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Introduction
Computer systems write a large amount of information about their activity into
what people call logs. Logs often provide the primary means of assessing a sys-
tem’s state. However, their analysis poses a number of problems since they are
usually neither easy to read directly nor simple to process automatically.

One huge challenge for humans reading logs is the sheer size of the logs.
This problem affects automatic processing, too. As computing power grows with
passing time, so does the power generating the logs. Logs may also be generated
by multiple instances, each with its own hardware and forwarded for processing
to a single machine. Also, since log processing is usually only a tool for performing
analysis of the system’s main activity, it can only be allocated limited resources.

This thesis aims to create a tool for reading logs and extracting the important
information from them in a format that can be either read by humans or easily
used for further automated processing. This tool will need to be highly flexible
to process logs with different structures and fast enough to stand up to the chal-
lenge posed by the size of production logs.
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1. Logs and their structure
Logs are usually either written directly to a file by the process that generates
them or passed to a dedicated program. This program may do some simple
alteration of the log messages it is given and either store them in one or multiple
files on the same machine or send them over the network. There is a protocol for
this network communication called syslog.

We want to read logs both from files and from a socket using the syslog
protocol. Furthermore, the format of log files usually stems from the structure
specified by syslog standards.

1.1 Syslog protocol and structure
Syslog is a protocol for handling log messages and sending them over the network.
It is also used by syslog daemons for logging messages on the same machine where
they originated. The protocol forces some message structure, so even messages
stored in a log file have a similar format. Therefore, it is useful to familiarize
ourselves with parts of the syslog RFCs.

The original syslog standard was RFC 3164 [14], which was later obsoleted
by RFC 5424 [11]. The architecture specified by these RFCs allows messages
to be generated (machines capable of that are called devices or originators based
on the particular RFC), forwarded (by so-called relays) and collected (by collec-
tors, also known as syslog servers). A device or a relay may send messages to one
or more relays and collectors (without knowing whether a particular machine is
a relay or a collector). A relay will send all or some of the messages it receives
further. It may also generate and send its own messages, in which case it is also
acting as a device.

1.1.1 RFC 3164
RFC 3164 [14] has been obsoleted by RFC 5424 [11] but is still in common use.
It specifies the following format :

“<” prival “>” decimal number consisting of three digits containing facility
and severity values. The standard specifies that facility values
must be in the range from 0 to 23 inclusive and severity
from 0 to 7 inclusive. It also specifies the mapping of values
to their meaning (see below)

timestamp timestamp in the format “Mmm dd hh:mm:ss” where
Mmm are three characters denoting the month of the year
(e.g., Jan, Feb, Dec) and other parts are day of month, hour,
minute and second. They are represented by two digits
(in case the number is at least 10) or a single space and one digit.

sp space
hostname hostname or IP address of the machine
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sp
msg the actual text message

The prescribed meanings of facility values are:

0 kernel messages
2 mail messages
3 system daemons
4 security/authorization messages
11 FTP daemon

While the specified severity value meanings are:

0 Emergency: the system is unusable
1 Alert: action must be taken immediately
2 Critical
3 Error
4 Warning
5 Notice: a normal but significant condition
6 Informational
7 Debug

The priority value is then calculated as 8·facility+severity.
This format is required for messages sent by relays and recommended for

messages sent by the original devices. If a relay receives a message that does not
comply with this format, it must modify such a message before sending it further.

An example of a valid timestamp according to this RFC would be Oct 11
22:14:15. An example of a whole message would be

<34>Oct 11 22:14:15 mymachine su: ’su root’ failed for lonvick

1.1.2 RFC 5424
RFC 5424 [11] is the newer of the two and it is more strict about message struc-
ture, so logs conforming to it are easier to parse. On the other hand, it is perhaps
less frequently used. This standard specifies that messages logged using the syslog
protocol must have the following format:

“<” prival “>” priority value as described in the section about
RFC 3164 except that the facility and severity values
are not mandatory, only mentioned as common.

version version of the syslog protocol
sp space
timestamp timestamp with format derived from RFC 3339 [15]
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with further restrictions (see below)
sp
hostname
sp
app-name
procid usually process id of the syslog system

(see the RFC for more details)
msgid identifier of the type of the message, for example

TCPIN for messages about incoming TCP traffic
structured-data
[ sp msg ] optional space-separated text message

Some of the elements (for example structured-data) may be replaced by “-”.
Timestamps are required to conform to RFC 3339 [15], which stems from

ISO 8601 [12]. The format is as follows:

date-fullyear year expressed using all four digits, e.g., 1970
-
date-month two digits representing the number of the month in the year

starting from 01
-
date-mday day of the month written as two digits starting from 01
T
time-hour
:
time-minute
:
time-second
[ “.” time-secfrac ] optional dot-separated fraction of the second
time-offset either “Z” for UTC or +/-hh:mm representing local

time offset (calculated as local time minus UTC),
UTC can also be expressed as “+00:00”
(or “-00:00”, which has a special meaning)

There are some additional restrictions on the timestamp format. RFC 3339 allows
the “T” and “Z” characters to be lowercase (i.e., “t” and “z”), “T” may be
omitted, but RFC 5424 prohibits this. In addition, RFC 5424 specifies that leap
seconds must not be used.

An example of a correct timestamp is 2003-08-24T05:14:15.000003-07:00
representing 24th of August 20003 5:14:15 AM and 3 microseconds in a timezone
7 hours behind UTC (so it is 12:14:15 UTC).

The structured-data element contains either “-” or one or more “structured
data elements” (sd-element-s). Each sd-element contains a unique identifier
of the kind of the element and one or more name, value pairs.
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The MSG element is a text encoded using UTF-8 following RFC 3629 [19]
but with no prescribed structure. It must start with byte order mark (denoted
BOM in the example below).

The following is an example of a valid message:

<165>1 2003-10-11T22:14:15.003Z mymachine.example.com evntslog - ID47
[exampleSDID@32473 iut="3" eventSource="Application"
eventID="1011"] BOM An application event log entry

Note in particular the addition of the structured data element and the format
of the timestamp is very different from RFC 3164.

Message order

Log messages from different sources (be it different machines or running pro-
cesses) can and often do intertwine, which complicates reading. Furthermore,
even messages from a single machine and a single source may contain informa-
tion about many simultaneous connections. Parallel activity on these connections
results in log messages getting mixed, and as a result, it is difficult for a person
to trace activity on a single connection.

Different format

Another problem for automatic processing is the relatively free format of the mes-
sages. This problem is especially significant with RFC 3164, which has no
structured-data element. However, even with RFC 5424 and if the structured-
data element is used, the msg part of the message can have any internal structure
as it can often be generated by a private application.

Timestamps

In addition to having different formats, timestamps without a specification of
their offset from UTC can be ambiguous. Even if all of the messages are from
the same timezone, when daylight saving time ends, there are timestamps that
could represent two different times based on whether they are using daylight sav-
ing time or not (and this fact cannot be derived from the timestamps themselves).

1.2 Log storage
Logs are typically stored in multiple files, which are created as time passes. A new
file is created either after a fixed time has elapsed or when the previous file exceeds
certain size. What is critical for our processing, these files’ names are usually
either dependent on the time of creation and remain constant after the file was
created, or the files are rotated.

With rotation, the files have numbers at the end of their name. The one
to which (most of) the writing takes place will usually have no number, which
is interpreted as 0. The next older file will have number 1, and others will have
numbers 2, 3, etc. When a new file is created, all of the existing files get their
numbers increased by one (the oldest ones possibly getting deleted) and the new
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file is created with no numeric suffix. All processes logging into this set of files then
receive SIGHUP signal and reopen their log file (thus starting to log to the new
one).

As a result, some of the processes may still be logging to the old file, while oth-
ers have already reopened their file and are logging into the new one. Moreover,
because of the changes in numeric filename suffixes, a file name is not a reliable
identifier of the file itself. It is also common for some of the oldest files (often all
but the two newest) to get compressed.
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2. Solution principles

2.1 Goals
Let us discuss a few examples of the kind of log we might want to process.

• ssh logs, which contain information about users accessing our system re-
motely through the ssh protocol. Their lines may look like this:

Apr 30 08:42:07 myhost sshd[5933]: Accepted publickey for pg from
192.168.1.1 port 45740 ssh2:
RSA SHA256:EZwkd8q58UapKekDC48ZcNvfSVy1NMqZagZqtCUZeHymf1BaUAFT6

The ssh daemon may very well be set up to log to authentication logs,
in which case the messages from it would be mixed with other messages,
such as:

Apr 30 08:44:05 myhost sudo: pg : TTY=pts/2 ; PWD=/home/pg
; USER=root ; COMMAND=/usr/bin/less /var/log/syslog

• Postfix logs. Postfix is an implementation of a mail server. Its looks may
look like so:

2020-04-04T06:59:43.000422+02:00 Postfix/smtp[8573]:
7BE3C1C2F52: to=<pca@wwilde.isageek.de>, relay=none,
delay=145481, delays=145450/0.06/30/0, dsn=4.4.1, status=deferred
(connect to wwilde.isageek.de[213.95.21.121]:25: Connection timed
out)

• Web server logs. The following is a line from the error log of a web server
called apache2:

[Fri Apr 30 07:37:34.329024 2021] [mpm_event:notice]
[pid 1491:tid 140579503806336] AH00489: Apache/2.4.18 (Ubuntu)
configured -- resuming normal operations

And this one is from the access log of the same server:

192.168.1.41 - - [30/Apr/2021:09:23:15 +0200] "GET /ABCD/
HTTP/1.1" 200 1175 "-" "Mozilla/5.0 (X11; Ubuntu; Linux x86_64;
rv:88.0) Gecko/20100101 Firefox/88.0"

• Logs of some programs we developed for our internal usage. These logs may
have pretty much any structure.

We can see that the structure of the logs differs significantly. They tend to have
a timestamp, some sort of a specification of who is responsible for the message (like
hostname and process id) and the message itself, but that is where the similarities
end. This means that our program will need to be very flexible and let its user
specify the structure of their log rather than trying to figure it out itself.

Let’s now focus on the Postfix logs in our discussion and see a few examples
of how we might want to process them.
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• As an elementary example, we could detect messages talking directly about
an e-mail (referring to it by an ID like 7BE3C1C2F52). These messages
tend to get lost in many other messages and, also messages talking about
different e-mails will get intertwined among themselves. Therefore we would
like to filter such messages and change their order. We would like to print
messages associated with one particular e-mail chronologically, followed by
those regarding another e-mail and so on.

• For each minute, count the number of e-mails sent or received in that
minute.

• Count the number of “connection lost” messages for each server we comu-
nicate with and print those where the number exceeds a certain threshold.

• Keep track of how many e-mails are received from each third-party server
and alert about very high values.

• Watch how e-mails are forwarded to detect when a user has set up a for-
warding loop.

These requirements are again rather diverse. Even in cases where we want to out-
put a number of some occurrences, it might not be as simple as incrementing
a counter. This is because a line may indicate multiple occurrences. Therefore
we also need to be flexible in how we process the logs once we understand their
structure. Let us pick grouping by mail ID as the running example.

If we have implemented the grouping, it should be possible to implement
the other examples with little effort. Namely, it should be possible to describe
the syntax of the messages just once and re-use this description later.

More generally, the processing should be split into a parsing part, which will
be specific for the log, and an analysis, which will specify what should be done
with the log. Then, when we wish to add a feature to our log analysis, we only
need to update the analysis. Also, if the log structure changes somewhat, we will
only need to change the syntax analysis.

Furthermore, it should be possible to write a more general part of the parsing
first and then focus on the details. This will allow us to have some parts of the con-
figuration shared among multiple similar use cases. For example, we may have
all our machines configured to use the same timestamp format and to follow
RFC 3164, and we might later want to extend our configuration to process logs
with messages from services other than Postfix mixed in. In that case, it would be
helpful first to parse the timestamp, detect the service responsible for the message
and isolate the free-formed text message (the msg part as specified by the sys-
log protocol RFCs). Then based on the source of the message, we would run it
through the appropriate parsing machinery for that particular service.

To allow the next stage of the parsing to take place without having to re-
do the parsing done by previous stages, there needs to be a way of accessing
the results of previous stages. Since in many situations, there is no single clear
output from parsing (even from a single stage), more than one such “outputs”
need to be accessible at once. We call them attributes.

The former stages should also have the capability to decide what parsing
schemes are used going forward. For example, when the first stage detects
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the source of the message, the next stage needs to be chosen based on what
the source was. The flow control then takes the form of a tree where the root
does top-level parsing and decides which of its child nodes should be invoked
next. As one of its child nodes gets invoked, it also decides which of the nodes
under it should be used next and so on down to the leaves. The tree could look
something like this:

It would be useful to be able to have a common structure for parsing a part
of a message and use it in multiple configurations. For example, a timestamp is
likely to look the same in many different logs, so its parsing tree could be written
and debugged only once and then re-used. Also, if a single node’s specification is
not trivial, we should support reusing parts of nodes if possible.

In the following few sections, we will give a high-level overview of our implemen-
tation of the parsing before discussing analysis.

2.2 Basic parsing
There needs to be a way for the user to specify how to parse attributes of a par-
ticular and when to descend to which subtree below it. The chosen configuration
language should be flexible enough to allow for parsing very different kinds of in-
put but simple enough to allow practical usage. Regular expressions have been
used for this kind of specification since they are strong enough for many use cases
while still being intuitive and easy to use. For example, if we wanted an expres-
sion matching timestamps conforming to the requirements of RFC 5424, we could
write:

[0-9]{4}-[01][0-9]-[0-3][0-9]T[0-2][0-9]:[0-5][0-9]:[0-6][0-9]
(\.[0-9]+)?

There is also the question of how to assign to attributes and reference them.
The mechanism should be able to assign to multiple attributes at once (or fail
to match entirely), and it should be able to adapt to differences in the matched
text. The chosen approach is somewhat similar to back-references used by a stan-
dard text processing tool named sed. In the case of sed, the user can mark parts
of the regular expression and reference them later by a backslash and a number
referring to its position.

