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Introduction

Throughout history, sums of squares were often in the focus of mathematicians.
For number fields, the main question was resolved by Siegel [Si1] in 1921, when
he proved Hilbert’s conjecture that in every number field, every totally positive
number can be represented as the sum of four square elements of the field.

For rings of integers in number fields, we have the well-known result by La-
grange (1770) that every positive rational integer is the sum of four squares. The
fact that all totally positive integers can be represented as the sum of squares was
later shown to be quite exceptional. While Maaß [Ma] showed that it is also true
for Q(

√
5), Siegel [Si2] proved that Q and Q(

√
5) are the only totally positive

number fields where this can hold.

The focus of this thesis is on quadratic fields Q(
√

D) and their totally positive
integers O+. In 1973, Peters [Pet] proved that the Pythagoras number of rings of
integers R in quadratic fields is at most 5, meaning by definition that an element
of R is the sum of any number of squares in R if and only if it is the sum of
5 squares in R. For D ≤ 7, the Pythagoras number is even smaller, e.g. 3 for
D ∈ {2, 3, 5}. Summary of these result can be found in [KRS, Sec. 3], where
the authors also study a similar question in biquadratic fields. Considering the
simplest cubic fields, Tinková [Ti] showed Pythagoras number to be often 6.

However, as we mentioned above, in quadratic fields, all elements of O+ are
sums of squares only for D = 5. The natural continuation is further question
when all elements of mO+ (i.e. all m-multiples of totally positive integers) can
be represented as the sum of squares for a fixed positive rational integer m.
Recently, Kala and Yatsyna [KY] proved that every element of 2O+ is the sum
of squares if and only if D ∈ {2, 3, 5}. In the general case mO+, they obtained
the following theorem, which gives necessary and sufficient bounds for this to
happen.

Theorem 1. [KY, Theorem 4] Let K = Q(
√

D) with D ≥ 2 squarefree. Let
κ = 1 if D ≡ 1 (mod 4) and κ = 2 if D ≡ 2, 3 (mod 4).

a) If m < κ
√

D
4 , then not all elements of mO+ are represented as the sum of

squares in O.

b) If m ≥ D
2 , then all elements of κmO+ are sums of five squares in O.

c) If m is odd and D ≡ 2, 3 (mod 4), then there exist elements of mO+ that
are not sums of squares in O.

This thesis improves these results for general m. In Chapter 2, the main goal
is to further restrict the possibilities for D in terms of m, which results in the
following theorem:
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Theorem 2. Let K = Q(
√

D) with D ≥ 2 squarefree and m positive integer. If√
D lies in one of the following intervals, then not all elements of mO+ can be

represented as the sum of squares:

(a)
[︂

m
2 + 4, ∞

)︂
,
[︂

m
2i

+ i
√

40, m
2(i−1) − (i − 1)

√
70
]︂

for integer i > 1 and D ≡ 2, 3
(mod 4),

(b)
[︂

m
2 + 8, ∞

)︂
,
[︂

m
2i

+ 2i
√

40, m
2(i−1) − 2(i − 1)

√
70
]︂

for integer i > 1, D ≡ 1
(mod 4) and even m,

(c) [m + 4, ∞),
[︂

m
2i+1 + (4i + 2)

√
40, m

2i−1 − (4i − 2)
√

70
]︂
for integer i > 0, D ≡

1 (mod 4) and odd m.

It should be noted that for fixed m, only finitely many of these intervals
are non-empty (for further details, see Chapter 2). This not only improves the
necessary upper bounds given by Theorem 1 but also gives better insight into the
overall structure of the problem.

At the beginning of Chapter 3, we present a proof of Theorem 7 by Peters,
which will prove useful in Chapters 3, 4 and 5. These, on the other hand, focus
on proving that for specific fields, all elements of mO+ are sums of squares in O.
For example, Theorem 9 gives a detailed proof that all elements of 4O+ are sums
of squares if and only if D ∈ {2, 3, 5, 6, 7, 10, 11, 13}.

Conversely, if D is of the form of t2 − 1 or (2t + 1)2 − 4, Theorems 10 and
11 provide a full characterization of all m that satisfy the given condition. One
could give similar results for D in other quadratic families.

In Chapter 5, we provide a general algorithm that completely determines all of
these fields satisfying this property for arbitrary m. The algorithm uses the struc-
ture of indecomposable elements of O+ and, for fixed m and D, it proves the state-
ment or finds a counterexample with time complexity O(

√
D(log(D))2). The time

complexity for finding all such D for a fixed m turns out to be O(m2(log(m))3).
An implementation of this algorithm is available at https://github.com/ras
kama/number-theory/tree/main/quadratic. Specific results computed for
m ≤ 5000 and generated graphs can be found at https://www2.karlin.mff.cu
ni.cz/˜raskam/research/quad/.

Results in Chapters 2, 4, 5 are original results of the author which are currently
submitted [Ra].
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1. Basic definitions and facts

1.1 Quadratic fields

Throughout the work, D ≥ 2 will denote a squarefree rational integer.
We will work with real quadratic fields K = Q(

√
D) = {a + b

√
D; a, b ∈ Q}.

An element α ∈ K is said to be integral (over Z) if it is a root of a monic
polynomial over Z. All integral elements of K form the ring of integers denoted
by OK or simply O. For quadratic fields, it is well known that the basis of O is
{1, ωD}, where ωD =

√
D if D ≡ 2, 3 (mod 4) and ωD = (1 +

√
D)/2 if D ≡ 1

(mod 4).

An algebraic integer α = x + y
√

D ∈ O is totally positive if α > 0 and α′ > 0,
where α′ = x − y

√
D is the Galois conjugate of α. We denote by O+ the set of

all totally positive algebraic integers.

1.2 Indecomposable elements

The totally positive integers O+ can be viewed as an additive semigroup. In
Chapter 4, the notion of indecomposable elements in this semigroup will be useful.
They are by definition such elements α ∈ O+ that cannot be written as sum of
two other elements α = β + γ and β, γ ∈ O+. It is clear that indecomposable
elements generate this whole semigroup.

Indecomposable elements in quadratic cases are closely tied to the continued
fractions. The continued fractions of quadratic integers, their recurrence relations
and structure were studied by Perron [Pe]. The structure of indecomposable ele-
ments was later described by Dress and Scharlau [DS]. In the following paragraph,
we state these well-known facts, adopting the notation used by [HK].

