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Introduction
The multivariate normal distribution is a key distribution in multivariate analysis.
The class of spherically symmetric distributions maintains some of its properties
and thus may be used instead of the normal distribution.

In this thesis we will cover some of the properties of spherically symmetric
distributions which are defined as distributions which remain unchanged when
rotated about the origin. This class includes not only the multivariate standard
normal distribution or uniform distributions on some symmetric sets (such as the
unit sphere surface or the unit ball) but also the multivariate generalizations of
the t-distribution and the Laplace distribution.

It turns out that spherically symmetric distributions are fully described by
their radial distribution (the distribution of their Euclidean norm) or the distri-
bution of any marginal random variable. Therefore, even though it is a collection
of multivariate distributions, many problems are reduced to the univariate cases.

The thesis is organized in the following way. Chapter 1 collects some prelim-
inaries that will be useful for our treatment of spherically symmetric distribu-
tions. We introduce the Dirichlet distribution which is used to find the marginal
distribution of the uniform distribution on the unit sphere surface. A brief in-
troduction of fractional calculus is given in this chapter, the Riemann-Liouville
fractional derivative and integral is defined. Fractional calculus answers the ques-
tions about differentiation of a non-integer order, for example the 1

2 -th derivative.
The concept was famously introduced in a letter from Leibniz to l’Hopital in 1695.

The second chapter starts with the definition of spherically symmetric distri-
butions. We show that their characteristic function is given as a scalar function
of the inner product of its argument. The radial distribution is defined and
used to compute the moments of spherically symmetric distributions. Elliptically
symmetric distributions are briefly mentioned.

Chapter 3 covers absolutely continuous spherically symmetric distributions
and connects the density function of the distribution with the density function of
the radial distribution. Chapter 4 then discusses marginal distributions and their
density. It is shown that spherical symmetry is preserved in marginal distribu-
tions. Thus, the question is whether a spherically symmetric distribution can be
extended to higher dimensions in the same way as marginal distributions are an
extension to lower dimensions. This problem is addressed in Section 4.2. Several
examples are given. For example it is shown that the uniform distribution inside
the unit ball in Rn is a marginal distribution of the uniform distribution on the
unit sphere surface in Rn+2. Conversely, the standard normal distribution can be
extended to any dimension and the extension is also normally distributed.

The last chapter concerns statistical applications and presents several tests
for spherical symmetry. We may wonder if our data sample is taken from any
spherically symmetric distribution. The tests rely on the properties derived in
the previous chapters. We may rely on univariate tests when testing for a given
spherically symmetric distribution assuming the symmetry holds.
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1. Preliminaries
The aim of this chapter is to summarize the notation, definitions and general
properties of functions and distributions which are used throughout the thesis.

1.1 Symbols and Notation
In the thesis the following notation is used: vectors x, y, z in Rn are considered as
column vectors x = (x1, . . . , xn)⊤ and 0 = (0, . . . , 0)⊤, matrices are denoted as A,
B, C, . . . and I is the identity matrix. The dimensions are understood from the
context. A square matrix which satisfies QQ⊤ = I is called an orthogonal matrix
and O(n) is the group of all n×n orthogonal matrices. Random variables have the
same notation as matrices, yet letters from the second half of the alphabet such
as R, X, Y are used. Random vectors are denoted in bold X, Y, Z and are also
columns X = (X1, . . . , Xn)⊤. The cumulative distribution function (for brevity
shortened as c.d.f) of a random vector is denoted by F or G. The characteristic
function of an n-dimensional random vector X is given as

φX(t) = E
(︂
eit⊤X

)︂
, t ∈ Rn.

The gamma function

Γ(z) =
∫︂ ∞

0
tz−1e−tdt, z > 0

and the beta function

B(α, β) = Γ(α)Γ(β)
Γ(α + β) , α, β > 0

play a key role as normalizing constants of the density functions of several dis-
tributions. Among the well-known distributions used in the thesis we have: the
n-dimensional normal distributions N n(b, Σ), the t-distribution with k degrees
of freedom, the χ2-distribution with k degrees of freedom, the gamma distri-
bution Gamma(α, β), the exponential distribution Exp(λ), the beta distribution
Beta(α, β) and the F -distribution with k and n degrees of freedom (all as defined
in Forbes et al. [2010]). If vectors X and Y have the same distribution we shall
write X d= Y.

1.2 Dirichlet Distribution
The Dirichlet distribution is a multivariate distribution defined on a simplex in
Rn. This sections discusses its properties (as in Section 1.4 of Fang et al. [1990])
which are used to find a marginal distribution of a uniform distribution on the
unit sphere surface in Rn. The results presented in this section are further used
in Sections 4.1 and 4.2.
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Definition 1. Let α1, . . . , αn > 0 and Y1, . . . , Yn be independent random variables
where Yi has the gamma distribution with parameters (αi, β), β > 0, and the
density

fYi
(y) = βαi

Γ(αi)
yαi−1e−βy

for y > 0, zero elsewhere. Then

(X1, . . . , Xn)⊤ =
(︄

Y1∑︁n
i=1 Yi

, . . . ,
Yn∑︁n
i=1 Yi

)︄⊤

has the Dirichlet distribution with parameters α1, . . . , αn. For brevity we shall
write (X1, . . . , Xn)⊤ ∼ Dn(α1, . . . , αn).

Since the Dirichlet distribution as defined above is singular in Rn, the Dirichlet
distribution could be defined (as in Fang et al. [1990]) just by the first n − 1
coordinates (X1, . . . , Xn−1)⊤ and Xn is determined as

1 −
n−1∑︂
i=1

Xi.

Theorem 1. The density function of a random vector

(X1, . . . , Xn)⊤ =
(︄

X1, . . . , Xn−1, 1 −
n−1∑︂
i=1

Xi

)︄⊤

∼ Dn(α1, . . . , αn),

for α1, . . . , αn > 0, with respect to the Lebesgue measure on Rn−1 is

f(x1, . . . , xn−1) = Γ (∑︁n
i=1 αi)∏︁n

i=1 Γ(αi)

(︄
n−1∏︂
i=1

xαi−1
i

)︄(︄
1 −

n−1∑︂
i=1

xi

)︄αn−1

(1.1)

for (x1, . . . , xn−1)⊤ ∈ Rn−1, such that

n−1∑︂
i=1

xi < 1, x1, . . . , xn−1 > 0,

and zero elsewhere. In particular, the Dirichlet distribution does not depend on
the parameter β > 0 of the gamma distributions and is therefore defined correctly.

Proof. Denote σ = ∑︁n
i=1 αi, β > 0 and Yi ∼ Gamma(αi, β) be independent for

i ∈ {1, . . . , n}, then (Y1, . . . , Yn)⊤ has the joint density

f(y1, . . . , yn) = βσ∏︁n
i=1 Γ(αi)

(︄
n∏︂

i=1
yαi−1

i

)︄
e−β

∑︁n

i=1 yi , y1, . . . , yn > 0

and zero elsewhere. Let us transform the random variables: for i ∈ {1, . . . , n−1}
set

Xi = Yi∑︁n
k=1 Yk

, X =
n∑︂

i=1
Yi.
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Then the Jacobian of the transform is xn−1 and the support changes from (0, ∞)n

to A × (0, ∞) where

A =
{︄

x1, . . . , xn−1 > 0,
n−1∑︂
i=1

xi < 1
}︄

.

Thus, the density of (X1, . . . , Xn−1, X)⊤ is

f(x1, . . . , xn−1, x) = βσ · xn−1∏︁n
i=1 Γ(αi)

(︄
n−1∏︂
i=1

(x · xi)αi−1
)︄(︄

1 −
n−1∑︂
i=1

xi

)︄αn−1

xαn−1e−βx

= Γ (∑︁n
i=1 αi)∏︁n

i=1 Γ(αi)

(︄
n−1∏︂
i=1

xαi−1
i

)︄(︄
1 −

n−1∑︂
i=1

xi

)︄αn−1
βσ

Γ(σ)xσ−1e−βx

where we have used that σ = ∑︁n
i=1 αi. The second half of the function is a density

of Gamma(σ, β) and hence can be integrated out over (0, ∞) which completes the
proof.

Theorem 1 and its proof are adapted and extended from Section 1.4 of Fang
et al. [1990]. The Dirichlet distribution plays an important role when study-
ing spherically symmetric distributions because it is connected to the marginal
distributions of a uniform distribution on the unit sphere surface in Rn.

The following remark is a direct consequence of a summation property of
the gamma distribution (Forbes et al. [2010]). When Yi ∼ Gamma(αi, β) are
independent for i ∈ {1, . . . , n} and α1, . . . , αn, β > 0, then

n∑︂
i=1

Yi ∼ Gamma
(︄

n∑︂
i=1

αi, β

)︄
.

Remark 1. Let (X1, . . . , Xn)⊤ ∼ Dn(α1, . . . , αn) where α1, . . . , αn > 0. Then for
k < n any k components and 1 −∑︁k

i=1 Xi are distributed as(︄
X1, . . . , Xk, 1 −

k∑︂
i=1

Xi

)︄⊤

∼ Dk+1(α1, . . . , αk, α̃)

where α̃ = ∑︁n
i=k+1 αi.

In particular,
Xi ∼ Beta(αi, α − αi)

where
α =

n∑︂
j=1

αj.

Theorem 2. Let (U1, . . . , Un)⊤ be a random vector uniformly distributed on the
unit sphere surface in Rn. Then for k < n we have that the marginal distribution
(U1, . . . , Uk)⊤ has the density

f(u1, . . . , uk) =
Γ
(︂

n
2

)︂
Γ
(︂

n−k
2

)︂
π

k
2

(︄
1 −

k∑︂
i=1

u2
i

)︄n−k
2 −1

,
k∑︂

i=1
u2

i < 1

and zero elsewhere.
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Proof. Let Z = (Z1, . . . , Zn)⊤ ∼ N n(0, I) where

(U1, . . . , Un)⊤ d= Z
∥Z∥

which is certainly true but we will comment on this on detail also in Section 2.1.
Random variables ∥Z∥2 and Z2

i have χ2-distributions with n and 1 degree of
freedom, respectively. Let us use the fact that the χ2-distribution with d degrees
of freedom is also the Gamma(d

2 , 1
2) distribution. Denote

(Y1, . . . , Yn)⊤ =
(︄

Z2
1

∥Z∥2 , . . . ,
Z2

n

∥Z∥2

)︄⊤

.

Thus, the random vector (Y1, . . . , Yn)⊤ has the Dirichlet distribution Dn(1
2 , . . . , 1

2)
and using Remark 1 the random vector

(︄
Y1, . . . , Yk, 1 −

k∑︂
i=1

Yi

)︄⊤

has the distribution Dk+1
(︂

1
2 , . . . , 1

2 , n−k
2

)︂
with the density function (Theorem 1)

f(y1, . . . , yk) =
Γ
(︂

n
2

)︂
Γ
(︂

n−k
2

)︂
π

k
2

(︄
k∏︂

i=1
y

− 1
2

i

)︄(︄
1 −

k∑︂
i=1

yi

)︄n−k
2 −1

for y1, . . . , yk > 0 and ∑︁k
i=1 yi < 1.

Let us transform the random vector (Y1, . . . , Yk)⊤ into

(︂
Ỹ 1, . . . , Ỹ k

)︂⊤
=
(︃√︂

Y1, . . . ,
√︂

Yk

)︃⊤
.

The Jacobian of this transform is

2k
k∏︂

i=1
ỹi

which means

f(ỹ1, . . . , ỹk) =
Γ
(︂

n
2

)︂
2k

Γ
(︂

n−k
2

)︂
π

k
2

(︄
1 −

k∑︂
i=1

ỹ2
i

)︄n−k
2 −1

for ỹ1, . . . , ỹk > 0 and ∑︁k
i=1 ỹ2

i < 1. We have derived the density function of
(︄

|Z1|
∥Z∥

, . . . ,
|Zk|
∥Z∥

)︄⊤

.