However specifying attributes by a number would significantly reduce read-
ability, especially since the number would have to identify both the node and
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the part of the expression in that node. This approach would also defeat the pur-
pose of library trees since they could not use attributes set by the tree calling it
without knowing the caller’s structure.

The other available solution is to reference attributes by some fixed key: we
chose textual names.

We did not want to write the matching ourselves, so we needed some library
to do the work for us. We needed it to be easy to connect with the rest of our
program (which is written in C++), and we also wanted it to support the textual
names discussed earlier. These are some possible candidates for such a library:

• POSIX regular expressions — These are the regular expressions offered by
the standard C library. They don’t seem to support named captures (at
least we found no support for it).

• std::regex from the standard C++ library [2] — This library also seems
to lack support for named captures.

• Python regular expression library [17] — It does support named captures
but isn’t easy to integrate with the rest of our program. Although Python
has a C API, to use this library, we would probably have to create a Python
string every time we need to do the matching. This would mean allocating
memory for that string and copying its contents from our buffer to the al-
located block. That would likely severely slow down the execution.

• PCRE [16] — This library supports named captures, and it is easy to inte-
grate with the rest of the program.

• boost regular expressions [13] — It supports named captures and is intended
for usage from C++.

• Grok [18] — This is actually a tool for parsing logs, which offers a library
with C interface performing the matching we need. It uses PCRE as its back
end, supports named captures, and offers other features. One such feature
is support for storing named patterns in a separate file and using them by
referring to their name. This feature was considered good for configuration
re-usability. There are also other features, such as encoding a piece of text
as a JSON string.

We chose grok because of its additional features.
Let’s look at an example of using regular expressions with named captures for

attribute assignment. We could take the expression above and modify it to detect
and separate the timestamp in each message. In grok’s syntax, we can write:

ˆ%{time=[0-9]{4}-[01][0-9]-[0-3][0-9]T[0-2][0-9]:[0-6][0-9]:[0-6][0-9]
(\.[0-9]+)?} %{message=.*}

The timestamp is then stored in the attribute time, while the rest of the log
message is stored in message.

To support more complex parsing(for example for interfacing with analysis
on different levels), and in part for deciding what parsing should be done, the tree
contains two kinds of nodes — actions and options. One particular action is
a match, which specifies (by name) a single attribute to be matched and has
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options (the other kind of nodes) as its children. An option specifies a regular
expression, and it can have actions (so in particular matches) as its children.

When our program arrives at a match node, call it M , it tries to match
the specified attribute against all the regular expressions in its children one by
one. Every time this match is successful, the program descends into the subtree
under that option before continuing to other options under M . When the pro-
gram descends into a subtree under an option, all of its child action are performed
one by one. The tree is, therefore, walked through in a depth-first “left-to-right”
manner, where the children of each node are ordered in the same way they ap-
peared in the configuration.

The tree with two kinds of nodes looks like this (the prints are another kind
of actions):

In the beginning, there is only one attribute filled and it contains the original
message. As the attributes are added, they can all be used for matching. So, for
example, a match at a higher level may use attributes defined at a lower level.
These attributes could have been assigned to already since the tree is walked
through in a depth-first manner. This behavior is also beneficial for library trees
described below. Attributes that haven’t been assigned any value will appear
to be empty.

In our example, the tree may look like the figure on the next page. If we later
also wish to keep track of connects and disconnects for example, we may add
the dashed branch in the image and modify analysis to reflect the addition.
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2.3 Re-usability
One repeating part of the parsing specification is the regular expression patterns.
For example, a pattern matching an IP address could be used in multiple kinds
of logs, so these are ideal candidates for parts of parsing nodes to be re-used. We
allow for patterns to be named, stored separately from the parsing tree structures,
and referred to by their name.

In order to re-use entire trees, the user can define multiple trees. One of
them will be marked main and parsing will start there. Other trees can be
used as libraries. To use a different tree, the user can create a dedicated action
(named parse by), which will call that tree. The tree then has access to all of the
attributes.

2.4 Semantic processing
The primary consideration with analysis was its flexibility. It is rather hard
to predict what operations the user will want to perform and design and optimize
the mechanism for it. For example, we may choose to support aggregation by
a key stored in an attribute. This way, the user could parse mail log messages
in such a way to get e-mail identifiers in one attribute named mail id and wish
to count the total number of e-mails mentioned in the log. He would specify that
messages should be aggregated by mail id and counted. In another use case,
some other attribute could be treated as a numeric one and the numbers would
be added up.

Another option could be to group the e-mails by this key (mail id), possi-
bly sorted by another attribute and printed. However, this still supports only
a limited number of operations we could think of and it requires the key to be
precisely the same. It does not allow for grouping (or other kinds of aggregation)
of messages whose keys aren’t exactly the same. Furthermore, we might like
to support conditions being formulas with logical operators (of arbitrary com-
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plexity), conditions containing numerical comparison, different kinds of sorting
which consider multiple attributes and other features. So implementing all we
can think of would be very demanding, and even that would likely be too rigid for
many use cases. The user may also want to recognize something more complex
than a regular language, or to assign values that are not present in the input to
attributes.

The decision was therefore taken to integrate into the project an existing
programming language that could be used through a suitable interface at the time
of parsing a message. The control could therefore go back and forth between
parsing and the user-supplied program, which would, besides complex analysis,
allow for some features to be generated using the user program and then influence
the behavior of the parsing part.

There are two obvious ways to supply the user’s code — either in designated
files which may also be viable stand-alone programs, or embedded in the con-
figuration. The former approach has the advantages of separating parsing and
analysis more and allowing (at least in some cases) some degree of debugging
and testing the code separately without the need to run it back-to-back inte-
grated with the project. Also, large complex programs would overshadow the rest
of the configuration, making it hard to read. However, some operations may only
require a single short line of code, in which case it may be better to write them
directly into the config file. Therefore support for both was implemented.

The user may write their own functions and call them from the parsing tree.
A new action node was introduced for this, named call — the decision to call
a function is therefore dependent on whether a certain option matches a certain
attribute. The function called receives all of the attributes in a structure called
context, where the attributes are simply referred to by name. The function can
then modify the context by changing values of existing attributes or adding com-
pletely new attributes, execute any code (which can, for example, communicate
over the network, write to files, etc.), and call trees (just like the parse by action).

Inline user code can also be written directly into the configuration file through
a dedicated action: call. It can access and modify the context just like functions
can. This code is executed again every time and therefore can hardly store any
information about one log message and use it when parsing a different message. In
addition, it may need to interact with more complex logic written in a separate
file. To address these issues, every piece of inline code gets assigned a user-
supplied source file and it is executed as if it were a part of that file. It can call
functions from this file, access its global variables, etc.

When choosing the language for user programming, user comfort was given
a high priority. We also needed the language to be easy to interface with the core
of the program, which is written in C++. Python and Lua were the languages
on the shortlist, and Python was finally chosen because it is very well known
and famous for its wealth of libraries. Also, in the beginning, there was some
thought given to using machine learning for processing and diagnosing logs, for
which Python is very useful. Although it quickly became clear this functionality
would be out of the scope of this thesis, it is still regarded as a possible future
extension.
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2.4.1 Sessions and time parsing
We expected many use cases to require keeping track of sessions of some kind. An
example could be processing of ssh logs and monitoring how often and when each
user logs in and for how long. Or parsing Postfix logs to identify log lines asso-
ciated with a single e-mail (in the simplest case printing them grouped together
like in the example at the beginning of the chapter).

To be able to deal with incomplete logs, we should be prepared for the possi-
bility that some sessions may have their initialization but not their termination
mentioned in the log. For this reason, we support session timeout.

The session support we implemented offers storing user-defined objects with
a textual identifier, and these objects outlive the function call in which they were
registered. The session may be an instance of any class derived from a built-
in class for sessions. To allow for handling different kinds of sessions in the same
configuration file and the same module without identifier collision, sessions are
scoped by their class.

When registering a session, a reference time and a timeout can be specified,
in which case the session will be terminated at reference time+timeout unless
the user indicates there has been activity on it. If any activity is reported,
the reference time is updated - the session, therefore, times out after timeout-
long period of inactivity.

Since we timeout sessions ourselves, instead of leaving it up to the user, we
need to parse timestamps from the log into a representation where the elapsed
time between two timestamps can be calculated. However, depending on the par-
ticular log, timestamps may have different formats and be located in different
parts of the message. The user, therefore, needs to be able to specify the times-
tamp attribute and format. As discussed in the first chapter, timezone support is
also important — not only for processing logs with messages from different zones
but also for disambiguating timestamps around the end of daylight saving time.

Imagine we want to parse the timestamp from our Postfix example line, i.e.
2020-04-04T06:59:43.000422+02:00 and use it for session timeout. As men-
tioned above, we need to be able to calculate the difference between two times-
tamps easily, and we also need to let the user specify the format of their times-
tamp. There is a C library function called strptime, which does most of the work
we need. We can give it the textual timestamp and a format string and it will pro-
duce a Unix timestamp — the number of seconds since 1970-01-01T00:00:00Z
(also referred to as “seconds since the Epoch”). In our example, we would pass it
2020-04-04T06:59:43 as the timestamp and %Y-%m-%dT%H:%M%S as the format
string and get something like 1585983583.

However, since strptime works with whole seconds, we will need to implement
sub-second precision ourselves. To achieve that, we represent our time as the
number of microseconds since the Epoch (rather than entire seconds). The user
can then supply the sub-second precision of the timestamp in a separate attribute.
Also, although strptime works with time zones, it takes the time zone from
what is set in the system, and we need to read the zone info from the messages
themselves. To do that, we take a third attribute, which contains the time zone
offset, and we subtract this offset from the timestamp manually.

In our example, the user would supply attributes containing
2020-04-04T06:59:43, 000422 and +02:00 and the format string written
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above. We would initially use UTC as the timezone and get exactly the
value 1585983583 from strptime. Then we would subtract two hours from it
obtaining 1585976383. Then we would handle the microseconds by multiplying
the timestamp value by 106 and adding 000422, which means we would get
1585976383000422 as the final timestamp.

The content of the attribute containing the time zone should have the format
of sign, two digits representing hours followed by a character and two digits
representing the minutes of the offset. The sign of the offset should correspond
to RFC 5424 — e.g., if 2 hours need to be added to the current UTC time
to obtain the local time, the offset should be +02:00. If the timezone attribute
is not supplied, all timestamps are assumed to be in UTC.

The sub-second precision attribute should contain digits to be interpreted
as being behind the decimal point in the number of seconds. So, for example,
to represent time half a second after a whole second, this attribute can contain
“5”, “50” “500”, . . . , “5000000”. If this attribute is not supplied, zero is assumed.

2.4.2 Back to our example
So far in our example log, we’ve done some parsing which ensures that all desired
messages arrive at one node (an option) of the tree and have mail id set appro-
priately. We can put a call node under this option to process the fact that such
a message was encountered. Since we parsed the timestamp, the called Python
function will have access to the time the message was logged.

We create our own class mail, whose instances we will register as sessions
identified by mail id. We can store all log lines related to a particular e-mail in
the associated mail instance will print these lines when the session is ended. Each
time the call action is performed, we search for the session identified by mail id.
If it doesn’t exist, we create and register it. Once we have the session, we can
insert the input line in that session and either end it or leave it active and return.

Recall that in the tree we created for the example, analysis gets called when
the option with pattern %{mail id=[0-9A-F]∗}: %{ content=.∗} succeeded.
This means that when it is called, the content attribute is filled, and to detect
when to end the session, we may look for content being equal to removed.

If we don’t set a timeout, then all sessions without an explicit removed message
in the input log will be printed at the end of the output. We could print them
after a certain time (say 30 minutes) of inactivity using the timeout feature.

The code may then look similar to the one below. This is just to give an idea;
although it is very close to the real interface, you should refer to the documenta-
tion for the exact method names, arguments, and semantics.

class mail(session):
def __init__(self):

self.messages = []
def end(self):

for msg in self.messages:
print(msg)

def process_msg:
# find or create and register the session instance
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instance = mail.get(
context.mail_id,
start_time=context.timestamp,
timeout=24*60*60

)

# reporting activity on the session
# only needed when using timeout
mail_id.keep_alive(context.mail_id, context.timestamp)

instance.messages.append(context.msg)
if context._content == "removed":

mail.terminate(context.msg_id)
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3. User documentation
This chapter contains the complete user documentation to our program, which
we named Beaver.

Welcome to Beaver user documentation. Beaver is a log analyzer targeted
at Linux. Besides basic parsing using a tree structure, regular expressions, and
storing attributes, it supports user programming in Python, reading from a Unix
socket, and monitoring a directory for log files.

3.1 Installation
• Install the following prerequisites: libgrok, libpcre, python3, and python3-

dev, more precisely the following worked for Ubuntu 20.04: apt-get
install libgrok-dev libpcre3-dev python3 python3-dev. You will
also need g++ supporting -std=c++17 and make.

• Run make install as root. If you don’t want to install Beaver to a system
directory, you can just run make but keep in mind that you will need to set
PYTHONPATH=/path/to/beaver/repo/python.

• If you have run make install and wish to remove the generated binaries
from the current directory run make clean. Or you could remove the di-
rectory with the repository altogether.

If you wish to remove Beaver you can run make remove.
The following versions were used during development: python 3.8, gcc 9.3,

libpcre3-dev 2:8.39-12. Beaver has also worked with python 3.7.

3.2 Basics
The simplest way of using Beaver is to let it read the log from the standard input
and write the results to the standard output. In this case, only one argument
needs to be specified — the name of the configuration file.