Denote ωD = [u0, u1, . . . , us] the continued fraction of ωD and pi/qi its con-
vergents. The sequences (pi) and (qi) then satisfy the recurrence relation

Xi+2 = ui+2Xi+1 + Xi for i ≥ −1 (1.1)

with the initial conditions q−1 = 0, p−1 = q0 = 1 and p0 = u0 [Pe, §1]. Further,
denote αi = pi − qiω

′
D (where ω′

D = (1 −
√

D)/2 if D ≡ 1 (mod 4) and −
√

D
otherwise), αi,r = αi + rαi+1 and let ε > 1 be the fundamental unit of O. Then
the following facts are true (see e.g. [DS]):

• The indecomposable elements in O+ are exactly αi,r with odd i ≥ −1 and
0 ≤ r ≤ ui+2 − 1, together with their conjugates.

• The sequence (αi) satisfies the recurrence relation (1.1).
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• The equality αi,ui+2 = αi+2,0 holds.

• The fundamental unit satisfies ε = αs−1 and αi+s = εαi for all i ≥ −1.

• For the smallest totally positive unit ε+ > 1, we have ε+ = ε if s is even
and ε+ = ε2 = α2s−1 if s is odd.

Example. Consider D = 6 with continued fraction
√

6 = [2, 2, 4], therefore s = 2.
Using the recurrence relations above, we get the following values.

i −1 0 1 2 3 4
pi 1 2 5 22 49 218
qi 0 1 2 9 20 89
αi 1 2 +

√
6 5 + 2

√
6 22 + 9

√
6 49 + 20

√
6 218 + 89

√
6

In this case, we get exactly two indecomposables for each odd i, since always
ui+2 = 2. For i = −1 we get α−1,0 = 1, α−1,1 = 3 +

√
6, for i = 1 we have

α1,0 = 5 + 2
√

6, α1,1 = 27 + 11
√

6, etc.

It can be seen that ε = α1 = 5 + 2
√

6 is indeed the smallest totally positive
unit and, for example, εα2 = (5 + 2

√
6)(22 + 9

√
6) = 218 + 89

√
6 = α4.

1.3 Quadratic forms

We define an n-ary quadratic form f over a ring R as a degree 2 homogeneous
polynomial f(x1, . . . , xn) = ∑︁

1≤i≤j≤n aijxixj where n ∈ Z≥1, aij ∈ R.

A quadratic form f can be associated with uniquely determined symmetric
matrix A such that xT Ax = f for x = (x1, . . . , xn)T . Specifically,

A =

⎛⎜⎜⎜⎜⎝
a11

a12
2 . . .

a12
2 a22 . . .
... . . .

a1n

2 ann

⎞⎟⎟⎟⎟⎠ .

For binary quadratic form f(x1, x2) = ax2
1 + bx1x2 + cx2

2 we define its deter-
minant D as D = ac − b2

4 .

We say that a quadratic form f represents a number N over R if there exist
x1, . . . , xn ∈ R such that f(x1, . . . , xn) = N .

We say that a quadratic form f(x1, . . . , xn) represents another quadratic form
g(y1, . . . , ym) if there exists coefficients tij ∈ R, 1 ≤ i ≤ n, 1 ≤ j ≤ m such that
f(∑︁m

j=1 t1jyj, . . . ,
∑︁m

j=1 tnjyj) = g(y1, . . . , yn). If we denote T = (tij) ∈ Rn×m and
A, resp. B, is the matrix associated with f , resp. g, then this transformation
can be written as T T AT = B.
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An easy consequence is that if f represents g and g represents some x ∈ R,
then f represents x as well.
Example. The ternary quadratic form x2

1+x2
2+3x2

3 represents the binary quadratic
form 5y2

1 + 4y1y2 + 7y2
2 through substitution x1 = y1 + 2y2, x2 = 2y1 and x3 = y2.

Using matrices, this can be written as

(︄
1 2 0
2 0 1

)︄⎛⎜⎝1 0 0
0 1 0
0 0 3

⎞⎟⎠
⎛⎜⎝1 2

2 0
0 1

⎞⎟⎠ =
(︄

5 2
2 7

)︄
.

Example. Another useful observation is that our problem of representation of
elements by the sum of squares can be reformulated using quadratic forms. Since
the Pythagoras number of quadratic rings of integers is at most 5 (the proof
by Peters will be shown in Chapter 3), we are interested in which numbers are
represented by the quadratic form x2

1 + x2
2 + x2

3 + x2
4 + x2

5 over Q(
√

D).
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2. Bounds on m and D

If we look at all elements of the form x + k
√

D for some fixed k, there exists
minimal x = 1 + ⌊k

√
D⌋ for which the element is still totally positive. As we are

interested in sums of squares and ∑︁(ai + bi

√
D)2 = ∑︁(a2

i + Db2
i ) + ∑︁ 2aibi

√
D,

it is therefore useful to study the minimum of ∑︁ a2
i + b2

i D for some fixed value
of k

2 = ∑︁
aibi. If this minimum is larger than 1 + ⌊k

√
D⌋, we obtain a totally

positive element which can’t be represented as the sum of squares.

These ideas will be properly formulated in the proofs later. We will also see
that we can impose on ai, bi further restrictions that they are non-negative and
sometimes congruent modulo 2. As can be seen in the following lemmata, this
minimization question can be more easily answered if we know how large is D
in comparison to m. To simplify our future formulations, it is convenient to
introduce the following sets of intervals depending on m:

(a) It(m) =

⎧⎨⎩
[︂

m2

t(t+1) ,
m2

(t−1)t

]︂
if t > 1[︂

m2

2 , ∞
)︂

if t = 1

(b) Jt(m) =

⎧⎨⎩
[︂

m2

t(t+2) ,
m2

(t−2)t

]︂
if t > 2[︂

m2

t(t+2) , ∞
)︂

if t ∈ {1, 2}

Here, m and t are positive rational integers and we will use just It, Jt if the
value of m is clear from the context. It should be also noted that ⋃︁t≥1 It(m) =⋃︁

t≥1 J2t(m) = ⋃︁
t≥1 J2t−1(m) = (0, ∞) for arbitrary fixed m.

Lemma 3. Let ai, bi, 1 ≤ i ≤ n be non-negative integers satisfying ∑︁n
i=1 aibi = m

for a fixed positive integer m. Let D be a real number and t a positive integer
such that D ∈ It = It(m). Then

n∑︂
i=1

a2
i + Db2

i ≥ m2

t
+ tD.

