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Abstract: Consider a set B of blue points and a set R of red points in the plane
such that R ∪ B is in general position. A graph drawn in the plane whose edges
are straight-line segments is called a geometric graph. We investigate the problem
of drawing non-crossing properly colored geometric graphs on the point set R∪B.
We show that if ||B| − |R|| ≤ 1 and a subset of R forms the vertices of a convex
polygon separating the points of B, lying inside the polygon, from the rest of the
points of R, lying outside the polygon, then there exists a non-crossing properly
colored geometric path on R ∪ B covering all points of R ∪ B.

If R ∪ B lies on a circle, the size of the longest non-crossing geometric path is
related to the size of the largest separated matching; a separated matching is a
non-crossing properly colored geometric matching where all edges can be crossed
by a line. A discrepancy of R ∪ B is the maximal difference between cardinalities
of color classes of intervals on the circle. When the discrepancy of R ∪ B is at
most 2, we show that there is a separated matching covering asymptotically 4

5
of points of R ∪ B. During this proof we use a connection between separated
matchings and the longest common subsequences between two binary sequences
where the symbols correspond to the colors of the points.

Keywords: geometric graph, bichromatic point set, non-crossing alternating path,
longest common subsequence, graph drawing
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Introduction
A graph G = (V, E) is an ordered pair where V is a set, whose elements are called
vertices, and E is a set of unordered pairs of vertices, whose elements are called
edges. A graph drawn in the plane is called a geometric graph if all its edges
are straight-line segments. A non-crossing geometric graph is a geometric graph
whose no two edges except the ones having a common endpoint intersect.

In this thesis, we consider geometric graphs drawn on a set of points colored
red and blue. Throughout this thesis, let B and R always denote the set of blue
points and the set of red points, respectively. Moreover, we assume that B and
R are always disjoint and that R ∪ B is always in general position (that is, no
three points are collinear) unless specifically stated otherwise. A point set is in
convex position if the points of this point set are vertices of a convex polygon. A
graph with colored vertices is properly colored if no edge of this graph connects
two vertices of the same color. We have only two colors, and thus we call properly
colored graphs alternating graphs.

We study the existence of certain non-crossing geometric graphs with vertices
in the given point set R∪B. In particular, we are interested in paths, matchings,
and trees. We often ask this question in an extremal way: What is the largest
non-crossing geometric path (matching, tree) that exists on R∪B? Furthermore,
we sometimes impose further restrictions on the points set. For example, we can
require the points to be in convex position. Additionally, we mostly study the
cases when |R| = |B|. For a comprehensive survey about discrete geometry on
colored points, that includes these and many different problems, we refer to Kano
and Urrutia [12] and Kaneko and Kano [11].

One of the most studied configurations is the case of alternating geometric
paths on point sets in convex position. Let l(n) be the largest number such that
for any set R ∪ B in convex position with |R| = |B| = n there exists a non-
crossing alternating geometric path covering at least l(n) vertices. Without loss
of generality, we can assume that the point set lies on a circle. The problem
of determining l(n) was first asked by Erdős and is listed as an open problem
by Brass, Moser, and Pach [5, p. 409]. Erdős showed that l(n) ≤ 3

2n + o(n)
and conjectured that the bound is asymptotically tight. Several authors [13,
16, 2] disproved this conjecture by providing families of point sets and proving
l(n) ≤ 4

3n + o(n). The best upper bound l(n) ≤ (4 − 2
√

2)n + o(n) is by Csóka
et al. [8].

On the other hand, the trivial lower bound l(n) ≥ n was improved by sub-
linear additive terms by Kynčl, Pach, and Tóth [13] and Mészáros and Hajnal
[16]. The best currently known lower bound showing that there exists some ε > 0
such that l(n) ≥ (1 + ε)n is by Mulzer and Valtr [18].

Most of the authors have not proved theorems about non-crossing alternating
geometric paths directly. Instead, they used a connection with so-called separated
matchings. A non-crossing alternating geometric matching on a convex point set
is called a separated non-crossing alternating geometric matching (or a separated
matching for short) if there exists a line, which we will call an axis, intersecting
the interiors of all the edges of the matching. Let µ(n) be the largest number such
that for any set R ∪ B in convex position with |R| = |B| = n, there always exists
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a separated matching covering at least µ(n) vertices. Again, we may assume
that the points lie on a circle. It is trivial to see that the edges of a separated
matching can be joined by new edges to form a non-crossing alternating geometric
path. Thus, µ(n) ≤ l(n). Kynčl, Pach, and Tóth [13] showed that a variation of
the opposite inequality also holds; they proved that if k is the number of color
changes along the circle (or, equivalently, the number of maximal monochromatic
intervals of points along the circle), then l(n) − 4k − 1 ≤ µ(n). Furthermore,
they showed that if there are k color changes along the circle, a non-crossing
alternating geometric path of size n + k − 1 exists. Hence, if the number of color
changes along the circle is in Ω(n), we can improve the lower bound on l(n) by a
constant multiplicative factor. Therefore, most authors investigated cases when
the number of such color changes is in o(n), and thus the asymptotics of l(n) and
µ(n) differ only by a function in o(n). This means that all of the bounds on l(n)
above also hold for µ(n).

The problem of finding separated matchings is almost equivalent to the prob-
lem of finding anti-palindromic sequences in binary circular words. One can alter-
natively define the parameter µ(n) as the largest number such that in every circu-
lar binary word with n ones and n zeros, there always exists an anti-palindromic
subsequence of such length. Müllner and Ryzhikov [17] independently proved
that µ(n) ≤ 4

3n + o(n) together with other results about anti-palindromes and
palindromes.

Our additional focus is on alternating geometric paths on red and blue point
sets not necessarily in convex position. Let lg(n) be the largest number such that
for any set R ∪ B with |R| = |B| = n there exists a non-crossing alternating
geometric path covering lg(n) vertices. Clearly, lg(n) ≤ l(n) but other than that
not much is known about lg(n). Abellanas et al. [1] showed that in the case
when R can be separated by a line from B, and ||R| − |B|| ≤ 1, there exists a
non-crossing alternating geometric path covering all points. This fact together
with the existence of a line splitting R ∪ B in half implies that lg(n) ≥ n.

Cibulka et al. [7] look more closely on a configuration when R and B forms a
double chain. A convex or a concave chain is a finite set of points in the plane
lying on the graph of a strictly convex or a strictly concave function, respectively.
A double-chain consists of a convex chain and a concave chain such that each
point of the concave chain lies strictly below every line determined by the convex
chain and, similarly, each point of the convex chain lies strictly above every line
determined by the concave chain. Cibulka et al. [7] showed that if ||R| − |B|| ≤ 1
and each of the chains of the double-chain contains at least one fifth of all points,
then there exists a non-crossing alternating geometric path on R ∪ B covering
all points. Moreover, they showed that such a path does not exist if one chain
contains approximately 28 times more points than the other.

Another specific configuration was investigated by Abellanas et al. [1]. They
showed that if ||R| − |B|| ≤ 1, the points of R are vertices of a convex polygon,
and all points of B are inside this polygon, then there exists a non-crossing
alternating geometric path covering all points.
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Our work
To better understand the behavior of µ(n) independently of l(n), Mészáros [15]
studied the cases when the number of color changes along the circle is linear in
n. Particularly, they studied cases with small discrepancies. The disbalance of a
set with colored elements is the difference between the cardinalities of its color
classes. The discrepancy of a set of red and blue points on a circle is the largest
integer d for which there exists an interval on the circle with disbalance d. There
is also another motivation for studying cases with small discrepancies. Mészáros
and Hajnal [16] implicitly showed that if a discrepancy of R ∪ B on a circle is d,
then µ(n) ≥ n+ d

2 . It follows that in cases with discrepancy of the order Ω(n) the
best lower bound on µ(n) can be improved by a constant multiplicative factor.
Therefore, it seems that cases with discrepancy of the order o(n) are the most
interesting.

In the first chapter, we focus on cases with constant discrepancy. Let µd(n)
be the largest number such that for any set R ∪ B on a circle with |R| = |B| = n
with discrepancy at most d there always exists a separated matching covering
µd(n) points. Mészáros [15] showed that µ2(n) ≥ 4

3n and that µ3(n) ≥ 4
3n.

There is one significant distinction between cases with small discrepancies
and cases with unbounded discrepancies. When the discrepancy is unbounded,
and an adversary fixes one intersection of the axis of a separated matching with
the circle, we cannot beat the trivial lower bound on the size of such separated
matching. To see this consider a cycle with n blue points on the left side and n
red points on the right side and select the intersection point in the middle of the
red points. Then every separated matching cover at most n points. On the other
hand, the above-mentioned bounds µ2(n) ≥ 4

3n and µ3(n) ≥ 4
3n hold even if an

adversary selects one intersection of the axis with the circle arbitrarily.
We investigate a closely related problem when both points of the intersection

of the axis of a separated matching with the circle are given. In that case,
the points on the circle are split by the axis into two intervals, and separated
matchings match points from the opposite intervals.

These separated matchings can be described combinatorially as follows. Let
A = (a1, a2, . . . ) and C = (c1, c2, . . . ) be two sequences of red and blue points.
A matching M between A and C consists of |M | mutually disjoint edges (pairs
of vertices); each edge connecting one point from A with one point from C.
Furthermore, we call a matching homogeneous if each edge connects equally col-
ored points and heterogeneous if each edge connects differently colored points.
A matching M is non-crossing if no two edges cross, that is, for every pair of
distinct edges (ai, bj) and (ak, bl) it holds that i < k ⇔ j < l.

