeesssnnnne 56
5.4.1 Transportation raph.........ccceeeriieiiiieniiieeiie et eree e e e e e e e e e 56

5.4.2 RandOm @raph........cooiuiiiiiiiiiiieeiieete et e e 57
CONCIUSION. ..ttt ettt et e sbt e et esbee s e e s eaneeeeas 60
BIDHIOZIAPNY ...t 61
A Contents Of the CD.......cooiiiiiiiiieieeee et 62

B Class DIa@rams......c..ceocuiiiiiiiiieiieeiieiee ettt st 63

il

Nazev prace: Nejkratsi cesty pri vyhledavani dopravniho spojeni

Autor: Bce. Jan Hronik

Katedra: Katedra aplikované matematiky
Vedouci diplomové prace: Mgr. Petr Kolman, Ph.D.

e-mail vedouciho: kolman @kam.mff.cuni.cz

Abstrakt: Zabyvame se algoritmy pro hleddni nejlepsiho spojeni podle jizdniho fadu,
pficemZ pojmem nejlepSi myslime nejkratsi vzhledem ke zvolenému ohodnoceni cest
(napf. nejrychlejsi, nejkrat$i na pocet ujetych km, spojeni s nejmensim poctem
prestuptl). Problém nejkratsiho spojeni v dopravni siti je formalizovan a preveden na
problém nejkratsi cesty v grafu. K tomu je navrzena reprezentace dopravni sit€¢ pomoci
orientovaného grafu. Déle je popsdno nékolik standardnich algoritmi pro hledani
nejkratSich cest v grafu a jejich optimalizace pro pouZiti pfi hledani dopravnich spojeni.
Nakonec je porovndna vykonnost jednotlivych algoritml pii jejich pouZziti na (1)
vlakovou sit pro Ceskou republiku a (2) na ndhodn& vygenerovany graf.

Klicova slova: dopravni spojeni, nejkrat$i cesty v orientovaném grafu, Dijkstriv
algoritmus, obousmérny Dijkstriiv algoritmus, algoritmus A* (A-Star), silni¢ni
hierarchie

Title: Shortest paths when searching for travel connections

Author: Bc. Jan Hronik

Department: ~ Department of Applied Mathematics
Supervisor: ~ Mgr. Petr Kolman, Ph.D.

S isor's e-mail
HPEIVISOES e-mal kolman @kam.mff.cuni.cz
address:

Abstract: We deal with algorithms for finding cheapest connections in a transportation
network with timetables where a cheapest connection is one with the lowest value given
some evaluation function. A problem of cheapest connection in a transportation network
is introduced and formalized, and is reduced to a shortest path problem in a directed
graph. A representation of a transportation network by a directed graph is thereafter
given, and several standard algorithms for the shortest path problem are described in
turn. Several optimizations of the algorithms for their application to the transportation
network are proposed. Eventually, performance results of the algorithms are presented
along with their comparison. The algorithms were tested on (1) the train network of the
Czech Republic, and on (2) a randomly generated graph.

Keywords: travel connections, shortest paths in a directed graph, Dijkstra's Algorithm,
bidirectional Dijkstra's Algorithm, A* (A-Star) algorithm, highway hierarchies

1 Introduction

All of us have already used some search engine to find a suitable train, bus or air plane
connection, when we were planning an itinerary for a trip. There are a lot of web-based
on-line search engines on the World Wide Web, and some major carriers provide their
custom search for travel connections. Yet there is still some space for improvements,
especially in the area of search criteria.

Ideally, we would like a system that answers any query quickly and allows for a complex
criteria specification — a user should be able to specify what a good connection is.
Whereas one user looks for a fast comfortable connection without changes, another may
prefer a low fare connection and does not care about the travel time much.

A useful feature of a search engine may be to allow a user to specify a source and a
destination along with a search radius for both, the source and the destination station, so
that a connection from a station within the radius of the source station 7o a station within
the radius of the destination station may be returned by the system. This feature could be
especially useful in a city transportation network where many stations are often packed
into a small area so we often do not care from (to) which of them the bus departs
(arrives).

In this work, we propose a travel network representation that will allow us to find travel
connections which are shortest in time, have lowest fare or encompass a reasonable
combination of both the travel time and the travel fare. It will also allow for a search
radii to be specified and will allow the user to pose additional constraints. For instance,
the user may want to travel with their bicycle, so the system will be able to limit the
search only to trains that have the possibility of carriage of large luggage.

The approach used in this work was to exploit the well explored shortest path problem
and apply it in the setting of travel connection search. Therefore, we will describe
several general algorithms for the shortest path problem and compare their performance
in the setting of travel connection search.

2 Shortest Paths and Train Connections

2.1 Definitions

Before we proceed further, we need to introduce a couple of basic definitions. The
purpose is to establish basic notation used throughout this work. We are going to present
the definition of a directed graph and that of a shortest path. For more details, refer to
[2] or any introductory text to graph theory.

Definition A graph (also a directed graph) G is an ordered pair G = (V, E), where Vis a
non-empty finite set and E SV XV . The elements of V are called nodes, and the
elements of E are called (directed) edges.

Definition Let G=(V, E) be a graph. We define the reverse graph of G, as a graph
G=(V,E), where for each (v,u)€V XV we have (v,u)€E < (u,v)EE.

Definition Whenever (u,v)€E, we call v to be an adjacent node of u. Furthermore,
for a node v, each edge (u, v) will be called an incoming edge to v, and each edge (v, w)
will be called an outgoing edge from v. The sum of the number of incoming edges to v
and the number of outgoing edges from v is referred to as the degree of v.

Definition We will need a value assigned to each edge (this value will represent the cost
of choosing the edge when traversing a graph). Therefore, we define the weight function
w:E—IR", where E is a set of edges'.

Definition A path P from a node u€V to a node veV, is a sequence of nodes
uj ..., u, such that n>0, u; = u, u, =v, and for each 1<i<n—1 we have (M[,MM)GE
and u,=u j:>i=j , that is, there are edges connecting each subsequent pair of nodes on

the path, and each node can lie on a path at most once. We write P = <u;, ..., u,>.

Definition Let P = <u;,, ..., x, ..., y, ..., u,> be a path. A sub-path of path P, denoted by

1 Usually a more general definition w:E —IR is used, but for the purposes of this work, only non-
negative weight functions will be needed.

2 SHORTEST PATHS AND TRAIN CONNECTIONS 3

Pl is a sequence of nodes x, ...,y. Note that a sub-path is also a path.

x-y

Definition Length of a path P = <u,, ..., u;>, denoted by I(P), is defined as the number
of nodes on P, that is, I(P)=k

Definition Weight of a path P = <u,, ..., u;>, denoted by w(P), is defined as the sum of
the weights of the edges on this path:

k—1

w(P)ZZ clu,u.)

i=1
Definition A shortest path P = <u, ..., v> from u€V to yv€V is a path, such that

w(P)=min{w(Q) | Q is a path from u to v} . Note that a shortest path from u to v
does not exist if and only if there is no path from u to v.

Definition Let s€V and u€V be nodes. We define the distance from s to u to be the

weight of the shortest path from s to u, or o if no path exists from u to v.

Definition Let SSV and TSV be non-empty sets of nodes. We define the distance
from S to T, denoted by 6(S, T), to be the minimum of the weights of all shortest paths
from any s€S§ toany reT:

O(S, T)=min {6(s, 1) | s€S, teT}
For the special case T={v}, we simply write (S, v).

Definition We say that a path P =<u, ..., v> from y€S to vET is a shortest path from
S to T if and only if 6(u, v) = 6(S, T).

2.2 Shortest path problems

From this section onwards, when we refer to a graph (unless otherwise specified) we are
always referring to a directed graph G=(V,E) and consider a weight function
w:E—IR" for this graph.

We introduce the shortest path problem, which is the most important problem for us, as
finding connections in a transportation network can be easily reduced to the shortest
path problem, as we will see in the next section.

We can distinguish among the following variants of the shortest path problem:

The single-pair shortest path problem is usually defined as the problem of
finding a single shortest path from a node (source) to a node (destination). For
the purposes of this work, when we refer to the single-pair shortest path
problem, we mean a more general problem of finding a single shortest path

2 SHORTEST PATHS AND TRAIN CONNECTIONS 4

between a pair of node sets, that is, we are trying to find a shortest path from
SESV to T<V. Notice that this problem differs from the following two in that
its solutions is at most one shortest path, whereas in the two below, it is some
finite number of shortest paths.

« The single-source shortest path problem is the problem of finding a shortest path
from a given (source) node to all the nodes in the graph.

« The all-pairs shortest path problem is concerned with finding a shortest path
between any two nodes in a graph, i.e., the goal is to find a path from u to v for
all u,veV.

We will be concerned exclusively with the first from the three problems, that is, with
finding a single shortest path between a pair of node sets. Thus, whenever we talk about
the shortest path problem, we mean the single-pair shortest path problem, as described
above.

2.3 Train connections

2.3.1 Definitions

Let us first formalize relevant aspects of some of the real-world notions, every traveller
knows like the palm of their hand.

Definition Let St denote some finite set of stations INDn>2. A line [=(d,,....,d)EL

is a sequence of stop descriptors, where

- for all 1<i<mn we have di:(si,Tl.), where $. €St is a station and

TiE{O, 1,..., 1339} represents a time in minutes relative to 12 am

— / — = =
forall 2<i<n-—2 wehave §=5,_ <5 #5 .

The meaning of this definition is that whenever a train stops at a station S, then

s =s Ti represents the arrival time to 5, and Ti

i i+l

., represents the departure time

from S, .

Definition A rransportation network is a triplet N=(St,L,c), where St represents a
set of stations, L is a set of lines and c¢:LXIN—(IR")", for some a€IN, is a cost

function.

For a line (d c({d,,...,d),i) represents the cost of travelling from a station

120 %l n

2 SHORTEST PATHS AND TRAIN CONNECTIONS 5

s, to a station S, , if 5,75, or the cost of waiting at §,=s,_, . Instead of choosing a

set of scalar values, a more general approach was needed here. The reason for this is that
the cost of a trip may have various attributes, such as the time spent, price of the ticket,
etc. The convention is that the first coordinate of the vector is the time portion of the
cost.

We require that whenever s,=s,, foraline [=(d ,...,d) (train is waiting at a station
s=s,=s...), we have c¢(l,i)=v(T)=(T,O0,...,0), where T represents the waiting

time at station s.

In addition to this, we define a weight function w:(IRR")‘—(RR*) for a transportation

network N as a linear mapping from costs to scalar values, that is,
w({a, ..,a))=k-a+..+k -a for some Kk ...k . Whereas the cost function

represents costs of connections in a given transportation network, the weight function
represents rather a traveller's preference. For instance one traveller may prefer cheap
fare over comfort, while another one may value short trips more, so we can represent
each traveller's preference by a weight function.

Moreover, the weight function will allow us to weight whole trips in a more
straightforward way.

Definition We define the weight of a line 1=(d ,...,d) as follows:

wl(l)= Y wie(1.0)

Definitions For a line [=(d,,..,d) and 1<i<j<n, we denote a subsequence
(d,,....d,) of Iby 1(i,j).
Note that a subsequence of a line is also a line.

For a line [=(d,,...,d) and 1<i<n, we denote the i-th element of / by (i) and the
n-th element of [by I(co) . thatis, [(i)=d_, and [(w)=d .

Furthermore, for a line (=((s,T),....(s,,T,)) and 1<i<n, we denote the i-th
station part of the stop descriptor @, by [(i).station and the i-th time part of the stop

descriptor d, by [(i).time . Thatis, [(i).station=s_ and 1(i).time=T,.

Definition A connection C in a transportation network N =(St,L,c) from a station
sESt to a station tE€St, where s#¢, isS a sequence C=<ll‘---,ln> of lines, where

n>1 and the following properties hold:

2 SHORTEST PATHS AND TRAIN CONNECTIONS 6

for each 1<i<n we have that ll. is a subsequence of some line Z_IEL , that is,

1.=I(j.,k.) for some valid J. and k.

for each 1<i<n and [=L(j..k), wehave j.<k,

- s=1[(1) and [(0)=t

for each 1<i<n, and [, €L, where [=01(j.k) and [=1 (j. .k),

we have [(). station=1_ (1).station

That is to say, C is a connection from s to 7 if (/,,...,l) is a sequence of lines such
that each of them is a subsequence of some line in L, [, departs from s, each [, carries

us to a successive station, where we can change to /., and [stops at .

Definition Let C =<ll’...,ln> be a connection such that for each 1<i<n we have
1.=I(j k) for some [,€L . We define the length of a connection C, denoted by (C),

as the number of stations on C, that is, {(C)=|{L,(}). station | lﬁiﬁn/\jiﬁjﬁki}‘ :

2.3.2 Cheapest connection problem

The problem we are concerned with is to find a connection with the smallest weight for
given s and ¢, at a time 7, in a given transportation network. As we stated in the
introduction, we also want it to be possible to specify radii for s and ¢, so that a cheapest
connection from a station within the radius of s to a station within the radius of ¢ will be
found. As we will see, we will solve this last requirement in a more general way, by
considering a set of origin stations and a set of destination stations. But before we
present a formal definition of the cheapest connection problem, we first have to define
the weight of a connection.

It might sound reasonable to define the weight of a connection as the sum of the
weights of all the lines in this connection, and in fact, it is not much far from the
definition we are about to present. Nevertheless, it is not enough, as we should also
consider the waiting times between the lines of the connection.

Definition We define a convenience operator for a correct subtraction of relative times
0<T T,<1440:

r-7,, if T >T,

T orT,=
1440+T —T,, otherwise

2 SHORTEST PATHS AND TRAIN CONNECTIONS 7

Definition We define the weight w(C,T) of a connection C :<ll,"" I) at time T in

the following way:

w(C, T)Zzn: w(li)+i w(v(T,)), where

T :ll(l).timeeT,and

1
for each 2<j<n wehave T =I(1).time©l_ (o).time

Now we can give a definition of the cheapest connection problem. Let N=(St,L,c) be
a transportation network, R< St a set of (origin) stations, DS St a set of (destination)
stations and a relative time 7. The cheapest connection problem is a problem of finding
a connection C in a transportation network N from an origin station r€R to a
destination station d €D at time T, such that w(C,T)<w(C,T), for all connections
C such that C is a connection from 7€R to d €D in N. In the rest of this work,
cheapest connection query will refer to a given sets of stations R, D and a relative time
T.