The input is read line by line and processed as specified by the configuration
file. In a simple case, it contains a tree structure: the input line is matched
against given regular expressions, and depending on which regular expressions
match the line, the execution descends into different branches of the tree. Each
successful match fills attributes associated with the input line. These attributes
can be further matched. A simple tree could look like this:

match: msg { # attribute msg contains the original message
{

# if the content of msg matches this regexp, execute
# actions enclosed in the brace pair
# attribute err_msg gets assigned the part matching [ˆ ]*
"error: %{err_msg=[ˆ ]*}"
print: "error message encountered: {err_msg}"
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} # end of option "error: ..."
} # end of match of msg

This would filter lines containing error: and print the part after it
together with a commentary error message encountered:. So anything
more content error: nothing to say would become error message
encountered: nothing to say. You may therefore wish to write a more
specific regexp, anchored at the beginning of the line.

A tree named main is located and then executed for every line of the log. Other
trees may be defined in the same way and called using parse by: treename. See
the definition of the parse by action for more details.

3.2.1 Tree structure
The tree consists of two basic kinds of nodes - actions and options with match
being a special case of an action.

• Each match specifies what attribute should be matched and what options
are its children.

• Each option contains a regular expression and specifies which actions are
its children. If the selected attribute matches the option’s expression, all of
its children (all of which are actions) are performed (unless break is used
— see below).

• The last kind of node with children is the root, which only specifies what
actions are its children and if the tree is used, all of these actions are per-
formed.

The break keyword allows you to break from a block if an attribute was
successfully matched. It can be specified

• after an option — in that case, it indicates that if the match for this option
succeeds all options under the same match node, which follow this option,
should be skipped.

• after a match — in that case it indicates that if any of the options under
it are matched successfully, the following actions under the same parent
should be skipped.

As an example, consider the following tree:

match: msg {
{ "error"

print: "error encountered: {msg}"
}
{ "warning"

print: "warning encountered: {msg}"
}

} break
print: "looks ok"
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Let us parse a few messages with that tree:

• error: syntax error — The match is performed, which retrieves the
value of msg - the original message. The match of the first option suc-
ceeds and error encountered: error: syntax error gets printed. The
second match does not succeed, so the second print is not executed. Then
the control leaves the match. Because one of the options in that match was
matched successfully, all other actions under the root of main are skipped,
so the third print is not performed.

• warning: return value not set — The match again retrieves the value
of the message, the first option does not succeed, but the second does and
warning encountered: warning: return value not set gets printed.
The break again ensures skipping of the third print.

• build succeeded — Neither of the options in the match succeeds, so the
first two prints are not performed. When control leaves the match, it notices
that none of its options were matched successfully and performs all the
actions following the break keyword. Therefore looks ok gets printed.

• error: the following warning is treated as an error — The first
option in the match succeeds and error encountered: error: the
following warning is treated as an error gets printed. The second
option is also matched successfully and warning encountered: error:
the following warning is treated as an error gets printed. The
break then skips other actions under the root, so the third print is not
performed.

We might want to change the behavior in the last case and instead treat
messages which contain both error and warning as errors only. To do that we
would modify the tree by adding a break after the first option, this way:

match: msg {
{ "error"

print: "error encountered: {msg}"
} break
{ "warning"

print: "warning encountered: {msg}"
}

} break
print: "looks ok"

Now when the last message is parsed, the first option is matched successfully
and its print is performed. The second option is skipped because the first one
succeeded, and the third print is also skipped because one of the options under
the match succeeded.
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3.2.2 Patterns
Regular expression patterns are used in the match and option nodes. The syntax
is that of the tool Grok (the patterns are actually internally passed to libgrok
for compilation). The basics are the following:

• As mentioned in the Basics section, the beginning of the expression doesn’t
need to fit the beginning of the matched text, and the same holds for the
end. This means that the regular expression value also matches the text
there is no value here. Use ˆ and $ to anchor the expression to the
beginning and the end, respectively.

• Round brackets by default have their special meaning (like in extended
regular expressions of grep).

• Parts of the matched text can be named by enclosing the corresponding
part of the expression into %{}, e.g., %{attr name=fo*}.

• Named regular expressions (imported from a dedicated type of file) can be
used with the following syntax: %{my expr:attr name} (note that in this
case the attribute name comes second, unlike in the previous example)

3.2.3 Calling user-defined functions
The user can write his own Python scripts and call functions defined there using
the call action, like call: mymodule.myfunc. The modules are searched for in
the same directory where the configuration file lies and in directories specified
by the PYTHONPATH environment variable. The functions should take no required
arguments and their return value will be ignored.

Additionally, Python code can be written directly in the configuration file
using the execute action like this:

execute {
# Note: using Python’s print is not recommended in most cases,
# see below for more information.
print("hello from Python")

}

Every piece of inline Python code is executed inside some Python module.
You can specify which module should be used with the keyword in:

execute in mymodule {
# Python code

}

3.2.4 Multiple trees
So far, we only saw configs with a single unnamed tree. You can also define other
trees in the same configuration file by specifying their name and enclosing its
body in curly braces, like so:
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mylibtree {
print: "hello from library tree"

}

These so called library trees can then be called from other trees using the
parse by: keyword. We will describe this in more detail in the List of supported
actions section.

You can also explicitly name the main tree, so instead of

print: "hello world"

you could write

main {
print: "hello world"

}

3.3 Actions
We already encountered the basic actions: match (in the Tree structure section),
call and execute (in Calling user-defined functions section). Here we describe the
remaining ones.

3.3.1 Timestamp parsing
The syntax is as follows:

timestamp: {
format: "%Y-%m-%dT%H:%M%S"
from: _attr_name
micros_from: _micros
zone_from: _timezone

}

The format argument needs to be a string literal containing the format of
the timestamp compatible with strptime. It includes parts, which are matched
literally (like the T in the format above) and some input field descriptors starting
with %, which are expanded. See man strptime for details but some examples
are:

• %Y denotes a complete four-digit year

• %y denotes a year within the century (only two digits)

• %m denotes a month number (e.g., 01 for January)

• %d denotes the number of a day within a month

• %H, %M and %S represent an hour number in 24-hour format and minute
respectively
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• %T is equivalent to %H:%M:%S

• %I represents an hour in 12-hour format

The from argument specifies the name of the attribute from which the times-
tamp should be obtained.

Only the format and from arguments are mandatory. There is no need to
adhere to this particular order of arguments.

micros from specifies the name of the attribute which should be parsed for
sub-second precision of time. It should contain a number which is interpreted as
being behind the decimal point (so for example if it has 3 digits, it is interpreted
as milliseconds, if 6 then as microseconds).

zone from specifies which attribute the timezone should be read from. When
not specified, all timestamps are assumed to be in UTC. The attribute value
should be in the format plus or minus (optional) immediately followed by the
number of hours, one character (any character) and number of minutes specifying
the offset from UTC (so for example Central European Time would be +1:00).
If the number of minutes is missing, 0 is assumed.

3.3.2 Print
The basic syntax is as follows:

print: "attribute foo contains {foo}"

The parts in braces are either names of attributes, which should be printed,
or escapes.

Escape sequences are:

• {&quote} for "

• {&lbrace} and {&rbrace} for { and } respectively

It is also possible to print the whole context — all non-empty attributes whose
names do not begin with and underscore, which prints context’s attributes whose
name doesn’t begin with an underscore.

The attributes are printed one per line in the format attr name: attr value,
followed by an empty line.

The syntax for context print is

print: context

To better handle situations where a binary dump is a part of the log (or due
to some bug, the message contains strange characters), all characters with ASCII
code smaller than 32 or larger than 126 are escaped using backslash and three
decimal digits representing their code (there are always exactly three digits).
This means that non-ASCII UTF-8 characters are escaped. This behavior might
change in the future. The digits may also change to hexadecimal.
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3.3.3 parse by
parse by: keyword indicates that parsing using a named library tree should be
done. The library tree may be in the same file before or after the tree using it
or in a different file. The syntax is either parse by: libtree, in which case the
tree is searched for in the current file, or parse by: libfile:libtree, in which
case the configuration file libfile is parsed and searched for the tree.

Instead of the name libfile, you could specify a path to the file. If the path
is relative, it is considered relative to the directory containing the main config
(the config you gave to Beaver as a command-line argument). This behavior can
be changed by setting the BEAVER LIBPATH environment variable to a path to the
desired directory. You can also use absolute path to the library file.

3.3.4 Default module
default module specifies what should be the default Python module to look for
a function referred to by a call action. Inline Python is also by default executed
in the default module. Function names containing dots and inline Python with
explicit module specification (using the in keyword) are not affected.

The default module is scoped lexically to the subtree under its parent node.
This means it will only affect nodes in this subtree, but it may not even affect
all of them since it is performed at the same moment as any action. Therefore
actions preceding it under its parent node will not be affected. For example,
imagine you are writing an option and specify default module under it like so:

{ "regexp" # default_module will be scoped to this subtree
# some preceding actions
call: foo
match: attr {

{ "error"
call: bar

}
}

default_module: my_module

call: f
match: attr_2 {

{ "warning"
call: process_warning
parse_by: libtree
call: different_module.func

}
}

}

Then the calls of foo and bar will not be affected by the default module:
my module while the calls to f and g will. The call to different module.func
contains a dot, so the default module doesn’t affect it, and func is looked for
in the module named different module.
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What’s more, trees called from the subtree where default module takes ef-
fect, will not be affected. So, in this case, libtree would not know about the
default module: my module specification.

3.3.5 List of supported actions
The supported actions include:

• root and match — discussed in the Tree structure section

• call and execute — see the Calling user-defined functions section

• timestamp parsing — refer to its dedicated section (with the same name)

• print — see the Print section

• parse by — see the parse by section

• default module: — see the Default module section

• import patterns: — Imports named patterns from the specified file
for use in the regular expressions. Their scope is the same as that of
default module.

3.4 Python interface
Both functions from scripts and inline Python (the execute action) can use the
context object by referring to it as c and accessing its attributes simply by dot
syntax, like print(c.msg). Attributes can also be assigned from Python (and
even new attributes created) by writing c.my attr = "value".

All of the attributes are of type str except for c.timestamp, which contains
the number of microseconds since 1970-01-01T00:00:00 UTC. That one is of
type int and cannot be assigned to.

In case the attribute name is only known at runtime and stored in a variable
name, you can use getattr(c, name) and setattr(c, name, "this is the
value). Do not use c. getattr or c. setattr as they don’t work (unless
you’re looking for an attribute named getattr or setattr in the context).

The interface for other activities is in a Python module named b (short for
Beaver). It is imported inside the session module (described below) so if you use
sessions, there should be no need to do it explicitly.

The program buffers its output before printing it. Since this buffer is different
from that of Python, it is not recommended to use the default Python print
because the printed message could appear at a very different place in the output
than where it was intended to be. To address this issue, Beaver’s Python interface
contains a print function, which handles output buffering in a way compatible
with the rest of Beaver’s output. It does not add a newline at the end. To achieve
that, println should be called, which accepts an optional single argument. The
arguments of print and println are converted to strings as if the built-in str
function was called on them. In case you need to print text with variable sub-
stitutions, we recommend using Python f-strings, e.g., b.println(f"attribute
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my attr contains {c.my attr}"). Also, please note that strange characters are
escaped in the same way as with the print action.

Scripts may also call a parsing tree using the b.parse by function and passing
to it the name of the tree including the file name. This is the same as in the
parse by action described above except that the name must include the file name
and it doesn’t guarantee parsing of that configuration file (so it needs to be
mentioned in another configuration file or be the main file).

Warning: When dealing with time, please note that the current timezone will
always be set to UTC. See the Tips, tricks and caveats section for more details.

Closing curly braces — } — may be a part of the inline code as long as they
are indented by at least as many whitespaces as the first line of the code.

3.4.1 Sessions
Session support is intended for handling objects like ssh sessions. It can, however,
be used in a rather general way. A session is an instance of a class inheriting from
session (defined in the session module). The user can register a session instance
by using class method session.register. A session may have a timeout set after
which — if keep alive method is not called — the session is ended.

Sessions are identified by a string and their class. We recommend creating
your own class inheriting from the supplied session class and register instances
of that derived class. If this class has an instance method end, it is called when
the session is ended - one string argument is given, which indicated the reason
for ending the session. This reason argument is one of:

• manual — when session.terminate is called

• timeout — when the session timed out

• end — when the program is ending, all sessions are ended with this reason
given to them

The session class has the following class methods:

• find(cls, ident) — Finds the session identified by ident. If there is no
such session, it returns None.

• get(ident, *args, start time=0, timeout=0, **kwargs) — Tries to
find the session identified by ident. If there is no such session, it gets
created. args and kwargs are passed to the init method. If timeout
is not 0 the session’s timeout interval is set to timeout. If timeout is 0,
the session is never timed out.

• terminate(ident) — Ends the corresponding session calling its end
method passing manual as the reason for termination.

• keep alive(ident,reference time) — Indicates that the timeout of the
session should be postponed to reference time + timeout (where timeout
is the argument that was passed to get or register). Please note that ses-
sions are timed out after the complete processing of each message. Imagine
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that you have a session that times out at time T. When processing the first
message with timestamp larger than T, the session will still be alive and if
keep alive is called, it can still be kept.

There is also one instance method of session:

• register(ident, start time, timeout) — Registers an existing in-
stance. This means Beaver will store it, consider it a candidate for a session
to time out and end it if Beaver itself is terminating.

3.5 Command-line arguments
In its simplest variant, Beaver can be run with just the configuration file name
as a single command-line argument, e.g. beaver example.conf.

These command-line arguments are the supported:

• --debug — turns on debugging prints for both configuration parsing and
input processing

• --monitor — turns on the monitoring feature: when the end of input is
encountered, continue reading indefinitely so that new lines added to the file
will be processed too. This flag overrides this setting from the configuration
file - useful mostly for reading input from files in a directory (see Reading
from a directory).

