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Introduction
Conventional electronics is reaching its physical limits.[1–3] Because of that,
scientists are trying to find some other physical phenomena that would allow
transfering and processing information much faster and, in terms of energy, more
efficiently. Two main fields of study have developed in several decades. These are
spintronics and photonics.

The main principle of spintronics is that the information is carried/represented
using the spin of electrons. Its advantages lie in avoiding Joule’s heat that
is created in conventional wires by Ohmic losses and much higher operational
frequencies as the spin dynamics is quite fast. One of the first working devices
using spintronics phenomena are the magnetic hard drives, where it helped to
significantly increase the storage capacity.[4]

A completely different approach to transmit information is used in the field of
photonics. The information here is converted into light waves which are afterwards
propagating via optical fibres or integrated waveguides.

Thanks to the development of integrated lasers, filters, resonators, modulators
and photodetectors, scientists have recently managed to get closer to the produc-
tion of an integrated photonic processor.[5] Also, first computer microprocessors
have been developed that communicate between processors and RAM only opti-
cally.[6] These microprocessors show a large increase in transfer speed but their
functionality is still very limited. One of the very important things for a photonic
chip to work properly is to suppress back reflections from integrated optical com-
ponents. They are caused by imperfections made during the lithographic process.
Practically, magneto-optical (MO) insulators (optical unidirectional devices using
non-reciprocal light propagation in magneto-optical material) are commonly used.
However, their integration on an optical chip is very complicated due to the
incompatibility of classic magneto-optical materials with silicon technology.

Figure 1: A multi-component photonic integrated circuit.[7]

Conventional magneto-optical materials (magnetic garnet structures) in the
form of thin layers deposited on a silicon substrate do not show magneto-optical
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properties required for a functional integrated magneto-optical element. Recently,
experiments using the deposition of garnet layers on a silicon substrate using
special substrates or post-deposition annealing were performed. [8, 9] This led to
the possibility of demonstrating the first integrated magneto-optical insulating
element.[10] However, its properties are very limited and such a concept is not
very suitable for application purposes. The subject of interest of several renowned
world laboratories dealing with this issue is therefore to find suitable materials
and methods for the preparation of thin films that ensure the optical and magneto-
optical response of deposited layers similar to bulk crystals that are commonly
used.

One of the suitable candidates of materials is a group of the ferrimagnetic
iron garnets with general formula X3Fe5O12, where X stands for any element of
the 3b groups of the periodic table of elements or a rare earth element. The
basic crystallographic structure of the garnets is formed by a cubic elementary
cell in which there are 3 sublattices formed by oxygen atoms: dodecahedral
(occupied by three X ions), octahedral (occupied by two iron ions) and tetrahedral
(occupied by three iron ions). The most well-known representative, which has
been widely researched for several decades, but still does not lose popularity due
to its unrivalled magnetic properties, is the yttrium iron garnet Y3Fe5O12 (YIG).
In addition, by substituting yttrium atoms for other elements such as Tb, Tm, Eu,
Bi, Nd, etc., it is possible to change the magnetic, optical and magneto-optical
properties. These properties can also be altered by the partial replacement of
iron atoms. For example, it turns out that with different iron ratios in individual
sublattices, the compensation temperature of these materials changes.[11]

The theme of this work is the characterization of two groups of ultra-thin
films of ferrimagnetic garnets. In the first group there are four samples of
Y3Fe4Ga1O12 on Gd3Ga5O12 substrates with different orientations and different
annealing temperatures. The aim is to describe how annealing temperature
changes the electronic structure and how the orientation of the substrate changes
the magneto-optical properties of the thin films. The second group of samples
consists of nine samples of NdxBi3-xFe4Ga1O12 on Gd3Ga5O12 (100) substrates
with different annealing temperatures, thicknesses and concentrations of individual
ions. The aim here is to describe how the temperature changes the electronic
structure and how the thickness of the material changes its magnetic properties.
This will help to select the best preparation conditions.

This thesis is organized into three parts. The introductory part contains
the theoretical background consisting of the general description of light, matter
and the interaction between them. In the second part, there is a description
of experimental methods used in this thesis and the general information about
ferrimagnetic garnets and their preparation method. The third then part contains
the results of studied materials.
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Part I

Theoretical background
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This thesis is focused on the optical and magneto-optical properties of ferri-
magnetic garnets. Several experimental techniques that utilize light are used to
measure these properties. For many methods, like spectroscopy, it is convenient
to use wave description of light together with Jones formalism.

This part, therefore, summarizes the fundamentals basics of the electromagnetic
theory of light, which is necessary for this work, and provides a description of the
matter in general with emphasis on ferrimagnetic garnets.
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1. Description of light

1.1 Wave equation
The electromagnetic wave equation is derived from Maxwell’s equations using
constitutive relations and Ohm’s law. Maxwell’s equations are universal equations
that link together vectors of electric field E, magnetic induction B, electric
induction (displacement field) D, magnetic field strength H , free current density
j and free charge density ρ. Using SI units and the differential form, macroscopic
Maxwell’s equations are as follows:

∇ × E + ∂B

∂t
= 0 , (1.1a)

∇ · B = 0 , (1.1b)

∇ × H − ∂D

∂t
= j , (1.1c)

∇ · D = ρ . (1.1d)

This set of equations are valid for all materials. However, for the purpose of
this thesis we will now restrict ourselves to systems (isotropic, static medium
(∂µ

∂t
, ∂ε

∂t
, ∂σ

∂t
= 0)) that obey following relations known as constitutive relations:

B = µH , (1.2a)

D = εE , (1.2b)

j = σE . (1.2c)

We denote µ = µ0µr and ε = ε0εr as tensors of relative permeability and
permittivity; µ0 and ε0 as permeability and permittivity of vacuum; µr and εr as
relative permeability and permittivity. σ then represents the conductivity tensor,
making the last equation equivalent to Ohm’s law.

Inserting equation (1.2a) into (1.1a) and (1.2b) with (1.2c) into (1.1c) and
their further adjustments gives us following equations:

∇ × ( 1
µ

∇ × E) + ∇ × ∂H

∂t
= 0 , (1.3a)

∇ × ∂H

∂t
− ε

∂2E

∂t2
− σ

∂E

∂t
= 0 . (1.3b)

By substituting (1.3b) into (1.3a) and using identity ∇ × ∇ = ∇∇ − ∆ we have
second-order partial differential equation with respect to E

∆E − µε
∂2E

∂t2
− µσ

∂E

∂t
+ ∇ ln µ × (∇ × E) − ∇(∇ · E) = 0 . (1.4)

It is the most general form of electromagnetic wave equation.
However, the wave equation (1.4) can be simplified by further assumptions:
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(a) environment without charges · · · ρ = 0

∆E − µε
∂2E

∂t2
− µσ

∂E

∂t
+ ∇ ln µ × (∇ × E) − ∇(E · ∇ ln ε) = 0 (1.5)

(b) homogeneous environment · · · µ = const., ε = const.

∆E − µε
∂2E

∂t2
− µσ

∂E

∂t
= 0 (1.6)

(c) non-conductive environment · · · σ = 0

∆E − µε
∂2E

∂t2
= 0 (1.7)

1.1.1 Plane wave solution in vacuum
Suppose vacuum, equation (1.7) can be rewritten to the most known form of the
wave equation

∆E − 1
c2
∂2E

∂t2
= 0 , (1.8)

where c = 1/√µ0ε0 is the speed of light in vacuum.
Basic solution to this wave equation can be given in a form of a plane wave.

A plane wave represents any solution of the equation (1.8) in the form E(r, t) =
E(r · s, t) , where s is a unit vector in the direction of motion of the wave and r
is a position vector of one of the points on the wave plane. It can be written as:

E(r, t) = E0 cos(ωt− k · r + δ) = Re{E0e
i(ωt−k·r+δ)} , (1.9)

where E0 is the amplitude of the wave, ω is the angular frequency, k is the wave
vector and δ is the initial phase shift. Wave vector k is defined as

k = s · ω
c
. (1.10)

From this form, the wave vector in vacuum can be derived as

k0 = s · ω
c0

(1.11)

by using refractive index through definition

n = c0

c
, (1.12)

where c0 is the speed of light in vacuum and c is the phase velocity of light in the
medium. Inserting (1.11) into (1.9) provides different form of solution of wave
equation:

E(r, t) = Re
{︂
E0e

i(ωt−nk0·r+δ)
}︂
. (1.13)

By inserting this solution to Maxwell’s equations (1.1), following equations
can be derived:

k · E = 0 , (1.14)

k · B = 0 , (1.15)

s × E = cB . (1.16)
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This relations shows that vectors E, B and s form orthogonal system. It means
that every electromagnetic plane wave is always transversal. The equation (1.16)
can provide another formula

E0 = cB0 , (1.17)
which binds the amplitudes of the electric and the magnetic part of the wave.
Schematic representation of electromagnetic wave is shown in fig. 1.1.

z

y

x s

E

B

Figure 1.1: Linearly polarized electromagnetic wave propagating in the direction
+z.

1.2 Polarization
Due to the fact that magneto-optical measurements utilize polarized light, it is
appropriate to describe the polarization of light.

Polarization is a general property of every vectorial wave, such as an elec-
tromagnetic wave. It describe the geometrical oscillations of electric vector E;
because E is dominating in the interaction of light with matter (see (1.17)).
Further in this section, we will work with electromagnetic waves described by
equation (1.13) which propagate along the z axis.

