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Abstract: This thesis is dealing with the following problem: Let us have two
stationary time series with heavy-tailed marginal distributions. We want to detect
whether they have a causal relation, i.e. if a change in one of them causes a change
in the other. The question of distinguishing between causality and correlation is
essential in many different science fields. Usual methods for causality detection
are not well suited if the causal mechanisms only manifest themselves in extremes.
In this thesis, we propose a new method that can help us in such a nontraditional
case distinguish between correlation and causality. We define the so-called causal
tail coefficient for time series, which, under some assumptions, correctly detects
the asymmetrical causal relations between different time series. We will rigorously
prove this claim, and we also propose a method on how to statistically estimate
the causal tail coefficient from a finite number of data. The advantage is that
this method works even if nonlinear relations and common ancestors are present.
Moreover, we will mention how our method can help detect a time delay between
the two time series. We will show how our method performs on some simulations.
Finally, we will show on a real dataset how this method works, discussing a cause
of electromagnetic storms.

V tejto práci riešime nasledovný problém: Máme dve stacionárne časové rady,
ktorých marginálne distribúcie majú ťažké chvosty. My chceme zistǐt, či majú
kauzálny vzťah, teda či zmena v jednej z nich spôsob́ı zmenu v druhej. Otázka,
či náhodné premenné majú kauzálny súvis alebo sú iba korelované, je dôležitá
v mnohých oblastiach vedy. Bežné metódy na detekciu kauzaĺıt nefungujú dobre,
ak sa vzájomné vzťahy prejavujú výhradne pri extrémnych hodnotách. V tejto
práci navrhneme nový spôsob, ako v takomto netradičnom pŕıpade rozlǐsovať
medzi koreláciou a kauzalitou. Definujeme si tzv. kauzálny chvostový koeficient
pre časové rady, ktorý za istých predpokladov detekuje asymetrické kauzálne
vzťahy medzi dvoma časovými radami. Toto tvrdenie rigorózne dokážeme a ešte
navrhneme spôsob akým kauzálny chvostový koeficient štatisticky odhadneme
iba z konečného množstva dát. Výhodou je, že táto metóda funguje aj pri
nelineárnych vzťahoch medzi časovými radami a aj za pŕıtomnosti spoločnej
pŕıčiny. Navyše, spomenieme spôsob akým táto metóda môže pomôcť pri zisťovańı
časového posunu medzi dvoma časovými radami. Na simuláciách ukážeme, ako
táto metóda funguje v praxi. Na koniec ukážeme, ako naša metóda funguje na
reálnych dátach, kde rozoberieme pŕıčiny vzniku elektromagnetických búrok.

Keywords: Granger causality, Causal inference, Nonlinear time series, VAR pro-
cess, Extremal value theory, Heavy tails
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Introduction
0.0.1 Background
The ultimate goal of causal inference is to understand relations between random
variables and to predict future values. It can be used in almost every scientific
field. In hydro-meteorology, to predict the temperature or the amount of rainfall
and understand what causes the sudden changes. In medicine, to understand the
spread of epileptic seizures in different regions of a brain. In economy, to better
predict the financial stocks and exchange rates.

A neutral definition is notoriously hard to provide, since every aspect of cau-
sation has received substantial debate. The task of causal inference divides into
two major classes: Causal inference over random variables and a causal inference
over time series. Probably the first person that provided the mathematical defi-
nition of causality for time series was Wiener [1956]. His definition can be simply
explained in words – one time series causes the second one, if the knowledge of
its previous values can help in the prediction. The introduction of the concept of
causality into the practice, namely into analyses of data observed in consecutive
time instants, time series, is due to Granger [1969], Nobel prize winner in econ-
omy. To this day, there are several different definitions, each used in a different
field. One well-known and successful approach comes from Shannon information
theory, which uses entropy and mutual information to determine some properties
of dynamical systems and complex systems.

0.0.2 Heavy tails
Despite the fact that many economic and environmental data are known to fol-
low a heavy-tailed distribution, there is almost no literature that deals with the
causal inference for such a case. Usual methods use some regression or entropy
estimation, which relies on the assumption of a finite expected value and variance.
Most of them also require linear relations between variables. Therefore, such a
problem is still an open one. This thesis provides a method that works even for
some nonlinear class with heavy-tailed marginal distributions.