There are two possible approaches we can take to solve the cheapest connection
problem. The first one is to use a different graph definition and/or cost function to the
one presented earlier, so that we can represent the transportation network in a
straightforward way. That is, we could use a multi-graph that would allow us to
represent the different line edges that may go between any two stations or we could
possibly use a time-dependent cost function to easily obtain the time cost of getting
from a given node to another node at a given time.

The second approach is to make up a way of representing the transportation network by
a directed graph, in such a manner that finding a shortest path in this graph will be
equivalent to finding a cheapest connection in the transportation network.

We decided to go for the second of the two described approaches, for the following two
reasons:

- Due to a long history of the shortest path problem, and its being a target of many
researchers, there exist a lot of efficient algorithms for solving this problem. Thus
we will be able to choose any of these algorithms and apply them indirectly on the
cheapest connection problem by finding a shortest path in our graph representation
of the transportation network.

- It is usual that for a given query actually more than one cheapest connection exists in
a transportation network and we want our search algorithm to find the one of them
that has some additional qualities in comparison to the other connections. For
example, we would probably prefer a connection with the least changes, with the

2 SHORTEST PATHS AND TRAIN CONNECTIONS 8

latest departure from the origin station, etc. This seems to be achievable more easily
in our graph representation of the transportation network by easy modifications to
the search algorithm.

In the following section, a graph representation of the transportation network will be
described.

2.3.3 Graph representation of a transportation network

Now that we decided to make up a graph representation for the transportation network,
the cheapest connection problem boils down to finding one. Once we have it, we will be
able to apply any of the existing algorithms for the shortest path problem on our graph,
thus solving the cheapest connection problem.

So let us introduce the graph representation of a transportation network. For an intuitive
understanding, let us first describe what the graph will look like informally, providing a
formal description later on.

We begin with the description of the nodes and will continue by the description of the
edges of the graph.

The graph will contain several nodes for each station. The nodes will be of two kinds.
First there will be exactly one node for each arrival to each station. We will call these
nodes the arrival nodes. Second, there will be a node representing a departure time from
a station. We will call these nodes the departure nodes. One departure node may
actually represent various departures from a given station, whenever all these departures
happen at the same time.

Now we turn to the description of the edges of our graph. There will be four sorts of
edges.

There will be two kinds of outgoing edges for each departure node. First, an edge will
be added from a departure node to the earliest following departure node at the same
station. When we say following departure, we mean the next departure in time. We will
call these edges the wait edges. In other words, for each station there will be a
succession of departure nodes, such that each of the departure nodes is connected just
with the earliest following departure node.

The second kind of outgoing edge will be the departure edge which connects the given
departure node for station s; with an arrival node in the following station s,, whenever
there is a line that goes from s, to s, directly (i.e., without intermediate stops). There
may be as many departure edges from a departure node, as there are lines departing at
the given time from the station.

2 SHORTEST PATHS AND TRAIN CONNECTIONS 9

We now turn to the description of the two remaining kinds of edges. These will
correspond to the arrival nodes. The first one (a change edge) connects an arrival node
with the next departure time at the same station and the second one (a continuation
edge) connects the node with the arrival node at the following station corresponding to
the same line. This way we represent the fact that when we arrive to a station, we can
either choose to get off the train and wait for another train (change edge), or stay on the
train and continue to the following station (continuation edge).

The last thing to mention is how to represent the travel costs of the transportation

network N. We will consider a weight function W, for N and will want to concoct a

weight function W, for our graph. We leave the details of this to the formal definition
below, and just briefly summarize what it says. The weights for departure and
continuation edges can be obtained directly from W, , as each of these edges have their

cost assigned in N. Less clear is how we should define the weights for the change edges
and the wait edges, since these edges do not originate in the transportation network.

following e -
******************** departures from A }\c}eparture edge |

,,,,,,

! . |
!departure node representing a

i all departures from B att, |

Fig. 2.3.1.: When we arrive at station A (node n;), we can either get off at the station to opt for
another train (change edge e,), or we can stay on the train and continue to the next station
(continuation edge e;). Note that for the resulting graph to work correctly, it is necessary that n, is
a departure node representing the earliest departure (not necessarily the departure of the same
line as shown in this figure), such that t; < t,. The wait edge es connects the departure node n,

with the closest departure node at this station. Finally, there is just one departure edge in this
example, namely the edge es. In this example we assume that the weight function is one-

. . . + +
dimensional, i.e.,a=1,and W, R —IR™.

2 SHORTEST PATHS AND TRAIN CONNECTIONS 10

Nevertheless, we will solve it again using the weight function W , by applying it on a

cost vector v(T) for each edge representing a waiting time 7, thus obtaining a real
valued weight for the corresponding edge.

Note that the introduction of change edges makes it easy to charge a penalty for each
change, which may make the algorithm prefer (sub-optimal) connections with fewer
changes. This could be done by adding a value P to the first coordinate of the
corresponding vector. See Fig. 2.3.1 on page 9 for an illustration of the graph
construction considering just one line and Fig. 2.3.2 on page 10 for a more complete
example encompassing various lines.

arrivals departures arrivals arrivals

Praha Kolin Nymburk

Fig. 2.3.2.: We again assume that W is a one-dimensional weight function (i.e., a = 1,

and w,:R"=R™) but for brevity leave out the function name W, and just specify the

function's arguments next to each edge. Note that the edge connecting the last departure of
the day (23:59) with the first departure of the day (0:01) is necessary in order for the
overnight connections to be considered in the search. In this example you can see the case,
when a change edge is not connected to the departure node of the same line. This is the
case of the red line. P is a change penalty parameter.

2.3.4 Transportation graph

Let us formalize what we described informally in the previous section. Let

2 SHORTEST PATHS AND TRAIN CONNECTIONS 11

N=(St,L,c) be atransportation network and W, a weight function for N. For a given
change penalty P, we give a definition of a graph representation G,=(V ,E) of the
transportation network N and a weight function w, for G, . We will call G, the

transportation graph for N, or shortly, the transportation graph.

1) We define the set of nodes V, of G, as follows:

For each line /,=((s,,T,),...(s,,T))EL, and for each 1<i<n and each . such

that 5,75, , we add the following nodes to V,:
- dls,T]ev, (§, -departure nodes)
- als, T, .klev, (5., -arrival nodes)

Note, that it follows from this definition that whereas there is an arrival node for each
arrival to a station, there may be just one departure node for several departures from a
station whenever the departing time is the same for all these departures.

Before we proceed to the definition of E v» we define an auxiliary function

ND; (s,T,) for G, station s and time 7, that will give us a means of referring to

N

the s-departure node most closely after the time 7, :

ND_ (s,T,)=

o,

min{d|s,T,|€V |T 2T] (d[s,T eV |IT =T |#8

T

2

min{d|s,T,|€V |

, , otherwise

2) We define the set of edges £, of G, as follows:

For each line lk=<(S1,T1),---,(Sn,Tn)>€L, and for each 3<i<n and s, such that

s #5,., we add the following edges to E :

- (d [51, T] al s, T, k|)€E, (first departure edge for line k)
- (d[s,T] als, T, . kl€EE, (other departure edges)
- lals,_,, T _ Kk, NDGN(SH’ T.)EE, (change edges)

- lals, T, klals T, k)EE, (continuation edges)

Furthermore, for each station s€St and for each departure node d(s,T)EV ,, we add

2 SHORTEST PATHS AND TRAIN CONNECTIONS 12

the following edge to E :

- (d[s,T|,ND, (s, T+1))€E,,, (wait edges)

3) We define the weight function W, on the edges from 2).

Let R>P>0 be a change penalty. For each line [, =((s,,T,),...(s ,T))EL,

s, #5,,, and for each 3<i<n and s, such that s,#s, , we define W as follows:

(first departure edge for line k) WG(d[Sl,TI] . Cl[Szy Tz,k]):WN(C(lk, 1))

(other departure edges) w (d[s.,T |,als T . k|)=w,(c(l i)).

(change edges) WG(G[SH,TH,k],d[EF Tifl])ZWN(V(T))‘FP,where

d[s T'—l]:NDGN<S T~_1),and T:Ti—leTi—l‘

i—17 7 i—1’ 7

(continuation edges) WG(G[Si_l, T, kl,als

=w,(c(l,,i=1))+w (c(l,i)).

i+1’Ti+1’

For each station s€St and for each departure node d(s,T)EV , we define w, on

the corresponding wait edge as follows:

— (wait edges) WG(d[S,T],d[f,T])ZWN(Tf'T), where d[f:T]:NDGN(S,T), and
T=ToT.

2.3.5 Shortest paths and cheapest connections

Our concern now will be to show that the graph representation of a transportation
network is reasonable, that is, that a query for a cheapest connection in a transportation
network N can be transformed into a shortest path query and that a shortest path found
by any correct algorithm for the shortest path problem can be transformed into a
connection in N and that this connection is a cheapest connection for the cheapest
connection query. This last statement only holds when the change penalty parameter
used in the construction of C, is zero, as the change penalty parameter may force the
algorithm to prefer a connection with fewer changes over a one connection with smallest
weight.

Let us use the notation from the previous section, that is, we have a transportation

v> and a

network N=(St,L,c), where Lz{ll,.-.,lz} with a weight function w
transportation graph G,=(V ,E,) for N and a weight function w, for G, .

Moreover, we will consider a cheapest connection query for a set of origin stations
RC St, a set of destination stations DS St, where RND=/ , and time 7 and when

2 SHORTEST PATHS AND TRAIN CONNECTIONS 13

we refer to a shortest path query, we mean a single-pair shortest path query, as defined
earlier. Finally, let A denote an algorithm for the shortest path problem.

From cheapest connection query to shortest path query

For our cheapest connection query, we construct the following shortest path query:

S={ND, (r,T)| rer) (source set)
and
Tz{a[d,Y,k]GGN|d€D/\OSY<l440/\lk€L} (target set)

That is to say, S is a set of all earliest r-departure nodes after time T forall reR, and

T contains all d-arrival nodes for all d€D .

Please note that we use the words origin (station) and destination (station), when we
talk about cheapest connections, whereas we use the words source (node) and target
(node), whenever we talk about shortest paths.

Let P=<d[r,Tr]=uL...,un:a[d,Td,k]>, for some reR and some JeD be the
shortest path found by algorithm A. First, let us show how we obtain a connection C,

from r to d based on P and then give a clarification on why this has to be the cheapest
connection from r to d and therefore this connection is a solution to the cheapest
connection problem.

From shortest path to a connection

Without loss of generality, we can assume that the algorithm A always finds a path that

contains no sub-path {(al[s,, T, k|, d[s, ,T, l.als, ,,T, k). Inother words, we

do not get off and get on the same train. For an illustration, see Fig. 2.3.1, where we
assume that A always prefers <n;, n;> over <n,, n,, n;>. This assumption is justified by
the fact that we could always replace each sub-path (7, 7, 7) with (n,n, as it follows

from the construction of G, that w((n, n))<w((n n,n)).

It follows from the definition of G, that whenever there are two adjacent arrival nodes

u=als,T k|, u, =als

, U, TM, I] on P, we have (1) [= k since from each arrival

i+1’
node we can either reach a departure node or the next successor arrival node for the

same line. Moreover, when there is a departure node #,=d|[s,T.] followed by an
arrival node ¥, , Za[SM, T,-+1’ k| on P then (2) (s, Tl.> is also a direct predecessor of

(s , T) on line k. Therefore we can obtain C, gradually by going through P from
12 it r & Yy by going g

2 SHORTEST PATHS AND TRAIN CONNECTIONS 14

the beginning to the end and for each sub-path P of P, which for some j>1 has to
have one of the following forms:

- P={d[s,.T] als,, .T, .kl .. ,a[sh+j, T, k|,d|s
(not the last “fragment”), OR

h+j+1° Th+j+1]>

. P:<d[5h,T,l],a[ShH,Thﬂ,k],...,a[sm_/.,Thﬂ.,k]> (the last “fragment”)
and for some b>1 we have

a) d[sh,Th]zlk(b) , and

by als, T, 1=l (b+2:m+1) forall 0<m<j,

then we add the line [, (b,b+2-j+1) to C, . Note that a line /, satisfying the criteria

a) and b) always exists. This follows from the remarks 1) and 2) stated above, and from
the construction of the transportation graph.

C » thus constructed is a valid connection in N, for it is a sequence of valid lines, each

of length at least 2, and for every two immediately consequent lines
S, =s,, T) (s, 0T,)0 and S,=((s,, T), ecs(s, . T

jt+m j+m)> ’ we haVe sh+k:Sj ’

because all nodes in P, skipped after S, , but before S, was added into C, , had to be
departure nodes, and it holds that any two subsequent departure nodes d [51,T1] ,
d [52, Tz] on any path have to belong to the same station, that is, § =5, .

We have shown that from a shortest path P, we can obtain a valid connection
CP=<1L---, l”> in N. Moreover, it is a connection from r€R to de D, which follows
from the way C, was constructed, and the fact that the first node on P is d [dr, Tr] ,
and the last node on Pis ald, Td, k] .

Furthermore, from the definition of W, it follows that w,(P)=w(C,,T).

Optimality of found connection

In this section, we propose ourselves to give some insight into why the connection C,

constructed from P in the previous section has to be a solution to the cheapest
connection problem’.

We will proceed by contradiction. Let C=(/, ...,) be a connection from FER to

2 As stated earlier, we have to assume that the change penalty parameter in the construction of G N was

Z€10.

2 SHORTEST PATHS AND TRAIN CONNECTIONS 15

deD such that w,(C,,T)>w (C,T) . We will construct a path P in G, from S to

T, such that w(P)>w (P) contradicting our assumption that P is a shortest path.

For the purposes of the construction, we define an auxiliary function Dep that for a

given station s€St and given relative times 7, T (ie., TS,TEG{O, 1,..., 1339}) will

allow us to obtain a sequence of s-departure nodes before T and after T, :
Dep(s,TS,T€)=<d[s,T1],...,d[s,TP]>,where

1) foreach 1<i<p wehave (d[s,T], d[s,T _ |)€EE, and

2) foreach 1<j<p wehave T,0T <T ©T and

3) no node is repeated in the sequence <d[S,T1],...,d[S,TP]>.