Proof. Let k = ∑︁
b2

i . By Cauchy-Schwarz inequality

∑︂
a2

i ≥ (∑︁ aibi)2∑︁
b2

i

= m2

k
.

Now ∑︁
a2

i +Db2
i ≥ m2

k
+kD, so it is enough to prove m2

k
+kD ≥ m2

t
+tD, which

is equivalent to (m2 − tkD)(t − k) ≥ 0. This inequality holds by our assumption
on D – since Dt(t − 1) ≤ m2 ≤ Dt(t + 1), both factors always have the same
sign.

In other words, the function m2

x
+xD attains its minimum over positive integers

at x = t. The value 2m
√

D, the minimum of this function over positive reals,
turns out to be too weak in the context of the following proofs.
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For the case of equality, one only needs the equality in the Cauchy-Schwarz
inequality (if and only if ai = rbi for some fixed r) and ∑︁ b2

i = t. Together they
imply rt = ∑︁

rb2
i = ∑︁

aibi = m, so r = m
t
. Since ai = rbi is integer, t | bim.

Using t
∑︁

b2
i = t2 | b2

i m
2, we get that t must divide m2 and it can be easily seen

that this condition is also sufficient for the existence of suitable ai, bi. As an
example, if m is divisible by t, the case of equality can be achieved for all D (one
simply uses ai = m

t
, bi = 1 for i ≤ t).

We will also need a version of the previous lemma with an extra condition on
the parity of ai, bi. Then the inequalities can be refined in the following way:

Lemma 4. Let ai ≡ bi (mod 2), 1 ≤ i ≤ n be non-negative integers satisfying∑︁n
i=1 aibi = m for a fixed positive integer m. Let D be a real number and t ≡ m

(mod 2) a positive integer such that D ∈ Jt = Jt(m). Then
n∑︂

i=1
a2

i + Db2
i ≥ m2

t
+ tD.

Proof. Let k = ∑︁
b2

i . The additional condition implies m = ∑︁
aibi ≡ ∑︁

b2
i = k

(mod 2). In the same fashion as in the proof of the previous lemma, it is sufficient
to look at the minimum of the function f(x) = m2

x
+ xD over positive integers

congruent to m modulo 2. We already know the minimum over all positive
integers is equal to f(t) if and only if D ∈ It. If t ≡ m (mod 2) we are almost
done since It ⊂ Jt. In the case t ̸≡ m (mod 2), the minimum of this function
over positive integers congruent to m modulo 2 must be either f(t−1) or f(t+1)
since this function has only one local minimum over positive reals. It can be
easily seen that f(t − 1) ≤ f(t + 1) if and only if D ≥ m2

(t−1)(t+1) , which concludes
the proof.

Given the conditions of the first lemma, if D ≥ m2

2 , then ∑︁ a2
i +Db2

i ≥ m2+D.
If we add the parity condition, the minimum is m2 + D for D ≥ m2

3 and odd m,
resp. m2

2 + 2D for D ≥ m2

8 and even m. Even though we won’t use these special
cases explicitly, they will give rise to the general necessary bounds for D in terms
of m.

Both of these lemmata can be utilized to greatly restrict possible values of
D for which all elements of mO+ are represented as the sum of squares in O.
For fixed k, one could simply consider the smallest totally positive element α of
the form a + k

√
D and look when mα can be represented as the sum of squares.

Combining these results for all possible k and It, Jt gives rise to the following
proposition.

Proposition 5. Let K = Q(
√

D) with D ≥ 2 squarefree and a positive integer
m.

(a) If D ≡ 2, 3 (mod 4), t, k ∈ Z>0, D ≥ m and

√
D ∈

[︄
mk

2t
+

√
m√
t

,
mk

2(t − 1) −
√

m√
t − 1

]︄
,
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then not all elements of mO+ are represented as the sum of squares in O.
This interval is non-empty only for

m ≥
4t (t − 1)

(︂
2t − 1 + 2

√︂
t(t − 1)

)︂
k2 .

(b) If D ≡ 1 (mod 4), t, k ∈ Z>0, t ≡ mk (mod 2), D ≥ 4m and

√
D ∈

[︄
mk

t
+ 2

√
m√
t

,
mk

t − 2 − 2
√

m√
t − 2

]︄
,

then not all elements of mO+ are represented as the sum of squares in O.
This interval is non-empty only for

m ≥
t (t − 2)

(︂
2t − 2 + 2

√︂
t(t − 2)

)︂
k2 .

For t = 1 if D ≡ 2, 3 (mod 4), resp. t ∈ {1, 2} if D ≡ 1 (mod 4), we define the
right bound of the intervals to be ∞ and they are therefore always non-empty.

Proof. Let’s start with the case D ≡ 2, 3 (mod 4).

For an arbitrary positive integer k, consider α =
⌊︂
k
√

D
⌋︂

+ 1 + k
√

D and
suppose mα = ∑︁(αi)2 for some αi = ai +

√
Dbi ∈ O. Without loss of generality,

we can choose ai ≥ 0 for all i and bi ≥ 0 if ai = 0. For the sake of contradiction,
suppose there exists some i such that bi < 0 and ai > 0. We then have mα′ ≥
(α′

i)2 = a2
i + b2

i D + 2ai(−bi)
√

D ≥ 1 + D + 2
√

D ≥ m for D ≥ m, which is
impossible because α′ < 1. Therefore, we can assume bi ≥ 0 for all i.

If we compare the irrational parts in the expression of mα, we get mk =
2∑︁ aibi. The choice of k = 1 immediately eliminates all odd m, so we can consider
only even m. If we also compare the rational parts, we can apply Lemma 3 to
get

mk
√

D + m > m(
⌊︂
k
√

D
⌋︂

+ 1) =
∑︂

a2
i + b2

i D ≥ m2k2

4t
+ tD,

for D ∈ It

(︂
mk
2

)︂
. This is impossible if

√
D ≥ mk

2t
+

√
m√
t

or if
√

D ≤ mk
2t

−
√

m√
t
.

