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Abstrakt: Monte Carlo simulácia transportu svetla je použitá v pipeline pre
farebnú 3D tlač, ktorá má informáciu o šírení svetla (Elek et al. [2017], Sumin
et al. [2019]), na riadenie iteratívneho optimalizačného cyklu. Jej účelom je
nájsť rozloženie materiálov, ktoré vedie k najväčšej zhode so vzhľadom povrchu
cieľa. Keďže simulácia transportu svetla zaberá asi 90% času, predstavuje značnú
prekážku pre praktické využitie tejto technológie. Husté uloženie volumetrických
textúr taktiež vyžaduje veľa pamäte. Explicitná simulácia každej interakcie svetla
je obzvlášť náročná v kombinácii s vlastnosťami 3D výtlačkov kvôli heterogen-
ite, vysokej hustote a vysokému albedu médií. V tejto práci skúmame existujúce
techniky pre volumetrický rendering (Křivánek et al. [2014], Herholz et al. [2019])
a nakoniec zostrojíme estimátor prispôsobený pre naše podmienky, čím výrazne
zvýšime výkon. Navyše skúmame rôzne riešenia pre ukladanie volumetrických
údajov a úspešne znižujeme pamäťovú stopu. Všetky algoritmy sú k dispozícii vo
forme pluginov pre Mitsuba renderer.
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Introduction
In recent years, the use of 3D printers has become more frequent in many fields,
ranging from fashion or entertainment to medicine. The printing devices are more
available, they can use a wider variety of materials and vividly reproduce more
colors.

The Computer Graphics Group at Charles University is conducting research
aimed at the accurate reproduction of textures on the printed objects. The works
of Elek et al. [2017] and Sumin et al. [2019] propose an optimization algorithm
that uses an iterative feedback loop reorganizing the deposited materials to re-
duce the appearance degradation caused by a significant subsurface scattering
in the printer materials. The loop consists of forward prediction and backward
refinement. In order to provide a correct prediction, volumetric light transport
needs to be simulated.

A major drawback of this approach is high computational complexity, mainly
due to the prediction phase that takes up about 90% of the overall runtime. The
virtual scene setup is exceptionally difficult for conventional light solvers like path
tracing. The high density and mostly high albedo of the printer materials cause
the rays to preserve significant throughput even in excessive depth. Such rays
are either terminated too soon, increasing the image variance, or traced for many
scattering events at the price of computational time.

Much work has been done in the area of volumetric rendering. Jensen and
Christensen [1998] extend the original photon mapping algorithm [Jensen, 1996]
to participating media. Jarosz et al. [2008] propose an improvement of the al-
gorithm with so-called beam-queries, which explicitly gather all photons along a
ray. Křivánek et al. [2014] provide a review of various volumetric estimators and
combine them into a robust algorithm via multiple importance sampling. Herholz
et al. [2019] present a set of volumetric path construction techniques guided by a
precomputed adjoint transport solution that significantly decrease the variance.

Moreover, due to the heterogeneous nature of the working data and the fact
that they are stored in dense grids in the current version of the framework that
implements the optimization algorithm, there is also a problem with high memory
requirements.

The aim of this thesis is to tackle both the memory and performance issues
and thereby increase the practical usability of the 3D printing appearance opti-
mization algorithm. In order to achieve that, we employ alternative ways to store
heterogeneous volumetric data, using both a custom solution and the OpenVDB
library [Museth et al., 2012]. Next, we design a custom estimator leveraging the
assumptions given by the specific scene setup. We optimize it for the usage in
scenes with trivial light conditions (constant incident radiance over the surface),
simple geometry setup (single object), and volume parameters resulting in lasting
high ray throughput. Since the optimization framework uses the Mitsuba ren-
derer [Jakob, 2010], we wrap the estimator as a Mitsuba integrator plugin. It is
accompanied by plugins implementing medium distance sampling, transmittance
evaluation, and data storing.

In the section 1, we examine the optimization algorithm in more depth and
describe the libraries used in the current implementation relevant to our work.
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Section 2 contains a theoretical background review of volumetric rendering using
Monte Carlo and related scientific papers. Section 3 guides through our contri-
bution and describes the approaches that we implemented, together with mea-
surements comparing the impact of the incremental changes. Section 4 compares
the performance of our final algorithm setup to the default Mitsuba volumetric
path tracer. It also contains notes on the correctness of our implementations.
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1. Project background
1.1 Algorithm overview
To set our work in context and justify its contribution, we provide an overview
of the optimization and previewing process proposed by Sumin et al. [2019].
Hopefully, it will clarify why we focus our effort on the rendering phase.

In the beginning, the user selects a textured 3D model for printing. The
model is transferred to a voxel representation. There are multiple voxel grids,
each carrying different information about the source geometry, texture or printer
material distribution. The most relevant ones for us are

• distance grid - for each voxel, the distance to the nearest surface point is
stored

• distance gradient grid - contains 3D gradients of the distance grid that is for
each voxel in which direction is the nearest surface. This grid is developed
solely for the purpose of the rendering optimization. It is not part of the
original algorithm

• linear RGB grid - stores the float triplets representing the linear RGB color
values at a voxel. It is initialized either as white with the texture colors at
the surface or extruded multiple layers inwards

• label grid - each voxel represents a printer material ID. It is a discretized
version of the previous grid obtained via halftoning. Note that unlike the
other grids, this grid is stored densely and fills the whole bounding box of
the underlying 3D mesh - it has a vast impact on the algorithm’s memory
footprint

Using the label grid and measured properties of the printer materials, we cre-
ate a volume describing the physical properties at each point of the printed object
to be visualized by conventional rendering techniques. There are two modes - first,
previewing the object as if it was printed with the material placement described
by the label grid. Second, measuring the radiance on the object surface using a
special camera that shoots rays in the orthogonal direction to the surface.

The second camera’s rendering results are compared to the desired radiance
described by the surface texture, and the difference is used for guiding the opti-
mization feedback loop. In each iteration, the linear RGB grid is altered, so the
rendered result is closer to the texture.

Finally, after a sufficient appearance quality is reached, the label grid is con-
verted to 3D printer instructions, which place the materials accordingly.

1.1.1 Performance implications
Due to the constant voxel size (given by the printer technical parameters), the
grids scale up with the input model’s growing size. Consequently, the memory
and time requirements of the algorithm are rapidly increasing with the model
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dimensions. For example, scaling a cube model by a factor of two increases the
number of surface voxels four times and the overall number of voxels eight times.

The optimization process can be split into three parts - the initialization, in-
cluding the voxelization and creating of the grids that remain the same throughout
the whole run, the optimization loop, and the exporting of results. The initializa-
tion is entirely handled by functions of OpenVDB [Museth et al., 2012], so there
is not much room for improvement, and the exporting is not computationally de-
manding. Plus, these two phases are done at most once per the entire run of the
pipeline described above. Hence the most concerning is the optimization loop. It
contains the most computationally demanding phases, rendering and halftoning,
which are moreover run multiple times, depending on the number of iterations.
Usually, tens of iterations are necessary to get the desired result.

According to the measurements, the rendering makes up about 90% of the
overall time. Very little can be done about the number of rendered images or
their size (which is linear to the number of surface voxels for the surface radiance
estimation), so the only way is an in-depth analysis and optimization of the
rendering algorithm. The main objective of this work is to come up with a more
efficient rendering algorithm while also reducing the memory requirements.

1.1.2 Scene setup assumptions
The printed models may vary in shapes and textures, but the rendering scenes
in the optimization pipeline have a lot in common. Since our algorithms rely on
the specific scene setup, we list the most important assumptions

• trivial light conditions - the special camera in the optimization pipeline
measures the radiance on the object’s surface, for that, constant incident
radiance over the surface is used

• simple scene - the meshes for the printed objects may be complex, but
there is usually only one model rendered at a time, there are no nested or
intersecting objects

• no object re-entering - the optimization pipeline does not consider object
self-shadowing (the effect is added by real illumination of the real printouts),
therefore the rays are terminated immediately after they exit the medium
(note that this causes bias compared to the basic path tracer, but it is
desirable)

• high density and albedo - the printer materials mostly possess a high density
and the textures are usually bright, especially the object’s core is assigned
the white color which is very dense

1.2 The application
The algorithm described in the previous chapter is a result of ongoing research in
the Computer Graphics Group at Charles University. A follow-up project resulted
in a user-friendly application that allows users to utilize the research software.
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Foreseeing the necessities to optimize various parts of the optimization pipe-
line, one of the project’s goals was to transform the codebase into a single C++
solution holding all intermediate data in memory and calling functions on a set
of linked libraries. This way, further development is way more manageable.

The research for this work was conducted using the application with the goal
to incorporate the resulting algorithm there. However, we do not disclose the
application, only a command line version with the necessary files is submitted.

1.3 Libraries & third-party software
The aforementioned application frequently uses third-party software, mostly in-
herited from the original research codebase. The majority of that is irrelevant in
the context of our task, so we only address its subset. However, in the upcoming
chapters, we will work closely with Mitsuba renderer [Jakob, 2010] and Open-
VDB library [Museth et al., 2012] so we provide a brief overview of some of their
relevant details.

1.3.1 Mitsuba renderer
The Mitsuba renderer [Jakob, 2010] official webpage defines it as a “research-
oriented rendering system implementing a variety of biased and unbiased render-
ing techniques”. It consists of a set of core libraries providing common function-
ality and many different plugins representing particular light source types, BSDF
functions, geometry types, integrators and other components found in modern
renderers.

Throughout this work, we will develop a collection of custom plugins repre-
senting volume data storages, media and integrators. The plugin system’s modu-
larity allows us to easily incorporate our ideas in the codebase simply by inheriting
from core classes and implementing their virtual functions.

However, the versatility and modularity lead to an unpleasant consequence
in the form of performance overhead. The rendering is usually supervised by the
core libraries calling an integrator plugin, which subsequently calls other plug-
ins, creating a deep hierarchy. The virtual calls and limited space for compiler
optimisation are reflected on the overall performance, considering the plugin func-
tions’ frequency lower in the hierarchy, like phase function sampling or medium
distance sampling. Moreover, to provide data for a variety of algorithms, the
structures representing geometry intersections or medium scattering events carry
much information that is usually not used. However, it is filled by the respective
plugins.

1.3.2 OpenVDB
OpenVDB [Museth et al., 2012] is a C++ library providing data structures for
storing volumetric data using a sparse representation, and functionality for ma-
nipulating it. Since we will be describing optimizations exploiting low-level prop-
erties of OpenVDB, we provide a rather detailed description of OpenVDB grids
structure and related mechanisms.
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The essential class is called Grid - it associates a tree with a transform and
metadata. This class is directly used in our code.

Museth [2013] describes the trees as data structures similar to octrees but
with branching factors varying between depth levels. The branching factors are
limited to the powers of two. The tree nodes are split into three groups - root
node, internal nodes and leaf nodes

• root node - contains its children in a hashmap in order to achieve potentially
unlimited grid size (it would not be possible with fixed layer count and
limited children count)

• internal node - has a fixed size, can contain either value (when whole cor-
responding volume contains the same value) or an array of children with
direct access (meaning the worst-case lookup time is O(1))

• leaf node - has a fixed size as well, contains an array of values with direct
access

The configuration of the tree layers and their sizes, same as the type of the
values, is determined by templates. The library provides a set of predefined trees
(and grids ) that are most commonly used, like integer or float tree (grid).

The values in the tree are not accessed directly but using value accessors.
They can be obtained by requesting the tree for a specific type of accessor, e.g.
constant, non-constant and unsafe (not registered by the tree, in a sense that it is
not notified when a tree topology changes, but it can have better performance).
The accessors cache nodes along a path to requested voxels, which leads to a sig-
nificant acceleration of spatially coherent accesses. The accessors require integer
coordinates of voxels in index space.

There is also an option to access voxel values using world space coordinates,
combined with a possibility to filter the values when a point between voxels is
accessed. For this, so-called grid samplers are used.
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2. Theory & related work
2.1 Volumetric light transport basics
The printer materials are highly translucent for the UV curing process to work
and allow the discrete inks (CMYK + white) to mix subtractively through light
scattering underneath the surface. Much research has been conducted to describe
accurately and predict light transport inside translucent media. This chapter aims
to describe the fundamental principles and methods used in so-called volumetric
light transport. Unless stated otherwise, the source material for writing this
section is Physically Based Rendering [Pharr and Humphreys, 2010].

The models describe the medium as a collection of particles that interact
with photons and shape their path. The collection is so dense that the transport
needs to be modeled as a probabilistic process instead of a direct simulation of
interactions with individual particles. Using a stochastic formulation, the effect
of media on the radiance along rays passing through the media can be evaluated.

The physical model of the radiance distribution describes three types of events
that occur inside the media - absorption, emission and scattering (further divided
into out-scattering and in-scattering).

Absorption - the light is converted into another form of energy (e.g. heat),
so the radiance is reduced. It is described by σa, a probability density that
light is absorbed per unit distance traveled in the medium. The relationship
between the radiance arriving at the point p with direction ω, Li(p, −ω), and
the exitant radiance, Lo(p, ω), can be expressed using a differential equation as
dLo(p, ω) = −σa(p)Li(p, −ω)dt.

Emission - luminous particles produce additional radiance at the collisions due
to chemical, thermal or nuclear processes. The radiance change is dLo(p, ω) =
Le(p, ω)dt.

Scattering - the collisions of rays with particles cause the change of the ray
direction. It can be either in-scattering or out-scattering.

Out-scattering - describes a radiance loss when its part gets scattered in a
different direction. Similarly to absorption, there is a coefficient σs determin-
ing the probability of an out-scattering event occurring per unit distance and a
differential equation dLo(p, ω) = −σs(p)Li(p, −ω)dt.

In-scattering - describes a situation where a ray from an arbitrary direction
starts heading our direction after a scattering event, increasing the radiance of
our ray. The equation here is more complex, as it needs to consider all possible
in-scattered ray directions

dLo(p, ω) = σs(p)
∫︂

S2
p(p, ωi, ω)Li(p, ωi)dwi (2.1)

where p stands for the so-called phase function, which describes the distribu-
tion of scattered radiation given by an incoming and outgoing direction (similar
to the BRDF function).

The combined radiance loss due to the absorption and out-scattering can
be expressed using a common coefficient σt called attenuation (or extinction)
coefficient. The formula is dLo(p, ω) = −σtLi(p, −ω)dt. The coefficient is also
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called density, and the ratio σs/σt is called albedo (α), describing the medium
color. If p′ = p+ tω, then the transmittance (the fraction of radiance transmitted
between two points) from p to p′ is

Tr(p→p′) = exp(−
∫︂ t

0
σt(p + t′ω, ω)dt′) (2.2)

The negated expression in the exponent is called optical thickness.

2.1.1 Light transport equation
Putting the components together, we get the differential form of the transfer
equation as follows

dLo(p, ω) = −σt(p)Li(p, −ω) + σaLe(p, ω) + σs(p)
∫︂

S2
p(p, ωi, ωo)Li(p, ωi)dωi

(2.3)

or in the integral form (where p′ = p + ωt)

Li(p, ω) =
∫︂ ∞

0
Tr(p′→p)[σa(p′)Le(p′, −ω) + σs(p′)

∫︂
S2

p(p′, ω′, −ω)Li(p′, ω′)dω′]dt

(2.4)

The previous equations did not consider any geometry in the scene that would
stop the ray. If we denote the intersection point of ray (p, ω) and the scene
geometry as p0 and t as its distance from p, then the integral equation of transfer
has the following form

Li(p, ω) = Tr(p0→p)Lo(p0, −ω)+∫︂ t

0
Tr(p′→p)[σa(p′)Le(p′, −ω) + σs(p′)

∫︂
S2

p(p′, ω′, −ω)Li(p′, ω′)dω′]dt′

(2.5)

where p′ = p + t′ω.

2.1.2 Monte Carlo integration
Monte Carlo is a numerical integration technique that uses random sampling to
estimate the value of integral. The idea is to evaluate the integrand for ran-
dom samples in the domain and compute the average of results weighted by the
probability density function for the respective samples. The estimate ⟨I⟩ of the
integrated function f is

⟨I⟩ = 1
N

N∑︂
1

f(Xi)
p(Xi)

, ξi ∝ p((x)) (2.6)

The condition that p(x) > 0 must hold for all x such that |f(x)| > 0. It can
be proved that the expected value of ⟨I⟩ is equal to the value of the integral I.
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As Novák et al. [2018] suggest, the Monte Carlo estimator for volumetric
rendering can be formulated as

⟨L(x, ω)⟩ = Tr(p0→p)Lo(p0, −ω)/P (t)+

Tr(p′→p)[σa(p′)Le(p′, −ω) + σs(p′)
∫︂

S2
p(p′, ω′, −ω)Li(p′, ω′)dω′]/p(t′)

(2.7)

where p(t′) is the probability density of distance t′, and P (t) is the probability
of exceeding the maximum distance t. The interpretation is straightforward, the
light transfer equation is split into two terms, and we evaluate either of them
depending on the result of random distance sampling - if the sampled distance is
lower than the maximum distance, we evaluate the first term and divide it by the
probability of sampling such distance. Otherwise, we evaluate the second term
divided by the probability of sampling failure (exceeding the maximum distance).

Variance derivation

Based on the Monte Carlo estimator formula, we can derive its variance as follows
(FN is so-called secondary estimator using N samples, Fprim is primary estimator
using a single sample, Fprim = f(Xi)

p(Xi)

V ar[FN ] = V ar[ 1
N

N∑︂
i=1

f(Xi)
p(Xi)

]

= 1
N2 NV ar[f(Xi)

p(Xi)
]

= 1
N

V ar[Fprim]

(2.8)

This implies that the standard error for N samples is
√

N smaller than the
standard error for one sample. It is called the convergence rate and for Monte
Carlo integration, it stays the same irrespective of the dimensionality of the in-
tegral.

2.1.3 Volumetric path tracing
Having the Monte Carlo estimator, we can outline an algorithm for its evaluation.
It can be described by the following pseudocode (source: Mitsuba renderer by
Jakob [2010]). It does not include emission of any kind.

Li = 0.0
throughput = 1.0

medium = nullptr

while (depth++ < maxDepth)
rayIntersection(ray, its)
// sample medium
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if (medium &&
medium->sampleDistance(ray, its.t, out mediumRecord))

throughput *= mediumRecord.sigmaS *
mediumRecord.Tr /
mediumRecord.pdfSuccess

phaseRecord = phase.sample(ray.d)
throughput *= phaseRecord.value

ray = Ray(mediumRecord.p, phaseRecord.wo)
else

if (medium)
throughput *= mediumRecord.transmittance /

mediumRecord.pdfFailure

<Handle scene exit>

bsdfRecord = sampleBSDF()
throughput *= bsdfRecord.value

if (its.isMediumInteraction)
medium = its.getTargetMedium()

ray = Ray(its.p, bsdfRecord.wo)

<Russian roulette based on the throughput>

return Li

At this point, the only things left to figure out are the implementation details
of the phase function and the medium distance sampling. Additionally, media
usually implement a function for the evaluation of transmittance between two
given points - its usage will be introduced later. These features are addressed in
the following chapters.

2.1.4 Phase function
Phase functions are comparable to BSDF functions, but for media. Similarly,
they implement two main functions, one for the sampling of outgoing direction
based on a given incoming direction, the other for evaluating the function for two
given directions. There are a variety of these functions, describing media with
different properties.

We are using the so-called Henyey-Greenstein function [Henyey and Green-
stein, 1940]. It has a single parameter g used to control the forwardness of the
scattered rays. Its value can be in the range [-1, 1], causing the outgoing rays
to head backwards for negative values and forwards for positive ones. If the g is
equal to zero, the scattering is isotropic, meaning that the rays are scattered in
arbitrary directions, all with the same probability.
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The value for a given cosine is

pHG(cosθ) = 1
4π

1 − g2

(1 + g2 + 2g(cosθ))3/2 (2.9)

It is possible to derive the inverse of this function analytically. It can be
sampled in a way that the ratio of the sample value and PDF is equal to one.

2.1.5 Distance sampling & transmittance evaluation
With respect to the implementations of these two functions, the volumes can
be divided into two groups - homogeneous and heterogeneous. In the first case,
the coefficients σs and σa (or the albedo and density) are constant for the whole
volume. In the second case, the parameters are spatially varying.

If the σt is constant, the transmittance for a given distance d is given by Beer’s
law [Pharr and Humphreys, 2010] as

Tr(p→p′) = exp(−σtd) (2.10)

Because of the simple analytical formula it can trivially be inverted and solved
for d. Consequently, the distance sampling based on a random number from the
uniform distribution can be done using the following formula

t = −ln(1 − ξ)/σt (2.11)

In the case of heterogeneous media, it is far more complicated. Several ap-
proaches were developed, we will describe two of them that will be frequently
used throughout our work.

2.1.6 Regular tracking
When evaluating the transmittance, this method [Sutton et al., 1999] splits the
ray into multiple segments where the coefficients are constant inside each segment.
The overall transmittance is computed as

Tr(p→p′) = exp(−
N∑︂

i=0
σti

∆i) (2.12)

where N is the number of segments along the ray from p to p′ and ∆i is the
length of the i-th ray segment.

In the case of distance sampling based on a random number from the uni-
form distribution, the desired optical thickness is computed using the formula
τ = ln(1 − ξ). The algorithm then traverses the segments along the ray and
accumulates their respective thickness until the target thickness is reached.

This technique evaluates the transmittance exactly. However, due to the
rather strong requirement of the piecewise constantness and relatively low per-
formance, it is not widely used. In general media, especially in the case of black
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box plugins present in production rendering, it is difficult or impossible to de-
termine the constant parts. However, it is relatively easy when the volumes are
stored in 3D grids or octrees.

Amanatides and Woo [1987] propose a simple incremental grid traversing
method based on the DDA line algorithm. Museth [2014] implements hierar-
chical DDA in the OpenVDB library, fully exploiting its tree structure. Both
these algorithms are available in the OpenVDB library, and we create our custom
versions based on them. We provide their further analysis in the section 1.3.2.

2.1.7 Woodcock tracking
Unbiased method using the maximum density of the whole volume to create a
virtual volume such that at each point, the sum of the real and virtual volume
density is the same, equal to the maximum density. Proposed by Woodcock et al.
[1965].

Consequently, the distance sampling can be implemented in the same way as
in homogeneous media, with one difference - at the point corresponding to the
new distance, we randomly decide whether the particle collision involves a real or
a virtual particle (with the probability proportional to σt(ti)/σtmax). The whole
sampling procedure is repeated in a loop until an interaction with a real particle
occurs or until the maximum distance is exceeded.