To prove our claim, we start with an empty path and gradually add sequences of nodes
to P, each such a sequence corresponding to a line of C, and we proceed from the

beginning to the end of C. For i=1,2,...,n , we process the sequence [, by adding all

the (departure) nodes from Dep (I (1).station,T",1(1).time) to the end of P, where
T'=T fori=1and
T'=l_ (o). time for 2<i<n

After that, for each 1= jSmi/ 2, where m, is the length of the sequence [, all the
(arrival) nodes al[l(2-j).station,(2-j).time k|, are added to the end of P . This
concludes the processing of line i.

At the end, we obtain a sequence P of nodes from G . It is a path in G, , which
follows from the construction of G, and the definition of Dep (s, T, Te) . Moreover,
it is a path from S to 7. The first sequence added to P was Dep(7,T_,1.(1).time)
whose first node is NDGN(V, T) . The last node on P is ald,X,y], as the last station

of the last sequence of Cis d (Cis a connection from 7 to d).

Let us now analyse the weight of P . For each line, we need to consider the cost of the
waiting time preceding the change to the corresponding line and the cost of the
“travelling” on this line:

1) The cost for waiting time before line start:

WN<V(T')) , where T':li(1>. time © T? for i = 1, and T':li(l). time © ll;l (OO) time
for 2<i<n.

2 SHORTEST PATHS AND TRAIN CONNECTIONS 16

2) The cost of the “travelling” on this line is W, (li) .

The cost of the waiting time at 7 and the waiting time between every two lines on C are
counted and the cost of each line is counted. From the definition of W, it follows that
w (P)=w (C,T). Since we also know that w_(P)=w (C,.T), we have
w (P)=w (C,T)<w,(C,,T)=w_(P), a contradiction with our assumption that P

is a shortest path from S to 7.

2.3.6 Restricted timetables

There is one important thing that has not been considered in the definition of the
transportation network. That thing is that there is no information in the transportation
network indicating whether a given line actually operates on a given day. It is a
ubiquitous practice that some lines operate just during the weekdays, others just on
weekends, whereas some do not run on statutory holidays, etc. Nevertheless, this
deficiency can be fixed easily in the search algorithm, by not traversing some of the
edges. We will postpone the details of the fixes until we arrive at the descriptions of the
particular algorithms.

3 Shortest Path Algorithms

3.1 Dijkstra's Algorithm

The Dijkstra's Algorithm is one of the best known algorithms for the single-source
shortest path problem. There are many modifications of the algorithm and some of the
recently published algorithms are based on the Dijkstra's Algorithm. We will first
present the original version of the algorithm and some of its modifications later on in
this chapter.

The algorithm works in the following way: it maintains a priority queue Q of nodes that
have been visited so far and a tentative distance d[u] for each node u (we write it in bold
not to confuse it with a departure node d[s, T1). The priority queue stores ordered pairs
(key, u), where key is a numeric value (usually a distance) and u is a node. Furthermore,
we define three basic operations on Q:

- DECREASE-KEY(Q, u, key) — changes the key under which u is stored in Q. For
DECREASE-KEY to work, it is assumed that, at the time DECREASE-KEY is
invoked, u is already a member of Q and the new key is smaller or equal to the one
under which u is currently stored in Q.

- INSERT(Q, u, key) — adds a node u to Q with the specified key. It is assumed that u
is not a node in Q when the INSERT operation is invoked.

- EXTRACT-MIN(Q) — removes a node with the smallest key from Q and returns this
node as result.

Each of this operations returns the modified queue (EXTRACT-MIN returns an ordered

pair (Q,u), where Q is the queue after the removal of the node u with the smallest

key).

The search is initialized by inserting s into Q, setting d[s] to 0 and d[u] to « for
ucsV\{s}.

At each iteration of the algorithm, a node u with the smallest tentative distance is
extracted from the queue and all outgoing edges are relaxed where relaxation of an edge

17

3 SHORTEST PATH ALGORITHMS 18

(u, v) means updating the tentative distance d[v], for the node v and inserting v into Q if
it is not yet in Q, or doing nothing, if the new tentative distance is greater or equal to
d[v].

The algorithm terminates when the priority queue Q is empty.

Let us introduce three useful terms that will be used not only in the context of the
Dijkstra's Algorithm but also in all its modifications described further in this chapter.

A node is called a reached node if it is or was an element of Q. Furthermore, we call a
node settled if it has already been extracted from Q. We call an edge (u, v) relaxed if u
has been settled during the performance of the algorithm.

We can think of the queue as of a fringe of the search. At each iteration, the node u
closest to s is extracted form Q and the fringe is extended to the nodes beyond u, that is,
the adjacent nodes of u.

The crucial point about the algorithm is that when a node u is settled, it holds that
d[u] = 6(s, u), that is, the distance from s to u has been found. This statement will be
proved in the next section for a generalized version of the Dijkstra's Algorithm (and thus
for the original version as well).

Note that it follows that when a node is settled, it will not become an element of Q in the
future, an important feature for the complexity of the algorithm. Also note that this only
holds for non-negative weight functions, as can be seen in the example in Fig. 3.1.1.

Fig. 3.1.1.: Graph with negative weight function. When searching from A,
the settled elements will be (in this order) A, C, B, C

When the weight function is non-negative, a node u will not become an element of Q
after it is settled, because it would have to be reached with a smaller tentative distance
than 6(s, u) in order to become element of Q again.

After the Dijkstra's algorithm terminates, the distance from s to any node u will be

3 SHORTEST PATH ALGORITHMS 19

stored in d[u]. But what about the actual shortest paths? Paths can be handled easily by
maintaining a tentative parent p[v] for each node v, initially set to N/A (no parent).
Whenever v is reached from u and d[v] is decreased, we also update the parent p[v] and
set it to u. After the search has finished, we can traverse the path from s to v backwards
by following the parents of v. (p[v], p[p[v]], etc.), until we reach s. See Fig. 3.1.2 for
pseudo-code of the Dijkstra's algorithm and Fig. 3.1.3 for pseudo-code of the RELAX
function.

DIJKSTRA(G, s, w)

1 d[s]=0

2 foreach v € V/{s} do
3 dlv] =
4 QS

5 while Q # @ do
6 (Q, u) — EXTRACT-MIN(Q)

7 foreach (1, v) € E do

8 Q «— RELAX(u, v, w, O, d, p)

Fig. 3.1.2.: The original Dijkstra's Algorithm. G is a
graph, s a source node and w a weight function for G.

RELAX(u,v,w,Q ,d,p)

1 ifd[u] + w(u, v) <d[v] then

2 d[v] < d[u] + w(u, v)

3 plvl < u

4 if veQ then

5 0 « DECREASE-KEY(Q, v, d[v])
6 else

7 0 « INSERT(Q, v, d[v])

8 return QO

Fig. 3.1.3.: The RELAX function. u, v are nodes, w is a weight function, Q a priority
queue, d a distance array and p a vector of predecessors. DECREASE-KEY
decreases the key under which v is stored in Q. INSERT stores a node in Q with a
specified key.

An easy modification to the Dijkstra's algorithm can yield an algorithm for finding a
shortest path from a node s to a node z. This can actually reduce the area searched if we
are only interested in finding the shortest path between two nodes s and 7. We start the
search from s as usual but terminate the search after ¢ is settled (a shortest path to ¢ has
been found) or the priority queue is empty (there is no path from s to 7). In the very

3 SHORTEST PATH ALGORITHMS 20

same way, we can modify the algorithm so that it finds a shortest path from a source
node s to any node from a given set TSV by terminating after any node from T is
settled.

3.1.1 Time complexity of the Dijkstra's Algorithm

Let us analyse the upper bound time complexity of the Dijkstra's Algorithm. As
discussed earlier, a node cannot become an element of Q more than once if there are no
negative edges in the graph. Therefore the outer loop of the algorithm can be executed at
most n times. This implies that an edge cannot be relaxed more than once, so the inner
loop cannot be executed more than m times during the execution of the algorithm. This
yields a time complexity of O(n.T; + m.T,), where T, represents the time complexity of
one iteration of the outer loop not counting the inner loop, and 7, represents the time
complexity of one iteration of the inner loop. To define 7, and 7>, we have to consider
the three vital operations the priority queue implementation has to provide: INSERT(Q,
u, key), DECREASE-KEY (Q, u, key), and EXTRACT-MIN(Q).

INSERT and DECREASE-KEY are used in the RELAX function. The EXTRACT-MIN
is used in the outer loop to obtain the minimum element of Q and remove it from Q.
INSERT inserts a new element into O, and DECREASE-KEY decreases the key of a
node under which it is stored in Q (possibly yielding a higher position in Q or even a
new minimum).

A common implementation of a priority queue is the Fibonacci heap, which has the
amortized complexities of O(1), O(1) and O(log n) for INSERT, DECREASE-KEY, and
EXTRACT-MIN, respectively. Thus, the time complexity of the Dijkstra's algorithm
using the Fibonacci heap is O(n.log n + m).

3.1.2 Multi-Source Dijkstra's Algorithm

Now we present a generalization of the Dijkstra's Algorithm which differs from the
original version in that it finds the distances (and the corresponding shortest paths) from
a given set SCV of nodes to all nodes in the graph. In other words, for each node
s€ S and each node veV, the algorithm finds the distance from s to v. As we will see,
this version of the Dijkstra's Algorithm can be easily modified to obtain an algorithm
for the single-pair shortest path, which is the one of most interest to us.

For a pseudo-code of the algorithm, see Fig. 3.1.4. The only difference from the original
version is that all the tentative distances for all nodes in S are initialized to 0. Note, that
an algorithm for solving the single-pair shortest path problem can be obtained by adding
an additional termination condition: if we consider a set T of target nodes, then we can

3 SHORTEST PATH ALGORITHMS 21

terminate the search after a node u&€T is extracted on line 7 of the algorithm from Fig.
3.14.

MULTI-SOURCE-DIJKSTRA(G, S, w)
foreach s € S do

d[s]=0
foreach v € V/S do
dlv] =

while Q # @ do

(Q. u) — EXTRACT_MIN(Q)

0« QO\wu

foreach (1, v) € E do

10 Q < RELAX(u, v, w, Q, d, p)

1
2
3
4
5 QS
6
7
8
9

Fig. 3.1.4.: Multi-source Dijkstra's Algorithm. G is a graph, S a
set of source nodes and w a weight function for G.

The correctness proof for the Dijkstra's Algorithm will be a generalized version of the
proof by T. H. Cormen et al. in [3]. But before presenting the correctness theorem for
the Dijkstra's Algorithm and its proof, let us introduce a trivial property that will be
used in the proof.

Upper-bound property During the execution of the Dijkstra's Algorithm it holds that
d[v] = 6(S, v) for all ve v and once d[v] = (S, v), d[v] never changes.

Theorem The multi-source Dijkstra's Algorithm, run on a directed graph (V, E) with
non-negative costs, terminates and after it terminates, d[u] = 6(S, u) holds for each
ueVv.

Proof 1t suffices to prove the following loop invariant:
After u is settled at line 7, it holds that d[u] = o(S, u). 3.1
Note that the theorem follows from this invariant:

> Termination: The algorithm always terminates. This can be seen by inspecting
all operations that change the number of nodes in Q, that is, the lines 5, 7 and 10.
On line 5, Q is initialized by a finite set of nodes. On line 7, exactly one node is
removed from Q. As line 7 executes in each iteration of the while loop and
decreases size of Q by one, it is enough to show that a node cannot be an
element of Q more than once during the execution of the loop by inspecting the
last remaining operation, which changes the number of nodes in Q. Line 10 is
the only line which may increase the number of nodes in Q. The RELAX

3 SHORTEST PATH ALGORITHMS 22

function may only increase the size of Q if the condition on line 1 of the RELAX
function holds. But for a node v that is no longer a member of Q this condition
never holds, since d[u] + w(u, v) <d[v] would contradict the invariant d[v] =6
(S, v). Therefore a node cannot be a member of Q more than once.

> Optimality: d/u] = 6(S, u) for each u € V after the while loop terminates. It can
be easily shown by induction that any node u € V that is not reachable from S is
never reached and therefore dlu] =c = (S, u) after the loop terminates.
Similarly, it can be shown that a node u that is reachable from § becomes a
member of S during the execution of the while loop. It remains to note that d[u]
will not be changed after it is extracted from Q on line 7. This follows from the
invariant d[u] = 6(S, u) and the upper-bound property.

Now by proving (3.1), we will conclude the proof of the theorem.

We want to prove that after a node u is settled on line 7, it holds that d[u] = 6(S, u). It
can be shown that any node veV lying on a zero-weight shortest path is settled with
d[v] = 6(S, u) = 0 before any node lying on a non zero-weight shortest path is settled.
Namely this holds for each se€S§ as it lies on a zero-weight path <s>. Therefore, we
only deal with nodes u€V such that 6(S, u) # 0.

We will proceed by contradiction. Let us assume that u is the first node for which
dlu] # 6(S, u) just before u is settled on line 7. There must be a path from S to u for
otherwise d[u] = 6(S, u) = oo, which would violate our assumption. Since there is a path
from S to u, there is a shortest path p from S to u. Let p = <s, ..., u> for some s€ S and
let y be the first node on p such that y has not been settled and x be the predecessor of y,
that is, x has been settled (there always exists such x and y, because there is at least one
settled node, i.e., s and at least one unsettled node, i.e., u, on p).

We will show that d[y] = 6(S, y) holds when u is about to be settled. Since x has been
settled before u and u is the first node settled such that d[u] # 6(S, u), we have d[x] = 6
(S, x) when x was settled. Since 6(S, y) = d[x] + w((x, y)) < d[y] must have held when x
was settled (x and y lie on the shortest path from s to u), after the relaxation we got 6(S,
y) =d[x] + w((x, y)) =d[yl.

