
Charles University in Prague
Faculty of Mathematics and Physics

BACHELOR’S THESIS

Tomáš Haničinec

Constraint modeling

Department of Theoretical Computer Science and Mathematical
Logic

Supervisor: Doc. RNDr. Roman Barták, Ph.D.

Field of study: Computer science

2007

I would like to acknowledge Doc. RNDr. Roman Barták, Ph.D for his professional
guidance and inspiring advices that allowed me to write this thesis.

I declare that this thesis was written by myself using purely the cited sources. I
agree with its’ lending and publishing.

In Prague Tomáš Haničinec

2

Contents

Introduction 5

1 Principles of Constraint Satisfaction 9
1.1 Definitions . 9
1.2 Constraint propagation . 11
1.3 Search . 12

1.3.1 Labeling . 13
1.3.2 Variable and value selection 14

2 Constraint Modeling 16
2.1 Adding constraints . 17

2.1.1 Implied Constraints . 17
2.1.2 Symmetry breaking . 21

2.2 Combining different models . 24
2.2.1 Dual model . 24
2.2.2 Union of models . 29
2.2.3 Combination of models . 33

2.3 Other techniques . 35
2.3.1 Global constraints . 35
2.3.2 Auxiliary variables . 39

Conclusion 40

Bibliography 43

A Source Codes 46

3

Title: Constraint modeling
Author: Tomáš Haničinec
Department: Department of Theoretical Computer Science and Mathematical Logic
Supervisor: Doc. RNDr. Roman Barták, Ph.D.
Supervisor’s e-mail address: Roman.Bartak@mff.cuni.cz

Abstract: Constraint programming is one of the possible ways how to solve com-
plicated combinatorial (and other) problems. We model a problem using variables
representing real world objects and constraints representing various relations be-
tween the objects. However, there are often many possible ways how to model a
problem. And what’s more, the choice of a modeling strategy can affect the result-
ing efficiency dramatically. Unfortunately, there is no general recipe how to model
problems efficiently. Nevertheless there are still several modeling techniques, heuris-
tics or advices that could improve the efficiency of models. Some of these techniques
are problem dependent, some can be applied only to a certain classes of problems
but they still often help. This thesis is trying to give more or less complete list of the
most important modeling techniques along with an explanation of why, how and for
which classes of problems they work best and also with empirical results underlying
the presented facts.
Keywords: constraint, modeling, satisfaction, programming, SICStus, Prolog

4

Introduction

We all know the classic imperative programming paradigm used to develop and solve
various problems since the beginning of the computer age. All these numerous pro-
gramming languages like C or Pascal work on the simple principle. When anyone
wants to solve a problem he must think about it, find a detailed sequence of elemen-
tary steps (called an algorithm) leading to its solution and give it to the computer
so it can perform the steps and report the result. The programming language itself
provides only some kind of abstraction so one doesn’t have to think on the level of
machine instructions.

However, what if we want to do it a different way? Wouldn’t it be much easier just
to state the problem that we want to solve in some well defined form and then let the
computer to solve it? Constraint programming is one of the attempts (and possibly
the most successful one) to reach this ideal state. In constraint programming we just
state the problem by means of variables (typically representing real world objects)
and constraints (representing various relations and dependencies among variables -
objects). Having the problem stated like this, we can use a generic constraint solver
to solve the problem and then to tell us what we wanted to know. It’s certainly much
more comfortable for the programmer than the classic programming. And there’s
another advantage. It’s also much more general. This way the computer actually
knows the problem itself so we can ask different questions about the problem and
all these questions can be answered using only the problems definition instead of
explicitly writing many different programs as it would be inevitable using imperative
programming. Indeed, constraint programming is widely used in practice for solving
various combinatorial problems. Especially problems like scheduling or timetabling
are among the most important applications of constraint programming.

Let’s now illustrate constraint programming on a simple example - a so called
n-queens problem. The setting is as follows:

We are given a standard n × n chessboard and our task is to place n queens on
the chessboard so that no two queens are threatening each other. The solution for
n=4 is showed in Figure 1.

We now try to define the n-queens problem using variables and constraints. The
most obvious way to do it would probably be using one variable for each queen (let’s
mark these variables x1, x2, ..., xn). Values of the variables could than be integer
numbers from 1 to n2 representing the particular queens’ position on the chessboard
(we will further assume the fields on the chessboard are numbered horizontally from
the top left corner so the top left field has number 1, the rightmost field of the top

5

Figure 1: The solution of the n-queens problem for n=4

row has number n and so on). Now we have to express the fact that no queens are
threatening each other by constraints. There are three subconditions:

Firstly, no two queens must lie in the same column. We can ensure this by
n(n− 1)/2 constraints

(xi − 1) ◦ n 6= (xj − 1) ◦ n

where 1 ≤ i < j ≤ n and ◦ stands for the operation of modulo (remainder after
integer division).

Secondly, no two queens must lie in the same row. The constraints covering this
condition could be for example in a form

(xi − 1)÷ n 6= (xj − 1)÷ n

where 1 ≤ i < j ≤ n and ÷ stands for the operation of integer division.
Thirdly, no two queens must lie on the same diagonal. This is where we get into

problems. There is simply no easy way to determine whether two fields are on the
same diagonal or not. Possibly the easiest way is to use n(n− 1)/2 of rather obscure
constraints in the form

|((xi − 1)÷ n)− ((xj − 1)÷ n)| 6= |((xi − 1) ◦ n)− ((xj − 1) ◦ n)|
where 1 ≤ i < j ≤ n, ÷ is the operation of integer division and ◦ is the operation
of modulo. This formula may need to be explained. The expression (xi − 1) ÷ n
stands for the number of the row where queen xi is located. Similarly the expression
(xi − 1) ◦ n stands for the number of the column where queen xi is located. The
formula therefore says that for each two queens xi and xj, the difference between
their rows ant the difference between their columns must not be equal. That means
the queens must not lie on the same diagonal.

We have now defined the n-queens problem using variables and constraints. But
is the way we just showed (and the reader can see it’s a bit awkward way) the only
possible way to do so? The answer is of course no.

Let’s try a different approach. What if the variables would represent the rows of
the chessboard instead of the queens? What would change? The variables’ values

6

would be integer numbers from 1 to n (the value of variable xi would represent the
column that the queen in the i-th row is placed in). And what about constraints?
The fact that there must be exactly one queen in each row is ensured by the semantics
of the second model without any additional constraints (exactly one value has to be
assigned to each variable). The fact that there must be exactly one queen in each
column is easy to express by n(n− 1)/2 constraints

xi 6= xj

where 1 ≤ i < j ≤ n.
And finally the fact that no two queens must lie on the same diagonal which

caused so much trouble in the previous model can be easily covered by constraints
in the form

|xi − xj| 6= |i− j|
We have obtained another model of the n-queens problem by looking at the

problem from a different angle. And what’s more, the second model seems to have
some advantages compared to the first model. The second model is definitely simpler,
more consistent and easier to understand. And what if we try to measure the time a
constraint solver needs to solve the n-queens problem? The following table gives the
empirical comparison of both the above presented models implemented in SICStus
Prolog (version 4.0.1). All the time values are in seconds1. The source codes of the
programs used can be found in the appendix (programs number 1 and 2).

N (chessboard size) 4 8 12 16 20 30
first model 0.010 24.806 5312.469 - - -
second model 0.000 0.010 0.030 0.050 0.140 2.503

Table 1: Empirical comparison of the two presented models of the n-queens problems.
Time values are in seconds

We can see that the second model consumes significantly less time than the first
model. So not only the second model is simpler but it is also much more efficient.

We have shown that the choice of the modeling strategy can affect the result-
ing efficiency dramatically. Unfortunately, there is no general recipe how to model
problems efficiently. However, there are several modeling techniques, heuristics and
advices that could improve the models and their efficiency. Some of these techniques
are problem dependent, some can be applied only to a certain classes of problems.
However, they frequently help. This thesis is trying to give more or less complete
list of the most important modeling techniques along with an explanation of why,
how and for what classes of problems they work best and also with empirical results
underlying the presented facts.

1Computer configuration - Intel Celeron 1300 MHz, 256 MB RAM, Microsoft Windows XP

7

Organization of the thesis

Chapter 1 - Principles of Constraint Satisfaction contains the formal intro-
duction into the field. It covers basic definitions and conventions that are used
throughout the thesis. It also introduces some of the most important con-
straint satisfaction techniques so the reader will know how the solvers work
inside which is sometimes useful to fully understand why certain decisions lead
to more efficient models.

Chapter 2 - Constraint Modeling is the core part of the thesis. It contains the
actual list of modeling techniques. It’s divided into four parts in accordance
with the nature of particular techniques. Each technique is explained in detail,
empirically demonstrated on at least one example and the results are eventually
further discussed.

Conclusion contains generalization and summary of the presented techniques, ideas
and experimental results.

8

Chapter 1

Principles of Constraint
Satisfaction

To be able to fully understand the methods of constraint modeling, we need to
know several basic concepts of constraint satisfaction at first. This chapter therefore
covers the basic definitions and conventions as well as some of the techniques used
by current constraint satisfaction solvers. Section 1.1 introduces formal definitions
of the terms we are going to use throughout this thesis. As a matter of fact, the
most of it can be thought of as a formal transcription of our simple n-queens example
from the introduction. Section 1.2 is focused on constraint propagation, the most
powerful technique of constraint solvers. However, in practice we aren’t usually able
to solve CSPs using constraint propagation alone. Some amount of search is then
necessary to find the assignments satisfying all the constraints. The search algorithm
along with some techniques used to improve its efficiency is covered in section 1.3. It
is useful to familiarize with these issues in order to understand how certain modeling
decisions influence the resulting efficiency of the problem solving.

1.1 Definitions

First of all - what do we mean by a constraint satisfaction problem? A constraint
satisfaction problem (CSP) is a triplet (X,D, C). X = {x1, x2, ..., xn} is a finite set
of variables. D = {d1, d2, ..., dn} is a finite set of domains. A domain is a finite
set of values (usually integers), that are being assigned to the variables. Finally,
C = {c1, c2, ..., cm} stands for a finite set of constraints. A constraint is basically a
relation defined over some subset of the variables limiting the possible combinations
of values they can take. It can be expressed as a mathematical formula of some kind
or extensionally as a list of acceptable tuples of values. Formally, each constraint
can be thought of as a pair (σ, ρ) where σ ⊆ X is a set of variables involved in
the constraint called it’s scope and ρ is a subset of the cartesian product of the
corresponding domains. An assignment is a pair (xi, a), where xi ∈ X and a ∈ Di

meaning that value a was assigned to variable xi. A complete(partial) assignment is
an assignment to all(certain) variables in X. We say that an (partial) assignment

9

satisfies a constraint c = (σ, ρ) if all the variables in σ have an assigned value and
these values form an element of ρ. A solution to a CSP is a complete assignment
satisfying all the constraints (a CSP can therefore have none or more than one
solution, too).

A constraint with the scope of just one variable is called a unary constraint (it’s
basically a domain restriction), a constraint with the scope of size of two is called a
binary constraint and so on. A unary constraint c1 with the scope xi ∈ X is said to
be node consistent if for every value vi ∈ di (di ∈ D) the assignment (xi, vi) satisfies
the constraint. Let’s now have a binary constraint c2 between variables x1, x2 with
domains d1, d2 respectively. We say that the constraint c2 is arc consistent if for every
value u ∈ d1 there exists a value v ∈ d2 so that the partial assignment x1 = u, x2 = v
satisfies c2 and vice versa. So it basically means that every value must participate
in at least one pair of values satisfying the constraint.

We can extend this concept further to non-binary constraints obtaining a so
called generalized arc consistency. So much like above let’s have a constraint c3

with variables x1, ..., xn and domains d1, ..., dn respectively. Now for every value
vj ∈ dj there must exist a tuple of values v1, ..., vj−1, vj+1, ..., vn from domains
d1, ..., dj−1, dj+1, ..., dn so that the partial assignment x1 = v1, ..., xj−1 = vj−1,
xj = vj, xj+1 = vj+1, ..., xn = vn satisfies c3. If the above written statement holds for
every domain dj ∈ {d1, ..., dn}, the constraint c3 is said to be generalized arc consis-
tent. More informally again - it must be possible to extend every possible value from
every possible domain by other values from other domains to satisfy the constraint.

Finally, constraint c3 from the previous example with numerical domains is said
to be bounds consistent if the generalized arc consistency paradigm holds for at least
the boundary values of each domain (the maximal and the minimal value). So in
contrast to the generalized arc consistency, it is not required to hold for every possible
value of the domain here. There exists many other consistency levels such as path
consistency but these levels are not actually used in solvers frequently and their
detailed description is well beyond the scope of this thesis. For more details about
consistency techniques and their enforcing see for example [9, 3].

A CSP including only unary or binary constraints is called a binary CSP. Two
CSPs are said to be equivalent if they have the same set of solutions. Now let’s
focus a bit on binary CSPs because of its great theoretical meaning. It appears that
any arbitrary CSP can be transferred to an equivalent binary CSP (there are several
techniques to do so. Some of them are for example the hidden variable translation
and the dual graph translation (see [3]). Therefore, the binary CSPs are the only
problems we could be concerned about while working with constraint satisfaction
techniques. Unfortunately, the non-binary to binary CSP translation techniques are
computationally quite expensive and are rarely used in practice. The benefit we gain
(a simpler binary CSP) isn’t usually worth the extra time spent on the translation.
However, the binary CSPs have still a privileged position in a theoretical work where
we are more interested in formal correctness and simplicity than in actual low level
performance.

When we extend the original CSP definition by an objective function we obtain
a so called constraint optimization problem (COP). An objective function is used to

10

determine a quality of solutions. While solving a COP, we are not interested in just
any or all the solutions but we are looking for the optimal solution instead. COPs
are usually solved by an instance of branch and bound algorithm - in this case it’s
basically repeated solving of the corresponding CSP with gradually added constraints
representing certain bound on its solution quality. Because of this, if there’s a good
model for a CSP, then the same model is equally good for the corresponding COP
and for the purposes of this thesis we can unify COPs and CSPs and concentrate
only on the simple CSPs.