The most straightforward implementation of the transmittance evaluation
only calls the sampling function with the maximum distance set to the length
of the ray segment where the transmittance is evaluated and returns 1 in case of
success and 0 otherwise.

2.2 Multiple importance sampling
In the case of the basic path tracing without volumes, the paths shaped by the
sampling of surface BRDF functions often fail to find scene light sources if they
are too small, hidden behind other objects, or the BSDF causes high variance of
the outgoing rays. The situation is similar in participating media.

Fortunately, there are other sampling strategies that are more successful in
these conditions - for example, light sampling. It creates the samples directly on
the light source surface and tries to connect them to the camera. Therefore it finds
even more distant and smaller lights. Contrary to the BSDF sampling, it results
in noisy images when the light source is large or too close to the intersection
due to the high variance of the sampled directions. When the BSDF is too
directional, it assigns low values for the rays going in directions more deviated
from the direction of perfect reflection/refraction, so most of the samples lead to
a low gain.

Apparently, the two techniques work in opposite situations. Veach [1997]
propose a robust estimator combining multiple sampling techniques to evaluate
the same integral to fully leverage the advantages of each technique while hiding
its disadvantages. Let N be the number of sampling techniques, ni the number of
samples generated using the i-th technique with probability density pi, Xi,j is the
j-th sample generated using the i-th technique (the Xi,j are independent). Each
estimator has a weighting function wi(x). Then the multi-sample estimator is
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⟨I⟩ =
N∑︂

i=1

1
ni

ni∑︂
j=1

wi(Xi,j)
f(Xi,j)
pi(Xi,j)

(2.13)

Intuitively, it is a weighted sum of the estimators f(Xi,j)
pi(Xi,j) . The estimator is

unbiased if the weights satisfy the following conditions

• the sum of weights for a given sample is 1 whenever f(x) is not 0

• weight is 0 whenever pi(x) = 0

2.2.1 Weighting functions
The task of the weighting functions is to assign the weights so that the estimator
variance is as low as possible. There are various functions, we describe only one
of them, the Balance heuristics. It is given by the following formula

ωi(x) = nipi(x)∑︁
k nkpk(x) (2.14)

The detailed analysis of balance heuristics and its performance is provided by
Kondapaneni et al. [2019].

2.3 Volume Path Guiding Based on Zero-Vari-
ance Random Walk Theory

So far, we have described methods that use only a part of the light transport
equation during the decision process since they do not have prior knowledge of
the incident (L) and in-scattered (Li) radiance. The distance is sampled only
based on the transmittance term and the σs. Similarly, the direction is sampled
solely on the incoming direction and phase function, and the Russian roulette is
driven by the actual throughput.

Zero variance sampling theory [Hoogenboom, 2008] provides a collection of
formulas used for path guiding decisions done by distance sampling, direction
sampling, and path termination that cause all traced paths to have precisely the
same contribution. Consequently, the variance of the estimator is zero (hence
the name). We denote the nearest surface contribution as Ls and the medium
interaction contribution as Lm.

• the probability of sampling the medium from the starting point xj and the
direction ωj is

Pm(xj, ωj) = Lm(xj, ωj)
Ls(xj, ωj) + Lm(xj, ωj)

(2.15)
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• in case the volume sampling was selected (based on the previous probabil-
ity), the sampled distance dj+1 to the next scattering position xj+1 is

pd(dj+1|xj, ωj) = Tr(xj, xj+1)σs(xj+1)Li(xj+1, ωj)
Lm(xj, ωj)

(2.16)

• the scattered direction at the medium sampled point xj+1 is sampled based
on the following PDF

pω(ωj+1|xj+1, ωj) = f(xj+1, ωj, ωj+1)L(xj+1, ωj+1)
Li(xj+1, ωj)

(2.17)

• the probability for the termination of the path at the point xj where an
emitter with the radiance Le is hit is

pRR(xj, ωj−1) = Le(xj, ωj−1)
Lo(xj, ωj−1)

(2.18)

In case there is no emission at xj, the pRR is equal to one.

The requirement of the prior knowledge of L and Li creates a cyclic depen-
dency. Herholz et al. [2019] propose an approximate solution using a precom-
putation of these quantities. Before the actual rendering, a photon tracing pre-
processing phase takes place. The photons are cached and then used to construct
the directional representation of the incident radiance L̃ and in-scattered radi-
ance Lĩ. The data are called the adjoint transport solution. The distributions are
represented using parametric mixtures of von Mises-Fisher distribution [Fisher,
1953] lobes V (see the original paper for more details).

Next, the authors propose path guiding techniques using the approximated
radiances. We will briefly go through them in the following chapters.

2.3.1 Distance sampling
The decision between the medium or surface contribution and the distance sam-
pling in case of the former are merged into a single decision described by the
following PDF

pd(d|x, ω) = Tr(x, xd)σs(xd)Li(xd, ω)
L(x, ω) (2.19)

Two methods for sampling this product are proposed - a simple naive solution
and an efficient incremental distance sampling. For brevity, we only describe the
first of them and refer the reader to the original paper for the second one. It
is based on the uniform sampling of the ray length and building of a discrete
PDF and CDF. As the authors point out, this approach is inefficient due to the
potential high ray length and steep transmittance falloff in dense media.
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2.3.2 Direction sampling
Similar to the zero-variance equation, the direction is obtained by importance
sampling of product mixture of the mixtures VL (incoming radiance) and VF

(phase function). To eliminate the inaccuracies of the estimates, MIS between
the mixture samples and the actual phase function samples is used.

2.3.3 Russian roulette and splitting
According to the zero variance theory, the contribution of every path to a given
pixel should be equal in order to get zero variance. Based on this, the authors
propose to set the survival probability for Russian Roulette based on the ex-
pected contribution of the current path. Naturally, there are cases where the
path contribution is too high. Then, the splitting takes place.

The paper describes two types of the Russian Roulette and splitting. One is
based on the distance sampling, the other on the direction sampling. In both,
the splitting factor q is computed as q = E[r]/I, where the E[r] is the expected
path contribution, and I is the true pixel value (in practice, it is Î gathered from
the precomputed in-scattered radiance using a few camera rays marching through
the medium). The E[r] is given by the sampling version.

Distance sampling starts in the situation where we have a scattering point
xj, sampled direction ωj and path weight ar. The expected path contribution is
E[r]dist ≈ arL̃(xj, ωj). Based on that, we either cut the path right at xj or split
it to multiple paths based on distance sampling along the direction ωj.

Direction sampling takes position xj+1 where the path got from the point xj

with the direction ωj. The updated weight is

a′
r = ar

Tr(xj, xj+1)σs(xj+1)
pd(d|xj, ωj)

(2.20)

The expected path contribution is E[r]dir ≈ a′
rLĩ(xj+1, ωj). The path is split

into several samples directions ωj+1.
Due to the high complexity of this approach and the necessity of a rather

lengthy precomputation phase (comparing the usual number of samples that we
use in our application), we decide not to implement and test the whole framework.
We only try adaptive splitting coefficients based on the actual throughput and
scattering coefficient.

2.4 Volumetric photon mapping & Beam radi-
ance estimate

So far, we have presented only variations of unidirectional path tracing that
creates paths starting from the camera. The algorithm proposed by Herholz
et al. [2019] uses a precomputed structure created from particles traced from the
light sources, but only as a tool for guiding the path guiding decisions. There is a
family of algorithms for volumetric rendering that uses paths starting both from
the camera or from the light sources directly for the radiance estimation. In this
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chapter, we introduce the most basic of them all - photon mapping [Jensen and
Christensen, 1998], and its optimization for volumetric rendering, Beam Radiance
Estimate [Jarosz et al., 2008].

2.4.1 Photon mapping
The photon mapping method proposed by Jensen [1996] is a two-pass algorithm
for enhanced global illumination rendering. It does not concern volumes. The
first phase creates two photon maps (global map and caustics map) by tracing
photons emitted from light sources. In the second phase, the maps are used to
compute the final image via distributed ray tracing.

The caustics map stores photons that passed through specular reflections /
refractions and hit a diffuse surface - the map is used for direct (using the rays
coming directly from the camera) caustics rendering since this effect is costly to
compute using the paths originating from the camera. It requires high density,
and it is created by shooting the photons exclusively towards specular objects.
The global map consists of indirect illumination photons shot in a general di-
rection and gathered on non-specular surfaces. It is used to obtain indirect il-
lumination instead of rays with a high number of bounces as they are costly in
distributed ray tracing. Since it is visualized only indirectly, it can be less dense
and therefore more efficient.

Each photon keeps the impact position, the incoming direction, and energy.
The photons are stored in a balanced KD-tree [Bentley, 1975] that allows quick
searches for n nearest photons to a given point x. The radiance is then estimated
using a low-pass filter.

The fixed number of photons in the first phase causes the algorithm to be
biased, as it does not converge to the correct result with an arbitrary number of
rays shot in the second phase. Additionally, the filter does not yield a correct
estimate when the photons are near face edges.

2.4.2 Volumetric photon mapping
The extension for volumes proposed by Jensen and Christensen [1998] is straight-
forward - the third photon map is added for storing photons created at medium
scattering points. Only the photons that do not come directly from the light
source are stored. The authors argue that single scattering in media is easy to
evaluate via the forward tracing. Therefore the photon map does not need to be
cluttered with such photons.

During the second phase, the radiance inside the volume is estimated in the
same fashion as on the surface - n nearest photons is found near the given point
x and the radiance is compute as

Li(x, ω) ≈ 1
σs(x)

N∑︂
p=1

f(x, ωp, ω)∆Φp(x, ωp)
4
3πr3 (2.21)

where ∆Φp is the flux carried by each photon p in direction ωp. The contri-
bution from the photons is gathered using an adaptive ray marching algorithm.
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The in-scattering and emission are approximated as constant within each step,
so the radiance at the point xk is given by

L(xk, ω) = σa(xk)Le(xk, ω)∆xk

+ σs(xk)Li(xk, ω)∆xk

+ exp(−σt(xk)∆xk)L(xk−1, ω)
(2.22)

The L(xk−1, ω) from the previous step is multiplied by the step attenuation
and summed with the contribution of emission and in-scattering for the current
step.

2.4.3 Beam radiance estimate
Jarosz et al. [2008] point out multiple shortcomings of the basic volumetric path
tracing algorithm. First, it is difficult to choose a viable step size (or step distri-
bution in general) - if the steps are too long, photons are being missed out, leading
to higher variance. On the other hand, having many short steps is computation-
ally expensive. Moreover, when the photons are evaluated in the neighborhoods
of step points, one photon can be counted twice if it lies inside two such neigh-
borhoods.

The paper proposes a method called “beam gathering” that avoids the prob-
lematic stepping through the medium by gathering all photons along the ray via
a specialized search structure. The algorithm consists of the following five steps

• Photon tracing - works in the same way as in the basic volumetric photon
mapping

• Constructing a balanced KD-tree for the photons - also identical with the
basic method

• Assigning a radius for each photon - given a constant integer N , for each
photon, the N-th nearest photon is found, and the distance to it is assigned
to the photon radius (this N will be noted as lookup size). By this, photons
have lower radii at the areas with high photon concentration and vice versa.
Therefore, the areas densely filled with photons are less blurred, while the
sparse ones are more blurred. The number n determines the overall blurri-
ness of the resulting image

• Constructing a bounding-box hierarchy over the photons with radii from the
previous step - having the balanced KD-tree from the second step, a bal-
anced BBH is constructed in linear time in the following way. Starting from
the bottom, each photon is assigned a bounding box enclosing itself and its
two children’s bounding boxes

• Using the BBH to render the image - for each single-scattering camera ray,
let N be the number of photons whose bounding boxes are intersected, then
the radiance estimate is
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L(x, ω) = 1
N

N∑︂
i=1

Ki(x, ω, s, xi, ri)Tr(x, x′
i)σs(xi, ω, ωi)αi (2.23)

where x′
i = x+tiω and it represents the projection of the i-th photon position

on the camera ray, ti = (xi − x).ω is the vector from the starting point x
to the i-th photon projected on the camera ray, p is the phase function, α
is the photon weight and Ki is the kernel defined as

Ki(x, ω, s, xi, ri) = r−2
i K2(

di

ri

) if di ∈ [0, ri] and 0 otherwise (2.24)

where ri is the photon radius, di is the distance between the ray and the
photon position, K2(x) is Silverman’s two-dimensional biweight kernel [Sil-
verman, 1986] defined as K2(x) = 3π−1(1 − x2)2. Note that the kernel is
two-dimensional (the radiance is blurred in two dimensions perpendicular to
the ray) instead of the three dimensions used in the basic photon mapping
since the third dimension is included in the integration along the ray

Moreover, the authors outline an idea for optimizing the algorithm for het-
erogeneous media, where the computation of the Tr(x, x′

i) is too expensive to be
evaluated for each photon. Instead, a LUT containing transmittance from the
origin to discrete points along the ray segment is created using ray marching.
After that, the individual photons intersected by the ray are evaluated, utilizing
the transmittances cached in the LUT.

2.5 Unifying Points, Beams, and Paths in Vol-
umetric Light Transport Simulation

Users often desire to render scenes containing volumes that vary greatly in den-
sity, scattering albedo, and anisotropy. Many approaches have been developed,
however, each of them is usually successful with specific settings while failing with
others. Křivánek et al. [2014] seek to develop a robust technique that reasonably
handles a combination of volumes with different settings in one scene. First, they
provide an analysis of a variety of volumetric rendering algorithms. Then they
combine some of them using MIS into so-called unified points, beams, and paths
(UPBP) algorithm. Since the basic printer materials all have relatively high den-
sities, we do not need the robustness provided by the UPBP. We only use the
analysis to identify the approaches fitting our use case, hence we do not describe
the MIS in this chapter.

Based on the work of Jarosz et al. [2011], the paper works with a set of
estimators with the following attributes

• photons/beams - the in-scattered radiance can be evaluated either at the
query point or along a ray. This applies both for light traced radiance data
and for the query type

20



• long/short beams - a beam is a cylinder with a given radius along a ray.
The beam can be either the same length as the ray (“short beams”), or it
can extend to the nearest surface (“long beams”)

• dimension - refers to the blurring kernel dimension, e.g., the basic photon
mapping uses 3D kernels, the technique proposed by Jarosz et al. [2008]
uses 2D kernel

The individual techniques are referred to as the combination of the radiance
data (photons/beams), query data (photons/beams), both with the long/short
option, and the dimension of the blurring kernel. For clarification, we include the
illustration from Jarosz et al. [2011] (Fig. 2.1)

Figure 2.1: Illustrations of the estimation techniques from Jarosz et al. [2011].

Using a theoretic setup for variance derivation, the authors provide variance
analysis of multiple estimator variants. Based on the notation used in the Fig.
2.1, the setup uses fixed orthogonal rays (a, ωa) and (c, ωc), and therefore fixed
distances, ta and tc. As the blurring kernel, a d-dimensional cube is selected. The
medium is assumed to be homogeneous.

For the variance derivation of the individual estimators, we refer to the original
paper. Here, we only include the comparison of the variance depending on the
kernel width w in the units of mean free paths (inverse of the medium density),
expressed as normalized standard deviation σµ[⟨I⟩∗] =

√︂
V [⟨I⟩∗]/E[⟨I⟩∗].

The plot in Fig. 2.2 shows that neither the points nor beams behave the best in
each situation. With bigger kernels, the points are better, but as the kernel width
gets close to zero, the variance rises to infinity, even for the long beams variants.
In general, the long beams perform better than the short beams. Again, for
further analysis, we refer to the original paper. Additionally, the paper includes
a set of images rendered with different estimators and kernel widths (Fig. 2.3).
It confirms the conclusions from the theoretical analysis - the P-P3D estimator is
better with larger kernel sizes, while the Bs − Bs1D achieves lower variance with
the smaller kernels.

The beam length poses a trade-off between the variance reduction and compu-
tational time. Long beams appear to obtain a lower variance, while its evaluation
is more costly. The authors decide to use long query beams and short photon
beams based on testing results.

The final choice of estimators combined using the MIS is BPT, then P-P3D,
P −Bl2D, Bs −Bl1D for volumes and P-P2D for surfaces. The testing on a wide
range of volumes confirms the expectations - none of the techniques dominates in
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Figure 2.2: NSD as a function of the kernel witdth from Křivánek et al. [2014].

all cases. The contributions of the different estimators are visualized in the Fig.
2.4.
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Figure 2.3: The results obtained using various estimators and kernel widths from
Křivánek et al. [2014].

Figure 2.4: Contributions of the different estimators to the image. The bottom
row shows the contributions without the MIS weighting. The image is from
Křivánek et al. [2014].
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3. Our work
At this point, it is clear that there are a variety of options when it comes to
volumetric rendering. They possess different properties, making them suitable
for different scene types and utilization. In this chapter, we describe the imple-
mentation and comparison of both path tracing and photon mapping and our
custom improvements, everything in the context of usage in the 3D printing op-
timization. We derive our implementations from the default plugins in Mitsuba
renderer [Jakob, 2010].

We focus on optimizations that are easily transferable to other renderers.
Hence we do not spend much time either optimizing or describing suboptimal fea-
tures of Mitsuba, like slow geometry intersection or unnecessary immense struc-
tures passed among the rendering plugins (intersection, medium scattering event
and others).

First, we describe our evaluation process and testing scenes. Then we proceed
with building the optimized algorithm from the bottom up - we start with the data
storage and fetching, then we go through multiple implementations of distance
sampling and transmittance evaluation. Finally, we design a specialized unidirec-
tional path tracer. Additionally, we offer an evaluation of the UPBP algorithms
[Křivánek et al., 2014] and implementation of the BRE approach [Jarosz et al.,
2008] for heterogeneous media in Mitsuba and an assessment of its capabilities.

3.1 Results evaluation & testing set
An essential role in this thesis belongs to the system for results evaluation and
comparison. It secures the ability to decide what are the strengths and short-
comings of various techniques. Based on that, we can tell which ones are worth
a further investigation and participation on the final product and which are not.
The main focus is to shorten the rendering time, decrease the variance and lower
the memory requirements.

As for the rendering time, we are interested in the time spent on the actual
rendering, not the overall runtime of the previewing or optimization processes.
The main reason is that the processes involve voxelization of the 3D objects,
halftoning, and other time-consuming tasks, which are not subject to optimiza-
tion in this work, therefore they would distort the results. The only exceptions
are the photon mapping and other two-phase algorithms, where also the photon
gathering and follow-up lookup structure building is counted as the part of the
rendering because it is not present in the basic unidirectional technique, making
it a disadvantage of that group of algorithms.

All time measurements presented in this chapter are obtained using a laptop
with AMD Ryzen 7 4800H with eight physical cores (16 logical cores) and 16GB
of RAM. The rendering was allowed to use all cores, usually utilizing 97-100%
of the CPU. Each test was run multiple times to average out any effects of OS
scheduling and background tasks. In the section 4, we include measurements also
on other machines.

The variance is computed from the image pixel values. As the mean value, we
use images of the respective scene rendered with a high number of samples per
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pixel (usually 10-50x more than the images tested for variance). We call them
the ground truth images. The variance of the ground truth image introduces an
error to the result variance. Therefore it needs to be as low as possible.

We also keep track of multiple other properties of the result images, such as
quality and sharpness of the edges or local differences in the variance. We did
not use any algorithm to quantify these characteristics, they were only evaluated
visually.

The rendered image resolution is given by the surface voxel count in case
of the camera that is used in the optimization loop. We include the numbers
for particular testing models later. For the preview renders, the resolution is
always noted for individual tests. The sample counts are also noted for the
respective results - we often try to match rendering times or result variance of
multiple different methods, so we use a variety of sample counts. We use the
Mitsuba independent sampler [Jakob, 2010] (independent plugin) because the
other plugins usually round the sample count (e.g., to the closest power of two).
It is undesirable since we want to set a specific sample count (e.g., to match the
rendering time of two methods).

The memory consumption is either calculated using the grid dimensions and
the voxel memory footprint in the case of the dense grids or obtained from an
OpenVDB grid API function.

The measurements were performed on a set of testing scenarios designed to
vary in the properties that significantly influence the performance and the mem-
ory footprint of the rendering. These are the most significant ones

• overall object size - it influences the memory footprint of the respective voxel
grid, as well as the resolution of the image rendered for the optimization
(see the section 1.1)

• object thickness - allows longer light paths. In thin object, the rays resurface
quickly cutting the rendering time

• density of the material - the density of the printer materials for various
colors and color channels are different. For example, the red channel of
magenta material has a density of 2.5mm−1, while the blue channel of white
material has 24mm−1. Also, the transparent material has an approximate
density of 0, but it was not included in our testing scenes. The higher
density usually leads to higher rendering times since the algorithms sample
the steps in the medium based on the density. Therefore the higher density
leads to shorter steps. Hence, it takes more scattering events to travel the
same distance in a dense medium

• albedo - the path tracing algorithm uses Russian Roulette to terminate rays
with low throughput. In darker media, the rays lose throughput faster, and
therefore they are terminated sooner, leading to shorter rendering times

• shape of the objects - rays shot towards thin parts of the objects tend to
return to the surface sooner than rays penetrating thick parts. The basic
unidirectional path tracer terminates the rays when they leave the object
and head towards the environment. It spends less time tracing a particular
ray when it leaves the object sooner
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• variance of the materials - this concerns the algorithms that tend to degen-
erate the edges because their results generally look better when there are
smooth color transitions or vast areas with a constant color

The testing set consists of the models in the Table 3.1. The voxel resolution
provides the grid’s actual size that is created by the optimization pipeline, with
the printer voxel size 600 x 300 x 900 dpi. There is transparent padding around
the grid with a thickness equal to 0.12mm, and the object is extruded a few
layers during the voxelization. The listed sizes are the sizes of the underlying
obj triangle meshes. The camera resolution is listed because it depends on the
surface voxel count. The models are displayed in the Fig. 3.1.

Table 3.1: Testing models overview.

Model Size (mm) V oxel res. V ertices Camera res.

Box_white_10 10x10x10 246x124x372 8 410x410
Box_greek_10 10x10x10 246x124x372 8 410x410
Box_white_20 20x20x20 482x242x726 8 818x818
Box_greek_20 20x20x20 482x242x726 8 818x818
Animal_white 4.9x11.9x13.1 126x147x483 5850 248x248
Animal_spotted 4.9x11.9x13.1 126x147x483 5850 248x248
Bone 42x42x34.5 1002x502x1242 50k 920x920

(a) Box_x_white (b) Box_x_greek (c) Animal_white

(d) Animal_spotted (e) Bone

Figure 3.1: Preview of the testing models.