It is now easy to obtain a contradiction. Since y precedes u on p, the following holds:

dly] =6(S, y) < 6(S, u) <d[u] (3.2)

We also have d[u] < d[y] for neither u nor y have been yet settled and u will be settled
next. Together we get d[u] = d[y] and from (3.2) we get 6(S, u) = d[u], which
contradicts our assumption. This concludes the proof of (3.1) and consequently the
proof of the theorem.

3 SHORTEST PATH ALGORITHMS 23

3.1.3 Bidirectional Dijkstra

A tempting modification of the Dijkstra's Algorithm used for the single-pair shortest
path problem is to search from the source to the target and from the target to the source
in the reversed graph simultaneously, thus possibly reducing the space searched. More
precisely, at each iteration of the algorithm we check which of the two searches has a
smaller key at the front of the priority and advance in that direction. We will refer to the
two searches as the forward and the backward search.

In the case of bidirectional search, we can terminate the search as soon as the search
scopes have met, that is, as soon as we settle a node in one direction that has already
been settled in the other direction.

This common modification is called the bidirectional Dijkstra's Algorithm. The intuitive
justification for this modification is illustrated in Fig. 3.1.5.

(A) B)

Fig. 3.1.5. Comparison of searches of the unidirectional (A) and the bidirectional
Dijkstra's Algorithm (B). The area searched in (A) is O(n%), whereas the area searched in
(B) is O(2.(n/2)*) = O(n’/2).

The termination condition of the bidirectional algorithm has to be handled carefully. It
is guaranteed that as soon as the search scopes meet at a node v a shortest path has been
found. Nevertheless, there is no guarantee that node v lies on a shortest path. See Fig.
3.1.6 for an illustration.

To obtain the shortest path, we can maintain a list of meeting points ordered by the sum
of distances from s and ¢. By a meeting point, we mean a node that has been reached in
both, the forward and the backward search. When the search scopes meet, we terminate
the search and extract the node from the head of the list of meeting points (the one with
the shortest distance).

3 SHORTEST PATH ALGORITHMS 24

° 3
1 2.5
Aq D
2

Fig. 3.1.6.: When searching from A (forward) and C (backward), D will be the first
node settled in both, the forward and the backward search, even though it does not
lie on the only shortest path, which is A-B-C.

3.1.4 Combining the modifications

For the transportation network application, we will need to combine the previous two
modifications of the Dijkstra's Algorithm, yielding the multi-source, multi-target
bidirectional Dijkstra's Algorithm. The modification is simple: just run the multi-source
Dijkstra's algorithm from s€S§ and from r€T in the reverse graph simultaneously.
Terminate, when the search scopes meet, just as in the case of the original bidirectional
version.

There is an important performance issue and we will have to face it later on, when
talking about the application to transportation networks. First, there is no guarantee that
the bidirectional version of Dijkstra's algorithm outperforms the original version. In
some cases the original version of the algorithm will find a shortest path faster, than the
bidirectional one. This becomes even more likely in the case of the multi-source, multi-
target bidirectional version. For an illustration, let us consider the case that IS| = 1 and

®+*

Fig. 3.1.7. If the unidirectional version of the Dijkstra algorithm were used, the

search would finish easily by meeting t;, but in the bidirectional search the nodes t,
and t; yield a lot of unnecessary settled nodes.

3 SHORTEST PATH ALGORITHMS 25

|T|=n>1. Then whenever the forward search advances, the backward search has to
advance n times to be aligned with the forward search (see Fig. 3.1.7). This makes the
bidirectional terribly slow and usually the unidirectional multi-source algorithm
performs better.

3.2 A*(A-Star) Algorithm

In this section, we introduce an algorithm that is a heuristic search algorithm. It
originated in the field of Artificial Intelligence and is often stated in its more general
version as a state space search. As we are only interested in the graph version of the
algorithm, we will state it here. For the more general version, refer to [4]. Recall the
pseudo code for the Dijkstra's Algorithm. At line 6, we used the operation EXTRACT-
MIN on the priority queue to obtain the node closest to s. What if for each node u, we
know an estimate of its distance to a target node? Wouldn't it be better to extract first the
node that we think is closest to a target node? This is what A* does and its only
difference from the Dijkstra's Algorithm.

When deciding which node should be settled next, the algorithm uses a function f(u)
that gives an estimate of the cost of a path from s to a target node through the node u.
The function is defined as follows:

Jlu) = g(u) + h(u)

where g(u) is the cost of path from s to u (i.e., g(u) = w(<s, ..., u>)) and h(u) is a
heuristic function, which gives an estimate of the distance from u to a target node. h(u)
can be any totally computable function h:R—IR with the only requirement that
h(t) = 0 for any target node . For an efficient implementation, it is clearly desirable that
there be an efficient algorithm that computes h.

The important question is, whether A* always finds an optimal solution. The answer in
general is no. It does though if we impose an additional requirement on the heuristic
function.

A heuristic function h(u) is consistent if for every edge (u,v)€E the following
property holds

h(u)<w(u,v)+h(v)

(recall triangle inequality) It says that an estimate of getting from u to a target node must
not be greater than the actual cost of getting from u to v plus the estimate of getting
from v to a target node. See Fig. 3.2.1.

Theorem When a consistent heuristic function is used, the A* algorithm finds a

shortest path.

3 SHORTEST PATH ALGORITHMS 26

Proof It is sufficient to show that when a consistent heuristic function is used then the
values of f along any path are non-decreasing. Then clearly (as the algorithm first
extracts the node with the smallest f{x)) when a target node ¢ is settled, a shortest path
must have been found, because all subsequent nodes extracted from the queue will have
a value equal or greater then f{7).

w(u, v h(v)

h(u)

h(u)<w(u,v)+h(v)

Fig. 3.2.1.: Consistent heuristic function

Letp =<s, ..., u, v, ..., w> be a path. Then g(v) = g(u) + w(u, v) and we have

Jv) = g() + h(v) = gu) + w(u, v) + h(v) 2 g(u) + h(u) = flu)
Therefore the values of f along a path are non-decreasing. This concludes the proof.

A* can reduce the search space significantly in many applications. An example is
finding shortest paths in a train network (which is of course the main interest of this
work). In this instance, the Euclidean distances (i.e., straight line distances) can be used
as basis for a consistent heuristic function.

Nevertheless, there is no guarantee that A* will perform better in any application and
even in any instance of a given application.

The bidirectional search is also applicable to the A* algorithm. See [5] for details on the
bidirectional version of A*.

3.3 Highway hierarchies

Finding shortest paths in a road network is an essential task for a lot of real word logistic
and navigation systems. It is common that these systems exploit the property of a road
network that there are different classes of roads. So if one wants to find a path between
two distant cities, it would not be wise to consider every local road along the path, but
we could just consider major highways and reduce the search time significantly. The
disadvantage of this approach is though that leaving out some edges may actually lead to
non-optimal solutions. Since we are only interested in shortest paths in this work, we
will use Highway hierarchies, which does both, reduces search time considerably by

3 SHORTEST PATH ALGORITHMS 27

leveraging the mentioned property of road networks, and finds shortest paths. Apart
from that, the awesome property of Highway hierarchies is that it finds the road types
implicitly, that is, without outside guidance.

When talking about Highway hierarchies, we are actually talking about two algorithms.
First, there is an algorithm used for the construction of a Highway hierarchy, based on
an input road network (represented as a graph). Second, there is a search algorithm,
which is, again, a modification of the Dijkstra's Algorithm applied on a Highway
hierarchy. We will describe the two algorithms in turn.

3.3.1 Definition of Highway Hierarchy

Definition A highway hierarchy of graph G = (V, E) consists of a sequence of level
graphs G, = (Vy, Ev), Gy, ..., G = (V., E.), where

1) The level graph G, for level 0 is defined as G,=G .
2) The core G'| of the level graph G, is defined as G' ;=G .

3) The level graph G, for level I, for each 0<I<L, is a sub-graph of the core G',_,

of level [— 1. See below for details.

4) The core G'; of the level graph G,, for each 0</<L, is obtained from the level
graph G, of level /. See below for details.

Before we proceed to the detailed definitions of a core of a level and a level graph, we
need to define some additional notions used in the definitions.

Definition For a node each node y€V and a each level 0</<L , we choose some non-
negative neighbourhood radius of a node u in the level graph for level /, denoted by
r (u).

Similarly, we choose a non-negative neighbourhood radius of a node u in the reverse
graph of the level graph for level /, denoted by r;_(u) .

Definition For each node u€V and each 0</<L, we define the neighbourhood of a
node u in the level graph for level [, as the set of all nodes with the distance from u

smaller or equal to the neighbourhood radius rf(u) , and we denote the neighbourhood

of node u by N f(u) . In other words, we define the neighbourhood of a node u as

follows: N, (u)={veV '|6 (u,v)<r (u)} .

Similarly, we define the neighbourhood of a node u in the reverse graph of the level

3 SHORTEST PATH ALGORITHMS 28

graph for level I: N, (u)=(ve€V '|6 (u,v)<r (u)} .

Definition (Canonical shortest path) In order to preserve the correctness of the search
algorithm, the construction algorithm cannot use just any shortest path when choosing
edges to be added to the next level. The problem is illustrated in figure 3.3.1.

1
1 1
1 1
————— -

P, P, q, q,
1 1

u,

Fig. 3.3.1.: Importance of canonical shortest paths. This figure illustrates what might happen if just
any path were used during the construction of level graphs. The neighbourhood radii of all nodes is

chosen to be 1, so Nf(pl)z[pz} , Nj(pz):{pful’uz}’ N;—(qz):{ql} , and
N 7(6[1)= {qz JU, ”2] . Let us assume that the preferred shortest path between p, and g, is P, =

<pi, P2, U1, ;> and between p, and q; it is P, = <p,, U, q1, g->. Therefore for the path P, the red edge
(p2, uy) is added to G;,whereas for the path P, the blue edge (u», ¢;) is added to G, thus breaking the
level graph G,, as there will not be the necessary path between p, and ¢;.

Let SP; be a set of shortest paths in graph G = (V, E). Then we say that SP; is a set of
canonical shortest paths for G if
i. for each u,veV such that there exists a path from u# to v in G, we have

13P=(u,..,v)e SP_ (i.e., there exists exactly one path from u to v in SPg).

ii. for each path P=<M,---,V>ESPG and each sub-path P=PI
PESPG_

of P we have

u—-v

iii. nothing else is a member of SP;

Let be a path P in G. Then we say that P is a canonical shortest path, iif PESP . .

Definition of G,
For each 0<I<L we give a definition of G=(V, E) :

G, = (V,, E) is obtained from G'H:(V' ,E'H) in the following way: (1) E, is

-1

3 SHORTEST PATH ALGORITHMS 29

obtained by taking just such edges (u, v) from E', that there exist P, ¢€V',_, and a
canonical shortest path <p, ...,u, v, ...,¢> in G',_ , and the following properties are
satisfied: u€N, (q) and V€N, (p). Notice that this condition tries to exploit the

mentioned property of road networks: for nodes p and ¢ that are distant enough, we add
the highway edge (u, v), because there is a shortest path containing the edge (u, v)
between p and g. It is likely that this same edge will lie on the shortest paths between
the nodes in the proximity of p and those in the proximity of g. (2) V, contains exactly

the nodes u and v for each edge (1, v) added to E;: u€V ,=>3veEV, ' (u,v)EE,

Definition of G',
For each 0</<L, we give a definition of G'=(V',E"):

Let B, be a set of nodes. We call the nodes from B, the bypassable nodes. We define the
set of edges S,SV XV, (called the shortcut edges) in the following way: Let

u,v€V IB, b, ...b €B, and P =<u, by, ..., b,, v> be a path in G,. Then (u,V)€ES,
and we define the weight of the edge (u, v) as the weight of the path P: w(u, v) = w(P).

We are now poised to define the core of level I: G/ = (V/, E/), where V,'=V /B, and
E,'=(V,'XV 'NE)US .

An additional requirement on the neighbourhood radii will be needed: for each
0</<L and each uE€B, we require that 7, (u)=r, (u)=o0 , and for each u€EV, we

require that 7, (u)=r (u)=c

3.3.2 Construction

The construction algorithm for highway hierarchy proposed by D. Schultes in [6] and
adjusted for directed graphs by P. Sanders and D. Schultes in [7] will also be briefly
described here. More details can be found in [6] and [7].

In this section, &,(#,v) will denote the distance from uto vin G,".

Neighbourhood radii

For each 0</<L and each u€ V,' and a parameter n;, we determine the node radius
for u in the following way: let u(n I)EV'I be a node such that it has the 7,-th smallest

distance from u. Then we set rf(u):rj(u)=6(u,u(n,))_ This can be achieved by

3 SHORTEST PATH ALGORITHMS 30

running the Dijkstra's algorithm from every node #€V,’ and counting the number of
nodes visited. After a node v is settled and the counter exceeds 7,, we terminate the

Dijkstra search and set FT(”):”}_(“):d[V] .

Furthermore we set 7, (w)=r (w)=w, for each node WEV/V' and we set

FZ(V)ZTZ(V)IOO for each node veV.

Fast construction of a level graph

We assume that G, has already been created and will describe how G, , is

constructed. For each node #€V " two phases are performed. First, a Dijkstra search is

executed in G," from node u and a shortest path tree is built (a modification of

Dijkstra's algorithm that always finds canonical shortest paths has to be used; see [6]
for such a modification). Second, paths in the shortest path tree are traversed backwards

and for each edge on each path it is considered whether it should be added to V,, . So

let us assume that #€V ' A more detailed description on how both these phases are

performed on u follows.

Construction of the shortest path tree D. Schultes proposed in [6] an important
optimization for the construction of the shortest path tree. Instead of constructing the
complete shortest path tree by letting the Dijkstra's Algorithm to compute all shortest
paths from every node u to any other node, a partial shortest path tree is constructed in
such a way that no important edge is left out when adding edges to G, , in the second

phase. The optimization lies in a specialized abort criterion, which limits the search to
some close neighbourhood of u, thus speeding up the construction considerably.

The abort criterion is the following: during the Dijkstra search, a state of either active or
passive is maintained for each node. Initially, u's state is set to active. When a node is
about to be reached, it adopts the state of its predecessor. The search is aborted, as soon
as there are no unsettled active nodes.