Combining these constraints for D ∈ It

(︂
mk
2

)︂
and D ∈ It−1

(︂
mk
2

)︂
, we get that if

√
D ∈

[︄
mk

2t
+

√
m√
t

,
mk

2(t − 1) −
√

m√
t − 1

]︄
,

mα can not be represented as the sum of squares. For this interval to be non-
empty, inequalities

mk

2t
+

√
m√
t

≤ mk

2
√︂

(t − 1)t
≤ mk

2(t − 1) −
√

m√
t − 1

9



must hold, which happens for m ≥
4t(t−1)

(︂
2t−1+2

√
t(t−1)

)︂
k2 . The above interval is

not well-defined for t = 1, for which we immediately get the right bound to be
∞ just from considering a single inequality for D ∈ I1

(︂
mk
2

)︂
.

Now let’s look at the case D ≡ 1 (mod 4).

This time α =
⌊︂

k
√

D−k
2

⌋︂
+ 1 + k+k

√
D

2 and again mα = ∑︁
i(αi)2. However, this

time αi = ai

2 + bi

√
D

2 with ai ≡ bi (mod 2). We can again assume ai ≥ 0 and
bi ≥ 0 since 1+D

4 +
√

D
2 > m for D ≥ 4m. By comparing irrational parts, we get∑︁

aibi = mk. Analogously, comparing rational parts and using Lemma 4, we get

mk
√

D

2 + m > m

(︄⌊︄
k
√

D − k

2

⌋︄
+ 1 + k

2

)︄
=
∑︂ a2

i + b2
i D

4 ≥ m2k2

4t
+ tD

4

for D ∈ Jt(mk), where t ≡ m (mod 2). The rest of the proof is identical, except
this time we obtain intervals[︄

mk

t
+ 2

√
m√
t

,
mk

t − 2 − 2
√

m√
t − 2

]︄
,

which are non-empty for m ≥ t(t−2)(2t−2+2
√

t(t−2)
k2 . Again, cases t = 1 and t = 2

have to be considered separately.

The proof of Proposition 5 has a similar structure as the one used by [KY]
to prove that if D > 4m2 for D ≡ 2, 3 (mod 4), resp. D > 16m2 for D ≡ 1
(mod 4), then not all elements of mO+ are sums of squares. Proposition 5 shows
that the bound is actually around m2

4 , resp m2 (simply consider the proposition
for k = 1 and t the lowest possible).

The benefit of Proposition 5 is that not only it gives better bounds, it also gives
quite good insight into the structure of the problem and dependence of D on m.
For example, if D ≡ 2, 3 (mod 4), these solutions can be only “clustered” around
values m2/4, m2/16, . . ., m2/4i2 and with increasing m, we get more accurate
approximations for how large these clusters can be. The basic restrictions can be
seen just by simply considering k = 1. An interesting follow-up question is what
is the intersection of all these intervals for given m. As we will show in the next
theorem, for parameters k, t with ratio k : t close to a fixed value, these intervals
can be typically grouped together to create one large interval between m/2i and
m/2(i − 1). This behaviour can be seen in Figure 2.1, containing computed data
as well as these summarized bounds obtained by Theorem 2. It is important to
note that there are only finitely many interesting intervals for fixed m – if k and t
are large enough, then the interval is empty or it only affects D ≥ m2, for which
we already know the conditions are not satisfied.

Theorem 2. Let K = Q(
√

D) with D ≥ 2 squarefree and a positive integer m.
If

√
D lies in one of the following intervals, then not all elements of mO+ can

be represented as the sum of squares:

10



Figure 2.1: Case D ≡ 2, 3 (mod 4). Red dots represent pairs (m, D) such that
all elements of mO+ are sums of squares.

(a)
[︂

m
2 + 4, ∞

)︂
,
[︂

m
2i

+ i
√

40, m
2(i−1) − (i − 1)

√
70
]︂

for integer i > 1 and D ≡ 2, 3
(mod 4),

(b)
[︂

m
2 + 8, ∞

)︂
,
[︂

m
2i

+ 2i
√

40, m
2(i−1) − 2(i − 1)

√
70
]︂

for integer i > 1, D ≡ 1
(mod 4) and even m,

(c) [m + 4, ∞),
[︂

m
2i+1 + (4i + 2)

√
40, m

2i−1 − (4i − 2)
√

70
]︂
for integer i > 0, D ≡

1 (mod 4) and odd m.

Proof. We will prove only the case D ≡ 2, 3 (mod 4), the other cases can be
handled analogously.

By Proposition 5, we have intervals

S(t, k) =
[︄

mk

2t
+

√
m√
t

,
mk

2(t − 1) −
√

m√
t − 1

]︄
.

We want to look at these restrictions in intervals m
2i

≤
√

D ≤ m
2(i−1) .

First, let’s handle the case i = 1 when the upper bound of the interval is
infinity and lower bound is around m

2 . Intervals S(t, k) are a part of this inter-
val exactly when k ≥ t, however, the cases k > t are uninteresting since they

11



are subintervals of some other intervals for smaller k. Therefore, we are only
interested in intervals S(t, t). The lower bounds of these intervals get lower with
increasing t, so if we want to unite them without problems, we need to check
there are no gaps between them – meaning the upper bound of S(t + 1, t + 1) is
larger than the lower bound of S(t, t). This is equivalent to the inequality

mt

2t
+

√
m√
t

≤ m(t + 1)
2t

−
√

m√
t

,

which is true for m ≥ 16t. Since we consider fixed value of m and t is integer we
get a bound t ≤ ⌊ m

16⌋. When the above inequality holds, the intervals are also all
non-empty, so in total

⌊ m
16 ⌋+1⋃︂
t=1

S(t, t) =
[︄

m

2 +
√︄

m

⌊ m
16⌋ + 1 , ∞

)︄
⊃
[︃
m

2 + 4, ∞
)︃

.

In the case i > 1, interval m
2i

≤
√

D ≤ m
2(i−1) contains S(t, k) for k(i−1) < t ≤

ki, so there are exactly k intervals for fixed k. We are again interested only in the
ones closest to the boundaries – S(k(i−1)+1, k) and S(ki, k) since the other ones
lie between these two and are typically contained in some S(t, k) for smaller k. We
again need S(k(i−1)+1, k) = S(t1, k1) and S((k +1)(i−1)+1, k +1) = S(t2, k2)
to intersect and the same for S(ki, k) and S((k + 1)i, k + 1). For the first pair to
intersect it is sufficient if m > t2(i − 1)24(3 + 2

√
2), which gives upper estimate

m
2(i−1) − (i − 1)

√
70. For the other pair, it can be estimated to be sufficient if

m > t2i
24(5

2 +
√

6), which gives lower estimate m
2i

+ i
√

40. Altogether, if
√

D is
in interval [︄

m

2i
+ i

√
40,

m

2(i − 1) − (i − 1)
√

70
]︄

,

then not all elements can be represented as sum of squares.