We created all the models ourselves, except the bone model, it is created
by Artec Group inc. The greek and the spotted textures are from the websites
https://es.123rf.com and https://www.dreamstime.com respectively.
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Finally, we describe the default testing setup - the settings are used when not
stated otherwise.

• camera: orthogonal

• image resolution: given by the model

• sample count: 100spp

• texture extrusion: 1mm

• Mitsuba integrator: volpath_simple

3.2 Memory optimization
A heterogeneous volume is usually described by a 3D grid containing values for
particular quantities in each point of such a grid, called voxels. In our case,
the quantities are albedo and density (see the section 2.1 for clarification). Un-
like general-purpose solutions for storing heterogeneous volumes, our voxels only
represent one of a finite set of materials. Therefore, we only have a finite set
of albedo-density value combinations. Moreover, the set only consists of seven
materials. This introduces excellent possibilities for memory saving.

3.2.1 Original solution
The research code utilizes the basic Mitsuba heterogeneous volume plugin [Jakob,
2010] (gridvolume) for both albedo and density. It stores the grids using dense
representation. The default heterogeneous media plugin (heterogeneous) asserts
that albedo is three-channel while density is one-channel. Both the media are
expectedly using float values. The following calculation shows how many bytes
such media occupy in memory.

Let v be the number of voxels (keep in mind that it is a large number since it
is the product of voxel counts in each of the three dimensions), then the number
of bytes B is

B = v ∗ 3 ∗ 4 + v ∗ 1 ∗ 4 = v ∗ 16 (3.1)

where the number four represents the usual amount of bytes used by a single-
precision floating point number.

First, we include the memory necessary to store the grids describing the vol-
ume physical properties (Table 3.2). Note that it does not include all the other
grids used by the optimization algorithm.

We also append the time measurements as we want to evaluate the rendering
time differences among the various approaches (Table 3.3). Due to the time
complexity, we do not provide measurements for all scenes in each set. We select a
subset that covers all significant cases regarding the models’ shapes and textures.
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Table 3.2: Memory footprint in MB.

Model Memory

Box_white_10 173
Box_greek_10 173
Box_white_20 1 292
Box_greek_20 1 292
Animal_white 137
Animal_spotted 137
Bone 9533

Table 3.3: Time measurements - original. The times are in seconds. We use the
settings described in the section 3.1.

Model R G B

Box_white_10 19.5 19.5 19.7
Box_greek_10 7.9 6.1 5.2
Box_greek_20 32.9 25.2 20.7
Animal_white 5.5 5.8 8.0
Animal_spotted 10.9 11.5 12.3

3.2.2 Optimization using material IDs
Since the volume can be fully described by the materials’ IDs, we can create a
grid where each voxel contains only an 8-bit ID. This way, the memory footprint
of a grid with v voxels is only v bytes - it is 16-times less than the original. The
material’s physical properties can then be obtained using a lookup table for both
albedo and density. The size of the table is negligible as we only have seven
materials.

Apart from the apparent memory usage reduction, there is also another ad-
vantage - more voxel values fit the cache. Therefore fewer RAM accesses are
necessary when the rendering algorithm does grid lookups close to each other.

On the other hand, an extra indirection occurred because of the lookup table.
Fortunately, the lookup table is small and fits the cache easily. Furthermore,
since the number of different material sets is fairly small and the grid lookup
time is critical for the rendering’s performance, we hardcode the table into the
Mitsuba plugin, making the indirection even faster. In our implementation, the
same binary of the plugin is used for each color channel. Therefore there is a
switch deciding between values for red, green, and blue. It is another element
that slows down the algorithm compared to the original solution.
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Table 3.4: Memory footprint - original/IDs in MB.

Model Original IDs Improvement

Box_white_10 173.1 10.8 x16.0
Box_greek_10 173.1 10.8 x16.0
Box_white_20 1292.2 80.8 x16.0
Box_greek_20 1292.2 80.8 x16.0
Animal_white 136.5 8.5 x16.0
Animal_spotted 136.5 8.5 x16.0
Bone 9532.6 596 x16.0

Table 3.5: Time measurements - original/dense+IDs. The times are in seconds.
We use the settings described in the section 3.1.

Original dense+IDs Diff
Model R G B R G B R G B

Box_white_10 19.5 19.5 19.7 20.0 20.0 20.1 +0.5 +0.5 +0.4
Box_greek_10 7.9 6.1 5.2 8.3 6.3 5.4 +0.4 -0.7 +0.2
Box_greek_20 32.9 25.2 20.7 34.2 26.5 21.8 +1.3 +1.3 +1.1
Animal_white 10.9 11.5 12.3 11.4 12.1 12.9 +0.5 +0.6 +0.6
Animal_spotted 5.5 5.8 8.0 5.7 6.1 8.3 +0.2 +0.3 +0.3

The memory footprint is expectedly reduced 16-times (Table 3.4). The dif-
ference between the sets of values is approximately 5% (Table 3.5), which is a
great trade-off considering the 16-times lower memory consumption of the grids.
We attribute the lower performance to the additional indirection, and conditional
jump caused by the switch explained above.

3.2.3 Optimization using OpenVDB
The next stage of the optimization is based on the fact that the voxel grids tend
to contain large segments with constant color. This is an implication of the fact
that the volume is colored only up to a certain depth, and the rest of the interior
is white. Also, there are cases when the texture contains areas with the same
color. However, it is not that frequent, especially when the materials need to be
constant between the layers, not only within a particular layer.

To store such grids, the sparse OpenVDB library [Museth et al., 2012] is a
logical choice. It keeps the constant segments in larger, higher-level nodes of the
tree, efficiently saving memory (see the section 1.3.2). The library allows defining
custom configurations of the trees - with a varying number of layers and node
sizes. Smaller nodes are better with volumes that contain smaller constant areas.
On the other hand, they create too many nodes in volumes with larger constant
areas. Similarly, there is a trade-off when it comes to the number of layers - more
layers allow smaller nodes and better sparsity while slowing down the lookup
since more nodes need to be traversed to get to the bottom of the tree.

In each case, the data stored in OpenVDB have a smaller memory footprint
(Table 3.6). The most significant factors are the overall object size (the constant
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Table 3.6: Memory footprint - original/OpenVDB in MB.

Model Original OpenV DB Improvement

Box_white_10 173.1 3.6 x48.0
Box_greek_10 173.1 9.0 x19.2
Box_white_20 1292.2 18.7 x69.1
Box_greek_20 1292.2 39.7 x32.5
Animal_white 136.5 3.9 x35.0
Animal_spotted 136.5 4.7 x29.0
Bone 9532.6 91.4 x104.3

areas are more extensive, fitting more higher-level tree nodes) and the ratio of
the bounding box filled by the mesh (the portion of the bounding box outside
the mesh contains constant air).

Table 3.7: Time measurements - original/OpenVDB. The times are in seconds.
We use the settings described in the section 3.1.

Original OpenVDB Diff
Model R G B R G B R G B

Box_white_10 19.5 19.5 19.7 21.6 20.8 21.6 +2.1 +1.3 +1.9
Box_greek_10 7.9 6.1 5.2 10.8 7.7 7.0 +2.9 +1.6 +1.8
Box_greek_20 32.9 25.2 20.7 47.8 34.0 28.4 +14.9 +8.8 +7.7
Animal_white 10.9 11.5 12.3 10.5 12.4 13.2 -0.4 +0.9 +0.9
Animal_spotted 5.5 5.8 8.0 5.1 6.2 7.3 -0.4 +0.4 -0.7

The times are generally worse compared to the previous approach, especially
in the second testing case (Table 3.7). However, the following chapters gradually
improve the lookup performance of OpenVDB grids.

3.3 Grid lookup time optimization
The previous chapter lined up that the grid lookup is frequent and, therefore, a
performance-critical operation. The use of a rather complex library, OpenVDB
[Museth et al., 2012], gives us plenty of space for optimization. It concerns sim-
plification of the world to grid transformation, which can also be also used in the
dense 3D grid and OpenVDB-specific improvements like tweaking the grid layout.

3.3.1 Thread local accessors
Having the two options to obtain values from OpenVDB grids (accessors and
grid samplers), we picked accessors since we implement the transformation from
world space to grid space as well as nearest neighbor interpolation ourselves, in a
more specialized and efficient manner. The grid samplers use the library’s general
implementations of these operations.

Initially, we used a single accessor stored as a member variable in the plugin
class created in the constructor. It is important to note that Mitsuba splits
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the rendered image into blocks (the default size is 32x32) and assigns them to
rendering threads [Jakob, 2010]. It creates considerable distances between the
pixels rendered at the same time by different threads. As a result, the caching of
traversed nodes in a single accessor is ineffective.

We decided to improve this by having a dedicated accessor for each thread,
using thread local storage. The results suggest that it helps, as the rendering
times are comparable to those measured for the dense grid (Table 3.8). The most
significant improvement is in the test with bigger and more colorful objects. It
makes sense in terms of caches - bigger objects allowed lookups farther apart,
and more detailed textures resulted in more smaller tree nodes, both causing the
inefficiency of the caching in the single accessor. On the other hand, there is an
overhead of the function that ensures that the accessor is created in the current
thread - it has to be executed on each medium function call, since we do not
employ optimizations further up the plugin structure so far.

Table 3.8: Time measurements - original/OpenVDB TL. The times are in seconds.
We use the settings described in the section 3.1.

Original OpenVDB TL Diff
Model R G B R G B R G B

Box_white_10 19.5 19.5 19.7 20.1 20.3 20.8 +0.6 +0.8 +1.1
Box_greek_10 7.9 6.1 5.2 8.4 6.3 5.5 +0.5 +0.2 +0.3
Box_greek_20 32.9 25.2 20.7 35.1 26.6 21.9 +2.2 +1.4 +1.2
Animal_white 10.9 11.5 12.3 11.2 12.3 13.0 +0.3 +0.8 +0.7
Animal_spotted 5.5 5.8 8.0 5.6 6.2 8.2 +0.1 +0.4 +0.2

3.3.2 World to grid transformation
The rendering uses the world coordinate system to describe object placement,
distance computing as well as shooting and tracing of rays. When the volume
tracing algorithm needs the density or albedo value at a certain point of the vol-
ume, the position of the point needs to be transformed from the world coordinates
to the grid coordinates to determine the respective voxel or voxels and ask them
for their value.

Usually, the grid transformation is represented by a transformation matrix
used to multiply the point in world space to obtain its grid space coordinates.
Here, we exploit one of the assumptions given by the circumstances of our usage.
Even though the rotation is supported, it is baked into the object coordinates,
and the world to grid transformation consists only of the translation and scale.
These two operations can be achieved by simple addition and multiplication of the
point coordinates vector. The point is a 3D vector. Therefore the two operations
can be computed using SSE instructions, making it much faster than the matrix
multiplication.

In order to achieve smooth transitions between the values in heterogeneous
grids, the result value is usually computed by interpolating between the nearby
voxels of the point in the grid. In our case, though, we use the nearest neighbor
search. This saves us from inquiring values of multiple voxels and interpolating
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between them. Usually, the nearest voxel is found by rounding each coordinate
of the voxel in grid space. From our measurements, the round operation is quite
expensive, so we replace it with a much cheaper integer cast in combination with
moving the grid coordinate 0.5 voxels in each direction before the cast takes place.
The operation can be baked into the aforementioned translation vector.

To clarify this further, we provide pseudocode for the initialization of the SSE
vectors and their usage

void initialize() {
Vector3 extents = gridAABB.size(); // World units
Vector3i resolution = grid.resolution(); // Grid voxels

__m128 scale = _mm_set_ps(resolution / extents);

// Move in world space
__m128 translation = _mm_set_ps(gridAABB.min);

// Scale world -> grid space
translation = _mm_mul_ps(translation, scale);

// Move in grid space
translation = _mm_add_ps(translation, 0.5);

}

uint8_t lookupLabel(Point p) {
__m128 p128 = _mm_set_ps(p);
p128 = _mm_mul_ps(p128, scale);
p128 = _mm_add_ps(p128, translation);
Point3i pCoord(static_cast<int>(p128));
return grid.lookup(pCoord);

}

Table 3.9: Time measurements - original/dense+SSE. The times are in seconds.
We use the settings described in the section 3.1.

Original dense+SSE Diff
Model R G B R G B R G B

Box_white_10 19.5 19.5 19.7 19.2 19.3 20.4 -0.3 -0.2 +0.7
Box_greek_10 7.9 6.1 5.2 8.1 6.3 5.4 +0.2 +0.2 +0.2
Box_greek_20 32.9 25.2 20.7 33.0 25.5 20.9 +0.1 +0.3 +0.2
Animal_white 10.9 11.5 12.3 11.0 12.2 12.8 +0.1 +0.7 +0.5
Animal_spotted 5.5 5.8 8.0 5.6 6.2 8.2 +0.1 +0.4 +0.2
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Table 3.10: Time measurements - original/OpenVDB TL+SSE. The times are in
seconds. We use the settings described in the section 3.1.

Original OpenVDB TL+SSE Diff
Model R G B R G B R G B

Box_white_10 19.5 19.5 19.7 19.6 19.9 20.0 +0.1 +0.4 +0.3
Box_greek_10 7.9 6.1 5.2 8.1 6.2 5.3 +0.2 +0.1 +0.1
Box_greek_20 32.9 25.2 20.7 33.9 26.3 22.2 +1.0 +1.1 +1.5
Animal_white 10.9 11.5 12.3 10.9 12.0 12.7 0.0 +0.5 +0.4
Animal_spotted 5.5 5.8 8.0 5.6 6.2 8.1 +0.1 +0.4 +0.1

Unsurprisingly, this optimization results in success (Tables 3.9 and 3.10).
However, even if the actual transformation is much faster, the overall speedup is
not that big because the portion of time the program spends on transformations
is minor.

3.3.3 Finding the best tree layout
OpenVDB [Museth et al., 2012] allows to use either predefined or custom grids
to store data. The primary option is a four-layer tree with one root, two internal,
and one leaf layer. The node sizes are marked as a sequence of numbers (for four-
layer trees, it is a triplet, e.g., < 5, 4, 3 >), where a particular number n means
that the node contains an n-th power-of-two child nodes in each dimension. The
first number corresponds to the first internal layer, the second number to the
second internal layer, and the third number to the leaf node size. The root stores
the child nodes in a hash map, so there is no number corresponding to the root
node.

With the layout < 5, 4, 3 >, the leaf size is 23, the lowest internal layer contains
24 leaves in each dimension, therefore its size is 24 ∗23 = 128. The second internal
layer’s node size is similarly 25 ∗ 128 = 4096 in each dimension.

The default configuration is < 5, 4, 3 >. We tried multiple custom configura-
tions to see which behaves the best with the object of sizes commonly used in our
application. We assumed that the default config is such that it works reasonably
well with most use cases, from small volumes to huge ones used in movie produc-
tion. Therefore, if we create a layout specifically optimized for our sizes, it will
work better.

We did not consider grids with a depth of more than four since our objects
are relatively small, and an additional layer would slow down the traversal.

The crucial information is the sizes of the rendered grids, so we note them for
each model (section 3.1). For simplicity, we provide only the results for the two
models at the opposite sides of the model complexity and thickness spectrum -
the miniature animal model and the cube with the size 20mm x 20mm x 20mm
(Table 3.11).
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Table 3.11: Time measurements - various OpenVDB grid layouts. The times are
in seconds. We use the settings described in the section 3.1.

box_20_greek animal_spotted
Layout R G B R G B

< 3, 3 > 34.8 26.6 24.5 5.9 6.4 8.1
< 4, 3 > 34.9 26.5 24.4 5.9 6.4 8.2
< 5, 3 > 34.0 26.5 24.0 5.7 6.2 8.0
< 5, 4, 3 > 33.9 26.3 22.2 5.6 6.2 8.1
< 4, 3, 2 > 35.0 26.4 24.3 6.0 6.3 8.4
< 3, 2, 2 > 34.8 26.7 24.4 6.0 6.4 8.3

The first three configurations have only three layers. We assumed that it
would shorten the traversal time. On the other hand, the nodes in the topmost
internal layer are considerably smaller than in the default case. It results in more
elements in the hash table in the root node.

The size of the topmost internal node (in one dimension) in the first configu-
ration is 64 (computed as 3 + 3 to the power of two), in the second configuration,
it is 128, and in the third, it is 256. The number of elements in the root node
cache is quite big for the cube case (we divide the cube grid dimensions with 64),
and it is getting smaller for the other two cases. We see that the time is declining
with the growing size of the nodes.

The other three configurations follow the same pattern. The configurations
number three and four lead to an empty/almost empty cache in the root level
node. The top-level internal nodes in the fourth configuration have a size of 4096
in each dimension, which is a lot bigger than our objects, so we assume it is not
necessary to try any configurations with bigger nodes.

In conclusion, the best performing configuration is the < 5, 4, 3 >, while it
is also the default configuration of the OpenVDB grids. We suspect that it was
selected not only because it offers the best trade-off between the node sizes and
the number of elements in the cache for most volumes but also because it exploits
the constants in the cache hierarchy of modern computers.

At this point, the two approaches for storing the data - the dense grid and
OpenVDB grid - reach similar rendering times, the OpenVDB grid is still slightly
slower. However, its memory footprint can be multiple times smaller, so we opt
for using that instead of the dense grid.

3.4 Using homogeneous media
Reading the grid values presents one of the significant problems of heterogeneous
volume rendering. It overloads the memory with an immense number of accesses,
plus in the case of non-trivial data structures like OpenVDB grids, it brings extra
work tied with traversing those structures. We present various approaches to
reduce the overhead, but it does not vanish completely.

On the other hand, the rendering of homogeneous media, by its very na-
ture, does not have this problem. It uses the same values for albedo and density
throughout the whole medium. Let us see what the difference between the ren-
dering times achieved using the two types of media is. Note that we use single-
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material volumes, so the two algorithms render the same thing. We use the white
and cyan material properties, which are noted in the results table. This test is
just for illustration, so we use only one model.

Table 3.12: Time measurements - homogeneous/heterogeneous. The model is box
with the size 20x20x20. The times are in seconds. We use the settings described
in the section 3.1.

Homogeneous Heterogeneous Diff homo/hetero
Model R G B R G B R G B

Box_20 (white) 69.7 70.1 73.3 80.2 81.1 85.6 0.87x 0.87x 0.87x
Box_20 (cyan) 17.4 22.5 62.4 18.9 26.4 93.8 0.92x 0.85x 0.67x

We can see that there is a measurable advantage to using homogeneous media.
Unfortunately, our application is focused on the optimization of textured objects’
appearance. Therefore the use of heterogeneous media is crucial. However, the
inside of the objects is usually white, and the varying colors are only occupying a
few dozens of surface layers. Based on this fact, we present multiple approaches
that approximate the white core of the object using homogeneous volume.

3.4.1 Inner geometry
OpenVDB [Museth et al., 2012] provides features that allow removing multiple
layers of volume from the surface and then create a mesh based on the shrunk
volume. This mesh can be placed inside the original mesh but with a homogeneous
volume. The thickness of the heterogeneous layer can be controlled by the number
of layers that are removed. We use only a single model, the white cube with the
size 20mm x 20mm x 20mm, since it is enough to demonstrate the capabilities of
the approach (Table 3.13).

Table 3.13: Time measurements - inner geometry. The times are in seconds. We
use the settings described in the section 3.1, except the sample count is 4.

Approach R G B V ertices

Heterogeneous (OpenVDB) 3.2 3.2 3.3 8
Homogeneous 2.8 2.9 3.0 8
Dual (-1.2) 15.1 15.2 15.3 258 754
Dual (-0.6) 11.3 15.2 11.7 296 594
Dual (-0.3) 7.7 7.7 7.6 314 648
Dual (-0.1) 6.7 6.8 6.6 325 736
Only inner 68.2 69.5 63.7 333 234

We intentionally included numbers of vertices of the generated core objects
since it is the primary factor influencing the results - the number of vertices is
huge (consider that the original cube model has only eight vertices).

Moreover, the numbers also grow with the increasing size of the core (a thinner
heterogeneous layer leads to a bigger inner core). This is a critical scaling issue
because for the same model shape, either an unnecessarily detailed core model
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is created when it is larger, or a too coarse model is created when it is smaller.
It is a consequence of the fact that the model is created based on the voxel grid
(that has a resolution dependent on the object size), not on the original triangle
model.

To better understand the poor performance, we also measured the time for
only the generated model filled with the white homogeneous medium. Its render-
ing time is multiple times higher than the reference times. It could be improved
using a faster intersection search system (like Embree), but it is clear that this is
not a correct approach.

The measured times decrease with a thinner heterogeneous layer, which is
what we expected because the ray spends less time in the slower heterogeneous
medium. However, we suspect that there is also another reason - the differ-
ence between references for the homogeneous and heterogeneous medium is about
20%. However, the difference between the thickest and the thinnest layers is al-
most twofold. It is probably an outcome of differences between the intersection
searches in the two configurations, but we are not aware of the Mitsuba intersec-
tion algorithm details [Jakob, 2010].

There are also other potential problems, apart from poor performance. The
first one is that if there are more colorful layers than the heterogeneous layer
thickness threshold, they are not rendered. In this case, the optimization process
would fail since it usually adds colors to lower layers to get more saturated colors.
It would have to be either computed dynamically, based on the colors in the grid
or set to a very conservative value. The second issue is that the approach relies
on the correct reconstruction of the shrunk geometry in all possible use cases - it
is a strong assumption regarding the fact that the optimization pipeline could be
used in production.

3.4.2 Approximation using distance field and gradients
After the failure of the method using additional geometry, we provide a more
lightweight solution using two additional grids - distance grid saving the distance
to the closest surface for each voxel and distance gradient grid, which saves the
gradients of the distance grid. The idea is that based on the distance to the
surface, we decide whether the current scattering event is far enough to be in the
homogeneous white core. The gradients are used to decide whether the sampled
direction goes towards the surface or deeper inside the object to help the decision
process and reduce bias. Unfortunately, even in the homogeneous core, we have to
use the heterogeneous version of the transmittance evaluating function because it
always reaches the surface layers - it is used for the direct illumination evaluation.
In our case, the (environment) light is always outside the object, so it crosses the
medium interface.

Due to the high frequency of the grid lookups, we inlined the OpenVDB
grids into the medium plugin (even though the difference is negligible). For
the measurements, we do the same in the Woodcock tracking plugin, so the
comparison is fair.