It remains to specify when a state of a node can be set to passive: let P be a tentative
shortest path from u# to z found by the Dijkstra's Algorithm for node z, where
P=(u,v,..,w,x,y,..,z), and 5l(v,x)3rl_’(v)<6l(v,y) . When a node 7 is settled
then z's state can be set to passive if y#z, and 51(W, Z)>I’7(Z) . See Fig. 3.3.2 for an

illustration.

During the second phase, each path on the partial shortest path tree is traversed
backwards from a leaf z to u, and an edge (x, y) lying on the shortest path is added to

3 SHORTEST PATH ALGORITHMS 31

Gy.,, whenever XENT(Z) and yENf(u).

Fig. 3.3.2.: Abort criterion: z's state can be set to passive.

Contraction of a level

To obtain the core G," of a graph G, , we have to determine the set of bypassable nodes

B, and add shortcut edges corresponding to every bypassed node #€ B, . This process

is called the contraction of a level graph.

The contraction brings several benefits. First, the search gets faster as only nodes that
are not bypassed are considered and the construction of subsequent levels gets faster for
the same reason. Besides, smaller neighbourhood radii can be used without
compromising the shrinking of the level graphs. Nevertheless, the selection of
bypassable nodes should be done carefully as the addition of shortcut edges may
increase the average degree of the graph considerably.

The iterative algorithm proposed in [7] is the following: a queue of prospect bypassable
nodes is maintained, initially containing all nodes from V , - At each iteration, a node u
is removed from the queue and if (number of shortcuts) <degree(u) is satisfied then u
is actually bypassed, that is, it is added to B, and the appropriate shortcuts are created

for .’ After the node is bypassed, all adjacent nodes that have not been bypassed yet
and are bypassable now have to be added into the queue, as the creation of shortcuts
may change the degree of the adjacent nodes.

3.3.3 Search

It's time to introduce the search algorithm for highway hierarchies. We are going to
present the directed version, as stated in [7], but generalized for our version of the
single-pair shortest path problem. As mentioned earlier, it is again a modification of the

3 degree(u) is the sum of the input and output degree of u.

3 SHORTEST PATH ALGORITHMS 32

Dijkstra's algorithm. It introduces a local search where only a neighbourhood of a node
is searched. When this neighbourhood is about to be left, the search is not continued in
the current level and is switched into a higher level.

Apart from the distance, we maintain the search level and a gap for each node in Q. The
search level is initialized to O for all source and target nodes (i.e., we start the search in
level 0) and the gap is initialized to r; (u) for every source node u and i’; (v) for every

target node v. When an edge e = (u, v) is relaxed, the gap of u minus w(e) becomes the
gap of v. When e is about to be relaxed and the resulting gap for v is smaller than O (i.e.,
we are about to leave the neighbourhood) then the search level is increased by 1 and v is

added to Q with the new search level and a new gap 7 1D(M)—W(€) , where De{—,]
denotes the current search direction. In that case, we call u the entrance point to the new
level. But v is actually added to Q only if VEV . Otherwise the edge (u, v) is not

relaxed. This is the first one of the two important restrictions that account for the speed-
up in comparison with the original Dijkstra's Algorithm. We will refer to this restriction
as restriction 1. The algorithm described for level O applies in a similar fashion to the
following levels, that is, when the neighbourhood of a node in level 1 is about to be left,
search switches to level 2, etc.

The second restriction, restriction 2, is that after we settle a node u€V l' in the core of

level /, and are about to relax an edge (u, v), such that VE B, we skip relaxing the edge.

In other words, after we enter the core of level /, we do not leave it by reaching a
bypassed node v.

For the search to be correct, the queues are prioritized by a key k = (d, level, gap), where
for two keys k, = (d,, level,, gap,), k, = (d., level,, gap,) we have

k <k,=d <dV
V(d,=d Alevel > level)V
V(d,=d Alevel =level A gap <gap,)

The correctness proof for the search algorithm for highway hierarchies is quite long
with a lot of technical details and it will not therefore be stated here. Rather, we refer an
interested reader to the appendix of [7], where the detailed proof can be found.

4 Cheapest Connection Search

In this chapter, we revisit the algorithms introduced in the previous chapter and describe
some modifications of these algorithms for the use in our context of transportation
networks.

There are four types of modifications dealt with in this chapter, logically separated into
the four sections of this chapter.

First, we go through some performance improvements that can be applied to the
algorithms.

We also show how simple modifications can improve the connections found. More
precisely, when there are more than one cheapest connection, we want our algorithm to
prefer one over another given some additional criteria such as the number of changes or
the time spent on the trip (i.e., the time of the trip excluding the waiting time at the
origin station).

Afterwards, we introduce two modifications that allow to constrain the connections
found by limiting the maximum number of changes and by specifying some criteria on
the trains used.

At the end of this chapter, we revisit the issue stated at the end of the chapter 2, that is,
the problem that the definition of a transportation network does not handle restricted
timetables. In this chapter, we see how restricted timetables can be handled by a
modification to the search algorithm.

For this chapter, we consider a transportation network N =(St,L,c), a corresponding
transportation graph G NZ(V v E N) , a cheapest connection query for a set of (origin)

stations RES St, a set of (destination) stations DC St , a relative time T , and a shortest
path query corresponding to the cheapest connection query, where S will denote the set
of source nodes and 7" will denote the set of target nodes.

Before we proceed to the first of the four anticipated sub-chapters, we state a useful
definition that will be referred to throughout this chapter.

33

4 CHEAPEST CONNECTION SEARCH 34

Definition We consider a run of a search algorithm. Let time(P) denote the time-weight
of a path P. We define the time portion of a distance of a node u, denoted by TPD(u), as

time(P)+Tr—T, where P=<d[i’,Tr]=M1’-~-, u =u) is the tentative
TPD(u) = shortest path found by the search algorithm (i.e., r€R), or

oo if no path to u has been found so far.

In other words, the time portion of a distance of a node is the time distance of u from
the time 7 on the tentative shortest path found by the search algorithm.

4.1 Performance improvements

41.1 Earliest arrival optimization

In this section, we present a performance optimization applicable to the unidirectional
version of the Dijkstra's and the A* algorithms. It also applies to the bidirectional
versions of the two algorithms but only makes sense for the forward search.

Let us consider the following situation during the Dijkstra's Algorithm: we are about to
reach an s-arrival node v (for some s€St), and we know that some other s-departure
node u had already been reached with a smaller or equal time-distance. Then any node
reachable from v can also be reached from u with a smaller or equal time-distance. See
Fig. 4.1.1 on page 35 for an example of this situation.

Therefore, we can consider skipping the relaxation of any edge that leads to a node v as
depicted in Fig. 4.1.1, possibly leading to a speed-up of the search since the queue used
during the search would shrink. Nevertheless, we cannot skip such an edge unless we
are sure that any node reachable from v can also be reached from a node u with a
smaller distance. This leads us to the following general rule:

Let T denote the time portion of the distance with which a node a s, Tz’x] is about

to be reached. Then we can skip reaching the node als, T,x | if there exists a node

dls, Tl] such that the following two properties hold:
1) TPD(d[s, T |)<T

2) dlals,T,x||zd|d|s,T [|+w (v(T)), where

T=TPD(als, T, x])-TPD(d[s,T,] .

Note that the fulfilment of the first property is crucial. If that did not hold, an important
connection might be missed leading to a suboptimal path. This situation is depicted in
Fig. 4.1.2 on page 36.

4 CHEAPEST CONNECTION SEARCH 35

Fig. 4.1.1.: If node u was reached with time-distance 10, and node v is about to be reached
with time-distance 40, then the nodes directly reachable from v (w and x) can both be
reached via u with a smaller distance then if they were reached via v. Namely, w can be
reached with the time-distance of 35, and x can be reached with the time-distance of 60,
compared to 45 and 70 if both nodes were reached via v. Consequently, any node
reachable from v can be reached from u with a smaller distance.

The implementation of this optimization can be done like this: in addition to the
prospect distance d from S for each node, in the same way we maintain and update the
time portion of the distance for each node, each initialized by an infinity-replacement
value. Moreover, we have to maintain the smallest time portion of the distance of an
already reached s-departure node for each station s€Sr, also each initialized by an
infinity-replacement value. Then we can check the above criterion and will not relax any
edge that satisfies this criterion.

41.2 Lazy backward search for highway hierarchies

Here we revisit the performance issue of the bidirectional Dijkstra search. The problem
we are facing is that when the bidirectional version of the Dijkstra's Algorithm is used,
and |S|<|T| then — as the fringe of the backward search is huge — it is very costly for
the backward search to keep aligned with the forward search. See section 3.1.4 and Fig.
3.1.7 for details.

4 CHEAPEST CONNECTION SEARCH 36

[

1
1
1
1
1
1
1
:
.
v 1
1
1
1
1
1
1
1

Fig. 4.1.2.: Let us assume that u is reached with distance 30 and v is reached with distance

40. The time portions of their distances are 30 and 5, respectively. The weights of the
edges are displayed next to the corresponding edges. Then
d[v]=30=40+(5-30)=d[u]+w,(¥"), therefore v is skipped and a suboptimal path
through u with a weight of 70 is found, though the optimal one is the one going through v
with a weight of 60.

In the case |S|<<|T'| (which is usually the case of the search in a transportation graph,
as T contains all d-arrival nodes for all de D) it turns out (and is backed up by the
results in the next chapter) to be better not to use the bidirectional search whatsoever
and use the unidirectional search instead. Nevertheless, we have to deal with this issue
for the sake of the search in highway hierarchies, where a bidirectional search is
indispensable.

The improvement of the bidirectional search in a highway hierarchy for the case
|S|<<|T| will be similar to the one mentioned by S. Knopp et al. in [8], where it was
applied to a version of the all-pairs shortest path problem.

The idea is not to search further than necessary in the backward direction. We know that
we do not need to advance in the backward direction, whenever a node is about to be
reached in the backward search with a level that the forward search has not yet get at.
This is justified by the fact that in that case the search scopes cannot meet in that level.
So we only have to search in the backward direction till we reach the core of the level
reached by the forward search.

For the purposes of this section, let lf denote the search level of node u in the forward

4 CHEAPEST CONNECTION SEARCH 37

search and let lf denote the search level of node u in the backward search. The
optimization is the following: do not continue the backward search from a node v that is

not bypassed in the level lf if
lfz max | l:| uis reached but not settled in the forward search |

We denote the right part of the above inequality by L. To implement the described
functionality, we maintain two priority queues for the backward search, O, and Q.. Q, is
initialized as usual and Q, is set empty. During the search if the above criterion holds for
a node v when it is extracted from Q,, we insert v into O, and do not continue backward
search from v. Whenever L increases, we switch from Q, to Q, as long as there are any
nodes in (Q, and settle the nodes we had left out.

This modification does not impair the correctness of the search algorithm, since the
termination condition used in the Dijkstra search for highway hierarchies guarantees
that the forward search has enough time to settle the nodes that were not settled
appropriately in the backward search.

Note that it is crucial that any node v that is skipped according to the presented criterion
must not be bypassed. This is due to the restriction 2 of the search algorithm (see
section 3.3.3) which could restrict the forward search from reaching the bypassed node
v leading possibly to a suboptimal path.

4.2 Search results improvements

4.2.1 Stay at source station as long as possible

So far, we have seen modifications that dealt with the performance of the search
algorithms. Now we turn to modifications that have to do with the quality of the
corresponding connections, rather than with the speed of the algorithms.

What often happens in a transportation network is that for a given query, there are
several connections with the same cost, and still it may be reasonable to prefer one over
another. For an example see, Fig. 4.2.1.

When there are several connections with the same cost, it is reasonable to prefer the one
with the shortest total travel time. Two adjustments to the Dijkstra's Algorithm have to
be done in order to achieve the desired behaviour.

4 CHEAPEST CONNECTION SEARCH 38

—. P12:30
/ " -arrival node

[

o]
.

12:10

S
——»
\
\
o
S,

[

12:00

s-departure nodes

Fig. 4.2.1.: In this example, we consider a transportation network with time costs and a
query for stations s and ¢ and time 7, = 12:00, i.e SZ{SI} ,and reT . We have two
possible shortest paths: first one avoiding the node s, (depicted in red) and a second one,
going through s, (depicted in blue). Though the search algorithm would prefer any one of
the two paths (since both are shortest path) we should choose the second (blue) option, as
the total travel time is 10 minutes shorter.

Definition Let #€V, be a node such that a tentative shortest path
P= <d[r,Tr]=u1’..., u) has been already found by the Dijkstra's Algorithm. The time
gap at origin for a node u is defined as TPD(u,), where either k=n, or 1<k<n,

u,=d[r,T | forarelative time 7 ,and u,, =als,T,l], for some se€St.

Now we describe the modifications needed to implement the functionality described
earlier in this section. The first modification is to maintain a time gap at origin og[u] for
each reached node u. Then, we modify the RELAX function so that it performs the
update whenever the new distance is smaller then the old one, or whenever the distances
are equal and the new (tentative) time gap at origin is greater than the old one. See Fig.
4.2.2 for the modified version of the RELAX function.

This will guarantee that whenever there are several shortest paths to a node v, the one
yielding the greatest time gap at origin will be the one that will be continued from v.

There are two subtleties that will be addressed by the second adjustment. First, when
there are several target nodes with the same distance from the source set then one with a
smaller time gap at origin may be extracted first, thus terminating the search before the
other nodes are considered. The second subtlety is the case of zero-weight edges when
there are two zero-weight edges (u, t) and (v, f) for €T . Then, (after v is settled) u and
t become members of the priority queue with the same key, which may again lead to a
premature termination of the search, before u is considered.

4 CHEAPEST CONNECTION SEARCH 39

RELAX(u, v, w, Q , d, p, 0g)

1 ifd[u] + w(u, v) <d[v] Il

2 (du] + w(u, v) =d[v] && oglu] > og[v]) then

3 d[v] < d[u] + w(u, v)

4 plvl—u

5 if u€S then

6 oglu] « oglu] + (v.time © u.time)
7 else

8 oglu] «— oglu]

9 if veQ then

10 O — DECREASE-KEY(Q, v, d[v])
11 else

12 Q < INSERT(Q, v, d[v])

13 return Q

Fig. 4.2.2.: The RELAX function modified so that nodes with a greater time
gap at origin are preferred. u.time denotes the time corresponding to this node.