We introduced some of the basic concepts of constraint satisfaction in this section.
However, we still don’t know how the CSPs are actually solved. We will now focus
on constraint solvers. Constraint solvers are programs that are able to search and
find solutions to a specific CSP. This is not an easy task assuming we want to use
such a solver to solve large real-life instances of problems in a reasonable time. Great
majority of today’s constraint solvers use a combination of constraint propagation
and search to find the solutions. Both of these techniques will be explained in the
following sections

1.2 Constraint propagation

We will start with a simple example. Consider a CSP with two variables x1, x2

and one simple constraint x1 > x2. The variables domains are d1 = {1, 2, 3, 4}
and d2 = {3, 4, 5, 6}. The most naive way to solve such a CSP would be to try all
the complete assignments sequentially and to test if these assignments violates the
constraint. However, even in this simple case we would for example test pairs {1, 3},
{1, 4}, ..., {2, 3}, ..., {3, 3}, {3, 4}, {3, 5} and {3, 6} without finding any solution. It
should be clear that such a primitive method (called generate and test by the way)
is practically unusable. But what would happen if we use the constraint to help us
to actually construct a solution by pruning the values that cannot be a part of a
solution? When we look at the problem we can see immediately that none of the
values 1, 2, 3 from the domain d1 can be extended by any value from d2 to form a
solution (to satisfy the constraint). We can therefore delete these three values from
d1 and the resulting CSP would be equivalent to the original CSP and also much
simpler. We can continue further and delete the values 4, 5, 6 from d2 for the same
reason. Now both the domains contain only one element (d1 = {4}, d2 = {3}) and
these elements form the only solution to the above defined CSP. What we did was
actually enforcing the above defined arc consistency on constraint x1 > x2. This was
a simple example of the so called constraint propagation, the most powerful technique
of constraint solvers [28].

The very reason why we are able to solve real-life problems through constraint
satisfaction lies in the ability of solvers to use constraints actively to remove conflict-
ing values from variables domains as it was just presented on our simple example. In
practice, each constraint has a special algorithm attached to it that is evoked every
time some of the domains in the constraint scope changes to propagate these changes
to other domains. Such an algorithm is called a filtering algorithm because it filters

11

the domains of variables in a constraints scope. And since the domain changes are
propagated further through the constraint by filtering, the whole process is called
the constraint propagation.

Now we explained what the filtering is and when it is evoked but we didn’t yet
explained how it works. There are several possibilities but most of the solvers filter
the domains by enforcing some of the consistency levels described earlier. This is
always a kind of a tradeoff between a time loss caused by a consistency enforcing
algorithm and the possible gain caused by smaller domains. The stronger a consis-
tency level is, the more values it could eliminate and the more complex and time
consuming also its enforcing algorithm is. Most of the solvers enforce arc consistency
on binary constraints and bounds consistency on arithmetical constraints. Bounds
consistency can be thought of as a certain compromise between enforcing computa-
tionally expensive generalized arc consistency and doing nothing. The algorithm is
relatively fast and it propagates at least a domains lower and upper bound (if not all
the values like generalized arc consistency does). Some solvers also support the so
called global constraints which usually allow us to enforce higher levels of consistency
by reasoning on a set of constraints as it is a single constraint. Global constraints
as one of the modeling techniques will be widely discussed in section 2.3.1.

We have seen that we can use constraints to reduce the size of domains by enforc-
ing certain level of consistency on these constraints. However, the levels of consis-
tency used by current constraint solvers are not strong enough to solve the problem
completely. The solvers are generally not able to find solutions just by enforcing
consistency on all the constraints of a CSP. It is therefore necessary to combine
constraint propagation with some kind of an additional search algorithm. The next
section describes the main stream search algorithm as well as some of the techniques
and heuristics used to improve its efficiency.

1.3 Search

Let’s have three variables x1, x2, x3, all of them with domain {1, 2} and three binary
constraints x1 6= x2, x2 6= x3 and x3 6= x1. The reader can easily see that all three
constraints are arc consistent. And still - it’s clear that the specified CSP has no
solution and all the values could have been removed from the domains by filtering
algorithms.

We have just seen that constraint propagation alone may be insufficient to solve
an arbitrary CSP. To be able to find a solution we often have to search for it. Current
constraint solvers usually interleave constraint propagation with an enhanced back-
tracking algorithm. In section 1.3.1 we will describe how the search actually works
in constraint solvers while section 1.3.2 introduces some of the techniques used to
enhance the efficiency of the search.

12

1.3.1 Labeling

The main stream algorithm for constraint satisfaction is actually very simple. In each
step the algorithm selects some yet uninstantiated variable and assigns it a value from
the corresponding domain. The assignment of a value to a variable is expressed by an
extra constraint that is added to the original CSP (so the solver basically solves just
one automatically modified CSP). This additional constraint is then used to reduce
some of the domains via constraint propagation. If any domain becomes empty
(meaning that the current CSP doesn’t have a solution), the algorithm backtracks
canceling the last assignment (by deleting the last added constraint from the current
CSP). The algorithm terminates when a solution to the original CSP is found or all
the possible combinations of assignments are tried without finding a solution. The
whole process is often called labeling because the variables are consequently labeled
with values.

Let’s now present the above described algorithm’s work on a simple example.
Let’s have variable x1 with domain d1 = {1, 2, 3, 4, 5}. Sometimes during the run of
the algorithm value 3 is selected for an assignment. Constraint x1 = 3 is therefore
added to the CSP we are actually solving. Since x1 = 3 is an unary constraint,
the node consistency will be enforced on it. So the filtering algorithm will delete all
the values but 3 from the domain d1. The change of the domain d1 will also cause
invoking of filtering algorithms of all the constraints with the variable x1 in their
scopes. This way the change in d1 is propagated into other domains too. Then the
process is repeated until a solution is found or some domain becomes empty.

In the example we used x1 = 3 as an additional constraint. However, there are
other choices possible for an additional constraint representing an assignment. We
can for example consequently split the domain along the middle value instead of
assigning just one value at a time. And this strategy may well prove to yield better
results in certain classes of problems. We will now present three of the labeling
strategies using the above defined variable x1.

Enumeration is the most obvious strategy. It simply tries to assign one value
after another till there are no values left. The constraints consequently added to a
CSP would be x1 = 1, x1 = 2, x1 = 3, ... and so on until all values in the domain are
tried. The constraint propagation would reduce the domain d1 to just one value.

Bisection gradually splits the domain along the middle value as was already
mentioned above. The additional constraints would be x1 ≤ 3, x1 > 3 in this case.
The propagation would first delete the values 4, 5 leaving the domain d1 equal to
{1, 2, 3}. If the search failed, the other half of the domain would be used instead.

Step labeling works much like the enumeration. The difference is that it doesn’t
try to assign the next value after the search fails immediately. It does only note that
the currently assigned value was unsuccessful. The constraints would be for example
x = 1, x 6= 1. The propagation would eliminate all the values but 1 from d1. If the
search failed, value 1 would be eliminated leaving domain d1 equal to {2, 3, 4, 5}.

13

1.3.2 Variable and value selection

Let’s have a more detailed look on the phase where the algorithm proceeds forward
by choosing a variable and a value from its domain for an assignment. First we have
to choose a variable. The first choice used as a default is just to select the next
variable in some initial fixed ordering. But this way we cannot take advantage of
eventual additional information discovered during the search. Wouldn’t it be better
to order the variables dynamically as the search continues and in each step to choose
the variable we think (for some reason) will lead to the smallest remaining search
space? The ordering of variables for an assignment may have a significant effect on
the running time of the whole algorithm. Unfortunately it appears that there doesn’t
exist any universally best variable selection scheme and mostly we have just to try
it to know which one is the best for our particular problem. There are two main
variable selection schemes:

The left-most variable selection simply chooses variables according to some initial
fixed ordering. It doesn’t use additionally discovered information but on the other
hand, we can directly influence the performance of the algorithm by ordering the
variables ourselves. Thus our knowledge of the particular problem can be used to
build a more efficient model.

The fail-first variable selection always chooses the variable that most likely causes
the search to fail [14]. The fail-first strategy is based on an idea that whenever the
search gets into a dead-end branch of a search tree, it’s good to realize it as soon
as possible so the algorithm can backtrack and it doesn’t waste time on searching
the rest of the branch. The question remains how to choose such a variable. There
are several heuristics that are used to determine which variable will probably cause
the search to fail. We will present some of them. Probably the most obvious one is
the dom heuristic [14]. It simply selects the variable with the smallest domain. It
should be clear that the smaller domain of the variable is, the sooner we try all the
values and the search fails. But what if there are two or more variables with the
smallest domain? The dom heuristic chooses arbitrarily. Another possibility, known
as the dom+deg heuristic chooses the most-constrained variable instead (the more
constraints contain the variable in their scopes the greater the probability that some
of these constraints will be violated is) [7, 24]. It also might be useful to combine the
”smallest domain” and the ”most constrained” approach. The resulting heuristic is
called dom/deg [5, 25]. For each variable the quotient of the variables’ domain size
and the number of constraints that contain the variable in their scopes is computed.
The heuristic then chooses the variable with the small value of the quotient (small
value means that the variable has a small domain and it’s participating in many
constraints). There are also other heuristics based on the fail-first strategy but it is
not necessary to explain them for purposes of this thesis.

We have covered some of the variable selection principles but what about the value
selection? The selection of a value for an assignment can influence the performance
of the search just as the selection of a variable does. By selecting a value for an
assignment we are actually selecting a branch of the search tree the search algorithm
is going to visit next. It is usually a good idea to pick the most promising values

14

first. One of the possible heuristics for choosing the most promising value is the
min-conflict heuristic which chooses the value with the minimal number of conflicts
with the unlabeled variables [17].

More about variable and value selection principles and heuristics can be found
for example in [29].

15

Chapter 2

Constraint Modeling

Constraint modeling is a crucial part of constraint programming. Since the solvers
themselves usually use fixed algorithms (for example some instance of the above de-
scribed scheme), the constraint modeling is often our only chance to influence the
final performance of problem solving. Unfortunately, there are nearly no general
rules telling us how a good and efficient model should look like. The final efficiency
of the model closely depends on the inner behavior of the constraint solving algo-
rithm. Unfortunately this behavior is often too complex for us to fully understand all
the dependencies and interactions influencing the resulting runtime. The only way
to determine the efficiency of a model for sure is usually just to try it empirically.
However, there are still some suggestions we should keep in mind while modeling a
problem. Firstly - a good and efficient model should contain as much information
about the problem as possible. The more information we are able to encode into con-
straints the better the chance of removing more values from domains via constraint
propagation we usually have. It is also a good idea to keep the number of variables in
a model as small as possible. Additional variables often slow down the search phase
because we have to do more choices and the search tree is deeper. These suggestions
are of course not guaranteed to work in every possible case. There are many cases
where an additional information about a problem included in a model doesn’t help
(for example because the constraints used to express the information are cumber-
some and don’t propagate well). Or we can also easily find cases where a model with
more variables is more efficient than a model with less variables (for example because
the additional variables allow us to express certain constraints more consistently and
improve their propagation). The practical usage of the above explained suggestions
will be closely described in some of the later sections.

All the techniques in this chapter are presented in a more or less uniform manner.
At first a technique itself is explained, it is widely discussed how and mainly why
it works (possibly also for what classes of problems it works best). Then a simple
problem is defined and two models of the problem are suggested. The first model is
usually the most obvious one, without any enhancements. The second model makes
use of the presented modeling technique. The two models are then implemented in
SICStus Prolog, version 4.0.1 (see [22]) and their performance is compared1. The

1Computer configuration - Intel Celeron 1300 MHz, 256 MB RAM, Microsoft Windows XP

16

runtime is measured with the SICStus Prolog predicate statistics. Times over
500 seconds are usually replaced by ”-”. Several test runs are performed for the
purposes of the comparison, each run with different combination of labeling and
variable selection scheme. The results of the comparison are then presented and
discussed.

The constraint modeling techniques included in this chapter are grouped into four
categories according to the nature of the technique. Section 2.1 describes techniques
based on addition of new constraints to an existing model. These techniques make
a direct use of the above mentioned suggestion about an additional information in
a model. Section 2.2 is focused on combinations of different models. If we have
two or more efficient models of a problem, it might be a good idea to use all of
them simultaneously. That way the information would often be propagated earlier
by making use of the advantages of all the participating models (at the expense of an
additional time spent on the propagation, of course). Finally section 2.3 is focused
on techniques that don’t fit to any of the two previous categories. Dealing with
global constraints and using auxiliary variables are probably the main techniques
presented in this section.

2.1 Adding constraints

Techniques presented in this section involve an addition of new constraints into an
existing model. We already mentioned that an additional information in the model
can help. When we know something about the problem that is not yet included in the
model and we are able to encode this information into constraints, it might be a good
idea to add these new constraints into the model in order to improve propagation.
The main assumption of this technique is that the new constraints must propagate
well so the time savings caused by an additional constraint propagation outweighs
the additional time consumption caused by the filtering algorithm that is running
on the new constraints.

Section 2.1.1 describes so called implied constraints. Implied constraints don’t
change the set of solutions to a CSP (they are implied by the original constraints),
but they carry additional information that can help to eliminate more values out
of the domains via constraint propagation. Section 2.1.2 is focused on symmetry
breaking. Many of the problems we are trying to solve through constraint satisfaction
are somehow symmetrical. If we enhance the model with constraints that forbid the
symmetrical situations or solutions, we can reduce the search space significantly,
while we can still easily reconstruct all the solutions after the search is done.

2.1.1 Implied Constraints

Implied constraints (sometimes the term redundant constraints is being used instead)
are used to express additional information about the problem that we are actually
modeling [26]. Implied constraints are not necessary to find a solution and they don’t
change the set of solutions to the problem any way. Any model would still work fine

17

without them. The reason for constructing a model with more constraints than
necessary lies in the ability of constraint solvers to use all the constraints to reduce
the domains via constraint propagation. Constraint propagation is a very powerful
tool and it can improve the time efficiency of the problem solving dramatically. By
addition of some new constraints we are actually trying to incorporate more of the
constraint propagations power into the problem solving.