Let us use the symmetry of Z in order to remove the absolute values. The random
vector Z is symmetric, e.g. for each (z1, . . . , zn)⊤ ∈ Rn and (k1, . . . , kn)⊤ ∈
{−1, 1}n we have for the density function of Z

f(z1, . . . , zn) = f(k1z1, . . . , knzn).
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Therefore, it takes the same values on all orthants of Rn and so does Z
∥Z∥ . Thus,(︂

Ỹ 1, . . . , Ỹ k

)︂⊤
can be extended to

(︄
Z1

∥Z∥
, . . . ,

Zk

∥Z∥

)︄⊤
d=(U1, . . . , Uk)⊤

with the density

f(u1, . . . , uk) =
Γ
(︂

n
2

)︂
Γ
(︂

n−k
2

)︂
π

k
2

(︄
1 −

k∑︂
i=1

u2
i

)︄n−k
2 −1

,
k∑︂

i=1
u2

i < 1.

1.3 Fractional Calculus
The results presented in Section 4.2 are typically (as in Section 2.2 of Fang et al.
[1990]) presented in the language of standard differentiation and integration, yet
may be generalized using fractional calculus. The aim of this section is to present
the introduction to the topic and several examples.

The fundamental theorem of calculus (Folland [2002]) states that for a con-
tinuous function f and a, x ∈ R

f(x) = ∂

∂x

∫︂ x

a
f(t)dt

which means that the differentiation operator

f(x) ↦→ ∂f(x)
∂x

is the left inverse of the integration operator

f(x) ↦→
∫︂ x

a
f(t)dt

where the lower bound a is set arbitrarily. Fractional calculus generalizes the
k-th order derivative

∂kf(x)
∂xk

= ∂

∂x
· · · ∂

∂x
f(x),

which is k times compound differentiation, to an integer-valued operator and
then extends it to real numbers. As for integer differentiation and integration,
the definition is sufficient for only a certain class of functions.

For the repeated integration we can change the order∫︂ x

a

∫︂ t

a
f(s)dsdt =

∫︂ x

a

∫︂ x

s
f(s)dtds

and thus, ∫︂ x

a

∫︂ t

a
f(s)dsdt =

∫︂ x

a
(x − s)f(s)ds
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and the repeated integral collapses into one integral. By induction we obtain the
Cauchy formula for repeated integration (Folland [2002]). For any k ∈ N we have∫︂ x

a

∫︂ t1

a
· · ·

∫︂ tk−2

a

∫︂ tk−1

a
f(s)ds dtk−1 · · · dt2 dt1 = 1

(k − 1)!

∫︂ x

a
(x − s)k−1f(s)ds.

This formula is used to define the Riemann-Liouville fractional integral with
the gamma function as the real extension of the factorial. There are another
ways how to extend the differentiation, namely Caputo or Grünwald-Letnikov
fractional derivative.1

Definition 2. Let p > 0 and f be a continuous function. Then the Riemann-
Liouville fractional integral of order p is

D−p
a,xf(x) = 1

Γ(p)

∫︂ x

a
(x − t)p−1f(t)dt

for x > a.
Conversely, the Riemann-Liouville fractional derivative of order p is defined

as
Dp

a,xf(x) = 1
Γ(⌊p⌋ + 1 − p)

∂⌊p⌋+1

∂x⌊p⌋+1

∫︂ x

a
(x − t)⌊p⌋−pf(t)dt

for x > a where ⌊p⌋ is an integer such that ⌊p⌋ ≤ p < ⌊p⌋ + 1.2 Additionally, we
define D0

a,xf(x) = f(x).

The Riemann-Liouville fractional derivative and integral maps functions to
functions f ↦→ Dp

a,xf such that (Dp
a,xf)(x) = Dp

a,xf(x). The operator is sometimes
called the left-hand in contrast to the right-hand RL (short for Riemann-Liouville)
fractional integral

D−p
x,b = 1

Γ(p)

∫︂ b

x
(t − x)p−1f(t)dt (1.2)

and the right-hand RL fractional derivative

Dp
x,bf(x) = (−1)⌊p⌋+1

Γ(⌊p⌋ + 1 − p)
∂⌊p⌋+1

∂x⌊p⌋+1

∫︂ b

x
(t − x)⌊p⌋−pf(t)dt. (1.3)

Note the commutative property of the Riemann-Liouville fractional integral (as
in Li and Zhao [2011]).
Remark 2. For p, q > 0 the Riemann-Liouville fractional integral satisfies

D−p
a,x ◦ D−q

a,xf(x) = D−q
a,x ◦ D−p

a,xf(x) = D−(p+q)
a,x f(x).

Let us verify that the definition of the RL fractional derivative extends the
standard differentiation on positive integers. Set p ∈ N, p = ⌊p⌋ then Γ(⌊p⌋ + 1 −
p) = 1 and

Dp
a,xf(x) = ∂p+1

∂xp+1

∫︂ x

a
f(t)dt = ∂pf(x)

∂xp
.

1Thoroughly discussed in Li and Zhao [2011].
2The ceiling function ⌈p⌉ may be used with additional definition at positive integers.
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Similarly for the right-hand fractional derivative

Dp
x,bf(x) = (−1)p+1 ∂p+1

∂xp+1

∫︂ b

x
f(t)dt

= (−1)p+1 ∂p+1

∂xp+1

(︃
−
∫︂ x

b
f(t)dt

)︃
= (−1)p ∂pf(x)

∂xp
.

(1.4)

As for the operators of integer order, the fractional derivative is the left inverse
of the fractional integral since we have

Dp
a,x ◦ D−p

a,xf(x) = D⌊p⌋+1
a,x ◦ D−(⌊p⌋+1−p)

a,x ◦ D−p
a,xf(x).

Using the commutative property from Remark 2

Dp
a,x ◦ D−p

a,xf(x) = D⌊p⌋+1
a,x ◦ D−(⌊p⌋+1)

a,x f(x) = f(x)

because both operators on the right-hand side are now of integer order.
Since standard integration and differentiation is linear, for µ, λ ∈ R and func-

tions f and g we have

Dp(µf(x) + λg(x)) = µDpf(x) + λDpg(x).

Example 1. Let us compute the fractional integral and derivative of several func-
tions.

• Let p ∈ R, λ > 0, compute Dp
x,∞e−λx for x ∈ (0, ∞). First, the fractional

integral of order p is

D−p
x,∞e−λx = 1

Γ(p)

∫︂ ∞

x
(t − x)p−1e−λtdt

and transforming the integral u = t − x yields

D−p
x,∞e−λx = 1

Γ(p)

∫︂ ∞

0
up−1e−λ(u+x)du.

Use the integral associated with the gamma distribution∫︂ ∞

0
up−1e−λudu = Γ(p)

λp
.

All put together we have

D−p
x,∞e−λx = e−λx

Γ(p)
Γ(p)
λp

= λ−pe−λx.

Since for k ∈ N following Equation (1.4)

∂k

∂xk
e−λx = (−λ)ke−λx, Dk

x,∞e−λx = λke−λx
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we have

Dp
x,∞e−λx = D⌊p⌋+1

x,∞ ◦ D−(⌊p⌋+1−p)
x,∞ e−λx

= D⌊p⌋+1
x,∞ λ−(⌊p⌋+1−p)e−λx

= λ⌊p⌋+1−(⌊p⌋+1−p)e−λx = λpe−λx.

Let us combine the results for p and −p together with p = 0 into one formula
for p ∈ R

Dp
x,∞e−λx = λpe−λx.

• The fractional derivatives and integrals can be extended to the complex
plane. Since both integration and differentiation are linear the previous
result is extended to

sin(z) = eiz − e−iz

2i
, cos(z) = eiz + e−iz

2 , z ∈ C.

From the first part of this example we obtain

Dp
x,∞e±ix = (∓i)pe±ix

= e±i(x− π
2 p)

which when plugged back inside the complex definitions for the sine and
the cosine means for p ∈ R

Dp
x,∞ sin(x) = sin

(︃
x − π

2 p
)︃

,

Dp
x,∞ cos(x) = cos

(︃
x − π

2 p
)︃

.

• Compute Dp
x,11(0,1)(x), for x ∈ (0, 1) and p ∈ R. First, for the fractional

integral from Equation (1.2) we have for p > 0

D−p
x,11(0,1)(x) = 1

Γ(p)

∫︂ 1

x
(t − x)p−1dt

= 1
Γ(p)

∫︂ 1−x

0
yp−1dy

= 1
Γ(p + 1)(1 − x)p.

Now, for the fractional derivative Dp
x,11(0,1)(x), p > 0, the integral in Equa-

tion (1.3) is
∫︂ 1

x
(t − x)⌊p⌋−pdt =

∫︂ 1−x

0
y⌊p⌋−pdy = (1 − x)⌊p⌋−p+1

⌊p⌋ − p + 1

which means that

Dp
x,11(0,1)(x) = (−1)⌊p⌋+1

Γ(⌊p⌋ + 1 − p)
∂⌊p⌋+1

∂x⌊p⌋+1
(1 − x)⌊p⌋−p+1

⌊p⌋ − p + 1 .
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Firstly, for p ∈ (0, 1) we have ⌊p⌋ = 0 which simplifies the computation

Dp
x,11(0,1)(x) = −1

Γ(1 − p)
∂

∂x

(1 − x)1−p

1 − p

= 1
Γ(1 − p)(1 − x)−p.

For p ∈ N we have p = ⌊p⌋ ≥ 1 and the exponent ⌊p⌋ − p + 1 is equal to 1.
Thus,

Dp
x,11(0,1)(x) = (−1)⌊p⌋+1 ∂⌊p⌋+1

∂x⌊p⌋+1 (1 − x)

= (−1)⌊p⌋ ∂⌊p⌋

∂x⌊p⌋ 1 = 0.

For p > 1 such that p ̸∈ N, then

Dp
x,11(0,1)(x) = (−1)⌊p⌋+1

Γ(⌊p⌋ + 1 − p)
∂⌊p⌋+1

∂x⌊p⌋+1
(1 − x)⌊p⌋−p+1

⌊p⌋ − p + 1

= (⌊p⌋ − p + 1) · · · (1 − p)
Γ(⌊p⌋ + 2 − p) (1 − x)−p.

In conclusion, we get

Dp
x,11(0,1)(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1

Γ(1−p)(1 − x)−p, p < 1,

0, p ∈ N,
(⌊p⌋−p+1)···(1−p)

Γ(⌊p⌋+2−p) (1 − x)−p, otherwise.
(1.5)

For the purpose of this thesis denote

W p = Dp
x,∞ (1.6)

which for p < 0 is the so called Liouville-Weyl fractional integral and is used in
Section 4.2.

The following remark summarizes some conditions for the existence of the
Riemann-Liouville fractional integral and derivative of order p ∈ (0, 1) as stated
in Li and Zhao [2011].
Remark 3. If p ≥ 1 and f ∈ Lp(R) then for q ∈ (0, 1

p
) the fractional integrals

D−q
x,∞f and D−q

−∞,xf(x) exist almost everywhere.
Let a, b ∈ R, a < b. The fractional derivative Dp

a,xf exists and belongs to
L1([a, b]) if and only if f ∈ L1([a, b]) and Dp−1

a,x f is absolutely continuous and
Dp−1

a,x f(a) = 0.
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2. Spherically Symmetric
Distributions
The aim of this chapter is to summarize the basic properties of spherically sym-
metric distributions and follows Section 2.1 of Fang et al. [1990]. Each property
shown in Section 2.1 is then elucidated using several basic examples of spherically
symmetric distributions such as the multivariate standard normal distribution or
uniform distributions on the unit ball or sphere surface. Section 2.2 focuses on
the moments of spherically symmetric distributions and the last section briefly
discusses elliptically symmetric distributions.

2.1 Definition
The class of spherically symmetric distributions is defined though its geometric
property. Let x ∈ Rn and Q be an n × n orthogonal matrix. Then the point Qx
lies on the same sphere centered at the origin as x since ∥x∥ = ∥Qx∥. We may
call the non-empty set A ⊂ Rn spherically symmetric if x ∈ A implies Qx ∈ A
for each orthogonal matrix Q. The spherical symmetry which defines the class of
distributions is a generalization of this property up to the distributions.
Definition 3. An n-dimensional random vector X has a spherically symmetric
distribution if for every Q ∈ O(n) vectors X and QX have the same distribution.