These two issues can be fixed by adjusting the order in which the priority queue used in
the Dijkstra's Algorithm extracts nodes. We extend the key used by the queue to be an
ordered pair k = (d, T), where d is the original key (i.e., the tentative distance of the
node), and T is the time gap at origin for the node. For keys k;, = (d,, T}) and k, =

(d,, T,), we define the operator k <k, used by the queue as follows:
k <k,=d <d,V(d=d AT >T,)

The described modifications can be applied to the unidirectional versions of the Dijkstra
and the A* algorithms. It can also be applied to the forward search of the bidirectional
versions of the two algorithms. Nevertheless, the modification will not work for the
highway hierarchy search where the departure edge from a node with greatest time gap
at origin may be missing in higher levels.

4.2.2 Prefer fewer trains

Similarly to the previous section, also in this section we want to improve the quality of
the connections by choosing a better from among all the cheapest connections. In this
section, we will be concerned with the number of changes. By a change we mean getting
off a train at a station and getting on another train on the same station. Usually, we want
as few changes as possible in our trip, so whenever there are two connections with an
equal distance, we prefer the one with fewer changes.

The modifications to the Dijkstra's algorithm we described in the previous section apply

4 CHEAPEST CONNECTION SEARCH 40

in this scenario as well, as the assignment is just the same, only the criteria changed.
Therefore we will not go into detail and just briefly describe the differences from the
adjustments we introduced in the previous section.

In this case, we maintain a set of lines LS|u| for each reached node u. The RELAX
function performs an update whenever the new distance is smaller then the old one, or
whenever the distances are equal and the cardinality of the new set of lines is greater
than the old one. In addition, whenever we perform an update of an arrival node
als,T, k| reached from a node ¢, we also update LS: LS|als,T,k||< LS[q|U{k}
and whenever we perform an update of a departure node d|[s,T| reached from a node
q, we set LS|d|s,T||—LS|q].

The extraction order of the priority queue is modified as follows: we extend the key
used by the queue to be an ordered pair k = (d, LS), where d is the original key (i.e., the
tentative distance of the node), and LS is the line set for the given node. For keys k; =

(d,, LS)) and k, = (d,, LS,), we define the operator k, <k, as follows:
k <k, od, <d,Vv(d =d ALS |<|LS))

The described modifications can be applied to the unidirectional versions of the Dijkstra
and the A* algorithms. It can also be applied to the forward search of the bidirectional
versions of the two algorithms. Nevertheless, the modification will not work for the
highway hierarchy search as some edges from the path with fewer trains may be missing
in a higher level.

There may be actually several cheapest connections with the fewest number of trains, in
which case we likely want to choose one with the greatest time gap at origin. We can
combine the modification from this section with the one from the previous section to
achieve the described property of the algorithm. In order to do that, the following two
modifications have to be done:

1) A key of the priority queue will be a 3-tuple (d, LS, TGO), where d is the
tentative distance, LS is the set of trains and 7GO is the time gap at origin. For
keys k, = (d,, LS,, TGO,) and k, = (d,, LS,, TGO,), we define the operator

k <k, as follows
k,<k,od <dV((d,=d AlLS |<|LS V(LS |=| LS |AITGO |>|TGO,)))

2) Adjust the condition at lines 1-2 of the RELAX function (see Fig. 4.2.2) in a
similar way to 1).

4 CHEAPEST CONNECTION SEARCH 41
4.3 Search constraints

In this section, we introduce two modifications that substantially differ from the other
modifications introduced so far. The major difference is in that these modifications
constrain the search results in some way and therefore in general yield suboptimal
connections because all the cheapest connections may be ruled out by the constraints.

4.3.1 Limit number of changes
It is often desirable to filter out connections with too many changes.

In this section, we introduce another modification of the search algorithm, which
permits the Dijkstra's Algorithm find a shortest path with at most M changes.

The basic idea is to maintain for each node a list of prospect shortest paths with exactly
0, 1, 2, ... etc. changes. Then, whenever a node lying on a path with a number of changes
exceeding M is about to be reached, we discard that path.

For the purposes of this section, changes(P), where P is a path, denotes the number of
changes on a connection corresponding to P.

For each node u we maintain the weight di[u] of the prospect shortest path with
exactly 7 changes. When we are about to relax an edge e = (u, v), lying on a path

P= <M1,M2’ U v), we actually relax the edge e if the following criterion (1) holds:
1) changes(P)<M
2) for every k such that 0<k<changes(P) we have that dj[u]+w(u,v)<dk[v] ,
where j=changes((u, u,..,u ,u)).

In other words, we relax e if we do not exceed the maximum number of changes (1) and
all the paths to v found so far with the number of changes smaller or equal to the
number of changes to the new path are more expensive (2).

If the above property does NOT hold, we discard and do not relax the edge e.

To implement this modification, we have to make the following changes to the Dijkstra's
Algorithm:

- Initialization: for all u€S and for all i > 0, set do[u]<—0 , d i[bl]<—°0 . Moreover,
for all VEVN\S and for all {>0, set di[v]e—oo. Similarly, for all u€S§, insert

(do[u] ,u,0) into Q (see below for details on Q).

- Queue Q contains additional information about each node: the number of changes a

4 CHEAPEST CONNECTION SEARCH 42

node was reached with when it was added to Q, i.e., Q contains tuples (key, u, i),
where i is the number of changes. Q remains prioritized by key, i.e., the distance
from S.

- We maintain a set of lines LS L[u] , which contains all the lines on the tentative
shortest path corresponding to d ,[”] . For all €V and for all i>0, LS Jul is

initially set to & . See below for details on how LS [u] is updated.

- Let (key, u, j) be a tuple extracted from Q by the EXTRACT-MIN operation,
e=(u,v)€EN and

j, if vis a departure node, or v=als, T, k| is an arrival
- node such that k€ LS, [u]

j+1, otherwise

If the above criterion (1) holds for e then we set d [v]—d j[u]+w (u,v) and insert

(d i[V], v,i) into Q (or decrease key if a tuple (d, v, i) already exists in Q for some
d|v]<d).

— If the criterion (1) holds for e=(u, V)GEN , where v=als,T, k|, we perform the

following update of LS [v]: LS [v]<LS [u]Ulk].

In addition, we have to maintain predecessors for each prospect shortest path going
through each node so that we can reconstruct the path found. Therefore for a node u and

some i, we store the predecessor p, lu] of u on a path with i changes.
- plvl=(u,j)

The described modification applies to the unidirectional versions of the Dijkstra's and
the A* algorithms.

4.3.2 Train criteria

Let us assume that additional information is associated with each train. For example,
there may be an indication whether a train allows the carriage of large equipment and
bicycles. And we want the search algorithm to only return connections containing trains
meeting given criteria. An easy modification of the search algorithm would be to
discard every departure and every continuation edge not meeting the given criteria. This
could be achieved by not calling the RELAX function on every such edge (for a
definition of departure and continuation edges, please refer to chapter 2).

This modification cannot applied to the search for highway hierarchies, as an edge

4 CHEAPEST CONNECTION SEARCH 43

missing in a higher level may result in that no connection will be found even though a
connection exists in the original graph.

4.4 Restricted timetables

Here we revisit an important property of transportation networks stated at the end of
chapter 2, namely that a given train operates only on some days. We left this property
out of the definition of a transportation network and decided to treat it in the search
algorithm. In this section, we describe the modifications needed for an algorithm to
respect the restricted timetables.

We alter the definition of a shortest path query by replacing the time parameter 7' with
a parameter DT €IN that will represent an absolute time. We need this parameter to be
counted in minutes (starting at some initial date in the past). This will allow us to
calculate the absolute time of a node u on a path as the sum of the departure time and
the time portion of the distance of a node u.

In addition, we need a predicate that allows us to find out whether a given train is
operating at a given station at a given time. For a line %, a station s and an absolute time
DT, we define a predicate Op(k,s, DT)€E] false ,true} that has the value true if and
only if the line k departs from station s at the absolute time DT.

Furthermore, we define a function dep_time(k, s, DT), as the absolute time of the next
departure of a given line at or after a given absolute time:

dep _time (k, s, DT)=min{DT |\DT'>DT AOp (k, s, DT '\=true| .

Thus armed, the modification to the Dijkstra's Algorithm is quite simple. We just
maintain the current absolute time df[u] for each node u. Then, whenever an edge (u, v)
leading to an arrival node is relaxed, dep_time(k, s, dt[u]) - dt[u] is added to the cost of
the edge. See Fig. 4.4.1 for the resulting RELAX function.

4 CHEAPEST CONNECTION SEARCH 44

RELAX(”, VvV, Wn, Wg, Q) d3 p9 dt3 Op)

1 ifx=d&&y=(a k) then

2 T « dep_time(k, s, dt[u]) - dt{u]
3 W= w,(v(T)+w,(u,v)

4 else

5 W =we(u, v)

6 ifd[u] + W<d[v] then

7 divl] =dlul + W

8 plvl < u

9 dt[v] « dt{u] + (v.time © u.time)
10 if veQ then

11 O — DECREASE-KEY(Q, v, d[v])
12 else

13 Q < INSERT(Q, v, d[v])
14 return Q

Fig. 4.4.1.: The RELAX function modification for restricted timetables.
wy represents the weight function for the underlying transportation
network N. u.time denotes the time corresponding to this node, whether it
is an arrival or a departure node.

5 Performance Results

In order to evaluate the performance of the different algorithms, a series of tests was
performed on a transportation graph representing a real transportation network and on a
randomly generated graph. In this chapter we present the results of the tests and their
comparison.

First, we describe the contents of a result of a test and the test data that were used. Then
we present the results of the tests on each of the algorithms in turn. Finally, we compare
the performance of the algorithms at the end of this chapter.

5.1 The tests

All the tests were performed on a laptop computer with an Intel Celeron processor
clocked at 1.3 GHz, with 2GB system memory and Red Hat Linux operating system
with the release number 2.6.16-1.2115_FC4.

The C++ sources were compiled with the g++ compiler version 4.0.2 with optimization
level of 3.

By a fest run, we mean a sequence of N cheapest connection queries all executed with a
given search algorithm. After each query is executed, some information necessary for
the evaluation of the algorithm's speed is logged. The information gathered is the
following:

Search time: The time spent by the algorithm to perform the search. In milliseconds.
Settled nodes: Number of nodes settled during the query.

Reached nodes: Number of nodes reached during the query.

Relaxed edges: Number of edges relaxed during the query.

Connection length: The number of stations on the cheapest connection found by the
algorithm.

Whereas the search time is related to the system the query is run on, the numbers of

45

5 PERFORMANCE RESULTS 46

settled nodes, reached nodes and relaxed edges depend only on the search algorithm.
Naturally, the smaller these numbers, the shorter the search time, but obviously the
average unit time cost of each of the three figures will vary from algorithm to algorithm,
as their asymptotic complexities vary.

The last value, the connection length (i.e., the length of a connection that was defined in
2.3.1 as the number of stations the connection traverses), is related mainly to the query
itself, as the query actually implies a set of connections. Nevertheless, the connection
length is also related to the search algorithm, as, for some queries, different algorithms
may return different connections.

The connection length is the only value that directly reflects the “difficulty” of the
query. The connection length can be therefore used to roughly classify the queries and
compare not only the overall performance of the different algorithms but also their
performance on queries with a connection length from a given range. This will give us
insight into how well an algorithm performs on queries with the difficulty of “low”,
“medium” or “high” in comparison to the other algorithms.

For each algorithm, two test runs were performed: one on a transportation graph
representing a train network of the Czech Republic and one on a randomly generated
graph G=(E,V) (see next section for more details).

The sequence of queries for each test run was of length N = 10 001, where each of the N
queries was generated randomly. More precisely, each query was concocted by
randomly choosing stations s#¢ and time 0<7 <1440 for the case of the transportation
network. For the case of the random graph, nodes V>u#veV were chosen randomly for
each query.

5.2 Test data

The algorithms were tested on two kinds of graphs: on a transportation graph for the
train network of the Czech Republic, and on a random graph.

The train network has 4 138 stations and 11 813 trains. The resulting transportation
graph has 241 263 nodes and 489 734 edges which yields an average output degree of
slightly over 2.0. The huge number of nodes in comparison with the number of stations
is the consequence of a high number of trains in the network.

The algorithms were tested on a directed random graph as well. A random graph G =
(V, E) of the size of the transportation graph (i.e., n = 241 263 nodes and m = 489 734
edges) was generated as follows. A set of nodes V=[xu,} was chosen and the edge
set was constructed in such a way that a path exists for every pair of nodes: an edge
(u,u_) for each 1<i<n was added and an additional edge (u,.%) was added to G,

i

5 PERFORMANCE RESULTS 47

thus creating a circle in G. Each of the additional m — n (i.e., 248 471) edges (4, u))
were added by iteratively choosing a random pair of distinct nodes u,;,#,€V | such that

(u,u;) is not yet a member of E.

For each node , coordinates (x,,%) were chosen randomly from a range of natural
numbers and the weight of an edge w(u,u)) was calculated as the euclidean distance
between . and ¥,.

For both, the selection of graph edges, and the generation of coordinates of the nodes, a
pseudo-random generator with a uniform distribution was used.

The maximum connection length for the transportation network was of 141 stations and
the average standard deviation of the connection length derived from the standard
deviations of connection lengths of all the algorithms was 6.75.

The queries for the transportation graph were classified by the resulting connection
length as follows:

Query class

Connection length range

0-42
43-59
> 60
N/A

0-42
43-59
<60

No connection exists

Table 5.2.1.: Classification of queries by connection length for the case of the

transportation network.

The queries for the random graph were classified by the resulting path length as follows:

Query class

Connection length range

0-18
19-26
> 27
N/A

0-18
19-26
> 27

No connection exists

Table 5.2.2.: Classification of queries by connection length.

For an illustration, you can see the distribution of connection length for the Dijkstra's

Algorithm in Fig. 5.2.1.