Let there be two time-harmonic monochromatic plane waves of the same
frequency. Also, let the oscillations of one wave be parallel to the x axis and
the other wave parallel to the y axis. Superposition of two waves in terms of its
components is as follows:

Ex(z, t) = E0x cos(ωt− kz + δx) , (1.18)

Ey(z, t) = E0y cos(ωt− kz + δy) , (1.19)

Ez(z, t) = 0 , (1.20)

where E0x, E0y are amplitudes of each component, δx, δy are their phases, ω is
angular frequency and k is the magnitude of the wavevector.
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Then, τ := (ωt− kz) can be defined; if equations (1.18) and (1.19) are divided
by their respective amplitudes, one can obtain

Ex

E0x

= cos(τ + δx) = cos(τ) cos(δx) − sin(τ) sin(δx) , (1.21)

Ey

E0y

= cos(τ + δy) = cos(τ) cos(δy) − sin(τ) sin(δy) . (1.22)

Let multiply (1.21), (1.22) by sin δy, sin δx, respectively, and subtract them.
Similarly, multiply the same equations by cos δy, cos δx and subtract them. There-
after, following equations are acquired:

Ex

E0x

sin δy − Ey

E0y

sin δx = cos(τ) sin(δy − δx) , (1.23)

Ex

E0x

cos δy − Ey

E0y

cos δx = sin(τ) sin(δy − δx) . (1.24)

Now, let square and sum (1.23) and (1.24). With the definition of δ (δ :=
δy − δx), subsequent formula is attained:

(︃
Ex

E0x

)︃2
− 2 Ex

E0x

Ey

E0y

cos δ +
(︄
Ey

E0y

)︄2

= sin2 δ . (1.25)

The equation above is a formula for an ellipse. That means that, in general, the
endpoint of electric field vector E is tracing the shape of an ellipse in projection
on the plane perpendicular to the direction of propagation z (see figure 1.2). This
ellipse, which describes the polarization state of light, can be fully characterized
by four parameters:

• the overall amplitude E0 – can be calculated as E0 =
√
a2 + b2 and relates

to the intensity of light as I = E2
0

• the azimuth Ψ – an oriented angle between the semi-major axis a and the
positive half-axis x, Ψ ∈ [−π

2 ; π
2 ]

• the ellipticity angle ε – an angle that satisfies the equation tan ε = ∓ b
a
,

ε ∈ [−π
2 ; π

2 ]

• the absolute phase δ0 – angle between vector E in time t = 0 and the
positive half-axis x, provides information about the initial state of the wave,
δ0 ∈ [−π; π]

The ellipticity e = tan ε can take values from -1 to 1. Its sign contains informa-
tion about the direction in which the wave rotates. By convention, positive values
mean right-hand polarization and negative values mean left-hand polarization.
Zero value then corresponds to linearly polarized light in which electric field vector
oscillates only in the so-called plane of polarization, which does not change while
propagating through the isotropic medium. If one looks against the direction of
propagation, right-handed polarization denotes a clockwise motion of electric field
vector whereas the left-hand polarization represents a counterclockwise motion of
electric field vector.
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Figure 1.2: Polarization ellipse when looking against the direction of propagation of
the light wave. The depicted parameters are semi-major axes a and b, amplitudes
E0x and E0y, azimuth Ψ, ellipticity ε and absolute phase δ0.

In some cases, elliptical polarization reduces to circular polarization. That
happens for ε = ±π/2. Circularly polarized light then forms in space a symmetrical
helix that can be either right or left-handed.

A large number of different formalisms have been developed to simplify the
description of polarized light. The most commonly used is the formalism of Jones
vectors and matrices. However, its disadvantage is that it can only be used to
describe completely polarized light.

1.3 Jones formalism
This section is dedicated to Jones formalism, which is used for the description of
the optical system and propagation of linearly polarized light through it.

Jones vector
A plane electromagnetic wave can be written in the symbolism of complex numbers
as

E(z, t) = Exx + Eyy, (1.26)
where

Ex(z, t) = Re{E0xe
i(ωt−kz+δx)} = Re{Axe

i(ωt−kz)} , (1.27a)

Ey(z, t) = Re{E0ye
i(ωt−kz+δy)} = Re{Aye

i(ωt−kz)} . (1.27b)

Terms Ax, Ay are the complex amplitudes of a monochromatic plane wave,
E0x, E0y are the corresponding parts of amplitudes and δx, δy are the initial phases
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of each component of wave. This allows to define Jones vector of polarization J
of the light wave propagating in the direction parallel to z axis:

J =
[︄
E0xe

iδx

E0ye
iδy

]︄
=
[︄
Ax

Ay

]︄
. (1.28)

This vector carries the complete information about the polarization state of
the wave. The vector (1.28) is defined in the Cartesian basis of linear polarizations.
Another important basis is the circular polarization basis consisting of left circular
polarization (LCP) and right circular polarization (RCP). Both bases can be
found below.

• The Cartesian basis:
Jx =

[︄
1
0

]︄
, Jy =

[︄
0
1

]︄
(1.29)

• The circular basis:

JL = 1√
2

[︄
1

−i

]︄
, JR = 1√

2

[︄
1
i

]︄
(1.30)

Sometimes, it is useful to rotate the whole Cartesian system by angle θ. (θ > 0
if the rotation is in the counterclockwise direction.). The rotation matrix is as
follows

R(θ) =
[︄
cos θ − sin θ
sin θ cos θ

]︄
. (1.31)

General elliptical polarization with a specific Ψ and ϵ is achieved by the
following procedure. Considering an ellipse with the azimuth equal to zero (Ψ = 0)
and arbitrary ellipticity angle ϵ. Then let rotate the Cartesian system clockwise
by the azimuth Ψ (i.e. rotation of the ellipse counterclockwise) with use of (1.31).
Jones vector for general polarization is then

JXY =
[︄
cos θ − sin θ
sin θ cos θ

]︄ [︄
cos ϵ
i sin ϵ

]︄
=
[︄
cos θ cos ϵ− i sin θ sin ϵ
sin θ cos ϵ+ i cos θ sin ϵ

]︄
. (1.32)

Further, if one is neither interested in intensity nor an absolute phase of the
wave, complex polarization parameter χ, which also describe polarization state,
can be defined as a ration of the second to the first component of the Jones vector
(1.28) [12]

χ = tanα eiδ . (1.33)
Absolute value and the argument are

|χ| = tanα = Ay

Ax

, (1.34)

arg(χ) = δy − δx = δ . (1.35)

Newly defined parameters are related to previously introduced parameters Ψ
and ϵ through relations [13]

tan 2Ψ = tan 2α cos δ , (1.36a)

sin 2ϵ = sin 2α sin δ . (1.36b)
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Using parameters α and δ, Jones vector can be then rewritten as

J =
[︄
cosα
sinα eiδ

]︄
. (1.37)

In this approach each polarization state is represented by one point in the
complex plane, therefore the complex polarization parameter is related to the
Cartesian basis.

The complex parameter χ of an arbitrary elliptical polarization (with respect
to the Cartesian basis) can be defined using (1.32) as

χ = sin Ψ cos ϵ+ i cos Ψ sin ϵ
cos Ψ cos ϵ− i sin Ψ sin ϵ = tan Ψ + i tan ϵ

1 − i tan Ψ tan ϵ . (1.38)

Provided that the angles Ψ and ϵ are very small, an approximation of the
tangent function by its argument can be made (first terms of Taylor series:
tan Ψ ≈ Ψ, tan ϵ ≈ ϵ). If one neglect also the second-order term in the denominator,
(1.38) can be then simplifiedd as

χ ≈ Ψ + iϵ . (1.39)

Jones matrix
Jones formalism can very well describe the interaction of a light wave with an
optical element which leads to the change of polarization state of the wave.

Assume light wave propagating against optical element described by reflection
matrix Rsp, which is expressed in terms of s- and p- polarization. Cartesian
coordinates are such that direction of the x axis is perpendicular to the plane of
incidence, light polarized linearly in this direction is called s-polarized. y axis is
then parallel with the plane of incidence, light polarized linearly in this direction
is called p-polarized. Axis z is defined such that it is always in the direction of
propagation of the light wave (as seen in figure 1.3a). Also, suppose that the
incident wave is described by Jones vector J (I) and the reflected wave by J (R).
The relation between these two states can be written as

J (R) = Rsp J (I) , (1.40)

where Rsp is the Jones reflection matrix

Rsp =
[︄
rss rsp

rps rpp

]︄
. (1.41)

Coefficients rss, rsp, rps, rpp are amplitude reflection coefficients for s- and
p- polarized light waves. For an isotropic material, which is not located in a
magnetic field, the matrix (1.41) is diagonal, i.e. there is no interaction between s-
and p- polarized waves. However, upon insertion of the material into a magnetic
field that induces optical anisotropy, the non-diagonal elements generally become
non-zero, which corresponds to the interaction of s- and p- polarized waves.

Above mentioned amplitude reflection coefficients can be written with use of
equations (1.28), (1.40) and denotation of complex amplitudes of both incident
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and reflected wave Ax = As and Ay = Ap as

rss =
(︄
A(R)

s

A
(I)
s

)︄
A

(I)
p =0

, (1.42a)

rsp =
(︄
A(R)

s

A
(I)
p

)︄
A

(I)
s =0

, (1.42b)

rps =
(︄
A(R)

p

A
(I)
s

)︄
A

(I)
p =0

, (1.42c)

rpp =
(︄
A(R)

p

A
(I)
p

)︄
A

(I)
s =0

. (1.42d)

rsp, rps then represent the conversion of one polarization state to the other and
rss, rpp represent Fresnel reflection coefficients.

Rsp

s s

x(I) x(R)

y(I)

p p

y(R)

z(I)

z(R)

(a)

Tsp

s
p

x(I)

y(I)

s
p

x(T )

y(T )z(I) z(T )

(b)

Figure 1.3: Cartesian coordinate systems for reflection optical element char-
acterized by Jones refection matrix Rsp (a) and transmission optical element
characterized by Jones transmission matrix Tsp.

Similarly, all information above also applies to a system, where light is prop-
agating through an optical element, which is described by transmission matrix
Tsp. Arrangement of such system along with previously defined Cartesian system
as well as s-, p- polarizations can be seen in figure 1.3b. The relation between
incident wave (J (I)) and transmitted wave (J (T )) can be then written as

J (T ) = Tsp J (I) , (1.43)
where Jones transmission matrix Tsp is defined as

Tsp =
[︄
tss tsp

tps tpp

]︄
. (1.44)

Amplitude reflection coefficients tss, tsp, tps, tpp can be written analogously to
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(1.42a)–(1.42d) as

tss =
(︄
A(T )

s

A
(I)
s

)︄
A

(I)
p =0

, (1.45a)

tsp =
(︄
A(T )

s

A
(I)
p

)︄
A

(I)
s =0

, (1.45b)

tps =
(︄
A(T )

p

A
(I)
s

)︄
A

(I)
p =0

, (1.45c)

tpp =
(︄
A(T )

p

A
(I)
p

)︄
A

(I)
s =0

. (1.45d)

The optical system usually does not consist of only one optical element. Each
optical element is described by reflection/transmission matrix Mn, which can be
then consecutively multiplied to form final matrix M

M = Mn . . .M1 . (1.46)

The resulting matrix works the same way as in equation (1.40) or (1.43).
At the end of this section, matrices for basic optical elements are listed below.