Following Definition 3 a random vector with a spherically symmetric distri-
bution shall be called a spherically symmetric random vector.
Theorem 3. Let φX(t) be a characteristic function of an n-dimensional random
vector X. Then X has a spherically symmetric distribution if and only if there
exists a function ϕ : [0, ∞) → R such that φX(t) = ϕ(t⊤t) for every vector t ∈ Rn.

Proof. Using the properties of characteristic functions (Lachout [2004]) for every
orthogonal matrix Q we have φX(Q⊤t) = φQX(t) which for X with spherically
symmetric distribution means φX(t) = φX(Q⊤t) for all t ∈ Rn. Thus, the
characteristic function of X is invariant with respect to the group of orthogonal
matrices. Since ∥t∥ = ∥Qt∥ the value of φX depends on the inner product
t⊤t. Thus, it must be a scalar function of t⊤t since for any t1, t2 ∈ Rn such
that t⊤

1 t1 = t⊤
2 t2 there is a matrix Q ∈ O(n) such that t1 = Qt2.1 Hence,

φX(t1) = φX(Qt2) = φX(t2) and the value of φX(t) depends on t⊤t.
Conversely, any orthogonal matrix Q satisfies QQ⊤ = I. Thus, φQX(t) =

φX(Q⊤t) = ϕ((Q⊤t)⊤Q⊤t) = ϕ(t⊤QQ⊤t) = ϕ(t⊤t) = φX(t) and X and QX have
the same distribution (the characteristic function determines the distribution as
shown in Lachout [2004]) and X has a spherically symmetric distribution.

A function ϕ which satisfies the previous theorem for some random vector is called
a characteristic generator.

1The matrix Q is the Householder matrix Q = I − 2qq⊤ where q = t2−t1
∥t2−t1∥ is a unit vector.

Since Q2 = I2 − 4qq⊤ + 4qq⊤qq⊤ = I − 4qq⊤ + 4qq⊤ = I, the matrix is orthogonal because
|det Q| = 1 (The properties of the Householder reflection are discussed in Kerl [2008]).
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Example 2. The class of spherically symmetric distributions includes:

• Uniform distribution on the unit sphere surface. By un let us denote the
uniform distribution on the unit sphere surface in Rn. For X ∼ u1 we have
P(X = 1) = P(X = −1) = 1

2 .

• Uniform distribution inside the unit ball. By sn let us denote the uniform
distribution inside the unit ball in Rn. For n = 1 the distribution s1 is a
uniform distribution on the interval (−1, 1).

• Normal distribution. An n-dimensional vector with a multivariate normal
distribution N n(0, I) is spherically symmetric and its characteristic function
is e−t⊤t/2, therefore the characteristic generator is e−y/2 for y ≥ 0.

• Student’s t-distribution. Let Z ∼ N n(0, I) and Y be a random variable with
a χ-distribution2 with m degrees of freedom where Z and Y are independent.
Then T =

√
mZ
Y

has a symmetric multivariate t-distribution with m degrees
of freedom as an extension of the univariate t-distribution. For m = 1 it
becomes a symmetric multivariate Cauchy distribution.

• Laplace distribution. Let Z ∼ N n(0, I) and W ∼ Exp(1) where Z and W
are independent. Then Y =

√
WZ has a symmetric multivariate Laplace

distribution and its characteristic function is 1
1+t⊤t/2 (further discussed in

Kozubowski and Podgórski [2000]).

• Sum of random vectors. Generally, for k independent n-dimensional spher-
ically symmetric random vectors X1, . . . , Xk with characteristic generators
ϕ1, . . . , ϕk, the sum

Y =
k∑︂

i=1
Xi

is an n-dimensional spherically symmetric random vector with the charac-
teristic generator

ϕ(u) =
k∏︂

i=1
ϕi(u), u ≥ 0,

since the characteristic function (Lachout [2004]) is

φY(t) =
n∏︂

i=1
φXi

(t), t ∈ Rn.

• Mixture of random vectors. Let {Xk}∞
k=1 be a sequence of n-dimensional

spherically symmetric random vectors with characteristic generators ϕ1,
ϕ2, . . . and {αk}∞

k=1 be a sequence of non-negative real numbers such that∑︁∞
k=1 αk = 1. Then the mixture of {Xk}∞

k=1 with weights {αk}∞
k=1 is spher-

ically symmetric with the characteristic generator

ϕ(u) =
∞∑︂

k=1
αkϕk(u), u ≥ 0.

2See p. 25.
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Figure 2.1: The density function of N 2(0, I).

Figure 2.2: The density function of the bivariate Laplace distribution.

Remark 4. Let us look closely at the scalar functions that could serve as a
characteristic generator of a random vector. Suppose for n ∈ N we have that
ϕ(t2

1 + · · · + t2
n) is a characteristic function of some n-dimensional random vector

X = (X1, . . . , Xn)⊤ where ϕ is the generator. Then for 1 ≤ m ≤ n we have
that ϕ(t2

1 + · · · + t2
m) is a characteristic function of the marginal random vec-

tor (X1, . . . , Xm)⊤. That follows using the formula φAX(t) = φX(A⊤t) for any
t ∈ Rm for an m × n-matrix

A =

⎛⎜⎜⎜⎜⎝
1 0 · · · 0 0 · · · 0
0 1 · · · 0 0 · · · 0
... ... . . . ... ... . . . ...
0 0 · · · 1 0 · · · 0

⎞⎟⎟⎟⎟⎠
which is the matrix of projection to the first m components.

Theorem 4. A function ϕ is a characteristic generator of an n-dimensional
spherically symmetric random vector if and only if there exists a c.d.f. F : R →
[0, 1] such that F (r) = 0 for r < 0 and

ϕ(x) =
∫︂ ∞

0
ϕun(xr2)dF (r) (2.1)
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where ϕun is the characteristic generator of un, the random vector uniformly
distributed on the unit sphere surface.

Proof. Let us define a measure µ on the unit sphere where µ(B) is equal to
the surface area of B for any Borel subset B of the unit sphere surface, then
P(un ∈ B) = µ(B)

Sn
where Sn is a surface area of the unit sphere. From the

definition of the characteristic function and the characteristic generator we have

ϕun(t⊤t) = E
(︂
eit⊤un

)︂
=
∫︂

∥x∥=1

1
Sn

eit⊤xdµ(x).

Firstly, for simplicity let us use the notation ϕ(t⊤t) = φY(t1, . . . , tn) for a char-
acteristic generator and a char. function of an n-dimensional random vector Y
with a c.d.f G(y). Denote ν the measure corresponding to G. For t ∈ Rn, t ̸= 0,
denote v = (v1, . . . , vn)⊤ = t

∥t∥ , then using Fubini’s theorem (Folland [2002])

ϕ(t⊤t) = φY(∥t∥v1, . . . , ∥t∥vn)

=
∫︂

∥v∥=1

1
Sn

φY(∥t∥v1, . . . , ∥t∥vn)dµ(v)

=
∫︂

∥v∥=1

1
Sn

∫︂
Rn

ei∥t∥v⊤ydν(y)dµ(v)

=
∫︂
Rn

1
Sn

∫︂
∥v∥=1

ei∥t∥v⊤ydµ(v)dν(y)

=
∫︂
Rn

ϕun(t⊤t y⊤y)dν(y).

And since the characteristic function is continuous

ϕ(t⊤t) =
∫︂
Rn

ϕun(t⊤t y⊤y)dν(y) (2.2)

holds for all t ∈ Rn. Let

F (r) =
∫︂

∥y∥≤r
dν(y) = E (1{∥Y∥≤r}) = P(∥Y∥ ≤ r).

Then F : R → [0, 1] satisfies the conditions to be a c.d.f. of a random variable.
For any r < 0 we have F (r) =

∫︁
∥y∥≤r dν(y) =

∫︁
∅ dν(y) = 0. Function F is

right-continuous since for any r ∈ R and a sequence {rn}∞
n=1, rn > r, rn → r, we

have

lim
n→∞

F (rn) = lim
n→∞

∫︂
∥y∥≤rn

dν(y) =
∫︂
Rn

lim
n→∞

1{∥y∥≤rn}dν(y) =
∫︂

∥y∥≤r
dν(y) = F (r)

using the dominated convergence theorem (Folland [2002]) since F (rn) ≤ 1 for
n ∈ N. Limits to −∞ and +∞ can be proven analogously. For any r1, r2 ∈ R
such that r1 < r2 we have that

F (r2) − F (r1) =
∫︂

∥y∥≤r2
dν(y) −

∫︂
∥y∥≤r1

dν(y) =
∫︂

r1<∥y∥≤r2
dν(y) ≥ 0.

We can also observe that for the random variable R corresponding to F (r) we
have F (r) = P(R ≤ r) = P(∥Y∥ ≤ r) which means that when integrating with
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respect to F (r) instead of G(y) or ν(y) we replace ∥y∥ with r. In Equation (2.2)
set x = t⊤t and change the integration, then

ϕ(x) =
∫︂ ∞

0
ϕun(xr2)dF (r).

For the second implication let us assume Equation (2.1) holds for some c.d.f. F .
Denote R the random variable corresponding to the c.d.f. F . The proof is com-
pleted if we find an n-dimensional spherically symmetric random vector such that
ϕ is its characteristic generator. Set X = Run where R and un are independent
which means the c.d.f. of X is F (r) · G(u) as G(u1, . . . , un) is the c.d.f. of un.
The characteristic function of X is

φX(t) = E
(︂
eit⊤Run

)︂
=
∫︂ ∞

0

∫︂
∥u∥=1

eit⊤ru dG(u) dF (r)

=
∫︂ ∞

0
φun(rt) dF (r)

=
∫︂ ∞

0
ϕun(r2t⊤t) dF (r)

= ϕ(t⊤t)
which means the random vector X is spherically symmetric (Theorem 3) and ϕ
is its characteristic generator.

Theorem 4 is due to Schoenberg [1938] and the proof is adapted from Fang
et al. [1990]. The second part gives us a stochastic representation for an n-
dimensional random vector X with characteristic function ϕ(t⊤t) through a non-
negative random variable R with a c.d.f. F . From now on for a spherically
symmetric random vector X we shall denote R the random variable which satisfies
Theorem 4 and the distribution of R shall be called the radial distribution of X.
In conclusion, when X is an n-dimensional spherically symmetric random vector
with a characteristic generator ϕ we shall write X d= Run where R and un are
independent and ϕ and R are connected though Theorem 4.

The following theorems describe an easier way how to derive the radial distri-
bution of X and that the radial distribution is unique.

Theorem 5. Suppose for a spherically symmetric random vector X d= Run and
P(X = 0) = 0, then

∥X∥ d= R and X
∥X∥

d= un.

Proof. From Anderson and Fang [1982] if Y1
d= Y2 are random vectors and fj,

j ∈ {1, . . . , m} are measurable functions, then

(f1(Y1), . . . , fm(Y1))⊤ d= (f1(Y2), . . . , fm(Y2))⊤ .

The functions f1(Y) = ∥Y∥ and f2(Y) = Y
∥Y∥ are used in order to prove the

theorem. Since P(X = 0) = 0, these functions are measurable. First using
P(∥un∥ = 1) = 1 we get

∥X∥ d=∥Run∥ = ∥R∥ = R.
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This also means that P(R = 0) = P(∥X∥ = 0) = P(X = 0) = 0. Thus, the
distribution of X/∥X∥ is

X
∥X∥

d= Run

∥Run∥
= un.

Theorem 6. If P(X = 0) = 0 and X has two different stochastic representations,
e. g. X d= R1un

d= R2un, then R1
d= R2.

Proof. Since X⊤X d=(R1un)⊤R1un
d= R2

1u⊤
n un

d= R2
1 and similarly X⊤X d= R2

2.

Random variables R1, R2 are non-negative which concludes R1
d= R2.

Example 3. Let us consider a spherically symmetric random vector X and find
its radial distribution.

• Uniform distribution on the unit sphere surface. If X ∼ un, then R has
a degenerate distribution with P(R = 1) = 1.