We present two versions of the algorithm - the first is based solely on the
distance to the surface, there is a hard threshold between the homogeneous and
the heterogeneous medium. The advantage is that it only requires one additional
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grid lookup compared to the heterogeneous algorithm. The disadvantage is the
possible bias - first, there can be colorful voxels below the threshold.

Second, the sampled ray can point towards the surface, so even if it starts
in the homogeneous part, the sampled point can be in the heterogeneous part.
Therefore a fraction of the distance in the heterogeneous part is incorrectly con-
sidered homogeneous. For this reason, we add a maximum expected step length
to the threshold. Of course, the step length is potentially infinite, but we deter-
mined the threshold in a way that is safe in 95% of cases - for the minimum white
density, it is 0.25. For the depth threshold, we use the values 1.0 and 1.5, cor-
responding to 12 and 18 layers, respectively. The depth at dark areas and edges
can be up to 20 layers, so the depth of 1.5 is still not enough, while the depth of
1.0 could be only used for bright textures with mild edges. We intentionally set
the depth less conservatively so that the algorithm can compete with the purely
heterogeneous medium.

To avoid the extension of the threshold, we employ the distance gradient grid,
which tells us where the ray is headed. The most straightforward option would be
first to check the threshold and then compare the gradient dot product and the
ray direction with zero. If it is below zero, it goes inside the object. Otherwise,
it goes back to the surface, and the volume has to be treated as heterogeneous.
However, this way, we would throw away an opportunity to use homogeneous
volumes with the rays going sideways and slightly to the surface. Therefore we
use the following steps

cosine = cos(gradient, ray.d)
directDistanceToBorder = THRESHOLD - distance
realDistanceToBorder = directDistanceToBorder / cosine
isHomogeneous = distance < THRESHOLD &&

(cosine <= 0.0 && realDistanceToBorder > MAX_STEP)

where the gradient and distance values are obtained from the grids, THRESH-
OLD, and MAX_STEP are constants described above.

This version requires additional lookups in two grids plus a few arithmetic
instructions. To reduce the overhead, we merge the distance and the distance
gradient grids into one grid containing four-element vectors (three for gradient,
one for distance).

Unfortunately, using the distance gradient grid does not eradicate the bias
as well. The problem is with curved surfaces, where the sideways going ray can
enter the heterogeneous zone sooner than in the case of a flat surface. The bias
there would be locally dependent, which is more dangerous for the optimization
than the bias that is constant over the whole surface because it would incorrectly
compensate for the dark/bright spots.

In the tests (Table 3.14), we use the white texture to match the white homo-
geneous core to get results that mirror the improvement/overhead of the method.
If there were a colorful surface, the incorrect estimate of the homogeneous-
heterogeneous interface would also distort the time measurements due to the
lower albedo of colorful materials. Again, we use only the two contrasting models
for simplicity.
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Table 3.14: Time measurements - homogeneous core approximation. The ra-
tio is homogeneous/heterogeneous calls. The approach configuration is noted as
(THRESHOLD, MAX_DEPTH). We use the settings described in the sec-
tion 3.1.

Time Diff with base
Model Approach R G B R G B Ratio

Box_20_white Heterogeneous 80.0 80.8 85.4 - - - -
Simple (1.0, 0.25) 83.1 83.6 83.7 +3.1 +2.8 -1.7 7.9
Simple (1.5, 0.25) 83.4 83.5 83.8 +3.4 +2.7 -1.6 25.0
Complex (1.0, 0.25) 84.0 83.6 84.6 +4.0 +2.8 -0.8 5.0
Complex (1.5, 0.25) 86.1 85.9 85.2 +6.1 +5.1 -0.2 15.5

Animal_white Heterogeneous 10.8 12.0 12.6 - - - -
Simple (1.0, 0.25) 11.2 12.0 13.2 +0.4 0.0 +0.6 46.0
Simple (1.5, 0.25) 11.0 12.0 13.0 +0.2 0.0 +0.4 670.0
Complex (1.0, 0.25) 11.4 12.6 13.2 +0.6 +0.6 +0.6 26.0
Complex (1.5, 0.25) 11.5 12.7 13.4 +0.7 +0.7 +0.8 230.5

We include the ratios of the homogeneous and heterogeneous calls. Expect-
edly, the depth threshold 1.0 leads to more homogeneous calls than 1.5. Similarly,
the more sophisticated version of the algorithm increases the portion of such calls.

However, none of the algorithms matched the reference times set by the pure
heterogeneous medium algorithm. The gain from the occasional homogeneous
version calls does not make up for the overhead brought by the additional grid
lookups and arithmetic operations. The necessary heterogeneous layer is too thick
- the best achieved ratio is 1 : 5, so the homogeneous calls occur only in less than
20% of cases.

3.5 Regular tracking
Regular tracking is usually in the shadow of the modern heterogeneous medium
tracking algorithms due to the properties mentioned in the section 2.1.6 - it is
considerably slower, and it has higher requirements on the medium (piecewise
constantness) and on the API of the medium implementation (it needs a function
that can query the piecewise constant areas along the ray).

However, we have a considerable advantage. Having the OpenVDB grids under
complete control, we can assume that the volume is piecewise constant (the grid
has a finite resolution). Therefore, we can determine the constant parts of the
volume, which can be either voxels or nodes in the tree. Therefore, it allows us to
use the works of Amanatides and Woo [1987], and Museth [2014], who propose
methods for simple and hierarchical grids traversal, respectively. We plan to take
advantage of the fact that OpenVDB trees can contain constant values higher up
in the hierarchy [Museth et al., 2012], therefore for the whole area respective to
the constant node, only one transmittance computation is necessary instead of
one for each voxel in the node.

This algorithm has one property that other mainstream algorithms lack - it
computes the transmittance precisely (unlike, e.g., ray marching or woodcock
tracking). It could help us reduce the variance. This property is particularly
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interesting for evaluating the transmittance between two points in the medium
because the basic Woodcock algorithm provides only a binary answer - the trans-
mittance is either 0 or 1, depending on whether a scattering event occurs during
the tracking on the ray segment or not. Ratio Tracking [Novák et al., 2014] is an
improvement, but it is under a patent.

It will become clear from the measurements that bigger constant tiles are
not very frequent. The additional overhead of dealing with the varying size of
constant areas in the volume obliterates the occasional gain from constant tiles.
However, we value the ability to evaluate the transmittance of a ray segment,
so we also implement the simple version of the traversal algorithm proposed by
Amanatides and Woo [1987].

3.5.1 DDA & HDDA in OpenVDB
Both the simple [Amanatides and Woo, 1987] and the hierarchical [Museth, 2014]
algorithms are implemented in the OpenVDB library [Museth et al., 2012] - they
are marked as DDA and HDDA, respectively. However, the HDDA algorithm is
provided only as an algorithm for finding ray segments inside the active part of
the volume. We need to distinguish not only active and inactive voxels but also
the density of the active voxels. Therefore we only use this implementation as an
inspiration, while the DDA is used without major changes. Now, let us describe
these algorithms in more detail.

DDA

DDA can be split into two parts - initialization and step. For better understand-
ing, we provide pseudo-code for both.

init(ray)
{

t = 0
voxel = castToVector3i(ray.origin)
for (axis in x,y,z)
{

if (ray.dir[axis] > 0)
{

next[axis] = (voxel[axis] + 1 - ray.origin[axis]) /
ray.dir[axis]

step[axis] = 1
}
else
{

next[axis] = (voxel[axis] - ray.origin[axis]) /
ray.dir[axis]

step[axis] = -1
}
delta[axis] = step[axis] / ray.dir[axis]

}
}
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The voxel variable holds the current voxel in grid coordinates. Note that the
grid points are treated as the voxel centers, not the corners of the voxel cube.
The step vector holds the voxel index change in the case of a movement in a
particular axis. The delta vector represents the portion of the ray (in t units)
traversed when the algorithm moves one voxel in the respective axis. The next
vector holds the distance (in t units) that the vector needs to traverse to reach
the closest voxel wall in the respective axis (e.g., in the z-axis, the closest upper
wall needs to be reached).

step()
{

stepAxis = minIndex(next)
tOld = t
next[stepAxis] += delta[stepAxis]
voxel[stepAxis] += step[stepAxis]

return t - tOld
}

The step function is straightforward. It first selects the stepAxis as the next
vector element, which has the lowest value. It means that the ray starting at
the position ray(t) and direction ray.dir has the shortest distance to the voxel
boundary in the selected axis. Then the next vector and voxel are updated
according to the selected axis. The function returns the distance traveled in the
units of the ray direction length.

The step function is lightweight, and it provides high performance since it
only consists of a few arithmetic operations.

HDDA

OpenVDB [Museth et al., 2012] provides functions to search for a tree node of a
given depth level containing a particular voxel. The HDDA uses the function to
check whether such a node exists in the tree. If it does, the node is not constant,
and the HDDA needs to continue on a lower tree level. Otherwise, DDA is called
on the current level, meaning that it has a voxel size corresponding to the current
level’s node size.

The algorithm’s details are not relevant to us (since it is used only for active
voxel lookup). It is also quite complicated (the calls to lower levels are done using
a recursive call to an instance templated to the next lower level of the tree), so
we are not providing pseudo-code here.

3.5.2 Our implementation
Each Mitsuba medium has to offer two crucial functions - evalTransmittance for
evaluation of transmittance on a given ray segment and sampleDistance for sam-
pling a scattering event along the given ray direction [Jakob, 2010]. As previously
mentioned, we offer two versions of the regular tracking algorithm, the simple ver-
sion using the basic DDA and the hierarchical version.
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Simple version

Both the functions create a DDA instance with the given ray origin and direction
and then call the step function in a loop until one of the finishing criteria is
met. Having transformed the (normalized) ray from the world to grid coordinates
without follow-up normalization ensures that the distance in t units returned
from the step function corresponds to the real distance in the world coordinates.
Therefore, the ray segment’s transmittance corresponding to the step can be
obtained as an exponent of the distance and the voxel density.

The evaluateTransmittance function accumulates the transmittance over the
whole ray segment, so the loop is stopped only when the DDA oversteps the ray
maximum t value.

The sampleDistance function first randomly selects a desired transmittance
according to the exponential distribution. Then it tries to locate the point such
that the transmittance between the ray origin and this point equals to the desired
transmittance. Again, the DDA is used, but with one difference - there are two
stopping criteria (either the desired transmittance is met, or we find out that the
ray is not long enough to gather such transmittance).

Hierarchical version

Same as the OpenVDB HDDA algorithm [Museth et al., 2012], we also take ad-
vantage of the function for finding a node on a specific layer of the tree containing
a given voxel. However, we start from the leaf layer and move only to the lowest
internal node layer in case of failure. When the searches in the two lowest layers
do not find any node, we claim that the current constant area has only the size
of one unit voxel. There are multiple reasons for this. The most important one
is that the recursive multi-layer approach is not worth the overhead it brings
since the nodes of the higher layers are rare in our volumes. For example, in the
classic < 5, 4, 3 > configuration, the size of the second smallest internal node is
128x128x128. Even if there were such a large constant node in the volume, the
sampleDistance function would not traverse the whole node since the sampled
distance usually covers less than ten voxels (the large constant areas are mostly
white, and the white material has very high density). Although this might save
considerable time in the evalTransmittance function, we eventually optimize-out
the calls of this function for larger distances in the path tracer.

Hence the tree probing has only three possible outcomes
• the probe function finds a node on the leaf layer, meaning that the portion

of the volume respective to this node is not constant, and it will be traversed
using the basic DDA

• leaf node is not found while the node in the next higher layer is found,
meaning that there is a constant chunk of the volume with the size of leaf
node - its transmittance can be therefore computed in closed form knowing
the ray segment length that we obtain using a single-step version of the
DDA algorithm

• both the nodes are not found, leading us to the constant area with unit
voxel size where we also can compute the transmittance in the same way
as above
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Apart from this, the algorithm is similar to the simple version.

3.5.3 Measurements
Unlike the previous chapters, here we also measure the variance of the images
along with the rendering times. In theory, regular tracking should perform better
than the conventional algorithms because the distance sampling is exactly pro-
portional to the transmittance and the transmittance evaluation is precise [Novák
et al., 2018]. In order to have a clear view of the regular tracking performance,
we provide analysis of the call frequency ratio between the sampleDistance and
evalTransmittance methods and measurements of the average distance traversed
in the functions. We use multiple OpenVDB layouts as well.

We use the cube with the size 20x20x20 millimeters, a rather thick model with
little detail and no thin parts other than corners, so the rays are getting deeper
inside the volume. Second, we employ the small animal model, which has much
thin geometry, and the ray cannot get deep inside the medium. To observe the
effect of density and albedo, we use entirely white and colored textures for both
models.

Function call frequency

The two functions, sampleDistance and evalTransmittance, are used for different
purposes. Measuring their call frequency, we see the influence they have on the
result rendering times. We use two of the basic volumetric path tracing algorithms
provided by Mitsuba [Jakob, 2010], volpath, and volpath_simple.

In the case of volpath_simple, the call ratio of evalTransmittance and sam-
pleDistance is roughly 1 to 5M (box_20_white) and 1 to 100k (animal_spotted).
In the case of volpath, the calls are roughly 1 to 1.

The sampleDistance function is used to determine how far is the next scat-
tering event. This is the basic building block of volumetric path tracing. Hence
it is frequently used in both implementations.

The evalTransmittance function is used in the next event estimation (NEE)
algorithms to compute the transmittance from the current scattering point to
the light source. The volpath algorithm uses the NEE as a part of the MIS. We
can see that both the functions are called roughly with the same frequency. On
the other hand, the volpath_simple algorithm does not implement MIS, and the
evalTransmittance is called only on exceptional occasions.

Mean ray segment length

The distance traversed in the medium and the consequent number of voxels has
arguably a massive influence on the overall runtime. To better understand the
measured rendering time results, we start with the analysis of this distance. Based
on the measurements from the previous chapter, we only use the volpath plugin -
the volpath_simple uses the evalTransmittance function only occasionally, so we
would not get realistic results.
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Table 3.15: Mean traversed distance in mm (Red channel). We use the settings
described in the section 3.1.

Model evalTransmittance sampleDistance

Box_white_20 8.63 0.15
Box_greek_20 10.82 0.20
Animal_white 1.9 0.14
Animal_spotted 2.0 0.15

The results are somewhat intuitive (Table 3.15). The sampled distance is
proportional to the transmittance. Therefore the values are relatively low because
of the high material density. On the other hand, the evalTransmittance function
is called from arbitrary points in the medium, so the distance to the surface may
be huge. We can also see that the distance measured for this function is much
higher for the box model. As we already mentioned, the reason is that the model
is thicker, allowing the rays to go further from the surface. Another interesting
observation is that the distances are always higher with colorful textures. It is
expected for the sampleDistance function simply because the white material has
a higher density than the other materials. At first glance, it is not clear why
the distances are higher for the colorful textures even for the other function - the
distance there depends on the distance to the surface, it is not determined by the
density in any way. We believe that the reason is that in a less dense medium,
the ray will get deeper inside the medium sooner, increasing the average distance
to the surface.

Now let us consider Beer’s law. It states that in a homogeneous medium,
the transmittance between two points equals e−σtd. The density of the white
material for the R, G, and B channels is 6.0, 9.0, and 24.0 (mm−1), respectively.
Even for the least dense channel (red), with the average evaluated distance of
the evalTransmittance function being roughly 2.0, the transmittance is approxi-
mately 6.10−6. It is clear that the contribution of the function is negligible while
the computation time for such a long distance is vast. Therefore we decided to
measure the rendering times using only the volpath_simple plugin, which practi-
cally does not call this function. Of course, we could engineer a simple heuristic
that would decide whether it is worth calling this function based on the distance.
However, we rather postpone this to the chapter about the optimization of the
path tracing algorithm. There we deal with the optimal usage of this function
with regard to its contribution to the overall result. The measurements com-
paring both the regular tracking approaches combined with a path tracer that
frequently calls evalTransmittance are in the section 4.4.

Variance levels measurement

In this chapter, we present results of variance level measurements comparing the
regular tracking with the Woodcock tracking. The variance levels are the same
regardless of the regular tracking algorithm (simple or hierarchical), so we provide
only one set of results. The ground truth image was rendered using 1000spp.
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Table 3.16: Image variance (Red channel). We use the settings described in the
section 3.1.

Model Regular tracking Woodcock tracking

Box_white_20 0.0318510 0.0319084
Box_greek_20 0.0005042 0.0005042
Animal_white 0.0141845 0.0154023
Animal_spotted 0.0008501 0.0008542

The results show that the regular tracking is slightly better in the case of
colored textures (Table 3.16). It is expected since the regular tracking precisely
captures the colors of all voxels along the ray. In completely white volume, the
algorithms achieve similar results. Note that only the behavior of sampleDistance
function was observed here. The evalTransmittance is not used as we do not have
a path tracing algorithm that would use it in an optimal way yet. We will provide
a comparison of this function’s performance later (see the section 4).

Time measurements

Finally, we provide the measurements of regular tracking rendering times and
their comparison to those achieved using Woodcock tracking (Tables 3.17 and
3.18). We measure both the simple and the hierarchical implementation of the
regular tracking algorithm. For the hierarchical implementation, we try vari-
ous OpenVDB grid layouts. To better understand the results, we also provide a
frequency observation of the three tree probing function outcomes (see the Hier-
archical version chapter). The third case is rare (rounded to 0%), so we do not
include it in the table.

Same as in the section 3.4.2, here we also inline the OpenVDB grid into the
medium plugins.

Table 3.17: Different OpenVDB grid layouts - hierarchical regular tracking. The
times are in seconds. The last two columns are the percentages of the tree probing
function outcomes (see the section 3.5.2). We use the settings described in the
section 3.1.

Time Tree probing case
Model Layout R G B DDA Tile

Box_white_20 < 5, 4, 4 > 103.2 105.1 110.7 60.0% 40.0%
< 5, 4, 3 > 99.5 102.2 104.5 28.0% 72.0%
< 5, 4, 2 > 96.3 101.7 101.4 8.0% 92.0%

Box_greek_20 < 5, 4, 4 > 44.3 34.3 28.9 85.0% 15.0%
< 5, 4, 3 > 47.9 37.2 31.5 84.0% 16.0%
< 5, 4, 2 > 50.6 39.1 32.0 84.0% 16.0%

Animal_white < 5, 4, 4 > 13.1 14.1 15.4 80.0% 20.0%
< 5, 4, 3 > 12.7 13.9 15.1 54.0% 46.0%
< 5, 4, 2 > 13.0 13.7 14.9 41.0% 59.0%

Animal_spotted < 5, 4, 4 > 6.2 6.8 9.1 99.9% 0.1%
< 5, 4, 3 > 6.3 6.9 8.9 99.5% 0.5%
< 5, 4, 2 > 6.1 6.8 8.9 76.0% 24.0%
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Table 3.18: Time measurements - Regular tracking/Simple regular tracking/
Woodcock tracking. The times are in seconds. We use the settings described
in the section 3.1.

Time Diff with base
Model Algorithm R G B R G B

Box_20_white Woodcock 80.0 80.8 85.4 - - -
Regular simple 87.6 90.4 88.0 +7.6 +9.6 +2.6
Regular 99.5 102.2 104.5 +19.5 +21.4 +19.1

Box_20_greek Woodcock 33.7 26.1 22.0 - - -
Regular simple 37.6 28.8 22.8 +3.9 +2.7 +0.8
Regular 47.9 37.2 31.5 +14.2 +11.1 +9.5

Animal_white Woodcock 10.8 12.0 12.6 - - -
Regular simple 11.8 13.0 14.2 +1.0 +1.0 +1.6
Regular 12.7 13.9 15.1 +1.9 +1.9 +2.5

Animal_spotted Woodcock 5.5 6.1 8.1 - - -
Regular simple 6.2 6.7 8.2 +0.7 +0.6 +0.1
Regular 6.3 6.9 8.9 +0.8 +0.8 +0.8

The frequencies of constant vs. non-constant node occurrences in the tree
probing function behave as expected. Smaller leaf nodes have a bigger chance
to be constant. Also, less detailed or single-color textures lead to more constant
nodes. Similarly, a grid filling a less complicated object tends to contain more
constant nodes. The animal model with the spotted texture allowed more con-
stant nodes when their size got smaller since the texture has quite large plain
areas. However, the greek vase texture is not friendly to constant nodes of any
size because of the high frequency of its details.

In all layout tests, there are only a few cases where neither the leaf node nor
the lowest internal node is found, meaning that there are no higher-level nodes
and very few edge cases. We suppose that the OpenVDB tree pruning function
[Museth et al., 2012] does not create higher-level nodes. We verified it using the
< 5, 2, 2 > configuration, where we added a branch inquiring about the level 2
node, in case the level 0 and level 1 nodes were not found - the level 2 node
search never succeeded (the results for the < 5, 2, 2 > config are the same as for
the < 5, 4, 2 > config, so we do not include them in the table). We decided not
to pursue this further since the algorithm cannot compete with the simple DDA
algorithm regardless.

Regarding the time measurements, there is no outright winner among the
grid layouts. In general, more constant nodes improve the performance since
multiple voxels can be skipped, and the transmittance of the ray segment inside
the whole node can be computed analytically. On the other hand, the smaller the
constant nodes are, the fewer voxels are skipped. Based on the measurements,
we can conclude that these two implications go against each other. For example,
the < 5, 4, 2 > layout with leaf nodes of the size 4x4x4 performs better with
the animal model with the white texture because of the higher constant node
ratio (compared to the default < 5, 4, 3 > layout). However, it also performs
worse with the cube model with the detailed texture because the constant node
rate does not improve, while the performance gain brought by traversing a single
constant node is reduced. In conclusion, unless we know the exact use case in
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terms of texture and geometry details, we cannot pick one of these layouts.
Compared to the simple regular tracking implementation, all of the layouts

perform worse. The difference is more significant when the colored texture is used,
as there is not much gain from the constant nodes while the overhead of the whole
mechanism is still present. Similarly, both the regular tracking implementations
are slower than Woodcock tracking.

3.6 Path tracing optimization
General-purpose renderers, including Mitsuba [Jakob, 2010], implement path
tracing in a way that it renders correctly basically any scene, and it is optimized
in a way that most of the common cases are reasonably fast. The consequences
are that the code needs to handle multiple exceptional cases. There are vari-
ous techniques where not all of them are efficient in particular use cases. The
configuration constants are selected in such a way that they work well with most
scenes, but they are not optimal in any of them. On the other hand, we can afford
multiple strong assumptions about the rendered scene (see the section 1.1.2.