0.0.3 Example
We give an example of a typical time series, with which we will deal in our thesis.
Let (X, Y )⊤ = ((Xt, Yt)⊤, t ∈ Z) be a bivariate strictly stationary time series,
defined by the following recurrent relations

Xt = 1
2Xt−1 + εX

t ,

Yt = 1
2Yt−1 +

√︂
Xt−5 + εY

t ,
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where εX
t , ε

Y
t

iid∼ Pareto(1, 1) 1. A sample realization of such a model is in Figure
1. Here, X causes Y (in the Granger sense), simply because the knowledge of X
can help in the prediction of the future values of Y (note that it is not true for
the other direction).

Figure 1: The figure represents a sample realisation of the (X, Y )⊤ time series
from Subsection 0.0.3 (X is the blue one and Y is red the one). We can see that
large values of the blue time series cause large values of the red time series, but
not the other way. Here, it is easy to see that the blue is causing the red. The
lag represents the time delay between the time series, which is equal to 5 in this
case.

0.0.4 Main idea
Consider we have data such as in Figure 1; we want to detect a causal relation-
ship between those time series. There is (at least in this realisation) an evident
asymmetry between the two time series in the extremes. If the blue one is ex-
tremely large, then the red one will also be extremely large (see the second and
third “jump”). However, if the red one is extremely large, the blue one is not
necessarily extremely large (see the first red “jump”). Therefore, an extreme of
X causes an extreme of Y and not the other way around in an intuitive sense.

We will put this simple idea into the mathematical language. The main prob-
lem is the time lag (or time delay). An extreme event of X does not mean an
immediate extreme event of Y – it takes some time for the information from X
to influence Y (in this artificial example, it takes exactly 5 time units).

Therefore, we propose the following coefficient,

Γtime
X,Y (q) := lim

u→1−
E [max{FY (Y0), . . . , FY (Yq)} | FX(X0) > u],

1εX
t , εY

t are iid (independent and identically distributed), following a Pareto distribution
with parameters equal to 1. Distribution function of a Pareto(a, b) random variable is in the
form F (x) = 1 − ( a

x )b for x ≥ a, zero otherwise. When a = b = 1 it is often called Standard
Pareto distribution.

4



where FX , FY are stationary distributions of Xt and Yt, respectively. It mathe-
matically represents how large Y will be in the next q steps if X is extremely large
(in their respective scales). In our example, q = 5 and if X0 is extremely large,
then Y5 will surely be also extremely large (large blue implies large red), but not
the other way around. This implies that the following should hold: Γtime

X,Y (q) = 1,
but Γtime

Y,X (q) < 1. The main part of the thesis consists of determining the as-
sumptions under which this is really true.

A similar idea was used in Gnecco et al. [2020], which was not dealing with
time series. Γtime

X,Y (q) is a copula-based coefficient, and a similar notion also pro-
vides a conditional tail expectation coefficient from the economy. There is only
very little literature connecting causality and extreme events. Some idea was also
given by Zanin [2016], but the proposed method and results are arguable.

0.0.5 Thesis organization
The thesis is organised as follows. Chapter 1 gives some preliminaries about time
series, their specific models such as VAR and nonlinear models. It also covers
an extremal value theory, and formal definition of causation. Chapter 2 contains
the main results, together with a model example of the method. Chapter 3 gives
some extensions of the proposed method, provides its properties and discusses
what will happen under violating the assumptions. Moreover, it also discusses
the time lag estimation problem mentioned above. Chapter 4 deals with the
problem of estimation. It discusses some properties of a proposed estimator and
uses simulations on artificial data sets. In the end, the method is applied to a
real data set concerning geomagnetic storms; we will confirm results presented by
another article, which uses conditional mutual information to determine the cause
of this phenomena. Finally, Chapter 5 and Chapter 6 consist of proofs; Chapter
6 with direct proofs of theorems from the previous chapters and Chapter 5 deals
with auxiliary propositions which are used in the proofs. The thesis finishes with
a Bibliography.
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1. Preliminaries
This chapter will give a short review of some results from multivariate nonlinear
time series analysis, extremal value theory and causal inference.