• --no-monitor — forcefully turns off the monitoring feature

• --clean-run — when reading files from a directory, progress storage can
be used, which makes Beaver continue reading where it previously left off
(see the section Reading from a directory for more details). This option
makes Beaver behave as if it were empty

3.6 Examples
Imagine we’re processing a Postfix log whose lines have approximately the fol-
lowing format:

2020-04-04T06:59:45.724399+02:00 postfix/qmgr[15441]:
671641C38D9: removed

We would like to count the number of e-mails sent/received every minute. For
detection of one message, we use log lines with the e-mail identifier and a message
stating removed. We can write the configuration below. Please note that the line
break in the first pattern is purely typographical — it should be written as a
single line in the config file.

default_module: counter
match: msg {

{ "%{time=[[:digit:]-]*T[ˆ+.]*}\.%{micros=[ˆ+]*}\+
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%{offset=[ˆ ]*} %{_message=.*}"
timestamp: {

format: "%Y-%m-%dT%H:%M:%S"
from: time
micros_from: micros
zone_from: offset

}
match: _message {

{ "[[:alnum:]]+: removed$"
call: inccounter

}
} break
call: update_time

}
}

We also create the corresponding Python script named counter.py (this name
match the module name specified in the config), which we place in the same
directory as the config.

Let’s discuss a couple options of how to write the script. The first one will
have a simple counter and store the current minute. That would look like this:

counter = 0
current_minute = None

def inccounter():
global counter
update_time()
counter += 1

def update_time():
global counter
global current_minute
t = c.timestamp
t = t // 10**6
t -= t%60
if current_minute is None: current_minute = t
while current_minute < t:

b.println(f"{current_minute} {counter}")
counter = 0
current_minute += 60

The problem with this is that it will not write the number of e-mails for the
last minute in the log. We could instead have a session for each minute, which
would take care of counting the number of e-mails in it and print the number of
e-mails in its end method. We can then register the session with a timeout of one
minute, which will ensure it is ended at the end of the minute or when Beaver
itself is terminating. This approach would yield the following script:
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from session import *

class mail_counter(session):
minute = 0

def __init__(self, timestamp):
self.counter = 0

# the timestamp is in microseconds, so
#timestamp % (10**6*60) is the number of microseconds
# since the current minute started
timestamp_minute = timestamp - (timestamp % (10**6*60))

self.beginning = timestamp_minute // 10**6
if mail_counter.minute < timestamp_minute:

mail_counter.minute = timestamp_minute

def end(self, reason):
b.println(f"{self.beginning} {self.counter}")

def update_time():
""" register all mail_counter instances we need

(there might be no messages in some minutes)
"""
t = c.timestamp
t -= t%(10**6*60)
if mail_counter.minute == 0:

mail_counter.minute = t - 10**6*60
while mail_counter.minute < t:

t2 = mail_counter.minute + 10**6*60
mail_counter.get(

str(t2),
timestamp=t2,
start_time=t2,
timeout=60

)

def inccounter():
t = c.timestamp
t -= t%(10**6*60)
update_time()
current = mail_counter.find(str(t))

assert current is not None
current.counter += 1

def update_time():
mail_counter.update_time()
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However, this script might seem rather long for the task it performs. Luckily,
there is also a third option, which stems from the first script but doesn’t suffer
from the same flaw. We will use a part of a trick described in the Tips, tricks
and caveats section. We will register a session, which will be ended when Beaver
wants to terminate. This session can print the counter in its end method. The
code would look like this:

from session import *

counter = 0
current_minute = None

def inccounter():
global counter
update_time()
counter += 1

def print_counter():
global counter
global current_minute
b.println(f"{current_minute} {counter}")
counter = 0
current_minute += 60

def update_time():
global current_minute
t = c.timestamp
t = t // 10**6
t -= t%60
if current_minute is None: current_minute = t
while current_minute < t: print_counter()

class end(session):
def end(self, reason):

print_counter()

end.get("", timeout=0)

We can now run beaver counter.conf <input.log.

3.7 Other ways of reading input

3.7.1 Directory
Besides reading from stdin, it is possible to read from all the files which are
located in a specified directory and whose name matches a regular expression.
To achieve that, write the following in the config:

input: {
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path: ./input-[[:digit:]]\.in
sort: num
progress_storage: /path/to/progress_storage
monitor

}

The first two arguments — path and sort — are required. The path is
interpreted as literal path to the directory followed by a slash and then a regular
expression that does not contain spaces, slashes or hashes. The slash must be
present even when reading from the current directory.

All files whose whole name matches the regular expression (e.g., the expression
bar is equivalent to ˆbar$ and therefore doesn’t process a file named barbarian)
are processed in the order specified by sort. The possible orders are the following:

• lex - The file names are sorted lexicographically

• num - The file names are sorted numerically by the largest suffix that is a
(integer decimal) number. If no suffix is a number, the file is treated as
having a 0 at the end. This is useful for rotating logs. The order of files
having the same number is currently undefined. It may be later changed so
that files having the same number are sorted lexicographically.

Optionally a file for progress storage may be specified. In that case, when the
program terminates, it saves for each file it processed the information how far
it got. When the program is later run again with the same progress storage, it
continues where it stopped in each of those files (if the files haven’t grown, they are
not processed again). This behavior can be changed by specifying --clean-run,
in which case Beaver ignores the content of progress storage when it is starting
(but writes into the storage in the same way it does without --clean-run). The
files are identified by inodes, and therefore they are still treated as the same file
even if they are renamed.

The optional monitor argument specifies that the execution should not stop
after all of the files found are processed, but instead, Beaver should keep running
and wait for some of the files to grow or more files to appear. In such case, the
program should be stopped using SIGINT or SIGTERM.

3.7.2 Socket
The program can also open a Unix socket and read messages from it. Unix sockets
are sockets for local interprocess communication, which may or may not be bound
to a filesystem pathname. In the case of Beaver, they are bound to the pathname
you specify.

The socket is configured by:

open_socket: /path/to/socket

When reading from a socket, it is expected that the messages will comply
with the syslog protocol in starting with <priority value> (e.g. <13>). This
prefix is removed from the message (to enable paring with a tree which can also
be used for processing log files) and the number is split into facility and severity
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as per the syslog protocol and these numbers are assigned to attributes names
facility and severity (which are left empty when not reading from a socket).

If the prefix of the message isn’t in the form <number> then no prefix is
extracted, and the facility and severity attributes are left empty.

3.8 More on configuration file syntax
This section contains a more detailed and somewhat more formal description of
the configuration file syntax.

The configuration file consists of words separated by whitespaces { or } (which
are considered to be words of one character) and string literals, which are delim-
ited by quotation marks. The number of whitespaces between words plays no role
as long as it is at least one and it’s not inside quotes or around inline Python. If
newline is present inside a string literal, it is included in the string.

Words and curly braces create directives and blocks. A directive is a keyword
followed by a fixed number of arguments, e.g., parse by: libtree. Arguments
can be words or string literals, depending on the keyword used. It is recommended
but not required to specify the keyword and all of the arguments on the same
line and end the line after the last argument.

Blocks begin with { and end with }. They may be preceded by a keyword
and possibly arguments based on the particular block type. One block may be
written within another. Supported blocks are:

• tree — optionally preceded by tree name, if no name is specified, main is
assumed

• match — must be preceded by match: keyword and the name of the
matched attribute

• option

• inline Python — preceded by the execute keyword, possibly followed by
the in keyword and the name of the module to execute the code in

• input — preceded by the input: keyword

• timestamp parsing — preceded by the timestamp: keyword

The possible location and content of these blocks stems from their semantics:

• Trees must be specified as top-level entities of the configuration file, not
within any other block. And since each root has actions as its children, it
can contain actions.

• a match is an action and therefore must be specified within an option or as
top-level action in a tree. It contains options.

• option node is always a child of a match node, so its block must be within
a match block. Each option block must contain a string literal at its begin-
ning. This string is interpreted as the regular expression of that option. It
can then be followed by actions.
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• inline Python is an action, so it can be present in the same places as match
and it can contain only Python code.

• input is a top-level entity, just like trees. It is recommended but not required
that if you specify it, you do so at the start of the configuration file.

Comments are also supported - they start with # and continue to the end of
the line. The # character does not start a comment when inside a string literal.
The character also loses meaning in inline Python — so, for example, it can be
part of a Python string literal.

Ends of line play the same role as any other whitespace except:

• They terminate comments

• They play a role around inline Python. The rest of the line after the open-
ing brace is still treated as a part of Beaver config and can only contain
comments. The Python code needs to begin on a new line. Inside the code,
they play the same role as in a regular Python code. The closing brace
must be indented by fewer whitespaces than the first code line

3.9 Tips, tricks and caveats

3.9.1 Output buffering
The output is buffered. When reading from a directory, the output is flushed
every time the end of a file is encountered. However, if you read input from
a socket or standard input and there is currently no input to process, but the
program isn’t terminating, you may not see the whole output.

3.9.2 Explicit importing of trees
Calling a tree from Python using b.parse by does not guarantee that the appro-
priate configuration file will be parsed. If needed, you should define a dedicated
tree in the configuration file and put a parse by action of the missing tree in
it. For example, imagine have libtree in libtree.conf but you use beaver
main.conf and only call libtree from Python. Then you can put this in your
main.conf:

import {
parse_by: libtree.conf:libtree
}

The block named import is just a regular tree, which gets never used, but it
ensures parsing of libtree.conf.
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3.9.3 Message-independent variables
Since modules are only imported once, their global variables outlive individual
calls of their functions. So, for example, to implement a function counting how
many times it was called, you could write the following:

import b

counter = 0

def f():
global counter
b.println(counter)
counter += 1

Similarly, if the module above is called module, you can increment and print
the counter in inline Python instead of calling f like so:

execute in module {
global counter
b.println(counter)
counter += 1

}

3.9.4 Initializing and finalizing Python modules
All functions called from the config get invoked every time their parse by node
is encountered. You may instead wish to initialize some variables once before
parsing the first log message. You may also want to run some piece of code after
processing the last message.

To do the former, you can just write the code you need executed directly inside
a Python module as if you wanted it executed when calling python3 module. To
accomplish the latter, you may register a session with no timeout and place the
code in its end method. The following is an example of a module, which does
both:

from session import session
import b

class global_session(session):
def end(self,reason):

b.println("module deleted")

b.println("module imported")
global_session.get("")

3.9.5 Timezone in Python
Because Beaver handles time zones manually, it sets the TZ variable to UTC+0
to prevent stat. It seems that without setting it, the C time operations are
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slow (apparently /etc/localtime is stat-ed every time). This speeds up the
execution but affects Python too, so the timezone will always be set to UTC.

Imagine for example that the timestamp in the current message was parsed
with zone from specified and the appropriate attribute contained +01:00. When
you call datetime.datetime.fromtimestamp(c.timestamp).isoformat(), you
will get a timestamp that is one hour behind the one in the log. Please note
however that even if the timezone was kept to the system defaults, you would
still have this problem when processing logs whose timezone differs from yours
(even if the difference was just daylight saving time).

There are plans to add a built-in attribute specifying the offset from UTC in
minutes (calculated from the attribute supplied with zone from: when parsing
timestamp). However, the current implementation lacks this feature.

3.9.6 Recursive parsing
Imagine you would like to parse any number of key-value pairs that appear in an
attribute and for each pair create a new attribute whose name is the key and the
value is the value from the pair. This could be desirable, for example, to parse
the structured data element of RFC 5424.

You cannot write one match that would assign all the necessary attributes, but
you don’t have to leave all the work to Python either. You can write a tree that
detects the first pair, assigns its name and value to the appropriate attributes,
uses one line of Python to do the assignment we want, and then recurses.

This is a config that parses space-delimited key-value pairs directly from the
input and then prints the context:

parse_by: key_value
print: context

key_value {
match: msg {

# finds out the first "somekey=somevalue" occurrence
{ "ˆ%{_key=[ˆ =]*}=%{_value=[ˆ =]*} *%{msg=.*}"

execute {
setattr(c, c._key, c._value)

}
parse_by: key_value

}
}

}

However, please note that this will have quadratic time complexity, so it will
probably be faster to do the parsing manually if there are many key-value pairs
in one message.

Also please be aware that Beaver does no tail recursion optimization and
instead recurses itself. What’s more, there is currently no limit set on the depth
of the recursion, so infinite recursion will cause Beaver to crash with segmentation
fault.
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3.9.7 Performance differences among patterns
Please be aware that some patterns, which are similar and sometimes even equiv-
alent, may give very different performance. For example, imagine we are filter-
ing messages containing removed preceded with at least one character. If we
use .removed as the pattern, we got much faster execution than when we used
.+removed, by a couple of orders of magnitude.

This could be problematic if you need to assign the part matching .+ to an
attribute. It could help to filter the messages first by the faster pattern, and only
then do the attribute assignment, like so:

match: msg {
{ ".removed"

match: msg {
{ "%{myattr=.+}removed"

print: "{myattr}"
}

}
}

}

3.9.8 Error reporting
When a syntax error is reported, its position is reported, which consists of line
number and character number within that line. The character number refers to
the character where Beaver’s parser first identified the error. Since the parser
often reads the config by words, this position will likely be the end of a word.
So, for example, if you write print: foo instead of print: "foo", the character
number will refer to the second o in the word foo. The error message will state
that a quotation mark was expected but foo was found.

If you misspell the name of some action, the error message will state that
a closing brace was expected (which would end the block) but your misspelled
keyword was found. A similar message is printed, for example, if you specify an
action where Beaver expects an option. Use the file position reported to figure
out what happened.

These caveats may be mitigated in the future.
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4. Programmer documentation
This chapter contains Beaver’s complete programmer documentation.

Beaver is written in C++. It uses libgrok for pattern matching and Python
C API for interaction with user scripts and inline Python.

A high-level overview of a typical program run is as follows:

• Configuration is parsed first, which builds a tree with options and actions.
This tree is represented by its nodes, each of which remembers its children.
If there is some Python involved, its modules are imported at this point.

• Input initialization is handled — a file is potentially open, a directory is
potentially listed. If progress storage is enabled, it gets loaded.