• Normal distribution. For a random vector X with a multivariate normal
distribution N n(0, I), ∥X∥ has a χ-distribution with n degrees of freedom.3

• Uniform distribution inside the unit ball. If a random variable X ∼ sn, then
∥X∥ has Beta(n, 1) distribution.4

A spherically symmetric distribution can be further characterized by a linear
combination of its components.

Theorem 7. A random vector X = (X1, . . . , Xn)⊤ is spherically symmetric if
and only if for all a ∈ Rn

a⊤X d=∥a∥X1.

Proof. Following Remark 4 if ϕ is a characteristic generator of a spherically
symmetric random vector X then it is also a characteristic generator of X1, thus
for the characteristic function φa⊤X of the random variable a⊤X and t ∈ R

φa⊤X(t) = E
(︂
eit a⊤X

)︂
= ϕ((ta⊤)ta) = ϕ(t2∥a∥2) = φ∥a∥X1(t).

Therefore, a⊤X and ∥a∥X1 have the same characteristic function which implies
equality in distribution.

Conversely, let a⊤X d=∥a∥X1 for all a ∈ Rn. Then φX1(∥a∥) = φ∥a∥X1(1) and
since the distributions are the same, the characteristic functions are the same.
We obtain φ∥a∥X1(1) = φa⊤X(1) = φX(a) thus the characteristic function of X
satisfies φX(a) = φX1(∥a∥) = φX1(

√
a⊤a) for all a ∈ Rn. Using Theorem 3 we

have that X is a spherically symmetric random vector.
3As used in Theorem 2 and with the density derived on p. 25.
4See p. 25.
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Following Theorem 7 all projections of a spherically symmetric random vector
to a line through the origin5 have the same distribution (same as the distribution
of any component of the random vector). Theorems 3, 4 and 7 are formulated as
equivalences, thus any of these characteristics can be used to define spherically
symmetric random vectors.

2.2 Moments
As presented in the previous section a spherically symmetric random vector X
is distributed as Run where R is some non-negative random variable and un is
uniformly distributed on the unit sphere surface and R and un are independent.
The results presented in this section are taken from Section 2.2 of Fang et al.
[1990].

Theorem 8. Let X be an n-dimensional spherically symmetric random vector.
If E (X) exists, then E (X) = 0.

Proof. By Theorem 4 we have that X d= Run where R and un are independent,
thus E (X) = E (R) E (un).

Let us find E (un). Denote Z ∼ N n(0, I), then Z d=∥Z∥un. We know E (Z) = 0
and E (∥Z∥) < ∞ since E (∥Z∥2) = n which is the expected value of the χ2-
distribution with n degrees of freedom. This means E (un) = 0.

Assuming E (X) exists, it necessarily means E (R) < ∞ and E (X) = 0.

The assumption of the existence of E (X) is necessary, as in the case of a uni-
variate Cauchy distribution the expected value is undefined.

Using a similar procedure for X d= Run where E (R2) < ∞ the covariance
matrix of X if exists is

Cov(X) = E (R2)
n

I.

Thus, if it exists the correlation matrix is the same for all n-dimensional spheri-
cally symmetric distributions since the constant

E (R2)
n

cancels out and Corr(X) = I.
The following theorem provides a generalization for higher moments.

Theorem 9. Let X d= Run be a spherically symmetric random vector, X =
(X1, . . . , Xn)⊤ and m1, . . . , mn are non-negative integers. Provided the moments
of X exist, if at least one of mi is odd, then

E
(︄

n∏︂
i=1

Xmi
i

)︄
= 0.

5Such a projection can be computed using a dot product with the unit direction vector of
the line.
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Otherwise, let us denote mi = 2li and m1 + . . . + mn = m = 2l, then

E
(︄

n∏︂
i=1

Xmi
i

)︄
= E (R2l)

Γ(n
2 )

4l Γ(n
2 + l)

n∏︂
i=1

(2li)!
(li)!

.

Proof. Let Z ∼ N n(0, I), then Z d= Y un where Y has a χ-distribution with
n degrees of freedom and Y , un = (U1, . . . , Un)⊤ are independent. Thus, E (Z) =
E (Y un) = E (Y ) E (un). Now using independence of uncorrelated normally dis-
tributed random variables

n∏︂
i=1

E (Zmi
i ) = E

(︄
n∏︂

i=1
Zmi

i

)︄
= E

(︄
n∏︂

i=1
(Y Ui)mi

)︄

= E
(︄

Y m
n∏︂

i=1
Umi

i

)︄
= E (Y m) E

(︄
n∏︂

i=1
Umi

i

)︄
.

If any mi is odd, then from E (Zmi
i ) = 0. For even mi we have that E (Zmi

i ) =
1 · 3 · · · (mi − 1) = (mi − 1)!! and from Forbes et al. [2010]

E (Y m) =
2m/2Γ

(︂
n+m

2

)︂
Γ
(︂

n
2

)︂ . (2.3)

We have that

E
(︄

n∏︂
i=1

Xmi
i

)︄
= E

(︄
n∏︂

i=1
(RUi)mi

)︄
= E (Rm) E

(︄
n∏︂

i=1
Umi

i

)︄
= E (Rm)

∏︁n
i=1 E (Zmi

i )
E (Y m) .

(2.4)
If any mi is odd, then E (Zmi

i ) = 0 which gives us the first result. In the second
case E (Z2li

i ) = (2li − 1)!! can expressed using the factorial as

E (Z2li
i ) = (2li − 1)!! = (2li)!

2li(li)!
. (2.5)

Since for any k ∈ N

(2k)! =
k∏︂

j=1
(2j)

k∏︂
i=1

(2l − 1) = 2kk!(2k − 1)!!

which when combining Equations (2.3), (2.4) and (2.5) gives us

E
(︄

n∏︂
i=1

Xmi
i

)︄
= E (R2l)

Γ(n
2 )

2lΓ(n
2 + l)

n∏︂
i=1

(2li)!
2li(li)!

and the proof is completed.

Corollary 1. Fang et al. [1990] also present another result

E
(︄

n∏︂
i=1

Xmi

)︄
= E (R2l)

Γ(n
2 )

π
n
2 Γ(n

2 + l)

n∏︂
i=1

Γ
(︃

li + 1
2

)︃
which can be obtained from Theorem 9 using the Legendre duplication formula

Γ(z)Γ
(︃

z + 1
2

)︃
= 21−2z

√
πΓ(2z)

for z = li + 1
2 for i ∈ {1, . . . , n}.
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2.3 Elliptically Symmetric Distributions
The class of elliptically symmetric distributions is defined through the spherically
symmetric distribution as an affine transformation. Since many properties of
spherically symmetric distributions are easily applicable to this class, this chapter
is only a brief introduction. Anderson and Fang [1990] further focus on the class
of matrix symmetric distributions which are not discussed in this thesis.

Definition 4. Let X be a k-dimensional spherically symmetric random vector,
A be a k ×n-matrix with rank k, A⊤A = Σ, and b ∈ Rn. Then the random vector

b + A⊤X

is said to have an elliptically symmetric distribution with parameters b and Σ.

If b = 0 and Σ = I, then an elliptically symmetric distribution becomes
spherically symmetric. The elliptically symmetric distribution is fully character-
ized by a positive semidefinite matrix Σ regardless of the matrix A as we show
in the following remark.
Remark 5. As for spherically symmetric distributions, the characteristic function
of an elliptically symmetric random vector takes a special form. For an elliptically
symmetric random vector Y with parameters b ∈ Rn and an n×n positive definite
matrix Σ the characteristic function is

E
(︂
eit⊤Y

)︂
= E

(︂
eit⊤(b+A⊤X)

)︂
= eit⊤b E

(︂
ei(At)⊤X

)︂
= eit⊤bϕ(t⊤Σt) (2.6)

where ϕ : [0, ∞) → R is a scalar function. Because the char. function of Y
depends on A only via Σ, we have shown that the distribution indeed depends
only on b, Σ and the scalar function. The formula for the characteristic function
is used in Kelker [1970] and Fang et al. [1990] to define the class of elliptically
symmetric distributions.
Remark 6. For an n-dimensional elliptically symmetric random vector the pa-
rameter b ∈ Rn is unique but Σ and ϕ are only unique up to a constant c > 0
since using cΣ and ϕ( ·

c
) instead of Σ and ϕ(·) will result in the same distribution.

Example 4. Denote X ∼ N k(0, I), then

Y = b + A⊤X

for a vector b ∈ Rn and k × n-matrix A with rank k has a normal distribution
N n(b, Σ) where Σ = A⊤A is its covariance matrix.

The Laplace and the multivariate t-distribution can be also extended into
elliptically symmetric distributions alternating the characteristic function (or the
density) as in Equation (2.6).

Theorem 10. Suppose X is an n-dimensional elliptically symmetric random
vector with parameters b ∈ Rn and Σ, a positive definite n × n-matrix. Let
c ∈ Rm and D be an m × n-matrix of rank m, m ≤ n. Then Y = c + DX has
an elliptically symmetric distribution with parameters c + Db and DΣD⊤.
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Proof. From the definition of elliptical symmetry there is a k-dimensional
spherically symmetric random vector X̃, b ∈ Rn and a k × n-matrix A such
that A⊤A = Σ

X = b + A⊤X̃.

Denote ϕ the characteristic generator of X̃. For s ∈ Rn we have

φX(s) = E
(︂
eis⊤X

)︂
= E

(︂
eis⊤(b+A⊤X̃)

)︂
= eis⊤b E

(︂
ei(As)⊤X̃

)︂
= eis⊤bϕ(s⊤Σs).

Thus, for Y = c + DX and u ∈ Rm we have

φY(u) = eiu⊤cφDX(u)

and

φDX(u) = φX(D⊤u) = ei(D⊤u)⊤bϕ((D⊤u)⊤ΣD⊤u)) = eiu⊤Dbϕ(u⊤DΣD⊤u)

which means for u ∈ Rm

φY(u) = eiu⊤(c+Db)ϕ(u⊤DΣD⊤u)

and Y has an elliptically symmetric distribution with parameters c + Db and
DΣD⊤.

Theorem 10 is a generalization of Theorem 7 and is mentioned in Kelker
[1970].
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3. Density
This chapter presents the properties of the density of a spherically symmetric
distribution from Kelker [1970] and Section 2.2 of Fang et al. [1990]. It turns out
that the density of the distribution is closely connected with the density of its
radial distribution.

Suppose a spherically symmetric random vector X possesses a density f(x),
x ∈ Rn, then the density can be also expressed as a scalar function g : [0, ∞) →
[0, ∞) where for x ∈ Rn

g(x⊤x) = f(x).
Such a scalar function g shall be called a density generator of X. The following
lemma presents a method how to integrate a spherically symmetric function.

Lemma 11. Let w : Rn → [0, ∞) be a function such that there exists a function
w̃ : [0, ∞) → [0, ∞) where w(x) = w̃(x⊤x) for each x ∈ Rn. Then

∫︂
Rn

w(x)dx =
∫︂
Rn

w̃(x⊤x)dx =
∫︂ ∞

0

π
n
2

Γ
(︂

n
2

)︂y
n
2 −1w̃(y)dy

provided the integrals exist.

Proof. Since the function w̃(x⊤x) is the same on all 2n orthants of Rn we can
restrict the integral to one orthant∫︂

Rn
w̃
(︂
x⊤x

)︂
dx = 2n

∫︂
(0,∞)n

w̃(x2
1 + · · · + x2

n)dx.

We will now use a transformation to remove the squared terms: for each
i ∈ {1, . . . , n} set ui = x2

i , then the Jacobian of this transformation is

1
2n
∏︁n

i=1
√

ui

and the boundaries remain unchanged. Hence

2n
∫︂

(0,∞)n
w̃(x2

1 + · · · + x2
n)dx =

∫︂
(0,∞)n

w̃(u1 + · · · + un)
n∏︂

i=1
u

− 1
2

i du.

Let us set yi = ui for i ∈ {1, . . . , n − 1} and yn = u1 + · · · + un, then the
Jacobian of the transformation is 1 but now we are integrating over

A =
{︄

yi ∈ (0, ∞), yn ≥
n−1∑︂
i=1

yi, i ∈ {1, . . . , n}
}︄

.