1.1 Time series
This section will define stationary stochastic processes, univariate autoregressive
AR(q) processes and vector autoregressive V AR(q) processes and nonlinear au-
toregressive processes.

If the reader is not familiar with this topic, we recommend the references
Prášková [2017] for the univariate time series, and Lütkepohl [2007] for multi-
variate time series and VAR processes. For an introduction to nonlinear time
series, we recommend Tsay and Chen [2018].

1.1.1 Some basics
Let (Ω,F , P ) be a probability space, where Ω is a sample space, F is a σ-algebra
on Ω and P is a probability measure. A (discrete) univariate stochastic process
(or univariate time series) is a real-valued function X : Z×Ω → R, where for each
fixed t ∈ Z is X(t, ω) a random variable, i.e. measurable w.r.t. F . The random
variable corresponding to a fixed t is usually denoted by Xt, and we will use the
notation X = (Xt, t ∈ Z). The underlying probability space will usually not be
mentioned, and it will be understood that all random variables are defined on the
same probability space. A multivariate (or d-dimensional) stochastic process is a
function Z : Z×Ω → Rd, such that for each fixed t ∈ Z is Z(t, ω) a d-dimensional
random vector. We will usually work with Z = (X, Y )⊤, bivariate time series,
where X (resp. Y ) represents the first (resp. the second) component of Z.

A stochastic process Z is strictly stationary if the joint distributions of n
consecutive variables are time-invariant. We will not work with other stationarity
types – by a stationary process, we will always mean strict stationarity.

Let (Xt, t ∈ Z) be a univariate stochastic process. We say that the sum∑︁∞
t=1 Xt is summable (in probability, resp. almost surely (a.s. for short)), if

Sn = ∑︁n
t=1 Xt converges to some random variable (in probability, resp. a.s.) as

n → ∞. It holds in general that if (Xt, t ∈ Z) are independent, then the sum∑︁∞
t=1 Xt is summable in probability if and only if it is summable almost surely

(see e.g. Theorem 6.5.7 in Gut [2013]).

1.1.2 Linear models of univariate time series
Let (εi, i ∈ Z) be iid random variables, and q ∈ N be a constant.
Definition 1.1. Let αi be a sequence of real constants. The stochastic process
(Xt, t ∈ Z) defined by

Xt =
∞∑︂

i=0
αiεt−i,

is called causal linear process, if such process exists.
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Let αi fulfill ∑︁∞
i=1 α

2
i < ∞. If (Xt, t ∈ Z) are iid random variables with finite

variance, then ∑︁∞
i=1 αiXi is a.s. summable (see e.g. Theorem 6.5.1 in Gut [2013]).

Definition 1.2. Let α1, . . . , αq be a sequence of real constants. The stochastic
process (Xt, t ∈ Z) defined by

Xt =
q∑︂

i=1
αiXt−i + εt,

is called autoregressive stochastic process of order q, notation AR(q), whenever
such process exists.

Theorem 1.1. Let αi be a sequence of real constants, such that all the roots of
the polynomial f(x) = 1 − α1x− · · · − αqx

q lie outside the unit circle in C, then
the autoregressive process (Xt, t ∈ Z) is a causal linear process, i.e.,

Xt =
∞∑︂

i=0
βiεt−i,

where βi are defined as the (unique) elements of the power series 1
f(x) = ∑︁∞

i=0 βix
i.

Proof. See e.g. Theorem 35 in Prášková [2017].

1.1.3 VAR(q) models
Let (εi, i ∈ Z) be iid d-dimensional random vectors.

Definition 1.3. Let A1, . . . , Aq be fixed real d× d matrices. A stochastic process
(Zt, t ∈ Z), defined by

Zt = A1Zt−1 + · · · + AqZt−q + εt,

is called the vector autoregressive model of order q, notation VAR(q), whenever
such process exists. We understand the sum of vectors component-wise.

Remark. We should specify that Aq ̸= 0 so that the order of the VAR process is
uniquely defined. We will not do it for the latter convenience, and we admit that
the V AR(q) process is also a V AR(q + h) process. We will refer to the maximal
q such that Aq ̸= 0 as the minimal order.