Cartesian basis Circular basis

linear polarizer oriented at angle ϕ with respect to x axis:

Pcart =

⎡⎢⎣ cos2 φ sinφ cosφ

sinφ cosφ sin2 φ

⎤⎥⎦ (1.47)

Pcirc = 1√
2

⎡⎢⎣ 1 e2iφ

e−2iφ 1

⎤⎥⎦ (1.48)

phase plate with with retardance of Γ witch principal axis parallel to x and y:

Ccart =

⎡⎢⎣eiΓ/2 0

0 e−iΓ/2

⎤⎥⎦ (1.49) Ccirc =

⎡⎢⎣ cos Γ
2 i sin Γ

2

i sin Γ
2 cos Γ

2

⎤⎥⎦ (1.50)

polarization rotator, which rotates the polarization plane by an angle θ:

Tcart =

⎡⎢⎣cos θ − sin θ

sin θ cos θ

⎤⎥⎦ (1.51) Tcirc =

⎡⎢⎣eiθ 0

0 e−iθ

⎤⎥⎦ (1.52)
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1.4 Magneto-optical effects
When light wave reflects or passes through a sample placed in a magnetic field,
the polarization state of the light wave will change. That effect is described by
so-called magneto-optical observables. The case of reflection is then called the
magneto-optical Kerr effect (MOKE) and the case of transmission is called the
magneto-optical Faraday effect.

Let the incident wave be (s-polarized) and let it reflects off the material in a
magnetic field (i.e. magnetized material). Then the reflected beam is described by

Jones vector
[︄
rss

rps

]︄
. Also let the angles Ψ(R)

s and ϵ(R)
s be small to satisfy equation

(1.39). Jones reflection matrix of the material is no longer diagonal and therefore
the ratio of the off-diagonal to diagonal elements of the matrix (1.41) (in this
case transformation of the incident s-polarized light wave (1.42a) to a reflected
p-polarized light wave (1.42c)) can be expressed as

rps

rss

=

⎛⎜⎜⎝
A

(R)
p

A
(I)
s

A
(R)
s

A
(I)
s

⎞⎟⎟⎠
A

(I)
p =0

=
(︄
A(R)

p

A
(R)
s

)︄
A

(I)
p =0

= χ(R)
s . (1.53)

Complex quantity Kerr angle ΦKs, which describes MOKE, can be defined for
polar configuration as [12]

−rps

rss

=: ΦKs ≈ ΨKs − i ϵKs (1.54)

where ΨKs is Kerr rotation that describe rotation of polarization plane and ϵKs is
Kerr ellipticity which describes the change in ellipticity of a polarization ellipse.

The derivation for the case of an incident p-polarized wave is done analogously.
Using (1.42b) and (1.42d) one can obtain

rsp

rpp

=

⎛⎜⎜⎝
A

(R)
s

A
(I)
p

A
(R)
p

A
(I)
p

⎞⎟⎟⎠
A

(I)
s =0

=
(︄
A(R)

s

A
(R)
p

)︄
A

(I)
s =0

= (χ(R)
p )−1 . (1.55)

Since the fraction of the off-diagonal and diagonal element is usually small,
one can derive the magneto-optical Kerr angle for an incident p-polarized wave as

rsp

rpp

=: ΦKp ≈ ΨKp − i ϵKp (1.56)

In similar way Faraday rotation ΨF and Faraday ellipticity (magnetic circular
dichroism (MCD)1) ϵF for s- and p- polarization can be defined with use of
(1.45a)–(1.45d) as

−tps

tss

=: ΦF s ≈ ΨF s − i ϵF s (1.57a)

tsp

tpp

=: ΦF p ≈ ΨF p − i ϵF p (1.57b)

1Faraday ellipticity = magnetic circular dichroism (MCD)
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Should the angle of incidence is zero, following relations, based on the symmetry
of the problem (switching basis upon reflection (see figure 1.3a)), must be fullfiled

−rss = rpp , (1.58a)

rsp = rps . (1.58b)

For normal light incidence further apply

ΦKs = ΦKp = ΦK , (1.59a)

ΦF s = ΦF p = ΦF . (1.59b)

For more detailed approach see [12].
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2. Description of matter

2.1 Ferrimagnetism
The origin of magnetism is in the exchange interaction between atoms. More
precisely it is determined by the magnetic dipole moment of the atom, which
comes from the orbital angular momentum and the spin (angular momentum) of
electrons.1

Magnetic materials are divided into five basic types of magnetism: ferromag-
netism, antiferromagnetism, ferrimagnetism, paramagnetism and diamagnetism.
Three of them are shown in figure 2.1. The divisions are based on the response of
the material to the external magnetic field. Because investigated materials in this
work are ferrimagnetic garnets, the further text will focus only on materials with
ferrimagnetic order.

ferromagnetism antiferromagnetism ferrimagnetism

Figure 2.1: Scheme of different types of magnetic ordering in magnetic material.

Ferrimagnets are materials with two or more magnetic sublattices whose
magnetic moments are generally oppositely oriented. Ordinarily, such a substance
shows spontaneous net magnetization2 (MS ≈ 150 kA/m3) that is usually much
smaller than in the case of ferromagnets (MS ≈ 500 − 1500 kA/m
[15, 16]). [17] This magnetic alignment occurs in materials that consist of at least
two different atoms or ions. Their unpaired valence electrons interacts with each
other inducing strong parallel or antiparallel alignments. Most often they are
compounds of metals and oxides; e.g. ferrites containing Fe3+ and Fe2+ in various
sublattices. [17]

The best-known representative is Fe3O4. In this material, three iron ions (two
Fe3+ ions and one Fe2+ ion) belong to four ions of oxygen. Magnetic moments
of the two Fe3+ ions are oriented in the opposite directions and therefore do not
participate in the formation of an external magnetic moment. Thus, only the last
remaining iron ion contributes to the resulting external magnetic field. Other
representatives may include yttrium–iron garnets Y3Fe5O12 (YIG), PbFe12O19,
BaFe12O19, as well as iron and sulfur compounds (Fe1-xS). [18]

1Some other mechanisms contribute to the magnetic dipole moment of the atom like the
angular momentum of a nucleus. However, the efects of these mechanisms are small and therefore,
for the purpose of this work, can be neglected.

2unlike antiferromagnets
3the magnetic dipole moment per unit volume of material [14]
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Figure 2.2: Dependence of magnetization of ferrimagnet on temperature. M1
and M2 stand for contribution of individual magnetic sublattices, M1 +M2 is the
resulting net magnetization. TComp is compensation temperature and TC is Curie
temperature.

2.1.1 Critical temperature
Ferrimagnets have very similar magnetic properties to ferromagnets – they show
spontaneous magnetization below the critical (so-called Curie) temperature (which
is different for each material), and at a temperature higher than the mentioned
critical value, the materials become magnetically disordered (paramagnetic) (see
figure 2.2). This is due to the fact that the hitherto properly arranged magnetic
moments of the individual atoms become chaotic due to thermal excitations, and
thus the magnetic moment of the individual atoms is compensated by other atoms.
[18]

2.1.2 Compensation temperature
The magnetic moment of each magnetic sublattice lowers with increasing tem-
perature. However, each of them has different temperature dependance. Hence
another specific temperature can by defined – compensation temperature. When
the temperature of the material reaches this value, oppositely aligned magnetic
moments are the same size (see figure 2.2) and the net magnetic moment van-
ishes. Above the compensation temperature, there is a swapping of the dominant
magnetic sublattice. That causes the change of the direction of the net magnetic
moment. Also, there is an opposite alignment of magnetic sublattices in the
external magnetic field due to the fact that net magnetic moment, which has
the same direction as dominant sublattice, tends to be parallel with the external
magnetic field.
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2.2 Magnetic anisotropy
Magnetic anisotropy results from the dependence of the energy of a given magnetic
moment on its orientation with respect to individual crystal axes. For uniaxial
anisotropy, this energy can be expressed as [19]

Ea = Ka sin2 θ (2.1)

where Ka is the anisotropy constant (with respect to magnetic field H) for easy
axis a and θ is the angle between the direction of magnetization and the direction
of the easy axis a.

Anisotropy determines in which direction the magnetic moments spontaneously
arrange; i.e. it indicates the direction of magnetization in the magnetic domains
of ferro, ferri and antiferromagnets. It also affects the magnitude of the coercive
force. The overall magnetic anisotropy of the system is affected by several factors.
Anisotropy constant consists of three terms

Ka = Ka
shape +Ka

elast +Ka
cryst , (2.2)

where Ka
cryst is magnetocrystalline anisotropy which is determined by the symmetry

of the crystal, Ka
shape stands for shape anisotropy which is affected by the geometry

of the sample and lastly, Ka
elast is magnetoelastic anisotropy. It is defined as

Ka
elast = λaσa , (2.3)

where λa is the magnetostriction coefficient and σa is the strain applied parallel
to the easy axis a. [20]

In the case of magnetically anisotropic materials, different direction of mag-
netization means different magnetic properties of the crystal. Two important
directions in the crystal are distinguished. The axis along which the magnetization
of the material is the easiest (minimum of the anisotropy energy) is called the
easy axis. This direction is energetically favourable for spontaneous magnetization.
When applying a magnetic field parallel to the easy axis, magnetic domains are
oriented in the direction of the magnetic field. After switching off the magnetic
field, magnetic domains stay ordered and the material has remanent magnetization
(figure 2.3a). Second important axis, which is perpendicular to the easy axis,
is called hard axis. When applying a magnetic field parallel to the hard axis
(perpendicular to the easy axis), magnetic domains are again oriented in the
direction of the magnetic field. However, after switching off the magnetic field,
magnetic domains disorder into multiple directions. It is because the two opposite
directions along an easy axis are usually equivalently easy to magnetize along. In
this state the external magnetization of the material is almost equal to zero, i.e.
there is almost no remanence (figure 2.3b).

Typical magnetization loops of ferrimagnetic material are shown in figure
2.3. In case of a magnetic field applied to a crystal parallel to the easy axis,
there is non-zero magnetization in remanence and the coercivity field HC . The
magnetization in the hard axis is usually used to determine the anisotropy field
(the point where magnetization reaches the values of MS in this direction). At
this point, the external magnetic field force all magnetic moments to lay in the
direction parallel to the hard axis.
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Figure 2.3: Magnetization hysteresis loops with external magnetic field applied
parallel to (a) easy axis (b) hard axis.