It is clear that if we put the sequences A and C onto two disjoint arcs of a circle
separated by an axis s, one in a clockwise and one in a counter-clockwise direction,
then every non-crossing heterogeneous matching between A and C corresponds
to a separated matching on the circle with axis s and vice versa.

Furthermore, for every heterogeneous matching between two sequences A, C,
there exists a homogeneous matching of the same size between A and the se-
quence formed from C by flipping the colors of all its points. Similarly, for every
homogeneous matching, we can find a corresponding heterogeneous matching.
Therefore, we can focus solely on the homogeneous case.

Homogeneous matchings have one clear advantage over heterogeneous ones;
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they naturally correspond to common subsequences in the following way: If we
replace every blue point with a symbol 1 and every red point with a symbol 0, we
obtain a binary sequence. Let A and C be two sequences of red and blue points
and let A′ and C ′ be their corresponding binary sequences. Then for every non-
crossing homogeneous matching M between A and C, we obtain a corresponding
common subsequence of A′ and C ′ by reading all matched points of A (or of C)
from left to right. Similarly, for every common subsequence of A′ and C ′, we
can find a corresponding non-crossing homogeneous matching between A and C.
Therefore, homogeneous matchings are easier to visualize or process program-
matically. As far as we are aware, the problem of finding the longest common
subsequence has not been studied in a way that would help understand separated
matchings. One of the closest problems that received significant attention is de-
termining the length of the longest common subsequence of two random binary
strings [6, 9, 14].

The discrepancy of a sequence of points is defined in the same way as the
discrepancy of points on a cycle. That is, it is the largest integer d for which
there exists an interval of points from the sequence with disbalance d.

In chapter 1, our main result is the following.

Theorem 1. Let A and C be sequences of red and blue points of length n with
discrepancy at most 2. Then there exist prefixes A′ of A and C ′ of C of combined
length of at least n such that there exists a non-crossing homogeneous matching
between A′ and C ′ covering at least 4

5 (|A′| + |C ′|) − O (1) points.
Furthermore, this bound is asymptotically tight.

Moreover, we show that this theorem implies the following.

Corollary 2. We have, µ2(n) ≥ 8
5n − o(n).

Additionally, we investigate non-crossing homogeneous matchings between one
sequence with discrepancy 1 and one sequence with bounded discrepancy. We
believe that similar methods could be used for bounding µd(n) even for larger d.

In chapter 2 we extend the family of configurations of points for which there
exists a non-crossing alternating geometric path covering all points. Specifically,
we prove the following theorem.

Theorem 3. Let R be a set of red points and B be a set of blue points such that
R ∪ B is in general position. Let P be a polygon whose vertices are formed by a
subset of R. Assume that the remaining points of R lie outside of P , points of
B lie in the interior of P , and ||R| − |B|| ≤ 1. Then there exists a non-crossing
alternating geometric path on R ∪ B covering all points of R ∪ B.
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1. Separated matchings and
matchings between sequences

1.1 Bounding cardinalities of separated match-
ings using matchings between two sequences

In order to find a connection between separated matchings and non-crossing ho-
mogeneous matchings, we can not simply look for the largest matchings between
two sequences. Instead, we look for matchings large in comparison to the prefixes
they are in. Thus, we need to introduce new terminology.

Let A = (a1, a2, . . . , an) and C = (c1, c2, . . . , cm) be two sequence of red and
blue points. The matching efficiency of A and C, denoted by e(A, C), is the
maximum of 2|M |

|A|+|C| over all non-crossing homogeneous matchings M between A

and C. A pair of prefixes (A′, C ′) of A and C is semi-complete if |A′| + |C ′| ≥
min(|A|, |C|). The matching potential of A and C, denoted by p(A, C), is the
maximum of matching efficiencies over all semi-complete pairs of prefixes of A, C.
For the heterogeneous matchings we similarly define ehet(A, C) and phet(A, C) but
we will mostly work with just the homogeneous matchings.

We will also be using the following notation. If there exists a non-crossing
homogeneous matching that covers the whole A, we say that A is matchable
into C, and we denote it by A ≺ C. Additionally, let ⊕ denote the operation
of concatenating two sequences of points or the operation of concatenating a
sequence of points with a single point.

Additionally, in figures and when presenting concrete examples, we represent
every blue point by the symbol 1 and every red point by the symbol 0. For
example, 101 represents an alternating sequence of blue, red, and blue points.

By the following trivial observation, we can do proofs on subsequences having
nicer structures (usually by discarding the beginnings and endings of sequences).
Observation 4. Let A = (ai)n

i=1, C = (ci)m
i=1 be two sequence of red and blue

points. Let A∗ be a subsequence of A and C∗ a subsequence of C of sizes n−O(1)
and m − O(1), respectively. Then e(A, C) and e(A∗, C∗) as well as p(A, C) and
p(A∗, C∗) can differ only by the order of O( 1

min{n,m}).

We are interested in the asymptotic behavior of matching potentials of se-
quences with bounded discrepancies. We define p(k,l)(n) as the minimum of
p(A, C) over all sequences A, C of length n that have discrepancy at most k and at
most l, respectively. We define phet

(k,l)(n) for heterogeneous matchings analogously.
Since the discrepancy of a sequence with flipped colors stays the same, we see
that p(k,l)(n) = phet

(k,l)(n). Thus, it is sufficient to work with only homogeneous
matchings.

The next lemma shows that we can prove lower bounds on µd(n) using
p(d,d)(n).
Lemma 5. Let p(d,d)(n) ≥ c−o(1) for some constant c. Then µd(n) ≥ 2cn−o(n).
Proof. Since p(d,d)(n) ≥ c − o(1), we have phet

(d,d)(n) ≥ c − o(1). Thus, in this proof
we can use the results about homogeneous matchings for the heterogeneous ones.
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Let R be a set of red points on a circle and B be a set of blue points on
the circle such that |R| = |B| = n, the set R ∪ B is in general position, and
R ∪ B has discrepancy at most d. We want to show that there exists a separated
matching covering at least 2cn − o(n) points. Let C1 be a sequence of all points
along the circle in clockwise order. We inductively build sequences and matchings
Ci, Ai, A′

i, Bi, B′
i, Mi in the following way until |Ct| is small enough (we will define

the precise value later). Let Ai be the prefix of Ci containing
⌊

|Ci|
2

⌋
points of Ci

and let Bi be the reverse of the suffix of Ci containing
⌊

|Ci|
2

⌋
points. By the

definition of phet
(d,d)(n), there exists a semi-complete pair of prefixes (A′

i, B′
i) of

Ai, Bi and a non-crossing heterogeneous matching Mi between A′
i, B′

i such that
ehet(A′

i, B′
i) = phet

(d,d)

(⌊
|Ci|

2

⌋)
. Finally let Ci+1 be the interval of Ci formed by

removing A′
i and B′

i from Ci.
It is easy to see that all A′

i, B′
i are pairwise disjoint and that the points of all

A′
i’s form an interval on the circle, as do the points of all B′

i’s. Moreover, these
two intervals can be separated by a line. Hence, the union of all the matchings Mi

is a non-crossing heterogeneous matching between these two intervals. Therefore,
we get a non-crossing alternating geometric separated matching by representing
the edges of this non-crossing heterogeneous matching by straight-line segments.
It remains to bound its size. For precise computation let g(n) be a function in
o(1) such that phet

(d,d)(n) ≥ c − g(n).
We have⏐⏐⏐⏐⏐

t−1⋃
i=1

Mi

⏐⏐⏐⏐⏐ =
t−1∑
i=1

(
ehet(A′

i, B′
i) · (|A′

i| + |B′
i|)
)

≥
t−1∑
i=1

((
c − g

(⌊ |Ci|
2

⌋))
· (|A′

i| + |B′
i|)
)

= c ·
t−1∑
i=1

(|A′
i| + |B′

i|) −
t−1∑
i=1

(
g
(⌊ |Ci|

2

⌋)
· (|A′

i| + |B′
i|)
)

.

From the induction it is easy to see that 2n = |C1| = ∑t−1
i=1 (|A′

i| + |B′
i|) + |Ct|.

If we build the sequences until |Ct| << n (for example |Ct| ≤ 2 log n), then

c ·
t−1∑
i=1

(|A′
i| + |B′

i|) ≥ 2cn − o(n).

Note that since (A′
i, B′

i) is a semi-complete pair of Ai, Bi, we see that that |A′
i| +

|B′
i| ≥ |Ci|

2 − 1. Thus, it is possible to build the sequences until |Ct| ≤ 2 log n.
Let

f(n) =
t−1∑
i=1

(
g
(⌊ |Ci|

2

⌋)
· (|A′

i| + |B′
i|)
)

.

It remains to show that f(n) is in o(n).
Thus, we need to show that for every ε > 0 there exists n0 such that for every

n ≥ n0, we have f(n) ≤ εn. We know that g(x) is in o(1). Hence, there exists x0
such that for every x ≥ x0, we have g(x) ≤ ε

2 . Let us build the sequences Ci so
that Ct is the first for which |Ct| ≤ 2 log n. Hence, for every i smaller than t, we
have |Ci| ≥ 2 log n. Let us select n0 = ex0+1. Then for every i from {1, . . . t − 1},
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we have ⌊
|Ci|
2

⌋
≥ ⌊log n⌋ ≥ ⌊log n0⌋ = ⌊x0 + 1⌋ ≥ x0.