Then

∫︂
(0,∞)n

w̃(u1 + · · · + un)
n∏︂

i=1
u

− 1
2

i du =
∫︂

A
w̃(yn)

n−1∏︂
i=1

y
− 1

2
i

(︄
yn −

n−1∑︂
i=1

yi

)︄− 1
2

dy.
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Next let zi = yi/yn and zn = yn which changes the boundaries from A to

B =
{︄

zi ∈ (0, ∞), 1 ≥
n−1∑︂
i=1

zi, i ∈ {1, . . . , n}
}︄

.

The Jacobian of the transformation is zn−1
n . The integrated function and the set

can be split into two parts: B = B′ × (0, ∞) where

B′ =
{︄

zi ∈ (0, ∞), 1 ≥
n−1∑︂
i=1

zi, i ∈ {1, . . . , n − 1}
}︄

,

thus the integral can now be split into two parts:
∫︂

A
w̃(yn)

n−1∏︂
i=1

y
− 1

2
i

(︄
yn −

n−1∑︂
i=1

yi

)︄− 1
2

dy

=
∫︂

B
w̃(zn)

n−1∏︂
i=1

(zizn)− 1
2

(︄
zn −

n−1∑︂
i=1

zizn

)︄− 1
2

zn−1
n dz

=
∫︂

B
w̃(zn)z− n−1

2
n

n−1∏︂
i=1

z
− 1

2
i

(︄
1 −

n−1∑︂
i=1

zi

)︄− 1
2

z
− 1

2
n zn−1

n dz

=
∫︂

(0,∞)
w̃(zn)z

n
2 −1
n dzn

∫︂
B′

n−1∏︂
i=1

z
− 1

2
i

(︄
1 −

n−1∑︂
i=1

zi

)︄− 1
2

dz1 · · · dzn−1.

The second integral on the right hand side is closely related to the Dirichlet
distribution

Dn

(︃1
2 , . . . ,

1
2

)︃
since we are integrating its density function (from Theorem 1) without the nor-
malizing constant over its support. The second integral is equal to one over the
normalizing constant: ∏︁n

i=1 Γ
(︂

1
2

)︂
Γ
(︂

n
2

)︂ = π
n
2

Γ
(︂

n
2

)︂ .

Together the n-dimensional integral is transformed into a one-dimensional one∫︂
Rn

w(x)dx =
∫︂
Rn

w̃(x⊤x)dx =
∫︂ ∞

0

π
n
2

Γ
(︂

n
2

)︂y
n
2 −1w̃(y)dy.

Following Lemma 11 with w = f and w̃ = g as the density and the density
generator. For g : [0, ∞) → [0, ∞) in order to be a density generator of an
n-dimensional spherically symmetric random vector we need∫︂ ∞

0
y

n
2 −1g(y)dy < ∞, (3.1)

and any function g : [0, ∞) → [0, ∞) satisfying this condition is, up to a constant,
a density generator of some spherically symmetric random vector. If X has k
finite moments we need yk+ n

2 −1g(y) to be integrable over (0, ∞) which follows by
a similar computation as in Lemma 11.
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3.1 Density of the Radial Distribution
The aim of this section is to derive the density of the radial distribution. It follows
mostly Section 2.2 of Fang et al. [1990]. The proofs are extended and examples
are added.

Theorem 12. Let X be an n-dimensional spherically symmetric random vector
with the radial distribution R. Then X possesses a density f(x) = g(x⊤x) if and
only if R has a density h and

h(r) = 2π
n
2

Γ
(︂

n
2

)︂rn−1g(r2), r > 0.

Proof. Let w : [0, ∞) → [0, ∞) be a measurable function. Denoting r2 = x⊤x
and f(x) = g(x⊤x) = g(r2), then

E (w(R)) = E
(︃

w
(︃√︂

X⊤X
)︃)︃

=
∫︂
Rn

w
(︂√

x⊤x
)︂

f(x)dx

=
∫︂
Rn

w
(︂√

x⊤x
)︂

g(x⊤x)dx.

Denote w
(︂√

x⊤x
)︂

g(x⊤x) = w̃(x⊤x) for brevity and let us use Lemma 11.
The n-dimensional integral is transformed into one-dimensional

∫︂
Rn

w
(︂√

x⊤x
)︂

g(x⊤x)dx = π
n
2

Γ
(︂

n
2

)︂ ∫︂ ∞

0
w (√zn) g(zn)z

n
2 −1
n dzn.

Finally, set r = √
zn, the boundaries remain unchanged and the Jacobian is

2r, thus

E (w(R)) =
∫︂ ∞

0
w(r) 2π

n
2

Γ
(︂

n
2

)︂rn−1g(r2)dr

and for r > 0
h(r) = 2π

n
2

Γ
(︂

n
2

)︂rn−1g(r2)

and if one of the densities exist, the other one can be found using the derived
formula.

Remark 7. Theorem 12 can be used to derive the density of Q = X⊤X which is

h̃(q) = π
n
2

Γ
(︂

n
2

)︂q
n
2 −1g(q), q > 0.

where g is the density generator of a spherically symmetric vector X.
Example 5. Let us derive the density of the radial distribution for several examples
of spherically symmetric random vectors.
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• Uniform distribution inside the unit ball. For X ∼ sn, the density of X is
1/Vn inside the unit ball and zero elsewhere, where Vn is the volume of an
n-dimensional unit ball,

Vn = π
n
2

Γ
(︂

n
2 + 1

)︂ ,

which means that the density of ∥X∥ is

2π
n
2

Γ
(︂

n
2

)︂rn−1 Γ
(︂

n
2 + 1

)︂
π

n
2

= 2n

2 rn−1 = nrn−1

for r ∈ (0, 1) and ∥X∥ ∼ Beta(n, 1).

• Normal distribution. Theorem 12 can be used to derive the density of the
χ-distribution using the normal distribution N n(0, I) with the density

f(x) = (2π)− n
2 e−x⊤x/2 x ∈ Rn.

Thus, the density of a χ-distribution with n degrees of freedom is

hn(r) = rn−1e−r2/2

2n/2−1Γ
(︂

n
2

)︂ , r > 0.

• Student’s t-distribution. For a random vector X with an n-dimensional
symmetric t-distribution (Fang et al. [1990]) with k degrees of freedom with
the density

f(x) =
Γ
(︂

n+k
2

)︂
Γ
(︂

k
2

)︂
(πk)n

2

(︄
1 + x⊤x

k

)︄− n+k
2

, x ∈ Rn, (3.2)

the density of ∥X∥ is

h(r) =
Γ
(︂

n+k
2

)︂
Γ
(︂

k
2

)︂
Γ
(︂

n
2

)︂ 2rn−1

k
n
2

(︄
1 + r2

k

)︄− n+k
2

, r > 0.

That means a random variable Q = R2

k
has an inverted beta distribution

(Forbes et al. [2010]) with parameters k
2 and n

2 with the density

fQ(q) = q
n
2 −1(1 + q)− n+k

2

B
(︂

n
2 , k

2

)︂ , q > 0

where B(·, ·) is the Beta function as defined in Section 1.1.
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4. Marginal Distributions
As mentioned in Remark 4, for a spherically symmetric random vector

X = (X1, . . . , Xn)⊤

and m < n the random vector (X1, . . . , Xm)⊤ is also spherically symmetric with
the same characteristic generator function. In this chapter we firstly derive the
distribution and the density of marginal distributions. The theorems are taken
from Fang et al. [1990] and Kelker [1970]. Sections 4.2 and 4.3 then generalize
the relationship between a random vector and its marginal.
Theorem 13. Denote X an n-dimensional spherically symmetric random vector
with the radial distribution R partitioned into k parts, X = (X(1), . . . , X(k))⊤

where each X(i) has ni components. Then for each i ∈ {1, . . . , k} we have

X(i) d= RDiuni

where uni
is uniformly distributed on the unit sphere surface in Rni and

(D2
1, . . . , D2

k)⊤

has a Dirichlet distribution

Dk

(︃
n1

2 , . . . ,
nk

2

)︃
.

Moreover, un1 , . . . , unk
and (D2

1, . . . , D2
k)⊤ are independent.

Proof. Denote X d= Run where R and un independent and we are only interested
in the marginal distribution of un.

Let Z ∼ N n(0, I) and
Z

∥Z∥
d= un.

When Z is partitioned similarly as X into (Z(1), . . . , Z(k))⊤ where each Z(i) has a
standard normal distribution and Z(i) are independent of each other. Thus, for
each i ∈ {1, . . . k}

u(i)
d= Z(i)

∥Z∥
= Z(i)

∥Z(i)∥
∥Z(i)∥
∥Z∥

.

The first fraction on the right-hand side has a uniform distribution on the ni-
dimensional unit sphere, ∥Z(i)∥2 has a χ2-distribution with ni degrees of freedom
and ∥Z∥2 has a χ2-distribution with n degrees of freedom which (as in Theorem
2 and Remark 1) is also the gamma distribution. We conclude that for

Di = ∥Z(i)∥
∥Z∥

the random vector (D2
1, . . . , D2

k)⊤ has the Dirichlet distribution Dk

(︂
n1
2 , . . . , nk

2

)︂
as in the proof of Theorem 2. The independence follows Theorem 5.

The theorem is adapted from Fang et al. [1990]. The components of X may
generally be dependent but the dependency is given by the Dirichlet distribution
and the radial distribution as in the previous theorem.
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4.1 Marginal Density
Denote un,r a random vector uniformly distributed on the n-dimensional sphere
surface with radius r. Both Kelker [1970] and Fang et al. [1990] then look at
a spherically symmetric distribution as a mixture of un,r over [0, ∞) with the
distribution R. For any r > 0 the marginal densities of un,r exist,1 they can be
used to find the marginal densities of Run.

Theorem 14. Let X = (X1, . . . , Xn)⊤ be an n-dimensional spherically symmetric
random vector with a radial distribution R with the c.d.f F and P(X = 0) = 0.
Then all marginal distributions have densities, for k < n the marginal density2

of (X1, . . . , Xk)⊤ is for x = (x1, . . . , xk)⊤ ∈ Rk

f(X1,...,Xk)⊤(x) = f(x1, . . . , xk) =
Γ
(︂

n
2

)︂
Γ
(︂

n−k
2

)︂
π

k
2

∫︂ ∞

∥x∥
r2−n

(︄
r2 −

k∑︂
i=1

x2
i

)︄n−k
2 −1

dF (r).

Proof. Denote un = (U1, . . . , Un)⊤, then from Theorem 2 the marginal density
of its first k components is

f(U1,...,Uk)⊤(u1, . . . , uk) =
Γ
(︂

n
2

)︂
Γ
(︂

n−k
2

)︂
π

k
2

(︄
1 −

k∑︂
i=1

u2
i

)︄n−k
2 −1

,
k∑︂

i=1
u2

i < 1.

Let us find the c.d.f of (X1, . . . , Xk)⊤ = (RU1, . . . , RUk)⊤. The function F (r)
is the c.d.f. of R and denote G(u1, . . . , uk) the c.d.f of (U1, . . . , Uk)⊤. Then the
joint random vector

(U1, . . . , Uk, R)⊤

has the c.d.f
G(u1, . . . , uk) · F (r)

because R and (U1, . . . , Uk)⊤ are independent. Hence, for (x1, . . . , xk)⊤ ∈ Rk

P(X1 ≤ x1, . . . , Xk ≤ xk) = P
(︃

U1 ≤ x1

R
, . . . , Uk ≤ xk

R

)︃
=
∫︂ ∞

0

∫︂ x1
r

−1
· · ·

∫︂ xk
r

−1
1 dG(u1, . . . , uk) dF (r).

Let us plug in the density function of (U1, . . . , Uk)⊤:

∫︂ ∞

0

∫︂ x1
r

−1
· · ·

∫︂ xk
r

−1

Γ
(︂

n
2

)︂
Γ
(︂

n−k
2

)︂
π

k
2

(︄
1 −

k∑︂
i=1

u2
i

)︄n−k
2 −1

1{
∑︁k

i=1 u2
i <1}duk · · · du1 dF (r).