Definition 1.4. A stochastic process (Zt, t ∈ Z) which follows V AR(q) is called
stable, if

det(Id − A1z − · · · − Aqz
q) ̸= 0, ∀|z| ≤ 1,

where Id denotes unit d-dimensional matrix.

Theorem 1.2 (Causal representation). If a stochastic process (Zt, t ∈ Z) which
follows V AR(q) is stable, then there exist matrices Bi ∈ Rd×d such that

Zt =
∞∑︂

i=0
Biεt−i.

Proof. See e.g. page 25 in Lütkepohl [2007].
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Theorem 1.3. If a V AR(q) process is stable, then it is also stationary. The
other direction is not valid in general.

Proof. Page 25 in Lütkepohl [2007].

The stability condition is in literature often referred to as stationarity condi-
tion.

1.1.4 Nonlinear time series
The most general form of nonlinearity in time series can be achieved by consider-
ing that Zt = f(Zt−1, . . . , Zt−q, εt) holds for some “reasonable” function f . Non-
linear autoregressive model (NAR) is a special case when Zt = f(Zt−1, . . . , Zt−q)+
εt. We will consider only the case when function f is additive.

Definition 1.5. Let (εi, i ∈ Z) be iid d-dimensional random vectors. Let
f1, f2 . . . , fq be measurable real functions from Rn to Rn. A stochastic process
(Zt, t ∈ Z), defined by

Zt = f1(Zt−1) + · · · + fq(Zt−q) + εt,

is called the nonlinear additive autoregressive model (NAAR) of order q, whenever
such process exists.

We will now state two theorems which discuss the existence and stationarity
of the process Zt = f(Zt−1) + εt for d = 1.

Theorem 1.4 (sufficient condition). Let (εi, i ∈ Z) be iid random variables. Let
f be continuous function satisfying lim|x|→∞

|f(x)|
|x| < 1. Let E |εt| < ∞. Then the

process Zt = f(Zt−1) + εt is ergodic (and stationary).

Proof. See Corollary 2.2 in Bhattacharya and Lee [1995]. Other reference is
Theorem 2.2 in Andel [1989], that states a slightly stronger condition.

Lemma 1.1 (Necessary condition). Let (Zt, t ∈ Z) be a stationary univariate
process. Let it satisfy

Zt = f(Zt−1) + εt,∀t ∈ Z,

where εt are iid, unbounded, non-negative and f is measurable. Then f must
satisfy limx→∞

f(x)
x

≤ 1, if the limit exists.

Proof. If limx→∞
f(x)

x
> 1, then there exists x0 such that ∀x ≥ x0 : f(x)

x
> 1. With

probability one, there exists t ∈ Z such that εt > x0. Then, x0
a.s.
< Zt

a.s.
< Zt+1

a.s.
<

. . . because εt is non-negative. This is a contradiction with stationarity.

We will work only with such NAAR processes, for which fi are all additive
in the sense that fi(x1, . . . , xd) = (∑︁d

j=1 f
j,1
i (xj), . . . ,

∑︁d
j=1 f

j,d
i (xj))⊤ for some

measurable real functions f j,k
i . For d = 2 and q = 1, we obtain the model as in

Definition 1.14.
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1.2 Extremal value theory
If the reader is not familiar with the concept of heavy-tailed distributions, we
recommend Foss et al. [2013], or shorter article Mikosch [1999]. There is no
unique definition of a random variable with a heavy-tailed distribution. Gener-
ally, heavy-tailed distributions are those whose tails decay to zero slower than
at an exponential rate (or slower than normal distribution). For the following
chapters, we will need the so-called max-sum equivalence theorem (or more pre-
cisely, “principle of the single big jump”), which can be conveniently defined for
distributions with regularly varying tails.

Definition 1.6. A positive, measurable function f is called regularly varying with
index θ ∈ R if it is defined on some neighbourhood [x0,∞) of infinity, and

lim
x→∞

f(tx)
f(x) = tθ, ∀t > 0.

If θ = 0, we call f slowly varying function. We call θ the (heavy-tailed) tail index.

Lemma 1.2. For every regularly varying function, there exists a slowly varying
function L such that f(x) = xθL(x).