For completeness of the proof, it is easy to see by AM − GM inequality that
in any of these intervals

√
D ≥ min(m

2i
+ i

√
40, m

2 + 4) ≥ 2
√

2m, which complies
to the necessary condition D ≥ m in Proposition 5.

Again, it is important to note that for a fixed m, only finitely many of these
intervals are non-empty. Constants

√
40 and

√
70 used in the previous theorem

are deliberately inaccurate so the theorem can be stated for all m simultaneously.
Asymptotically for m −→ ∞ these constants can be improved to 4 as for D ≡ 2, 3
(mod 4) the optimal t is around 16m · i2.

To conclude this chapter, let’s summarize all the known necessary and suffi-
cient bounds for D in terms of m.

Corollary 6. Let K = Q(
√

D) with D ≥ 2 squarefree.

(a) If D ≡ 2, 3 (mod 4) and D ≥
(︂

m
2 + 4

)︂2
, then not all elements of mO+ are

represented as the sum of squares in O.

12



(b) If D ≡ 1 (mod 4), m is even and D ≥
(︂

m
2 + 8

)︂2
, then not all elements of

mO+ are represented as the sum of squares in O.

(c) If D ≡ 1 (mod 4), m is odd and D ≥ (m + 4)2, then not all elements of
mO+ are represented as the sum of squares in O.

(d) If D ≤ m for D ≡ 2, 3 (mod 4) and even m or if D ≤ 2m for D ≡ 1
(mod 4), all elements of mO+ are represented as the sum of squares in O.

(e) If m is odd and D ≡ 2, 3 (mod 4), then not all elements of mO+ are
represented as the sum of squares in O.

Proof. Parts (a) − (c) are direct consequences of Theorem 2. Parts (d), (e) has
already been proven by [KY] in Theorem 1. Proof of the part (d) will be outlined
in the next section, whilst the part (e) is a consequence of the comparison of irra-
tional parts in the sum of squares, which can be seen in the proof of Proposition
5.

In Chapter 4, we will look closely at some specific values of D to show that
these restrictions are in some sense accurate.

13



3. Peters theorem

In this chapter, we will try to look at the other side of the problem, which is
showing that for chosen D and m all elements of mO+ are represented as the
sum of squares. The key element of the following work will be a result proved by
Peters [Pet], which characterises when an element is the sum of squares. Since the
proof in the original paper is written in German, we provide an English version
for the benefit of the reader.

Theorem 7. [Pet, Satz 2] Let K = Q(
√

D) with D > 0 squarefree. Then α ∈ O+

of the form

α =
{︄

a + b1+
√

D
2 if D ≡ 1 (mod 4),

a + 2b
√

D if D ≡ 2, 3 (mod 4),
is the sum of 5 squares if and only if there exist rational integer c, with additional
condition c ≡ b (mod 2) if D ≡ 1 (mod 4), such that

c ∈

⎧⎪⎪⎪⎨⎪⎪⎪⎩
[︃

2a+b−2
√

N(α)
D

,
2a+b+2

√
N(α)

D

]︃
if D ≡ 1 (mod 4),[︃

a−
√

N(α)
2D

,
a+

√
N(α)

2D

]︃
if D ≡ 2, 3 (mod 4).

Before showing the proof, we will need the following technical lemma.

Lemma 8. The quadratic form x2
1+x2

2+x2
3+x2

4+x2
5 represents all binary quadratic

forms ay2
1 + by1y2 + cy2

2 for a, b, c ∈ Z, a ≥ 0, c ≥ 0 and D = ac − b2 ≥ 0.

Sketch of the proof. This is not a full proof, since we do not define some of the
used terms and notions.

The quadratic form f = x2
1 + x2

2 + x2
3 + x2

4 + x2
5 is the only form in its genus.

Therefore, by [OMe, 102:5], if we prove that the form ay2
1 + by1y2 + cy2

2 can be
represented locally (over p-adic integers Zp and R), they it can also be represented
globally (over Z), which is what we want.

Assume p ̸= 2. Then by [Jo, Theorem 32], our binary form ay2
1 + by1y2 + cy2

2
is (p-adically) equivalent to a diagonal form g = ny2

1 + my2
2, n, m ∈ Zp. By

[Jo, Corollary 34a, 34b], the binary form x2
1 + x2

2 represents a squarefree integer
N ∈ Zp if and only if p ∤ N or p | N with

(︂
−1
p

)︂
= 1, and ternary form x2

1 +x2
2 +x2

3
represents all N . Therefore, if p ∤ n we can find zi’s and wj’s such that z2

1 +z2
2 = n,

w2
1 + w2

2 + w2
3 = m, so that the following substitution proves that f represents g

(and thus ay2
1 + by1y2 + cy2

2 as well)

(︄
z1 z2 0 0 0
0 0 w1 w2 w3

)︄
⎛⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎝
z1 0
z2 0
0 w1
0 w2
0 w3

⎞⎟⎟⎟⎟⎟⎟⎠ =
(︄

n 0
0 m

)︄
.
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If p ∤ m, similar representation can be constructed. In the case p | n and p | m,
we get that z2

1 + z2
2 = n − 1 is solvable over Zp. Further, at least one of the

relations p ∤ m − 1 − z2
1 and p ∤ m − 1 − z2

2 holds. Then, for example in the first
case, we get m − 1 − z2

2 = w2
1 + w2

2 for some w1, w2 ∈ Zp and f represents g using
transformation matrix (︄

z1 z2 1 0 0
0 1 −z2 w2 w3

)︄
.

The case p = 2 has to be handled separately. Theorems 9a and 9b from
[Jo] (which basically show a correspondence between the solutions of XT AX =
B in Zp and the solutions of XT AX ≡ B (mod pt) for matrices A, B and a
sufficiently large t) in conjunction with the characterization of binary forms over
Zp can be used to show that all the binary forms above are indeed represented
by x2

1 + x2
2 + x2

3 + x2
4 + x2

5 in Z2.

Over R, the representation is trivial [Jo, Theorem 6].