So when it could be an appropriate time for utilization of the implied constraints
technique? Implied constraints are worth considering whenever we have modeled a
problem and we have discovered some additional information about this problem that
is not directly expressed in the present model. If this information can then be easily
and consistently encoded into constraints, the model with these implied constraints
added will probably be more efficient than the original model (the one without
the implied constraints). The problem occurs when the additional information is
hard to express by means of constraints and when the resulting constraints are
difficult to propagate. New constraints always add some kind of overhead (caused by
runs of their filtering algorithms). This overhead, if the constraints don’t propagate
well, might be unproductive. If we want the implied constraints technique to be
productive and worthwhile, the propagation of the additional constraints must always
compensate and even outweigh the overhead.

Now consider the problem called a Golomb ruler: A Golomb ruler is defined as
a set of n integers 0 = a1 < a2 < ... < an representing marks in a way that all the
n(n− 1)/2 differences between the marks (aj − ai, 1 ≤ i < j ≤ n) are distinct. The
ruler is then said to have length an. The objective is to find an optimal (a minimum
length) ruler [13]. The optimal ruler with five marks is illustrated in Figure 2.1.

Figure 2.1: The optimal Golomb ruler with five marks

Let’s now model the Golomb ruler problem as a CSP. Probably the most straight-
forward way to do so is to use n variables x1, x2, ..., xn representing the positions of
the marks on the ruler. The constraints ensuring different distances between marks
would then be in the form

|xj − xi| 6= |xl − xk|
where 1 ≤ i, j, k, l ≤ n, i < j, k < l, i ≤ k and i 6= k or j 6= l. The implementation
of this model can be found under number 3 in the appendix. Figure 2.2 shows the
summary of the basic model

Now the question arises. What else do we know about the problem that can
be used to improve the efficiency of our simple model? We can for example try to
estimate bounds of individual distances between marks more accurately. To be able

18

Variables:
x1, x2, ..., xn

Constraints:
|xj − xi| 6= |xl − xk|

Figure 2.2: Model Golomb basic

to do it, we must first add the set of constraints in the form

xk < xk+1

(1 ≤ k < n) ensuring that the marks will be sorted in ascending order. The reader
can find more about such constraints and their impact on the efficiency of the model
in the next section. Now we are ready to infer the lower and upper bounds of
individual distances.

Firstly the lower bound. We know that each distance |xj − xi| is assembled of
(j − i) primitive distances |xk+1 − xk| (i ≤ k < n, note that this is only true when
the marks are sorted). Each primitive distance is at least 1 so we can state

|xj − xi| ≥ (j − i)

Moreover, the primitive distances must be pairwise different too so the minimal sum
of (j − i) primitive distances is 1 + 2 + ... + (j − i) = (j − i)(j − i + 1)/2 and we can
further refine our lower bound to

|xj − xi| ≥ (j − i)(j − i + 1)/2

Now what about the upper bound? Each distance |xj−xi| is assembled of (j− i)
primitive distances so the rest of the ruler consists of n−1−(j−i) primitive distances.
As we know, each primitive distance is at least 1 and the distances must be different.
The minimal length of the rest of the ruler (the ruler without |xj − xi|) is therefore
1 + 2 + ... + (n− 1− j + i) = (n− 1− j + i)(n− j + i)/2 and we can state the upper
bound on |xj − xi| too:

|xj − xi| ≤ xM − (n− 1− j + i)(n− j + i)/2

where xM is the total length of the ruler (maximum of {x1, x2, ..., xn}).
We can now enrich our initial model of the Golomb ruler problem with the above

stated lower and upper bound implied constraints and compare the performance
of both the models. The implementation of the model with implied constraints
in SICStus Prolog can be found as the program number 4 in the appendix. The
summary of this model can be found in figure 2.3

The following tables show us the comparison of both models.
Table 2.1 is focused on the direct comparison of the models on the problems

of different sizes. The default settings of labeling strategy and variable selection
heuristic were used (in SICStus Prolog it means the step labeling strategy an the
left-most variable selection).

19

Variables:
x1, x2, ..., xn

Constraints:
|xj − xi| 6= |xl − xk|
xk < xk+1

|xj − xi| ≥ (j − i)(j − i + 1)/2
|xj − xi| ≤ xM − (n− 1− j + i)(n− j + i)/2

Figure 2.3: Model Golomb implied

marks 4 5 6 7 8
optimal length 6 11 17 25 34
Golomb basic 0.020 1.712 149.434 - -
Golomb implied 0.010 0.020 0.180 3.394 56.671

Table 2.1: Golomb ruler - empirical comparison of the two presented models. Time
values are in seconds

We can see that the difference between the basic model and the model enhanced
with the implied constraints is really huge. All the implied constraints that we used
in the model were simple, binary and easy to propagate constraints. And these
constraints expressed the facts that helped the constraint solver to prune the search
space significantly. The gain caused by the smaller search space therefore significantly
outweighed the loss caused by handling of additional constraints and that’s why the
technique was so successful. Implied constraints heavily payed off in this case.

Table 2.2 shows us the dependency between the performance of the models and
the choice of the labeling strategy and the variable selection heuristic.

labeling strategy step labeling enumeration bisection
variable selection left-most fail-first left-most fail-first left-most fail-first
Golomb basic
(n=5)

1.712 1.712 1.372 1.372 1.672 1.683

Golomb implied
(n=7)

3.394 6.880 2.925 5.759 3.334 6.859

Table 2.2: Golomb ruler - dependency between labeling settings and the final per-
formance of a model. Time values are in seconds

We can see that the enumeration labeling strategy has proved to be the best
choice for both models. Moreover, in the case of the model enhanced with the
implied constraints there is a significant difference between the run times when the
left-most variable selection was used and the run times when the fail-first variable
selection was used. The fail-first variable selection has proved to be significantly less
efficient than the left-most variable selection in this case.

20

At the end of this section we should also mention the concept of the so called
dominance rules. The concept originates from other areas of research and its appli-
cation in constraint satisfaction is not very frequent yet. Dominance rules are by
its nature very similar to implied constraints. They also extensively express some
additional information that helps to prune the search space. But unlike the implied
constraints, dominance rules actually can reduce the set of solutions to a problem.
The important thing is that there must exist at least one solution satisfying domi-
nance rules. This concept is therefore suitable for problems where we are satisfied
with just one arbitrary solution. In this case dominance rules may bring more ef-
ficient model than implied constraints because they are allowed to prune greater
parts of the search space (mainly the parts including some of the solutions). How-
ever, there is not many problems that can make use of dominance rules and that is
why this technique is only shortly mentioned here. More about dominance rules and
examples of their application in constraint satisfaction can be found for example in
[18] and [1].

2.1.2 Symmetry breaking

Many of the problems we are trying to model and solve through constraint satisfac-
tion are somehow symmetrical. In this section we will show and break two types of
symmetries.

The first type of symmetry (let’s call it the model symmetry) occurs whenever
the variables in a model represent identical objects. Original objects are not dis-
tinguishable in a problem while the variables representing them always are. For
example recall the Golomb ruler problem from the previous section. We modeled
this problem using n variables representing the marks on a ruler. But the marks on
a real world ruler are uniform and identical. It doesn’t matter which particular mark
is placed as the first on a ruler. The variables on the other hand are distinguish-
able. Variable x1 is something completely different from variable x2 for the solver.
Without breaking this symmetry, the solver would uselessly search through all the
possible permutations of the variables and each solution would be re-found n! times.

The variable symmetry occurs when a problem itself is symmetrical. Knowing
that, we can fully reconstruct the symmetrical solutions without actually having to
find them or even search for them. We will explain this concept using the exam-
ple of the Golomb ruler problem again. Whenever we find a solution to the Golomb
ruler problem, we can obtain another solution immediately by just ”turning the ruler
round by 180 degrees”. For example the solution (0, 1, 4, 6) (the optimal solution for
the Golomb ruler with four marks) yields also the (symmetrical) solution (0, 2, 5, 6).
Without breaking this type of symmetry the search space would be significantly big-
ger. There would exist a symmetrical alternative to every (partial) assignment that
would have to be searched independently and the only result of such an additional
search would eventually be the discovery of a symmetrical solution that we do know
anyway.

We have already explained the types of symmetries as well as how they influence
the efficiency of the model. Now we will try to break these symmetries in order to

21

improve the model. Both types of symmetries can be broken by addition of symmetry
breaking constraints to the original model of the problem. This is very similar to
the implied constraints concept described in the previous section. The symmetry
breaking constraints also express some additional information about a problem that
is added into model to improve constraint propagation. However, unlike the implied
constraints the symmetry breaking constraints actually can reduce the set of solutions
to the problem by deleting symmetrical solutions out of it.

Recall once again the Golomb ruler problem and its basic model from the previ-
ous section. We used n variables x1, x2, ..., xn representing marks on the ruler and
constraints in the form

|xj − xi| 6= |xl − xk|
(where 1 ≤ i, j, k, l ≤ n, i < j, k < l and i 6= k or j 6= l) representing different
distances between marks. The source code of such a model can be found in the
appendix as the program number 3.

It should be clear that there is nothing preventing the search for symmetrical
solutions in this model. For example for n = 3 we obtain 12 ”optimal” solutions
of the length 3: (0, 1, 3), (0, 3, 1), (1, 0, 3), (1, 3, 0), (3, 0, 1), (3, 1, 0) and (0, 2, 3),
(0, 3, 2), (2, 0, 3), (2, 3, 0), (3, 0, 2), (3, 2, 0). After looking at these solutions we can
see immediately that all we actually need to know is just the first solution (0, 1, 3).
All the other solutions are symmetrical to the first one in the means of the two types
of symmetry described earlier in this section. Fortunately both types of symmetry
are very easy to break in this case.

First the model symmetry. We want to prevent an occurrence of different per-
mutations of the same values among the solutions (such as for example the solutions
(0, 1, 3) and (0, 3, 1) from the previous example). This could be easily achieved by or-
dering the variables in ascending order, that means by addition of symmetry breaking
constraints in the form

xi < xi+1

(where 1 ≤ i < n) into the model (the reader may remember that we already used
such constraints in previous section). The source code of such an improved model
can be found in the appendix under number 5 an the summary is in Figure 2.4.

Variables:
x1, x2, ..., xn

Constraints:
(xj − xi) 6= (xl − xk)
xk < xk+1

Figure 2.4: Model Golomb symmetry 1

Now what about the variable symmetry? We don’t want the solver to search for
solutions that are merely turned round by 180 degrees from each other (such as for
example (0, 1, 3) and (0, 2, 3)). Since the distances between marks must be different,

22

we can break the variable symmetry by addition of just one constraint

x2 − x1 < xn − xn−1

meaning that the first difference is less than the last. The model of Golomb ruler
problem with both types of symmetry broken implemented in SICStus Prolog can
be found in the appendix under number 6. The summary of such a model can be
found in figure 2.5.

Variables:
x1, x2, ..., xn

Constraints:
(xj − xi) 6= (xl − xk)
xk < xk+1

x2 − x1 < xn − xn−1

Figure 2.5: Model Golomb symmetry 2

The empirical comparison of all the models discussed in this section is summarized
in Table 2.3. The labeling settings were left to default (the step labeling strategy
and the left-most variable selection)

marks 5 6 7 8 9 10
length 11 17 25 34 44 55
Golomb basic 1.712 149.434 - - - -
Golomb symmetry 1 0.000 0.020 0.241 3.545 54.278 -
Golomb symmetry 2 0.000 0.010 0.110 1.653 25.877 368.460

Table 2.3: Golomb ruler - empirical comparison of models from section 2.1.2. Time
values are in seconds

From the comparison we can see that the most successful has proved to be the
final model with both the symmetries broken (as we would altogether expect). Nev-
ertheless, the biggest improvement of efficiency of the model was undoubtedly caused
by breaking the model symmetry. This is completely in accordance with the fact that
for a problem of the size n there are n! solutions that are value symmetrical to each
other while for the variable symmetry there are only 2 symmetrical solution. The
model symmetry breaking therefore cuts off significantly bigger parts of the search
space than the variable symmetry breaking.

Table 2.4 summarizes the dependency between the selection of labeling settings
and the performance of the models presented in this section.

The table shows us that there is nearly no difference between different labeling
settings this time (except the basic model that was discussed earlier). The values
stayed more or less the same no matter what labeling strategy or variable selection
we used.

23

labeling strategy step labeling enumeration bisection
variable selection left-most fail-first left-most fail-first left-most fail-first
Golomb basic
(n=5)

1.712 1.712 1.372 1.372 1.672 1.683

Golomb symme-
try 1 (n=8)

3.545 3.495 3.445 3.455 3.425 3.465

Golomb symme-
try 2 (n=9)

25.877 26.598 26.098 26.318 25.727 25.837

Table 2.4: Golomb ruler - dependency between labeling settings and the final per-
formance of the model. Time values are in seconds

2.2 Combining different models

Sometimes we can encounter a situation that we managed to create two different
models of the problem that both propagate well. We can use either one of them
to solve the problem. But if the models are both good and if they use a different
perspective to see the problem, it might be beneficial to combine them into one
compound model. That way the solver can fully exploit the advantages of both
models at the same time and find a solution more quickly than if we use the models
separately.

Section 2.2.1 presents the idea of a dual model. A dual model can be con-
structed from the model of a so called permutation problem (a problem where the
search space is formed by the permutations of variables) by switching the role of
values and variables. Dual model is not a combination of models in any way but it is
closely related and we are going to need it in the following sections anyway. Section
2.2.2 describes the most straightforward case of the model combination, the combi-
nation of two different models into one. The models are used simultaneously and the
dependencies between their individual variables are expressed by the so called chan-
neling constraints. That way, any changes in domains are propagated between the
models immediately through the channeling constraints propagation. Section 2.2.3
extends this concept by omission of certain constraints from the compound model.
Since the compound model always contains many redundant constraints, it could be
convenient to remove those of them that don’t propagate well. Not only that we use
the advantages of both the models but we also avoid some of their disadvantages
this way.

2.2.1 Dual model

This technique is not really a combination of models but it is closely related. Models
that are mutually dual are very often used in a combination with each other. The
dual model technique is very frequently used on a class of the so called permutation
problems [23]. A permutation problem is a problem equivalent to finding a certain
subset of permutations of the given set of values. That means the model of a per-
mutation problem has to have the same domain for each variable and the number

24

of values in this domain has to be the same as the total number of variables. We
have already seen an example of the permutation problem before. Remember the
n-queens problem from the introduction? We showed it could be modeled with n
variables representing rows, each one with n possible values representing column and
the solutions could then be thought of as a permutation of columns.