Hence, g
(⌊

|Ci|
2

⌋)
≤ ε

2 for every i from {1, . . . t − 1}. Therefore,

f(n) =
t−1∑
i=1

(
g
(⌊ |Ci|

2

⌋)
· (|A′

i| + |B′
i|)
)

≤ ε

2

t−1∑
i=1

(|A′
i| + |B′

i|) ≤ εn

and the proof is finished.

Theorem 1 together with this lemma immediately implies Corollary 2.

1.2 Matching potential of sequences with dis-
crepancy 1

We now look at cases when one of the sequences has discrepancy 1. Note that
colors in sequences with discrepancy 1 alternate. We prove the following theorem.

Theorem 6. Let k be a positive integer constant. Then p(1,k)(n) = 2k
3k−1 − O( 1

n
).

We show a more technical lemma that better represents the error term. The
theorem then immediately follows. Alternatively, we could use Observation 4 and
prove the Theorem without computing specific constants.

Lemma 7.

a) Let n, m ≥ 2 be integers and let k ≥ 1 be an integer. Assume that A =
(ai)n

i=1 is a sequence of red and blue points with discrepancy at most k and
C = (ci)m

i=1 is a sequence of red and blue points with discrepancy 1. Then
there exists a semi-complete pair of prefixes (A′, C ′) of A, C and a non-
crossing homogeneous matching M ′ between A′ and C ′ such that

2|M ′| ≥ 2k

3k − 1 · (|A′| + |C ′| − 1) .

b) Let n, m ≥ 2 be integers and let k ≥ 1 be an integer. Then there exist
sequences of red and blue points A = (ai)n

i=1 and C = (ci)m
i=1 with discrepan-

cies k and 1, respectively, such that for every semi-complete pair of prefixes
(A′, C ′) of A, C with a non-crossing homogeneous matching M ′ between A′

and C ′, we have
2|M ′| ≤ 2k

3k − 1 · (|A′| + |C ′|) .

Proof. We start with the first part. We select A′ as the longest prefix of A such
that A′ ≺ C. Next, we select C ′ as the shortest prefix of C such that A′ ≺ C ′.
Finally, we select a maximal non-crossing homogeneous matching M ′ between A′

and C ′. Since A′ ≺ C ′, then M ′ covers the whole A′. Thus, |M ′| = |A′|.
Suppose that A′ ̸= A and |C ′| ≤ |C| − 2. Then A′ ⊕ a|A′|+1 ⊀ C (because

A′ is the longest prefix of A that is matchable into C). But at the same time
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we know that A′ ≺ C ′. This implies that A′ ⊕ a|A′|+1 ≺ C ′ ⊕ c|C′|+1 ⊕ c|C′|+2
(because C contains points with alternating colors). That is a contradiction with
A′ ⊕ a|A′|+1 ⊀ C. Therefore, either |A′| = |A| or |C ′| = |C| or |C ′| = |C| − 1.
Since |A′| ≥ 1, in all cases (A′, C ′) is a semi-complete pair of prefixes of A and C.
Thus, it is sufficient to show that 2|A′| ≥ 2k

3k−1 · (|A′| + |C ′| − 1) or, equivalently,
that |C ′| ≤ 2k−1

k
· |A′| + 1.

For every ai, let M ′(ai) denote the point from C ′ matched to ai. We count
the number of unmatched points in C ′. Suppose that there are two unmatched
consecutive points cx, cx+1 in C ′. Then all the points ay matched to some points
cz to the right side of cx+1 (i.e., z > x + 1) could be matched to the points
cz−2 instead, and the matching would remain non-crossing and homogeneous.
This is a contradiction because C ′ is the shortest prefix of C for which A′ ≺ C ′.
Thus, there is at most one unmatched point between every pair of matched points
(M ′(ai), M ′(ai+1)) and at most one unmatched point before M ′(a1). By the same
argument, we see that there is no unmatched point of C ′ after the last matched
point of C ′.

Let ai, ai+1 be two consecutive points of A′ with distinct colors. Since M ′ is
non-crossing, there are no matched points between M ′(ai) and M ′(ai+1). More-
over, there is at most one unmatched point between M ′(ai) and M ′(ai+1), but
the colors of C ′ alternates, thus there can be none and M ′(ai), M ′(ai+1) are con-
secutive. Note that there are at least 1

k
· |A′| − 1 such pairs (ai, ai+1) because A′

has discrepancy at most k.
Overall there is at most one unmatched point of C ′ before M ′(a1), and at most

one additional one unmatched point of C ′ for every pair of consecutive points of
A′ with the same color. Thus, there are at most 1 + k−1

k
· |A′| unmatched points

in C ′.
Hence,

|C ′| ≤ |A′| + 1 + k − 1
k

· |A′| = 2k − 1
k

· |A′| + 1

and the first part of the proof is complete.

It remains to prove part b). We will construct the desired sequences. Let A
be formed by monochromatic intervals such that colors of consecutive intervals
alternate and every interval, except possibly the last one, has size k. Furthermore,
let C be a sequence of points of alternating color such that the first points of A
and C have different colors. Clearly, A has discrepancy at most k and C has
discrepancy 1.

Let (A′, C ′) be a semi-complete pair of prefixes of A, C and let M ′ be a max-
imal matching between A′ and C ′.

Let A′
i denote the i-th monochromatic interval of A′ and let t be the number

of such intervals A′
is. Let mi denote the number of matched points in A′

i. For
every i except i = 1, let C ′

i denote the minimal interval in C ′ that spans the
points of C ′ that are matched with points of A′

i. Additionally, let C ′
1 denote the

minimal prefix of C ′ that spans the points of C ′ that are matched with points of
A′

1. Note that no two intervals A′
i intersect, so no two C ′

i intersect either. Thus,∑t
i |A′

i| = |A′| and ∑t
i |C ′

i| ≤ |C ′|. Since every A′
i contains points of only one color

and C ′i is alternating, then C ′
i is of length at least 2mi − 1. Furthermore, every

interval A′
i has length k except the last one that has length at least mt.

9



For every i, 2 ≤ i ≤ t − 1 we have

2mi = 2mi

k + 2mi − 1 · (k + 2mi − 1) ≤

≤ 2k

3k − 1 · (k + 2mi − 1) ≤ 2k

3k − 1 · (|A′
i| + |C ′

i|).
(1.1)

We used the inequality
2mi

k + 2mi − 1 ≤ 2k

3k − 1 .

that follows from the fact that mi ≤ k.
Additionally, for mt we have

2mt = 2mt

mt + 2mt

· (mt + 2mt) ≤

≤ 2k

3k − 1 · (mt + 2mt) ≤ 2k

3k − 1 · (|A′
t| + |C ′

t| + 1).

And finally, for m1 we known that either a1 is not matched or c1 is not matched
(because they have different colors). If c1 is matched than m1 = 0 because the
matching is non-crossing and c1 have different color than all points of A′

1. If c1 is
not matched than |C ′

1| ≥ 2m1 − 1 + 1. Thus, similarly as in (1.1), we have

2m1 ≤ 2k

3k − 1 · (|A′
1| + |C ′

1| − 1).

We finish the proof by putting these inequalities together .

2|M ′| = 2
t∑

i=1
mi ≤ 2k

3k − 1 · (|A′
1| + |C ′

1| − 1) +
t−1∑
i=2

2k

3k − 1 · (|A′
i| + |C ′

i|)+

+ 2k

3k − 1 · (|A′
t| + |C ′

t| + 1) ≤

≤ 2k

3k − 1 ·
(

t∑
i=1

|A′
i| +

t∑
i=1

|C ′
i|
)

≤ 2k

3k − 1 · (|A′| + |C ′|) .

Proof of Theorem 6. Let n be a natural number. Let A = (ai)n
i=1 be a sequence

of red and blue points with discrepancy at most k and C = (ci)n
i=1 be a se-

quence of red and blue points with discrepancy 1. By Lemma 7 a) there exists a
semi-complete pair of prefixes (A′, C ′) of A, C and a non-crossing homogeneous
matching M ′ between A′ and C ′ such that 2|M ′| ≥ 2k

3k−1 · (|A′| + |C ′| − 1).
Thus,

p(A, C) ≥ e(A′, C ′) = |M ′|
|A′| + |C ′|

≥
2k

3k−1 · (|A′| + |C ′| − 1)
|A′| + |C ′|

≥ 2k

3k − 1 − 1
n

.

Hence,
p(1,k)(n) ≥ 2k

3k − 1 − O
( 1

n

)
.

The upper bound is implied by Lemma 7 b) in a similar way.

10



Figure 1.1: The structure of a sequence of points with discrepancy at most 2.

1.3 Matching potential of sequences with dis-
crepancy 2

Our goal in this section is to prove Theorem 1. This theorem can be rephrased
in our new notation as p(2,2)(n) = 4

5 − O
(

1
n

)
.

Since every sequence with discrepancy 1 is also a sequence with discrepancy
at most 2, Theorem 6 implies that p(2.2)(n) ≤ 4

5 −O( 1
n
). Thus, it remains to prove

the lower bound.
First of all, we show that sequences with discrepancy at most 2 have nice

structures.

Lemma 8. Every sequence A of red and blue points with discrepancy at most
2 can be partitioned, possibly without its first and last element, into intervals of
length 2 so that each interval contains one red and one blue point.