Based on these, we develop a Mitsuba plugin focused primarily on the render-
ing of scenes that comply with these assumptions. We will describe the particular
improvements step by step while proving their contribution using various mea-
surements. The target is cutting the rendering time, suppressing the variance,
and increasing the overall image quality.

3.6.1 General simplifications and improvements
We base our plugin on the Mitsuba plugin volpath_simple [Jakob, 2010], a sim-
ple unidirectional path tracer without the MIS. The first step is to remove the
unnecessary versatility that Mitsuba offers and use assumptions provided by our
single-object scenes. Combining this with a few other simplifications, we get a
more compact code where we implement more complex optimization ideas. In
this chapter, we describe the changes incrementally and then provide the pseu-
docode of the final algorithm as well as the performance comparison with the
original plugin.

Removing unnecessary branching and radiance query versatility

The plugin offers a system of enums that allow customizing the radiance query
by turning on/off the direct and indirect illumination or emission. We do not
need this functionality, so we remove it and save a few conditional jumps in the
code. Furthermore, we get rid of the complicated system of depth computation -
according to the code commentary, it is engineered to match the output of other
integrators. It is not necessary for us since we use very high maximum depths
(> 100). Finally, we remove the direct illumination computation entirely until
we find an efficient heuristic for transmittance evaluation in such dense media.

No reentering object specialization

The path of a ray traced with no reentering can be split into two parts
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• outside the object - single path segment because there are no obstacles
between the camera and the object. Of course, not all rays hit the object.
In case a ray misses the object, the tracing finishes right away.

• inside the object - usually multiple segments, the tracing ends with the ray
hitting (the inner side of) the geometry and refracting outside. When the
ray reflects on the object interface, the tracing continues.

Consequently, we know exactly when we hit the inner and when the outer
side of the object without testing. It is also unnecessary to compute the reflected
ray on the outer side and the refracted ray on the inner side because these cases
result in the ray termination.

Note that this modification slightly changes the results, more in the section
4.4.

BSDF and phase function inlining

Mitsuba BSDF plugins [Jakob, 2010] provide the sample function that takes inter-
section data (and the random sampler). Simultaneously, the output is the number
of variables, among which is the output ray direction and the corresponding pdf.
In our conditions, the (smooth) dielectric plugin is the best choice. It computes
the Fresnel reflectance. Based on that, it randomly decides between reflection
and refraction, computing the outgoing ray using a simple geometric formula as
the surface is perfectly smooth.

It seems that it cannot get easier than this. However, we split this and first
compute the Fresnel reflectance. Then we decide whether the ray should con-
tinue (as described in the previous chapter), and only if it does, we compute the
outgoing direction. For this, we need to violate the strict plugin structure of Mit-
suba and directly use the functions for Fresnel evaluation and reflection/refraction
computation. As a side effect, we dodge the filling of the Mitsuba BSDF record
with unnecessary data and the virtual plugin call.

Similarly, we inline the functions for the Heyney-Greenstein phase function
evaluation. Besides the advantages applying to the BSDF case, the sampling
function always returns 1, so we can avoid the throughput multiplication.

Coordinates transformation

The phase function sampling needs to build the orthonormal basis to transform
the sampled direction from the local to the world coordinate system. Profiling
the CPU usage during the rendering, we learned that this operation is quite
costly. We replaced the basic formula for creating the orthonormal basis with the
improved version of the Frisvald formula proposed by Duff et al. [2017].

The pseudocode of the modified path tracing algorithm looks as follows.

if (!rayIntersect(ray, its))
return irradiance // missed the object

<compute Fresnel F for the incoming ray>
if (nextRandom() < F)

return irradiance // reflect back outside
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ray = refract(ray)
medium = its.getInsideMedium()

while (depth++ < maxDepth)
rayIntersect(ray, its)
ray.maxt = its.t // sample only up to the inner surface hit

// sample medium
if (medium->sampleDistance(ray, mediumRecord)

throughput *= mediumRecord.sigmaS *
mediumRecord.Tr /
mediumRecord.pdfSuccess

phaseRecord = phase.sample(ray.d)
ray = Ray(mediumRecord.p, phaseRecord.wo)

else // hit inner surface
throughput *= mediumRecord.transmittance /

mediumRecord.pdfFailure

<compute Fresnel F>
if (nextRandom() > F)

Li += throughput * irradiance // exit the object

ray = reflect(ray)

<Russian roulette based on the throughput>

return Li

Note that it yields the same results as the original plugin (up to some differ-
ences listed in the section 4.4, which do not influence the variance level), so it is
unnecessary to compare variance.

Table 3.19: Time measurements - Original/optimized path tracing. The times are
in seconds. Settings - from the section 3.1, except we use the custom integrator,
Woodcock tracking with the inline OpenVDB grid as the medium plugin.

Original Optimized Speedup
Model R G B R G B R G B

Box_white_20 80.0 80.8 85.4 44.0 43.1 43.9 x1.81 x1.87 x1.95
Box_greek_20 33.7 26.1 22.0 18.3 12.9 8.9 x1.84 x2.02 x2.47
Box_white_10 19.4 19.7 20.0 10.4 10.4 11.0 x1.87 x1.89 x1.82
Box_greek_10 8.0 6.2 5.3 4.4 3.2 2.3 x1.82 x1.94 x2.30
Animal_white 10.8 12.0 12.6 5.7 6.0 6.7 x1.89 x2.00 x1.88
Animal_spotted 5.6 6.1 8.1 2.8 3.0 3.9 x2.00 x2.03 x2.08

The performance of the specialized path tracer easily outperforms the original
one in each testing setup, irrespective of geometry or textures (Table 3.19).
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Note that this is the first time the optimizations put restrictions on the scene
or plugins. Up to this point, the optimized plugins could render any valid Mit-
suba scene [Jakob, 2010] correctly. Here, we can only render scenes with a limited
geometry content with a smooth dielectric surface and a medium with the Hayney-
Greenstein phase function. Some of these restrictions can be lifted while keeping
the performance benefits of the other improvements (e.g., enabling rough sur-
faces). The others (like allowing nested geometry or supporting self-shadowing)
do not make sense in the kind of rendering that we do.

3.6.2 Russian roulette
The algorithm presented in the previous chapter gets the radiance contribution
only in two cases - when the ray reflects at the first intersection or when it reaches
the surface from the inner side and refracts outside of the object. The first case’s
occurrence is very low, considering that the Fresnel term for perpendicular rays
(the rendering used for the optimization shoots rays orthogonal to the surface) is
only about 0.04.

Let us look at the average length of the path that reached the surface using
the default Russian roulette setup, which computes the survival probability as
the current throughput clamped to [0.0, 0.95]. We measure the average depth
of the exiting path and the path reaching the surface for the first time - the ray
may reflect back inside without gaining any radiance, so the second numbers are
lower (Table 3.20).

Table 3.20: Average path length (number of scattering events) - medium exit or
first inner surface hit. Settings - from the section 3.1, except we use the custom
integrator, Woodcock tracking with the inline OpenVDB grid as the medium
plugin.

Model Medium exit F irst inner surface hit

Box_white_20 11.27 7.60
Box_greek_20 4.98 3.74
Animal_white 10.41 6.81
Animal_spotted 5.96 4.30

Note that a ray with a substantial throughput (1 <) in the white cube has
only a 68% (0.957.6) chance of reaching the surface and only a 56% (0.9511.27,
not considering the inner reflection probabilities) chance of bringing a contribu-
tion because of the Russian roulette clipping. Based on this knowledge, we test
multiple configurations of the Russian roulette with the target to minimize the
terminating of high-throughput rays before they manage to yield a contribution
(Tables 3.21 and 3.22).
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Table 3.21: Time measurements - various Russina roulette configs. The times are
in seconds. Settings - from the section 3.1, except we use the custom integrator,
Woodcock tracking with the inline OpenVDB grid as the medium plugin.

Time Slowdown
Model Config R G B R G B

Box_white_20 0.95 44.0 43.1 43.9 - - -
0.99 99.6 101.2 102.8 x2.26 x2.35 x2.34
0.99, min 10 110.5 112.4 115.2 x2.51 x2.61 x2.62

Box_greek_20 0.95 18.3 12.9 8.9 - - -
0.99 24.8 14.8 9.2 x1.36 x1.15 x1.03
0.99, min 10 37.1 19.9 13.2 x2.03 x1.54 1.48

Animal_white 0.95 5.7 6.0 6.7 - - -
0.99 10.8 12.8 15.3 x1.89 x2.13 x2.28
0.99, min 10 12.3 14.2 16.9 x2.16 x2.37 x2.52

Animal_spotted 0.95 2.8 3.0 3.9 - - -
0.99 3.2 3.8 6.3 x1.14 x1.27 x1.62
0.99, min 10 4.6 5.7 9.5 x1.64 x1.90 x2.44

Table 3.22: Variance levels - various Russian roulette configs (red channel). The
variance improvement is for the equal rendering time. Settings - from the section
3.1, except we use the custom integrator, Woodcock tracking with the inline
OpenVDB grid as the medium plugin.

Config Model V ariance V ariance improvement

Box_white_20 0.95 0.0319084 -
0.99 0.0013460 x10.49
0.99, min 10 0.0011269 x11.28

Box_greek_20 0.95 0.0005042 -
0.99 0.0003204 x1.15
0.99, min 10 0.0002612 x0.95

Animal_white 0.95 0.0154023 -
0.99 0.0010715 x7.61
0.99, min 10 0.0008714 x8.18

Animal_spotted 0.95 0.0008542 -
0.99 0.0005238 x1.43
0.99, min 10 0.0004512 x1.15

In most cases, the algorithms with longer paths achieve better results than
the original configuration. The difference is more significant in the cases where
the average path length is longer. It is expected as the probability of reaching
the surface is lower, and the less strict Russian roulette has more room for im-
provement. Furthermore, we observe that the configuration which does not apply
the Russian roulette at all in the first ten iterations is slightly worse than the one
with the same maximum probability without that, in case of colored textures. We
assume that it is because while the < 0.99 > configuration sets only the upper
limit for the probability, effectively terminating rays with low throughput, the
< 0.99, min 10 > configuration lets them continue for the first ten iterations
even with low throughput, leading to the lower effectivity.
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We will compare the visual quality of the images in the section 4 since there
are more improvements in the following chapters that reach the same variance
level using fewer samples per pixel. There may be a concern that using fewer
samples could lower image quality even if the variance stays the same.

3.6.3 Fresnel term
We can take the path prolonging even further with the following idea. From the
average depth measurements in the previous chapter, it is evident that even when
a ray reaches the surface, it does not always acquire a contribution because it
reflects back inside. However, instead of randomly reflecting or refracting, we can
do both and weigh the contributions of both options by the Fresnel term. Note
that this does not lead to an actual branching as the refracted ray is immediately
terminated. In practice, this means that the throughput of the ray reflecting back
inside is multiplied by the Fresnel term F.

The performance penalty of this approach is that the paths are longer, and
it takes more time to trace them. Nevertheless, the Russian roulette is applied
right after, so if there is a ray with a low throughput due to the multiplication
by a low F, it is probably terminated.

On the other hand, the average depth where the rays obtain a contribution is
lower, and the resulting image should be less noisy since we removed an element of
randomness. Moreover, the ray which hit the surface from the inner side probably
continues near the surface and hits it again. So it should be more worthy of being
traced than a ray further from the surface.

A similar idea can be applied at the first geometry intersection, where the
ray is either reflected in the environment or refracted inside the object. Since
we immediately know the contribution of reflected rays (1, the color of the envi-
ronment), we are interested only in the refracted ray. We can always refract the
rays and multiply their throughput by 1 - F while add F * environment color to
compensate for the reflected rays.

The rendering time measurements are in the Table 3.23.

Table 3.23: Time measurements - without/with the Fresnel optimization. The
times are in seconds. Settings - from the section 3.1, except we use the custom
integrator, Woodcock tracking with the inline OpenVDB grid as the medium
plugin.

Without With Diff
Model R G B R G B R G B

Box_white_20 99.6 101.2 102.8 106.8 108.0 110.3 +7.2 +6.8 +7.5
Box_greek_20 24.8 14.8 9.2 25.3 15.7 9.4 +0.5 +0.9 +0.2
Animal_white 10.8 12.8 15.3 11.4 13.5 16.1 +0.6 +0.7 +0.8
Animal_spotted 3.2 3.8 6.3 3.4 3.9 6.4 +0.2 +0.1 +0.1
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Table 3.24: Variance levels - without/with the Fresnel optimization. The variance
improvement is for the equal rendering time. Settings - from the section 3.1, ex-
cept we use the custom integrator, Woodcock tracking with the inline OpenVDB
grid as the medium plugin.

Model V arianxe without V arianxe with V ariance improvement

Box_white_20 0.0013460 0.0012285 x1.17
Box_greek_20 0.0003204 0.0001945 x1.68
Animal_white 0.0010715 0.0010925 x1.04
Animal_spotted 0.0005238 0.0004192 x1.33

We present the variance improvement adjusted for the rendering time differ-
ence (Table 3.24). In the case of the white texture, the variance is very similar.
The colorful textures bring more apparent differences. This contradicts the pre-
vious chapter results, where longer paths lead to more significant improvement,
especially with the white texture.

The fact that the rendering times do not differ that much can be explained
by two facts. First, the Fresnel reflectance at the surface hit from the outside is
minor (0.04) because the rays are shot in the perpendicular direction. Second,
the rays reflected from the surface usually do not get far enough to hit the surface
again since the multiplication of their throughput by the Fresnel reflectance leads
to their early termination by the Russian roulette.

3.6.4 Switching geometry intersection and medium sam-
pling

The PBRT book [Pharr and Humphreys, 2010] suggests: “In scenes with very
dense scattering media, the effort spent on first finding surface intersections will
often be wasted, as Medium::Sample() will usually generate a medium interac-
tion instead. For such scenes, a more efficient implementation would be to first
sample a medium interaction, updating the ray’s tMax value accordingly before
intersecting the ray with primitives in the scene. In turn, surface intersection
tests would be much more efficient, as the ray to be tested would often be fairly
short.”

Our medium density is considered especially dense, so we take advantage of
this idea. It is simple in terms of implementation complexity. Moreover, it does
not change the result, only the rendering time, so we do not have to inspect the
variance levels.

As expected, the difference gets more significant with the growing vertex count
of the geometry. Ranging from 10% for the simple cube model to 300% rendering
time cut for a complicated bone model, this seems to be a worthy improvement
(Table 3.25).

We did not inspect the details of the Mitsuba ray intersection system [Jakob,
2010], and we did not try to optimize it in any way since the changes would
probably not be applicable elsewhere. There are production-ready solutions like
Embree, which would be used instead.
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Table 3.25: Time measurements - without/with the medium sampling optimiza-
tion. The times are in seconds. Settings - from the section 3.1, except we use
the custom integrator, Woodcock tracking with the inline OpenVDB grid as the
medium plugin.

Without With Speedup
Model R G B R G B R G B

Box_white_20 99.6 101.2 102.8 74.2 75.6 77.8 x1.34 x1.34 x1.32
Box_greek_20 24.8 14.8 9.2 21.2 13.2 8.4 x1.17 x1.12 x1.10
Animal_white 10.8 12.8 15.3 5.3 5.5 6.4 x2.04 x2.33 x2.39
Animal_spotted 3.2 3.8 6.3 2.3 2.3 3.4 x1.39 x1.65 x1.85
Bone 267.2 114.7 46.5 83.7 38.2 19.2 x3.19 x3.00 x2.42

3.6.5 Ray branching
The idea of ray branching at intersections or scattering events is not frequently
used in path tracing because it leads to an exponential growth of the ray count
when it is done at each of these events. Sure, it can be done only at a subset of
events, but picking such events is a complex problem.

In our case, though, it is possible to pinpoint events where it is worth branch-
ing the ray. In general, we want to focus on the medium layers closer to the
surface as they contain the majority of the colorful voxels and details. There-
fore, it is more profitable to place the branching near the surface. It also makes
sense to branch rays with high throughput. Putting together these two criteria,
the best candidates are the scattering events as close to the surface as possible.
There are three available options how to do it

• Directly at the surface intersection, sampling the direction using the BRDF
function - considering the smooth dielectric BRDF, which only decides be-
tween the perfect geometric reflection and refraction, the sampled directions
would boil down to the refracted ray since the reflected rays are immediately
terminated

• At the first medium scattering event, sampling the direction using the phase
function - the Hayney-Greenstein function with the mean cosine parameter
G equal to 0.4 produces a wide range of directions, and the first scattering
event is relatively close to the surface. This approach can be repeated
multiple times at the first few scattering events

• Sampling the distance in the direction of the refracted ray - compared with
the previous case, the sampled rays also vary in the origin, not only the
direction. The price is that the medium sampling function is called per
each branch, not only once

Naturally, the following question arises here. Since we are trying to branch
the rays as close to the surface as possible, why not just shoot more rays from the
camera and omit the branching? As Pharr and Humphreys [2010] suggests, when
fewer rays are necessary for a good pixel aliasing than for the following shading,
the branching can save multiple rays shot from the camera while achieving com-
parable results. In our case, it means that we save multiple geometry intersection
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lookups that would be computed for rays shot from the camera. Apart from the
overall variance level, we also monitor the aliasing and edge quality issues that
might occur when the branching coefficient gets too high (and consequently, the
number of primary rays decreases to achieve the same rendering time). The tests
are in the 4 chapter.

Herholz et al. [2019] propose to decide between the branching and Russian
roulette at any medium interaction based on the current value of a metric (see
the section 2.3 where we describe this approach in more detail). As we explained,
we are only interested in branching at the early stages of the ray path. Also, we do
not have the means to compute such a metric. However, we can take inspiration
from the paper and determine the number of branched rays dynamically based
on the throughput value. It is easy, and it makes perfect sense to trace fewer rays
when the throughput (and therefore expected contribution) is lower.

Results

We present multiple versions of the algorithm and compare them with the default
version without branching. For the versions with the fixed splitting coefficient,
we use a relatively high number to highlight the differences. The versions are
following

• branching at the first scattering event, as described in the second option
above, with a fixed branching coefficient of 8 (B2)

• branching using the distance sampling from the surface intersection, as
described in the third option above, same branching coefficient (B3)

• branching using the phase function sampling at the first few scattering
events, specifically splitting the rays in two at the first three events (reaching
the final number of 8 rays) (B4)

• branching at the first scattering event, this time with a variable number of
branched rays determined as min(branching coefficient, int(throughput.max
* branching coefficient)), the constant is also 8 (B2d)

The results are in the Tables 3.26 and 3.27.
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Table 3.26: Time measurements - various branching configs. The times are in
seconds. Settings - from the section 3.1, except we use the custom integrator,
Woodcock tracking with the inline OpenVDB grid as the medium plugin.

Time Slowdown
Config Model R G B R G B

Box_white_20 Default 74.9 75.2 80.1 - - -
B2 574.4 576.1 592.7 x7.67 x7.66 x7.40
B3 590.2 598.6 601.5 x7.88 x7.96 x7.73
B4 572.3 580.5 619.1 x7.71 x7.72 x7.58
B2d 577.4 539.0 555.0 x7.20 x7.17 x6.93

Box_greek_20 Default 21.4 13.2 8.4 - - -
B2 141.7 77.0 42.4 x6.62 x5.83 x5.05
B3 142.8 81.4 47.6 x6.67 x6.17 x5.67
B4 133.8 78.3 49.6 x6.25 x5.93 x5.90
B2d 109.6 54.3 23.0 x5.12 x4.11 x2.74

Animal_white Default 5.3 5.5 6.4 - - -
B2 40.8 41.8 48.9 x7.70 x7.60 x7.64
B3 41.8 43.6 50.2 x7.89 x7.93 x7.84
B4 37.2 39.5 46.4 x7.02 x7.18 x7.25
B2d 36.6 37.3 45.0 x6.91 x6.78 x7.03

Animal_spotted Default 2.3 2.3 3.4 - - -
B2 14.2 14.6 23.8 x6.17 x6.35 x7.00
B3 15.6 15.4 24.3 x6.33 x6.70 x7.13
B4 12.5 13.8 22.8 x5.44 x6.00 x6.70
B2d 11.4 12.8 20.9 x4.94 x5.55 x6.13
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Table 3.27: Variance levels - various branching configs. The variance improvement
is for the equal rendering time. Settings - from the section 3.1, except we use
the custom integrator, Woodcock tracking with the inline OpenVDB grid as the
medium plugin.

Config Model V ariance V ariance improvement

Box_white_20 Default 0.0012285 -
B2 0.0001755 x0.91
B3 0.0001731 x0.90
B4 0.0002008 x0.79
B2d 0.0001829 x0.93

Box_greek_20 Default 0.0001945 -
B2 2.803e-05 x1.05
B3 2.543e-05 x1.15
B4 4.286e-05 x0.73
B2d 4.147e-05 x0.92

Animal_white Default 0.0010925 -
B2 0.0001451 x0.97
B3 0.0001401 x0.99
B4 0.0001836 x0.84
B2d 0.0001604 x0.99

Animal_spotted Default 0.0004192 -
B2 8.182e-05 x0.83
B3 4.404e-05 x1.50
B4 9.314e-05 x0.83
B2d 7.253e-05 x1.16

The rendering time is getting higher the sooner the ray is split, which is
expected. Regarding the variance level, better results are achieved by earlier
splitting, even after we account for the higher run time. Also, the branching
algorithm’s speedup (meaning the difference between the default time multiplied
by 8) is more significant when darker textures are used. The albedo also changes
across the three channels, so we always match the red channel’s rendering times,
where we also compare the variance.

The variable number of branches based on the throughput only reduced the
rendering time by approximately 20%. The additional samples we could use
did not balance the increased variance value caused by using fewer branches.
This suggests that even the dark areas require a substantial number of samples.
Based on this observation, we do not try the dynamic branching on the other
approaches since there it is more challenging to implement. For example, in the
distance sampling case, we have the same throughput unless we sample the media
and compute individual throughputs for the sampled points. Terminating the
rays there would waste the costly calls of the media distance sampling function.
Another disadvantage of the dynamic approach is that the compiler might lose
some opportunities to simplify the code as the number of branches is no longer a
constant expression.

In conclusion, branching using a constant coefficient helps reduce the variance.
There is a tradeoff between the variance reduction and the edge quality - an
extreme case would be to use only one sample per pixel and branch the ray
into a large number of branches leading to a faster rendering and a poor texture
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appearance. Therefore, the ultimate setup uses only a conservative coefficient, 4.