5 PERFORMANCE RESULTS 48

2757 1400
250
1200
225
200 1000
175
150 800
125 600 |
100
75 - 400
50
200
25
0 I I I I Y T \ 0 T \ \ \ \ T I
0 20 40 60 80 100 120 140 0 5 10 15 20 25 30 35
(a) (b)

Fig. 5.2.1.: The number of queries as a function of the connection length and the path
length for the test run of the Dijkstra's Algorithm for the transportation network (a) and
the random graph (b).

5.3 The results

In the result tables below, we present the results of queries hitting the corresponding
connection length ranges (given by the connection length range column), as well as the
overall results for each test run. Each column represents one of the values described in
section 5.1. Each of the rows 1 to 3 represents only those queries that had the resulting
connection length from the range stated in the first column.

The fourth row represents queries for which no connection was found (i.e., such that no
path exists in the graph).

The last row contains the overall results for a test run.

Two tables are presented for each algorithm except for the highway hierarchy search:
one table for the test run on the transportation network and one table for the test run on
the random graph. For highway hierarchies only a test run on the transportation graph
was performed. This was due to the fact that the principal goal of this work was to
examine the use of the algorithms on a transportation network, which was where most
of the efforts concentrated.

5 PERFORMANCE RESULTS

5.3.1

Dijkstra's Algorithm

Unidirectional version of Dijkstra’s Algorithm

49

In this section we present the results of the unidirectional version of the Dijkstra's

algorithm. The earliest arrival optimization was used for the test on the transportation

graph.
Connection | Search Settled ~ Reached Relaxed Connectio Number of

length range | fme [ms] nodes nodes edges n length queries
0-42 55.33 13786 15 455 29 514 27.64 6 636
43-59 109.6 26 001 28 464 55792 49.72 2 186
> 60 159.98 37 046 39 896 79 576 71.63 1091
N/A 159.32 34 340 34 340 74 134 N/A 88
overall 79.52 19 173 21 130 41 112 37.35 10 001

Table 5.3.1.: Detailed results of unidirectional Dijkstra's search for the train network of

the Czech Republic.

Path length | Search Settled ~ Reached Relaxed Connectio Number of
range time [ms] nodes nodes edges n length queries
0-18 866.70 85313 118 763 173 291 15.88 4 838
19-26 1 569.40 153 791 186 346 312 341 21.13 5026
> 27 2 006.85 198 501 218349 403 069 27.96 137

overall 1245.14 121 277 154 091 246 318 18.68 10 001

Table 5.3.2.: Detailed results of unidirectional Dijkstra's search for a random graph

5 PERFORMANCE RESULTS

Bidirectional version of Dijkstra’s Algorithm

50

In this section we present the results of the bidirectional version of the Dijkstra's

algorithm. The earliest arrival optimization in the forward search was used for the test
on the transportation graph.

Connection | Search Settled ~ Reached Relaxed Connectio Number of
length range | fime [ms] nodes nodes edges n length queries
0-42 290.38 50 303 54 863 102 875 28.36 6 143
43-59 441.13 75431 81 053 154 256 49.76 2494
> 60 57773 97 953 104 026 200 344 72.87 1276
N/A 1174.18 201 249 201 249 413 360 N/A 88
overall 372.64 64 015 68 991 130 935 38.3 10 001

Table 5.3.3.: Detailed results of bidirectional Dijkstra's search for the train network of

the Czech Republic.

Path length |~ Search Settled ~ Reached Relaxed Connectio Number of
range time [ms] nodes nodes edges n length queries
0-18 17.67 2279 4 564 4 627 15.88 4 837
19-26 33.22 3985 7 863 8 086 21.13 5027
> 27 99.45 10 456 18 675 21 212 27.96 137

overall 26.61 3248 6 416 6 593 18.68 10 001

Table 5.3.4.: Detailed results of bidirectional Dijkstra's search for a random graph

5 PERFORMANCE RESULTS 51

5.3.2 A* search

Unidirectional version of A* Algorithm

In this section, we present the results of the unidirectional A* algorithm. As the A*
algorithm resulted to have the best overall performance, we present also two additional
test results for the wunidirectional version on the transportation graph, each
corresponding to a modification presented in the previous chapter. The first will be the
results for a modification of the algorithm, where the connections with fewer trains and
with the largest stay at the origin station were searched, that is, both, the prefer fewer
changes and the stay as long as possible at the origin station modifications were
implemented. We refer to this version of the A* algorithm as the version 1. The second
test run was performed on an algorithm with both the modifications from version 1, and
with an additional modification to limit the number of changes. The number of changes
was limited to 1 in all queries of this test run. We refer to this version of the A*

algorithm as the version 2.

Connection | Search Settled Reached Relaxed Connectio Number of
length range | e [ms) nodes nodes edges n length queries
0-42 39.26 8 994 10 136 19 246 27.65 6 402
43-59 90.94 19 817 21 706 42 473 49.87 2304
> 60 137.5 29 240 31 642 62 710 72.75 1207
N/A 173.69 34706 34706 74 881 N/A 88
overall 64.21 14 157 15 613 30332 38.3 10 001

Table 5.3.5.: Detailed results of unidirectional A* search for the train network of the

Czech Republic.

Connection | Search Settled Reached Relaxed Connectio Number of
length range | fjme [ms) nodes nodes edges n length queries
0-42 135.51 27 823 29903 57 099 27.57 7 480
43-59 268.18 53020 55998 108 721 49.17 1899
> 60 309.68 60 872 64 118 124 850 68.58 534
N/A 634.02 118 290 118 290 241 098 N/A 88
overall 174.39 35 168 37 463 72 138 33.62 10 001

Table 5.3.6.: Detailed results of version 1 of the A* algorithm for the train network of

5 PERFORMANCE RESULTS 52

the Czech Republic.

Connection | Search Settled Reached Relaxed Connectio Number of
lengthrange | fime [ms] nodes nodes edges nlength queries
0-42 28.15 4 530 4 626 8 981 21.67 1096
43-59 42.57 7 085 7 189 14 072 48.74 86
> 60 38.36 6 754 6 850 13 420 64.73 11
N/A 36.95 6 604 6 604 13 028 N/A 8 808
overall 36.03 6 381 6 392 12 594 24.02 10 001

Table 5.3.7.: Detailed results of version 2 of the A* algorithm for the train network of
the Czech Republic.

Path length | Search time Settled Reached Relaxed Connection Number of
range [ms] nodes nodes edges length queries
0-18 560.24 56 106 85 143 113 977 15.88 4 839
19-26 1 188.49 117 047 153 904 237736 21.13 5025
> 27 1726.49 171 413 198 738 348 108 27.96 137
overall 891.88 88 305 121 248 179 367 18.68 10 001

Table 5.3.8.: Detailed results of unidirectional A* search for a random graph

5 PERFORMANCE RESULTS

Bidirectional version of A* Algorithm

53

In this section we present the results of the bidirectional version of the A* algorithm.

The earliest arrival optimization was used for the tests on the transportation graph.

Connection | Search Settled ~ Reached Relaxed Connectio Number of
length range | fje [ms] nodes nodes edges n length queries
0-42 253.86 41 273 45 086 84 504 28.81 5913
43-59 428.58 67 438 72 609 138 178 49.91 2575
> 60 590.37 91 512 97 194 187 438 72.77 1425
N/A 1 268.37 208 921 208 921 428 854 N/A 88
overall 355.98 56 686 61 080 116 108 40.61 10 001

Table 5.3.9.: Detailed results of bidirectional A* search for the train network of the

Czech Republic.

Path length | Search Settled ~ Reached Relaxed Connectio Number of
range time [ms] nodes nodes edges n length queries
0-18 18.69 2 318 4 640 4707 15.88 4833
19-26 33.71 3915 7722 7944 21.12 5031
> 27 95.91 9 760 17 688 19 802 2797 137

overall 27.30 3223 6 369 6 542 18.68 10 001

Table 5.3.10.: Detailed results of bidirectional A* search for a random graph

5 PERFORMANCE RESULTS 54

5.3.3 Highway hierarchies search

In this section we present the results of the highway hierarchies search based on both,
the Dijkstra's and the A* algorithms. No tests on a random graph were executed for
highway hierarchies, therefore only tests on the transportation graph for the
transportation network of the Czech Republic are presented.

The configuration of the highway hierarchy was the following:

Parameter Value
Number of levels 5
Neighbourhood 25 closest stations
shortcut factor 1.3

Table 5.3.11.: Parameters for highway hierarchy construction.

The resulting highway hierarchy had the following properties:

Level Number of Number of Number of edges
nodes bypassed nodes
0 241 263 N/A 489 734
1 224 150 147 212 729 200
2 75 606 38716 334 615
3 36 837 11 640 212 554
4 25 191 3874 157 463

Table 5.3.12.: Level sizes of the highway hierarchy. Number of nodes denotes the total
number of nodes in a level (including bypassed nodes). Number of edges denotes the
total number of edges in a level (including shortcut edges added during the graph
contraction).

A final note, before we present the test results, both the algorithms had implemented the
lazy backward search modification described in the previous chapter.

5 PERFORMANCE RESULTS

Dijkstra based search

55

Connection | Search Settled ~ Reached Relaxed Connectio Number of
length range | fjme [ms] nodes nodes edges n length queries
0-42 69.42 5 861 9 987 34 001 28.59 5 816
43-59 96.41 7 898 12 417 54 313 49.98 2598
> 60 125.11 10 336 14 616 75 041 73.58 1 499
N/A 60.24 5439 5579 39 461 N/A 88
overall 84.7 7057 11 273 45 477 40.64 10 001

Table 5.3.13.: Detailed results of Dijkstra based HH search for the train network of the

Czech Republic.
A* based search
Connection | Search Settled Reached Relaxed Connectio Number of
length range | fme [ms] nodes nodes edges n length queries
0-42 56.55 4939 8 348 27 132 28.75 5769
43-59 79.48 6 409 10 507 42770 50.24 2 609
> 60 105.36 8 514 12 660 60 805 73.61 1535
N/A 60.91 5461 5 606 39 577 N/A 88
overall 70.06 5876 9 549 36 489 40.99 10 001

Table 5.3.14.: Detailed results of A* based HH search for the train network of the Czech

Republic.

5 PERFORMANCE RESULTS 56

5.4 Comparison

5.4.1 Transportation graph

The following table compares the overall results of all the algorithms on the train
network of the Czech Republic. The lowest values are highlighted in each column.

Algorithm Search time Settled Reached Relaxed Connection
[ms] nodes nodes edges length
Unidirectional Dijkstra 79.52 19 173 21 130 41 112 37.35
Bidirectional Dijkstra| ~ 372.64 64 015 68 991 130 935 38.3
Unidirectional A* 64.21 14 157 15 613 30332 38.3
A* version 1 174.39 35168 37 463 72 138 33.62
A* version 2 36.03 6 381 6 392 12 594 24.02
Bidirectional A* 355.98 56 686 61 080 116 108 40.61
HH Dijkstra 84.7 7057 11273 45 477 40.64
HH A* 70.06 5876 9 549 36 489 40.99

Table 5.4.1.: The comparison of the overall results of all the algorithms' performance for
the train network of the Czech Republic.

The following table compares the search times of all the algorithms on the train network
of the Czech Republic. The lowest values are highlighted in each column.

Algorithm\Connection length 0-42 43-59 > 60 N/A overall

Unidirectional Dijkstra 55.33 109.6 159.98 159.32 79.52
Bidirectional Dijkstra 290.38 441.13 57173 1174.18 372.64

Unidirectional A* 39.26 90.94 137.5 173.69 64.21
A* version 1 135.51 268.18 309.68 634.02 174.39
A* version 2 28.15 42.57 38.36 36.95 36.03

Bidirectional A* 253.86 428.58 590.37 1268.37 355.98
HH Dijkstra 69.42 96.41 125.11 60.24 84.7

HH A* 56.55 79.48 105.36 60.91 70.06

Table 5.4.2.: The comparison of all the algorithms' search times for the train network of
the Czech Republic.

5 PERFORMANCE RESULTS 57

Comparing the results of the unidirectional Dijkstra and A* algorithms, we can see that
A* outperforms Dijkstra in the overall figures as well as in all the 3 first query classes.
Dijkstra's algorithm has somewhat lower search time for queries that yielded no
connection. The same can be said when comparing the bidirectional versions of these
algorithms.

What is very obvious is the big difference between the unidirectional and the
bidirectional versions of the algorithms. For Dijkstra's as well as the A* algorithms, the
overall search times for the bidirectional version are around five times the search times
of their respective unidirectional versions. This is given by the fact that for each query
all the arrival nodes corresponding to the destination stations had to be searched from in
the backward search. For details, refer to section 3.1.4.

This is also the reason why both the highway hierarchy searches did not have much
better search times. In fact the overall search time of the Dijkstra's search for highway
hierarchies was even slightly worse than that of the original Dijkstra's search. The same
can be said about the original A* and the A* for highway hierarchies, where again the
original version outperformed the HH version in the overall figures. Nevertheless, the
overall figures may be a little misleading, as the highway hierarchy search actually
outperformed all the other algorithms, when only the queries with resulting connection
length greater than 42 were considered. The fact that the number of these queries was
less than half of all the queries explains why the average search time for highway
hierarchies ranked below the “non-HH algorithms”.

The disadvantage of the bidirectional search seen in the bidirectional versions of the
algorithms also applies to the HH search. It can be therefore inferred that HH search
will be suitable for bigger graphs, where the additional cost caused by the bidirectional
search would be outweighed by exploring less nodes in higher levels.

The shortest search times were achieved when the number of changes was limited to 1
(version 2 of A* algorithm). This result is most likely due to the fact that only a few
nodes had to be searched before a second change was forced and the search thus
finished. Note that the algorithm would return exactly the same connections as the
version 1 of A* algorithm if the maximum changes parameter would be set sufficiently
high. Nevertheless, the algorithm from version 2 of A* would perform much worse if
the parameter were higher as various paths with the same tentative distance but different
number of changes would have to be considered.

5.4.2 Random graph

The following table compares the overall results of all the algorithms on the random
graph. The lowest values are highlighted in each column.