Proof. For all i, 0 ≤ i ≤ n, let si be the number of blue points minus the number
of red points in the first i points of A (it is a “signed disbalance”). For every
i < j, the values si and sj differ by at most 2, otherwise the interval from the
(i+1)-th to the j-th point would have disbalance greater than 2. Thus, there
exists some integer x such that every si is either x, x + 1, or x + 2. Together with
the fact that for every i, we have |si − si+1| = 1, it means that either exactly all
the si with even index have value x + 1, or exactly all the si with odd index have
value x + 1. If we split A in every position where “si has the value x + 1”, we
obtain the desired partition. See Figure 1.1 for an illustration.

We proceed with proving the main theorem.

Proof of Theorem 1. As we stated earlier it remains to prove the lower bound.
Let A = (ai)n

i=1, and C = (ci)m
i=1 be sequences of red and blue points with

discrepancy at most 2.
By Lemma 8 both A and C can be partitioned, possibly without its first

and last element, into intervals of length 2; each containing one red and one blue
point. Moreover, by Observation 4, we can ignore these possibly problematic first
and last elements and assume that both A and C can be partitioned entirely.

We will show by double induction that there always exists a semi-complete
pair of prefixes (A′, C ′) of A, C and a non-crossing homogeneous matching M ′

between A′ and C ′ such that 2|M ′| ≥ 4
5 · (|A′| + |C ′| − 22). Hence, e(A′, C ′) ≥

4
5 − Θ( 1

min (n,m)) and the theorem follows. Our approach actually shows that
there always exists a semi-complete pair of prefixes (A′, C ′) of A, C and a non-
crossing homogeneous matching M ′ between A′ and C ′ such that 2|M ′| ≥ 4

5 ·
(|A′| + |C ′| − 6), but the argumentation would be even more technical.

The first induction is on n and m (the lengths of A and C), ordered by product
order; that is, (n1, m1) ≤ (n2, m2) if n1 ≤ n2 and m1 ≤ m2. If n ≤ 22 or m ≤ 22

11



then the statement clearly holds because we can select a semi-complete pair of
prefixes of combined length 22 and an empty matching.

Next, assume there exist prefixes A′, C ′ of even length of A and C, respectively,
with efficiency at least 4

5 . Then there exists a non-crossing homogeneous matching
M ′ between A′ and C ′ such that 2|M ′| ≥ 4

5 · (|A′| + |C ′|). Furthermore, we can
use the induction hypothesis on the remaining parts of A and C because they can
be split into intervals of length 2 the same way as A and C can be split. Thus,
there exists a semi-complete pair of prefixes (A∗, C∗) of the remaining parts of
A, C and a non-crossing homogeneous matching M∗ between A∗ and C∗ such that
2|M∗| ≥ 4

5 · (|A∗| + |C∗| − 22). Hence, (A′ ⊕ A∗, C ′ ⊕ C∗) is a semi-complete pair
of prefixes of A, C. Moreover, for the matching M ′ ∪M∗ between A′ ⊕A∗, C ′ ⊕C∗

we have 2|M ′ ∪ M∗| ≥ 4
5 · (|A′ ⊕ A∗| + |C ′ ⊕ C∗| − 22). Therefore, it would be

sufficient to show that there always exists a pair of prefixes of A and C with
efficiency at least 4

5 . Unfortunately, that is not always true.
Instead, we use a second induction. Let s be an even integer greater than or

equal to 22, let P be a prefix of A of length s, and let O be a prefix of C of length
s. We show by induction on s that there either exist prefixes of P and O of even
length with efficiency 4

5 or P and O contain one of the following semi-complete
pairs of prefixes (depending on their residue modulo 6), possibly with all colors
switched or with switched order of sequences inside the pairs, but these cases are
symmetric:

1. if s = 6t:

(a) (011010(010101)t−1, 100101(1001)t−11001)
(b) (011010(010101)t−1, 100101(1001)t−11010)

2. if s = 6t + 2:

(a) (011010(010101)t−101, 100101(1001)t−11001)
(b) (011010(010101)t−101, 100101(1001)t−11010)
(c) (011010(010101)t−110, 100101(1001)t−11001)
(d) (011010(010101)t−110, 100101(1001)t−11010)

3. if s = 6t + 4:

(a) (011010(010101)t−11010, 100101(1001)t−1100101)
(b) (011010(010101)t−10101, 100101(1001)t−1100110)

For every pair of prefixes (A′, C ′) of one of the form above, we can find a non-
crossing homogeneous matching M ′ such that 2|M ′| ≥ 4

5 · (|A′| + |C ′| − 22) since
the periodic parts can be matched together while having 4

5 of all its points covered
and it is easy to check that the best possible matching of the remaining prefixes
and suffixes is big enough. Furthermore, when s = min(|A|, |C|) these pairs are
semi-complete pairs of prefixes of A and C and the theorem follows. Thus, it
remains to finish the induction on s.

The base case when s = 22 follows from the case analysis in Attachment A.1.
For other s we know that O, P contains one pair from the group of pairs of
prefixes we get from the induction hypothesis applied on the prefixes of O, P of

12



011010(010101)t−1

100101(1001)t−1 1001

011010(010101)t−1 0 1

100101(1001)t−1 1001
(2a)

011010(010101)t−1 1 0

100101(1001)t−1 1001
(2c)

011010(010101)t−1

100101(1001)t−1 1010

011010(010101)t−1 0 1

100101(1001)t−1 1010
(2b)

011010(010101)t−1 1 0

100101(1001)t−1 1010
(2d)

Figure 1.2: Possible extensions of pairs of prefixes in the case when s = 6t + 2.

size s − 2. We try to extend all of these possible pairs of prefixes. Moreover,
we know that A, C can be split into intervals of size 2 containing one point of
each color. Therefore, we can do the extension only by intervals represented by
01 or by 10. The analysis is split into cases according to the residue modulo 6.
The points we used for extending the prefixes from the induction hypothesis are
written in italics. The matchings in figures signify the existence of prefixes of
even length with efficiencies of at least 4

5 .
First, we consider the case when s mod 6 = 2. Let t be an integer such that

s = 6t+2. We are extending pairs (011010(010101)t−1, 100101(1001)t−11001) and
(011010(010101)t−1, 100101(1001)t−11010). By extending the first prefixes by 01
or 10, we get one of the semi-complete pairs (2a) – (2d) in all cases. See Figure 1.2
for graphical explanation.

Next, we consider the case when s mod 6 = 4. Let t be an integer such that
s = 6t + 4. We have four possible pairs of prefixes from the induction hypothesis.
We try to extend all of them. We always either get the semi-complete pair of
prefixes (3a) or (3b) or we find prefixes with efficiency at least 4

5 . See Figure 1.3
and Figure 1.4.
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011010(010101)t−1 01

100101(1001)t−1 1001

01101001(010101)t−2 010101

1001011001(1001)t−2 10010 1

01101001(010101)t−2 0101011 0

1001011001(1001)t−2 10011 0

01101001(010101)t−2 0101010 1

1001011001(1001)t−2 10011 0
(3b)

011010(010101)t−1 01

100101(1001)t−1 1010

01101001(010101)t−2 010101

1001011001(1001)t−2 10101 0

01101001(010101)t−2 010101

1001011001(1001)t−2 10100 1

011010(010101)t−1 10

100101(1001)t−1 1001

01101001(010101)t−2 010110

1001011001(1001)t−2 10011 0

01101001(010101)t−2 0101101 0

1001011001(1001)t−2 10010 1
(3a)

0110100101(010101)t−2 01100 1

100101(1001)t−2 10011001

Figure 1.3: Possible extensions of pairs of prefixes in the case when s = 6t + 4.
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011010(010101)t−1 10

100101(1001)t−1 1010

01101001(010101)t−2 010110

1001011001(1001)t−2 10101 0

01101001(010101)t−2 0101100 1

1001011001(1001)t−2 10100 1

0110100101(010101)t−2 01101 0

100101(1001)t−2 10011010

Figure 1.4: Possible extensions of pairs of prefixes in the case when s = 6t +
4.(cont.)

Finally, we consider the case when l mod 6 = 0. Let t be an integer such
that s = 6t. We proceed analogously to previous cases. See Figure 1.5.

011010(010101)t−2 1010

100101(1001)t−2 100110

01101001(010101)t−4 01010101011010

1001011001(1001)t−4 10011001010 1

01101001(010101)t−4 01010101011010

1001011001(1001)t−4 1001100101 1 0

011010(010101)t−2 0101

100101(1001)t−2 100110

0110100101(010101)t−2 1 0

100101(1001)t−2 100110

0110100101(010101)t−2 0 1

100101(1001)t−2 1001100 1
(1a)

0110100101(010101)t−2 0 1

100101(1001)t−2 1001101 0
(1b)

Figure 1.5: Possible extensions of pairs of prefixes in the case when s = 6t.
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2. Alternating paths on points in
non-convex configurations
A polygon in this chapter is a closed, possibly unbounded, region in the plane
whose boundary consists of non-crossing strait-line segments or half-lines. A
bounded polygon can also be defined by an ordered set of its vertices; in that
case, we assume that the vertices lie on the boundary of the polygon in the
clockwise direction. The convex hull of a set of points X, denoted by conv(X),
is the smallest convex set that contains X. Recall that B, R always denote the
set of blue points and the set of red points, respectively. Moreover, B and R are
always disjoint, and R ∪ B is always in general position.