The density of (X1, . . . , Xk)⊤ is obtained by taking derivatives of the c.d.f.
with respect to all variables x1, . . . , xk using the Leibniz integral rule (as in Folland
[2002]). The boundaries of the outer integral do not depend on x1, . . . , xk, so we
are interested in the derivative of the inner integrals where the upper bound is

1See Theorem 2.
2Since all permutations of the components of a spherically symmetric random vector have

the same distribution, we can use any k-dimensional marginal density.
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xi/r and the lower bound as well as the integrated function does not depend on
x1, . . . , xk. For every inner integral we add 1

r
and the integrated function is only

evaluated in the upper bound. After taking the derivatives we obtain

f(x1, . . . , xk) =
Γ
(︂

n
2

)︂
Γ
(︂

n−k
2

)︂
π

k
2

∫︂ ∞

0

(︃1
r

)︃k
(︄

1 −
k∑︂

i=1

(︃
xi

r

)︃2
)︄n−k

2 −1

1{
∑︁k

i=1 x2
i <r2}dF (r)

=
Γ
(︂

n
2

)︂
Γ
(︂

n−k
2

)︂
π

k
2

∫︂ ∞

∥x∥
r2−n

(︄
r2 −

k∑︂
i=1

x2
i

)︄n−k
2 −1

dF (r).

We have used that the indicator ∑︁k
i=1 u2

i < 1 transforms into
k∑︂

i=1

(︃
xi

r

)︃2
< 1

or ∑︁k
i=1 x2

i < r2 which changes the lower bound in the right-hand side. This
concludes the proof of Theorem 14.

Theorem 14 is due to Fang et al. [1990] and their proof is further expanded.
Example 6. Let us verify Theorem 14 with the already known distributions.

• Normal Distribution. For Z ∼ N n(0, I) the density function of the ra-
dial distribution is known3 and any marginal distribution is also standard
normal: for k < n and (z1, . . . , zk)⊤ = z ∈ Rk we have

f(z1, . . . , zk) =
∫︂ ∞

∥z∥

Γ
(︂

n
2

)︂
Γ
(︂

n−k
2

)︂
π

k
2

r2−n

(︄
r2 −

k∑︂
i=1

z2
i

)︄n−k
2 −1

h(r)dr

=
∫︂ ∞

∥z∥

Γ
(︂

n
2

)︂
Γ
(︂

n−k
2

)︂
π

k
2

r2−n

(︄
r2 −

k∑︂
i=1

z2
i

)︄n−k
2 −1

rn−1e− r2
2

2n
2 −1Γ

(︂
n
2

)︂dr

= 2− n
2

Γ
(︂

n−k
2

)︂
π

k
2

∫︂ ∞

∥z∥
2r

(︄
r2 −

k∑︂
i=1

z2
i

)︄n−k
2 −1

e− r2
2 dr.

Set u = r2 − ∥z∥2. The integral is then the density of the Gamma(n−k
2 , 1

2)
distribution integrated over (0, ∞) and thus, equal to 1. We obtain

f(z1, . . . , zk) = 2− n
2

Γ
(︂

n−k
2

)︂
π

k
2

∫︂ ∞

0
u

n−k
2 −1e− 1

2 (u+∥z∥2)du

= 2− k
2

π
k
2

e− 1
2 ∥z∥2 2− n−k

2

Γ
(︂

n−k
2

)︂ ∫︂ ∞

0
u

n−k
2 −1e− 1

2 udu

= (2π)− k
2 e− 1

2 ∥z∥2

which is the density of the standard normal distribution N k(0, I).
3See p. 25.
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• Uniform distribution inside the unit ball. For X ∼ sn the density of ∥X∥ is
h(r) = nrn−1, r ∈ (0, 1), as derived in Example 5. Hence, for x ∈ Rk such
that ∥x∥ ≤ 1 the marginal density of X is

f(x) = f(x1, . . . , xk) =
Γ
(︂

n
2

)︂
Γ
(︂

n−k
2

)︂
π

k
2

∫︂ 1

∥x∥
r2−n

(︄
r2 −

k∑︂
i=1

x2
i

)︄n−k
2 −1

nrn−1dr

=
n
2 Γ
(︂

n
2

)︂
Γ
(︂

n−k
2

)︂
π

k
2

∫︂ 1

∥x∥
2r

(︄
r2 −

k∑︂
i=1

x2
i

)︄n−k
2 −1

dr.

Again, set u = r2 − ∥x∥2, the Jacobian is 2r and the boundaries change
from (∥x∥, 1) to (0, 1 − ∥x∥2). For ∑︁k

i=1 x2
i < 1 the marginal density is

f(x1, . . . , xk) =
n
2 Γ
(︂

n
2

)︂
Γ
(︂

n−k
2

)︂
π

k
2

∫︂ 1−∥x∥2

0
u

n−k
2 −1du

=
n
2 Γ
(︂

n
2

)︂
Γ
(︂

n−k
2

)︂
π

k
2

(1 − ∥x∥2)
n−k

2

n−k
2

=
Γ
(︂

n
2 + 1

)︂
Γ
(︂

n−k
2 + 1

)︂
π

k
2

(︄
1 −

k∑︂
i=1

x2
i

)︄n−k
2

.

• Mixture of random vectors. For p ∈ (0, 1) and two n-dimensional spherically
symmetric random vectors X1, X2 set Y as a mixture of X1 and X2 with
weights p and 1 − p. Denote the k-dimensional marginal random vectors
X1k, X2k and Yk. Thus, their density generators gYk

, gX1k
and gX2k

, if
exist (see Theorem 14), satisfy for all y > 0

gYk
(y) = p · gX1k

(y) + (1 − p) · gX2k
(y).

4.2 Projections and Antiprojections
Since every marginal distribution of a spherically symmetric random vector is also
spherically symmetric, the aim of this section is to generalize this relationship in
the opposite direction. Theorems that we list here are derived in Kelker [1970] and
Section 2.2 of Fang et al. [1990]. Fractional calculus is used as in Laurent [1975].
As shown in Remark 4 and further discussed at the beginning of this chapter for an
N -dimensional spherically symmetric random vector any k-dimensional marginal
vector is also spherically symmetric. Thus, we can take the random vector and
all its marginals as a sequence of spherically symmetric random vectors.

For the purpose of this section denote a sequence of spherically symmetric
random vectors ending with X(N) as X(1), . . . , X(N), where N ∈ N, and X(n) is
an n-dimensional random vector, n ∈ {1, . . . , N}, and where for k < n ≤ N the
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random vector X(k) has the k-dimensional marginal distribution of X(n). For each
X(k) denote Rk its radial distribution, fk its density and gk its density generator.4

Finally, denote by ϕ the common characteristic generator of this sequence of
distributions. From Remark 4 all X(n), n ≤ N , possess the same characteristic
generator as X(N). Conversely, if we only know the characteristic generator of
X(k) and there is a spherically symmetric random vector

X(n) =
(︄

X(k)

X(n−k)

)︄
,

the joint vector in Rn with the marginal vectors X(k) in Rk and X(n−k) in Rn−k,
and X(n) has the characteristic generator ϕ̃. Then ϕ̃ = ϕ using the same remark.

For X(n) we shall call the random vector X(k) its projection if k < n and
antiprojection if N ≥ k > n. For any X(k) there is at most one (anti)projection
in each dimension, given by the shared characteristic generator.

Thus, the aim of this section is to find the necessary and sufficient conditions
for the existence of antiprojections through the density generators of the spheri-
cally symmetric random variables. The focus is put on distributions without an
atom at the origin because in that case we have the existence of marginal den-
sities as shown in Theorem 14. In other words, for a k-dimensional spherically
symmetric random vector X(k) we are trying to find the highest N ∈ N such that
X(N) is the N -dimensional antiprojection of X(k) and X(N+1) does not exist or to
show that such N ∈ N cannot be found and any antiprojection of X(k) exists.
Corollary 2. Consider Theorem 13 applied on an n-dimensional random vector
X(n) with radial distribution Rn partitioned into two parts

X(n) =
(︄

X(k)

X(n−k)

)︄
.

Then the marginal vector is distributed as

X(k) d= RnBuk

where (B2, 1 − B2)⊤ has the Dirichlet distribution D2(k
2 , n−k

2 ) and Rn, B and
uk are independent. Which as in Remark 1 means B2 ∼ Beta(k

2 , n−k
2 ). Since

X(k) is also spherically symmetric we shall denote Rk its radial distribution, thus
X(k) d= Rkuk where Rk and uk are independent. When combined

Rk
d= BRn

where B2 ∼ Beta(k
2 , n−k

2 ) is independent of Rn.
Example 7. First, let us look at two examples:

4Up to a constant ck given by∫︂
Rk

fk(x)dx =
∫︂ ∞

0
ck y

k
2 −1gk(y)dy = 1

as in Lemma 11 and Equation (3.1).
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• Normal distribution. For Z(n) ∼ N n(0, I) we know that the characteris-
tic generator is ϕ(u) = e−u/2 for any n ∈ N and any projection has also
a standard normal distribution. In conclusion, the (anti)projection of Z(n)

is Z(k) ∼ N k(0, I), k ∈ N.

• Uniform distribution on the unit sphere surface. Let us show that for X(n) ∼
un we have N = n. For contradiction denote

un+1 =
(︄

Y
Yn+1

)︄
,

where Y is a random vector of its first n components. If the antiprojection
X(n+1) existed we would have

X(n+1) d= Rn+1un+1

with the radial distribution Rn+1. For the first n components we would have
that X(n) d= Rn+1Y. But since Y is a marginal vector of un+1 it possesses
a density as shown in Example 6. Moreover, P(Rn+1 = 0) = P(X(n+1) =
0) ≤ P(X(n) = 0) = 0 which means that X(n) ∼ un also possesses a density
which is a contradiction.

The second example above can be extended to a situation where the radial
distribution Rn is not absolutely continuous. In this case neither the random
vector X(n) nor its radial distribution Rn possess densities.
Theorem 15. Let X(n) be an n-dimensional spherically symmetric random vec-
tor such that it does not possess a density and P(X(n) = 0) = 0. Then its
antiprojection does not exist.

Proof. Suppose for contradiction that X(n+1) exists, thus X(n+1) d= Rn+1un+1
where Rn+1 is its radial distribution. As in Example 7 denote Y the n-dimensional
marginal distribution of un+1, thus X(n) d= Rn+1Y. Since P(X(n) = 0) = 0, we
have that P(X(n+1) = 0) = 0. Thus, the assumptions of Theorem 14 are met and
all marginal random vectors of X(n+1) including X(n) possess a density. We have
found a contradiction, therefore an (n + 1)-dimensional spherically symmetric
random vector X(n+1) such that its first n components have X(n) distribution
does not exist.

Equation (3.1) gives us an integrability condition on the density generator∫︂ ∞

0
y

n
2 −1gn(y)dy < ∞

which excludes some functions. For example

g(y) = c

y + 1
is a density generator only for n = 1.5

Theorem 14 provides a marginal density of a spherically symmetric random
vector and the following theorem connects their density generators. The theorem
and its proof are due to Fang et al. [1990].

5It corresponds to the univariate symmetric Cauchy distribution. For the density of the
multivariate Cauchy or the t-distribution see Example 5.
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Theorem 16. Provided the spherically symmetric random vector X(n) possesses
density gn(x⊤x), for k < n we have

gk(y) = π
n−k

2

Γ
(︂

n−k
2

)︂ ∫︂ ∞

y
(z − y)n−k

2 −1gn(z)dz, y ≥ 0.

Proof. Denote h the density of the radial distribution Rn whose existence stems
from Theorem 12. Furthermore, for r ≥ 0 we know that

h(r) = 2π
n
2

Γ
(︂

n
2

)︂rn−1gn(r2).

From Theorem 14 we have for x = (x1, . . . , xk)⊤ ∈ Rk

fk(x1, . . . , xk) =
Γ
(︂

n
2

)︂
Γ
(︂

n−k
2

)︂
π

k
2

∫︂ ∞

∥x∥
r2−n

(︄
r2 −

k∑︂
i=1

x2
i

)︄n−k
2 −1

h(r)dr.