Now we know what the permutation problem is. Let’s have some permutation
problem modeled as a CSP (we will mark the model Mp). That means that Mp

contains n variables x1, x2, ..., xn, each one with the same domain {v1, v2, ..., vn}, and
some constraints c1, c2, A dual model (we will mark it Md) to model Mp can
be created by just flipping the role of values and variables in Mp. Md therefore
contains n variables v1, v2, ..., vn, each one with the same domain {x1, x2, ..., xn} and
the appropriate set of constraints [12]. In the model of the permutation problem we
are assigning an individual value to the specified variable while in its dual model we
are choosing an individual variable to have the specified value. It sounds almost the
same and one could say there is no practical difference between the basic and the
dual model. Well, this is often not true as we will see in a short while.

When we want to model a problem that could be thought of as a permutation
problem, it might be a good idea to try both the models (basic and dual model).
There can be a significant difference between efficiencies of the models. Usually it’s
hard to decide which one of the two models will yield better results. It is important
to realize what the solution depends on more. If it’s on variables or on values. The
better model is then usually the model where the solution depends more on variables
than on values.

We will now demonstrate the presented facts on the example of finding a normal
magic square of order n. A magic square of order n is an arrangement of n2 numbers,
usually distinct integers, in a square, such that the n numbers in all rows, all columns,
and both diagonals sum to the same constant. We say a magic square of order n is
normal if it contains all the integers from 1 to n2. An example of the normal magic
square of order 4 is presented in Figure 2.6 2.

Let’s now think about modeling the problem of finding a normal magic square of
order n as a CSP. The most straightforward way is to use n2 variables representing
the values in particular fields of the square. Since we want the square to be normal,
each variable will have domain {1, 2, 3, ..., n2}. We know the sum of each row, column
and diagonal must be the same number. This number called the magic constant can
be easily computed (since it depends only on n) and it is equal to (n3 + n)/2. The
constraints would therefore be in the form

x1,j + x2,j + ... + xn,j =
n3 + n

2
2It is the famous Dürer’s magic square. It was constructed in 1514 (the two numbers in the

middle of the bottom row) by Albrecht Dürer in his copper engraving Melancholia. All rows, all
columns and both diagonals sum to 34 as well as all the four quadrants (for example 16,3,5,10), the
middle of the square (10,11,6,7) and the corners (16,13,4,1). Also the four outer numbers clockwise
and counter-clockwise from the corners (3,8,14,9 and 2,12,15,5), the two sets of four symmetrical
numbers (2,8,9,15 and 3,5,12,14) and the sum of the middle two entries of the two outer columns
and rows (5,9,8,12 and 3,2,15,14) give the sum of 34. Finally any pair of numbers symmetrically
placed about the center of the square sums to 17 (for example 3,14 or 11,6)[30, 15]

25

Figure 2.6: An example of the normal magic square of order 4. The sum of each
row, column and diagonal is 34.

for rows (where 1 ≤ j ≤ n),

xi,1 + xi,2 + ... + xi,n =
n3 + n

2

for columns (where 1 ≤ i ≤ n),

x1,1 + x2,2 + ... + xn,n =
n3 + n

2

for the main diagonal and

x1,n + x2,n−1 + ... + xn,1 =
n3 + n

2

for the minor diagonal.
The problem of finding a normal magic square of order n can be thought of as

a permutation problem. We just showed the model with n2 variables, each vari-
able with the same domain with n2 values. That is why a dual model to the above
presented model has to exist. In the dual model the variables will represent indi-
vidual numbers instead of the fields of the square. Now we will assign a field of the
square to particular number instead of assigning the number to the particular field
of the square. However, we can see immediately that the dual model will probably
not be more efficient than the original model. The definition of the dual model is
awkward and the formulation of the constraints very problematic (one could even
say it’s almost impossible). We have to express the fact that whenever the values
of a n-element subset of variables form a complete row, column or diagonal, the
variables contained in this subset must sum to the magic constant. The reader can
see immediately that this is not a good approach when we want to construct a good
and efficient model. The difference is so obvious here that we won’t demonstrate it

26

practically. We will rather present the second example where the differences between
basic and dual models are more visible.

We will model an assignment problem. A factory has n workers and n products.
There is a profit table given. The profit table contains the profits per time unit for
each possible combination of worker and product. The goal is to find an assignment
of products to workers with the maximal profit [16].

We can see that the above defined assignment problem is a permutation problem.
The most obvious model would contain a variable for every worker (we will mark
such a variable xi) with domain {1, 2, ..., n} (where the numbers from the domain
stand for individual products). An assignment xi = j means that j-th product was
assigned to the i-th worker. We can further assume that the profits are given as
a n × n table. An element pi,j of this table contains the profit made when j-th
product is assigned to i-th worker. Now the constraints. First we have to ensure
that no product can be assigned to two or more workers. This can be easily done by
constraints in the form

xi 6= xj

where 1 ≤ i < j ≤ n. The next thing to do is to express the total profit of an
assignment. We will mark the total profit Pn. The constraint would then be

Pn = p1,x1 + p2,x2 + ... + pn,xn

The entire model in SICStus Prolog can be found in the appendix under number 7
and the summary is in Figure 2.7.

Variables:
x1, x2, ..., xn

Constraints:
xi 6= xj

Pn = p1,x1 + p2,x2 + ... + pn,xn

Figure 2.7: Model Assignment basic

Now what about the dual model? The variables and their domains are the same.
The difference is in semantics. The variables now stand for products and the values
stand for workers. The assignment xi = j therefore means that j-th worker was
assigned to i-th product. We will assume the table of profits stays the same as in the
previous example (that means value pi,j still represents the profit made when j-th
product is assigned to i-th worker). The constraints will then be in the form

xi 6= xj

(where 1 ≤ i < j ≤ n) meaning that no worker can be assigned to two or more
products and

Pn = px1,1 + px2,2 + ... + pxn,n

for the value of the total profit. We can see that the dual model is almost the same
as the basic model. The only difference can be found in the semantics of the model

27

and in the constraint for the total profit. In SICStus Prolog this can be handled by
the transposition of the table of profits so the code of the dual model itself is the
same as the basic models code which can be found in the appendix under number 7.
The summary of the dual model is in Figure 2.8.

Variables:
x1, x2, ..., xn

Constraints:
xi 6= xj

Pn = px1,1 + px2,2 + ... + pxn,n

Figure 2.8: Model Assignment dual

The table of profits was in both cases generated according to the formula

pi,j = b2(sin(i)) + 2 + 5(sin(j)) + 5c

where 1 ≤ i, j ≤ n. The reader may ask why we used such a complicated formula
when there are many simpler possibilities. Firstly we don’t want the values in rows
or in columns to form monotonic sequences. If the values in rows or in columns
formed monotonic sequences, the solution of the corresponding assignment problem
probably wouldn’t be suitable for the purposes of our empirical comparison. For
example consider the table of profits generated according to the simple formula
pi,j = i + 2j. The solution of the corresponding assignment problem would probably
be in the form {x1 = 1, x2 = 2, ..., xn = n}. Such a solution is trivial. It would
be found very quickly by most of the solvers and it is practically unusable for the
comparison. Formula pi,j = b2(sin(i)) + 2 + 5(sin(j)) + 5c is basically the sum of
two simple periodic functions (in the form c.sin(x) + c). The coefficients 2 and 5
were picked so that the number in a field of the table of profits depends more on the
column than on the row.

Table 2.5 gives the comparison of the basic and dual models of the assignment
problem. The time values are in seconds and the step labeling strategy with the
left-most variable selection were used.

workers / products 7 8 9 10 11
profit 47 58 72 82 85
basic model 0.050 0.441 3.555 31.916 359.457
dual model 0.030 0.230 1.492 11.407 126.982

Table 2.5: Assignment problem - empirical comparison of the basic and dual s. Time
values are in seconds

The second (dual) model has proved to be slightly better than the basic model
in this case. It’s important to realize that the presented results depend a lot on
the table of profits. If we transposed the table (that means if we used the formula

28

pi,j = b2(sin(j)) + 2 + 5(sin(i)) + 5c), the results would be exactly opposite and
the basic model would be better than the dual model. Also if we used for example
the formula pi,j = i + j the results of both the models would be exactly the same.
The point is that the basic and the dual model of the permutation problem can have
different efficiencies. And since it is not always easy to determine which one of the
models will be better for the particular problem, it is often a good idea to try both
of them in order to identify and use the most efficient one.

2.2.2 Union of models

We have ended the previous section about dual models with the statement that we
should always try both models (basic and dual) while modeling a permutation prob-
lem in order to identify and use the most efficient one of them. However, wouldn’t
it be better to use both models together? Even if one of the models is significantly
worse than the other? When we join the two models together, they may form a very
efficient model that will use only the best properties of both participating models.

The principle is simple. Let’s have a model of the permutation problem (we will
mark it M1). M1 consists of n variables x1, x2, ..., xn and m constraints c1, c2, ..., cm.
Now let’s have a dual model of the same permutation problem marked M2. M2 has
n variables y1, y2, ..., yn and l constraints d1, d2, ..., dl. Consider a union of M1 and
M2. We will mark such a union M and call it a compound model. M will contain 2n
variables x1, x2, ..., xn, y1, y2, ..., yn with appropriate domains and m + l constraints
c1, c2, ..., cm, d1, d2, ..., dl. Such a model would still be quite inefficient. We more or
less doubled both the number of variables and constraints with a little or no gain
in the propagation power. Both models contained in M propagate their constraints
independently. We have to extend the simple union with the set of n so called chan-
neling constraints to obtain a model that is able to use the best properties of M1

and M2 at once [8]. Channeling constraints express relations between correspond-
ing variables of both models contained in M and their function is literally binding
these two models together. So an assignment of a value to a variable in one simple
model (M1 or M2) would be propagated through channeling constraints to the cor-
responding variable in the other simple model (M2 or M1) immediately. This way
we don’t even have to use both sets of variables ({x1, x2, ..., xn} and {y1, y2, ..., yn})
for labeling. We can choose just one of the sets (usually the one belonging to the
better of both the models) and channeling constraints provide the propagation of all
the assignments to the other set.

We have presented the concept of compound model as a union of the basic and
the dual models of the permutation problem. This is the easiest and also the most
frequent case. However, we can actually construct compound models from any two
different models of any problem. The only condition is the existence of channeling
constraints between the corresponding variables of both models. We will now show
an example of such a case when other models than a basic and a dual model of the
permutation problem are used.

Recall once again the setting of the Golomb ruler problem from section 2.1.1 and
consider the following two models of the Golomb ruler problem.

29

The first model contains n variables x1, x2, ..., xn with integer domains represent-
ing the marks on a ruler. There are n − 1 model symmetry breaking constraints in
the form

xi < xi+1

where 1 ≤ i < j ≤ n (we used the same symmetry breaking constraints in the first
model in section 2.1.2). The mutual inequality of individual distances between marks
is expressed by constraints in the form

(xj − xi) 6= (xl − xk)

where 1 ≤ i, j, k, l ≤ n, i < j, i ≤ k, k < l and i 6= k or j 6= l. The implementation
of such a model in SICStus Prolog can be found in the appendix under number 8
and the summary is in Figure 2.9.

Variables:
x1, x2, ..., xn

Constraints:
(xj − xi) 6= (xl − xk)
xi < xi+1

Figure 2.9: Model Golomb marks

The second model contains n(n− 1)/2 variables di,j (1 ≤ i < j ≤ n) representing
the distances between the marks on a ruler (the variable di,j represents the distance
between i-th and j-th mark). There are inequality constraints in the form

di,j 6= dk,l

(1 ≤ i, j, k, l ≤ n, i < j, i ≤ k, k < l and i 6= k or j 6= l) ensuring the distances stay
pairwise different, the variable symmetry breaking constraint in the form

d1,2 < dn−1,n

(we used the same constraint in the second model in section 2.1.2) and finally con-
straints in the form

di,k = di,j + dj,k

(where 1 ≤ i < j < k ≤ n) expressing the relations between individual distances.
This model can be found in the appendix as the program number 9. The summary
of the model is shown in Figure 2.10.

We will now try to combine the two above presented models of the Golomb ruler
problem into one. The compound model would contain both sets of constraints and
both sets of variables (even if we will choose only one set of variables for labeling).
The last thing left to do is to express the relations between the corresponding vari-
ables of both the models by channeling constraints. In this case it means addition
of n(n− 1)/2 simple constraints in the form

di,j = xj − xi

30

Variables:
d1,2, d1,3, ..., d1,n, d2,3, d2,4, ..., dn−1,n

Constraints:
di,j 6= dk,l

d1,2 < dn−1,n

di,k = di,j + dj,k

Figure 2.10: Model Golomb distances

Variables:
x1, x2, ..., xn

d1,2, d1,3, ..., d1,n, d2,3, d2,4, ..., dn−1,n

Constraints:
(xj − xi) 6= (xl − xk)
xi < xi+1 di,j 6= dk,l

d1,2 < dn−1,n

di,k = di,j + dj,k

di,j = xj − xi

Figure 2.11: Model Golomb compound

(where 1 ≤ i < j ≤ n). The complete compound model can be found in the appendix
under number 10 and its summary is in figure 2.11.

Table 2.6 shows the comparison of performance of the first simple model, the
second simple model and the compound model. The results for compound model
are presented for both the possible choices of variable sets used for labeling. The
time values are in seconds and the step labeling strategy and the left-most variable
selection were used.

marks 6 7 8 9 10
length 17 25 34 44 55

Golomb marks 0.020 0.240 3.535 56.080 -

Golomb distances 0.000 0.040 0.370 3.635 36.763
Golomb compound (variables
from the ”Golomb marks” model
used for labeling)

0.010 0.080 0.791 10.925 108.846

Golomb compound (variables
from the ”Golomb distances”
model used for labeling)

0.020 0.090 0.871 10.445 107.194

Table 2.6: Golomb ruler - empirical comparison of the two different models and their
compound model. Time values are in seconds

We can see from the comparison that the compound model has not proved to be

31

the best choice in this case. It was outperformed by the second model. That means
the constraints from the first model introduced too much overhead to the compound
model and their propagation power was not big enough to compensate this overhead
sufficiently. In the next section we will show the way how to overcome this difficulty.