Our primary goal in this chapter is to prove the Theorem 3.
This theorem is a generalization of the following theorem proved by Abellanas

et al. [1].

Theorem 9 ([1]). Let R form the vertices of the polygon conv(R ∪B), the points
of B lie in the interior of conv(R ∪ B), and ||R| − |B|| ≤ 1. Then there exists a
non-crossing alternating path on R ∪ B covering all points of R ∪ B.

Our improvement is that the polygon P can be formed by only a subset of
R, whereas the remaining points of R remain outside of P . The approach in
the proof of Theorem 9 in a case when |R| = |B| is to partition the polygon
into convex parts, each containing exactly one edge of the polygon and one blue
point from inside the polygon, and then connect by straight-line segments each
of the blue points to the end vertices of the edge that is inside the same part. In
this way, alternating geometric paths of length two are formed inside each part
of the partition. Moreover, they share their end vertices, and so they form an
alternating cycle together. This cycle is non-crossing since each path lies in its
own part of the partition.

We proceed similarly with only two significant distinctions. Firstly, we need
to partition the whole plane into convex parts such that every edge of the polygon
is a diagonal of one part of the partition, and each part of the partition contains
a certain amount of red and blue points. Secondly, we need to apply a slightly
stronger theorem to find a non-crossing alternating geometric path inside every
part. These paths together will form an alternating cycle the same way as before.

Before we begin, we introduce some geometric notation needed in our argu-
ments. For a directed line l, the close half-plane to the left of l is denoted by
left(l), and the close half-plane to the right of l is denoted by right(l). For an
edge e of a convex polygon, the closed half-plane to the side of e that is disjoint
with the polygon’s interior is denoted by out(e).

For a region T of the plane, ∥T∥R and ∥T∥B denotes the number of red points
inside T and the number of blue points inside T , respectively. Generally, we count
even the points on boundaries of regions, but sometimes, when specifically noted,
we do not count them, usually when a point on boundaries of more regions is
assigned to some other region.
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2.1 Partitioning of the plane into convex poly-
gons

The partitioning theorem we need to prove is the following.

Theorem 10. Let P = (p1, . . . , ps) be a convex polygon, B be a set of blue
points in the interior of P , and R be a set of red points outside of P such that
s = |B| − |R| and R ∪ B ∪ {p1, . . . ps} is in general position. Then there exists
a partition of the plane into convex polygons Q1, . . . , Qs such that pipi+1 is a
diagonal of Qi and for every i, we have ∥Qi∥B − ∥Qi∥R = 1 (index arithmetic is
modulo s). Moreover, every point of R ∪ B is counted in exactly one Qi. That is,
if a point of R ∪ B lies on the common boundary of more Qi’s it is assigned to
only one of them.

We believe that the following stronger version of this theorem holds.

Conjecture 1. Let Q be a convex polygon, P = (p1, . . . , ps) be a convex polygon
inside Q, B be a set of blue points in the interior of P , and R be a set of red
points outside P but inside Q such that R ∪ B ∪ {p1, . . . ps} is in general position.
Assume that |B| − |R| = n(p1p2) + · · · + n(psps+1) where the index arithmetic
is modulo s and all n(pipi+1)’s are integers such that for every nonempty cyclic
interval of indices I, we have

∑
i∈I

n(pipi+1) ≥ −
Q ∩

⋃
i∈I

out(pipi+1)


R

. (2.1)

Then there exists a partition of Q into convex polygons Q1, . . . , Qs such that for
every i, the segment pipi+1 is a diagonal or an edge of Qi and ∥Qi∥B − ∥Qi∥R =
n(pipi+1). Moreover, every point of R ∪ B is counted in exactly one Qi.

For an example partition, see Figure 2.1.
Note that in a case when Q is the plane and all ni’s are equal to 1, Con-

ditions (2.1) always hold, and the conjecture is equivalent with Theorem 10.
Moreover, Conditions (2.1) are necessary. Otherwise, the parts of the partition
corresponding to the index set for which a condition does not hold would contain
too many blue points compared to red ones.

The case when there are no red points outside of P and all n(pipi+1) are
positive integers was already proved by Garćıa and Tejel [10] and later by Au-
renhammer [3]. The case with points outside of P seems to be more difficult (for
example, Conditions 2.1 hold implicitly if all n(pipi+1) are positive integers).

We managed to prove Conjecture 1 only in the case s = 3, but that proved
crucial in proving Theorem 10.

Lemma 11. For s = 3, Conjecture 1 holds.

In the proof, we need to use continuity arguments. For that purpose we
will use Knaster–Kuratowski–Mazurkiewicz lemma. It is one of the well-known
fixed-point theorems.

Lemma 12 (Knaster–Kuratowski–Mazurkiewicz lemma).
Let S = conv(e1, e2, e3) ⊂ R2 and {F1, F2, F3} be a family of closed subsets of S
such that for A ⊆ {1, 2, 3}, we have
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Figure 2.1: A partition of Q into convex polygons Q1, . . . Q6 as in Conjecture 1.
Blue point are drawn as circles and red points as discs. Numbers n(pipi+1) are
written next to their corresponding edges of the polygon.

conv(ei : i ∈ A) ⊆
⋃
i∈A

Fi.

Then ⋂3
i=1 Fi is compact and non-empty.

For a simple proof of this lemma, see for example [4, Theorem 5.1]. This
lemma also holds in an analogous form in higher dimensions, but we need just
the planar version.

Proof of Lemma 11. For a point x ∈ P \{p1, p2}, define Qx
1 as the convex polygon

enclosed by the boundary of Q and by the lines xp1, xp2 so that Qx
1 contains edge

p1p2 (or, in a degenerate case when x lies on p1, p2, define it as out(p1p2) ∩ Q).
Define Qx

2 and Qx
3 analogously.

For every i, let ni = n(pipi+1). Let {b1, . . . , b|B|} = B and {r1, . . . , r|R|} = R.
In order to properly resolve points on the boundaries of polygons we need to
substitute points with discs. Substitute every bi by a disk b′

i with bi in its center
and substitute every ri by a disk r′

i with ri in its center. Furthermore, since the
set R ∪ B ∪ {p1, p2, p3} is in general position we can do the substitution so that
every disk has a same positive diameter ε and no line intersects more than two
discs and vertices of P simultaneously. Let µ(T ) denote the multiple of the area
(standard Lebesgue measure) of a region T in the plane such that for each of our
disks d, we have µ(d) = 1.

For all i, 1 ≤ i ≤ 3, let

Fi =

⎧⎨⎩x ∈ P \ {pi, pi+1} :
|B|∑
j=1

µ(Qx
i ∩ b′

j) −
|R|∑
j=1

µ(Qx
i ∩ r′

j) ≥ ni

⎫⎬⎭ .
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Take x from P \ {p1, p2, p3}. Since |B| − |R| = n1 + n2 + n3 and for every such
x, (Qx

1 , Qx
2 , Qx

3) is a partition of Q, we have

3∑
i=1

|B|∑
j=1

µ(Qx
i ∩ b′

j) −
3∑

i=1

|R|∑
j=1

µ(Qx
i ∩ r′

j) = |B| − |R| = n1 + n2 + n3. (2.2)

Therefore, F1 ∪ F2 ∪ F3 covers the interior of P .

Take x ∈ p1p2 \ {p1, p2}. Then out(p1p2) ∩ Q = Qx
1 and ∑|B|

j=1 µ(Qx
1 ∩ b′

j) = 0
since all the blue discs are in the interior of P . Moreover, by Inequalities (2.1) and
the fact that the line p1p2 does not cross any discs, we have∑|R|

j=1 µ(Qx
1∩r′

j) ≥ −n1.
Summing this with Equation (2.2) we have

|B|∑
j=1

µ(Qx
2 ∩ b′

j) +
|B|∑
j=1

µ(Qx
3 ∩ b′

j) −
|R|∑
j=1

µ(Qx
2 ∩ r′

j) −
|R|∑
j=1

µ(Qx
3 ∩ r′

j) ≥ n2 + n3.

Hence, x ∈ F2 or x ∈ F3. Therefore, F2 ∪ F3 covers p1p2. Analogously, we see
that F1 ∪ F2 covers p3p1 and F3 ∪ F1 covers p2p3.

Take x = p1. Then Q can be partition into two polygons, Qx
2 and Q ∩

(out(p1, p2) ∪ out(p3, p1)). Moreover, Qx
2 contains all blue discs. Thus,

|B|∑
j=1

µ(Qx
2 ∩ b′

j) −
|R|∑
j=1

µ(Qx
2 ∩ r′

j)− ∥Q ∩ (out(p1, p2) ∪ out(p3, p1))∥R = |B| − |R| =

= n1 + n2 + n3.

By Conditions (2.1) we have

∥Q ∩ (out(p1, p2) ∪ out(p3, p1))∥R ≥ −n1 − n3.

Hence, we see that
|B|∑
j=1

µ(Qx
2 ∩ b′

j) −
|R|∑
j=1

µ(Qx
2 ∩ r′

j) ≥ n2.

Therefore, F2 covers p1. Analogously, F3 covers p2 and F1 covers p3.
Furthermore, all sets Fi are closed, except possibly Fi in points pi, pi+1 (index

arithmetic is modulo 3). But since Fi covers pi−1 it has to cover even a small
disc around pi−1 because points are in general position. Thus, we can remove this
open disc from Fi−1 and Fi+1. If we do this for all Fi, then all of them will be
closed and we can apply Lemma 12.