• A context is created and the input is read line by line. For each line, the tree
is used for parsing (each action node has a perform method implementing
its behavior and calling perform of nodes under it if appropriate). The
context gets re-initialized (attribute values get cleaned) and re-used between
the lines of input.

• When the end of input is encountered, then if the monitor option is set, the
program waits for more input or a SIGINT or SIGTERM signal.

• If there are sessions involved, they are all terminated. Then Python’s
Py Finalize gets called. Also, if progress storage is enabled, the progress
is saved.

4.1 Tree representation
The tree nodes are instances of either struct MatchOption or a class derived
from ParseAction. Each node holds pointers to its children (standard pointers
in case the children are actions and unique pointers in case the children are
options). Actions implement a method perform, which is called when the action
should be done and also takes care of performing all appropriate actions in the
subtree under it. Options, on the other hand, are just a passive data structure.
The only actions that have children are:

• Root, which stores a vector of actions (its children) and its perform simply
calls them one by one

• Match, which has options as its children (also stored in a vector) and its
perform iterates throw them. For each option, it tries to match the desired
attribute’s content against the pattern of the option. If the match is suc-
cessful for a certain option, call it opt, the perform method iterates through
all actions stored in opt and calls perform on them before continuing to the
next option.

The tree structure is only stored by nodes representing their children and the
tree is held as a pointer to its root. To perform parsing using the tree, we only
need to call perform on its root.
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Besides nodes calling perform on their children, some nodes may call perform
on other tree’s root to implement parse by. This is why options store regular
pointers to actions and not unique pointers — roots can be pointed to by multiple
locations. Shared pointers are also not a great choice because they could create
cycles (tree A calling tree B, which calls tree A). Actions are therefore stored
separately in a static member of the ParseAction class named actionOwner,
where they are accessible and they could be deleted if needed. However, with
the current implementation, all actions parsed remain valid until the program
terminates and therefore are not deleted.

Trees themselves are stored inside class TreeStorage in its namedTrees
static member.

4.2 Overview of the components

The picture is an overview of components acting at run time (when processing
input) and how they interact. The thick lines without arrows represent tree edges.
Lines with arrows represent one component calling another.

The Root instance in the picture calls its children. The Match instance
fetches the matched attribute content from a Context instance, and it calls the
GrokIntegration stored in each of its children. This GrokIntegration commu-
nicates with Grok, and if the match is successful, it fills the appropriate attributes
by calling methods of the Context class.
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Each MatchOption has actions under it. The CallAction goes through the
Python C API, and it calls the appropriate function in a script supplied by
the user. This script has access to the session implementation written in
Python. It also has access to a contextWrapper instance (under the name c)
and python integration (which is the implementation of the b module), both
through the Python C API. The session class calls methods for session storage
through the Python C API as well.

The ContextWrapper instance accesses and modifies attributes stored in
the Context instance. Session storage manages sessions for the user, but it
also gets notified when the program is terminating to end all sessions. The
python integration component calls the Beaver print function and calls other
trees.

Another action associated with Python is the inline Python, implemented by
the Executor class. An Executor instance calls the inline code, which is executed
in the context of a user script. Therefor, the code can access globals of this script,
including the contextWrapper instance, the b module (if it is imported), and the
session module (if it is imported).

4.3 Attribute storage
Attributes are stored in what is called a context. Most attributes are kept in
an array and the Context class contains a mapping of attribute names to their
indexes (this is not completely precise, see below for intermediate vs. final at-
tributes). The number of attributes and the mapping is found when processing
the configuration file and matches reference attributes by indexes instead of their
names. This is to speed up the process of attribute value lookup as this way,
there is no need to search in an associative container.

The attributes are actually divided into intermediate and final ones, separated
by naming convention - intermediate attributes’ names begin with underscore.
The semantic is that intermediate attributes are implementation details, while
final attributes are to be considered our output. The original idea was that in-
termediate attributes would be thrown away after each line, while final attributes
could be kept. However, there currently seems to be no need to keep even the
final attributes, so the sole difference is that print: context only prints final
attributes.

The attribute values themselves are stored as instances of struct str, which
stores a char *ptr and the attribute’s length. The strings pointed to by
str::ptr aren’t null-terminated and are located inside the original message
(which lies in the buffer used for reading the input) to prevent the need for copy-
ing. (Initially, attributes were represented using std::string, but this turned
out to be very slow - although probably mostly due to time needed for memory
allocation; no testing was performed of having pre-allocated memory and copying
the strings there).

The mapping of names to indexes is represented by a std::map<str,
int> for each of the attribute kind (intermediate and final) - named
finalAttributeIndexes and intermediateAttributeIndexes. The strs are

stored in an array for each attribute kind; these are named finalAttributes and
intermediateAttributes. In the end, we decided to create only one Context
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instance and re-use it for each line, but the original design was to allow mul-
tiple instances with the same set of attributes (and name to index mapping).
Therefore, finalResultIndexes and intermediateResultIndexes are static
members of the Context class. The attribute values, on the other hand, are linked
to a Context instance, and therefore the str arrays finalResultIndexes and
intermediateResultIndexes are ordinary members of the class Context.

To allow for attribute values to be set by Python, the Context needs to have
a way of owning the stored attribute value (as strs only store a regular pointer,
which does not guarantee the memory it points to will not be freed). To enable
this, we introduced a container named attributeOwner. std::list was used to
prevent moving of these strings (it seemed during the development that although
the pointers were to the first char and not the std::string object, the moving
of these strings sometimes invalidated the pointer).

The user is also allowed to create new attributes from Python (by assigning
to an attribute that does not exist yet). As these dynamically added attributes
are linked to a single instance of Context, their name to index mapping is not
stored in one of the static maps (which are common to all instances) but in an
instance map additionalAttributes.

Since dynamically added attributes are not expected to be there in
every case, their containers are only created when they are needed.
To be optional, they are stored as unique ptrs making their fi-
nal type std::unique ptr<std::list<std::string>> atributeOwner and
std::unique ptr<std::map<str, str>> additionalAtributes.

4.4 Regular expressions matching
The libgrok library (which internally uses PCRE) is used for matching and in-
terfaced with the main program through a dedicated class GrokIntegration.
Each pattern is compiled as a Grok pattern using grok compile during con-
figuration parsing (in the constructor of GrokIntegration). During runtime,
GrokIntegration::tryMatch is called, which calls grok match and performs at-
tribute value extraction.

Initially, the extraction was done using grok walk init and grok walk next
but this approach turned out to be slow, so later the approach was
changed. In the constructor of GrokIntegration, grok capture walk init
and grok capture walk next are used to put grok’s captures into a vector
called captures. These captures contain their name, pcre capture vector
(which is an array of pointers to beginnings and ends of matched string), and
pcre capture number (from which the index into pcre capture vector can be
easily computed).

In the destructor of GrokIntegration, grok free is called.
As a part of the attribute value extraction, GrokIntegration fills the context

with attributes inside its tryMatch method if the match was successful. The
original approach was to use GrokIntegration purely as an integration layer
between the project and Grok, so tryMatch took a lambda function for processing
the attributes. Since there was only one lambda used, this was changed in an
attempt to speed up the processing. Although the results don’t seem significant,
it was not changed back.
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4.5 I/O
The initial naive approach was to use std::getline for input and std::cout
for output. This (especially the std::getline part) turned out to be very slow.

The input is read into a buffer using the read syscall and buffered manually
for speed. Then the buffer content is processed by looking for newline characters
in it and parsing the line found each time this character is found. When a line
longer than the buffer (4096 characters) is encountered, a warning is printed and
the line is skipped. The reading and segmentation into lines is done inside class
Reader.

The output is also buffered manually. To support printing warnings and
debugging messages, variadic template functions DebugPrinter::print and
Warning::print were written. As mentioned in the user documentation, some
characters are escaped by a backslash and three decimal digits representing their
code. For this reason, the writing into the buffer isn’t done using strcpy or
memcpy but a for loop. This is done inside the print(const char *s, int
length, bool escape = true) function (where escape=false turns the escap-
ing off).

print actions from the parsing tree are implemented by Print and
ContextPrint classes, which inherit from ParseAction.

4.5.1 Directory monitoring
This feature is supported by class DirMonitor. The directory is listed using
opendir and readdir calls, and the matching is done using Grok (ˆ is added to
the beginning of the pattern and $ to the end since this better corresponds to the
intuitive behavior).

When the program is started, it lists the contents of the directory, filters them
by the pattern and then looks to progress storage file (if it’s supplied) for offset
corresponding to each particular file’s inode. Inodes are used because in a typical
log rotation case the file names change, and therefore a file name is not a reliable
identifier of the file itself.

The file names are sorted in the order specified by the user and opened one
by one. Each time a file is, open Beaver seeks to the offset corresponding to it (0
if it hasn’t read the file) and attempts to read. When the file’s end is reached, it
gets closed and another one gets opened. If all files have been processed and the
monitor option is turned on, the program sleeps for a short while and repeats
the process from the step of listing the directory onwards.

In the end, if progress storage is specified, inodes from persistent storage
for which a corresponding file (with its name matching the pattern) has not been
found are forgotten. The rest of the inodes are written to the storage. To allow
for this, a signal handler for SIGINT and SIGTERM is used (which also ends all
sessions and does further cleanup by calling a function called finalize).

4.5.2 Socket
Standard socket and bind syscalls are used with AF UNIX socket family. For
removing the priority value from the message, only the ptr (the pointer to the
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beginning) of msg is incremented. Besides the incrementation of ptr, the input
is read in almost the same way as it is read from files or from the standard input.

4.6 Python
Python C API is used for the interface between Python and C++. Modules are
imported at the time of configuration parsing by calling PyModule ImportModule
and encapsulated by instances of class CallAction, which inherits from
ParseAction and gets stored in parting trees.

In each module, the identifier c is set to refer to an instance of struct
contextWrapper, which is a simple PyObject holding a C pointer to the
active Context and implements methods for attribute access. These are
equivalents of getattr and setattr in that they can be called like
print(c.attrname) and c.attrname = "attrvalue" or use them by calling
getattr(c, "attrname"), setattr(c,"attrname", "attrvalue"). Unfortu-
nately, they currently cannot be called as c. getattribute ("attrname")
or c. setattribute ("attrname", "attrvalue") because to do that, the
getAttribute implementation would have to return some Python function object
when invoked with name getattribute or setattribute .

Imported modules are cached in static std::map<std::string, PyObject
*> CallAction::modules, since they can be shared by multiple call and
execute actions.

4.6.1 Inline Python
inline Python is read from the configuration file. The base indentation is deter-
mined by the indentation of the first line following the opening brace. This base
indentation (the same number of whitespaces regardless of their precise value,
e.g., a tab is treated the same as a space) is then removed from all the code
lines. The end of the Python code is detected when a closing brace with a lower
indentation is encountered. If an indentation lower than the base occurs and the
first (non-space) character is not a closing brace, an error is reported.

The code is then passed to Py CompileString before the reading of input
begins. It is then encapsulated in an instance of class Executor (which inherits
from ParseAction). Each inline code block is executed in the context of some
module (either specified by execute in modulename or by the default module).
This is done by getting a reference to the module’s globals when the Executor
is created and passing it to PyEval EvalCode each time the block is run. The
only way the inline code can access the context or rest of Beaver is through this
module.

4.6.2 Python integration
Since Python needs to call some functions built-in to Beaver (like those for session
handling), the b module was introduced and is added to all user modules by calling
PyModule AddObject. On the C++ side, it is referred to as python integration,
and its code is in python integration.cpp. It offers a print function (which
calls Beaver’s print), functions for handling sessions (register, end, find, and
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keep alive), and a function call tree. These are the implementation func-
tions. There also exists a module session written in Python, which offers a base
session class. This class offers class (and instance) methods as wrappers for
these implementation functions. It also offers an additional method get, which
attempts to find the session, and if the search is unsuccessful, it creates and
registers it.

4.6.3 Session storage
As mentioned in the user documentation, sessions are stored using
both a string identifier and their class as a key. They are stored
in a std::map<std::pair<PyObject *, std::string>, session> named
registeredSessions, where struct session stores a pointer to the registered
session instance along with other metadata for supporting timeout. This includes
the time when the session should time out, by how much this time should be ex-
tended when keep alive gets called, and two iterators, which we will discuss
now.

Very often (ideally after each message), sessions that expired need to be ended.
Going through all registered sessions every time would likely be time-consuming,
so sessions also need to be stored by time in a way that will enable quickly iden-
tifying such sessions (as well as quickly inserting them when they get registered).
This is done in std::map<timeType,session *> sessionsByTime. However,
sessions can also be ended manually (which is expected to be the usual case)wh,
and therefore, when ending a session this way, it needs to be (quickly) removed
from sessionsByTime. Sessions also need to have their timeout changed when
keep alive gets called. Our data structure needs to be able to adapt to this
quickly.

To support this, struct session also contains an iterator into
registeredSessions pointing to itself and a similar iterator to sessionsByTime.
When a session is ended manually, the iterator into sessionsByTime is used for
removing the session from this map. When a session times out, the iterator into
registeredSessions is used. For the actual identification of sessions, which
should be timed out, the project walks through sessionsByTime, ending sessions
encountered until it finds a session that is yet to live.

Sessions are timed out after the complete processing of each line of the log. It
cannot be done earlier because the timestamp is parsed as a part of the parsing
tree.

4.7 Configuration parsing
Configuration parsing is done manually by a class named ConfigParser. It con-
tains an internal ConfigParser::Lexer class, which is responsible for detecting
words and sections inside quotes, skipping comments, and keeping track of the
position in the configuration file (line number and character number on that line
for printing errors should there be any).