Table 2.7 shows how the choice of labeling strategy influence the final performance
of the presented models.

labeling strategy step labeling enumeration bisection
variable selection left-most fail-first left-most fail-first left-most fail-first
Golomb marks,
n=8

3.535 3.585 3.545 3.565 3.495 3.535

Golomb dis-
tances, n=9

3.635 4.176 4.036 4.046 3.595 3.455

Golomb com-
pound (vari-
ables from
the ”Golomb
marks” model
used for labe-
ling), n=9

10.925 11.417 11.847 12.037 10.786 10.825

Golomb com-
pound (vari-
ables from
the ”Golomb
distances”
model used for
labeling), n=9

10.445 9.834 11.296 10.926 10.626 8.382

Table 2.7: Golomb ruler - dependency between labeling settings and the final per-
formance of a model. Time values are in seconds

We can see again there is nearly no correlation between the choice of the labeling
strategy and the performance of the model. The reader may however notice one
exception from this fact: there appears to be an apparent decrease of run time in the
case of the last model (the compound model with the second set of variables used for
labeling) and the last labeling settings configuration (the bisection labeling strategy
and the fail first variable selection). This fact is even more interesting considering
that in the case of the previous model (which is basically exactly the same model
only with a different set of variables used for labeling) this anomaly didn’t appear
and the measured values were almost the same no matter what labeling settings we
used.

We have seen the example of the compound model created from two different
models of the Golomb ruler problem. However, in rare cases it may be a good idea
to combine more than two models. Channeling constraints though must be defined
over each pair of such models so the additional gain is not often worth the expenses.
Still there may exist a problem where the combination of three or even more models

32

can outperform other techniques. Since the principle is exactly the same no matter
how many models we are using, we will not discuss unions of more models in depth
in this thesis. An example of a compound model composed of three different models
can be found for example in [11]

2.2.3 Combination of models

We have shown the concept of a compound model in the previous section. We can
further extend this concept by omitting some of the inefficient constraints of the
compound model. We know that we can use only one set of variables for labeling in
the compound model. Any changes in this set are propagated through the channeling
constraints to the second set of variables where the second set of constraints is
used to propagate these changes even further. The second set of constraints is
therefore not necessary for the model and the model will work properly without the
second set of constraints too. If the constraints from the second set are all simple
and propagating well, they will probably help to prune the search space just like
the implied constraints from section 2.1.1 did. However, since the second set of
constraints is formed by the complete model of the problem, we cannot guarantee
that all the constraints from the second model will be propagating well and will
help in the compound model too. Whenever we construct the compound model, it’s
usually a good idea to think more about individual constraints and to realize which
constraints may be difficult to propagate. We can then try to remove such constraints
from the compound model in order to improve its efficiency (given the constraints
we are trying to delete are implied by other constraints of the compound model, of
course). Note that by deleting the constraints from the compound model we are
actually approaching the implied constraints concept. We can see the compound
model with certain constraints deleted as a simple model with certain (implied)
constraints added instead.

The reader may remember the example of the compound model of the Golomb
ruler problem from the previous section. The compound model didn’t prove to be
the best choice and was outperformed by the second simple model. That means that
an addition of the constraints from the first simple model to the second simple model
meant decrease of efficiency. Let’s think about what happened. Firstly, there are
two sets of constraints expressing exactly the same things in the compound model.
The fact that the distances must be pairwise different is expressed either by binary
constraints from the second simple model (di,j 6= dk,l) or by quaternary constraints
from the first model ((xj − xi) 6= (xl − xk), in both cases 1 ≤ i, j, k, l ≤ n, i < j,
i ≤ k,k < l and i 6= k or j 6= l). One would think the binary constraints will
propagate better so we can try to delete the set of quaternary constraints out of
the compound model. As we can see from the comparison table bellow, this step
really improved the efficiency of the model. However, even with the quaternary
constraints deleted the compound model it is not efficient enough to outperform the
second simple model from the previous section. We can therefore try to delete more
constraints and see if it helps. The next candidate for deletion is the set of difference
building constraints in the form di,k = di,j + dj,k (where 1 ≤ i < j < k ≤ n).

33

When we look at the compound model implementation in the appendix (program
number 10), we can see that the set of difference building constraints is relatively
complicated and the relations expressed by these constraints are already implied
by the channeling constraints that are much easier. We cannot say for sure the
deletion of the difference building constraints will improve the models efficiency. The
difference building constraints can still be able to prune the search space sufficiently
to pay off (in spite of their rather complicated nature). Nevertheless when we try to
delete the difference building constraints, we will see the new model really performs
better without them. So the propagation power of the difference building constraints
was not big enough.

The comparison of all the models discussed in this section along with the models
from the previous section (which are closely related) is given in Table 2.8. Time
values are in seconds and the step labeling along with the left most variable selection
was used.

marks 6 7 8 9 10 11
length 17 25 34 44 55 72

Golomb marks 0.020 0.240 3.535 56.080 - -

Golomb distances 0.000 0.040 0.370 3.635 36.763 883.581
Golomb compound (vari-
ables from the ”Golomb
marks” model used for
labeling, no constraints
deleted)

0.010 0.080 0.791 10.925 108.846 -

Golomb compound (vari-
ables from the ”Golomb
marks” model used for
labeling, quaternary con-
straints deleted)

0.010 0.050 0.461 4.637 49.942 1026.086

Golomb compound (vari-
ables from the ”Golomb
marks” used for labeling,
quaternary and building
constraints deleted)

0.000 0.030 0.341 3.405 34.029 772.651

Table 2.8: Golomb ruler - empirical comparison of the two different models and their
compound model with certain constraints deleted. Time values are in seconds

The results of the comparison are more or less in accordance with what we would
expect. We have already seen that the compound model of the Golomb ruler problem
from the previous section did not outperform the second simple model with variables
for distances between marks. It was caused by too many constraints with insufficient
propagation power that were present in the compound model. The solution to this
problem would than be to delete those of the constraints that prove to be inefficient.
We tried to delete one set of such constraints (quaternary inequality constraints) and

34

it improved the model slightly. But the performance of the new model was still a bit
worse than the performance of the original simple model with variables for distances
between marks. Another potentially problematic set of constraints was then deleted
(the set of building constraints representing relations between individual distances).
This deletion also improved the performance of the model a bit and the last model
with both the above mentioned sets of constraints deleted finally outperformed the
original simple model too.

2.3 Other techniques

We have already described several modeling techniques based on addition of new
constraints into a model and a combination of more models. However, there are
many other techniques that doesn’t fit to any of the previously covered categories.
This section introduces and describes such techniques.

Section 2.3.1 is focused on global constraints. There are many types of variable
relations that are occurring frequently in various models of various problems. We can
then implement such a relation as a special constraint and find an efficient filtering
algorithm just for it. That way we can reach even higher levels of consistency (and
better propagation too) in reasonable time. The classical example is the alldifferent
constraint [20] meaning that any two variables from a given set must have different
values. Section 2.3.2 describes the concept of auxiliary variables. In section 2.1
we have seen that we can often improve a model by addition of new constraints into
it. Sometimes we can also improve the model by addition of new variables. The
additional variables should allow us to express the constraints of the model more
compactly. Constraint propagation would then be faster and more efficient and it
would outweigh the overhead introduced into the model by the additional variables.

2.3.1 Global constraints

In this section we are going to introduce the very important concept of so called global
constraints. Global constraints are mostly conjunctions of several constraints repre-
senting a certain fact that is better to be looked globally as one complex constraint
instead of many primitive ones. The widely used example is a set of inequalities
versus the alldifferent global constraint [20, 19].

Consider the CSP with three variables x1, x2, x3, with domains {1, 2}, {1, 2}
and {1, 2, 3} respectively and with three binary constraints x1 6= x2, x2 6= x3 and
x3 6= x1. The reader may remember we used similar CSP as a demonstration that arc
consistency is not strong enough to find a solution without the search in section 1.3.
If we tried to solve the CSP, the solver would probably enforce arc consistency on
the three inequality constraints and since the CSP is arc consistent already, the arc
consistency enforcing wouldn’t change any of the domains. But still we can see that
values 1 and 2 clearly cannot be assigned to variable x3 and could have been removed
from the domain of x3. So why the solver wouldn’t recognize it and wouldn’t remove
the values? The answer is simple: the solver cannot see the interactions between

35

individual constraints. It processes the constraints one after one as independent
entities. So in our example the solver would consequently process the constraints
x3 6= x1 and x3 6= x2 (which are both arc consistent so no change in domains is
needed). But the solver wouldn’t see the third constraint x1 6= x2 and its impact on
the domain of the variable x3 at the same time.

To be able to see it, the solver needs a more global view of the problem. Instead of
the three inequality constraints we can express the fact that the variables are mutu-
ally different by just one constraint (which can be thought of as a conjunction of the
inequality constraints). The only thing left to do is to find some reasonably efficient
filtering algorithm for such a global constraint. The task of finding such an algorithm
is of course problem dependent and we have to find different filtering algorithms for
different global constraints. But still, the effort spent on finding filtering algorithms
for global constraints and implementing them in constraint solvers usually pays off,
especially in cases that occur frequently in constraint modeling (such as the above
presented set of inequalities for which the global constraint named alldifferent exists
with the efficient filtering algorithm based on maximal bipartite matching that is able
to enforce generalized arc consistency [20]). For more information about alldifferent
and other global constraints see for example [4] or [21].

There are many standard global constraints with their own filtering algorithms
implemented in constraint solvers. We have already met the alldifferent global con-
straint. The cumulative or the serialized constraints are some of the other examples
of global constraints (both are used in scheduling and timetabling applications).
Since the alldifferent constraint is easy to imagine and understand, we will use it in
our practical demonstration once again.

Consider the structure called a Latin square. A Latin square of size n is an
n×n table filled with n different symbols (usually numbers) in such a way that each
symbol occurs exactly once in each row and exactly once in each column. A Latin
square is said to be normalized if the first row and the first column of such a square
are sorted in ascending order. An example of the normalized Latin square of size 4
is shown on Figure 2.12.

Figure 2.12: normalized Latin square of size 4

Now we try to model the problem of finding a Latin square of size n as a CSP.

36

We should note that the problem of finding a Latin square of size n is trivial and
can be solved in linear time. However there is a (computationally much harder)
variant of this problem when some fields of the table are already filled (see for
example [13]). Since we are interested in simplicity, we will use the simple case
(when no fields are filled) as the example. We can assume the symbols in the table
are integer numbers from 1 to n. A natural choice would be to use n2 variables
xi,j, 1 ≤ i, j ≤ n representing individual numbers in the table (more precisely, the
variable xi,j represents the number in i-th row and j-th column of the table). The
domains would than be {1, 2, ..., n} for each variable. To express that each number
occurs exactly once in each row we have to add n2(n−1)/2 binary constraints in the
form

xi,j 6= xi,k

where 1 ≤ i, j, k ≤ n, k > j. Similarly, the constraints expressing that each number
occurs exactly once in each column would be in a form

xj,i 6= xk,i

where 1 ≤ i, j, k ≤ n, k > j. Source code of the complete model in SICStus Prolog
can be found in the appendix under number 11. The sumary of the model is shown
in Figure 2.13.

Variables:
x1,1, x1,2, ..., x1,n, x2,1, ..., xn,n

Constraints:
xi,j 6= xi,k

xj,i 6= xk,i

Figure 2.13: Model Latin basic

Looking at the previous model we can find out there are altogether 2 × n2(n −
1)/2 = n2(n− 1) binary inequality constraints. Since the constraints are only telling
us the elements of the same row or column are pairwise different, we can replace the
n2(n− 1) inequality constraints with only 2n global alldifferent constraints in order
to get a more efficient model. Formally the constraints would then be in the form

alldifferent(xi,1, xi,2, ..., xi,n)

for rows and
alldifferent(x1,i, x2,i, ..., xn,i)

for columns (in both cases 1 ≤ i ≤ n). This model implemented in SICStus Prolog
can be found in the appendix under number 12 and the summary is in Figure 2.14.

We can now proceed to the comparison of both models presented in this section.
Table 2.9 summarizes the results. Time values are in seconds and labeling strategy
and variable selection settings were left to default again (step labeling and left-most
variable selection).

37

Variables:
x1,1, x1,2, ..., x1,n, x2,1, ..., xn,n

Constraints:
alldifferent(xi,1, xi,2, ..., xi,n)
alldifferent(x1,i, x2,i, ..., xn,i

Figure 2.14: Model Latin global

size 13 14 15 20 40 60 100
Latin basic 0.241 6.219 90.480 - - - -
Latin global 0.010 0.020 0.030 0.040 1.212 8.363 93.835

Table 2.9: Latin square - empirical comparison of models from section 2.3.1. Time
values are in seconds

We can see the huge difference again. Application of the set of alldifferent global
constraints instead of a handful of basic inequality constraints improved efficiency of
the model significantly. Global constraints practically allowed us to solve problems
of higher orders.

Table 2.10 gives a review of a dependence between the efficiency of the models
and the choice of labeling strategy and variable selection heuristics.

labeling strategy step labeling enumeration bisection
variable selection left-most fail-first left-most fail-first left-most fail-first
Latin basic
(n=14)

6.219 0.020 6.068 0.020 6.229 0.020

Latin global
(n=60)

8.363 12.338 8.142 12.348 8.122 15.843

Table 2.10: Latin square - dependency between labeling settings and the final per-
formance of a model. Time values are in seconds

The reader can see from the table that the basic model performs substantially
better with the fail first variable selection heuristic while the differences between
individual labeling strategies are insignificant. However, once we introduce global
constraints into the model, the situation will change dramatically and the leftmost
variable selection heuristic outperforms the fail first variable selection heuristic. One
of the possible explanations is that the propagation of constraints in the basic model
is very weak and the solver therefore has to rely more on search. The fail-first variable
selection heuristic is more complicated than the left-most variable selection heuristic
but it also usually speeds the search more. However, if we use the alldifferent global
constraints (that are propagating well), the situation will change. The search is no
longer that important and the left-most variable selection heuristic (that is simpler)
outperforms the fail-first variable selection heuristic.

38

2.3.2 Auxiliary variables

We should already know how important the form of constraints in a model is. A
model where all the constraints are short, simple and compact is usually more efficient
than a model with complicated and obscure set of constraints. It also holds that
certain types of constraints (for example arithmetic constraints, low arity constraints
etc.) propagate better than the rest. These are all reasons for us to try to construct
our models with simple and compact sets of constraints. To be able to achieve it,
we can try to add some redundant variables into the model. Such variables are often
called auxiliary variables [10].