Proof of the Theorem 7. Consider D ≡ 1 (mod 4) and x ∈ O+
K of the form x =

x1 + x2
1+

√
D

2 and suppose x = a + 2b1+
√

D
2 + c

(︂
1+

√
D

2

)︂2
for some a, b, c ∈ Z. By

comparing the coefficients, we get x1 = cD−1
4 + a and x2 = 2b + c. From there,

it can be easily seen that for every choice of c ≡ x2 (mod 2), there exists exactly
one pair of suitable (a, b).

One way to look at this is that x is represented by quadratic form ay2
1 +

2by1y2 + cy2
2 evaluated at y1 = 1 and y2 = 1+

√
D

2 . The determinant D(c) of this
form is equal to

D(c) = ac − b2 =
(︃

x1 − c
D − 1

4

)︃
c − (x2 − c)2

4 = 1
4
(︂
−Dc2 + c(4x1 + 2x2) − x2

2

)︂
.

Viewing this as a quadratic function in c, this determinant is nonnegative if
and only if c ∈

[︃
2x1+x2−2

√
N(x)

D
,

2x1+x2+2
√

N(x)
D

]︃
, which is the interval from the

theorem statement.

Therefore, if we assume that such a c ≡ x2 (mod 2) in this interval exists, we
can accordingly find integers a, b and semipositive quadratic form ay2

1+2by1y2+cy2
2

which represents x. By Lemma 8, this form is represented by x2
1+x2

2+x2
3+x2

4+x2
5,

therefore, x is represented by this form as well.

On the other hand, if we assume

x =
s∑︂

i=1
ai

(︄
mi + ni

1 +
√

D

2

)︄2

,

for some ai ≥ 0, ai, mi, ni ∈ Z, we get

x1 =
s∑︂

i=1
ai

(︃
m2

i + n2
i

D − 1
4

)︃
,
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x2 =
s∑︂

i=1
ai

(︂
2mini + n2

i

)︂
.

For the choice c = ∑︁s
i=1 ain

2
i ≡ x2 (mod 2),

4D(c) =
(︄

s∑︂
i=1

ai(2mi + ni)2
)︄(︄

s∑︂
i=1

ain
2
i

)︄
−
(︄

s∑︂
i=1

aini(2mi + ni)
)︄2

≥ 0

by the Cauchy-Schwarz inequality. Therefore, this integer c also must be in the
chosen interval.

In the case D ≡ 2, 3 (mod 4), the situation can be handled analogously.
Consider x ∈ O+

K of the form x = x1 + 2x2
√

D = a + 2b
√

D + c
(︂√

D
)︂2

. This
time,

D(c) = ac − b2 = (x1 − cD)c − x2
2 = −Dc2 + cx1 − x2

2,

which is non-negative for c ∈
[︃

x1−
√

N(x)
2D

,
x1+

√
N(x)

2D

]︃
.

For the other implications, given x = ∑︁s
i=1 ai

(︂
mi + ni

√
D
)︂2

, the choice c =∑︁s
i=1 ain

2
i provides the desired inequality

D(c) = (x1 − cD)c − x2
2 =

(︄
s∑︂

i=1
aim

2
i

)︄(︄
s∑︂

i=1
ain

2
i

)︄
−
(︄

s∑︂
i=1

aimini

)︄2

≥ 0.

Remark. Peters proved Theorem 7 not only for the quadratic form x2
1 + x2

2 + x2
3 +

x2
4 +x2

5 but also for quadratic forms x2
1 +x2

2 +x2
3 +x2

4 +2x2
5, x2

1 +x2
2 +x2

3 +x2
4 +3x2

5,
x2

1 +x2
2 +x2

3 +2x2
4 +2x2

5 and x2
1 +x2

2 +x2
3 +2x2

4 +3x2
5. These forms satisfy the same

local-global conditions needed in the proof of Lemma 8, which can be accordingly
adjusted to handle all of these forms at the same time (in addition, the case p = 3
must be handled separately).

One direct consequence of this theorem is Corollary 6 (d). The norm of every
element in mO+ is at least m2; therefore, if m is large enough, the interval has
the length of at least 1, resp. 2, so it must contain the desired integer.

Using the acquired necessary bounds and this theorem, we have a method for
determining all D such that all elements of mO+ are represented as the sum of 5
squares. For example, for m = 4 we get

Theorem 9. Let K = Q(
√

D) with D ≥ 2 squarefree. Then every element of
4O+ is the sum of squares in O if and only if D ∈ {2, 3, 5, 6, 7, 10, 11, 13}.

Proof. ”⇒” Assume all elements of 4O+ can be represented as the sum of squares
in O.

At first, consider D ≡ 2, 3 (mod 4). Using Proposition 5 for t = 1, k = 1,
we get the bound D < 16. Furthermore, it can be easily verified that for D ∈
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{14, 15}, the element 4(⌊
√

D⌋+1+
√

D) does not satisfy the condition in Theorem
7.

If D ≡ 1 (mod 4), we obtain the bound D ≤ 23 similarly. However, the values
D ∈ {17, 21} can be again excluded using the element 4

(︂⌊︂
1+

√
D

2

⌋︂
+ 1+

√
D

2

)︂
.

”⇐” Consider D ≡ 2, 3 (mod 4) and first, let’s look at the general idea of the
proof. Consider any element α = a + b

√
D ∈ O+. Using Theorem 7, 4α is the

sum of squares if and only if there exists a rational integer in the interval

⎡⎣2a − 2
√︂

N(α)
D

,
2a + 2

√︂
N(α)

D

⎤⎦ .

If 4
√︂

N(α) ≥ D, this is clearly true. It is, therefore, enough to consider only the
elements of small norm (which can be, in general, done by solving finitely many
generalized Pell equations).

(a) D = 2, 3. In this case, 4
√︂

N(α) ≥ D is always true.

(b) D = 6. In this case, the interval
[︃

a−
√

N(α)
3 ,

a+
√

N(α)
3

]︃
always contains an

integer since N(α) ≥ 1.

(c) D = 7. It can be seen that the only potentially problematic case is a ≡
±2 (mod 7) (otherwise, 2a

7 is at most 2
7 away from the nearest integer).

However, in that case, we get N(α) ≡ a2 ≡ 4 (mod D) and N(α) ≥ 4 is
indeed enough.

(d) D = 10. In this case, only a ̸≡ ±1 (mod 5) and N(α) ≤ 3 would cause a
problem. Analogously, a ̸≡ ±1 (mod 5) implies a2 ≡ N(α) ≡ −1 (mod 5),
which results in N(α) ≥ 4.