3.6.6 MIS
The default volumetric path tracer in Mitsuba supports multiple importance sam-
pling [Jakob, 2010], combining the phase function sampling with light sampling.
However, with zero knowledge of the object shape, it is usually a case that the
ray towards the light sample traverses a large part of the medium, leading to a
negligible contribution because of the high density and costly evaluation. We im-
plement an algorithm that uses additional OpenVDB grids to guide rays towards
the surface and decide whether they are worth tracking based on their maximum
expected yield.

The algorithm uses MIS to combine two sampling techniques, the same as
the default Mitsuba solution. However, instead of sampling a position on the
light source and sending a ray in its direction, it determines the ray direction by
sampling the distance gradient grid to obtain the direction to the closest surface
point. This direction cannot be used straight away because it is generated using
the delta distribution, and therefore it could not be used in combination with
another technique via the MIS. On the other hand, path tracing based solely on
this sampling is not valid as it cannot cover all possible paths. We distort this
direction using various sampling techniques, which generate random directions
around the original direction. It gives us a random direction and its respective
PDF leading to a straightforward combination with the phase function sampling.

On the other hand, this method has a considerable overhead caused by the
lookups in the distance and distance gradient grids, transmittance evaluation, and
additional geometry intersections. Even if we know the distance to the closest
surface point, we need to know the distance for the randomized direction as well.

Transmittance evaluation

We use the simple regular tracking evaluation because it has zero error, unlike
the approach based on Woodcock tracking, which only yields 0 or 1. For longer
ray segments, the evaluation is costly as it has to traverse all voxels and read
their density values. However, we are employing a set of optimizations to reduce
this problem. They are discussed later. The comparison of the variance between
Woodcock and regular tracking with respect to the evalTransmittance function
implementation is in the section 4.2.

Randomization distribution

We considered two options - hemisphere cosine sampling and van Mises-Fisher
distribution [Fisher, 1953] sampling. The latter works better since it has a pa-
rameter to adjust the variance of the sampled directions. Sampling the directions
closer to the original gradient direction leads to faster computation and higher
contribution of the rays (the distance to the surface is closer to the optimal dis-
tance). It also reduces variance as the variance of the directions is lower (verified
by variance measurements).
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Optimization

Rays oriented in the gradient direction travel shorter distances until they reach
the surface than the rays with a random direction. However, the distance can
still be too long when their origin is deep inside a thick object. We use a simple
decision system to avoid the evaluation of such rays.

First, we use the OpenVDB distance grid that stores the distance between the
current voxel and the closest surface point. Using the knowledge about the lowest
density of the materials, we compute the highest possible transmittance of the
ray heading straight to the surface and consider whether it is worth evaluating.
Let us call it the decisive value.

After we obtain the randomized direction and compute the geometry intersec-
tion, we compute the highest possible transmittance again, using the distance to
the surface intersection. The phase function value is also included in the decision
process, so we can avoid the evaluation of rays heading backwards, because the
forward-oriented phase function (Heyney-Greenstein with g equal to 0.4) would
significantly reduce the contribution. Here, the decisive value is the product of
the transmittance and the phase function.

If the contribution evaluation were skipped based on comparing the decisive
value with a fixed threshold, the result would be biased. We use the Russian
roulette driven by the decisive value multiplied by a constant that gives the
option to adjust the number of skipped evaluations. A set of measurements was
conducted to prove that this approach is unbiased.

Note that this is based on the lowest density of the non-transparent materials.
When there are bigger chunks of transparent material in the medium, the approx-
imate highest possible transmittance is no longer valid. However, due to the use
of Russian roulette instead of hard thresholding, the approach stays unbiased.

Additionally, early termination of the transmittance evaluation is used in the
regular tracking function, based on the current transmittance, checked in each
voxel. Contrastingly, the Russian roulette in the regular tracking loop would
lead to a considerable overhead, so we accept a bias here and terminate the
computation if the transmittance drops below a threshold. It needs to be set
relatively low to avoid a higher bias.

Results

First, we compare the rendering time and variance values with the default algo-
rithm that uses only the phase function sampling (Tables 3.18 and 3.29).

Table 3.28: Time measurements - without/with MIS. The times are in seconds.
Settings - from the section 3.1, except we use the custom integrator, simple regular
tracking with the inline OpenVDB grid as the medium plugin.

Without With Slowdown
Model R G B R G B R G B

Box_white_20 74.9 75.2 80.1 276.9 258.9 225.3 x3.70 x3.44 x2.81
Box_greek_20 21.2 13.2 8.4 67.8 33.8 15.4 x3.20 x2.56 x1.83
Animal_white 5.3 5.5 6.4 17.9 19.5 20.0 x3.38 x3.55 x3.13
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Table 3.29: Variance levels - without/with MIS (same sample counts). Settings -
from the section 3.1, except we use the custom integrator, simple regular tracking
with the inline OpenVDB grid as the medium plugin.

Model V arianxe without V arianxe with V ariance improvement

Box_white_20 0.0012285 0.0017554 x0.70
Box_greek_20 0.0001945 6.596e-05 x2.95
Animal_white 0.0010925 0.0016211 x0.67

The rendering times increase about 3-times in each test. The performance
of the MIS in comparison to the default approach, on the other hand, strongly
depends on the texture type. In the entirely white texture, the MIS reaches
the same or even higher variance levels. When darker colors are used, the MIS
outperforms the default approach by far.

The measurements in the Tables 3.30 and 3.31 were obtained using the algo-
rithm’s version without the pruning in the regular tracking loop, so the variance
compared to the default solution can be compared (the bias introduced by the
hard threshold pruning changes the result). Apart from the usual time and vari-
ance measurements, we also include

• the ratio of the skipped evaluations - first/second condition (Skipped)

• the ratio between the NEE contribution and the total gathered illumination
(NEE/T)

• the ratio between the NEE contribution not divided by the success probabil-
ity and the NEE contribution without the pruning, it is computed because
the previous metric is the same for all the Russian roulette settings due to
the division by the success probability - it does not provide the informa-
tion about how the NEE contribution changes across the Russian roulette
configurations (P/NP)

For simplicity of the table, we only perform the measurements for the red
color channel. Also, we use only three models - the 20mm x 20mm x 20mm cube
with both the white and the colored textures and the animal model with white
texture. We believe that they are sufficient for illustration of the effects of the
settings.
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Table 3.30: Various MIS configurations - the configs are (first decisive value,
second decisive value) from the section 3.6.6. The times are in seconds. Settings
- from the section 3.1, except we use the custom integrator, simple regular tracking
with the inline OpenVDB grid as the medium plugin.

Model Config T ime V ariance Skipped(%) NEE/T (%) P/NP (%)

Box_white_20 1.0/1.0 174.9 0.0034596 31.3/6.6 78.2 12.1
0.5/2.0 156.2 0.0035854 15.7/5.5 77.6 12.0
1.5/5.0 156.5 0.0016192 44.2/27.5 76.5 61.5

3.0/12.0 204.2 0.0014728 68.9/55.2 86.8 64.2
Box_greek_20 1.0/1.0 29.6 0.0001961 25.4/4.7 55.0 10.1

0.5/2.0 28.0 0.0002725 12.5/3.7 55.9 9.2
1.5/5.0 35.6 8.547e-05 35.5/18.2 54.5 48.5

3.0/12.0 40.9 6.698e-05 46.9/38.8 55.3 78.4
Animal_white 1.0/1.0 10.5 0.0036133 54.8/8.5 63.9 15.2

0.5/2.0 9.2 0.0034672 27.9/8.4 64.1 14.7
1.5/5.0 13.6 0.0018077 68.4/41.1 61.9 61.0

3.0/12.0 16.4 0.0016876 79.7/71.3 62.1 84.2

Table 3.31: Performance comparison with the version without MIS. The times are
in seconds. The variance improvement is for the equal rendering time. Settings -
from the section 3.1, except we use the custom integrator, simple regular tracking
with the inline OpenVDB grid as the medium plugin.

Model Config T ime V ariance V ariance improvement

Box_white_20 No MIS 74.9 0.0012285 -
1.0/1.0 174.9 0.0034596 x0.15
0.5/2.0 156.2 0.0035854 x0.16
1.5/5.0 156.5 0.0016192 x0.36
3.0/12.0 204.2 0.0014728 x0.31
unlim 276.9 0.0017554 x0.19

Box_greek_20 No MIS 21.2 0.0001945 -
1.0/1.0 29.6 0.0001961 x0.71
0.5/2.0 28.0 0.0002725 x0.54
1.5/5.0 35.6 8.547e-05 x1.36
3.0/12.0 40.9 6.698e-05 x1.51
unlim 67.8 6.596e-05 x0.92

Animal_white No MIS 5.3 0.0010925 -
1.0/1.0 10.5 0.0036133 x0.15
0.5/2.0 9.2 0.0034672 x0.18
1.5/5.0 13.6 0.0018077 x0.24
3.0/12.0 16.4 0.0016876 x0.21
unlim 17.9 0.0016211 x0.20

In all test configurations, the pruning appears to skip most evaluations when
the white cube model is used. It is expected, as the pruning is based on the
evaluated distance, and in smaller models, the distances to the surface are shorter
on average. The texture also seems to affect the pruning, however, in a somewhat
counter-intuitive way. In less dense material, the throughputs are usually higher,
so one could expect that more rays pass the pruning. The opposite effect could
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be caused by the fact that rays in a sparser medium get deeper inside the object
more quickly.

Using the two Russian roulette settings, we tried to optimize the pruning, so
it skips the evaluations that are costly and have a minor contribution. In terms
of our metrics, it means minimizing the skipped branches ratio while maximizing
the NEE contribution ratio. The target is to achieve a similar variance as in the
results without any pruning with a much lower rendering time.

In theory, it is desirable not to terminate too many of the evaluations that
already passed the first condition, since before the second condition, the geometry
intersection is computed, which is a heavy computation on its own. However, the
measurements using the first two setups (< 1, 1 > and < 0.5, 2.0 >) do not
confirm that. Even when the first condition is much more efficient (passing fewer
rays) in the second setup and the rays that pass it have a higher chance to pass
the second condition as well, the variance and the rendering times results are
comparable.

The first two configurations also show that too aggressive pruning increases
the variance significantly, even exceeding the levels of the default solution. It can
be caused by the additional randomness introduced by Russian roulette. Having
this knowledge, we tried settings that skip fewer evaluations. The rendering
time of the last configuration is only about 20% higher than the time of the
first configuration, while the NEE contribution and, consequently, the variance
is close to the ones of the algorithm without any pruning. Simultaneously, the
last configuration applied on the box models is still about twice as fast as the
algorithm without any pruning. This means that a large part of the NEE rays
are too expensive to evaluate while carrying a negligible contribution, and they
are successfully detected and skipped by the Russian roulette.

Now, let us see how the rendering times change when the regular tracking
optimization is employed combined with the last configuration of the Russian
roulette settings. The threshold is Tr = 0.01 (Table 3.32).

Table 3.32: Early termination of regular tracking performance effect. The times
are in seconds. Settings - from the section 3.1, except we use the custom integra-
tor, simple regular tracking with the inline OpenVDB grid as the medium plugin.

Model Time T ime without Speedup

Box_white_20 206.3 207.2 x1.0043
Box_greek_20 49.8 49.6 x1.0040
Animal_white 18.0 17.9 x1.0042

Unfortunately, the performance improvement is negligible, probably due to
the additional branching in the regular tracking loop and the fact that the long
rays usually do not make it to the transmittance evaluation. Note that the ex-
ponential function is not evaluated in the condition. Only the integrated density
is compared to the precomputed ln(0.01) value.

Finally, we investigate why the variance does not improve when the white
texture is used. We compare images obtained using both the default algorithm
using only phase function sampling and the MIS algorithm with the path track-
ing depth limited to 2, 10, and 100. When the maximum depth is 2, the default
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algorithm results are much noisier. It is due to the fact that only the rays that
immediately return to the surface result in a non-zero contribution. Considering
the Heyney-Greenstein phase function with the mean cosine equal to 0.4, such
paths are improbable, hence the variance. On the other hand, the MIS weights
down such rays because the phase function PDF is low, and the other method’s
(sampling based on the gradient to the surface) PDF is higher (as the direction
is heading to the surface). Instead, the short and coherent rays heading to the
surface obtain higher weights. However, after more bounces, the MIS algorithm
results start picking up variance, both from the phase function sampling contri-
butions and the less coherent NEE rays. Hence we discover why the white texture
performs worse with the MIS - because the paths are on average longer, and there
is more room to create the variance.

Finally, we note that for simplicity, the MIS algorithm tested there was imple-
mented in the non-branching version of the path tracer. It is also implemented in
the branched version, and the overall performance will be discussed in the section
4.

Conclusion

The focus of our application is to optimize the texture appearance of the printed
models. It is reasonable to assume that the models with colorful texture and lower
albedo will be more frequent than pure white models. Therefore we consider the
MIS as an improvement because of its significant performance gain observed in
the tests with colorful textures.

3.7 Points, beams and paths
Křivánek et al. [2014] combine multiple estimators, each of them focused on dif-
ferent effects, achieving a robust estimator that handles all situations reasonably
well. We utilize their analysis and provide implementation to evaluate the be-
havior of these methods when they are applied to our type of media and scene
setup. We choose one of them, the point-beam estimator, and reimplement it as
a Mitsuba plugin. We conduct various measurements and decide whether they
can compete with our version of path tracing presented in the previous chapter.

3.7.1 Estimators survey
A brief overview of the methods and their behavior in various scene types is in the
sections 2.4 and 2.5. It contains information from the paper, where the methods
were evaluated using different medium densities and light conditions that are
usually found in production scenes. Here we focus exclusively on dense media
and white environment light.

We use the SmallUPBP renderer that provides implementations of all the
estimators from the paper along with many more. It allows making arbitrary
combinations of the estimators using MIS, changing their parameters, and run-
ning them on a set of predefined scenes. However, it supports only homogeneous
media, so we will not include the evaluation of image quality and texture details
in this survey, only the measurements of rendering time and variance level.
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Testing setup

Let us start with the description of the testing scene and parameters

• Geometry - a simple box with sizes 10x10x10 and 20x20x20. We used two
different sizes to demonstrate the difference between the images rendered
with the same number of light samples and different object sizes. All effects
and shortcomings of the estimators can be illustrated using such a simple
model, so we do not run the tests on more complex ones.

• Medium - two different types are used, a white medium with albedo 0.999
and density 6.0, a grey medium with albedo 0.5, and a density of 3.0

• Light - an environmental light with an intensity of 1.0

• Camera - contrary to the tests in the previous chapters, we use a basic
perspective camera. The camera shooting the orthogonal rays used in the
optimization pipeline could not be easily reimplemented in the UPBP be-
cause it is tied with Mitsuba [Jakob, 2010] and OpenVDB [Museth et al.,
2012]. However, the perspective camera yields images that can be easily
visually interpreted.

• Resolution - we render images with the size 200x200 in tests. The reason
for this relatively small resolution is that the UPBP allocates an array with
the size image width * image height * maximum depth for path segments.
Larger images caused a memory overflow on our testing machine with 16GB
RAM.

• Maximum depth - 20, which unfortunately introduces a slight bias, but it
cannot be set higher for the same reason that we described in the previous
point

• Number of samples - UPBP renders in so-called "iterations", in one iteration,
one ray per image pixel is traced. Algorithms using lightpaths trace an
arbitrary number of them at the beginning of each iteration. We use one
light path per two camera paths. There is an important consequence - the
structures for photon mapping and similar estimators are rebuilt in each
iteration. We use the time limit of 20 seconds in each test. We also state
the number of iterations that each algorithm managed to do in the time
limit to demonstrate their speed.

• Algorithms - UPBP provides implementations for several estimators, we use

– unidirectional path tracer (PT) to set a base for all other algorithms
– bidirectional path tracer (BDPT), note that in our scene, the BDPT

and VCM boil down to the same setup, so their results are also identical
- therefore, we include only BDPT

– point-point 3D algorithm with two radius options, 0.1 to demonstrate
how the larger radii influence the image variance, and 0.02 (based
on the shortest edge of the printer voxel) with the shrinking constant
alpha (the radius is multiplied by the constant in each iteration, leading
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to its steady decrease over the iterations) equal to 0.97 providing a
good tradeoff between the result image quality and bias

– point-beam 2D algorithm with the initial radius 0.02 and alpha 0.97
both short and long query beams, short photon beams

– beam-beam 1D algorithm with the initial radius 0.02 and alpha 0.97
with short photon beams and both short and long query beams

Results

The performance measurements are in the Table 3.33. Considering the major dif-
ferences between the estimators, we do not need to measure the results’ variance.
Instead, we provide the actual rendered images where we explain the particular
features of the respective approaches (Figures 3.2, 3.3 and 3.4).

Table 3.33: Comparison of rendering times for various estimators (Number of
iterations in 20 seconds.)

Algorithm White cube 103 Grey cube 103 White cube 203

PT 1029 1095 975
BDPT 186 184 176
PP3D (α1 r0.1) 403 364 338
PP3D (α0.97 r0.02) 309 317 275
PB2D (α0.97 r0.02 qL pS) 160 182 226
PB2D (α0.97 r0.02 qS pS) 241 302 293
BB1D (α0.97 r0.02 qL pS) 48 35 64
BB1D (α0.97 r0.02 qS pS) 169 119 224
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PT BDPT PP3D(α1 r0.1)

PP3D(α0.97 r0.02) PB2D(α0.97 r0.02 qL pS)PB2D(α0.97r 0.02 qS pS)

BB1D(α0.97 r0.02 qL pS)BB1D(α0.97 r0.02 qS pS)

Figure 3.2: Rendering results comparison of various estimators (white cube 10 x
10 x 10).
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PT BDPT PP3D(α1 r0.1)

PP3D(α0.97 r0.02) PB2D(α0.97 r0.02 qL pS)PB2D(α0.97r 0.02 qS pS)

BB1D(α0.97 r0.02 qL pS)BB1D(α0.97 r0.02 qS pS)

Figure 3.3: Rendering results comparison of various estimators (white cube 20 x
20 x 20).
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PT BDPT PP3D(α1 r0.1)

PP3D(α0.97 r0.02) PB2D(α0.97 r0.02 qL pS)PB2D(α0.97r 0.02 qS pS)

BB1D(α0.97 r0.02 qL pS)BB1D(α0.97 r0.02 qS pS)

Figure 3.4: Rendering results comparison of various estimators (grey cube 10 x
10 x 10).

Evaluation

The first two algorithms provide acceptable results varying only in the variance
level. The PT manages to render more than 5-times more iterations which reflects
on the result. In theory, BDPT behaves well in scenes containing light sources
hard to find by the camera rays. The constant incident radiance over the surface is
the exact opposite. Hence the BDPT algorithm does not get to use its advantage.
On the other hand, it is left with the inherent additional overhead that prevents
it from finishing more iterations. The object size does not affect the results
in both cases. In our application, the media with lower albedo achieved faster
rendering times because the Russian roulette terminated the rays sooner as they
lost throughput because of the low albedo. It is not the case in UPBP because
the Russian roulette is driven by a constant set in the medium constructor. It
does not take the current ray throughput into account.

The results of the PP3D estimator show multiple shortcomings. Although
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the radius of 0.1 leads to almost noise-free results, there are two issues. First,
the photon spreads across 2-4 voxels, depending on the axis - that would result
in blurry images with a lack of detail if there were a texture. Second, there is
a dark stripe along the cube edges. It is a consequence of the photon density
computation using a fixed spherical filter - the contribution of the photons closer
to the requested point than the radius is summed and weighted by the filter.
When an edge is closer to the surface than the radius, fewer photons are summed
as the medium is cut by the surface intersection, but the spherical filter stays the
same.

The second configuration eliminates both these problems using the shrinking
photon radius. In theory, it converges into an unbiased solution. However, a
few hundred iterations were not enough to achieve a passable solution. Apart
from the performance, which is far worse than the previous estimators, it carries
additional parameters and bad scalability - with the same number of light samples
and the same radius, the bigger cube is noisier as the photon density is lower.

Despite the lower number of iterations, the PB2D brings much better results.
This is more or less in line with Křivánek et al. [2014]. They claim that the point
estimators perform better in dense media but also that beam estimators are more
efficient with smaller kernels. In our case, the small kernel criterium is obviously
stronger. The paper also suggests using long query beams (and short photon
beams - this is only applicable in the BB1D estimator, not here). They lower the
variance also in our case, again, despite the fewer iterations.

The BB1D estimator performs well with the short query beams, confirming the
paper’s claim that for small kernels, it is the best of all three approaches. However,
the long query beams are computationally demanding, leading to a really low
number of iterations and high variance. It is debatable why this contradicts
the paper and our measurements for PB2D. The reason may be that the cube
volume is so big and dense that the beams traveling to the surface have very
low transmittance leading to the negligible contribution, while the computation
is still demanding. Both in our results for BB1D and in Figure 7 of the paper,
one can spot a low-frequency noise that is not that apparent in the PB2D results.
This is a problem, as it may confuse the optimization.

In summary, none of the methods can compete with the basic unidirectional
path tracing in any of the test cases and with any of the settings. From the last
three estimators, the worst one is definitely the PP3D. The best one is either
PB2D or BB1D, depending on whether the low-frequency noise is an issue.

3.7.2 Beam radiance estimate
Mitsuba renderer [Jakob, 2010] provides an implementation of Beam radiance
estimate method. In terms of the naming used by Křivánek et al. [2014], it is
a single scattering version of the PB2D estimator. Same as the SmallUPBP, it
also supports only homogeneous media. Contrastingly, it only builds the photon
lookup structure once - while in SmallUPBP, we would eventually get an unbiased
image by computing a sufficient number of iteration, in Mitsuba, the image stays
biased irrespective of the number of camera rays shot. The bias can be partially
removed using a higher number of photons, but it is limited by available memory,
making it a problem for larger objects.
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Despite the poor performance compared to the unidirectional path tracing
demonstrated in the previous chapter and the inability to repeat the photon
tracing phase multiple times per one rendering, we create our optimized version
of this plugin with the support for heterogeneous media. We intend to observe
the effects of different settings on the quality of the texture details, which is, to
our knowledge, a novel contribution of our work.

Implementation

Our implementation is based on the photonmapper Mitsuba plugin and a set of
core classes that it uses. The most radical changes are in the photonmapper itself,
the photon tracing algorithm, and the BRE query function.

The default photon tracing algorithm is replaced by the optimized version of
the path tracing algorithm without some of its parts, like the ray splitting and
the refraction branching. Additionally, we remove the options to store surface
photons and leave only the storing at medium interactions.