Proof. Remark 1.1.3. in Mikosch [1999].

Notation. We will use notation f(x) ∼ g(x) ⇐⇒ limx→∞
f(x)
g(x) = 1.

Definition 1.7. A random variable X with distribution function FX is called
heavy-tailed (or regularly varying) with tail index θ > 0, if the function 1−FX(x)
is regularly varying function with tail index −θ. Notation X ∼ RV (θ).

Definition 1.8. A random variable X satisfies the tail balance condition, if
limu→∞

P (X>u)
P (|X|>u) = p ∈ [0, 1]. We say that random variables X, Y have compatible

(upper) tails, if P (X > u) ∼ P (Y > u).

Note. In some literature, compatible tails condition is often given in a slightly
more general setup, where they require ∃p > 0 such that limu→∞

P (X>u)
P (Y >u) = p. For

simplicity of notation, we will use only the case where p = 1.

Example 1.1. Typical examples of heavy-tailed distributions with positive tail
index are Cauchy distribution, Pareto distributions or Burr distributions.

Lemma 1.3. Suppose X ∼ RV (θ). Then E |X|β < ∞ for β < θ, and E |X|β =
∞ for β > θ.

Proof. Proposition 1.3.2. in Mikosch [1999].

Theorem 1.5 (Max-sum equivalence). Let X, Y ∼ RV (θ) be independent (not
necessary with compatible tails). Then X + Y is heavy-tailed with the same tail
index θ and

P (X + Y > x) ∼ P (X > x) + P (Y > x) ∼ P (max(X, Y ) > x).

Remark. Theorem 1.5 holds even if Y is notRV (θ), but only max(X, Y ) ∼ RV (θ).
It can be easily generalized for more than 2 random variables. The proof can be
found in Section 1.3.1 in Mikosch [1999].
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The following result is also a particular case of so-called Breiman’s lemma.

Consequence. For X ∼ RV (θ) and α > 0 holds P (αX > u) ∼ αθP (X > u) for
u → ∞.

Proof. Corollary 1.3.8 in Mikosch [1999].

1.2.1 Causal linear process with heavy-tailed noise
Literature can be also found in Resnick [1987], Chapter 4. The main result that
we want to use is the following.

Definition 1.9. Let (εi, i ∈ Z) iid∼ RV (θ). Let αi be a sequence of non-negative
constants. We will speak about a sum-equivalence if the following relation holds
P (∑︁∞

i=0 αiεi > u) ∼ [∑︁∞
i=0 α

θ
i ]P (ε1 > u) (provided that the first sum is a.s.

summable and the second sum is finite).

We now give two theorems which assures the sum-equivalence.

Theorem 1.6 (Sufficient condition). Let (εi, i ∈ Z) iid∼ RV (θ). If θ > 1 we
assume that E (εi) = 0. Let αi be a sequence of non-negative constants, such that
one of the following conditions holds:

1. For θ > 2 is ∑︁∞
i=0 α

2
i < ∞.

2. For θ ≤ 2 there ∃δ > 0 such that ∑︁∞
i=0 α

θ−δ
i < ∞.

Then it holds that

1. ∑︁∞
i=0 αiεi is summable a.s.

2. Process defined by Xt = ∑︁∞
i=0 αiεt−i is stationary.

3. P (∑︁∞
i=0 αiεi > u) ∼ [∑︁∞

i=0 α
θ
i ]P (ε1 > u).

Proof. Lemma A.3 in Mikosch and Samorodnitsky [2000].

Theorem 1.7. Let (εi, i ∈ Z) iid∼ RV (θ), with P (|εi| > u) = L(u)u−θ for
some slowly varying L for which the tail balance condition hold. Let either
L(u2) ≤ cL(u1) hold for all u2 > u1 > u0 for some constants u0, c, or L(u1u2) ≤
cL(u1)L(u2) for all u2, u1 > u0 for some constants u0, c > 0. Let αi be a sequence
of non-negative constants, such that ∑︁∞

i=0 α
θ
i < ∞. Then, it holds that

P (
∞∑︂

i=0
αiεi > u) ∼ [

∞∑︂
i=0

αθ
i ]P (ε1 > u),

provided that ∑︁∞
i=0 αiεi is a.s. summable.