Auxiliary variables are variables that are not necessary to model a problem and
their assigned value doesn’t matter as a solution. The reason why it is worth in-
cluding them into the model lies in the fact that additional variables can help us to
express some complicated constraints more compactly and to speed up the propa-
gation process. We will show this concept on the well known Golomb ruler problem
again.

Our first model of the Golomb ruler problem from section 2.1.1 (program number
3 in the appendix) contained n variables representing marks on the ruler. The prob-
lem with this approach is that the constraints expressing the fact that the distances
between different marks had to be pairwise different are too complicated. The reader
may remember that we used the set of quaternary constraints in the form

|xj − xi| 6= |xl − xk|

where 1 ≤ i, j, k, l ≤ n, i < j, i ≤ k, k < l and i 6= k or j 6= l. We might expect
such constraints won’t be very easy to propagate. Indeed, in section 2.2.3 when
we were investigating compound models with certain constraints deleted we showed
that the set of quaternary inequality constraints, when deleted, improved the overall
efficiency of the compound model.

What if we introduce a set of auxiliary variables representing individual distances
between the marks of the ruler? For the distance between marks xi and xj we can
introduce variable di,j. The constraints expressing the fact the distances between
different marks have to be pairwise different would than simplify to the binary con-
straints in the form

di,j 6= dk,l

(where 1 ≤ i, j, k, l ≤ n, i < j, i ≤ k, k < l and i 6= k or j 6= l). The implementation
of such a model can be found in the appendix under number 13 and the summary is
in figure 2.15.

Variables:
d1,2, d1,3, ..., d1,n, d2,3, d2,4, ..., dn−1,n

Constraints:
di,j 6= dk,l

Figure 2.15: Model Golomb auxiliary

39

The following table gives the complete comparison of both models of the Golomb
ruler problem mentioned in this section. Time values are in seconds and the step
labeling strategy along with the left most variable selection were used.

marks 4 5 6 7
length 6 11 17 25
Golomb basic 0.020 1.712 149.434 -
Golomb auxiliary 0.010 0.200 9.824 695.661

Table 2.11: Golomb ruler - empirical comparison of models from section 2.3.2. Time
values are in seconds

We can see that the simpler inequality constraints expressed through the auxil-
iary distance variables improved the model significantly. It is true that the model
improved with auxiliary variables is not as efficient as other improved models we
showed earlier (for example the model with implied constraints or the models with
symmetry breaking). But the difference between the basic model and the model with
auxiliary variables is still substantial. Also auxiliary variables can be easily combined
with other techniques presented earlier to form even more efficient models.

The next table shows the dependency between the choice of the labeling strategy
with the variable selection heuristic and the performance of the model.

labeling strategy step labeling enumeration bisection
variable selection left-most fail-first left-most fail-first left-most fail-first
Golomb basic
(n=5)

1.712 1.712 1.372 1.372 1.672 1.683

Golomb auxil-
iary (n=6)

9.824 9.894 8.943 8.983 9.583 9.664

Table 2.12: Golomb ruler - dependency between labeling settings and the final per-
formance of a model. Time values are in seconds

We can see from the table that the best option is to use the enumeration labeling
strategy. The performance on the other hand doesn’t seem to depend on the choice
of the variable selection heuristic.

40

Conclusion

In this thesis we tried to introduce the most important techniques used to improve
the final efficiency of constraint models. Let’s now summarize rules that we should
follow while modeling a problem as a CSP.

Firstly - a good and efficient model should contain as much information about the
problem as possible. The more information we are able to encode into constraints
the better chance of removing more values from domains via constraint propaga-
tion we usually have. It is however necessary that this information is expressed by
simple, consistent and good propagating constraints. We showed that the addition
of new information into an existing model can improve the efficiency of the model
dramatically. Implied constraints from section 2.1.1 were used to introduced new
information into the model. Compound models from section 2.2.2 and 2.2.3 also
introduced more information into the model and proved to be more efficient than
simple models. Symmetry breaking from section 2.1.2 is another example of how
additional information improved the efficiency of the model.

Secondly - the constraints in the model should be as simple as possible. Com-
plicated high arity constraints are not likely to propagate well. There are of course
exceptions (for example global constraints from section 2.3.1) but generally it’s a
good idea to try the simple constraints first. Auxiliary variables from section 2.3.1
allowed us to express the constraints in a more compact form and we saw that the
efficiency of the model was significantly improved

Thirdly - it is also a good idea to keep the number of search variables (variables
used for labeling) in a model as small as possible. Additional variables often slow
down the search phase because we have to do more choices and the search tree is
deeper. In this thesis we didn’t show directly what happen when we introduce new
search variables into an existing model. However, if we recall the n-queens problem
from introduction we can see that the second model (with n variables, each variable
with n possible values) performed much better than the first model (with n variables
too, but each variable with n2 possible values).

We have also showed comparison of performances of models with various labeling
settings (combinations of labeling strategy and variable selection heuristic). We have
seen that in most of the cases the choice of labeling settings didn’t matter. However,
there are cases where the differences between individual labeling settings are sub-
stantial (recall for example Table 2.10 in the section about global constraints). If we
want to identify the most successful combination of labeling strategy and variable
selection heuristic for a particular model, the best approach would probably still be

41

to try various combinations on problems of smaller sizes and pick the combination
showing the best results.

42

Bibliography

[1] Ph. Baptiste, L. Peridy, E. Pinson: A Branch and Bound to Minimize the Num-
ber of Late Jobs on a Single Machine with Release Time Constraints, European
Journal of Operational Research, 2003, p. 1–11

[2] R. Barták: Effective Modeling with Constraints. In Applications of Declarative
Programming and Knowledge Management. Springer Verlag, LNCS/LNAI 3392,
2005

[3] R. Barták: On-line guide to constraint programming,
http://kti.mff.cuni.cz/ bartak/constraints/index.html

[4] N. Beldiceanu, M. Carlsson, J.-X. Rampon: Global Constraint Catalog, Swedish
Institute of Computer Science, technical report no. T2005-08, 2005

[5] C. Bessiére, J. C. Régin: MAC and combined heuristics: two reasons to forsake
FC (and CBJ?) on hard problems, Proceedings CP’96, 1996, p. 61–75

[6] I. Bratko: Prolog Programming for Artificial Intelligence, Addison-Wesley, 1986

[7] D. Brélaz: New methods to color the vertices of a graph, Communications of
the ACM, 22, 1979, p. 251–256

[8] B. M. W. Cheng, K. M. F. Choi, J. H. M. Lee, J. C. K. Wu: Increasing constraint
propagation by redundant modeling: an experience report, Constraints 4, 1999,
p. 167–192

[9] R. Dechter: Constraint Processing, Morgan Kaufmann Publishers (Elsevier Sci-
ence), 2003

[10] M. Dincbas, H. Simonis, P. van Hentenryck: Solving the car-sequencing problem
in constraint logic programming, Y. Kodratoff (Ed.), Proceedings ECAI-88,
1988, p. 290–295

[11] I. Dotú, A. del Val, M. Cebrián: Redundant Modeling for the QuasiGroup
Completion Problem, F. Rossi (Ed.), Principles and Practice of Constraint Pro-
gramming - CP 2003, LNCS 2833, Springer, 2003, p. 288–302

[12] P. A. Geelen: Dual Viewpoint Heuristics for Binary Constraint Satisfaction
Problems, B. Neumann (Editor), Proceedings ECAI’92, 1992, p. 31–35.

43

[13] I. P. Gent, T. Walsh: CSPLib: a benchmark library for constraints, Technical
report APES-09-1999, 1999

[14] R. M. Haralick, G. L. Elliot: Increasing tree search efficiency for constraint
satisfaction problems, Artificial Intelligence, Vol.14, 1980, p. 263-313

[15] J. A. H. Hunter, J. S. Madachy: Mathematical Diversions, Dover, 1975

[16] K. Marriott, P. Stuckey: Programming with Constraints: An Introduction, The
MIT Press, 1998

[17] S. Minton, M. D. Johnston, A. B. Philips, P. Laird: Solving large-scale
constraint-satisfaction and scheduling problems using a heuristic repair method,
Proceedings National Conference on Artificial Intelligence (AAAI), 1990, p. 17-
24

[18] S. D. Prestwich, J.C. Beck: Exploiting Dominance in Three Symmetric Prob-
lems, Proceedings of the 4th International Workshop on Symmetry and Con-
straint Satisfaction Problems, 2004, p. 63–70

[19] J. F. Puget, M. Leconte: Beyond the black box: Constraints as objects, Logic
programming: Proceedings of the 1995 International Symposium, The MIT
Press, 1995, p. 513-527

[20] J. C. Régin: A filtering algorithm for constraints of difference in CSPs, Pro-
ceedings of the National Conference on Artificial Intelligence, 1994, p. 362-367

[21] J. C. Régin: Global Constraints and Filtering Algorithms, in Constraints and
Integer Programming Combined, Kluwer, 2003

[22] Programming Systems Group: SICStus Prolog User’s Manual, release 3, 5 edi-
tion, 1996.

[23] B. Smith: Modelling for Constraint Programming, CP Summer School, 2005.

[24] B. Smith: The Brélaz heuristic and optimal static orderings, Proceedings CP’99,
1999, p. 405–418

[25] B. Smith, S. A. Grant: Trying harder to fail first, Proceedings ECAI’98, 1998,
p. 249–253

[26] B. Smith, K. Stergiou, T. Walsh: Modelling the golomb ruler problem, Proceed-
ings IJCAI’99 workshop on non-binary constraints, 1999

[27] L. Sterling, E. Shapiro: The art of Prolog : advanced programming techniques,
2nd Edition, The MIT Press, 1994

[28] G. Sussman, G. Steele: CONSTRAINTS - a language for expressing almost
hierarchical descriptions, Artificial Intelligence, Vol.14, 1980, p. 1-39

44

[29] E. Tsang: Foundations of Constraint Satisfaction, Academic Press, 1993

[30] E. W. Weisstein: Dürer’s Magic Square, MathWorld - A Wolfram Web Resource,
http://mathworld.wolfram.com/DuerersMagicSquare.html

45

Appendix A

Source Codes

In this section the complete source codes of all the programs used to generate ex-
perimental results are presented. The source codes are written in SICStus Prolog
version 4.0.1 [22]. Readers unskilled with Prolog programming can find lots of useful
information about this language for example in [27] and [6]. Also the parts of code
that are more difficult to understand or that could cause misunderstandings are ex-
tra commented. The source codes within this section are ordered according to the
order of appearance in the thesis.

1. N-queens problem - basic model

This is the implementation of the first basic model from the introduction. We used
n variables representing positions of individual queens, each variable had a domain
{1, 2, ..., n2}.
:-use_module(library(clpfd)).

%main procedure used to compute the solution

n_queens_1(Solution, N):-

length(Solution, N),

Fields is N*N,

domain(Solution, 1, Fields),

get_constraints(Solution, N),

labeling([],Solution).

%for cycle over the solution

get_constraints([], _).

get_constraints([Xi|Tail], N) :-

get_constraints_head(Xi, Tail, N),

get_constraints(Tail, N).

%posts constraints to the given variable

get_constraints_head(_, [], _).

get_constraints_head(Xi,[Xj|Tail],N) :-

46

(Xi-1) mod N #\= (Xj-1) mod N, %not in the same column

(Xi-1) / N #\= (Xj-1) / N, %not in the same row

%not on the same diagonal

abs(((Xi-1)/N)-((Xj-1)/N)) #\= abs(((Xi-1)mod N)-((Xj-1)mod N)),

get_constraints_head(Xi, Tail, N).

2. N-queens problem - improved model

This is the implementation of the second model from the introduction. We used n
variables representing the number of the column the queen placed in a particular
row is located. The variables had domains {1, 2, ..., n}
:-use_module(library(clpfd)).

%main procedure used to compute the solution

n_queens_2(Solution, N):-

length(Solution, N),

domain(Solution, 1, N),

get_constraints(Solution, 1),

labeling([],Solution).

%for cycle over the solution

get_constraints([], _).

get_constraints([Xi|Tail], I) :-

J is I+1,

get_constraints_head(Xi, Tail, I, J),

get_constraints(Tail, J).

%posts constraints to the given variable

get_constraints_head(_, [], _, _).

get_constraints_head(Xi,[Xj|Tail], I, J) :-

Xi #\= Xj, %not in the same column

abs(Xi-Xj) #\= abs(I-J), %not on the same diagonal

Jn is J+1,

get_constraints_head(Xi, Tail, I, Jn).

3. Golomb ruler - basic model

This is the implementation of the basic model of the Golomb ruler problem we showed
in section 2.1.1. We used n variables representing the marks on the ruler and the
set of quaternary inequality constraints ensuring the distances between marks stayed
distinct.

:-use_module(library(clpfd)).

%main procedure used to compute the solution

47

golomb_basic(Solution, N) :-

length(Solution, N),

%domains must be finite so we must state an artificial

%upper bound on the length of the ruler

Upper_bound is N*N,

domain(Solution, 0, Upper_bound),

get_constraints_Xi(Solution, 1),

maximum(Length, Solution),

minimize(labeling([],Solution),Length).

% for each Xi (i in [1,n])

get_constraints_Xi([], _).

get_constraints_Xi([Xi|Xi_tail], I) :-

In is I+1,

get_constraints_Xj(Xi, Xi_tail, [Xi|Xi_tail], I, In),

get_constraints_Xi(Xi_tail, In).

% for each Xj (j in [i+1, n])

get_constraints_Xj(_, [], _, _, _).

get_constraints_Xj(Xi,[Xj|Xj_tail], Xk_list, I, J) :-

Jn is J+1,

get_constraints_Xk(Xi, Xj, Xk_list, I, J, I),

get_constraints_Xj(Xi, Xj_tail, Xk_list, I, Jn).

% for each Xk (k in [i, n])

get_constraints_Xk(_, _, [], _, _, _).

get_constraints_Xk(Xi,Xj,[Xk|Xk_tail], I, J, K) :-

Kn is K+1,

get_constraints_Xl(Xi, Xj, Xk, Xk_tail, I, J, K, Kn),

get_constraints_Xk(Xi, Xj, Xk_tail, I, J, Kn).