In the case of thin films, which is the case of this work, it is common to address
the direction of magnetic anisotropy relatively to the surface of the sample. Hence
the material with easy axis perpendicular to the surface of the sample is said to
have perpendicular magnetic anisotropy (PMA).
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3. Interaction between light and
matter

3.1 Permittivity tensor
In general, optical response of matter can be macroscopically described by per-
mittivity tensor ε. Its knowledge allows to solve the wave equation and thus
to obtain reflectivity coefficients, which are needed to calculate magneto-optical
angles. Moreover, this process can be done backwards. This permits to calculate
particular permittivity tensor elements of specific material from the knowledge of
the magneto-optical Kerr angle.

It is a 3 × 3 tensor that has, generally, 9 independent (complex) elements

ε =

⎡⎢⎣εxx εxy εxz

εyx εyy εyz

εzx εzy εzz

⎤⎥⎦ , (3.1)

εij = ε′
ij + iε′′

ij . (3.2)

However, this general form can be significantly simplified by using specific sym-
metries.

When an external magnetic field is applied to the material, its permittivity
tensor will be affected because of an induced anisotropy inside the sample. Per-
turbation of the permittivity tensor is usually small. Therefore elements of the
permittivity tensor can be described within the Taylor series

εij ≈ εij(0) +
(︄
∂εij

∂Mk

)︄
M=0

Mk + · · · , (3.3)

where i, j, k each represent any index of the Cartesian basis x, y, z. The first term
of equation (3.3) εij(0) represents the tensor elements when no external magnetic
field is applied to the sample. The second term determines linear magneto-optical
effects that are linear with respect to the magnetization M = (Mx,My,Mz).
Because this thesis is working only with the linear magneto-optical Kerr effect,
restriction to the first two terms is adequate.

Further important feature of the permittivity can be obtained from a time
reversal symmetry (in the Cartesian system)

εij(M ) = εji(−M ) (3.4)

MOKE is directly proportional to the vector of magnetization M . For that
reason, it is usually measured in 3 different geometries relative to the orientation
of the magnetization vector M to the plane of incidence and sample surface:
polar, which is in the main interest of this thesis, longitudinal and transversal. In
the polar configuration, the magnetization vector of the sample is perpendicular
to the sample surface. In longitudinal geometry, the magnetization vector lies
in the plane of the sample and it is parallel with the plane of incidence. In the
transversal configuration, the magnetization vector again lies in the sample surface
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but it is perpendicular to the plane of incidence. In the first two cases, i.e. polar
and longitudinal, the polarization of the light changes after the reflection. In the
third case, only the intensity of incident p-polarized beam changes. [21] All three
geometries can be seen in figure 3.1.

z

x
y

M

polar

z

x
y

M

longitudinal

z

x
y

M

transversal

Figure 3.1: Three different configurations of magneto-optical Kerr effect (MOKE)
with respect to the magnetization vector M

After placing the sample into the magnetic field, optical anisotropy results in
non-zero off-diagonal elements of the permittivity tensor (3.1). However, due to
certain symmetries1 (see [12]), permittivity tensor is simplified to the form

εpolar =

⎡⎢⎣ εxx εxy 0
−εxy εxx 0

0 0 εzz

⎤⎥⎦ . (3.5)

Because of the restriction to linear magneto-optical effects (see [22]), further
simplification can be made (ε1 = εxx ≈ εzz; iε2 = εxy)

εpolar =

⎡⎢⎣ ε1 iε2 0
−iε2 ε1 0

0 0 ε1

⎤⎥⎦ . (3.6)

Equation (3.6) shows the permittivity tensor in case of polar geometry. It has
only two independent complex elements ε1 and ε2.

Permittivity tensor for longitudinal (transversal) geometry can be obtained by
rotating the coordinate system of polar configuration counterclockwise π

2 around
x (y) axis

εlongitudinal =

⎡⎢⎣ ε1 0 iε2
0 ε1 0

−iε2 0 ε1

⎤⎥⎦ , (3.7) εtransversal =

⎡⎢⎣ε1 0 0
0 ε1 iε2
0 −iε2 ε1

⎤⎥⎦ . (3.8)

[23]: Relation between diagonal element of the permittivity tensor (3.6) and
the normal refractive index n and the normal extinction coeficient k is

n2 − k2 = ε′
1 , (3.9a)

2nk = ε′′
1 . (3.9b)

1Voight symmetry theorem - it requires invariant coefficients of the tensor with respect to all
transformations in the given group of symmetry. In this case, invariation of the permittivity
tensor with respect to any rotation around the z axis.
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Relation between off-diagonal element and refractive indices n± and the ex-
tinction coefficients k± of right (+ (RCP)) and left (– (LCP)) circularly polarized
light is

(n+ − n−) + i(k+ − k−) = ε2√
ε1
. (3.10)

The Faraday rotation ΨF is half of the phase difference between the RCP and
LCP waves and the Faraday ellipticity ϵF is the difference in absorption of the
RCP and LCP waves:

ΨF = π

λ
(n+ − n−) = Re

{︄
πε2

λ
√
ε1

}︄
, (3.11)

ϵF = π

λ
(k+ − k−) = Im

{︄
πε2

λ
√
ε1

}︄
. (3.12)

Reversely, ε′
2 and ε′′

2 can be written as

ε′
2 = λ

π
(nΨF − kϵF ) (3.13a)

ε′′
2 = λ

π
(kΨF + nϵF ) . (3.13b)

Consequently the Kerr rotation ΨK is equal to half of the phase difference
between the RCP and LCP waves after reflection

ΨK = 1
2(Ψ+ − Ψ−) = Im

{︄
r̂+ − r̂−

r̂+ + r̂−

}︄
, 2 (3.14)

where r̂± = r±e
iΨ± are the complex reflection coefficients. The Kerr ellipticity ϵK

is equal to the ratio of minimum and maximum amplitude of the light reflected
from the sample

ϵK = − r̂+ − r̂−

r̂+ + r̂−
= Re

{︄
− r̂+ − r̂−

r̂+ + r̂−

}︄
. (3.15)

Again, ε′
2 and ε′′

2 can be written as

ε′
2 = −ΨK(3n2k − k3 − k) − ϵK(n3 − 3n2k − n) , (3.16a)

ε′′
2 = ΨK(n3 − 3nk2 − n) − ϵK(3n2k − k3 − k) . (3.16b)

3.2 Optical transitions
Another important property of permittivity is its spectral dependence. It is
originated from the interaction of light and matter through different microscopic
mechanisms like electronic transitions, interactions of photons and excitons. A lot
of phenomenological models are used for the approximative description of terms
of the permittivity tensor. Below, two models that are used in this work are
presented.

2for r̂+−r̂−
r̂++r̂−

≪ 1

24



3.2.1 Lorentz model
This classical model describes an interaction between light wave E = E0e

iωt and
atom and it further enables to calculate the permittivity tensor. Atom in this
model is described classically as a nucleus and one electron harmonically bonded
to it.

When the light wave passes through the material, an electric field of the wave
makes the electron deviate from its equilibrium position. That cause macroscopic
polarization P in the material. It can be defined by the number of electrons N ,
the charge of the electron e and a displacement of the electron r

P = Ner . (3.17)

Polarization can be also defined via relative permittivity εr, permittivity of vacuum
ε0 and external electric field E as

P = ε0(εr − 1)E0 = ε0χE , (3.18)

where χ = εr − 1 is the tensor of susceptibility.
The equation of motion of the system nucleus – electron, which is excited by

the light wave propagating along the z axis is as follows

d2P

dt2 + ΓdP

dt + ω0
2P = ε0ωp

2P , (3.19)

where Γ is a damping constant, ωp
2 = Ne2

mε0
is the plasma frequency and ω0

2 = κ
me

,
where κ is the toughness of the bond (spring) between the nucleus and electron
and me is the effective mass of the electron.

Equation (3.19) is the differential equation for harmonic oscillator. Because of
this, its solution can be found in the form of

P (ω, t) = P (ω)eiωt . (3.20)

After solving the equation above, the polarization is then

P (ω) = ε0ωp
2

ω02 − ω2 + iωΓE0 . (3.21)

With help of equation (3.18), the description of the diagonal term of the permit-
tivity tensor is as follows

ε1 = 1 + ωp
2

ω02 − ω2 + iωΓ . (3.22)

This relation describes the permittivity for N electrons with the same binding
force. In materials, there are plenty of electrons with different binding forces, and
electrons with different binding forces behave slightly different. Therefore, the
optical response of the whole material can be written as

ε1 = 1 +
∑︂

j

ajωpj
2

ω0j
2 − ω2 + iωΓj

, (3.23)
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where aj are different oscillator strengths, which are the probabilities of absorp-
tion/emission of electromagnetic radiation in transitions between energy levels of
atoms of same binding force.

Although this model uses a basic model of an atom, optical dispersion is
usually very well described. It has some limits as it, for example, significantly
loose accuracy near an absorption edge of a material. For that reason several
models were invented with slight correction from the original Lorentz model
(Tauc-Lorentz, Cody-Lorentz). Here Tauc-Lorentz model is presented.

3.2.2 Tauc-Lorentz model
To improve the Lorentz model near the absorption edge, Tauc-Lorentz model add
another parameter ωg, frequency of the band gap. There is different behaviour of
imaginary part of ε1 below and above this frequency as it can be seen in equations
(3.25).

Im{ε1}(ω) =

⎧⎪⎨⎪⎩
(ω − ωg)2

ω2 , for ω > ωg (3.24)

0, for ω < ωg (3.25)

Real part of ε1 is then calculated with use of Kramers-Kronig relations.

3.3 Magneto-optical transitions
Microscopic theory of the permittivity tensor relates elements ε1 and ε2 to energy-
level splittings of degenerated states of non-zero angular momentum and transition
probabilities of electrons. Because of spin-orbital interaction (coupling) and ex-
change field effect, the Zeeman effect makes one (or more) electron level split into
two.3 Consider two types of optical transitions: splitting of the excited, diamag-
netic, state, so-called double transitions and splitting of the ground, paramagnetic,
state, so-called single transitions.[24] Each level has a slightly different energy and
is solely for one type of polarization due to the selection rules.