(e) D = 11. In this case a ≡ ±2 (mod 11) causes a problem for N(α) ≤ 3,
a ≡ ±3 for N(α) ≤ 6, a ≡ ±4 for N(α) ≤ 2. All these cases can be dealt
with in the same fashion as above.

Consider D ≡ 1 (mod 4), α = a + bωD ∈ O+. By Theorem 7, we need to prove
there is an even integer in the interval⎡⎣4(2a + b) − 4

√︂
4N(α)

D
,
4(2a + b) + 4

√︂
4N(α)

D

⎤⎦ ,

which is equivalent to the existence of an integer in the interval⎡⎣2(2a + b) − 2
√︂

4N(α)
D

,
2(2a + b) + 2

√︂
4N(α)

D

⎤⎦ ,

For D = 5, this is clear. The only remaining case is D = 13.
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Here, 4N(α) = 4(a + b
2)2 − 4( b

√
D

2 )2 = (2a + b)2 − b2D ≡ (2a + b)2 (mod D).

The only problematic residues are:

(a) (2a+b) ≡ ±3 (mod 13) and 4N(α) ≤ 8 – not possible using the congruence
above,

(b) (2a+b) ≡ ±4 (mod 13) and 4N(α) ≤ 6 – not possible using the congruence
above and the fact that N(α) is an integer.

In the second part of the proof, we dealt with the bad cases by clever manipu-
lations with congruences and inequalities. This option might not be viable in the
general case, but we can always solve corresponding Pell equations to get the ele-
ments of the given norm and get the desired congruences using their well-known
structure and recurrence relations. On the other hand, if D does not meet the
conditions, we will inevitably find a counterexample during this process.

Using this technique, one can verify the given statement for arbitrarily chosen
mO+ and D. However, it gets progressively more tedious with increasing D and
heavily relies on the ability to quickly solve the generalized Pell equation. In the
next section, we will introduce an improved algorithm that uses indecomposable
elements of O+ to avoid this issue.
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4. The indecomposables

The characterization of indecomposable elements of O+ in quadratic fields can
be used to show a few concrete results and also a general algorithm for solving
the given problem.

The main idea is that instead of considering all elements of O+, we can just
look at the indecomposables since if a and b can be both represented as the sum
of squares, so can a + b. For D of a specific form, the indecomposables have
such a nice structure that it can be used in combination with Theorem 7 to fully
characterise which m satisfy the given statement. One easy consequence of the
following theorems is that bounds in Corollary 6 are, in some sense, optimal.
Theorem 10. Let K = Q(

√
D) with squarefree D = t2 −1 for some even integer

t > 1. For a positive rational integer m, the following are equivalent:

(a) All elements of 2mO+ are represented as the sum of squares in O.

(b) m = (t − 1)k + l for some k ≥ 0 and 0 ≤ l ≤ 2k.

Proof. In all cases, D ≡ 3 (mod 4). If we prove that for all indecomposable
elements α ∈ O+, 2mα can be represented as sum of squares in O, then obviously
all elements of 2mO+ can be represented.

The continued fraction representation of
√

t2 − 1 is [t − 1, 1, 2(t − 1)]. For
i ≥ −1, define a sequence (αi) by α−1 = 1, α0 = t − 1 +

√
D, αi+2 = αi+1 + αi

for odd i ≥ −1 and αi+2 = 2(t − 1)αi+1 + αi for even i ≥ 0.
Using the facts mentioned in Section 1.2, all indecomposable elements in O+ are
in this case αi with odd i ≥ −1, together with their conjugates. If αi can be
represented as the sum of squares, then its conjugate can be represented as well
(just replace all the squared numbers by their conjugates), so we can consider
only αi.
It can be easily proven by induction that α2k+1 = αk+1

1 = (t +
√

t2 − 1)k+1 either
using the recurrence relations above or using facts from Section 1.2 (α1 = ε,
αi+2 = εαi)

The important consequence it that 2mα2k+1 can be represented as the sum
of squares for all k ≥ −1 if and only if 2mα1 can be represented as the sum of
squares. One implication is trivial and the other one comes from the following
facts. If k is odd, then α2k+1 =

(︃
α

k+1
2

1

)︃2
, so its is already a square in O. If k

is even 2mα2k+1 = 2mα1 · α2k−1, both factors can be represented as the sum of
squares in O so the product can be represented as well.

By Theorem 7, 2mα1 = 2m(t +
√

t2 − 1) can be represented as the sum of
squares if and only if there is a rational integer in the interval⎡⎣2mt −

√︂
N(2mα1)

2D
,
2mt +

√︂
N(2mα1)

2D

⎤⎦ =
[︃

m

t + 1 ,
m

t − 1

]︃
.
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By substituing m = (t − 1)k + l for some integers k ≥ 0, 0 ≤ l < t − 1, it can
be seen that this is true if and only if l = 0 or m

t+1 ≤ k, which is equivalent to
l ≤ 2k.

The biggest m not satisfying the condition (b) is m = (t−1) t−4
2 +t−2 = t2−3t

2 ,
meaning that there exist infinitely many pairs (D, m) = (t2 − 1, t2−3t

2 ) such that
not all elements of 2mO+ are represented as the sum of squares. This shows the
sufficient bound D ≤ m

2 in Corollary 6(d) is quite precise.

On the other hand, the smallest non-zero m satisfying the condition is m =
t − 1, therefore all elements of 2mO+ are represented as the sum of squares for
D = (m + 1)2 + 1 (if this D is squarefree to be precise). This, again, shows that
the necessary bound D < (m + 4)2 from Corollary 6(a) is somewhat accurate.

Theorem 11. Let K = Q(
√

D) with squarefree D = (2t+1)2−4 for some integer
t > 1. For positive rational integer m, all elements of mO+ are represented as
the sum of squares in O if and only if m is one of the following form:

(a) m = (4t − 2)k + l for some k ≥ 0 and 0 ≤ l ≤ 8k for l even,

(b) m = (4t − 2)k + l for some k ≥ 0 and 0 ≤ l ≤ 8k − 2t − 3 for l odd,

(c) m = (4t − 2)k + l for some k ≥ 0 and 2t − 1 ≤ l ≤ 8k + 2t + 3 for l odd.