Dedicated functions are used for parsing logical parts (e.g., parseOption
for parsing options) and these call each other (e.g., parseOption will call
parseMatch if the option has a match as its child).
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4.7.1 Other files and tree references
The public method ConfigParser::parse(bool mainConfig = true) is also
used for parsing external files (a new ConfigParser instance gets created for
that file). If the function encounters a library tree from a file, which has not
been parsed yet, this file is parsed before continuing. To enable referencing trees
in their file before they are defined, unknown tree references are not immedi-
ately reported as errors. Instead, they are kept by name in a static member
ConfigParser:: treesToFill. It is a map with string keys (names of the trees)
and values of a struct ConfigParser::treePlacement. This struct contains a
vector with places to fill the tree and a vector of file positions (for error reporting
when a tree is not found).

A place to fill is represented by a type named treeToFillT. It is a pair of a
vector of actions and an index into that vector, where the tree should be. We
do not just use a pointer because pointers into a vector are not persistent and
these vectors are inserted into.

When parsing of a tree gets finished, it is checked if the tree is in treesToFill
and if so, it gets filled and removed from treesToFill. At the end of parsing
of the main config file, treesToFill should be empty. If it’s not, there is a tree
that was referenced but not found, and an error is reported (the file positions
where it was referenced are stored in treePlacement::filePositions).

4.7.2 keyword member
Besides a Lexer instance, parsing methods share a string member of
ContextParser named keyword, which stores the last word read from the con-
figuration.

Some of the parsing methods expect the keyword member to be filled when
they get called, and they treat it as the first word of their input. This behavior was
introduced because callers of some of these methods need to read the keyword to
determine what method to call. Namely, the following methods expect keyword
to be filled for them:

• parseElement — parses either a tree or an input: or socket: specification

• parseTree — the keyword will usually be the tree name, which needs to
have been read by parseElement to determine that it’s dealing with a tree
and not an input: specification

• parseActionList — the behavior in this case is just to make implementa-
tion of parseTree slightly simpler

• parseOption — the keyword needs to be the opening brace of that option,
which must have been read by parseMatch to find out that there are more
options to parse

Other methods ignore what keyword contains when they are called. Instead,
they just continue reading from the configuration file (using the Lexer instance).
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4.7.3 Comments on some of the ConfigParser methods
This section contains the description of a few chosen ConfigParser methods.

• parseBlock — This method parses a block enclosed in curly braces con-
taining key-value pairs. It receives as its argument a map, which for every
valid key stores a std::function processing its occurrence. This function
can, for example, read the value and just store it somewhere.

• parseActionList — Parses a block containing a list of actions (written
just after each other with no delimiter). It is used when parsing a root or a
match. It takes a std::vector<ParseAction *> reference and puts the
actions in it. It uses a map called parseFunctions in a way that is similar
to parseBlock. All supported actions have a handler for them stored in
parseFunctions. This handler is typically a lambda function, which calls

the appropriate ConfigParser method (e.g., parseMatch for matches) and
stores its returned value in the appropriate location. This way, if a new
action is to be introduced, the ConfigParser only needs a parser for the
action to be added to parseFunctions.

• parseExternalFile — Creates a new ConfigParser instance and calls its
parse method.

• findExternalTree — Handles a parse by: specification. It receives an
argument called placeToFill specifying where the found tree should be
placed. It takes the parse by: directive’s argument, and it tries to find a
tree with that identification. If there is no such tree, it splits the argument
into file name (which may not be specified, in which case it’s left empty)
and the tree name itself. If a file name was specified and parsing of that
file hasn’t started, parseExternalFile is called. If a file was not speci-
fied, or its parsing has already started, placeToFill is added to places.
These places are filled once the corresponding tree is parsed. This is why
the method doesn’t return the tree, and instead, it gets the placeToFill
argument.

4.7.4 Default module and importing patterns
The way default modules and imported pattern files are handled stems from their
scope, which is a subtree under the option where they were specified.

Each time a default module: is encountered, a new element replaces its
predecessor. When we finish parsing a subtree under an option, all of the
default module: directives specified in it (which are the k newest ones) lose
their effect. This implies that default modules should be stored in a stack. It is
implemented by a std::vector ConfigParser:: defaultModuleNames, which
stores their names. When a call: or a execute directive is encountered, the
last element in defaultModules is passed to its constructor.

Removing elements from the stack is done inside parseOption. Any number
of default module: directives may be specified under a single option. To handle
that, parseOption remembers the original size of defaultModuleNames, and at
its end, it pops all the elements it added.
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We keep track of patterns to import in a way analogous to the default mod-
ules. In this case, however, the whole vector is passed to the appropriate con-
structor, because all of them are to be imported. The pattern files are then passed
to grok patterns import from file. Since this function imports patterns for
one specific struct grok, it is called for every GrokIntegration instance con-
structed. However, this is done before runtime, and the pattern files themselves
have no dependencies that would have to be read again, so it should not be
significant for the performance.

4.8 Timestamp parsing
class TimestampParser, is responsible for parsing timestamps. It inherits from
ParseAction and is placed in the parsing tree in the place where the user wrote
the timestamp: block. The parsing itself is done in its perform method.

The strptime function of the standard C library is used for parsing the text
representation (without timezone and micros) into struct tm. The struct is
cleared using memset in the beginning of perform to behave better if the format
string omits something - e.g., does not contain a year field descriptor. mktime is
then used to obtain the Unix timestamp from this struct. To handle time zones
ourselves, we set the TZ environment variable to UTC+0, making mktime assume
the time zone to be UTC. We then add the offset (if the user supplied it) manually
to the result of mktime.

However, using mktime every time was rather slow, and therefore the last
Unix timestamp is cached along with the last struct tm, and if the new struct
tm has the same hour (and year and day), the timestamp is calculated from the
previous timestamp. Since mktime assumes a constant time zone, this caching is
correct and could even be used for instances of struct tm differing in their hour.
There are plans to use the cache every time the instances have the same day (and
year).

4.9 break implementation
The break keyword after an option means that other options under the same
match should be skipped if the option is successfully matched. When walking
through the tree, this breaking will be done inside the perform method of that
option’s father. A break after a match means that if any of its options are
matched successfully, all actions following the match in the same block should be
skipped. Since instances of MatchOption are only passive objects, this breaking
will be done inside the perform method either of its father (if it is a root) or the
match two levels above the match with the break.

The presence of the break keyword is signified by setting a bool flag (either
in a MatchOption, or a Match). When Match::perform finds that an option was
successfully matched, it checks if its flag is set. If yes, the rest of the options are
skipped.

The break after a match is a little more complicated because the signature
void(Context &) does not allow Match::perform to report whether it succeeded
with at least one option. To get around this, we introduced a static flag inside
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Match, which is set exactly if if the match is followed by break and was successful.
This flag is set when returning from Match::perform and is immediately read
and cleared by the Match::perform or Root::perform above.
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5. Problems encountered

5.1 Speed considerations
We used a profiler named perf [1] to look for bottlenecks in the program. Since
some of these bottlenecks seemed to be unnecessary syscalls, we also used the
strace tool to get a list of syscalls made.

5.1.1 Grok
Grok is used for regular pattern matching and it uses a library named Tokyo
cabinet [10]. This library offers, among other features, tree structures. Grok uses
those to store parts of the expression by name. These trees are walked through
in grok match walk next, which we initially used for storing attributes when
a match is successful. However, inside the Tokyo cabinet walk implementation,
a custom Tokyo cabinet’s assert is called, and this, in turn, calls sched yield.
This call overshadowed other syscalls in strace output and slowed down the run
time.

Therefore we looked for a way to avoid calling grok match walk next dur-
ing runtime. It turned out that grok offers functions to walk over what it
calls grok captures. Each grok capture contains a representation of that
part of the input string matching a particular part of the regular expression
— a pointer to a string (char **) pointing to an array and two indexes into this
array — one representing the beginning of the string and the other for the end.
The string can therefore be found out by simply indexing into that array.

To take advantage of this, a walk across grok captures is performed
in GrokIntegration constructor, and the found grok captures are stored
in a vector inside the GrokIntegration instance. During runtime, when the pat-
tern is successfully matched, this vector is iterated over, and all of the attributes
are assigned. This iteration through the vector is still visible in the profiler output
but the time was improved.

Some thought was given to the possibility of avoiding even this iteration and
attribute assignment by computing more at the time of configuration parsing.
The idea was that instead of indexing into an array and assigning the char *
into the context, a char ** would be computed, which would only have to be
dereferenced when accessing the attribute (probably actually two pointers — one
for the beginning, one for the end). However, the attribute may be assigned
in multiple options (which means there is no char ** that would reliably point
to the contents of the attributes) and attributes can be assigned from Python, so
this approach was abandoned without implementation attempts.

5.1.2 Timestamp parsing
The mktime standard C library function is used for computing Unix times-
tamp from struct tm. In the early stages of implementation, the TZ environ-
ment variable was not being set by the program, which led to repeated stat-s
of /etc/localtime (with every line of the log), which slowed down the execu-
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tion. When we stopped assuming all times were in the current timezone and
instead implemented custom timezone support by setting TZ to UTC+0 and manu-
ally offsetting the computed time by the supplied time zone, this problem ceased.
However, there still seemed to be a significant impact of mktime on the execution
time. To address this issue, we cache the last struct tm used in mktime and
the corresponding Unix timestamp. When converting to Unix timestamp, this
cached value is checked, and if it has the same year, month, day and hour as
the cached time, the last Unix timestamp is used, and the difference of the past
and the current time is added to it.

5.1.3 I/O
Debugging prints were introduced to give the user an idea of how the parsing
of both the configuration file and the input log lines. The early implementation
took a std::string and decided whether or not to print this debugging mes-
sage. This, however, meant that the string arguments got created even when
the debugging prints were turned off, and the memory allocation inside it slowed
the processing significantly (about seven times). The implementation was there-
fore changed to a variadic template taking const char * and const str * ar-
guments to avoid the requirement for memory allocation.

Very early on in the implementation, std::getline was used instead of cus-
tom line reading and std::string instead of our str. This approach was very
slow (probably due to the needed memory allocation but possibly partly due
to the copying done after each successful match) and was quickly changed.

5.2 Reading from directory
It is important, especially for session tracking, to read the input files (should
there be more of them) in the correct order, which needs to be specified by
the user. Supporting arbitrary order (even based only on the file names) would
need to involve Python, and in the end, it was deemed unnecessary. One idea was
to order the files by their modification date. However, when files are rotated (or
a new file gets created), it may happen that some messages are logged to the new
file while other messages are written in the old one. Therefore the modification
time is not a reliable indicator of the correct file order. There are two expected use
cases: log rotation and log files with names based on the time of their creation.
In these cases, numeric sorting by a number suffix (for rotation) and lexical order
(for timestamped names) are sufficient, and therefore are the supported orders.

The fact that messages may be logged into two files simultaneously could also
be problematic for reading messages since they might not be read in the correct
order even if the files themselves are. However, each session will typically be linked
to only a single process, and therefore messages associated with that session will
be processed in chronological order. Therefore we believe that this will not be
a major problem.

We support reading from multiple files (filtered by a name regexp) and saving
progress for later resuming where we left off. The problem is that, in principle,
any of the input files can grow (at any time — our program may or may not be
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running) and be renamed. Let us first deal with a single run without resuming
saved progress.

Since file names are not reliable identifiers in our environment, we picked
inodes instead — when a file is renamed, its inode stays the same (and if it’s
opened for reading, it stays open as if no renaming took place). When encoun-
tering the end of input of the last file, we may wish to terminate or continue
monitoring the input files for growth or wait for new files to be created. In that
case, we saw two approaches to take - either register to the system what updates
we wish to be notified about using something like inotify, or look for new files
(or added content) every once in a while and handle changes found. We imple-
mented the latter approach because it seemed simpler to implement, but we think
it might be nicer to register with the system for changes.

Since we don’t want to make assumptions about which file is going to grow
(or assume that new files are added only when other files do not grow), we check
for new content or new files every time we reach the end of the last file. This
means that if the last file is growing too fast to process and other files are growing
too, then the content of those files may not be processed until the last file stops
growing. However if this state is only temporary then this falls within the irreg-
ularities around switching log files. And if this state lasts longer, then it is not
completely clear in which order the messages should be processed, as there are
multiple independent processes logging simultaneously. We, therefore, think this
behavior is reasonable.

Let us turn our attention to saving and resuming progress. As mentioned ear-
lier, files are identified by inodes. We need new files to be read from the beginning
and old files’ inodes to be forgotten to prevent cluttering of the progress storage.
To achieve this, when the program is terminating, it stores pairs of inode — file
position into the progress file. When the program starts again, and a progress
file is specified, it finds the list of files whose names match the requested pat-
tern. Only these files are read and remembered. It looks for any progress stored
for each of these files’ inodes — if there is none, zero is assumed. The files are then
opened in order, seek is performed to their position, and they are read to their
end before continuing to the next file. When the program is terminating again,
it only writes progress for those files which were found and whose name matched
the pattern. Other files are forgotten, as required.

5.3 Python interface
Python gets called from the main program but it needs to use some functional-
ity offered by the C++ implementation (like attribute access or calling library
trees). So there need to be some functions that are callable from Python and can
handle the appropriate C++ objects (like the context). The original approach
was to compile a Python module (written in C++) using a Python build script
and import that module. This posed a couple of problems.

The output of the compilation was a shared object file, which needed to be
found at runtime. For development purposes, this could be done by setting the
LD LIBRARY PATH environment variable to the directory containing the shared
object file. This wasn’t fit for production, where the project should be installed
in a system directory and used as a command. Forcing the user to specify
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LD LIBRARY PATH would hardly be acceptable, so the .so file would have to be
placed in a different system directory to be found by the default search algorithm
of the dynamic linker.

It also meant that some parts of the project needed to be linked to the Python
module, for example, the context, which needs to be accessed by user scripts.
The compilation flags used by the default Python compilation machinery made
this a problem and the workaround we found was to compile these parts into
a shared object file as well. This would mean another .so to take care of during
installation.

We later changed our implementation to construct the Python module at run
time using the Python C API.