Double transitions (diamagnetic) Spin-allowed charge transfer transitions,
that are often very intense and are usually found in the UV region with reach to
the visible with a tail, are often this type of transition. Spectral dependence of
the off-diagonal element of the permittivity tensor ε2 is described as [23]

ε2(ω) = ε′
2(ω) − iε′′

2(ω) =
ω2

pf∆L
2ω0

(ω0 − ω)2 − Γ2
0 + 2iΓ0(ω0 − ω)2

[(ω0 − ω)2 + Γ2
0]

2 , (3.26)

where ωp is the plasma frequency defined as ω2
p = 4πNe2

m
, where e and m are

charge and mass of the electron and N is the number of octahedral ions per cm3.
∆ is the separation between the levels which is caused by spin-orbit coupling,
L = [n2+2

3 ]2 is the Lorentz-Lorentz local field correction, f is the oscillator strength
defined as f = 2mω0

Le2 |px
e |2, where |px

e |2 is the electric dipole matrix element between
3It breaks the degeneracy in the energies. It does not create more states.
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ground and excited state and ω0 and Γ0 are the center frequency and half-width
at half-height of the transition, consequently. It is assumed that ∆ ≪ Γ0.

The real part ε′
2(ω) has its maximum at ω = ω0

(ε′
2)max = −

ω2
pf∆L

2ω0Γ2
0

(3.27)

and the imaginary part ε′′
2(ω) behaves dispersive around ω0 and equals zero at ω0

ε′′
2(ω0) = 0 . (3.28)

Single transitions (paramagnetic) Examples of this type of transition are
spin- and electric-dipole-forbidden crystal field transitions.[23] For these transitions,
ε2 behaves as [23]

ε2(ω) = ε′
2(ω) − iε′′

2(ω) =
ω2

pfdfL

2
ω(ω2

0 − ω2 − Γ2
0) + iΓ0(ω2

0 + ω2 + Γ2
0)

ω0 [(ω2
0 + ω2 + Γ2

0)2 + (2ωΓ0)2] , (3.29)

where df = f−−f+
f−+f+

= f−−f+
2f

is the fractional dichroism, where f+, f− are oscillator
strengths for RCP and LCP light, respectively.

In this case, the real part ε′
2(ω) behaves dispersive around ω0 and is zero at

ω = ω0
ε′

2(ω0) = 0 . (3.30)
The maximum of the imaginary part is also at ω = ω0 [23]

(ε′′
2)max =

ω2
pfdfL

ω0
= df(ε′′

1)max . (3.31)

The formula (3.29) is strongly dependent on temperature because of the effect
of Boltzmann population at split levels. Therefore,

Γ0 ≈ 1
kBT

. (3.32)

Diagram of this dependence is shown in figure 3.3.
Spectral shapes of the above-mentioned transition are illustrated in figure 3.2.

It provides a useful tool for the interpretation of experimental spectra.
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Part II

Experimental methods
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This part provides a short overview of the experimental methods and techniques
used in this work and a brief introduction to studied materials. Subsequently,
there is a general description of ferrimagnetic garnets and the metal-organic
decomposition (MOD) deposition technique, which was used for the preparation
of samples in this work.
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4. Optical and magneto-optical
characterization

4.1 Magneto-optical effects measurements
Magneto-optical spectroscopy is an experimental technique where the dependence
of a magneto-optical effect on the energy of incident light is investigated. In this
case, the sample is in the magnetic field that completely saturates the sample, i.e.
the direction of the magnetization vector has the same direction as the direction
of the external magnetic field. It may then be assumed that the magnetization
vector has only the polar or longitudinal component depending on the direction of
the external magnetic field. In the state of complete saturation, the given effect is
maximal and therefore the easiest to measure.

MO spectroscopy therefore allows to measure the spectral dependence of
magneto-optical angles ΨK (ΨF ) and ϵK (ϵF ) which can be used to determine the
off-diagonal elements of the permittivity tensor.

There are a number of both direct and indirect experimental methods for deter-
mining the Kerr/Faraday angle. These are divided into intensive and modulating
methods.

In this work, the intensive rotating analyzer technique is used to measure
the magneto-optical Kerr effect. The magnitude of the MOKE is obtained from
the dependence of the intensity of light in the detector upon the mutual rotation
of polarizers, between which the sample is placed in a magnetic field. A schematic
of this experimental setup is shown in figure 4.1. For each wavelength and a
given angle of incidence of light on the sample, two parameters (ΨK and ϵK) are
obtained, which describe the change in the polarization state at the reflection
from the sample as a complex ratio of the reflectivity of the p- (parallel) and s-
(perpendicular) components of polarization (see 1.54).

Jones formalism, introduced in section 1.3, will be used for the description
of this setup. First, the wide-spectrum light is emitted from the lamp. It then
passes through a polarizer P, reflects off a sample S, which is in the magnetic field

H
DA

C

P

lamp

S

Figure 4.1: Schematic of the Kerr effect measurement set-up. Light wave passes
through the polarizer P, reflects off the sample S, which is in magnetic field H,
and then continues to the phase plate C, the analyzer A and into the detector D.
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H, and it passes through an optional quarter phase plate C, analyzer A and goes
into a detector D.

The light wave after the passage through the whole setup can be described
by the Jones vector J (O). It is determined by multiplying the Jones vector of
the incident wave J (I) (1.28) with the linear polarizer matrices (1.47), phase
plate matrix (1.49) and the reflection matrix of the sample (1.41). The general
expression is as follows:

J (O) =
[︄

cos2 φ sinφ cosφ
sinφ cosφ sin2 φ

]︄ [︄
eiΓ/2 0

0 e−iΓ/2

]︄
[︄
rss rsp

rps rpp

]︄ [︄
cos2 φ sinφ cosφ

sinφ cosφ sin2 φ

]︄
J (I). (4.1)

For the specific setup used in this work, the above-mentioned matrices will
change. The polarizer P is set to 90° angle. Therefore the light behind the
polarizer is p- polarized. The resulting Jones vector is then

J (O) =
[︄

cos2 φ sinφ cosφ
sinφ cosφ sin2 φ

]︄ [︄
eiΓ/2 0

0 e−iΓ/2

]︄ [︄
rss rsp

rps rpp

]︄ [︄
0
1

]︄
. (4.2)

The intensity I measured by the detector can be written as [12]

I ≈
⃓⃓⃓
(J (O))∗J (O)

⃓⃓⃓
= R

2 [sin2 φ+ |ΦK |2 cos2 φ+ sin(2φ) Re
{︂
ΦKe

iΓ
}︂
] , (4.3)

where R = |rpp|2 is the reflectivity of the sample, φ is the angle of rotation of
the polarizer and Γ is the retardance of the phase plate. For small values of
the MOKE, second-order term |ΦK |2 can be approximated with ΨK − iϵK . For
measured intensity then applies [12]

I ≈ R

2 [sin2 φ+ (ΨK cos Γ + ϵK sin Γ) sin(2φ)] . (4.4)

In case of not using the phase plate, Γ is equal to 0; the intensity then depends
only on Kerr rotation ΨK , the reflectivity of the sample and on the angle of
rotation of the polarizer. The Kerr rotation ΨK is then fitted for every pixel of
the CCD detector and for the measured angle dependence.

Another intensive method is the so-called differential method. This method
was used for measuring Faraday effect hysteresis loops. Schematic of this set-up is
in figure 4.2. In this method, the Faraday rotation is measured using the difference
between the intensities of the beams that go through a Wollaston prism. Generally,
the Faraday effect occurs in samples that are in the magnetic field. Magnetic field
induces birefringence that results in a rotation of the polarization plane of linearly
polarized light. Empirically, it applies

ϕ = V Bd , (4.5)

where ϕ is the angle of rotation, d is the length of the sample, B is the magnetic
field, which is parallel to the direction of propagation of light wave and V is the
Verdet constant. Verdet constant is dependent on the temperature, the wavelength
of the light and the refractive index of the material.
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In this set-up, polarized light is passing through the sample, the half wave
plate, the Wollaston prism and into two photodiodes. Optional quarter wave plate
can be added for measuring Faraday ellipticity instead of Faraday rotation. Half
wave plate is here used as polarization rotator. It helps to cancel the constant
polarization effects that might occur in the optical setup. [25] The Wollaston
prism here serves as a polarizing beam splitter, which separates the incident beam
into two s- and p- polarized beam The Jones vector J (O) of the light wave after
the passage of the whole setup can be again determined by multiplying the Jones
vector of the incident wave J (I) (1.28) with the linear polarizer matrix (1.47),
transmission matrix of the sample (1.44), the phase plate matrix (1.49) and the
Wollaston prism matrix (rotated at an angle α)

J (O) =
[︄
cosα − sinα
sinα cosα

]︄ [︄
eiΓ/2 0

0 e−iΓ/2

]︄ [︄
tss tsp

tps tpp

]︄ [︄
1
0

]︄
. (4.6)

The Wollaston prism is rotated at angle α = 45◦ because in this setting, when no
magnetic field is applied (i.e. isotropic sample), measured intensities for s- and p-
polarized waves are the same. The following process is similar to one mentioned
above. The crucial part of this method is when the measured intensities on the
photodiodes are subtracted and then divided by their sum. After some algebraic
operations (can be found in [25]), the following formula is obtained

− Idiff

2Isum

= ΨF s − 2κ , (4.7)

where κ is the angle of rotation of the half wave plate and ΨF is the Faraday
angle.

H

WollastonCP
laser diode S

photodiodes

Figure 4.2: Schematic of magnetic Faraday loops measurement set-up. Light wave
passes through the polarizer P, sample S, which is in the magnetic field H. The
light wave then continues to the half-wave plate C, through the Wollaston prism
and into the two photodiodes.

Modulating methods are based on the use of various optical elements that
regularly, harmonically in time, change the polarization state of transmitted light.
The measured intensity then contains members which oscillate over time and which
are separated from the detected signal by a lock-in amplifier and synchronous
detection. The advantage of these methods is that the resulting signal-to-noise
ratio is higher. For example, the angle of rotation of a polarizing ellipse (azimuth)
can be modulated using a Faraday cell or the ellipticity can be modulated using a
photoelastic modulator.
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4.2 Spectroscopic ellipsometry
Spectroscopic ellipsometry is mainly used in the analysis of the optical response of
both thin films and bulk materials. As in magneto-optical spectroscopy, the change
in polarization of light is measured when reflected from a sample that is no longer
in a magnetic field. This method measures this change in polarization state for a
given wavelength. Spectroscopic ellipsometry can determine not only the optical
constants of individual layers, such as refractive index and absorption coefficient,
but also their thicknesses and other structural properties. An ellipsometer, which
is an instrument for measuring the above-mentioned quantities, usually consists of
a light source, a polarizer, one or two compensators, an analyzer and a detector.