The main photon mapping radiance estimating function works as follows.
Same as the path tracer, it starts with testing the geometry for an intersection
against the input ray. If the object is missed, the environment irradiance is
returned. If not, we both account for the reflection and multiply the throughput
by (1 - F) as if the ray refracted (as described in the section 3.6.3). Now being
inside the geometry, the refracted ray is again tested for intersection. The photons
are queried along the ray segment that is inside the object. Finally, the overall
transmission of the ray segment is evaluated, and the result is multiplied by the
environment light irradiance, simulating the event where the ray traverses the
medium, refracts outside, and hits the environment light.

The BRE query function has one significant change. It evaluates the transmit-
tance between the ray origin and a photon using the medium interface function
instead of the hardcoded Beer formula, hence gaining the support for heteroge-
neous media.

We incorporate two major optimizations of the heterogeneous transmittance
evaluation. First, we implement the idea proposed by Jarosz et al. [2008]. Before
running the BRE query, we use a regular tracking based function to compute a
vector of ray segments with a constant density. Each segment contains a starting
t, the transmittance at the point, and the segment’s density. Later, when the
query is evaluated, the transmittance between the ray origin and the photon is
computed by traversing the vector and finding the respective segment for the
photon distance, and computing the transmittance inside the segment using the
cached density. We limit the vector length so it can be allocated on the stack. As a
consequence, we can only evaluate a limited distance using the vector. However,
we assume that the transmittance at the end of the vector is negligible. The
transmittance is computed precisely thanks to the regular tracking, unlike the
original Jarosz et al. [2008] proposal using ray marching.

Second, we cut off photons whose ray segment possesses transmittance of less
than 1%. It can be implemented in both versions with and without the vector
optimization. In the latter version, we compute the distance based on the lowest
material density we work with. In the former version, we terminate the vector
filling when the transmittance drops under 1%. The distance is then used as
the maximum distance of the query ray. Note that the limited length of the
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vector and the fixed distance in the unoptimized version would not work if the
medium contained an excessive amount of transparent material voxels. However,
these improvements made the algorithm at least comparable with path tracing
performance-wise.

Results

Apart from the pixel sample count affecting the performance and quality of re-
sults, BRE has two additional parameters - the overall number of photons and
the nearest neighbors lookup size (see the section 2.4.3 for further explanation).
These two parameters indirectly determine the photon radius. We test multiple
values for each of them and observe the average photon radius and run times of
particular phases of the algorithm.

The measured phases are

• Photon gathering

• KD-tree building in the photon map

• Photon radius computation based on the local photon density and the
lookup size parameter

• Building of the lookup hierarchy

• Rendering

The measurements are obtained incorporating the second optimization as the
times without that are enormous (Table 3.34). We include times obtained both
with and without the first optimization in order to see its influence on the result
(Table 3.35). The rendering times are provided only for the red channel for
simplicity.
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Table 3.34: Various (photon count, lookup size) configurations and time measure-
ments. The rendering times are including the second optimization. The times are
in seconds. We include the average photon radius (in mm) to observe the effect
of the two parameters.

Model Config PG KD Rad Hier Rend Avg. radius

Box_white_20 8M/10 4.1 8.8 4.2 0.3 182.0 0.1
8M/4 3.7 10.7 3.5 0.3 66.2 0.05

8M/40 4.0 10.6 5.2 0.3 981.0 0.15
24M/4 11.1 39.8 12.2 0.9 97.8 0.02

24M/10 11.1 40.9 14.9 0.9 290.5 0.04
2M/4 0.9 1.9 0.7 0.08 37.1 0.07

Box_greek_20 8M/10 2.3 10.6 4.2 0.3 194.1 0.1
8M/4 2.3 10.7 3.5 0.3 73.5 0.05

8M/40 2.3 10.6 5.2 0.3 1091.0 0.15
24M/4 6.7 39.1 12.3 0.9 103.8 0.02

24M/10 6.7 39.1 14.9 0.9 115.4 0.04
2M/4 0.6 1.9 0.7 0.08 44.4 0.07

Animal_spotted 8M/10 - - - - - -
8M/4 - - - - - -

8M/40 - - - - - -
24M/4 5.4 48.6 12.1 0.9 32.7 0.01

24M/10 - - - - - -
2M/4 0.4 2.3 0.8 0.08 3.1 0.35

Table 3.35: Comparison of the performance without and with the first optimiza-
tion (the second optimization is already included in both). The times are in
seconds.

Model Config Default Optimized Speedup

Box_white_20 8M/10 182.0 37.6 x4.84
8M/4 66.2 16.1 x4.11

8M/40 981.0 98.7 x9.94
24M/4 97.8 21.5 x4.55

24M/10 290.5 40.9 x7.10
2M/4 37.1 11.8 x3.14

Box_greek_20 8M/10 194.1 29.6 x6.56
8M/4 73.5 20.1 x3.66

8M/40 1091.0 128.7 x8.48
24M/4 103.8 27.3 x3.80

24M/10 115.4 49.2 x2.35
2M/4 44.4 13.2 x3.36

Animal_spotted 8M/10 - - -
8M/4 - - -

8M/40 - - -
24M/4 32.7 6.2 x5.27

24M/10 - - -
2M/4 3.1 3.0 x1.03

Multiple patterns can be spotted immediately. The photon tracing phase be-
haves the same as path tracing, achieving faster rendering when a darker texture
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is used. The time grows more or less linearly with the number of photons, which
is also expected.

The radius computation, BRE hierarchy, and KD-tree building are not in-
fluenced by the texture nor model used. The only factor is the photon count.
The major influence on the overall time among the non-rendering (and hence not
influenced by the pixel sample count) phases have the KD-tree building.

The lookup size significantly influences the rendering times. A higher number
leads to a bigger radius. Therefore more photons are intersected by the query
ray, increasing the overall rendering time. Luckily, we are interested in smaller
photon radii because we want to avoid blurriness.

For some configurations, the times measured using both the optimization are
even comparable with the path tracer. However, this algorithm only computes
single scattering.

The measurements of the average photon radius present a critical issue. The
size of the model dramatically influences the radius. Hence the optimal number
of photons is not constant across the test cases. As we mentioned, keeping the
photon radius reasonably low is crucial. To be able to use this in production,
exposing this parameter for users would burden them with the task of estimating
a reasonable value for each of their models. Alternatively, we would need to
develop an algorithm that would estimate the number from the object size and
shape. Also, note that with the voxel size (0.028, 0.056, 0.084), we can only
consider the configurations < 8M, 4 >, < 24M, 4 > and < 24M, 10 >, so that
the photon radius is not too big compared to the voxel size.

Furthermore, we present rendering results obtained by different settings of the
parameters above to manifest their influence.

(a) 8M 4 (b) 24M 4 (c) 48M 4

Figure 3.5: Effect of different photon count (white cube 20x20x20).
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(a) 8M 4 (b) 24M 4 (c) 48M 4

Figure 3.6: Effect of different photon count (textured cube 20x20x20).

There is an apparent connection between the volume density and the resulting
quality (see the results for R, G, B channels using the white texture, which has
the same albedo and varying density across the channels). Photons in denser
volumes tend to create clusters which result in uneven distribution of the pixel
radiance. We confirmed this fact by observing the deviation of photon radius - in
the less dense media, the radius range was much smaller. We are not sure what
is the reason behind this phenomenon. Otherwise, the image quality improves
with the photon count as expected.

(a) 8M 4 (b) 8M 10 (c) 8M 40

Figure 3.7: Effect of different lookup size (white cube 20x20x20).

(a) 8M 4 (b) 8M 10 (c) 8M 40 (d) 8M 120

Figure 3.8: Effect of different lookup size (textured cube 20x20x20).

The effect of a higher lookup size and consequently higher photon radius is that
the image is more smooth, and the fireflies are less bright. The images of textured
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objects show increasing blurriness, which is highly undesirable because one of the
optimization pipeline targets is to sharpen the printouts’ texture appearance.

(a) 8M 4 - 64spp (b) 8M 4 - 16spp (c) 8M 4 - 4spp (d) 8M 4 - 1spp

Figure 3.9: Effect of different sample count (textured cube 20x20x20).

After a certain number of samples per pixel, the image quality improvement
halts. For example, the difference between 16 and 64 samples is negligible. There-
fore considerably fewer samples are necessary to make the best of the given photon
distribution than we use with path tracing.

(a) 64spp (b) 16spp (c) 4spp (d) 1spp

Figure 3.10: Path tracing results for different sample counts for comparison.

Path tracing and BRE have two different issues when a lower camera sample
count is used - path tracing suffers from white noise, while BRE results have
fireflies (which usually span through multiple pixels). Even though there are
post-processing algorithms that can suppress both these imperfections, we be-
lieve that the fireflies are a more significant problem since there is considerable
overlap between larger fireflies and smaller texture details, which might be re-
moved together by some algorithm. The BRE results do not have a problem with
the high-frequency noise (instead of the path tracing results) because the photon
radius behaves as a simple averaging filter.

Conclusion

The measurements obtained using our implementation of the BRE algorithm
confirmed the conclusions from the section 3.7.1. The algorithm cannot compete
with the performance and result quality of the unidirectional path tracer and its
simplicity in terms of required parameters.

However, we do not say that the algorithms based on photon mapping are not
usable for volumetric rendering in general or even for the rendering of volumes
with parameters similar to the printer materials. These algorithms have proven
themselves to be efficient in the rendering of particular effects such as caustics.
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What makes unidirectional path tracing so efficient is the fact that we use the
constant incident radiance over the surface which is easy to access for the camera
rays.

Even if we had a way to build the lookup structure and perform the photon
BRE queries in a negligible time and the expense of photon mapping would boil
down to the photon tracing, it still would not outperform unidirectional methods
since the environment light is easily accessible. Moreover, simple unidirectional
methods do not have to store any intermediate information in memory.
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4. Results
Although we provided measurements and evaluations for each of the algorithms
in the previous chapter, in some cases, we could not decide whether one approach
was better than the other. The reason is that regarding the high number of algo-
rithm versions, we could not conduct a more thorough analysis using more testing
scenarios. Also, given the order in which we gradually added the improvements,
some algorithms may benefit from the changes that were added later, despite our
effort to avoid such situations. In order to get a better view of the compared
algorithms, we provide measurements obtained using a broader set of objects and
textures and running the final version of all the plugins varying only in the com-
pared algorithms. Finally, we select the very best combination of the algorithm
versions and compare it with the original version in terms of rendering time,
variance, and overall image quality to quantify the improvement.

4.1 Volume data storage
The performance measurements using the dense grids and the OpenVDB grids
[Museth et al., 2012] provided in the section 3.3 did not reveal any significant
difference (around a 5% difference in the overall time). Moreover, the algorithm
using OpenVDB grids thread-local accessors needed to assure that the accessors
are initialized on every medium function call. Our optimized path tracing al-
gorithm allows us to put this call at the beginning of the radiance evaluation
function called only once per camera sample. The following results are measured
using the version of the algorithm, including the path tracing optimization from
the 3.6, including the branching (with coefficient 4). In both versions, the volume
storage is used as a separate plugin, not inlined into the medium plugin.

However, we do not use the version with MIS as it needs the distance and dis-
tance gradient grids which we store exclusively as OpenVDB grids. The reason
is that, unlike the label grid, these two are created directly from the geometry
during the voxelization and not from a (dense) internal representation, so con-
structing the dense representation of these grids would require additional memory
and time.

Table 4.1: Dense vs. OpenVDB volume representation comparison. The times
are in seconds. Both the medium plugins use external volume sources (as opposed
to inlined). The setup is described in this chapter, the rest is in the section 3.1.

Dense OpenVDB Diff
Approach R G B R G B R G B

Box_20_white 279.9 283.1 287.5 279.2 282.6 287.7 -0.7 -0.5 +0.2
Box_20_greek 74.5 44.1 26.9 75.5 44.8 27.6 +1.0 +0.7 +0.7
Box_10_white 76.9 76.3 83.9 78.0 77.4 84.9 +1.1 +1.1 +1.0
Box_10_greek 15.9 13.6 12.9 16.1 13.8 12.5 +0.2 +0.2 -0.4
Animal_white 19.6 22.8 25.8 20.6 23.0 26.5 +1.0 +0.2 +0.7
Animal_spotted 6.3 7.2 11.5 6.7 7.4 11.7 +0.4 +0.2 +0.2

76



The measurements in the Table 4.1 suggest that the performance is the same
for the test with white texture. However, there is up to a 10% difference in the
tests with colorful textures. That may be a consequence of the different number
of distance sampling calls due to varying path lengths and distances between the
scattering events.

An argument in favor of using the OpenVDB grids is that we use them regard-
less to store the distance and distance gradient grids. Therefore it makes sense to
use OpenVDB grids everywhere. Also, the measurements provided in the section
3.2.3 show a considerable reduction of the memory footprint when the OpenVDB
grid is used. In conclusion, we decide to use the OpenVDB representation. We
believe that it is worth trading a minor slow down to unify the grid storage and
the memory saving.

4.2 Distance sampling and transmittance eval-
uation algorithm

Once we have ruled out all the unsuccessful experiments with homogeneous
medium approximations and OpenVDB grid hierarchies, we are left with the
Woodcock tracking and regular tracking. Concerning the distance sampling,
Woodcock tracking is faster, but regular tracking has a slightly lower variance
(see the section 3.5.3). On the other hand, for transmittance evaluation, regular
tracking provides much more precise estimates.

To decide between these approaches, we run an extensive set of tests also
using some artificial materials to target specific properties of the algorithms.

4.2.1 Distance sampling
First, we determine the best algorithm for distance sampling. To isolate the
distance sampling calls from the transmittance evaluation calls, we run the test
with the MIS disabled. We already ruled out the hierarchical regular tracking as
the distance sampling method in the section 3.5, so here we use only the simple
version. The integrator setup is the same as in the previous chapter.

Regular tracking traverses all voxels from the ray origin to the point where
the requested transmittance is integrated. Lower transmittance leads to a longer
ray segment and hence more traversed voxels. On the other hand, Woodcock
tracking has a lower probability of scattering when the voxel density is lower
compared to the maximum density, so more iterations of the loop are performed
to finally reach the scattering. To see how the two algorithms behave when the
density changes, we set up a series of tests with white albedo and significantly
changing density. After that, we conduct the tests from the previous chapter.
Both versions use the OpenVDB representation of media.

Note that unlike the previous chapter, here, the OpenVDB grids are inlined in
the medium plugins to minimize the overhead of grid lookups, which are pretty
frequent in the regular tracking.

The measurements are in the Table 4.2.
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Table 4.2: Comparison of regular and Woodcock tracking performance. Both the
medium plugins use inlined volume sources. The times are in seconds. The setup
is described in this chapter, the rest is in the section 3.1.

Regular simple Woodcock Regular/Woodcock
Medium R G B R G B R G B

σt 10.0, α 1.0 72.1 - - 54.1 - - x1.33 - -
σt 1.0, α 1.0 60.4 - - 44.8 - - x1.35 - -
σt 0.4, α 1.0 46.2 - - 35.8 - - x1.29 - -
Box_20_white 345.9 346.3 350.4 279.0 281.5 287.2 x1.24 x1.23 x1.22
Box_20_greek 94.4 55.4 29.6 75.2 44.5 27.4 x1.26 x1.25 x1.08
Box_10_white 99.4 98.7 98.2 77.6 77.1 84.6 x1.28 x1.28 x1.16
Box_10_greek 19.2 17.0 15.4 16.0 13.6 12.4 x1.20 x1.25 x1.24
Animal_white 26.2 29.3 30.7 20.4 22.8 26.3 x1.28 x1.29 x1.17
Animal_spotted 8.0 8.4 12.7 6.6 7.3 11.5 x1.21 x1.15 x1.10

According to the variance level measurements in the section 3.5.3, regular
tracking has only a negligible improvement, and it cannot compensate for the
higher computation time. The tests with different densities show that the ratio
of the times is roughly the same across all three tests, so we can conclude that it
does not influence the performance difference between the two algorithms.

In summary, it is clear that for distance sampling, the better option is the
Woodcock tracking as it is significantly faster and has a comparable variance level
as regular tracking.

4.2.2 Transmittance evaluation
In this chapter, we keep the Woodcock tracking as the algorithm for distance
sampling and try the options for transmittance evaluation - Woodcock tracking
and regular tracking (both simple and hierarchical version). Here we use the path
tracer with MIS, which actually calls the transmittance evaluation. Otherwise,
the path tracer setup is the same as in the previous chapter.

The measurements are in the Table 4.3.
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Table 4.3: Time measurements - transmittance evaluation. The variance improve-
ment is for the equal rendering time. The times are in sections. VI = variance
improvement, WT = Woodcock tracking, RTs = regular tracking simple, RTh =
regular tracking hierarchical. The setup is described in this chapter, the rest is
in the section 3.1.

Time
Model Config R G B Noise V I

Box_white_20 no MIS 279.0 281.5 287.2 0.0003097 -
MIS (2.5/9.0) WT 614.0 635.4 690.3 0.0004325 x0.33
MIS (2.5/9.0) RTs 833.5 841.3 839.0 0.0003761 x0.28
MIS (2.5/9.0) RTh 812.3 802.4 786.9 0.0003761 x0.28

Box_greek_20 no MIS 75.2 44.5 27.4 4.874e-05 -
MIS (2.5/9.0) WT 130.7 86.2 57.1 2.478e-05 x1.13
MIS (2.5/9.0) RTs 162.3 95.4 58.9 1.891e-05 x1.19
MIS (2.5/9.0) RTh 168.2 98.5 60.1 1.891e-05 x1.15

Box_white_10 no MIS 77.6 77.1 84.6 0.0003097 -
MIS (2.5/9.0) WT 143.1 157.3 18.4 0.0004665 x0.36
MIS (2.5/9.0) RTs 171.7 190.4 211.6 0.0004141 x0.34
MIS (2.5/9.0) RTh 168.5 188.1 255.6 0.0004141 x0.34

Box_greek_10 no MIS 16.0 13.6 12.4 5.669e-05 -
MIS (2.5/9.0) WT 30.5 19.6 13.9 3.123e-05 x0.95
MIS (2.5/9.0) RTs 34.3 22.6 14.9 2.257e-05 x1.17
MIS (2.5/9.0) RTh 37.8 24.4 15.9 2.257e-05 x1.06

Animal_white no MIS 20.4 22.8 26.3 0.0002733 -
MIS (2.5/9.0) WT 48.3 54.3 65.9 0.0004976 x0.23
MIS (2.5/9.0) RTs 61.1 70.3 96.1 0.0004367 x0.21
MIS (2.5/9.0) RTh 61.4 69.8 96.8 0.0004367 x0.21

Animal_spotted no MIS 6.6 7.3 11.5 0.0001084 -
MIS (2.5/9.0) WT 14.7 17.1 27.0 8.975e-05 x0.54
MIS (2.5/9.0) RTs 17.3 20.8 33.3 7.438e-05 x0.56
MIS (2.5/9.0) RTh 19.0 22.9 36.1 7.438e-05 x0.51

The evaluation of light rays using the Woodcock tracking is faster than using
regular tracking (same as in the case of distance sampling). The variance levels
are lower when regular tracking is used as expected.

Simple regular tracking is more efficient than the hierarchical one in all cases
except the white cube. It is due to the fact that single-material simple shapes
contain larger constant areas where the hierarchical algorithm can benefit from
traversing higher-level nodes in the grid. However, we still prefer the simple
variant, since textured models are our area of interest.

Woodcock tracking is slightly better for the white texture than the simple
regular tracking, simply because it uses more samples per pixel. Since we focus
primarily on colored textures, we consider regular tracking our transmittance
evaluation algorithm of choice. The medium plugin is then a hybrid that uses
Woodcock tracking for distance sampling and regular tracking for transmittance
evaluation.
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4.3 Comparison with the default path tracer
At this, we can establish the ultimate configurations which are most suitable for
different setups. Their components are as follows

• Grid representation - OpenVDB grids are used to represent all grids, the
label, distance, and distance gradient grids

• Medium - Woodcock tracking for distance sampling and regular tracking
for transmittance evaluation

• Integrator - unidirectional path tracer with Russian roulette maximum
threshold set to 0.99, medium sampling before geometry intersection

– custom1 woNEE - no branching, no MIS
– custom1 NEE - no branching, MIS with Russian roulette decisive val-

ues set to 2.5 and 9 respectively (see the section 3.6.6)
– custom3 woNEE - distance-based branching with the coefficient 4, no

MIS
– custom3 NEE - distance-based branching with the coefficient 4, MIS

with Russian roulette decisive values set to 2.5 and 9 respectively (see
the section 3.6.6)

We provide time measurements comparing our algorithm to the default Mit-
suba path tracer [Jakob, 2010], variance measurements, and visual analysis of the
result image quality (Tables 4.4, 4.5 and Figure 4.1).
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Table 4.4: Comparison with the default. The times are in seconds. The setup is
described in this chapter, the rest is in the section 3.1.

Time
Model Config R G B Noise

Box_white_20 simple 74.2 75.6 77.8 0.0191329
custom 1 woNEE 74.9 75.2 80.1 0.0012285
custom 1 NEE 189.1 186.8 191.4 0.0015992
custom 3 woNEE 279.0 281.5 287.2 0.0003097
custom 3 NEE 833.5 841.3 839.0 0.0003761

Box_greek_20 simple 34.2 27.0 21.5 0.0005042
custom 1 woNEE 21.2 13.2 8.4 0.0001945
custom 1 NEE 45.7 26.0 15.4 6.752e-05
custom 3 woNEE 75.2 44.5 27.4 4.874e-05
custom 3 NEE 162.3 95.4 58.9 1.891e-05

Box_white_10 simple 19.6 19.6 20.7 0.0192956
custom 1 woNEE 21.7 21.2 22.8 0.0011934
custom 1 NEE 53.4 56.5 62.7 0.0013540
custom 3 woNEE 77.6 77.1 84.6 0.0003097
custom 3 NEE 171.7 190.4 211.6 0.0004141

Box_greek_10 simple 7.8 5.8 5.1 0.0005314
custom 1 woNEE 4.6 3.8 3.5 0.0002334
custom 1 NEE 9.6 5.9 4.0 0.0001024
custom 3 woNEE 16.0 13.6 12.4 5.669e-05
custom 3 NEE 34.3 22.6 14.9 2.257e-05

Animal_white simple 11.7 12.9 13.8 0.0154023
custom 1 woNEE 5.3 5.5 6.4 0.0010925
custom 1 NEE 14.5 15.5 17.5 0.0016708
custom 3 woNEE 20.4 22.8 26.3 0.0002733
custom 3 NEE 61.1 70.3 96.1 0.0004367

Animal_spotted simple 5.3 5.8 7.8 0.0008542
custom 1 woNEE 2.3 2.3 3.4 0.0004192
custom 1 NEE 5.2 5.6 8.8 0.0002662
custom 3 woNEE 6.6 7.3 11.5 0.0001084
custom 3 NEE 17.3 20.8 33.3 7.438e-05

Bone simple 227.6 148.4 89.4 0.0080607
custom 1 woNEE 83.7 38.2 19.2 0.0009503
custom 1 NEE 230.4 109.0 42.0 0.0008726
custom 3 woNEE 304.0 132.1 57.3 0.0002457
custom 3 NEE 873.0 386.9 147.6 0.0002316
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Table 4.5: Comparison with the default, red channel.