Therefore, there exists a point y ∈ P such that y ∈ F1 ∩ F2 ∩ F3. Clearly, it is
not any vertex of P . We claim that the polygons Qy

1, Qy
2, and Qy

3 form the desired
partition of Q. Clearly, every pipi+1 is a diagonal of Qy

i . Since the area of the
intersection of any two Qy

i , Qy
j is zero, then by Equality (2.2) and the definitions

of Fi, for every i, we have,
|B|∑
j=1

µ(Qy
i ∩ b′

j) −
|R|∑
j=1

µ(Qy
i ∩ r′

j) = ni. (2.3)
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Figure 2.2: Assignment of points when discs are intersected by boundaries of
polygons.

It remains to show that corresponding equalities holds also for points and not
only for discs. That is, we need to show that for every i, we have

∥Qy
i ∥B − ∥Qy

i ∥R = ni. (2.4)

Since the points are in general position, every line ypi crosses at most one
disc. Therefore, there are only several possibilities how the intersection of these
lines with discs can look like.

• No line ypi crosses any discs:
In this case every disc is entirely inside some Qy

i . Therefore,

|B|∑
j=1

µ(Qy
i ∩ b′

j) −
|R|∑
j=1

µ(Qy
i ∩ r′

j) = ∥Qy
i ∥B − ∥Qy

i ∥R

and the theorem follows.

• Exactly one line, without loss of generality yp1, crosses some disc:
In this case ∑|B|

j=1 µ(Qy
1 ∩ b′

j) −∑|R|
j=1 µ(Qy

1 ∩ r′
j) is not an integer. A contra-

diction with (2.3).

• Two lines, without loss of generality yp1, yp2, cross some discs:
In this case ∑|B|

j=1 µ(Qy
2 ∩ b′

j) −∑|R|
j=1 µ(Qy

2 ∩ r′
j) is not an integer. A contra-

diction with (2.3).

• All three lines yp1, yp2, yp3, cross some discs:
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If two of them, say yp1, yp2, cross the same disc, then ∑|B|
j=1 µ(Qy

1 ∩ b′
j) −∑|R|

j=1 µ(Qy
1 ∩ r′

j) is not an integer. A contradiction with (2.3).
Thus, each of them crosses a different disc, say ypi crosses d′

i with the
colored point di in its center. Hence, Qy

1 intersects d′
1 and d′

2, Qy
2 intersects

d′
2 and d′

3, and Qy
3 intersects d′

3 and d′
1. Firstly, assume that some di, does

not lie on its corresponding line ypi. Then by Equalities (2.3) even the
centers of the other two d′

i cannot lie on their corresponding lines. Thus,
all points of R ∪ B are in the interiors of some Qy

i ’s. Therefore, if we
round to the nearest integer the contribution of every disc d′

k to the value∑|B|
j=1 µ(Qy

1 ∩ b′
j) − ∑|R|

j=1 µ(Qy
1 ∩ r′

j), we obtain the value ∥Qy
1∥B − ∥Qy

1∥R.
Furthermore, only disks d′

1 and d′
2 are only partly in Qy

1. Thus, we could
not change the value by 1 or more by the rounding. Therefore,

|B|∑
j=1

µ(Qy
1 ∩ b′

j) −
|R|∑
j=1

µ(Qy
1 ∩ r′

j) = ∥Qy
1∥B − ∥Qy

1∥R

since both sides are integers. Analogously, the same holds for Qy
2 and Qy

3,
and so Equations (2.4) are satisfied.
It remains to solve the case when each di lies on its corresponding line ypi.
In this case, each di lies on the boundaries of two Qy

i ’s, and we have to assign
each of them to exactly one Qy

i such that Equations (2.4) would hold. If all
di have the same color, we assign one to every Qy

i . If two of them, say d1
and d2 have one color, and the remaining one, d3 in our case, has a different
color we assign d2 and d3 to Qy

2 and we assign d1 to Qy
1 (see Figure 2.2 for a

case when two of them are red). It is clear that by this assignment we have
|B|∑
j=1

µ(Qy
i ∩ b′

j) −
|R|∑
j=1

µ(Qy
i ∩ r′

j) = ∥Qy
i ∥B − ∥Qy

i ∥R

for every i. Hence, Equations (2.4) are satisfied.

In order to prove Theorem 10, we want to use an induction and apply
Lemma 11 to some base cases. The problem are Conditions (2.1) in Lemma 11.
Therefore, we will prove by induction a slightly different statement where this
condition is satisfied by default. After that, we will do some initial steps and
reduce Theorem 10 to this new problem.

Lemma 13. Let Q be a convex polygon and a be a point on the boundary of Q.
Additionally, let s ≥ 1 be an integer and p1, p2, . . . , ps+1 be points inside Q such
that p1 and ps+1 lie on the boundary of Q and (a, p1, . . . , ps+1) is a convex polygon
inside Q (we also allow cases when either p1 = a, or ps+1 = a). Let P be the
convex polygon enclosed by p1p2, . . . , psps+1 and by the part of the boundary of Q
from ps+1 through a to p1 in clockwise direction. Moreover, let B be a set of blue
points inside P , and R be a set of red points outside P but inside Q such that
s = |B| − |R|. Assume that R ∪ B ∪ {a, p1, p2, . . . ps+1} is in general position.

Then there exists a partition of Q into convex polygons Q1, . . . , Qs such that
s1si+1 is a diagonal of Qi and for every i, we have ∥Qi∥B −∥Qi∥R = 1. Moreover,
every point of R ∪ B is counted in only one Qi.
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Proof. We will use induction on s.
First assume that s = 1. In this case, set Q1 = Q and assign all points of B∪R

on the boundary of Q to Q1. Since s = |B| − |R|, we have ∥Q1∥B − ∥Q1∥R = 1.
Now assume that s ≥ 2. For every pi, 2 ≤ i ≤ s, we say that sia is left-

partitionable if

∥Q ∩ right(pia)∥B − ∥Q ∩ right(pia)∥R ≤ i − 1

and we say that pia is right-partitionable if

∥Q ∩ left(pia)∥B − ∥Q ∩ left(pia)∥R ≤ s − i + 1.

Since s = |B| − |R| and the points pi together with a are in general position, pia
is left-partitionable if

∥Q ∩ left(pia)∥B − ∥Q ∩ left(pia)∥R ≥ s − i + 1

and pia is right-partitionable if

∥Q ∩ right(pia)∥B − ∥Q ∩ right(pia)∥R ≥ i − 1.

Moreover, every such pia is left or right-partitionable.
Assume that p2a is right-partitionable. Note that this does not happen if

a = p1 because there are no blue point to the right of p2p1. Let l be a line
containing p2a. By rotating l in the clockwise direction around p2 we can find a
point x on the boundary of Q between a and p1 different from p1 such that

∥Q ∩ right(p2x)∥B − ∥Q ∩ right(p2x)∥R = 1

since
∥Q ∩ right(p2p1)∥B − ∥Q ∩ right(p2p1)∥R ≤ 0

(again note that there are no blue or red points on the line p2p1 because R ∪ B ∪
{p2, p1} is in general position). Thus, we can set Q1 = Q ∩ right(p2x) and apply
induction on the polygon Q ∩ left(p2x) and points p2, . . . ps+1. Then the partition
of Q∩ left(p2x) together with Q1 forms the desired partition of Q. See Figure 2.3.

Therefore, we can assume that p2a is left-partitionable. By similar analysis
for psa we solve the case when psa is left-partitionable. Hence, we can assume
that psa is right-partitionable.

Thus, we can find index j, 2 ≤ j ≤ s − 1 such that pja is left-partitionable
and pj+1a is right-partitionable. Let T be the triangle apjpj+1. Let B′ = B ∩ T ,
n(apj) = j −1−∥right(pja)∥B, n(pj+1a) = s−j −∥left(pj+1a)∥B, and n(pjpj+1) =
1. We want to use Lemma 11 on Q, triangle T inside Q, set of blue points B′,
set of red points R, and the numbers n(apj), n(pj+1a), n(pjpj+1).

Clearly, B′ ∪ R ∪ {a, pj, pj+1} are in general position, B′ is in the interior of
T , R is outside T , and |B′| − |R| = n(apj) + n(pj+1a) + n(pjpj+1). See Figure 2.4
for an illustration. It remains to check that Conditions (2.1) hold.

Let us first check it for the edge pja. Since pja is left-partitionable,

∥Q ∩ right(pja)∥B − ∥Q ∩ right(pja)∥R ≤ j − 1.
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Figure 2.3: Induction step in Lemma 13 when p2a is right-partitionable. Polygon
Q1 is the first part of the partition of Q. The remaining parts of the partition
are obtained by induction hypothesis applied on the remaining part of Q.

Thus,

− ∥Q ∩ right(pja)∥R ≤ j − 1 − ∥Q ∩ right(pja)∥B = n(apj).

Similarly, since pj+1a is right-partitionable, we have − ∥Q ∩ left(pj+1a)∥R ≤
n(apj+1). Additionally, since a in on the boundary of Q, the interior of
left(pj+1a) ∩ right(pja) is entirely outside Q. Thus,

n(apj+1) + n(apj) ≥ − ∥Q ∩ right(pja)∥R − ∥Q ∩ left(pj+1a)∥R =
= − ∥Q ∩ (right(pja) ∪ left(pj+1a))∥R .