DA

P

lamp

S

Figure 4.3: Schematic of ellipsometry set-up. Light wave passes through the
polarizer P, reflects off the sample S; it then continues to the rotating analyzer A
and into the detector D.

The simplest arrangement of these components (without compensators) is an
ellipsometer with a rotating analyzer. A scheme of this set-up can be seen in figure
4.3. In this type of ellipsometer, the light wave passes through a polarizer, which
forms an angle ψ with the s- polarization axis. Furthermore, the light is reflected
from the sample and passes through an analyzer, which is at angle ζ relative to
the s- polarization axis, and then enters a detector measuring its intensity. The
angle of rotation of the polarizer ψ must be such that the s- and p- polarized
component of the wave can pass through. The light wave, after passing through
the whole set-up, can be described by the Jones vector J (O), which is determined
by multiplying the polarizer matrix (1.47), the reflection matrix (1.41) and the
Jones vector of the incident light (1.28):

J (O) =
[︄

cos2 ζ sin ζ cos ζ
sin ζ cos ζ sin2 ζ

]︄ [︄
rss rsp

rps rpp

]︄ [︄
cosψ
sinψ

]︄
, (4.8)

Because the sample is no longer in magnetic field and therefore it is isotropic1,
reflexion matrix (1.41) is diagonal. The intensity arriving to the detector is [26]

I ≈
⃓⃓⃓
J (O)

⃓⃓⃓2
= |rpp|2 cos2 ψ cos2 ζ + |rss|2 sin2 ψ sin2 ζ

− 1
4(rppr

∗
ss + rssr

∗
pp) sin 2ψ sin 2ζ (4.9)

1Samples measured in this thesis are isotropic when no magnetic field is applied. However,
there are also plenty of materials that are anisotropic even in zero magnetic field.
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From each intensity measurement for each wavelength range and the angles
selected at the beginning of the experiment, two parameters are obtained (Ψ
– the angle of rotation of the ellipse and ∆ – ellipticity [i.e. flattening of the
ellipse]). These parameters describe the change in polarization state when reflected
from a sample as a complex ratio of the reflectivity of the p- (parallel) and s-
(perpendicular) components of polarization. These two parameters are usually
expressed in terms of the ratio of the amplitude reflection coefficients as

ρ = −rpp

rss

=: tan Ψei∆ , (4.10)

where ρ denotes the overall change in the polarization state of a given light wave.
In this case, the intensity may be shown to be proportional to [26]

I ≈ 1 − η sin 2ζ + ξ cos 2ζ , (4.11)

where

η = 2tan Ψ cos ∆ tanψ
tan2 Ψ + tan2 ψ

, (4.12a)

ξ = tan2 Ψ − tan2 ψ

tan2 Ψ + tan2 ψ
. (4.12b)

From the measurement of intensity, coefficients η and ξ can be extracted. After-
wards, equations (4.12) can be inverted as

tan Ψ =
√︄

1 + ξ

1 − ξ
|tanψ| , (4.13a)

cos ∆ = η√
1 − ξ2 signψ . (4.13b)

For a simple bulk, rss and rpp in (4.10) can be substitued with expressions
from Fresnel equations

rss = n1 cosψi − n2 cosψr

n1 cosψi + n2 cosψr

(4.14a)

rpp = n2 cosψi − n1 cosψr

n2 cosψi + n1 cosψr

, (4.14b)

where n1 = √
ε1 is the refractive index of the environment in which the sample is

situated and n2 = √
ε2 is the refractive index of the sample. ε1,2 = εRe + iεIm is

real and imaginary part of permittivity and √
ε1,2 = N = n+ ik, where n is real

part of the refractive index and k is an exctinction coefficient.
The ellipsometer2 used for the measurement of the ellipsometric data in this

thesis uses in fact two compensators, which allows measurements of the full Mueller
matrices. As this is not the interest of this thesis, a simpler, yet sufficient, set-up
has been presented.

Refractive index calculation shown above was made just for single interface
between ambient and material (semi-infinite bulk). However, this thesis works with

2RC2 Woollam
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Measurement Modeling Fitting

Figure 4.4: Schematic of ellipsometry data processing. The figure on the left shows
experimental data. The second figure shows experimental data with the chosen
model. The figure on the right shows the fitted model onto the experimental data.
[20]

samples that are made as a thin layers deposited on substrates. Hence, multiple
reflections within the sample need to be considered. Therefore, the complex index
of refraction has to be numerically modelled with computer software. Modelling of
measured ellipsometric angles Ψ and ∆ is done within few steps. Measured data
are compared with prediction calculated from the model of the studied structure.
This model contains optical properties and thicknesses for each layer of the sample.
The starting model is made out of knowledge from other scientific methods3 and it
is being improved throughout the whole process by varying its parameters. This
process is being repeated until a satisfactory match is reached (see figure 4.4). The
final model contains the thickness of the sample, its optical properties, roughness,
inhomogeneities, etc. [20]

3more information can be found in [27, 28]
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5. Ferrimagnetic garnets and
their preparation

Tetrahedral
site

Octahedral
site

Dodecahedral
site

Fe³+

Y³+

O²-

Figure 5.1: Schematic of crystallographic structure of yttrium-iron garnet
(Y3Fe5O12). Sublattices, which are filled with iron ions are octahedral and tetra-
hedral and yttrium filled site is dodecahedral. [20]

5.1 Garnet structure
Garnets are a very large group of materials that have many naturally occurring
representatives (e.g. Pyrope– Mg3Al2[SiO4]3). This group enables the synthesis
of completely new materials with new, as yet unprecedented, physical properties.
They are dielectric oxides with very high hardness, excellent optical properties,
especially in the visible and infrared regions of the electromagnetic spectrum, and
very high chemical and structural stability. This work focuses on ferrimagnetic
garnets (iron-based magnetic garnets). The general formula is A3B2C3O12.1 The
basic crystallographic structure of garnets is formed by a cubic elementary cell
in which there are 3 sublattices of oxygen atoms: dodecahedral (A3, occupied by
three yttrium ions2), octahedral (B2, occupied by two iron ions2) and tetrahedral
(C3, occupied by three iron ions2). Example of material that forms such structure
is yttrium-iron garnet (Y3Fe5O12) whose crystallographic structure is shown in
figure 5.1. Both metal ions (Y3+ and Fe3+), which are present in the structure, are
trivalent, which makes YIG exceptionally suitable materials for their investigation

1A stands for any chemical element from the 3b group of the periodic table of elements or a
rare earth element (f elements (lanthanoids)).

2for the case of yttrium-iron garnet (Y3Fe5O12)
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by magnetic and magneto-optical methods. The optical and magneto-optical
response of these materials is then defined by the electron transitions of iron ions
in different sublattices due to the different crystal field. [23]

In addition, different ions in 3 sublattices can be substituted by different
elements and therefore change the magnetic, optical and magneto-optical properties
of the garnet. Ions that most likely occupy octahedral sites (B2) are Al3+, Ga3+

or larger In3+ ion. The second group of substituents are elements from 3b
group of the periodic table of elements or rare earth elements, also known as
lanthanoids or f elements. Their ions substitute ions at dodecahedral site (A3).3
The presence of f shell electrons results in coupling with d electrons, which changes
the ferrimagnetic character of the garnet. The most significant feature is the
appearance of the compensation temperature, which is not present in garnets
without magnetic element in the dodecahedral site. In the field of magneto-optics,
the most important substituent for Y3+ is Bi3+. This atom achieves an enormous
increase of magneto-optical response via large spin orbit coupling. However, due
to its size, it is very complicated to fully substitute Y3+ ion, yet it can be done.
[29]

Physical properties of ferrimagnetic garnets can also be altered by partial
replacement of iron atoms. It turns out that with different iron ratios in the
individual sublattices, the compensation temperature of these materials changes.
[11]

5.2 Metal-organic decompositon
Metal-organic decomposition (MOD) is a method of sample preparation, during
which a metal-organic solution of the desired material is applied to a predetermined
substrate (glass, gadolinium gallium garnet (Gd3Ga5O12) (GGG)).

substrate cleaning

spin coating

drying

pre-annealing

annealing

Figure 5.2: Diagram of metal-organic decomposition.

The starting materials are metal-organic compounds of desired elements that
are dissolved in a suitable solvent. Solutions are then mixed in a ratio that
depends on the desired final stoichiometry of the final sample. This solution
is applied to a heated substrate that spins. Due to the centrifugal force, the

3Location of substitution is very sensitive to conditions of deposition. Therefore, it can be
varied by deposition parameters.
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solution homogeneously spreads over the entire substrate and it depends on the
concentration of the solution, the speed and the time of rotation, how thick the
layer of the material remains on the substrate. The sample is then transferred to
a one or two ”hot-plates”, where the solvent is evaporated and then the metal-
organic compounds gradually decompose and make final layer (pre-annealing).
After this step, only pure material (here pure garnet) remains on the substrate,
but it is still not a crystal. This is accomplished by enclosing the sample in the
electric furnace, where the amorphous material becomes a crystal (annealing).
The diagram of the method is shown in figure 5.2.

The quality of the sample is dependent on many factors: starting solution
(stoichiometry), proper solvent (crystallinity, grain size), substrate temperature
(speed of crystallization), speed of rotation (thickness of the film, homogeneity),
atmosphere in the electric furnace (crystallinity), etc.