Model Algorithm Time overhead (R) Equal variance speedup

Box_white_20 custom 1, wo NEE x1.05 x14.83
custom 1, NEE x2.54 x4.71
custom 3, wo NEE x4.41 x14.01
custom 3, NEE x11.0 x4.62

Box_greek_20 custom 1, wo NEE x0.59 x4.18
custom 1, NEE x1.34 x5.57
custom 3, wo NEE x2.20 x4.70
custom 3, NEE x4.75 x5.61

Box_white_10 custom 1, wo NEE x1.11 x14.57
custom 1, NEE x2.72 x5.24
custom 3, wo NEE x3.96 x15.735
custom 3, NEE x8.76 x5.96

Box_greek_10 custom 1, wo NEE x0.54 x4.21
custom 1, NEE x1.23 x4.22
custom 3, wo NEE x2.05 x4.57
custom 3, NEE x4.40 x5.35

Animal_white custom 1, wo NEE x0.45 x31.33
custom 1, NEE x1.24 x7.43
custom 3, wo NEE x1.74 x32.39
custom 3, NEE x5.22 x6.76

Animal_spotted custom 1, wo NEE x0.43 x4.74
custom 1, NEE x0.98 x3.27
custom 3, wo NEE x1.25 x6.30
custom 3, NEE x3.26 x3.52

Bone custom 1, wo NEE x0.37 x22.93
custom 1, NEE x1.01 x9.15
custom 3, wo NEE x1.34 x24.48
custom 3, NEE x3.84 x9.06

The crucial knowledge from the measurements is that none of the methods is
best for all use cases. In general, the configurations with branching are better,
as the comparison in the section 3.6.5 indicated. However, the configurations
with MIS perform better in the case of the colored textures (except the bone
model, where the overhead the gain is small compared to the overhead), while
the configurations without MIS are radically better with textures containing much
white color. To get optimal performance, a heuristic deciding between the two
configurations based on the nature of texture could be beneficial.

Secondly, the effect of switching the medium sampling and geometry intersec-
tion gets more evident with the growing model complexity. In production, models
containing thousands of vertices are common, so this optimization is valuable.

In summary, we managed to speed up the rendering multiple times when the
target is the same variance level. It is impossible to quantify the improvement
by a single number since it strongly depends on the given geometry, texture, and
algorithm configuration. We could achieve even bigger speedup if thick complex
geometry combined with white textures were used.

We also include Table 4.6 with the measurements using a different machine.
It is an older desktop with Intel i7-4770 with 4 physical cores (8 logical cores)
and 8GB of RAM. The only relevant information is the time overheads - they are
roughly matching the numbers measured using the primary machine. In some
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cases, the overheads are even lower.

Table 4.6: Comparison with the default (Intel i7-4770, 8GB RAM). The times
are in seconds. The setup is described in this chapter, the rest is in the section
3.1.

Time
Model Config R G B Time overhead (R)

Box_white_20 simple 290.9 292.9 255.8 -
custom 3 woNEE 848.3 807.0 811.8 x2.92
custom 3 NEE 2496.0 2600.8 2388.7 x8.58

Box_greek_20 simple 101.7 78.0 64.8 -
custom 3 woNEE 194.8 113.3 69.7 x1.92
custom 3 NEE 386.9 229.2 164.5 x3.79

Box_white_10 simple 58.9 57.6 57.7 -
custom 3 woNEE 194.8 190.8 20.0 x3.31
custom 3 NEE 587.9 612.8 650.7 x9.98

Box_greek_10 simple 20.0 19.5 14.5 -
custom 3 woNEE 43.6 27.2 18.0 x2.18
custom 3 NEE 101.2 62.8 37.7 x5.02

Animal_white simple 30.3 33.2 35.2 -
custom 3 woNEE 49.8 52.4 63.4 x1.64
custom 3 NEE 145.0 166.4 200.9 x4.78

Animal_spotted simple 15.8 17.3 22.0 -
custom 3 woNEE 16.3 17.5 28.4 x1.03
custom 3 NEE 41.9 46.9 67.3 x2.65

Bone simple 608.7 406.3 265.3 -
custom 3 woNEE 873.5 390.6 195.8 x1.44
custom 3 NEE 2502.3 1125.1 489.4 x4.11

Now let us compare the actual quality of images with the same variance level
achieved by different numbers of samples (Figure 4.1). Naturally, we used the
results of the perspective camera since they are more comprehensible.

83



(a) Default setup - 104 spp (b) Our setup - 4 spp

(c) Default setup - 250spp (d) Our setup - 4 spp

(e) Default setup - 92 spp (f) Our setup - 4 spp

(g) Default setup - 250 spp (h) Our setup - 4 spp

Figure 4.1: Comparison of our results with the default Mitsuba setup. Samples
per pixel = spp. (Part 1)
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(i) Default setup - 224 spp (j) Our setup - 4 spp

(k) Default setup - 32 spp (l) Our setup - 4 spp

(m) Default setup - 130 spp (n) Our setup - 4 spp

Figure 4.1: Comparison of our results with the default Mitsuba setup. Samples
per pixel = spp. (Part 2)

The images in pairs have similar variance levels. The comparisons reveal that
our approach leads to a more evenly distributed noise with fewer fireflies (see the
zoomed areas in the first two images). The edge quality is comparable or slightly
better on our side since they are often distorted by the fireflies in the default
algorithm’s results. The fact that we used much less samples per pixel does not
seem to be a disadvantage. The animal model might have some geometry issues
causing the black areas.
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4.4 Correctness
All presented algorithms are proven to render correct results. First, we compare
the results to the default path tracer. The only major change necessary in the
default path tracer in order to match the result is terminating the ray after it
exits the medium and matching the depth computation (this is a basic property
of the custom path tracers, not a bug). The modified version of the default path
tracer is included in our codebase as an additional plugin.

Otherwise, there is only a minor difference due to a different process of de-
cision between reflection and refraction - we explicitly decide between reflection
and refraction, compute the ray in local coordinates and transfer it to world co-
ordinates via an intersection method that uses shading normal. The default path
tracer computes either reflection or refraction in the BRDF plugin (and transfers
it to world coordinates using the same intersection method) and then decides
whether the ray is pointing in or out based on the geometric normal. We do not
include the additional test because we would lose the advantage of not computing
the reflected ray when it is not necessary. In combination with curvy geometry,
this may cause a difference up to 0.2%, which is evenly distributed across the
image, not concentrated at specific features.

Second, our algorithms pass the white furnace test - a white medium under
a white environment light needs to be rendered as completely white. The high
density of the printing materials and the albedo being equal to one in the white
furnace test cause that the paths have a high number of scattering events until
they exit the object, so it is pretty tricky to pass the test. First, there has to be no
limit for path length because even if the limit is set to hundreds of bounces, there
is a considerable loss of energy. Second, to stabilize the results, many samples
need to be used - the large amount of bounces combined with the Russian roulette
leads to a low probability that the ray survives to reach the surface. On the other
hand, if such a ray hits the surface, it may have a really high throughput caused
by the divisions by the Russian roulette probabilities. Thus the results suffer
from high variance. We relax the condition to obtain an entirely white image and
allow images that have an average intensity equal to 1. Still, we need thousands
of samples per pixel to achieve a stable result. In general, denser and larger
volumes combined with the lower maximum threshold for the Russian roulette
converge slower.

In order to get results without extensive fireflies in a reasonable time, we limit
the ray depth to 100. It leads to a certain bias, but the lost energy would be
present in the image only in the form of fireflies, which is not desirable. Moreover,
the bias is less distinct when materials with lower albedo are on the surface, which
is our usual use case. The most significant energy loss is present when dense,
white, and thick objects are rendered because the rays have a low probability of
reaching the surface within the depth limit. We acknowledge this as a problem,
but not only of our solution but of the path tracing in general.

Regarding the Russian roulette probabilities, we tested that different settings
have no impact on the result average radiance. Therefore the fact that we changed
the maximum probability from 95 to 99% does not cause a difference between
our results and the results of the default Mitsuba path tracer [Jakob, 2010].
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Future work
4.5 More experiments with Russian roulette
In our experiments, we determined the probability for the Russian roulette only
based on the current throughput that was clamped between 0 and a number a
little lower than one to avoid getting stuck. Pruning the paths in a more adaptive
way could be a tool allowing us to prioritize the rays that are believed to bring
a higher contribution. The decisions could be guided by prior knowledge about
the geometry shape accessible via the distance and distance gradient grids.

4.6 Optimization for the transparent material
As a shortcoming of our research, we consider the lack of attention to the trans-
parent material. Its properties are in direct contradiction with the high density
of the other five basic materials. Fortunately, our algorithm yields correct results
even for the media containing the transparent material, only the performance
would not be optimal as our heuristics (e.g., for using the light rays or doing the
medium sampling before the intersection testing) and the overall decision process
was driven by the high density of materials. Furthermore, since the target of our
research is texture appearance optimization, we believe that the non-transparent
materials will make up most of the volume voxels.

4.7 Rendering multi channel density
Currently, achieving the final image requires the rendering of three separate im-
ages, one per channel, and combining them. The reason for this is that Mitsuba
supports only monochromatic density of the media.

The problem can be formulated as a spectral rendering with three fixed wave-
lengths, where one of them is picked, and the path is sampled based on that.
However, the probability of sampling a given distance differs across the wave-
lengths, in our case, across the three channels with different densities. Wilkie
et al. [2014] propose to use multiple importance sampling to overcome this prob-
lem and construct an estimator that allows to trace multiple wavelengths at once
correctly.

The MIS formula contains weights and probabilities for the traced wave-
lengths, which require evaluation of transmittance - it poses a problem for Wood-
cock tracking, and the authors propose to use a numerical integration. In our
case, the implementation of regular tracking could be used to achieve unbiased
results.

4.8 Building a dedicated rendering system
As we outlined in the section 1.3.1, Mitsuba renderer provides a broad set of
information during the rendering, so it is easy to implement new plugins without
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doing any changes in the core. Our plugins are very lightweight, using only a tiny
fraction of the information stored about the geometry intersection or scattering
events. Hence there is an ineligible amount of work wasted. Creating a system
that computes only necessary information would be much more efficient both in
terms of time and memory.

Moreover, the final configuration of the algorithm does not benefit from the
modular plugin system since we only use one type of light source, geometry, and
other components. Removing the virtual calls would save time and allow more
aggressive optimizations.

Finally, the geometry intersection system could be replaced by Embree, which
has no competition in this field and would increase the performance significantly.
Profiling of the code indicates that more than 50% of the rendering time is con-
sumed by intersection lookups.
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Conclusion
We implemented and evaluated multiple algorithms for volumetric rendering,
leveraging the specific conditions of appearance optimization pipeline for 3D
printers to either reduce the rendering time or variance. A number of the ap-
proaches turned out to be ineffective or too complicated. However, we managed
to assemble a solution consisting of several custom Mitsuba plugins providing a
significant improvement in terms of performance. Similarly, our system of of stor-
ing material IDs inside a sparse OpenVDB tree reduces the memory requirements
significantly.

It became apparent that more simple alternatives lead to better results in a
broader set of use cases than more complex ones. As a basis of our solution, we
selected the unidirectional path tracing as it achieved the best results compared
to the other modern volumetric rendering algorithms. On top of that, we added
improvements like multiple importance sampling and ray branching. We avoided
any necessity to cache paths, medium interactions, and building search struc-
tures over them, which resulted in a significant performance drop in the case of
bidirectional path tracing or photon mapping like approaches.

The emphasis was placed on the development of algorithms that are easily
portable to other renderers. Only a marginal effort was spent on the optimization
of Mitsuba-specific code. If we did so, it was in order to eliminate the overhead
that would distort the measurements and bias the decisions between particular
options. Similarly, most of the improvements would be valid even if some of
the assumptions were relaxed, for example, if there was a necessity to render
rough surfaces or materials with a different phase function. However, we rely on
the fact that the strongest assumptions are inherently implied by the purpose of
our solution, and they would not change, like the simplicity of scene and light
conditions.

The presented algorithms are easily accessible via a simple command line
application as well as a GUI application. However, for this thesis, we only disclose
the command line version.
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A. Attachments
A.1 User documentation
The code for this work is shipped only as a command line application, since we
do not want to disclose the full GUI application. The package consists of the
following

• complete source code of Mitsuba renderer with our plugins (more details in
the Development documentation) and complete dependencies (./mitsuba)

• Mitsuba scene files - root scene and files for particular scene elements that
are included in the root scene file (./scenes)

• Testing data - multiple independent scenes containing all necessary data
to run the rendering, including geometry and a set of volume files. Note
that it is not possible to create a new testing scene due to the fact that
we do not provide the application that was used to create the data (it
does voxelization, halftoning and creating of the OpenVDB or dense grids)
(subfolders of ./scenes)

• scripts for making the Mitsuba solution, installing the binaries into the run
directory and executing the rendering with various parameters (root folder)

• directory with prebuilt binaries necessary to run the renderer (./rundir)

A.1.1 Requirements
• 64-bit Windows 10

• Python, minimum version 3.9

• Microsoft Visual C++ 2015-2019 Redistributable (x64)

• CPU with the support for AVX2 (due to the prebuilt Mitsuba dependencies)

• Microsoft Visual Studio 2019 (only for building)

• CMake, minimum version 2.8.3 (only for creating the solution)

A.1.2 How to use it
The rendering can be run immediately without any building using the prebuilt
binaries running the command python renderer.py run <options> from the
root directory. The options will be listed and explained in the following chapter.
When the rendering finishes, the result images are in the root folder.

The binaries can be also built from the attached Mitsuba sources. For that,
the following steps are necessary

• in the root folder, run python renderer.py cmake - it creates the Mitsuba
solution in ./mitsuba/build
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• open the solution and build everything in Release mode, the architecture is
set to x64

• in the root folder, run python renderer.py install - it creates ./rundir
subfolder in the main folder and copies necessary binaries into it

• now, the rendering can be run as python renderer.py run <options>, as
we noted above

There is a help available via python renderer.py help.

A.1.3 Run script parameters
The options always start with “–” followed by one of the these keywords

• preset - we defined a number of presets to make the first steps easy, the
presets are

– original - runs the version of the algorithm that we used as a base-
line for our testing (default Mitsuba volumetric path tracer and dense
medium)

– best - runs the version of the algorithm that we considered to be the
most efficient (custom path tracer with branching and hybrid hetero-
geneous medium)

– photonmap - runs the photon mapping algorithm

Note that the preset can be used in combination with other options, they
will override the options defined by the preset.

• scene - one of the scene files, the following scenes are available

– animal_spotted
– animal_white
– bone
– box_10_greek
– box_10_white
– box_20_greek
– box_20_white

• channel - color channel, it can be RED/GREEN/BLUE or ALL to render
all three channels at once. In the last case, the results are automatically
combined to a single colorful image

• integratorPlugin - Mitsuba integrator plugin, the supported integrators are

– volpath_simple_custom - default Mitsuba volumetric path tracer with
minor tweaks described in the section 4.4

– volpath_custom1 - custom volumetric path tracer
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– volpath_custom2_branched - custom volumetric path tracer with the
branching via direction sampling at the first medium scattering event

– volpath_custom3_branched - custom volumetric path tracer with the
branching via distance sampling from the surface intersection point

– volpath_custom4_branched - custom volumetric path tracer with con-
figurable multiple-level branching

– photonmapper_hetero - photon mapper with the support for heteroge-
neous media

• maxDepth - maximum number of scattering events for each path, default is
100

• mediumPlugin - Mitsuba medium plugin, the supported plugins are

– heterogeneous_label - heterogeneous medium that uses material IDs
and LUT to obtain medium properties, uses Woodcock tracking

– heterogeneous_homoinside - heterogeneous medium with the approxi-
mation using homogeneous medium core, uses Woodcock tracking

– heterogeneous_regular - heterogeneous medium using hierarchical reg-
ular tracking

– heterogeneous_regular_simple - heterogeneous medium using simple,
non-hierarchical regular tracking

– heterogeneous_hybrid - heterogeneous medium using simple regular
tracking for transmittance evaluation and Woodcock tracking for dis-
tance sampling

• volumePlugin - Mitsuba volume plugin, the supported plugins are

– gridvolume_dense - grid stored using the dense representation
– gridvolume_openvdb - grid stored using OpenVDB

• useOrthogonalCamera - use the special camera used in the optimization
pipeline, if false, use basic perspective camera, default false

• samplesPerPixel - number of samples per pixel, default 100

• resolutionX - image width, default 640

• resolutionY - image height, default 640

• volumePhotons - number of photons used in photon mapping, default 1 000
000

• lookupSize - number of neighboring photons used to compute photon radius
in the BRE algorithm in the photon mapping, default 20

Unfortunately, not all plugin combinations are supported. The limitations are
the following
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• can be used only with volpath_simple_custom, because it does not sup-
port distance and distance gradient lookups. On the other hand, vol-
path_simpl_custom can be used with all media plugins

• photonmapper_hetero requires exactly the heterogeneous_regular_simple
medium plugin

A.1.4 Common issues
• CMake command fails - The CMake [Martin and Hoffman, 2010] command

removes the old ./build folder if it exists, creates a new one and puts the
respective data there. If the solution is open, it cannot remove the folder.
Therefore, we advise to close the solution first.

A.2 Developer documentation
The codebase of this work can be split into two parts

• a set of Python scripts for creating Microsoft Visual Studio 2019 solution
using CMake [Martin and Hoffman, 2010], installing binaries and running
the rendering

• Mitsuba renderer with dependency libraries and multiple custom plugins

In the following chapters we describe it in more detail and justify major deci-
sions that we made.

A.2.1 Python scripts
Python is our language of choice mainly because it offers sufficient functionality
for manipulation with files, strings and command line arguments. Also, the code
is compact and fast to write. On the other hand, the code is not performance-
critical.

To improve readability, we split the code into multiple files and functions.
The files are

• renderer.py - root file, running help/cmake/install/run based on the com-
mand line arguments. The functionality for install and run options is in
other files, the code for help and cmake options is inlined in this file as it is
short.

• install.py - makes sure that the necessary source directories are present, the
destination directory exists and is empty (recursively deletes it if it already
exists), then copies the binaries

• run.py - parses the remaining arguments, reads the scene configuration
file, asserts correctness of both the command line arguments and the scene
configuration. Then it composes the arguments for mitsuba.exe and runs
it. To be able to split the arguments resolution and configuration parsing
into separate functions, we use TypedDict in a similar fashion as struct in
C++
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Assertion of correct rendering setup

The run.py script makes sure there are no missing/incorrect values both in the
command line arguments and in the scene configuration file. Also it asserts that
no incorrect combination of plugins is used (see the section A.1.3). However, it
would be tedious to check if all referenced files exist and are correct manually,
so we transfer this responsibility to Mitsuba/OpenVDB. The libraries provide
comprehensible messages in cases like missing geometry file, incorrect or missing
volume file.

A.2.2 Mitsuba & custom plugins
The research codebase as well as the application mentioned in the section 1.2
use Mitsuba renderer, so it is natural to use it as a base for our research. It
allows easy adding and testing of new algorithms. We fork Mitsuba code from
the commit c25a40b68ccb91af3ae50bc368c054fbe095126e.

Changes in Mitsuba

The Mitsuba code is almost in the original state, except

• hints to find dependency libraries in the CMake scripts

• a set of changes necessary to build the code in Microsoft Visual Studio 2019

• medium.h & volume.h - added API functions for obtaining material IDs
(labels), distances to surface and other things necessary for the custom
plugins

• custom plugins, will be discussed later

Dependencies

We include the basic Mitsuba renderer dependencies package available at https :
//github.com/mitsuba − renderer/dependencies_win64/. Additionally, we add
OpenVDB and its dependencies obtained using vcpkg.

For simplicity, we do not include source code for the dependencies, only nec-
essary includes.

Custom plugins

The additional plugins are

• gridvolume_dense (volume) - dense representation of 3D grid

• gridvolume_openvdb (volume) - OpenVDB representation of 3D grid

• surfacevoxels (sensor) - special camera used in the optimization pipeline
that is shooting rays in the orthogonal direction to the surface

• heterogeneous_label (medium) - implements Woodcock tracking that reads
the medium physical properties as material IDs translated using a LUT
(this is used also in the other medium plugins)
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• heterogeneous_homoinside (medium) - heterogeneous medium that approx-
imates its inner core using white homogeneous medium

• heterogeneous_regular (medium) - implements hierarchical regular tracking

• heterogeneous_regular_simple (medium) - implements simple (non-hierar-
chical) regular tracking

• heterogeneous_hybrid (medium) - medium plugin that uses Woodcock track-
ing for distance sampling and simple regular tracking for

• volpath_custom1 (integrator) - custom path tracer without the branching

• volpath_custom2_branched (integrator) - custom path tracer with branch-
ing using phase function sampling at the first scattering event, supports
also dynamic branching

• volpath_custom3_branched (integrator) - custom path tracer with branch-
ing using distance sampling at the surface intersection

• volpath_custom4_branched (integrator) - custom path tracer with the mul-
tiple-layer configurable branching using phase function sampling

• volpath_simple_custom (integrator) - modified basic Mitsuba path tracer
matching the appearance of the custom plugins

• photonmapper_hetero (integrator) - BRE-based integrator that supports
heterogeneous media

We minimized the code duplication by separating the common functionality
to files that are shared among the plugins. However, we believe it is better to
duplicate small parts of the code here and there to improve the readability of the
individual plugins.

Most of the plugin parameters are runtime (e.g. sample count, resolution),
but some of them are compile time (using compiler directives) to maximize the
performance.

A.3 Electronic attachment contents
The electronic attachment has the following contents

• Python scripts in the root folder for creating of the solution, installing built
binaries and running the rendering

• mitsuba/ - Mitsuba renderer sources with necessary prebuilt dependencies

• rundir/ - contains prebuilt version of the renderer with all dependencies,
can be run immediately without any building

• scenes/ - testing scenes
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