The remaining conditions follow immediately from these ones since n(pjpj+1)
is a positive number. Thus, by Lemma 11, Q can be partition into convex poly-
gons O1, O2, O3 such that apj, pjpj+1, apj+1 are diagonals or edges of O1, O2, O3,
respectively, and ∥O1∥B′ − ∥O1∥R , ∥O2∥B′ − ∥O2∥R , ∥O3∥B′ − ∥O3∥R are equal to
n(apj), n(pjpj+1), n(apj+1), respectively. See Figure 2.4 for an illustration. Hence,

∥O1∥B − ∥O1∥R = n(apj) + ∥Q ∩ left(apj)∥B = j − 1
∥O2∥B − ∥O2∥R = n(pjpj+1) + ∥Q ∩ left(pjpj+1)∥B = 1
∥O3∥B − ∥O3∥R = n(apj+1) + ∥Q ∩ left(pj+1a)∥B = s − j

Therefore, we can apply the induction hypothesis to the polygon O1, point a
on the boundary of O1, points p1, . . . , pj, the set of blue points B ∩ O1, and
the set of red points R ∩ O1 (if some red or blue point are on the boundary of
O1, we include only the ones assigned to O1 by Lemma 11) to obtain partition
Q1, . . . , Qj−1, of O1. Similarly, we obtain a partition Qj+1, . . . , Qs+1 of O3 by
induction hypothesis applied to O3 and corresponding points.

Furthermore, since n(pjpj+1) = 1, pj, pj+1 is a diagonal of O2 and we can set
Qj = O2. Finally, Q1, . . . , Qs is the desired partition of Q.
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Figure 2.4: Induction step in Lemma 13. Polygon Q is split into three parts
O1, O2, O3. Induction hypothesis can then be applied on polygons O1 and O3 to
obtain a complete partition of Q.

It remains to prove Theorem 10. We will proceed similarly as in the proof
of the previous lemma. The only real difference is that previously we had one
point of P on the boundary of Q. Now the first step will have to be a bit more
complicated but still very similar.

Proof of Theorem 10. For every pi, 2 ≤ i ≤ s, we say that pip1 is left-partitionable
if

∥left(pip1)∥B − ∥left(pip1)∥R ≥ s − i + 1
or, equivalently, if

∥right(pip1)∥B − ∥right(pip1)∥R ≤ i − 1.

This equivalence holds since s = |B| − |R|.
Similarly, we say that pip1 is right-partitionable if

∥right(pip1)∥B − ∥right(pip1)∥R ≥ i − 1

or, equivalently, if

∥left(pip1)∥B − ∥left(pip1)∥R ≤ s − i + 1.

Furthermore, every such pip1 is left or right-partitionable.
Note that p2p1 is left-partitionable because it is an edge of P , and so there

are no blue points to the right of p2p1. Similarly, psp1 is right-partitionable.
Therefore, we can find j, 2 ≤ j ≤ s − 1 such that pjp1 is left-partitionable and
pj+1p1 is right-partitionable.

Let T be the triangle p1pjpj+1. Let B′ = B ∩ T , n(p1pj) = j − 1 −
∥right(pjp1)∥B, n(pj+1p1) = s − j − ∥left(pj+1p1)∥B, and n(pjpj+1) = 1. The
situation is almost identical as in the previous proof. Thus, we would like to use
Lemma 11 on the whole plane, triangle T , the set of blue points B′, the set of
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red points R, and the numbers n(p1pj), n(p1pj+1), n(pjpj+1). All the assumptions
needed in Lemma 11 are satisfied in the similar way as in the previous proof with
the exception of the following condition:

n(p1pj) + n(p1pj+1) ≥ − ∥(right(pjp1) ∪ left(pj+1p1))∥R .

Hence, if this inequality holds, we can partition the plane into three convex
polygons, two of which we can further partition by Lemma 13 as in the previous
proof. In this way, we obtain the desired partition of the plane.

Now assume that

n(p1pj) + n(p1pj+1) < − ∥right(pjp1) ∪ left(pj+1p1)∥R .

Note that since pj+1p1 is right-partitionable and pjp1 is left-partitionable, this
can happen only if 3 ≤ j ≤ s − 2.

We can further split the region right(pjp1) ∪ left(pj+1p1) and write

n(p1pj) + n(p1pj+1) < − ∥right(pjp1) ∩ right(pj+1p1)∥R −
− ∥left(pjp1) ∩ left(pj+1p1)∥R − ∥right(pjp1) ∩ left(pj+1p1)∥R .

(2.5)

Since pjp1 is left-partitionable, ∥right(pjp1)∥B − ∥right(pjp1)∥R ≤ j − 1. By
substituting n(p1pj) for j − 1 − ∥right(pjp1)∥B, we have

n(p1pj) ≥ − ∥right(pjp1)∥R . (2.6)

Similarly, since pj+1p1 is right-partitionable, n(p1pj+1) ≥ − ∥left(pj+1, p1)∥R.
By combining this with Equation (2.5) we get

n(p1pj) < − ∥right(pjp1) ∩ right(pj+1p1)∥R . (2.7)

Equations (2.6) and (2.7) imply that there exists a directed half-line l starting
at p1 that splits the region right(pjp1)∩ left(pj+1p1) in a way that l does not cross
any point of R ∪ B, and

n(p1pj) = − ∥right(pjp1) ∩ right(l)∥R . (2.8)

This together with Equation (2.5) implies that

n(p1pj+1) < − ∥left(l) ∩ left(pj+1p1)∥R . (2.9)

Therefore, the plane is split into two polygons; convex one Q∗ = right(pjp1) ∩
right(l) and non-convex one Q′ = left(l) ∪ left(pjp1). See Figure 2.5. If we
substitute for the value of n(p1pj) into Equation (2.8) we see that

j − 1 − ∥right(pjp1)∥B = − ∥Q∗∥R .

Furthermore, note that the blue points are only inside P . Thus,

j − 1 = ∥Q∗∥B − ∥Q∗∥R (2.10)
Hence, we can apply Lemma 13 to the polygon Q∗ with point p1 on its bound-

ary, points p1, . . . , pj, set of blue points B ∩Q∗ and set of red points R∩Q∗. This
way we obtain a partition of Q∗ into convex polygons Q1, . . . , Qj−1.
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Figure 2.5: First step of partitioning the convex polygon P .

Thus, it suffice to partition Q′. Equation (2.10) together with the fact that
s = |B| − |R| implies that s − j + 1 = ∥Q′∥B − ∥Q′∥R. We would like to apply
Lemma 13 to the polygon Q′ with point p1 on its boundary, points pj, . . . , ps, p1,
set of blue points B ∩ Q′ and set of red points R ∩ Q′. The only problem is that
Q′ is not convex. Luckily, it turns out that it does not matter in this case because
even if we applied the same approach, the parts of the partition would still be
convex. Since the proof is basically the same as in the proof of Lemma 13 we
present a more concise version.

Let R′ = R ∩ Q′ and B′ = B ∩ Q′. The important part is that Equation (2.9)
implies that the diagonal pj+1p1 is left-partitionable in Q′. Furthermore, ps ̸= pj+1
since s ≥ j + 2. Therefore, we once again find some index k, j + 1 ≤ k ≤ s − 1,
such that pkp1 is left-partition-able and pk+1p1 is right-partitionable. Let T ′

be the triangle p1pkpk+1. Let n(p1pk) = k − j − ∥right(pkp1)∥B′ , n(pk+1p1) =
s − k − ∥left(pk+1p1)∥B′ , and n(pkpk+1) = 1. We apply Lemma 11 on the whole
plane, triangle T , set of blue points B′, set of red points R′, and the numbers
n(p1pk), n(p1pk+1), n(pkpk+1). The Conditions (2.1) are satisfied since pkp1 is
left-partition-able, pk+1p1 is right-partitionable, and right(pkp1) ∩ left(pk+1p1)
does not contain any point of B′ or R′ (because its interior is disjoint with
Q′). Thus, we can partition the plane into convex polygons O1, O2, O3 such that
p1pk, pkpk+1, p1pk+1 are diagonals or edges of O1, O2, O3, respectively, and other
conditions about number of blue and red points inside these polygon holds. It is
immediate that all intersection Oi ∩ Q′ are also convex polygons.

Therefore, we can apply Lemma 13 to the convex polygon Q′ ∩ O1 with the
point p1 on its boundary, points pj, . . . , pk, the set of blue points B′ ∩ O1, and
the set of red points R′ ∩ O1 (if some red and blue point are on the boundary of
O1, we include only the ones assigned to O1 by Lemma 11) to obtain a partition
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Qj, . . . , Qk−1, of Q′ ∩ O1. Similarly, we obtain a partition Qk+1, . . . , Qs+1 of O3
by Lemma 13 applied to Q′ ∩ O3 and corresponding points.

Finally, we can set Qk = Q′ ∩ O2, and the partition Q1, . . . , Qs is the desired
partition of the plane.

2.2 Alternating paths covering all red and blue
points

Before we proceed to prove Theorem 3 we need a result already proved by Abel-
lanas et al. [1]. We provide our proof to keep the thesis self contained.

Theorem 14 ([1]). Let R be a set of red points and B be a set of blue points
such that R ∪ B is in general position. Assume that ||R| − |B|| ≤ 1 and that R
can be separated from B by a line. Then there exists a non-crossing alternating
geometric path covering the entire point set R ∪ B such that this path begins and
ends in end vertices of the alternating edges of the convex hull of R ∪ B.