Beaver manually buffers its output in an attempt to increase speed. This
creates difficulties with Python’s default print function, which does not write
into our buffer. That means that messages from Python may drift from related
messages printed through our buffering (especially as Python also buffers inter-
nally). This is hardly desirable since messages from the main program and from
a Python script linked to a single common line of the log may appear far from
each other and it might therefore seem that they are associated with different
log lines. There needs to be a way to allow Python scripts to print via our
buffer. This is done by adding a custom print function. However, the default
print interface from Python offers much of functionality, like variable number
of arguments, custom separation, and custom end character (the end argument,
usually newline). We did not want to implement all this functionality ourselves
as this would be time-consuming and would add little to our core functionality.
We decided to only implement print and println functions. The former takes
exactly one argument and converts it to string before printing. The latter takes
one optional argument and processes it in the same way. The rest of the desired
functionality can be achieved through Python’s f-strings.

5.4 Miscellaneous
Grok allows the usage of predefined patterns using a syntax like
%{regexp name:attr name}. However, when obtaining expression parts through
grok capture walk next, these parts of the pattern have names containing
the colon and the regexp name (so the name in our example here would be
regexp name:attr name). This is undesirable for our attribute assignment se-
mantics, so the names are manually changed to only contain the name of the at-
tribute.

When parsing a configuration file containing inline Python code, we need
to deal with indentation as Python is whitespace-sensitive, and we expect con-
figuration files to have their own indentation for better readability. We could
force the user to scrap the config file indentation and write the Python code with
proper absolute indentation. The result would, however, look something like this:

match: msg {
{ "hello world"

execute {
ci.print("hello world encountered")
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}
}

}

This dramatically reduces readability. Therefore, we use relative indentation: we
edit the read code by removing some of its leading whitespaces. We could take
the indentation to be relative to the position of the opening brace, but this would
result in a rather large indentation. What’s more, this indentation would be
determined by the rather arbitrary number of characters in our keyword execute
and how many spaces the user writes between the keyword and the opening brace.
This could yield indentation by a number of spaces not divisible by four and would
also complicate matters if tabs are used for indentation instead of spaces. We,
therefore, take the base indentation from the first code line following the opening
brace. This closing brace cannot be part of any valid Python code.

We also need to be able to detect the end of the Python code. This seems
simple — the block is terminated by a closing curly brace. However, that charac-
ter could be part of the Python code (inside a string literal). Therefore, we need
to react to only those braces that cannot be part of a valid Python code. Thanks
to relative indentation, we can simply wait for a closing brace that is indented by
fewer spaces than the first code line.
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6. Possible future improvements
Intermediate attributes

Currently, the attributes are categorized as intermediate or final ones, based
on whether their name begins with an underscore. The idea behind this is to have
internal implementation details separated from final outputs. We support context
print, and in the future, we might support printing it in a structured way. In
that case, however, we will hardly wish to print every single attribute that gets
used. Some attributes should stay hidden.

However, this idea could be taken a step further. Intermediate attributes could
be scoped within the tree where they are assigned. This would prevent name col-
lisions among attributes from different trees, some of which can be library trees
written by someone else. The scoping could be done by name mangling. We
could include the name of a tree in the name of any private attribute, followed
by the attribute’s short name. To prevent name collisions with user-defined at-
tributes, we could include a character the user cannot put in an attribute name.
When parsing the configuration, we would have to remember the name of the tree
we’re currently in and adjust the attribute names accordingly. The intermedi-
ate attributes should probably be renamed to private attributes to reflect this
semantic.

Template trees

To call a library tree now, we need to set the attributes the tree will use. Which
attributes get used and for what is determined by the library tree itself and it is
constant for one tree — the caller cannot do anything about it. The same holds
for the results of the parsing, they get assigned to some fixed attributes which
the caller can’t choose.

This could potentially be improved by introducing some sort of template trees.
A library tree could specify its template arguments, which would be names of at-
tributes. The callers would set these template arguments in the place where they
call the library tree. Another instance of the tree would then be created, which
would use the appropriate attributes. This could, however, pose problems for
using Python, so we might have to implement some way of accessing template
argument values from Python.

Some thought should also be given to the question if any other types of tem-
plate arguments should be supported. We could implement template arguments
being other trees, which get used.

C modules

Python was chosen as our language for user programming to increase user com-
fort. However, in some cases, the run time could be critical, and the time spent
in Python is significant. Users in such a situation might benefit from the addition
of C/C++ modules. The user could supply a dynamic library, which would be
linked dynamically and appropriate functions inside it called.

The interface would probably be similar to that used by Python scripts except
that the strings would used would probably by instances struct str rather than
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std::string or null-terminated char *. The trick used in matching to get null-
terminated strings without copying is to simply replace the character after the end
of the matched string by \0 and restore the original state after the matching is
done. However, in the case of user modules, it could not be used since multiple
attributes may be accessed by the user function. If we tried to put \0 at the end
of each, we would likely end up with some attributes containing \0 inside them.

Explicit importing and tree name scoping

The current implementation imports library tree files when a tree from that file is
used in a parse by action. When the user wants to call a tree from Python, they
must ensure that the tree is imported. In some cases this would mean creating
another tree in the main config file, which would never get entered but it would
contain the appropriate parse by. It would be nicer to allow the user to import
library tree files explicitly as well. We could even have a function for the user
to call from Python which would ensure parsing of a specified configuration file.
The user could call this function from a module at the time the module is imported
(as described among the tips in user documentation), which happens at the same
time other configuration files are parsed.

Library configuration files

We implemented a framework for parsing logs with support for a kind of libraries.
However, we wrote no libraries for the user. For example, a tree for top-level
parsing of messages conforming to one of the syslog RFCs could be a nice library
tree to be supplied with the program. Additionally, we may supply a library tree
for parsing some of the most common formats of timestamps and trees for some
of the parsing of the logs we gave as an example at the beginning of chapter 2.

I/O improvements

It would be no doubt a useful feature to be able to print the output in some
structured way, like JSON. It could be an action very similar to a context print
except that it would print the attributes in JSON or some other format.

Furthermore, we could implement receiving syslog packets over UDP or TCP,
not just through Unix socket, and therefore act as a full-blown syslog server.

Getting all attributes

There might seem to be a workaround for the structured output printing men-
tioned above — call a Python function, which will use some appropriate library
to do the print. However, this function would have no way of getting the full
list of available attributes. That is because attribute accessing is done through

getattribute , which means that dir calls will not reveal any of them.
We should therefore support some way of accessing the list of attributes,

probably by implementing dir .
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Different attribute types

Some attributes don’t have the semantics of a string. Initially, this only included
the timestamp, so we decided to implement it as a one-time exception. However,
the list expanded to include the facility and severity values when receiving mes-
sages through a socket using syslog. Therefore it might be better to implement
support for attributes of different types.

These attributes could not be directly used for matching (without converting
them into a string), so they would probably be mostly used by Python. Therefore
for support of arbitrary attribute type, we might store attributes of type PyObject
*. If these attributes were used in a match, we could either give a warning
and consider all of the options to fail, or we could try to convert the attribute
to a string using Python str function — that way, the user could implement
custom conversion stringification.

The non-string attributes we have encountered so far, though accessed mostly
by Python, were created by Beaver itself (timestamp by TimestampParser and
priority and severity values were set in one of the functions responsible for reading
input). They could, however, be converted to PyObject * just after creation.

We could also try to serialize values of these attributes to a sequences of bytes
and convert them to PyObject * when they are accessed by Python and from
PyObject * to the value when they are set by Python. In this case, we would
have to be careful not to interfere with Python’s garbage collection when non-
string attributes get created by Python. We would have to keep ownership of all
references it holds to make sure those objects aren’t deleted. We would also need
to keep track of any changes to the serialized object, and if some of the references
it has started pointing to a different object, decrease the appropriate reference
count (otherwise, we could cause a memory leak). This approach seems fragile,
so maybe we should keep at least the attributes created by Python as simple
PyObject pointers.
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7. Performance and comparison
to other tools
This chapter aims to compare Beaver’s speed and set of features to other tools
that could be used for a similar task.

The speed testing was done inside on a laptop inside a Podman container.
The laptop was had an 8-core Intel(R) Core(TM) i5-8250U CPU @ 1.60GHz
with a cache size of 6144 KB.

Two input files were used. The smaller one was a real Postfix log, and
the larger one (which was used where possible) was the smaller input file con-
catenated 200 times with itself, making it roughly 1GB in size.

The script used for benchmark and the output it produced are in attachments.
It ran each tool in each of the configurations 10 times and recorded the run times.
The script then calculated the minimum, maximum, and average run time. This
measurement was done twice, and the results of the first one were not kept.
This was to let the kernel cache the inputs etc. The output of the script (see
attachments) contains all 10 of the measured times for each tool and configuration.

7.1 Profiler output
Perf [1] was used for profiling with the larger input file. Its output for the counter
example (the one counting the number of e-mails sent every minute) is the fol-
lowing:

perf report --sort=dso
66.07% libpcre.so.3.13.3
15.33% libpython3.8.so.1.0
11.39% beaver
5.69% libc-2.31.so
0.94% libgrok.so.1
0.36% ld-2.31.so
0.23% [unknown]

We can see that most of the time is spent inside PCRE, which does pattern match-
ing. Another significant item is Python, which can be expected since Python is
not as efficient as C++. Let us look at the other two noteworthy entries —
Beaver itself and libc.

perf report --dso=beaver
Overhead Command Symbol

2.59% beaver [.] parsing::Context::reinitialize
1.70% beaver [.] parsing::GrokIntegration::tryMatch
0.97% beaver [.] parsing::Context::getAttribute
0.80% beaver [.] parsing::TimestampParser::perform
0.48% beaver [.] parsing::GrokIntegration::tryMatch
0.32% beaver [.] std::unique_ptr<std::map<parsing::str,
0.32% beaver [.] std::vector<grok_capture const*,
0.32% beaver [.] std::_Rb_tree<parsing::str,

57



0.31% beaver [.] std::swap<std::__cxx11::list

perf report --dso=libc-2.31.so
1.88% beaver [.] __strptime_internal
1.12% beaver [.] __strlen_avx2
0.81% beaver [.] __strcmp_avx2
0.76% beaver [.] __memchr_avx2
0.70% beaver [.] __GI_____strtoll_l_internal
0.16% beaver [.] __GI_strtoll
0.09% beaver [.] __wcslen_avx2
0.08% beaver [.] __memmove_avx_unaligned_erms
0.08% beaver [.] cfree@GLIBC_2.2.5

Most of the time in Beaver itself was spent inside the following three methods:

• reinitialize — Sets all attributes to empty strings after each message is
parsed.

• tryMatch — Tries to match an attribute against a pattern. This method
has to iterate through all the attributes which should be assigned.

• getAttribute — This one is called every time we need to access an at-
tribute.

There are other items in the output, but they take up less than 0.3% of time
each.

The first item in libc is strptime, which parses the timestamp, followed by
strlen, strcpm, and memchr. It seems that strlen is used by PCRE during
matching. memchr is used for detecting line ends and therefore goes through
the whole buffer after every read. It is also the place where we can expect most
of the cache misses to occur.

This was the output for the reorder example:

perf report --sort=dso
39.67% libpython3.8.so.1.0
29.41% libpcre.so.3.13.3
14.81% beaver
12.64% libc-2.31.so
1.46% libstdc++.so.6.0.28
0.82% ld-2.31.so
0.72% libgrok.so.1
0.46% [unknown]

perf report --dso=beaver
2.45% beaver [.] parsing::TimestampParser::perform
1.65% beaver [.] std::_Rb_tree<std::pair<_object*,
1.42% beaver [.] parsing::print
1.39% beaver [.] parsing::str::operator<
1.23% beaver [.] parsing::python::getAttribute
1.22% beaver [.] parsing::GrokIntegration::tryMatch
0.99% beaver [.] parsing::Context::reinitialize
0.72% beaver [.] parsing::Context::getAttribute
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0.72% beaver [.] std::_Rb_tree<std::pair<unsigned long long,
0.64% beaver [.] parsing::Context::setAttribute
0.48% beaver [.] parsing::Context::getAttribute
0.25% beaver [.] parsing::DebugPrinter::isEnabled
0.25% beaver [.] 0x0000000000005ff0
0.25% beaver [.] 0x0000000000005b04
0.25% beaver [.] readFrom
0.25% beaver [.] 0x0000000000005ba4
0.25% beaver [.] parsing::Root::perform
0.24% beaver [.] parsing::python::endSession
0.18% beaver [.] 0x0000000000006104

In this case, Beaver takes up more of the time than previously but still less than
Python (which takes up a lot more time than in the previous case) and PCRE. We
can see that compared to the previous case, a lot of the time was spent in print,
which gets invoked a lot in here, but it is still Beavers function, not the actual
syscall. This could be potential room for improvement. Also, str::operator<
takes up a significant amount of time. It is most likely in the search for an at-
tribute index since keys in the associated std::map (used by Python) are of type
str. This may improve if we used std::unordered map instead and implement-
ing some reasonable hashing of parsing::str.

Keep in mind that these results differ among runs. This is another run
of the counter example:

71.24% libpcre.so.3.13.3
15.40% libpython3.8.so.1.0
7.30% libc-2.31.so
4.84% beaver
0.50% libgrok.so.1
0.46% ld-2.31.so
0.20% [unknown]
0.05% libpthread-2.31.so
0.02% libm-2.31.so

And this one is an additional execution of the reorder example:

44.86% libpython3.8.so.1.0
28.97% libpcre.so.3.13.3
14.38% beaver
9.81% libc-2.31.so
1.11% libstdc++.so.6.0.28
0.73% ld-2.31.so
0.13% [unknown]

7.2 Grok
Grok [18] is primarily a tool for parsing logs into structured data. Its configu-
ration allows its user to perform something similar to the part we have called
“parsing” in this text. The difference is that with Grok, there seems to be only
one match taking place. The results are then passed to one of the supplied filters,
jsonencode being the most noteworthy one — it encodes a string into a JSON
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string (escaping special characters in it). The user can therefore use jsonencode
together with the parsing to convert the log into a series of JSON objects, each
one representing one log message. Grok also goes with a tool called GrokDiscov-
ery, which seems to try to find known patterns in the input. The so-called Grok
programs have inside them a command, which they run and read its output.