Set gk(y) = gk(x⊤x) = fk(x1, . . . , xk) and plug in the formula for h

gk(y) =
Γ
(︂

n
2

)︂
Γ
(︂

n−k
2

)︂
π

k
2

∫︂ ∞

√
y

r2−n
(︂
r2 − y

)︂n−k
2 −1 2π

n
2

Γ
(︂

n
2

)︂rn−1gn(r2)dr

= π
n−k

2

Γ
(︂

n−k
2

)︂ ∫︂ ∞

√
y

2r
(︂
r2 − y

)︂n−k
2 −1

gn(r2)dr.

Transforming z = r2 with Jacobian 2r which changes the lower bound to y and
completes the proof as for y ≥ 0

gk(y) = π
n−k

2

Γ
(︂

n−k
2

)︂ ∫︂ ∞

y
(z − y)

n−k
2 −1 gn(z)dz.

Setting k = n−1 and k = n−2, Theorem 16 is simplified as below, the results
are adapted from Fang et al. [1990] and Uchaikin and Zolotarev [1999].
Remark 8. Under the assumptions from Theorem 16 we have

gn−1(y) =
∫︂ ∞

y

gn(z)√
z − y

dz, (4.1)

gn−2(y) = π
∫︂ ∞

y
gn(z)dz, (4.2)

and conversely for almost all y > 0

gn(y) = − 1
π

g′
n−2(y). (4.3)
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Generally for k < n, we can apply the formulas derived in Section 1.3 to the
result of Theorem 16,

gk(y) = π
n−k

2 W − n−k
2 gn(y) (4.4)

which means
gn(y) = π− n−k

2 W
n−k

2 gk(y) (4.5)
where W p is the fractional integral and derivative defined in Equation (1.6).

The integrand in Equation (4.1) is non-negative which shows that for a spher-
ically symmetric random vector X(n) there is a ∈ (0, ∞] such that gk(y) > 0,
k < n, if and only if y ∈ [0, a), thus the support of all projections of X(n) is a ball
with some radius a

Sa =
{︂
x = (x1, . . . , xk)⊤ ∈ Rk, ∥x∥ < a

}︂
.

Therefore, if gn does not satisfy this property, X(n) does not have any antiprojec-
tion with a density, and thus X(n+2) does not exist.

Let us examine again Equation (4.1) in terms of continuity using a theorem
presented in Kelker [1970].

Theorem 17. Let gn(x⊤x), x ∈ Rn, be a density of a spherically symmetric
random vector X(n) and X(k) its projection with density gk(x⊤x), x ∈ Rk. If gn

is bounded in a neighborhood of y ∈ (0, ∞), then gk is continuous at y.

Proof. It is sufficient to prove the theorem only for gn−1 since if gn−1 is continuous
at y, it is also bounded in some neighborhood of y and induction may be applied.

Assume there is a δ > 0 and K > 0 such that 0 ≤ gn(x) < K for x ∈
(y − δ, y + δ). For ν ∈ (0, δ) let us bound from above |gn−1(y + ν) − gn−1(y)| as
ν → 0+ using

gn−1(y) =
∫︂ ∞

y

gn(t)√
t − y

dt.

Both integrals in

|gn−1(y + ν) − gn−1(y)| =
⃓⃓⃓⃓
⃓
∫︂ ∞

y+ν

gn(t)√
t − y − ν

dt −
∫︂ ∞

y

gn(t)√
t − y

dt

⃓⃓⃓⃓
⃓

can be split to three integrals over intervals (y, y +ν), (y +ν, y +δ) and (y +δ, ∞)
and regrouped

|gn−1(y + ν) − gn−1(y)| ≤
∫︂ y+ν

y

gn(t)√
t − y

dt

+
∫︂ y+δ

y+ν
gn(t)

(︄
1√

t − y − ν
− 1√

t − y

)︄
dt

+
∫︂ ∞

y+δ
gn(t)

(︄
1√

t − y − ν
− 1√

t − y

)︄
dt.

The first two integrals are∫︂ y+ν

y

gn(t)√
t − y

dt < K
∫︂ ν

0

1√
t
dt = 2K

√
ν −−−→

ν→0+
0,
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∫︂ y+δ

y+ν
gn(t)

(︄
1√

t − y − ν
− 1√

t − y

)︄
dt < K

∫︂ δ−ν

0

(︄
1√
t

− 1√
t + ν

)︄
dt

= 2K(
√

δ − ν −
√

δ +
√

ν) −−−→
ν→0+

0.

As for the third integral∫︂ ∞

y+δ
gn(t)

(︄
1√

t − y − ν
− 1√

t − y

)︄
dt =

∫︂ ∞

y+δ
gn(t)

√
t − y −

√
t − y − ν√︂

(t − y − ν)(t − y)
dt

where √
t − y −

√
t − y − ν ≤

√
ν

since the left-hand side is decreasing in t − y and for t − y = ν we have that√
t − y −

√
t − y − ν =

√
ν. Thus,

∫︂ ∞

y+δ
gn(t)

√
t − y −

√
t − y − ν√︂

(t − y − ν)(t − y)
dt ≤

∫︂ ∞

y+δ
gn(t)

√
ν√︂

(t − y − ν)(t − y)
dt.

Let us use Equation (3.1) and since n > 1 and the integrated function is non-
negative ∫︂ ∞

y+δ
gn(t)dt < ∞.

Thus, since for t ∈ (y + δ, ∞) we have that

1√︂
(t − y − ν)(t − y)

< ∞

and
1√︂

(t − y − ν)(t − y)
−−−→
t→∞

0

which assures the convergence of the integral∫︂ ∞

y+δ
gn(t) 1√︂

(t − y − ν)(t − y)
dt < ∞.

In the neighborhood of y + δ the integrand is finite and the density generator gn

ensures the convergence of the integral in the neighborhood of ∞. With
√

ν we
obtain √

ν
∫︂ ∞

y+δ
gn(t) 1√︂

(t − y − ν)(t − y)
dt −−−→

ν→0+
0

which means |gn−1(y + ν) − gn−1(y)| −−−→
ν→0+

0 and gn−1 is continuous from the
right at y. Similarly, gn−1 is continuous from the left at y and thus, is continuous
at y.

If for n ≥ 4 we know that gn is bounded, then gn−1 is continuous and using
Equation (4.2) and the fundamental theorem of calculus we obtain that gn−3 is
differentiable for y > 0. Even if there is some y0 > 0 such that gn is unbounded
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at some neighborhood (y0 − δ, y0 + δ), the integrability condition from Equation
(3.1) holds and for all y > 0

gn−2(y) =
∫︂ ∞

y
gn(t)dt < ∞

which means that gn−2 is bounded and also continuous because gn is integrable.
Thus, for any gn, n > 5, the function gn−2 is continuous and gn−4 is differentiable
(Kelker [1970]).

For the construction and existence of antiprojection, Equation (4.2)

gn(y) = − 1
π

g′
n−2(y)

enables to construct all densities of possible antiprojections if the univariate den-
sity is known. Fractional derivatives of necessary orders may be taken. Alterna-
tively, for odd dimensions use standard differentiation and for even dimensions
we could use one integration to reduce the dimension by one in order to reach an
even dimension and then differentiation again in even dimensions.

Conversely, we can reach some conclusions about the existence of antiprojec-
tions.

• Theorem 17 states that if gk is not continuous, then gk+1 is not bounded.

• As from Equation (4.3) for an increasing function gn the derivative of gn is
positive and gn+2 is negative which means X(n+2) does not exist.

• If g1 is not differentiable up to the order ⌊k+1
2 ⌋, its antiprojection in the

k-th dimension does not possess a density (Kelker [1970]).

Example 8. Let us find all possible antiprojections of two simple distributions
with bounded support in Rn:

• For X(n) ∼ sn, the density generator is gn(y) = 1(0,1)(y) and using Exam-
ple 1 we have that

W p1(0,1)(y) = Dp
x,11 = c · (1 − x)−p, p < 1

and W p1(0,1) = 0 for p = 1 which cannot be a density generator, thus we
are not interested in higher fractional derivatives and higher antiprojections
than n + 2.
From Equation (4.5) the random vector X(n+1) possesses a density and
X(n+2) does not. Using Theorem 15 we have N ≤ n + 2. The marginal
density generators in the dimension l < k of both sk and uk as in Theorem 2
and Example 6 are

guk
(y) =

Γ
(︂

k
2

)︂
Γ
(︂

k−l
2

)︂
π

l
2

(1 − y)
k−l

2 −1 , y ∈ (0, 1),

gsk
(y) =

Γ
(︂

k
2 + 1

)︂
Γ
(︂

k−l
2 + 1

)︂
π

l
2

(1 − y)
k−l

2 , y ∈ (0, 1).
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Setting k = n and l = n − 2 in the first equation gives us that the marginal
distribution of un of dimension n − 2 is sn−2. Conversely, for sn its antipro-
jection of dimension n + 2 is un+2 and higher antiprojections of X(n) ∼ sn

than X(n+2) ∼ un+2 do not exist.

• If gn(y) = (1 − √
y)1(0,1)(y), then we shall call the distribution of X(n)

generalized triangular.6 As gn is continuous but not differentiable for all
y ∈ (0, ∞) which means X(n+4) does not possess a density and X(n+5) does
not exist from Theorem 15.
The density generator of X(n+3) is from Equation (4.5) for some c > 0

gn+3(y) = π− 3
2 W

3
2 gn(y) = c

y
√

1 − y
, y ∈ (0, 1).

As said above X(n+4) is not absolutely continuous, yet the function gn+3
may indicate how is X(n+4) distributed.
The function gn+3 may be rewritten as in Example 6

gn+3(y) = c

y
√

1 − y
= c√

1 − y

(︄
1 + 1 − y

y

)︄
= c1√

1 − y
+ c2

√
1 − y

y

for c1 + c2 = c. The first fraction on the right-hand side is the marginal
density generator of un+4 in the dimension n + 3 (Theorem 2). For the
second part we have up to a constant

W
1
2

c2
√

1 − y

y
= c2

2y
3
2
.

Set g̃n+3(y) = y− 3
2 which is a density generator of a spherically symmetric

random vector (satisfies the integrability condition from Equation (3.1) and
non-negativity). The random vector X(n+4) is a mixture of un+4 and some
absolutely continuous distribution.
In conclusion, for X(n) with the generalized triangular distribution the an-
tiprojection X(n+4) is a mixture of un+4 and the absolutely continuous dis-
tribution with the density generator g̃n+3(y) = y− 3

2 . From Theorem 15 the
antiprojection X(n+5) does not exist, thus N = n + 4.

• Theorem 14 is applicable on any distribution, denote R a random variable
with the Cantor distribution and X(2) d= Ru2. The Cantor distribution (Lad
and Taylor [1992]) is singular and does not posses a density which means
X(n) does not have any antiprojections from Theorem 15. But we may find
its projection X(1) by its density (Theorem 14)

f(x) =
∫︂ 1

|x|
(r2 − x2)− 1

2 dF (r)

where F is the c.d.f. of R. Section 2.2 provides the moments of X(2). Since
E (R2) = 3

8 the covariance matrix is Cov(X(2)) = 3
16I.

As seen above in the examples the problem of finding projections and an-
tiprojections is not a straightforward problem and its complexity depends on the
properties of the distribution.

6For n = 1 it is the univariate triangular distribution.
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Figure 4.1: The density function of the bivariate triangular distribution.

4.3 Mixtures of Normal Distributions
The aim of this section is to answer the question for which spherically symmetric
distribution it is possible to construct antiprojecitons in any dimension. Kelker
[1970] focuses on a specific subclass of elliptically symmetric random vectors.
For the purpose of this thesis let us focus only on spherically symmetric random
vectors.

Definition 5. Let W be a non-negative random variable. Then the random vector
X is a variance mixture of normal distributions if, conditionally given W = w,
we have X ∼ N n(0, wI). Thus, the conditional density of X is for x ∈ Rn and
w > 0

fX|W (x | w) = 1
(2wπ)n

2
e− x⊤x

2w .

For w = 0 we have X = 0 a.s.