More details about MOD can be found in [30, 31].
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Part III

Experimental results
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This thesis focuses on the study of two groups of ferrimagnetic garnets. The
first group of samples consists of yttrium-iron gallium garnet (Y3Fe4Ga1O12) in
which the effect of different annealing temperatures and different orientation
of the substrate on the optical and magneto-optical properties was examined.
Bismuth doped neodymium-iron gallium garnets with different ratio of Nd and
Bi (NdxBi3-xFe4Ga1O12) are in the second group of samples. These samples were
studied on how annealing temperature and the ratio of Nd and Bi change their
optical, MO and magnetic properties.
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6. Y3Fe4Ga1O12 on Gd3Ga5O12

6.1 Preparation
The starting point of this study was to prepare four different thin samples of
Y3Fe4Ga1O12 that would vary in substrates and annealing temperatures using
metal-organic decomposition (MOD) method (see section 5.2). All four thin films
were grown on gadolinium gallium garnet (Gd3Ga5O12) with orientations (100)
and (111). The concentration of solutions used for the deposition was 3 %. The
rotation velocity of the spin coating was 3000 rpm1 and the duration of this
process was 30 seconds. Afterwards, the substrate with the solution was dried on
the hot plate for 10 minutes at 100 °C. The final layer was made by decomposition,
which was done at temperature 430 °C for 10 minutes. Good crystallinity was
achieved by annealing the sample in the electric furnace for 3 hours at 750/800
°C. Parameters of prepared samples are listed in the table 6.1.

Table 6.1: Y3Fe4Ga1O12

material substrate
orientation

annealing
temperature layer thickness2 roughness2

Y3Fe4Ga1O12

100 750 °C 9.67 nm 2.44 nm
100 800 °C 10.44 nm 1.24 nm
111 750 °C 7.96 nm 0.04 nm
111 800 °C 10.46 nm 1.46 nm

Figure 6.1: Oscillators used for the characterization of sample Y3Fe4Ga1O12 on
GGG(111) substrate (annealing temperature 800 °C).

1rotation per minute
2values from ellipsometry measurements
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Figure 6.2: Fit of the optical constants Ψ and ∆ of the sample Y3Fe4Ga1O12 on
GGG(111) substrate (annealing temperature 800 °C).

6.2 Optical properties
Optical constants together with thickness and roughness of the samples were
obtained using spectroscopic ellipsometry in a range of incident angles between
50° and 65° with a step of 5°. Because the samples were translucent, the backside
of the substrate had to be roughened using a diamond pen and a grinder to
avoid backside reflections. Optical constants of the GGG were obtained in
different measurement on bare substrate. Measured data were firstly fitted with a
mathematical B-spline model [32, 33] and then parameterized using a combination
of 7 Lorentz, Cody-Lorentz and Tauc-Lorentz oscillators. The oscillators for one
sample are shown in figure 6.1. Oscillators for other samples are similar. The
result of the fit is shown in figure 6.2. The fit is in good agreement with reported
results from [34]. The most visible difference between the results from [34] and
in figure 6.1 is the height of the main oscillator at 4.4 eV in comparison with
the others. This might be due to the presence of Ga. It can substitute some of
the Fe3+ ions at, preferably [35, 36], tetrahedral site and therefore weaken the
iron-iron superexchange interaction. The final optical constants are shown in
figure 6.3.

In general, the shape of optical constants in the spectrum is similar to that
which was measure elsewhere [23, 37]. According to [38] and later [34], the weakest
absorption band at the energy 2.7 eV are caused by the bi-exciton transitions;
simultaneous crystal field transitions of 2 neighbouring ions. A series of transitions
in spectrum from 3 to 3.4 eV and the peak at 5.5 eV are associated with iron-
to-iron sublattice charge transfer bands where it is expected that the electron
transfers from tetrahedral Fe3+ site to octahedral Fe3+ site.[34] In this transition
between two iron ion, the oxygen ion O2- is the mediator of the superexchange
interaction.[34] In the range of energy 3.4 to 4.3 eV several absorption bands are
visible. They originate from the mixture of Fe3+–Fe3+ charge transfer transitions
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Figure 6.3: Spectral dependencies of the diagonal elements of the permittivity
tensors of Y3Fe4Ga1O12 on GGG substrates with different orientations.

forming Fe4+–Fe2+ pair, and O2-–Fe3+ charge transfer transitions.[34] The biggest
peak around 4.4 eV arises from the O2-(2p)–Fe3+(3d) transition. The strongest,
semiconductor-like, optical transitions occur around 8 eV. These transitions most
likely involve transitions between oxygen O2-(2p) band and iron Fe3+(4s) band.[39]

6.3 Magneto-optical properties
Spectral dependencies of magneto-optical Kerr effect (Kerr rotation and Kerr
ellipticity) in polar configuration are shown in figure 6.4. The samples were
measured in the range from 1.1 to 7 eV using the rotating analyzer technique at
magnetic field 1 T. However, no signal was measured above 5.5 eV and zero Kerr
rotation was observed below 2.4 eV. Therefore, the data are depicted only from
2.4 to 5.5 eV.

The MOKE spectra are in agreement with the previous measurements [23, 40],
yet some differences are observed, e.g. around 4.2 eV as the double peak is much
wider then usual.

The data from MOKE measurements were used for the calculation of the
off-diagonal elements of the permittivity tensor for each material. The real and
imaginary parts of the off-diagonal elements are depicted in figure 6.5.

Comparing the measurements the most interesting difference between these
measurements and the measurement of Y3Fe5O12 in [40] is the width of the double
peak in the spectrum in spectral range 4 - 4.5 eV. This abnormal width also follows
the studies [35, 36] that gallium, as a rare-earth element, preferably substitutes
Fe3+ ion at the tetrahedral site. Gallium has a significant effect on the lattice
constant as the Ga3+ ion is smaller than Fe3+ ion. It reduces the lattice constant
and the whole cell volume and therefore changes the bond lengths between the iron
and oxygen ions and the angle of the Fe3+–O2-–Fe3+ linkage in which the Fe3+ ions
in octahedral and tetrahedral sublattice are linked antiferromagnetically.[36] The
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Figure 6.4: Spectral dependencies of MOKE of Y3Fe4Ga1O12 on GGG substrates
with different orientations.

band lengths get bigger for tetrahedral and smaller for octahedral sublattices with
an increasing amount of Ga in the material.[36] It hence causes the transformation
of the crystalline field in which the Fe3+ is located. According to Lehmann
et al. [41] O2-–Fe3+ charge transfer transitions occur at a higher energy for
the tetrahedral site and at lower energy for the octahedral site. Therefore, the
wider double peak points to the fact that gallium substitutes tetrahedral site
and decreases the strength of the superexchange interaction and hence lowers the
contribution of the octahedral sublattice.

Another difference is that the whole spectrum from 2.4 to 3.8 eV is inclined
and shifted towards the upside. It might be because Ga in the tetrahedral site
can suppress some of the O2-–Fe3+ transitions which can lead to the change
of concentration of Fe2+ and Fe4+ ions that has a great impact on optical and
magneto-optical properties.

When comparing the samples, optical and magneto-optical spectra from sam-
ples with substrate orientation (100) are slightly different. In the area from 2.8
to 3.8 eV, the spectra have lower amplitude and have slightly different spectral
dependencies. In this area, there are several Fe3+–Fe3+ electron transitions from
octahedral to tetrahedral sublattice. The explanation is that the orientation of
the substrate must affect the occupation of individual sublattices by iron ions
leading to smaller MO effect at any (annealing) temperature.

The spectra vary also at higher energies but only in the amplitude of the effect.
Lower amplitude means lower magnetic moment which means lower saturation
magnetization. This leads to a conclusion that in the material with substrate
orientation (100), there is a lower concentration of the iron ions or iron with
different valence (lower quality of the sample in terms of crystallization) and
therefore, the different stoichiometry of the material.
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Figure 6.5: Spectral dependencies of the off-diagonal elements of the permittivity
tensors of Y3Fe4Ga1O12 on GGG substrates with different orientations.
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7. NdxBi3-xFe4Ga1O12 on
Gd3Ga5O12

7.1 Preparation
Another group of garnet thin films was made for the purpose of this study. Bismuth
doped neodymium-iron gallium garnets NdxBi3-xFe4Ga1O12 with different ratio of
Nd and Bi and different annealing temperatures on gadolinium gallium garnet
(Gd3Ga5O12) (GGG) substrate with (100) orientation were made also with MOD
method. The concentration of solutions used for the deposition was 4 %. The
samples were made by the spin coating technique, in which the rotation velocity
of the sample holder was 3000 rpm and the rotation lasted 30 seconds. Afterwards
the samples were dried on the hot plate for 10 minutes at 100 °C. The final thin
films were made firstly by pre-annealing for 10 minutes at 430 °C and then by
annealing in an electric furnace for 3 hours at different temperatures (640 °C,
670 °C, 700 °C, 730 °C). Parameters of prepared samples are listed in the table
7.1.

Table 7.1: NdxBi3-xFe4Ga1O12

material substrate
orientation

annealing
temperature layer thickness roughness

Nd0.5Bi2.5Fe4Ga1O12 100

700 °C 18.21 nm1 0.01 nm1

640 °C ˜30 nm -
670 °C ˜30 nm -
700 °C ˜30 nm -

Nd2Bi1Fe4Ga1O12 100

700 °C 16.57 nm1 4.79 nm1

730 °C 16.59 nm1 0.12 nm1

640 °C ˜30 nm -
670 °C ˜30 nm -
700 °C ˜30 nm -

7.2 Optical properties
Optical constants together with thickness and roughness of the samples were
obtained using spectroscopic ellipsometry in a range of angles between 50°and
60° with a step of 5° from ˜15 nm thick samples. Because the samples were
translucent, the backside of the substrate had to be roughened using a diamond
pen and a grinder to avoid backside reflection. Measured data were firstly fitted
with a mathematical B-spline model and then parameterized using a combination
of 6 Lorentz and Cody-Lorentz oscillators. Oscillators for one chosen sample are
depicted in figure 7.1. The result of the fit is shown in figure 7.2. The final optical
constants are depicted in figure 7.3.

1values from ellipsometry measurements
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Figure 7.1: Oscillators used for the characterization of sample Nd0.5Bi2.5Fe4Ga1O12
on GGG(100) substrate (annealing temperature 700 °C).

One can see that the shape of optical constants of Nd2Bi1Fe4Ga1O12 is similar
to optical constants of other (bismuth-doped) iron garnets.[23, 42, 43] The sample
with higher amount of bismuth has the dependence notably different. Its absorption
edge is clearly shifted more into the infrared region and it increases much sooner
than the absorption of the other samples. This happens due to the amount of
bismuth in the material as it is not observable in less-bismuth-doped samples.
In general, bismuth causes higher absorption in the visible spectrum and has a
significant impact on magneto-optical properties.[23, 43]

Figure 7.2: Fit of the optical constants Ψ and ∆ of the sample Nd0.5Bi2.5Fe4Ga1O12
on GGG(100) substrate (annealing temperature 700 °C).