Beaver, on the other hand, allows analysis to be built-in and parsing to be
done with the help of Python. Reading the output of another process can be
done through a pipe or, in some cases, the Unix socket.

For speed comparison we used the following Grok config (line breaks in pat-
terns are again purely typographical and aren’t in the real config):

program {
exec "cat input_large.in"

match {
pattern: "%{time=[[:digit:]-]*T[ˆ+.]*}\.%{micros=[ˆ+]*}\+

%{offset=[ˆ ]*} %{message=.*}"
reaction: "message : %{message}\nmicros : %{micros}\noffset :

%{offset}\ntime : %{time}\n"
}

}

and this Beaver config:

main {
match: msg {

{ "%{time=[[:digit:]-]*T[ˆ+.]*}\.%{micros=[ˆ+]*}\+%{offset=[ˆ ]*}
%{message=.*}"

print: context
}

}
}

The run times are the following:

tool fastest time slowest time average time
Grok 64.03 s 71.91 s 67.83 s

Beaver 10.98 s 11.30 s 11.08 s

So Beaver is actually significantly faster for this configuration. Since Beaver
and Grok use the same library for regular expression matching, this performance
comparison will not be sensitive to the pattern used.

Let us note that the output of Beaver and Grok differs somewhat: there some
lines present in the Beaver output, which are not in Grok output. These lines form
a continuous suffix of the output and there are no other differences. However,
there are some lines missing in the output of the Grok configuration, which just
echoes its input, i.e.:

program {
exec "cat input_large.in"

match {
pattern: ".*"
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reaction: "%{@LINE}"
}

}

These lines also form a continuous suffix (even though the input was our larger
one, which is periodic). Therefore, we tend to think this is a bug in Grok. It
can be reproduced with seq 10000 as the input. The corresponding Beaver
configuration below reproduces the output exactly.

main {
match: msg {

{ ".*"
print: "{msg}"

}
}
}

7.3 Logstash
Logstash [6] can read from a large variety of input kinds, like file, syslog and
Redis using its input plugins [8]. The log messages become so-called “events”
and are passed through a series of filters [7], which may besides literal filtering
add “fields” to the event. These fields seem to be similar to our attributes. After
passing through the filters, events are sent to output plugins [9], which may write
them to standard output, hand them over to another program, etc.

In particular, Grok is offered among the filters. Another filter that is inter-
esting to us is the Ruby filter, which allows the user to either execute a Ruby
script or an inline Ruby code. The user program gets a Logstash event and
it returns an array of events. This is somewhat similar to the way Python is
used inside Beaver. Beaver, however, calls different functions from the supplied
script, whereas Logstash seems to call one particular function named filter.
Also, the Beaver interface is that user code modifies a context and possibly calls
a library tree instead of generating an array of contexts.

We haven’t found an easy way to write something similar to Beaver’s parsing
tree in Logstash. It seems that there can only be a series of filters, all of which
are applied. Events can be dropped and therefore hidden from a filter, but we
found no way of picking them up in the following filters once they are dropped.

7.4 RSyslog
RSyslog [3] is primarily a syslog server. Like Logstash, it offers a number of plu-
gins, which may filter and alter messages or deliver them to other processes, such
as a database. The messages are processed by so-called “rules”, each of which
consists of a “filter” and a list of “actions” [5].

There is the possibility to execute an arbitrary program through its omprog
module [4], but their connection seems to be looser than Beaver’s call action
— RSyslog provides command-line arguments to the program and then possibly
reads what the program wrote on its standard output. It seems to be intended for
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reacting to log messages rather than helping to process them (this is supported
by the fact that omprog is considered an output module).

Filters include, for example, matching against a regular expression and check-
ing whether a string starts with a particular string. It is also possible to filter
messages based on their properties, e.g., the hostname contained in the message.
However, it seems that RSyslog detects these properties itself without letting
the user configure this detection.

Therefore, Beaver’s user programming support seems better for aiding mes-
sage processing, and Beaver also supports tree structures. It seems to us that
this is not the case with RSyslog. Additionally, there seems to be only limited
support for processing the message as a structured entity.

7.5 sed, awk and grep
Sed and awk are traditional Unix tools for processing text. They are not specif-
ically aimed at logs but could be useful in cases where only simple alteration or
filtering is needed. Specifically, sed configuration would be unreadable if it was
used for complex processing. Grep only filters lines of input, we included it here
as a performance benchmark.

For comparison with grep we used the Beaver configuration below, which
filters messages containing removed.

main {
match: msg {

{ "removed"
print: "{msg}"

}
}
}

We also tested sed and awk on the same task. We used the following configura-
tions:

tool config
grep removed
sed /removed/p
awk /removed/{ print $0}

The run times are the following:

tool fastest time slowest time average time
grep 0.88 s 0.89 s 0.88 s
sed 1.95 s 1.96 s 1.96 s
awk 1.15 s 1.16 s 1.15 s

Beaver 2.47 s 2.49 s 2.48 s

Beaver is about three times slower than grep, which is the fastest, about two
times slower than awk and somewhat slower than sed.

Next, we tested configurations where the text is not only filtered but also
modified. We used the following config to filter messages from Postfix/smtpd
and print them without their header:
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main {
match: msg {

{ "postfix\/smtpd\[[0-9]*]: %{msg=.*}"
print: "{msg}"

}
}
}

Beaver uses named captures in this config, and sed offers a feature, which is
somewhat similar, albeit notoriously slow - back-references. So we tested sed
with that feature. So we tested two sed configurations — one regular and one
with back-references.

These are the configurations we used:

tool config
sed s/.∗postfix\/smtpd\[[0-9]∗]: //p
awk {if(sub(".∗postfix/smtpd\[[0-9]∗]: ","") > 0) print $0}

sed (bref) s/.∗postfix\/smtpd\[[0-9]∗]: \(.∗\)/\1/p

With the following results:

tool fastest time slowest time average time
sed 6.46 s 6.65 s 6.51 s
awk 2.70 s 2.77 s 2.72 s

sed (bref) 60.12 s 60.31 s 60.22 s
Beaver 4.40 s 4.43 s 4.42 s

It seems that Beaver can be somewhat faster than sed under some circum-
stances, significantly faster if back-references are needed. Awk was somewhat
faster than Beaver in our experiment.

However, please keep in mind that Beaver’s performance may differ signifi-
cantly among some patterns (as described in subsection 3.9.7). Since sed, awk,
and grep are unlikely to use the same regexp library as Beaver, we may get
different results if we use a different pattern.

7.6 Python
Python is a general-purpose programming language, but it does offer a regu-
lar expression library, which even contains named captures. However, the tree
structure that Beaver supports would require some amount of work to implement
and this work would probably have to be done again every time. Additionally,
Beaver offers built-in session support with a timeout, reading from a directory or
a socket. All of these could obviously be implemented in Python, but it would
require some additional effort.

We took the example counting the number of e-mails every minute described
in chapter 3. We chose the third variant of the analysis — the one with only a
single registered session to write the number of e-mails in the last minute. We
implemented this example in Python without any help from Beaver and compared
it to the example. This was the python script:
import re
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from datetime import datetime

root = re.compile("(?P<time>[0-9-]*T[ˆ+.]*)\.(?P<micros>[ˆ+]*)\+
(?P<offset>[ˆ ]*) (?P<message>.*)")
message_match = re.compile("[0-9A-Z]+: removed$")

counter = 0
current_minute = None

def inccounter(t):
global counter
update_time(t)
counter += 1

def print_counter():
global counter
global current_minute
print(f"{current_minute} {counter}")
counter = 0
current_minute += 60

def update_time(t):
global current_minute
t = int(t.timestamp())
t -= t%60
if current_minute is None: current_minute = t
while current_minute < t: print_counter()

def processline(line):
global counter
mr = re.match(root,line)
if mr is None: return
mr = mr.groupdict()
timestamp = mr["time"]
time = datetime.strptime(timestamp,"%Y-%m-%dT%H:%M:%S")
mr2 = re.search(message_match,mr["message"])
if mr2 is None:

update_time(time)
else:

inccounter(time)

with open("input.in","r") as infile:
for line in infile.readlines():

processline(line)
print_counter()

The script uses the same regular expressions as the Beaver configuration,
parses the timestamp and counts the number of e-mails in each minute just like
the Beaver configuration.

The following is the speed comparison between the Python script and the orig-
inal Beaver configuration. It was done on an input smaller than the previous
measurement since that file was an original log concatenated multiple times with
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itself, and therefore its timestamps weren’t in chronological order.

tool fastest time slowest time average time
Python 0.60 s 0.63 s 0.61 s
Beaver 0.14 s 0.14 s 0.14 s

We can see that Beaver is significantly faster.
For comparison, we also ran the reorder example, which was introduced in

chapter 2 and the slowest of the previous tests — sed with back-references. The
exact configuration of the counter example is attached to this thesis, together
with the source files.

The results were the following:

tool fastest time slowest time average time
sed (bref) 0.30 s 0.30 s 0.30 s

Beaver 0.10 s 0.10 s 0.10 s
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Conclusion
Beaver is a highly configurable tool for processing logs. The approach of han-
dling syntax parsing separately from semantic analysis, coupled with the use
of a full-fledged programming language for the analysis, gives the tool a consid-
erable degree of flexibility. Its support for re-using parts of the configuration
as libraries improves the flexibility even further.

Besides reading from standard input, the tool can receive log messages through
a Unix socket or read them from files.

Beaver significantly outperforms Grok, an existing log parsing tool, when both
perform the same task. The performance with a simple configuration even seems
to be similar to tools like sed.

Compared to other log handling tools (like RSyslog or Logstash), Beaver lacks
direct support for some inputs and outputs (e.g., reading from a database or
writing to it), but it seems to offer more functionality for semantic analysis.

The tool could be further improved by adding support for receiving syslog
messages over the network, printing output in a structured format (like JSON),
or perhaps C modules, which could be used instead of Python ones when higher
performance is required.
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A. Attachments

A.1 Benchmark outputs
This is the output of the benchmarking script. The script itself is also attached
but only in its electronic form.
/usr/bin/time beaver greplike.conf

<input_large.in 2>&1 >output.ignore
min max avg: 2.47 2.49 2.48
times: 2.48 2.48 2.48 2.48 2.49 2.47 2.49 2.48 2.48 2.48

/usr/bin/time grep removed
<input_large.in 2>&1 >output.ignore

min max avg: 0.88 0.89 0.88
times: 0.89 0.89 0.89 0.88 0.88 0.89 0.88 0.88 0.88 0.88

/usr/bin/time sed -n /removed/p
<input_large.in 2>&1 >output.ignore

min max avg: 1.95 1.96 1.96
times: 1.95 1.96 1.95 1.95 1.95 1.96 1.96 1.96 1.96 1.95

/usr/bin/time awk ’/removed/{print $0}’
<input_large.in 2>&1 >output.ignore

min max avg: 1.15 1.16 1.15
times: 1.16 1.15 1.16 1.15 1.16 1.15 1.15 1.15 1.15 1.15

/usr/bin/time beaver sedlike.conf
<input_large.in 2>&1 >output.ignore

min max avg: 4.40 4.43 4.42
times: 4.43 4.40 4.42 4.40 4.42 4.43 4.42 4.41 4.42 4.40

/usr/bin/time sed -n ’s/.*postfix\/smtpd\[[0-9]*]: //p’
<input_large.in 2>&1 >output.ignore

min max avg: 6.46 6.65 6.51
times: 6.47 6.50 6.46 6.47 6.49 6.65 6.50 6.46 6.50 6.62

/usr/bin/time sed -n ’s/.*postfix\/smtpd\[[0-9]*]: \(.*\)/\1/p’
<input_large.in 2>&1 >output.ignore

min max avg: 60.12 60.31 60.22
times: 60.17 60.22 60.25 60.28 60.21 60.15 60.31 60.29 60.12 60.20

/usr/bin/time awk
’{if(sub(".*postfix/smtpd\[[0-9]*]: ","") > 0) print $0}’
<input_large.in 2>&1 >output.ignore

min max avg: 2.70 2.77 2.72
times: 2.71 2.76 2.77 2.70 2.71 2.71 2.70 2.70 2.72 2.71

/usr/bin/time beaver groklike.conf
<input_large.in 2>&1 >output.ignore

min max avg: 10.98 11.30 11.08
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times: 11.08 11.04 11.30 11.02 11.14 11.18 11.04 10.99 10.98 11.00

/usr/bin/time grok -f beaverlike.grok
<input_large.in 2>&1 >output.ignore

min max avg: 64.03 71.91 67.83
times: 64.03 65.94 66.74 65.23 66.36 71.91 69.64 69.39 69.50 69.59

/usr/bin/time sed -n ’s/.*postfix\/smtpd\[[0-9]*]: \(.*\)/\1/p’
<input.in 2>&1 >output.ignore

min max avg: 0.30 0.30 0.30
times: 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30

/usr/bin/time beaver examples/counter.conf
<input.in 2>&1 >output.ignore

min max avg: 0.14 0.14 0.14
times: 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14

/usr/bin/time python3 counter_python.py
<input.in 2>&1 >output.ignore

min max avg: 0.60 0.63 0.61
times: 0.61 0.60 0.62 0.61 0.61 0.60 0.60 0.63 0.63 0.60

/usr/bin/time beaver examples/reorder.conf
<input.in 2>&1 >output.ignore

min max avg: 0.10 0.10 0.10
times: 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10

A.2 Source code
A repository with the source code is attached to this thesis in the electronic form
only. Some example configuration files and an example input are included.
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