If W has the c.d.f. G(w) we can write the unconditional density (Lachout
[2004]) as

f(x) =
∫︂ ∞

0
fX|W (x | w)dG(w) =

∫︂ ∞

0

1
(2wπ)n

2
e

x⊤x
2w dG(w)

or since given W = w the distribution of X is the normal distribution with
var(X) = wI, then X = (X1, . . . , Xn)⊤ given W = w is distributed as

(X1, . . . , Xn)⊤ d=(
√

wZ1, . . . ,
√

wZn)⊤

for (Z1, . . . , Zn)⊤ ∼ N n(0, I). That means the unconditional distribution of X is
given as

X d=
√

WZ

where W and Z ∼ N n(0, I) are independent. Moreover, the variance mixture of
normal distributions is spherically symmetric.

Theorem 18. Let {Xn}∞
n=1 be a sequence of random variables and denote the

joint random vector of the first n terms as X(n) = (X1, . . . , Xn)⊤. Then X(n)
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is a spherically symmetric random vector for all n ∈ N if and only if there is
a non-negative random variable W such that for all n ∈ N we can decompose
X(n) d=

√
WZn where Zn ∼ N n(0, I) is independent of W .

The proof of Theorem 18 can be found in Fang et al. [1990] and is based on
elaborate results on positive definite functions from Schoenberg [1938]. Denote
Φ the c.d.f. of the n-dimensional standard normal distribution. Since Zn and W
are independent, the characteristic function of X(n) is for t ∈ Rn

E
(︂
eit⊤X(n))︂ = E

(︂
eit⊤(

√
W Zn)

)︂
=
∫︂ ∞

0

∫︂
Rn

eit⊤(
√

wz) dΦ(z) dG(w)

=
∫︂ ∞

0
e− t⊤t

2w dG(w),

the common characteristic generator for X(n) is now

ϕ(u) =
∫︂ ∞

0
e− u

2w dG(w)

as a mixture of e− u
2w , the characteristic generator of the normal distribution

N (0, w).
The class of variance mixtures of normal distributions includes not only all

normal distributions N (0, cI), c > 0, but also the t-distributions, the Cauchy
distribution and the Laplace distribution (Gneiting [1997]).
Example 9. Let us show that the antiprojections of X(1) with the Cauchy distri-
bution have the multivariate Cauchy distribution.

The density generator of X(1) is

g1(y) = 1
π(1 + y) ,

thus the density generators of all odd dimensions n = 2k − 1 are up to a normal-
izing constant

g2k−1(y) = (1 + y)−k = (1 + y)− 2k−1+1
2 = (1 + y)− n+1

2 , y > 0

following Equation (4.3). Let us find W
1
2 g1 to obtain the density generator of

X(2). From Equation (1.6) we use the definition of the right-hand RL fractional
derivative (Equation (1.3))

g2(y) = −1
Γ(1

2)
∂

∂y

∫︂ ∞

y

1
π(1 + t)

√
t − y

dt.

Set u =
√

t − y which transforms the integral∫︂ ∞

y

1
π(1 + t)

√
t − y

dt =
∫︂ ∞

0

π

u2 + y + 1du = 1√
1 + y

.

The derivative is −(1 + y)− 3
2 which means

g2(y) = (1 + y)− 1+2
2
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and X(2) also has the multivariate Cauchy distribution. Higher dimensions are
again obtained using standard differentiation. In conclusion, all antiprojections
of the Cauchy distribution are as well the multivariate Cauchy distribution with
the density generator

gn(y) = (1 + y)− 1+n
2 , y > 0.

The multivariate Cauchy is the multivariate t-distribution with 1 degree of free-
dom with the density in Equation (3.2).

Figure 4.2: The density function of the bivariate Cauchy distribution.

In conclusion, only variance mixtures of normal distributions have infinitely
many antiprojections. If W is a random variable such that P(W = 0) = 1 then

P(X(n) = 0) = 1

and the degenerate sequence {X(n)}∞
n=1 of n-dimensional random vectors dis-

tributed as Dirac measures at 0 satisfies Theorem 18. For any random variable
W such that P(W = 0) ̸= 1 the support of X(n) defined as in Theorem 18 is
unbounded for all n ∈ N. That means that for any n-dimensional spherically
symmetric random vector X(n) with bounded support such that P(X(n) = 0) ̸= 1
there are only finitely many antiprojections.
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5. Inference
The aim of this chapter is to review several methods of estimation and testing
involving spherically symmetric distributions. The topic is split into two parts. In
the first section the test involves a given spherically symmetric distribution. The
multivariate problem is reduced to a univariate problem using the results derived
in the previous chapters. The second part tackles a more general problem. Testing
whether the random sample comes from a spherically symmetric distribution has
been approached from numerous ways as reviewed in Chmielewski [1981] and
Serfling [2006]. Section 5.2 presents three basic approaches from Fang et al.
[1993], Henze et al. [2014] and Li et al. [1997].

For the purpose of this chapter let X1, . . . , Xm be random sample of size m
from some n-dimensional distribution X.

5.1 Testing for a Reference Distribution
Firstly, suppose we want to test the following hypothesis

H0 : Xi ∼ G

against
H1 : Xi ̸∼ G

for a given spherically symmetric distribution G when X is a spherically symmetric
random vector.

All spherically symmetric distributions are fully described by univariate dis-
tributions. Theorems 4 and 6 state that an n-dimensional random vector X has
the same distribution as Run for independent R and un which means all the
information about the distribution is in the univariate distribution of R = ∥X∥.

From Theorem 7 under the assumptions of spherical symmetry all univari-
ate marginal distributions X1, . . . , Xn are the same and uniquely determine the
multivariate distribution.

Thus, the testing whether a random sample is drawn from a particular multi-
variate spherically symmetric distribution G is reduced to a univariate test for R,
R2 or Xi with the possible density derived in Sections 3.1 and 4.1. For example
we may use the Kolmogorov-Smirnov test (Hollander and Wolfe [2013]) whether
R or the marginal random variable is drawn from G ′, the radial (or marginal)
distribution of G, using the empirical distribution function

F̂ (y) = 1
m

m∑︂
i=1

1(Yi ≤ y)

where Y is either the marginal or the radial distribution of X. This approach is
heavily sensitive to non-symmetry.

5.2 Testing for Spherical Symmetry
Generally, we may test

H0 : Xi is a spherically symmetric random vector
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against the alternative where the distribution is not spherically symmetric.

5.2.1 Testing via Comparing Projections
Fang et al. [1993] suggest using the property from Theorem 7 and change the null
hypothesis into

H ′
0 : ∀a ∈ Rn, ∥a∥ = 1 : a⊤X have the same distribution.

Then H ′
0 can be tested by using a finite set of unit vectors. The test statistic of

the problem is similar to the one used in the Wilcoxon test.
Firstly, independently sample N unit vectors a1, . . . , aN as N points from the

uniform distribution on the unit sphere surface.
For ai, aj set

ρ(ai, aj) = 1
m(m − 1)

m∑︂
k=1

m∑︂
l=1
l ̸=k

1(a⊤
i Xk < a⊤

j Xl)

and the test statistic is

W = min {ρ(ai, aj), 1 ≤ i, j ≤ N, i ̸= j} .

Asymptotic properties of
√

m
(︃

W − 1
2

)︃
are derived in Fang et al. [1993]. The null hypothesis is rejected for low values of
W , when there is at least one significantly different distribution of a⊤

i Xk.

5.2.2 Testing via Empirical Characteristic Function
Henze et al. [2014] test the same hypothesis using the property of the character-
istic function derived in Theorem 3. For t ∈ Rn denote

φ̂(t) = 1
m

m∑︂
k=1

eit⊤Xk

the empirical characteristic function of the random sample X1, . . . , Xm. Then for
t1, t2 ∈ Rn such that ∥t1∥ = ∥t2∥ set

d(t1, t2) = φ̂(t1) − φ̂(t2).

The test statistic

K =
√

m sup {|d(t1, t2)|, t1, t2 ∈ Rn, ∥t1∥ = ∥t2∥}

is then similar to the statistic used in the Kolmogorov-Smirnov test. The null
hypothesis is rejected for high values of K since under the null hypothesis and for
φ instead of the empirical characteristic function we have φ(t1) = φ(t2) whenever
∥t1∥ = ∥t2∥.
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5.2.3 Testing via QQ-plots
A visual test is proposed in Li et al. [1997] based on the following remark from
Section 2.7 of Fang et al. [1990]. The test derives the distribution of some statistic
t applied on Xi for i ∈ {1, . . . , m} and constructs a QQ-plot which compares the
empirical quantiles of t(Xi) with the theoretical quantiles.
Remark 9. Let X be an n-dimensional spherically symmetric random vector,
P(X = 0) = 0, and t be a statistic such that for any c > 0 the distributions of
t(X) and t(cX) are the same. Then

t(X) d= t(Z)

where Z ∼ N n(0, I).
Let us use two well-known statistics that satisfy the condition that t(X) and

t(cX) have the same distribution, the standard t-statistic and the F -statistic.
The distribution of the standard t-statistic and F -statistic is well known under
the standard normal distribution (Wilks [1947]).

Therefore, for a spherically symmetric random vector Xi = (Xi1, . . . , Xin)⊤

the t-statistic
T (Xi) =

√
n

X̄ i

Si

is constructed using the sample mean and the sample standard deviation applied
to the elements of Xi

X̄ i = 1
n

n∑︂
j=1

Xij, Si = 1
n − 1

⌜⃓⃓⎷ n∑︂
j=1

(Xij − X̄ i)2.

The t-statistic T (Xi) has the standard univariate t-distribution with n − 1 de-
grees of freedom. For each realization Xi from the random sample X1, . . . , Xm

let us find T (Xi). Since X1, . . . , Xm are independent and identically distributed,
the same holds for T (X1), . . . , T (Xm) which are independent and identically dis-
tributed according to the t-distribution with n − 1 degrees of freedom.

The F -statistic is constructed for a given k as

Fk,n(Xi) = n − k

k

∑︁k
j=1 X2

ij∑︁n
j=k+1 X2

ij

and is distributed according to the F -distribution with k and n − k degrees of
freedom.

The QQ-plot graphically compares the quantiles of the constructed sample
T (X1), . . . , T (Xm) with the quantiles of the t-distribution (and similarly for the
F -statistic). The QQ-plot is easily constructed by any statistical software. How-
ever, distributions which are not spherically symmetric may also pass this test,
namely when X d= Run as in Section 2.1 but for dependent R and un (Li et al.
[1997]).
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Conclusion
In this thesis, spherically symmetric distributions were introduced as distributions
which remain unchanged under rotations about the origin.

Section 2.1 showed that spherically symmetric distributions can be decom-
posed into two independent factors – a non-negative random variable (called the
radial distribution) and the uniform distribution on the unit sphere surface. This
property was further used in Section 2.2 to find marginal distributions and mo-
ments of spherically symmetric distributions. Marginal distributions of a spher-
ically symmetric distribution are also spherically symmetric. Even if the distri-
bution is not absolutely continuous all marginal distributions possess a density if
the distribution does not have an atom at the origin (as shown in Section 4.1).

Section 4.2 extended the relationship between the spherically symmetric dis-
tribution and its marginal distribution in the opposite direction, from a lower
dimension to a higher. Let X be a spherically symmetric random vector without
an atom at the origin. If X does not possess a density, there are no extensions into
higher dimensions. The number of dimensions generally depends on the differen-
tiability of the density function. Fractional calculus happens to be a useful tool
when looking for density functions in higher dimensions. The class of spherically
symmetric distributions which can be extended up to any dimension is described
in Section 4.3.

The last chapter focused on estimation of spherically symmetric distributions
and presents three tests for spherical symmetry.

Spherically symmetric distributions may be generalized into elliptically sym-
metric distributions as briefly discussed in Section 2.3. All properties of spher-
ically symmetric distributions may be extended to elliptically symmetric distri-
butions since the extension is done via affine transformations as shown in Sec-
tion 2.3. Fang et al. [1990] present multivariate log-elliptical distributions (the
class includes the log-normal distribution) and symmetric distributions with re-
spect to other norms than the Euclidean Gupta and Song [1997]. Anderson and
Fang [1982] extend random vectors with spherically symmetric distributions into
random matrices.
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