5 PERFORMANCE RESULTS 58

. Search time Settled Reached Relaxed
Algorithm Path length
[ms] nodes nodes edges
Unidirectional Dijkstra| 1 245.14 121 277 154 091 246 318 18.68
Bidirectional Dijkstra 26.61 3248 6 416 6 593 18.68
Unidirectional A*| 891.88 88 305 121 248 179 367 18.68
Bidirectional A* 27.30 3223 6 369 6542 18.68

Table 5.4.3.: The comparison of the overall results of all the algorithms' performance
for the random graph.

The following table compares the search times of all the algorithms on the train network
of the random graph. The lowest values are highlighted in each column.

Algorithm\Path length 0-42 43-59 <60 overall
Unidirectional Dijkstra 866.70 1 569.40 2 006.85 1245.14
Bidirectional Dijkstra 17.67 33.22 99.45 26.61
Unidirectional A* 560.24 1 188.49 1726.49 891.88
Bidirectional A* 18.69 33.71 95.91 27.30

Table 5.4.4.: The comparison of all the algorithms' search times for the random graph.

The best overall search time for the random graph has the bidirectional version of the
Dijkstra's algorithm, with 26.61 ms, followed closely by the bidirectional version of the
A* algorithm, with 27.3 ms. This was in spite of the fact that the overall number of
settled nodes, reached nodes and relaxed edges was actually slightly lower for the A*
algorithm. The slightly worse performance of A* was therefore likely caused by the
additional computation time consumed by the continuous evaluation of the heuristic
function during the performance of the algorithm. It can also be seen that for longer
paths, it was more apparent that A* performed better and for paths of length over 59
actually beat the search time of the Dijkstra's algorithm. Therefore it can be assumed
that the A* algorithm would perform better on larger graphs, where an average path
length is considerably longer.

What is striking when looking at the results is the performance comparison of the
unidirectional against the bidirectional versions of the algorithms. The bidirectional
version of the algorithm outperformed the unidirectional one (in terms of search time)
by the factor of nearly 48 in the case of the Dijkstra's Algorithm, and by the factor of

5 PERFORMANCE RESULTS 59

almost 33 in the case of A*. This is contrasting with the opposite result for the
transportation graph search. This result can be explained by the fact that (as opposed to
the search in transportation graph) in the case of the random graph the destination was
represented by just one node so the number of nodes settled in the backward search was
much lower than in the case of the search in the transportation graph.

Conclusion

We proposed a representation of a transportation network and evaluated the
performance of several well known algorithms for the shortest path problem. We also
proposed several modifications of the algorithms in order to improve the search times
and the quality of the found connections.

From among the tested algorithms, the A* algorithm seems to be the most suitable as it
proved to yield the best search times. In addition, it needs no pre-processing in contrast
to the highway hierarchy search and therefore could be applied in a dynamic
environment.

Our expectation that the highway hierarchy search will outperform dramatically the
other algorithms was not fulfilled. Highway hierarchy search even had an overall
performance worse than the one of A*. Given that highway hierarchies need additional
preprocessing, have extra memory requirements and restricted timetables cannot be
handled easily, it did not prove to be a good choice. It still can be expected that highway
hierarchy search would give much better search times in comparison with the other
algorithms on a considerably bigger transportation networks. This expectation is backed
up by the test results where the highway hierarchy search outperformed the other
algorithms in queries with comparatively long connections.

The representation of the transportation network presented in chapter 2 allows us to
apply several algorithms for the shortest path problem in a straightforward manner.
Moreover, some easy modifications to the search algorithms can improve the quality of
the connections by returning connections with the smallest number of changes, smallest
waiting time at intermediate stops, and pose additional constraints on the connections.
Nevertheless, the presented representation of the transportation network has an
important flaw, too. A comparatively small train network of the Czech Republic with
only 4 138 stations resulted in a graph of 241 263 nodes and 489 734 edges, which was
caused by the high number of trains in the network (11 813) and associated great amount
of arrival and departure nodes. This expansion of the graph naturally affected the search
times.

This calls into question how the search times would improve if a different representation
of the transportation network were be used. For instance, we may think about a

representation of the network based on a time dependent cost function such as the one
used by B. C. Dean in [9].

60

Bibliography

[1] Uri Zwick (2001): Exact and approximate distances in graphs - a survey. Lecture
Notes In Computer Science; Vol. 2161; Pages 33 - 48.

[2] J. Demel (2002): Grafy a jejich aplikace. Academia, Praha.

[3] T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein (2001): Introduction to
Algorithms, Second Edition. MIT Press, USA.

[4] P. Norvig, S. Russel (2003): Artificial Intelligence: A Modern Approach. Prentice
Hall, USA.

[5] A. V. Goldberg, C. Harrelson (2004): Computing the Shortest Path: A* Search
Meets Graph Theory. Microsoft Research.

[6] D. Schultes (2005): Fast and Exact Shortest Path Queries Using Highway
Hierarchies. Universitdt des Saarlandes, Germany.

[7] P. Sanders, D. Schultes (2006): Engineering Highway Hierarchies (full paper). /4th
European Symposium on Algorithms (ESA); Vol. 4168; Pages 804 - 816.

[8] S. Knopp, P. Sanders, D. Schultes, F. Schultz, D. Wagner (2007): Computing many-
to-many shortest paths using highway hierarchies. Proceedings of the 9th Workshop on
Algorithm Engineering and Experiments.

[9] B. C. Dean (2004): Algorithms for Minimum-Cost Paths in Time-Dependent
Networks with Waiting Policies. Networks; Vol. 44; Pages 41 - 46.

61

A Contents of the CD

The attached CD contains the C++ source code of all the implementations of the search
algorithms described in this work and the source codes of the underlying data
structures. All the source code was written by myself, with the exception of the
implementation of the Fibonacci heap, which was taken from the Boost C++ open
source library and adjusted for the purposes of this work.

Moreover, the CD contains a simple web-based search engine that allows to search for
travel connections from within a web browser. The search engine was written in the Java
programming language.

A C++ interface for an integration of the search engine with the search algorithms is
included, and a simple C++ program that was used for the performance tests can also be
found on the CD.

The contents of the CD is logically separated into directories. A file named dirlist.txt in
the root directory of the CD contains a listing of the directories with a brief description
of the contents of each of the directories.

62

B Class Diagrams

It is out of scope of this work to include a detailed design of the software and a detailed
description of the algorithms' implementations. Therefore, only high-level class
diagrams are presented, along with brief descriptions of the classes and its methods.
There are two main entities implemented: a Graph and a Searcher. A Graph represents a
directed graph, and a Searcher represents an implementation of a search algorithm.
Class diagrams for these two entities follow.

Graph classes

The following is the class diagram for the Graph entity. Note that only public methods
are listed. Short descriptions of each of the classes and its methods are listed in turn.

abstractTransportGraph

Geth0 : TArcld

Gethln @ THodeld

Getschedulebaodeld(THadeld waid) : TicheduleModeld
GetStationCountd : TscheduleNodeld
CreateRandamaraphidescriptar : TRandomaraphDescriptorsd waid
CreateTGidata : schedulebata® : woid

SetCriteriaicriteria : TCannectionCriteria @ waid
etRandomirandam : baall waid

|sRandomi : boal

expandedsicheduleTranspartaraph

Weighticost : TCosté&) : TFloat
Getlnstancei | expandedicheduleTransportBiGraph®

expandedscheduleTranspartBiGraph

Getlnstancei | expandedicheduleTransportBiGraph*

hhTranspontGraph

Dezerializelfilename : string, scheduleData* ;wvoid : wvoid
GetBdgelevelihode : hhMode*,edge : abstractBaseEdge™ :int
Serializelfilename ; string) ; woid

SetHHGraphConfigicanfig : THHGraphConfig* @ waid
GetlewvelCount) @ int

SetlevelCountilevelCount ©int) [waid

Getlnstanced : hhTransportGraphs

Fig. 1.: Class diagram of the Graph classes.

63

B CLASS DIAGRAMS 64

abstractTransportGraph is a generic abstract class of a directed graph representing a
transportation network. All transportation graph implementations inherit from this

generic class.

Method name Description

GetM Returns the number of edges of this graph.

GetN Returns the number of nodes of this graph.

GetScheduleNodeld Given a node number, returns the number of station this node
represents.

GetStationCount Returns the number of stations of the underlying transportation
network if this instance is a transportation graph.

CreateRandomGraph |Generates a random graph of the size given by the
TRandomGraphDescriptor parameter.

CreateTG Creates a transportation graph based on the given data.

SetCriteria Sets search criteria.

SetRandom Sets whether this graph is a random graph (true) or a
transportation graph (false).

IsRandom Returns true if this is a random graph, false otherwise.

Table 1.: Public methods of abstractTransportGraph class.

expandedScheduleTransportGraph is an implementation of the transportation graph.

Method name Description

Weight An implementation of the weight function of the underlying
transportation network.

Getlnstance Returns the only instance of this class (singleton design
pattern).

Table 2.: Public methods of expandedScheduleTransportGraph class.

expandedScheduleTransportBiGraph is an implementation of the transportation
graph. This class inherits from expandedScheduleTransportGraph and adds the
functionality needed by the bidirectional versions of the algorithm (reverse graph).

B CLASS DIAGRAMS

Method name

65

‘ Description

Getlnstance

Returns the only instance of this class (singleton design
pattern).

Table 3.: Public methods of expandedScheduleTransportBiGraph class.

hhTransportGraph is an implementation of a highway hierarchy.

Method name

Description

Deserialize

GetEdgeLevel

Serialize

SetHHGraphConfig

GetLevelCount

SetLevelCount

GetlInstance

Given a file name of a serialized highway hierarchy, loads that
highway hierarchy from the file. The file can be created by the
Serialize method.

Given a node u and an edge (u, v), returns the level of the edge
in this highway hierarchy.

Makes a text stream of this highway hierarchy and stores it into
a given file so that the highway hierarchy can be recreated
using the Deserialize method.

Specifies the configuration of the highway hierarchy. Has to be
called before the CreateTG method is called.

Returns the number of levels of this highway hierarchy.

Sets the number of levels of this highway hierarchy, and
allocates any additional memory, if the level count is to be
increased or frees up no longer used memory, if the level count
is to be decreased.

Returns the only instance of this class (singleton design
pattern).

Table 4.: Public methods of hhTransportGraph class.

Searcher classes

The following is the class diagram for the Searcher entity. Note that only public methods

are listed. Short descriptions of each of the classes and its public methods are listed in

turn.

B CLASS DIAGRAMS 66

abstractiearch

Searchicriteria : TConnectionCriteriad) ; woid
GetConnections(; wedtarsTConnectionDeso=*
GetGraph : abstractTransportGraph®
SetGraphigraph : abstractTransportGraph®) © void

i

gxpandedGraphSearch
Fiy
expahdedBidraphSearch dijkstrabearch astatfearch astarlmpsearch
dijkstraBiSearch hhDijkstrasearch
astarbitearch hhastarsearch

Fig. 2.: Class diagram of the Searcher classes.

abstractSearch is a generic searcher. All searcher classes inherit from abstractSearch.

Method name Description

Search Subclasses should provide an implementation of the search
algorithm.

GetConnections Returns the connections found by the last Search invocation.

GetGraph Returns the graph that is searched.

SetGraph Specifies an abstractTransportGraph instance that will be used

during the search.

Table 5.: Public methods of abstractSearch class.

expandedGraphSearch is a convenience abstract class for all the (unidirectional)

B CLASS DIAGRAMS 67

searchers operating on a transportation graph.

expandedBiGraphSearch is similar to expandedGraphSearch, but is adjusted for
bidirectional searchers.

dijkstraSearch is an implementation of the Dijkstra's search algorithm for
transportation graphs.

astarSearch is an implementation of the A* search algorithm for transportation graphs.

aStarImpSearch is an implementation of the A* search algorithm for transportation
graphs, which allows to limit the number of changes of found connections.

dijkstraBiSearch is an implementation of the bidirectional version of the Dijkstra's
algorithm for transportation graphs.

astarBiSearch is an implementation of the bidirectional version of the A* search
algorithm for transportation graphs.

hhDijkstraSearch is an implementation of the Dijkstra's algorithm for highway
hierarchies.

hhAStarSearch is an implementation of the A* search algorithm for highway
hierarchies.

	1 Introduction
	2 Shortest Paths and Train Connections
	2.1 Definitions
	2.2 Shortest path problems
	2.3 Train connections
	2.3.1 Definitions
	2.3.2 Cheapest connection problem
	2.3.3 Graph representation of a transportation network
	2.3.4 Transportation graph
	2.3.5 Shortest paths and cheapest connections
	From cheapest connection query to shortest path query
	From shortest path to a connection
	Optimality of found connection

	2.3.6 Restricted timetables

	3 Shortest Path Algorithms
	3.1 Dijkstra's Algorithm
	3.1.1 Time complexity of the Dijkstra's Algorithm
	3.1.2 Multi-Source Dijkstra's Algorithm
	3.1.3 Bidirectional Dijkstra
	3.1.4 Combining the modifications

	3.2 A* (A-Star) Algorithm
	3.3 Highway hierarchies	
	3.3.1 Definition of Highway Hierarchy
	Definition of
	Definition of

	3.3.2 Construction
	Neighbourhood radii
	Fast construction of a level graph
	Contraction of a level

	3.3.3 Search

	4 Cheapest Connection Search
	4.1 Performance improvements
	4.1.1 Earliest arrival optimization
	4.1.2 Lazy backward search for highway hierarchies

	4.2 Search results improvements
	4.2.1 Stay at source station as long as possible
	4.2.2 Prefer fewer trains

	4.3 Search constraints
	4.3.1 Limit number of changes
	4.3.2 Train criteria

	4.4 Restricted timetables

	5 Performance Results
	5.1 The tests
	5.2 Test data
	5.3 The results
	5.3.1 Dijkstra's Algorithm
	Unidirectional version of Dijkstra's Algorithm
	Bidirectional version of Dijkstra's Algorithm

	5.3.2 A* search
	Unidirectional version of A* Algorithm
	Bidirectional version of A* Algorithm

	5.3.3 Highway hierarchies search
	Dijkstra based search
	A* based search

	5.4 Comparison
	5.4.1 Transportation graph
	5.4.2 Random graph

	Conclusion
	Bibliography
	A Contents of the CD
	B Class Diagrams
	Graph classes
	Searcher classes