Proof. Denote the separating line by s. By rotating the whole plane, we can
assume that s is vertical, R is on the left side of s, and B is on the right side
of s. Let T = R ∪ B. For every subset X of T containing at least one point
of each color, there exists one or two edges of conv(X) crossing s. These edges
are alternating, and we call the top one top alternating edge of conv(X) and the
bottom one bottom alternating edge of conv(X).

We will inductively build a sequence (p1, p2, . . . , p|T |) of all points of T such
that connecting these points in the given order by straight-line segments forms a
non-crossing alternating geometric path. We set p1 to be one of the two vertices
of the top alternating edge of conv(T ) whose color is the more numerous one (if
|R| = |B| it does not matter which).

Assume that we have already built the sequence up to pi. Let Si be the
set containing the remaining points. We set pi+1 to be the vertex of the top
alternating edge of conv(Si) colored by different color than pi. If |T \ Pi| = 2
we set s|T | to be the last unselected point and the path is complete. Clearly,
the formed path is alternating. Moreover, in every step the edge pipi+1 lies in
conv(Si∪{pi})\conv(Si) since pi is a vertex of the top alternating edge of Si∪{pi}
and pi+1 is a vertex of the top alternating edge of Si, see Figure 2.6 for illustration.
Therefore, the formed path is also non-crossing.

Furthermore, it is clear from the construction that the first vertex is a vertex
of the top alternating edge of conv(T ) and the last one is a vertex of the bottom
alternating edge of conv(T ).

We have everything ready to finish the proof of Theorem 3.

Proof of Theorem 3. Let s be the number of vertices of P and (p1, . . . , ps) be the
vertices of P . Let R′ = R \ P . That is, R′ contains exactly the points of R that
are not vertices of P . We will assume that |R| = |B| and we will show that there
exists a non-crossing alternating geometric cycle that covers all vertices. If |R|
and |B| differ by one, we can add one temporary point of the appropriate color,
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Figure 2.6: Inductive forming of a non-crossing alternating geometric path when
the color classes are separated by a line.

and after we remove it in the end, we will still have a non-crossing alternating
geometric path. Therefore, s = |B| − |R′|.

By Theorem 10 applied on the polygon P , set of blue points B and set of red
points R′, there exists a partition of the plane into convex polygons Q1, . . . , Qs

such that for every i, the edge pipi+1 is a diagonal of Qi, and for every i, we have
∥Qi∥B − ∥Qi∥R′ = 1 (index arithmetic is modulo s). Moreover, every point of
R′ ∪ B is counted in exactly one Qi. That is, if a point of R ∪ B is on boundaries
of more Qi’s it is assigned to exactly one of them.

Therefore, we want to apply Theorem 14 to each Qi separately. Each Qi

contains one more blue point than it contains points of R′. Moreover, these red
and blue points are separated by line pipi+1. Additionally, there are two more
red points pi, pi+1; the end vertices of edge pipi+1. Thus, by Theorem 14 there
exists a non-crossing alternating geometric path with ends in pi and pi+1 covering
all these red and blue points inside Qi. Note that this path is inside the convex
polygon Qi since it consists of straight-line segments.

Clearly, these paths are connected in the end vertices pi. Therefore, together
they form an alternating geometric cycle covering all points of R ∪ B. Further-
more, this cycle is non-crossing since each path is in its own convex polygon Qi,
points are in general position, and every point of R′ ∪ B is assigned to exactly
one Qi. See Figure 2.7 for an illustration.
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Figure 2.7: A non-crossing alternating geometric cycle in a case when 6 red points
form a polygon separating the remaining 6 red points from 12 blue points lying
inside the polygon.
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Conclusion
In this thesis, we managed to find a connection between separated matchings
and common subsequences of two binary words. With this connection, we im-
proved lower bounds on the sizes of separated matchings on convex point sets
with discrepancy at most 2. We believe that similar results could be achieved
even for larger discrepancies by more thorough analysis. Specifically, we believe
the following to be true:

Conjecture 2. Let k be a positive integer constant. Then p(k,k)(n) = 2k
3k−1 −o(1).

Theorem 6 shows the corresponding upper bound. Thus, it suffices to show
that every pair of sequences with discrepancy at most k of length n have matching
potential at least 2k

3k−1 − o(1). By Lemmma 5, it would imply that µk(n) ≥
4k

3k−1n − o(n). Thus, if true, it would mean that the long believed to be true
conjecture µ(n) ≥ 4

3n+o(n) holds true in cases with discrepancy at most k where
k is a constant. The only example that disproves this conjecture (in [8]) has
discrepancy approximately n

4
5 .

We also believe that the connection between the matching potential and the
parameter µ(n) is much tighter, and µd(n) can be bounded from the above by
p(d,d)(n). Specifically, we believe the following to be true.

Conjecture 3. Let d and c be positive constants. Let p(d,d)(n) ≤ c + o(1). Then
µd(n) ≤ 2cn + o(n).

In a case with unbounded discrepancies, the situation seems to be more dif-
ficult. For example, if we allow discrepancy n, then the matching potential of
two sequences of lengths 2n can be 0. Nevertheless, Theorem 5 works even for
unbounded discrepancies, and it is quite likely that a variation of Conjecture 3
with some additional dependence on d would also hold true. Since all the worst
cases seem to arise when the discrepancy is sublinear in n, it could prove vital in
determining even the general parameter µ(n).

Our additional focus was on cases with point sets in general position. We
managed to found a new configuration of points when a non-crossing alternat-
ing geometric path covering all points exists. During our attempts to prove
Theorem 3, we encountered an interesting partitioning problem and formulated
Conjecture 1. Even though we were ultimately unable to prove this conjecture in
a general case, we still believe it to be true. Unfortunately, we were also unable to
use our results to better understand the behavior of the parameter lg(n). With
additional time we believe that at least sublinear improvements on the lower
bound on lg(n) is possible and would not be that difficult to prove.

During our research, we also tried to look into problems concerning geometric
trees on bicolored point sets. Most of our initial findings turned out to be already
known and published before. Thus, we decided we need more time to research
the related problems further.
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A.1 First Attachment
Assume that P and O are sequences of red and blue points of length 22 such
that they can be separated into intervals of length 2; each interval containing one
red and one blue point. We need to show that either they contain prefixes of
even length with efficiency at least 4

5 or they contain a pair of prefixes of one of
the following forms, possibly with all colors switched or with switched order of
sequences inside the pairs, but these cases are symmetric:

1. (0110100101010101011010, 10010110011001100101)

2. (0110100101010101010101, 10010110011001100110)

We can assume that P starts with 01 and O starts with 10. If they started
with the same colored pair of points, they would contain prefixes of even length
with efficiency 1. The remaining case is symmetric with this one.

We iteratively try to extend these possible starts with intervals 01 or 10.
Whenever there is a pair of prefixes of even length with an efficiency of at least
4
5 , we graphically show the corresponding matching and stop expanding this par-
ticular pair. In this way, we construct all possible pairs of prefixes of P and O of
the length 4, then of the length 6, and so on until we construct all possible pairs
of prefixes of P and O one of length 22 and the other of length 20. We see that
indeed the only pairs of prefixes of P and O one of length 22 and the other of
length 20 that does not contain any pair of prefixes of even length with efficiency
at least 4

5 are pairs (1) and (2).
For better readability, we label each pair of sequences that we still need to

extend. That way it is easier to find how the pairs are extended next.

01

10

0101

1001
(4.1)

0101

1010
(4.2)

0110

1001
(4.3)

0110

1010
(4.4)
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0

(4.1)

101

1001

010101

100101

010101

100110

010110

100101

010110

100110

0

(4.2)

101

1010

010101

101001

010101

101010

010110

101001

010110

101010
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0

(4.3)

110

1001

011001

100101

011001

100110

011010

100101
(6.1)

011010

100110

0

(4.4)

110

1010

011001

101001

011001

101010

011010

101001

011010

101010
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0

(6.1)

11010

100101

0

(8.1)

1101001

10010101

0

(8.2)

1101001

10010110

0

(8.3)

1101010

10010101

0

(8.4)

1101010

10010110

0

(8.1)

1101001

10010101

0110100101

1001010101

0

(10.1)

110100101

1001010110

0

(10.2)

110100110

1001010101

0110100110

1001010110
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0

(8.2)

1101001

10010110

0

(10.3)

110100101

1001011001

0

(10.4)

110100101

1001011010

0

(10.5)

110100110

1001011001

0

(10.6)

110100110

1001011010
When we switch all colors and switch the order of sequence in the pair

(0110100101, 1001011001) we get the pair (0110100110, 1001011010). Therefore,
these cases are symmetric and we can continue expanding only the first of these
pairs.

0

(8.3)

1101010

10010101

0110101001

1001010101

0

(10.7)

110101001

1001010110

0110101010

1001010101

0110101010

1001010110
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1001011001

0

(10.8)

110101001

1001011010

0

(10.9)

110101010

1001011001
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1001011010

0

(10.1)

110100101
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011010010101

100101011001

011010010101

100101011010

011010010110

100101011001

011010010110

100101011010
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0

(10.3)

110100101

1001011001

011010010101

100101100101

0

(12.1)

11010010101

100101100110

011010010110

100101100101

011010010110

100101100110
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