% for each Xl (l in [k+1, n])

get_constraints_Xl(_, _, _, [], _, _, _, _).

% the same distances cannot be different -> skip

get_constraints_Xl(Xi, Xj, Xi,[Xj|Tail], I, J, I, J) :-

Ln is J+1,!,

get_constraints_Xl(Xi, Xj, Xi, Tail, I, J, I, Ln).

get_constraints_Xl(Xi, Xj, Xk, [Xl|Xl_tail], I, J, K, L) :-

%post inequality constraint

abs(Xj-Xi) #\= abs(Xl-Xk),

Ln is L+1,

get_constraints_Xl(Xi, Xj, Xk, Xl_tail, I, J, K, Ln).

48

4. Golomb ruler - model with implied constraints

This is the implementation of the model of the Golomb ruler problem enhanced with
implied constraints from section 2.1.1. We used n ordered variables representing
the marks on the ruler, the set of quaternary inequality constraints ensuring the
distances between marks stayed distinct and implied constraints representing lower
and upper bounds of individual distances.

:-use_module(library(clpfd)).

%main procedure used to compute the solution

golomb_implied(Solution, N) :-

length(Solution, N),

%domains must be finite so we must state an artificial

%upper bound on the length of the ruler

Upper_bound is N*N,

Solution = [0|Solution_tail],%first mark must be zero

get_marks(0, Solution_tail, Upper_bound),%get ordered marks

maximum(Length, Solution),%get the length of the ruler

get_constraints_Xi(Solution, 1, N, Length),

minimize(labeling([],Solution),Length).

%posts constraints ensuring that the marks will be ordered

get_marks(_, [], _).

get_marks(PrevX, [Xi|Tail], Upper_bound) :-

Xi #< Upper_bound,

Xi #> PrevX,

get_marks(Xi, Tail, Upper_bound).

% for each Xi (i in [1,n])

get_constraints_Xi([], _, _, _).

get_constraints_Xi([Xi|Xi_tail],I, N, Length) :-

In is I+1,

get_constraints_Xj(Xi, Xi_tail, [Xi|Xi_tail], I, In, N, Length),

get_constraints_Xi(Xi_tail, In, N, Length).

% for each Xj (j in [i+1, n])

get_constraints_Xj(_, [], _, _, _, _, _).

get_constraints_Xj(Xi,[Xj|Xj_tail], Xk_list, I, J, N, Length) :-

Jn is J+1,

get_constraints_Xk(Xi, Xj, Xk_list, I, J, I, N, Length),

get_constraints_Xj(Xi, Xj_tail, Xk_list, I, Jn, N, Length).

% for each Xk (k in [i, n])

get_constraints_Xk(_, _, [], _, _, _, _, _).

get_constraints_Xk(Xi, Xj, [Xk|Xk_tail], I, J, K, N, Length) :-

49

Kn is K+1,

get_constraints_Xl(Xi, Xj, Xk, Xk_tail, I, J, K, Kn, N, Length),

get_constraints_Xk(Xi, Xj, Xk_tail, I, J, Kn, N, Length).

% for each Xl (l in [k+1, n])

get_constraints_Xl(_, _, _, [], _, _, _, _, _, _).

% the same distances cannot be different -> skip

get_constraints_Xl(Xi, Xj, Xi,[Xj|Tail], I, J, I, J, N, Length) :-

L is J+1,!,

get_constraints_Xl(Xi, Xj, Xi, Tail, I, J, I, L, N, Length).

get_constraints_Xl(Xi, Xj, Xk, [Xl|Xl_tail], I, J, K,L,N,Length):-

%post inequality constraint

abs(Xj-Xi) #\= abs(Xl-Xk),

%lower bound implied constraint

Lower_bound is integer(abs((J-I)*(J-I+1)/2)),

abs(Xj-Xi) #>= Lower_bound,

%upper bound implied constraint

Upper_bound_part is integer(abs((N-1-J+I)*(N-J+I)/2)),

abs(Xj-Xi) #=< Length-Upper_bound_part,

Ln is L+1,

get_constraints_Xl(Xi, Xj, Xk, Xl_tail, I, J, K, Ln, N, Length).

5. Golomb ruler - model with model symmetry broken

This is the implementation of the model of the Golomb ruler problem with model
symmetry broken from section 2.1.2. We used n variables representing the marks on
the ruler that were sorted to break the symmetry and the set of quaternary inequality
constraints ensuring the distances between marks stayed distinct.

:-use_module(library(clpfd)).

:-use_module(library(lists)).

%main procedure used to compute the solution

golomb_symmetry_1(Solution, N) :-

length(Solution, N),

%domains must be finite so we must state an artificial

%upper bound on the length of the ruler

Upper_bound is N*N,

Solution = [0|Solution_tail],%first mark must be zero

get_marks(0, Solution_tail, Upper_bound),%get ordered marks

get_constraints_Xi(Solution, 1),

last(Solution, Length),

50

minimize(labeling([],Solution),Length).

%posts constraints ensuring that the marks will be ordered

get_marks(_, [], _).

get_marks(PrevX, [Xi|Tail], Upper_bound) :-

Xi #< Upper_bound,

Xi #> PrevX,

get_marks(Xi, Tail, Upper_bound).

% for each Xi (i in [1,n])

get_constraints_Xi([], _).

get_constraints_Xi([Xi|Xi_tail], I) :-

In is I+1,

get_constraints_Xj(Xi, Xi_tail, [Xi|Xi_tail], I, In),

get_constraints_Xi(Xi_tail, In).

% for each Xj (j in [i+1, n])

get_constraints_Xj(_, [], _, _, _).

get_constraints_Xj(Xi,[Xj|Xj_tail], Xk_list, I, J) :-

Jn is J+1,

get_constraints_Xk(Xi, Xj, Xk_list, I, J, I),

get_constraints_Xj(Xi, Xj_tail, Xk_list, I, Jn).

% for each Xk (k in [i, n])

get_constraints_Xk(_, _, [], _, _, _).

get_constraints_Xk(Xi,Xj,[Xk|Xk_tail], I, J, K) :-

Kn is K+1,

get_constraints_Xl(Xi, Xj, Xk, Xk_tail, I, J, K, Kn),

get_constraints_Xk(Xi, Xj, Xk_tail, I, J, Kn).

% for each Xl (l in [k+1, n])

get_constraints_Xl(_, _, _, [], _, _, _, _).

% the same distances cannot be different -> skip

get_constraints_Xl(Xi, Xj, Xi,[Xj|Tail], I, J, I, J) :-

L is J+1,!,

get_constraints_Xl(Xi, Xj, Xi, Tail, I, J, I, L).

get_constraints_Xl(Xi, Xj, Xk, [Xl|Xl_tail], I, J, K, L) :-

%post inequality constraint

Xj-Xi #\= Xl-Xk,

Ln is L+1,

get_constraints_Xl(Xi, Xj, Xk, Xl_tail, I, J, K, Ln).

51

6. Golomb ruler - model with both symmetries broken

This is the implementation of the model of the Golomb ruler problem from section
2.1.2 where both the types of symmetry were broken. We used n variables represent-
ing the marks on the ruler that were sorted to break the model symmetry, additional
constraint to break the variable symmetry and the set of quaternary inequality con-
straints ensuring the distances between marks stayed distinct.

:-use_module(library(clpfd)).

:-use_module(library(lists)).

%main procedure used to compute the solution

golomb_symmetry_2(Solution, N) :-

length(Solution, N),

%domains must be finite so we must state an artificial

%upper bound on the length of the ruler

Upper_bound is N*N,

Solution = [0|Solution_tail],%first mark must be zero

get_marks(0, Solution_tail, Upper_bound),%get ordered marks

Solution = [X1,X2|_],

last(Solution, Xn),

Prev is N-1,

element(Prev, Solution, Xprev),

X2-X1 #< Xn - Xprev,%variable symmetry breaking constraint

get_constraints_Xi(Solution, 1),

last(Solution, Length),

minimize(labeling([],Solution),Length).

%posts constraints ensuring that the marks will be ordered

get_marks(_, [], _).

get_marks(PrevX, [Xi|Tail], Upper_bound) :-

Xi #< Upper_bound,

Xi #> PrevX,

get_marks(Xi, Tail, Upper_bound).

% for each Xi (i in [1,n])

get_constraints_Xi([], _).

get_constraints_Xi([Xi|Xi_tail], I) :-

In is I+1,

get_constraints_Xj(Xi, Xi_tail, [Xi|Xi_tail], I, In),

get_constraints_Xi(Xi_tail, In).

% for each Xj (j in [i+1, n])

get_constraints_Xj(_, [], _, _, _).

get_constraints_Xj(Xi,[Xj|Xj_tail], Xk_list, I, J) :-

Jn is J+1,

52

get_constraints_Xk(Xi, Xj, Xk_list, I, J, I),

get_constraints_Xj(Xi, Xj_tail, Xk_list, I, Jn).

% for each Xk (k in [i, n])

get_constraints_Xk(_, _, [], _, _, _).

get_constraints_Xk(Xi,Xj,[Xk|Xk_tail], I, J, K) :-

Kn is K+1,

get_constraints_Xl(Xi, Xj, Xk, Xk_tail, I, J, K, Kn),

get_constraints_Xk(Xi, Xj, Xk_tail, I, J, Kn).

% for each Xl (l in [k+1, n])

get_constraints_Xl(_, _, _, [], _, _, _, _).

% the same distances cannot be different -> skip

get_constraints_Xl(Xi, Xj, Xi,[Xj|Tail], I, J, I, J) :-

L is J+1,!,

get_constraints_Xl(Xi, Xj, Xi, Tail, I, J, I, L).

get_constraints_Xl(Xi, Xj, Xk, [Xl|Xl_tail], I, J, K, L) :-

%post inequality constraint

Xj-Xi #\= Xl-Xk,

Ln is L+1,

get_constraints_Xl(Xi, Xj, Xk, Xl_tail, I, J, K, Ln).

7. Assignment problem - the basic and the dual model

This is the implementation of the model of the assignment problem from section
2.2.1. We used n variables representing workers in the basic model and products in
the dual model. We also used basic inequality constraints ensuring mutually unique
assignments and the constraints for an expression of the total profit of an assignment.
The basic and the dual models of the assignment problem differs only in the approach
to the table of profits and the code of the model itself stays the same.

:-use_module(library(clpfd)).

:-use_module(library(lists)).

%main procedure used to compute the solution

assignment(Solution, Profit_table, N):-

length(Solution, N),

domain(Solution, 1, N),

get_constraints(Solution),

%compute the total profit of an assignment in Solution

get_profit(Solution, Profit, Profit_table),

maximize(labeling([],Solution), Profit).

%for each Xi

get_constraints([]).

53

get_constraints([Xi|Tail]) :-

get_constraints_head(Xi, Tail),

get_constraints(Tail).

%posts inequality constraints

get_constraints_head(_, []).

get_constraints_head(Xi, [Xj|Tail]):-

Xi #\= Xj, %all the values of Solution must be mutually different

get_constraints_head(Xi, Tail).

%posts the profit constraint

get_profit([], 0, _).

get_profit([Xi|Tail],Profit,[Profit_table_row|Profit_table_tail]):-

%get a profit of single worker

element(Xi, Profit_table_row, Profit_part),

get_profit(Tail, Profit_rest, Profit_table_tail),

%add a profit of single worker to the total sum

Profit #= Profit_part+Profit_rest.

8. Golomb ruler - the first model from section 2.2.2

This is the implementation of the first model of the Golomb ruler problem from
section 2.2.2. We used n variables representing marks with model symmetry breaking
constraints.

:-use_module(library(clpfd)).

:-use_module(library(lists)).

%main procedure used to compute the solution

golomb_marks(Solution, N) :-

length(Solution, N),

%domains must be finite so we must state an artificial

%upper bound on the length of the ruler

Upper_bound is N*N,

Solution = [0|Solution_tail],%first mark must be zero

get_marks(0, Solution_tail, Upper_bound),%get ordered marks

get_constraints_Xi(Solution, 1),

last(Solution, Length),

minimize(labeling([ff, step],Solution),Length).

%posts constraints ensuring that the marks will be ordered

get_marks(_, [], _).

get_marks(PrevX, [Xi|Tail], Upper_bound) :-

Xi #< Upper_bound,

Xi #> PrevX,

54

get_marks(Xi, Tail, Upper_bound).

% for each Xi (i in [1,n])

get_constraints_Xi([], _).

get_constraints_Xi([Xi|Xi_tail], I) :-

In is I+1,

get_constraints_Xj(Xi, Xi_tail, [Xi|Xi_tail], I, In),

get_constraints_Xi(Xi_tail, In).

% for each Xj (j in [i+1, n])

get_constraints_Xj(_, [], _, _, _).

get_constraints_Xj(Xi,[Xj|Xj_tail], Xk_list, I, J) :-

Jn is J+1,

get_constraints_Xk(Xi, Xj, Xk_list, I, J, I),

get_constraints_Xj(Xi, Xj_tail, Xk_list, I, Jn).

% for each Xk (k in [i, n])

get_constraints_Xk(_, _, [], _, _, _).

get_constraints_Xk(Xi,Xj,[Xk|Xk_tail], I, J, K) :-

Kn is K+1,

get_constraints_Xl(Xi, Xj, Xk, Xk_tail, I, J, K, Kn),

get_constraints_Xk(Xi, Xj, Xk_tail, I, J, Kn).

% for each Xl (l in [k+1, n])

get_constraints_Xl(_, _, _, [], _, _, _, _).

% the same distances cannot be different -> skip

get_constraints_Xl(Xi, Xj, Xi,[Xj|Tail], I, J, I, J) :-

L is J+1,!,

get_constraints_Xl(Xi, Xj, Xi, Tail, I, J, I, L).

get_constraints_Xl(Xi, Xj, Xk, [Xl|Xl_tail], I, J, K, L) :-

%post inequality constraint

Xj-Xi #\= Xl-Xk,

Ln is L+1,

get_constraints_Xl(Xi, Xj, Xk, Xl_tail, I, J, K, Ln).