The most significant part of the spectrum is the double peak in the range of
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Figure 7.3: Spectral dependencies of the diagonal elements of the permittivity
tensors of NdxBi3-xFe4Ga1O12 on GGG(100) substrates.

energies 2.5 - 3.1 eV for highly bismuth-doped sample. Its origin comes from the
contribution of bismuth as it is not visible in non-bismuth-doped garnets and less
visible in less-bismuth-doped garnets. According to [42], the mechanism by which
bismuth is enhancing the band is not so easy to unravel, hence it most probably
comes from the charge transfer transition between Bi3+ and Fe3+.

Figure 7.4: Spectral dependencies of MOKE of NdxBi3-xFe4Ga1O12 on GGG(100)
substrates.

49



7.3 Magneto-optical properties
Magneto-optical Kerr effect spectra for polar configuration are depicted in figures
7.4, 7.5. Experimental data were obtained using the rotating analyzer technique
while the samples were in the external magnetic field of 1 T. The measurements
were performed using light in the range 1.1 - 7 eV. Due to the lack of the signal
below 1.2 and above 6 eV, data are shown only in the range from 1.5 to 5.5 eV.

Figure 7.5: The zoom of figure 7.4.

It is clear from the graph that bismuth significantly increases the magneto-
optical response of the material. Measured spectra are similar to spectra measured
on other iron garnets.[23, 43, 44] In the figure 7.4 one can observe rotation maxima
around 2.7, 3.4 and 4 eV and MOKE ellipticity maxima near 3.3 eV, which are
characteristic for bismuth doped iron garnets. [23, 45] The less-bismuth-doped
samples has also this shape but the effect of bismuth is less visible. The interesting
part of the graph 7.6 is the region with the two real parts of the offdiagonal maxima
at 2.7 and 3.2 eV in figure 7.5. These maxima are attributed to the O2-–Fe3+

charge transfer transitions, which, according to Lehmann et al. [41], occur at a
higher energy for the tetrahedral site and at lower energy for the octahedral site.
Therefore the different amplitude ratio of the maxima of the two less-bismuth-
doped samples indicate that for different temperatures there are different strengths
of the superexchange interactions and hence different contribution of individual
sublattices. It might be because of the presence gallium in the material. When
annealing the sample at a higher temperature, gallium has more energy and
therefore it can substitute more easily to the octahedral site. This might outcome
in a relatively bigger contribution of the octahedral site to the MO effect.

The data from MOKE and ellipticity measurements were used for the calcu-
lation of the off-diagonal elements of the permittivity tensors for these samples.
These elements are depicted in figures 7.6 and 7.7.

Faraday hysteresis loops were measured mostly on the ˜30 nm thick samples.
They were measured at the wavelength of 520 nm. Hysteresis loops of the
less-bismuth-doped samples are depicted in the figure 7.8. One can see that
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the Faraday rotation in saturation is getting larger with increasing annealing
temperature. The same increase can be observed in the case of the coercive field.
The coercivity of the sample with annealing temperature 640 °C is almost zero.
It might be because at lower temperature in the furnace final crystallization of
the sample does not have to be fully completed and hence the sample may be
of small magnetocrystalline anisotropy. A higher concentration of Nd and Bi in
the sample can serve as another explanation. Due to the higher concentration of
bismuth in the material, larger MO effect can be observed as bismuth significantly
magnifies the effect via large spin orbit coupling. Additionally, neodymium causes
a distortion of the dodecahedral sublattice [46] and therefore the neodymium site
can be more strained. It also interacts by ferromagnetic coupling with the total
magnetic moment of iron that leads to the modification of the magnetization of
the material.

Faraday hysteresis loops of the second set of samples are shown in the figure 7.9.
Here, in contrast with the figure 7.8, the measured data are much smoother as
the effect is several times larger. The data here do not follow the trends of the
increasing Faraday rotation and coercivity with increasing annealing temperature.
The explanation is as follows. At higher temperature, bismuth ion has higher
thermal kinetics as it responds to temperature more than other components.
Bismuth then tries to, at least partially, avoid substitution to dodecahedral site.
It tries to replace iron ions in either tetrahedral or octahedral site. This has the
effect of lower Faraday rotation in saturation as can be seen on the green curve
on figure 7.9.

In the figure 7.10 one can see the Faraday rotation in saturation magnetization
and coercive field plotted against the annealing temperature. The ”sweet spot”
in coercivity and Faraday rotation occurs for the more-bismuth-doped sample
in range of temperatures 670 - 700 °C, where the thermal kinetics of bismuth is
just right to fully substitute to dodecahedral sublattice. From this measurements
one can determine the best deposition conditions when preparing similar types of
samples.
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Figure 7.6: Spectral dependencies of the off-diagonal elements of the permittivity
tensors of NdxBi3-xFe4Ga1O12 on GGG (100) substrates.

Figure 7.7: Spectral dependencies of the off-diagonal elements of the permittivity
tensors of Nd2Bi1Fe4Ga1O12 on GGG (100) substrates (the zoom of figure 7.6).
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Figure 7.8: Faraday hysteresis loops of the Nd2Bi1Fe4Ga1O12 on GGG(100)
substrates.

Figure 7.9: Faraday hysteresis loops of the Nd0.5Bi2.5Fe4Ga1O12 on GGG(100)
substrates.
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Figure 7.10: Faraday rotation in saturation magnetization and coercive field vs.
annealing temperature for samples NdxBi3-xFe4Ga1O12 on GGG(100) substrates.
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Conclusion
In this work, optical and MO methods were used to get an insight into the
electronic structure of the studied samples, which were ultra-thin films of iron
garnets.

Y3Fe4Ga1O12

Two sets of samples were prepared using metal-organic decomposition method
with annealing temperatures 750 °C and 800 °C with different orientations of the
GGG substrate, (100) and (111). Their optical and magneto-optical properties
were studied in spectral region 1.1 - 7 eV. The results showed a slight difference
between the films on different substrate orientations and with different annealing
temperatures. From the MOKE and ellipsometry measurement, off-diagonal
elements of the permittivity tensor were calculated. The spectra show that the
substrate orientation affects the occupation of individual sublattices by iron ions
and also affect the stoichiometry of the material leading to a lower magneto-
optical effect at any annealing temperature. From this point of view, GGG with
orientation (111) seems to be the most suitable one.

NdxBi3-xFe4Ga1O12

Two sets of samples with different compositions, annealing temperatures and
thicknesses were prepared with MOD method. Their optical and magneto-optical
properties were also studied in spectral region 1.1 - 7 eV. On the thinner samples,
MOKE measurements were performed. In the first case, they confirmed that
the concentration of bismuth in the material significantly increases MO response.
MOKE measurements show that different annealing temperatures might influence
the concentration of Ga at individual sublattices. Computed off-diagonal elements
of permittivity tensor confirm that idea.

Faraday hysteresis loops were measured on the thicker (30 nm) samples. Almost
zero coercive fields were observed on less-bismuth-doped samples with annealing
temperature 670 °C. This might be because of the incomplete crystallization of the
sample. Another explanation is a higher concentration of Nd and Bi in the samples
with higher annealing temperatures. However, more-bismuth-substituted samples
have different temperature dependence. It might be because with increasing
annealing temperature, bismuth has more kinetic energy during the process. It
then does not fully substitute to the dodecahedral site as it tries to substitute
iron ions in either tetrahedral or octahedral site. It turns out that for the highest
MO effect in saturation magnetization and the largest coercive field, the annealing
temperatures for more-bismuth-doped samples should be between 670 - 700 °C.

In conclusion, both groups of materials have the expected properties of ferri-
magnetic garnets. Both groups, even though their thicknesses are very small, show
large MO effect, especially the more-bismuth-doped sample Nd0.5Bi2.5Fe4Ga1O12
as it has the maximum Kerr rotation about 0.6 degrees. From the performed
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measurements, one can assume that metal-organic decomposition method of
preparation of samples fabricates samples of very high quality.

56



Bibliography
[1] M. Mitchell Waldrop. “The chips are down for Moore’s law”. In: Nature

530.7589 (2016), pp. 144–147. doi: 10.1038/530144a.
[2] R. W. Keyes. “Miniaturization of electronics and its limits”. In: IBM Journal

of Research and Development 44.1.2 (2000), pp. 84–88. doi: 10.1147/rd.
441.0084.

[3] Mark Hopkinson. With silicon pushed to its limits, what will power the next
electronics revolution? Aug. 2015. url: https://phys.org/news/2015-08-
silicon-limits-power-electronics-revolution.html.

[4] The Application of Spintronics. url: https://www.ibm.com/ibm/history/
ibm100/us/en/icons/spintronics/.

[5] Jifeng Liu et al. “Ge-on-Si laser operating at room temperature”. In: Optics
Letters 35.5 (2010), p. 679. doi: 10.1364/ol.35.000679.

[6] Chen Sun et al. “Single-chip microprocessor that communicates directly using
light”. In: Nature 528.7583 (2015), pp. 534–538. doi: 10.1038/nature16454.

[7] Nsf. A Multi-Component Photonic Integrated Circuit. Aug. 2016. url: https:
//www.eurekalert.org/multimedia/pub/121558.php.

[8] Taichi Goto et al. “A nonreciprocal racetrack resonator based on vacuum-
annealed magnetooptical cerium-substituted yttrium iron garnet”. In: Optics
Express 22.16 (2014), p. 19047. doi: 10.1364/oe.22.019047.

[9] Mehmet C. Onbasli et al. “Integration of bulk-quality thin film magneto-
optical cerium-doped yttrium iron garnet on silicon nitride photonic sub-
strates”. In: Optics Express 22.21 (2014), p. 25183. doi: 10.1364/oe.22.
025183.

[10] Lei Bi et al. “On-chip optical isolation in monolithically integrated non-
reciprocal optical resonators”. In: Nature Photonics 5.12 (2011), pp. 758–762.
doi: 10.1038/nphoton.2011.270.

[11] F. Forlini and N. Minnaja. “The coercive force of a ferrimagnetic garnet
near its compensation temperature”. In: IEEE Transactions on Magnetics
2.4 (Dec. 1966), pp. 770–770. doi: 10.1109/TMAG.1966.1065984.
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decomposition: A chemical approach to thin film deposition”. In: Qúımica
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