Proof. The proof is quite similar to the proof of the previous theorem.
This time, D ≡ 1 (mod 4) and ωD = 1+

√
D

2 = [t, 1, 2t − 1] and again it holds that
indecomposable elements are exactly powers of fundamental unit α1 = t + ω′

D =
t + −1+

√
D

2 .

So it is equivalent to looking at when mα1 is the sum of squares, which, using
Theorem 7, is exactly if and only if there is an integer n ≡ m (mod 2) in the
interval [︃2mt + m − 2m

D
,
2mt + m + 2m

D

]︃
=
[︃

m

2t + 3 ,
m

2t − 1

]︃
.

Let m = k(4t − 2) + l for k ≥ 0 and 4t − 2 > l ≥ 0. Then
[︃

m

2t + 3 ,
m

2t − 1

]︃
=
[︄

m

2t + 3 , 2k + l

2t − 1

]︄
.

If l is even, so is m, and the condition is satisfied if and only if m
2t+3 ≤ 2k, which

is equivalent to l ≤ 8k.

If l is odd and l < 2t−1, one needs m
2t+3 ≤ 2k −1, equivalently l ≤ 8k −2t−3.

If l ≥ 2t − 1, only m
2t+3 ≤ 2k + 1 is needed, which is equivalent to l ≤ 8k + 2t + 3.

One can see that m = k(4t − 2) + l with the discussed restrictions satisfy the
interval condition even if we omit l < 4t − 2. This concludes the proof.
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The biggest even m and the biggest odd m not satisfying the conditions are
both in the set {2t2 − t − 2, 2t2 − 3t − 1}. This, again, shows that the bound
D ≤ 2m in 6(d) is quite sharp.

Regarding the smallest even m satisfying the conditions, we get m = 4t − 2,
while the smallest odd m is m = 2t − 1. These arein close agreement with the
necessary condition D < (m

2 + 8)2, resp. D < (m + 4)2, from Corollary 6(b, c).

A similar approach could be naturally extended to other quadratic families,
resulting in a system of (in)equalities that characterize all suitable m.
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5. Algorithmic solution

The methods used in the previous chapter can be generalized to construct an
algorithm that determines if all elements of mO+ are represented as the sum
of squares. As was mentioned, one only needs to consider m-multiples of the
indecomposables. If s is the period of the continued fraction of D, then ε =
αs−1 is the fundamental unit and αi+s = εαi. Therefore, there are only finitely
many indecomposable elements (resp. their m-multiples) up to conjugation and
multiplication by ε2. If and only if all of them are represented, so are all elements
of mO+. And we can easily check each of the elements using Theorem 7.

Unique indecomposable elements in O+ (uniqueness in the sense of the previ-
ous paragraph) are exactly αi,r with odd −1 ≤ i ≤ 2s − 3 and 0 ≤ r ≤ ui+2 − 1.
Therefore, the number of unique indecomposables is ∑︁s

i=1 u2i−1. Kala and Blomer
[BK, Theorem 2] showed this sum to be O(

√
D(log(D))2), which is therefore also

the time complexity of this algorithm for single m and D.

Let’s look at the time complexity for determining all D satisfying the condi-
tions for fixed m. At first, consider only D ≡ 2, 3 (mod 4) and assume D satisfies
the conditions. Necessary bounds in Theorem 2 imply D <

(︂
m
2 + 4

)︂2
and also

D ̸∈
[︃(︂

m
2i

+ i
√

40
)︂2

,
(︂

m
2(i−1) − (i − 1)

√
70
)︂2
]︃

. We consider this interval only for
finitely many i satisfying m

2i
+ i

√
40 < m

2(i−1) − (i − 1)
√

70 – the largest one
being imax ≍ m

1
3 (here notation f ≍ g means C|g(x)| < |f(x)| < D|g(x)|

for some positive constants C, D and all sufficiently large x). Therefore, the
smallest D excluded by the intervals is Dmin ≍ m

4
3 . As a consequece, if D

satisfies the conditions, then either D < Dmin or D lies in one of the intervals[︃(︂
m
2i

− i
√

70
)︂2

,
(︂

m
2i

+ i
√

40
)︂2
]︃

for i < imax. In the first case we can estimate

the time complexity as ∑︁D<Dmin
O(

√
D(log(D))2) = O(m 4

3 · m
4
6 (log(m 4

3 ))2) =
O(m2(log(m))2). In the second case, we have O(m 1

3 ) intervals and the length of
each interval is O(m). Therefore, the estimation of time complexity in the second
case is ∑︂

i<imax

O(m)
(︃

m

2i
+ i

√
40
)︃(︃

2 log(m

2i
+ i

√
40)

)︃2
=

= O(m2(log(m))2)
⎛⎝ ∑︂

i<imax

1
i

⎞⎠+ O(m(log(m))2)
⎛⎝ ∑︂

i<imax

i

⎞⎠ = O(m2(log(m))3).

In the last equality we used ∑︁n
i=1

1
i

= O(log(n)) (see e.g. [Apo, Theorem 3.2]).

Overall, the time complexity for D ≡ 2, 3 (mod 4) is O(m2(log(m))3) and
analogous argument can be made for D ≡ 1 (mod 4). Hence, the time complexity
of this algorithm (that for fixed m determines for which D all elements of mO+

can be represented as the sum of squares) is also O(m2(log(m))3).

The table below shows results for a few small m. The implementation in C++
(available at https://github.com/raskama/number-theory/tree/main/quadr
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atic) was used to obtain results for m ≤ 5000. These data as well as generated
graphs can be found at https://www2.karlin.mff.cuni.cz/˜raskam/resear
ch/quad/.

m D such that all elements of mO+ are sums of squares
1 5
2 2, 3, 5
3 5, 13, 17, 21
4 2, 3, 5, 6, 7, 10, 11, 13
5 5, 13, 17, 21, 29, 37
6 2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 17, 21, 26, 29, 33
7 5, 13, 17, 21, 29, 33, 37, 41, 53, 61, 65, 77
8 2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 17, 19, 21, 22, 23, 26, 29, 31, 37, 38, 53
9 5, 13, 17, 21, 29, 33, 37, 41, 53, 57, 61, 65, 69, 77, 85, 93, 101

10 2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 17, 19, 21, 22,
23, 26, 29, 30, 33, 34, 35, 37, 38, 41, 43, 53, 65, 85

11 5, 13, 17, 21, 29, 33, 37, 53, 57, 65, 73, 77, 85, 101, 145, 165
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