9. Golomb ruler - the second model from section 2.2.2

This is the implementation of the second model of the Golomb ruler problem from
section 2.2.2. We used n(n − 1)/2 variables representing distances between marks.
The requirement that the differences are pairwise different was expressed by the
basic set of inequality constraints and the variable symmetry breaking constraint
was added.

:-use_module(library(clpfd)).

:-use_module(library(lists)).

55

%main procedure used to compute the solution

golomb_distances(Distances, N) :-

Distances_count is integer(N*(N-1)/2),

length(Distances, Distances_count),

%domains must be finite so we must state an artificial

%upper bound on the length of the ruler

Upper_bound is N*N,

domain(Distances, 1, Upper_bound),

get_inequality_constraints(Distances),

EndI is N-1,

get_building_constraints_I(1, EndI, N, Distances),

Distances = [First|_],

last(Distances, Last),

First #< Last,%variable symmetry breaking constraint

Length_index is N-1,

element(Length_index, Distances, Length),

minimize(labeling([],Distances),Length).

%for each I in (1, N-2)

get_building_constraints_I(EndI, EndI, _, _).

get_building_constraints_I(I, EndI, N, Distances) :-

I < EndI,

FirstK is I+2,

EndK is N+1,

get_building_constraints_K(FirstK, EndK ,I, N, Distances),

In is I+1,

get_building_constraints_I(In, EndI, N, Distances).

%for each K in (I+2, N)

get_building_constraints_K(EndK, EndK, _, _, _).

get_building_constraints_K(K, EndK, I, N, Distances) :-

K < EndK,

FirstJ is I+1,

EndJ is K,

get_building_constraints_J(FirstJ, EndJ, I, K, N, Distances),

Kn is K+1,

get_building_constraints_K(Kn, EndK, I, N, Distances).

%for each J in (I+1,K-1)

get_building_constraints_J(EndJ, EndJ, _, _, _, _).

get_building_constraints_J(J, EndJ, I, K, N, Distances) :-

J < EndJ,

%get indexes of distances

get_index(IndexIJ, I, J, N),

56

get_index(IndexJK, J, K, N),

get_index(IndexIK, I, K, N),

%get distances

element(IndexIJ, Distances, Dij),

element(IndexJK, Distances, Djk),

element(IndexIK, Distances, Dik),

%post constraint

Dik #= Dij+Djk,

Jn is J+1,

get_building_constraints_J(Jn, EndJ, I, K, N, Distances).

%help procedure computing index of the distance

get_index(Index, I, J, N) :-

Index is integer(N*(I-1) - (I*(I+1)/2) + J).

%for each distance

get_inequality_constraints([]).

get_inequality_constraints([Head|Tail]) :-

get_inequality_constraints_head(Head, Tail),

get_inequality_constraints(Tail).

%posts inequality constraints to a given distance

get_inequality_constraints_head(_, []).

get_inequality_constraints_head(DistanceI, [DistanceJ|Tail]) :-

DistanceI #\= DistanceJ, %distances are distinct

get_inequality_constraints_head(DistanceI, Tail).

10. Golomb ruler - the compound model

This is the implementation of the compound model of the Golomb ruler problem
from section 2.2.2. We used constraints from both the models presented earlier,
set of channeling constraints to bind the two models together and only one set of
variables for labeling.

:-use_module(library(clpfd)).

:-use_module(library(lists)).

%main procedure used to compute the solution

golomb_compound(Solution, Distances, N) :-

%set lengths

length(Solution, N),

Distances_count is integer(N*(N-1)/2),

length(Distances, Distances_count),

%set domains

57

%domains must be finite so we must state an artificial

%upper bound on the length of the ruler

Upper_bound is N*N,

Solution = [0|Solution_tail],%first mark must be zero

get_marks(0, Solution_tail, Upper_bound),%get ordered marks

domain(Distances, 1, Upper_bound),

%post constraints

Distances = [First|_],

last(Distances, Last),

First #< Last,%variable symmetry breaking constraint

get_constraints_Xi(Solution, 1),

get_inequality_constraints(Distances),

EndI is N-1,

get_building_constraints_I(1, EndI, N, Distances),

get_channeling_constraints(Solution, Distances),

%labeling according to the first model

last(Solution, Length),

minimize(labeling([],Solution),Length).

%labeling according to the second model

%Length_index is N-1,

%element(Length_index, Distances, Length),

%minimize(labeling([],Distances),Length).

%%% FIRST MODEL %%%

%posts constraints ensuring that the marks will be ordered

get_marks(_, [], _).

get_marks(PrevX, [Xi|Tail], Upper_bound) :-

Xi #< Upper_bound,

Xi #> PrevX,

get_marks(Xi, Tail, Upper_bound).

% for each Xi (i in [1,n])

get_constraints_Xi([], _).

get_constraints_Xi([Xi|Xi_tail], I) :-

In is I+1,

get_constraints_Xj(Xi, Xi_tail, [Xi|Xi_tail], I, In),

get_constraints_Xi(Xi_tail, In).

% for each Xj (j in [i+1, n])

get_constraints_Xj(_, [], _, _, _).

get_constraints_Xj(Xi,[Xj|Xj_tail], Xk_list, I, J) :-

Jn is J+1,

58

get_constraints_Xk(Xi, Xj, Xk_list, I, J, I),

get_constraints_Xj(Xi, Xj_tail, Xk_list, I, Jn).

% for each Xk (k in [i, n])

get_constraints_Xk(_, _, [], _, _, _).

get_constraints_Xk(Xi,Xj,[Xk|Xk_tail], I, J, K) :-

Kn is K+1,

get_constraints_Xl(Xi, Xj, Xk, Xk_tail, I, J, K, Kn),

get_constraints_Xk(Xi, Xj, Xk_tail, I, J, Kn).

% for each Xl (l in [k+1, n])

get_constraints_Xl(_, _, _, [], _, _, _, _).

% the same distances cannot be different -> skip

get_constraints_Xl(Xi, Xj, Xi,[Xj|Tail], I, J, I, J) :-

L is J+1,!,

get_constraints_Xl(Xi, Xj, Xi, Tail, I, J, I, L).

get_constraints_Xl(Xi, Xj, Xk, [Xl|Xl_tail], I, J, K, L) :-

%post inequality constraint

Xj-Xi #\= Xl-Xk,

Ln is L+1,

get_constraints_Xl(Xi, Xj, Xk, Xl_tail, I, J, K, Ln).

%%% SECOND MODEL %%%

%for each I in (1, N-2)

get_building_constraints_I(EndI, EndI, _, _).

get_building_constraints_I(I, EndI, N, Distances) :-

I < EndI,

FirstK is I+2,

EndK is N+1,

get_building_constraints_K(FirstK, EndK ,I, N, Distances),

In is I+1,

get_building_constraints_I(In, EndI, N, Distances).

%for each K in (I+2, N)

get_building_constraints_K(EndK, EndK, _, _, _).

get_building_constraints_K(K, EndK, I, N, Distances) :-

K < EndK,

FirstJ is I+1,

EndJ is K,

get_building_constraints_J(FirstJ, EndJ, I, K, N, Distances),

Kn is K+1,

get_building_constraints_K(Kn, EndK, I, N, Distances).

%for each J in (I+1,K-1)

get_building_constraints_J(EndJ, EndJ, _, _, _, _).

59

get_building_constraints_J(J, EndJ, I, K, N, Distances) :-

J < EndJ,

%get indexes of distances

get_index(IndexIJ, I, J, N),

get_index(IndexJK, J, K, N),

get_index(IndexIK, I, K, N),

%get distances

element(IndexIJ, Distances, Dij),

element(IndexJK, Distances, Djk),

element(IndexIK, Distances, Dik),

%post constraint

Dik #= Dij+Djk,

Jn is J+1,

get_building_constraints_J(Jn, EndJ, I, K, N, Distances).

%help procedure computing index of the distance

get_index(Index, I, J, N) :-

Index is integer(N*(I-1) - (I*(I+1)/2) + J).

%for each distance

get_inequality_constraints([]).

get_inequality_constraints([Head|Tail]) :-

get_inequality_constraints_head(Head, Tail),

get_inequality_constraints(Tail).

%posts inequality constraints to a given distance

get_inequality_constraints_head(_, []).

get_inequality_constraints_head(DistanceI, [DistanceJ|Tail]) :-

DistanceI #\= DistanceJ, %distances are distinct

get_inequality_constraints_head(DistanceI, Tail).

%%% CHANNELING CONSTRAINTS %%%

%posts channeling constraints

get_channeling_constraints([], _).

get_channeling_constraints([Xi|Tail], Distances) :-

get_channeling_constraints_head(Xi, Tail, Distances, Dist_rest),

get_channeling_constraints(Tail, Dist_rest).

%posts channeling constraints for a given initial mark

get_channeling_constraints_head(_, [], Dist_tail, Dist_tail).

get_channeling_constraints_head(Xi,[Xj|Tail],[Dij|Dist_tail],Dist_rest):-

Dij #= Xj-Xi,

get_channeling_constraints_head(Xi, Tail, Dist_tail, Dist_rest).

60

11. Latin square - the basic model

This is the implementation of the basic model of the problem of finding a latin
square of size n from section 2.3.1. We used n2 variables representing the fields of
the square and basic inequality constraints representing the fact that each number
occurs exactly once in each row and exactly once in each column.

:-use_module(library(clpfd)).

:-use_module(library(lists)).

%main procedure used to compute the solution

latin_basic(Solution, N):-

length(Solution, N),

get_rows(Solution, N),

get_constraints_rows(Solution),

get_constraints_columns(Solution, N),

flatten(Solution, Solution_flattened),

labeling([], Solution_flattened).

%creates the matrix

get_rows([], _).

get_rows([Row|Tail], N) :-

length(Row, N),

domain(Row, 1, N),

get_rows(Tail, N).

%for each row

get_constraints_rows([]).

get_constraints_rows([Row|Tail]) :-

get_constraints_one_row(Row),

get_constraints_rows(Tail).

%posts inequality constraints to given row

get_constraints_one_row([]).

get_constraints_one_row([X|Tail]) :-

get_constraints_one_row_head(X, Tail),

get_constraints_one_row(Tail).

%posts inequality constraints to given variable

get_constraints_one_row_head(_, []).

get_constraints_one_row_head(X, [Y|Tail]) :-

X #\= Y,%post constraint

get_constraints_one_row_head(X, Tail).

%for i from n to 1

get_constraints_columns(_, 0).

61

get_constraints_columns(Solution,I):-

get_column(Column, Solution, I),

get_constraints_one_column(Column),

In is I-1,

get_constraints_columns(Solution, In).

%separates one column from the matrix

get_column([], [], _).

get_column([X|Rest], [Row|Tail], I) :-

nth1(I, Row, X),

get_column(Rest, Tail, I).

%posts inequality constraints to given column

get_constraints_one_column([]).

get_constraints_one_column([X|Tail]) :-

get_constraints_one_column_head(X, Tail),

get_constraints_one_column(Tail).

%posts inequality constraints to given variable

get_constraints_one_column_head(_, []).

get_constraints_one_column_head(X, [Y|Tail]) :-

X #\= Y,%post constraint

get_constraints_one_column_head(X, Tail).

%flattens a two dimensional array to a one dimensional array

flatten([], []).

flatten([Row|Tail], Result) :-

append(Row, Result_old, Result),

flatten(Tail, Result_old).

12. Latin square - the model with global constraints

This is the implementation of the second model of the problem of finding a latin
square of size n from section 2.3.1. We used n2 variables representing the fields of
the square. The basic inequality constraints representing the fact that each number
occurs exactly once in each row and exactly once in each column were replaced by
the set of alldifferent global constraints.

:-use_module(library(clpfd)).

:-use_module(library(lists)).

%main procedure used to compute the solution

latin_global(Solution, N):-

length(Solution, N),

get_rows(Solution, N),

62

get_constraints_rows(Solution),

get_constraints_columns(Solution, N),

flatten(Solution, Solution_flattened),

labeling([], Solution_flattened).

%creates the matrix

get_rows([], _).

get_rows([Row|Tail], N) :-

length(Row, N),

domain(Row, 1, N),

get_rows(Tail, N).

%posts constraints for rows

get_constraints_rows([]).

get_constraints_rows([Row|Tail]) :-

all_distinct(Row),

get_constraints_rows(Tail).

%posts constraints for columns

get_constraints_columns(_, 0).

get_constraints_columns(Solution,I):-

get_column(Column, Solution, I),

all_distinct(Column),

In is I-1,

get_constraints_columns(Solution, In).

%separates one column from the matrix

get_column([], [], _).

get_column([X|Rest], [Row|Tail], I) :-

nth1(I, Row, X),

get_column(Rest, Tail, I).

%flattens a two dimensional array to a one dimensional array

flatten([], []).

flatten([Row|Tail], Result) :-

append(Row, Result_old, Result),

flatten(Tail, Result_old).

13. Golomb ruler - the model with auxiliary variables

This is the implementation of the second model of the Golomb ruler problem from
section 2.3.2. We used n variables representing marks on the ruler and n(n − 1)/2
auxiliary variables representing individual distances between marks.

:-use_module(library(clpfd)).

63

%main procedure used to compute the solution

golomb_auxiliary(Solution, N) :-

length(Solution, N),

%domains must be finite so we must state an artificial

%upper bound on the length of the ruler

Upper_bound is N*N,

domain(Solution, 0, Upper_bound),

get_distances(Solution, Distances),%get auxiliary variables

get_constraints(Distances),

maximum(Length, Solution),

minimize(labeling([ff, step],Solution),Length).

%for each solution

get_distances([], []).

get_distances([Head|Tail], Distances) :-

get_distances_head(Head, Tail, Distances_head),

append(Distances_head, Distances_tail, Distances),

get_distances(Tail, Distances_tail).

%posts constraints between marks and distances

get_distances_head(_, [], []).

get_distances_head(Xi,[Xj|Tail],[Distance|Distances]) :-

Distance #= abs(Xj-Xi),

get_distances_head(Xi, Tail, Distances).

%for each distance

get_constraints([]).

get_constraints([Head|Tail]) :-

get_constraints_head(Head, Tail),

get_constraints(Tail).

%posts inequality constraints (to given distance)

get_constraints_head(_, []).

get_constraints_head(DistanceI,[DistanceJ|Tail]) :-

DistanceI #\= DistanceJ, %distances are distinct

get_constraints_head(DistanceI, Tail).

64