Proof. Lemma A.4 in Mikosch and Samorodnitsky [2000].
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1.2.2 Nonlinear time series with heavy-tailed noise
Most of the theory from nonlinear time series relies on the existence of variance of
the noise variables. There are a few publications that deal with the heavy-tailed
case. We will refer to Yang and Hongzhi [2005]. The following statements are
consequence of Theorem 2.3. from this reference.

Theorem 1.8. Let (εi, i ∈ Z) iid∼ RV (θ) with positive density everywhere. Let
(Xt, t ∈ Z) follow NAR model, specified by Xt = f(Xt−1, . . . , Xt−q) + εt for some
measurable f .

• Let Xt = (Xt, . . . , Xt−q+1)⊤, ut = (εt, 0, . . . , 0)⊤ and
Φ(Xt) = (f(Xt), Xt, . . . , Xt−q+2)⊤1.

• Let there exist ρ ∈ [0, 1), K > 0 and some norm || · || on Rq, such that for
all x ∈ Rq holds

||Φ(x)|| ≤ ρ||x|| +K.

Then, NAR model (Xt, t ∈ Z) is geometrically ergodic (and stationary) and
Xt ∼ RV (θ).

Consequence. Let (εi, i ∈ Z) iid∼ RV (θ) with positive density everywhere. Let
(Xt, t ∈ Z) follow NAAR model, specified by Xt = f1(Xt−1) + · · · + fq(Xt−q) + εt,

where fi are some measurable continuous functions satisfying lim|x|→∞
|fi(x)|

|x| < 1.
Then, (Xt, t ∈ Z) is ergodic (and stationary) process with Xt ∼ RV (θ).

Proof. This condition for the specific function f(x1, . . . , xq) = f1(x1)+· · ·+fq(xq)
is clearly stronger than the condition from the previous theorem.

Conjecture. Let (X, Y )⊤ follow NAAR(q) model, specified by

Xt = f1(Xt−1) + f2(Yt−q) + εX
t ,

Yt = g1(Yt−1) + g2(Xt−q) + εY
t .

We require for functions f1, f2, g1, g2 to be continuous and lim|x|→∞
|h(x)|

|x| < 1
for all h = f1, f2, g1, g2. Moreover, let εX

t , ε
Y
t

iid∼ RV (θ) have positive density
everywhere. Then, (X, Y )⊤ is stationary with Xt, Yt ∼ RV (θ).

Proof and remark. The second part of the claim follows from Proposition 5.3.
We do not prove the stationarity property; therefore, we will always assume it,
even though we believe it holds automatically.

1.3 Causal inference
If the reader has not encountered a mathematical definition of causality, we highly
recommend Peters et al. [2017]. If the reader wants to read a short introduction
into Granger causality and causalities in time series, we recommend Palachy
[2019].

1Then, the first equation can be equivalently rewritten as Xt = Φ(Xt−1) + ut.

11



1.3.1 Structural causal model
Let X, Y be real random variables.

Definition 1.10. A bivariate structural causal model (SCM) with graph X → Y
consists of two assignments,

X := εX ,

Y := f(X, εY ),

where εX , εY are independent and f is some measurable function 2. In this case,
we say that X causes Y , or that X is the cause and Y is the effect.

Lemma 1.4. For every joint distribution PX,Y , there exists an SCM, where Y =
f(X, εY ) where f is some measurable function and X is independent of εY .

Proof. Proposition 4.1 in Palachy [2019].

This result can be applied to X → Y and also to Y → X. Therefore, without
any other assumptions, we cannot detect any information about the causal di-
rection only from observational distribution (this is not true in the multivariate
SCM, though).

Definition 1.11. Linear models with non-Gaussian additive noise (LiNGAMs)
are a specific cases of SCM, where f(X, εY ) = αX+εY , where α ∈ R is a constant
and noise variables are not normally distributed.

Lemma 1.5. If we assume LiNGAMs model, the causal direction is identifiable.
That is, if PX,Y admits the linear model Y = αX + εY where X, εY are indepen-
dent, then there exist β ∈ R and εX independent of Y such that X = βY + εX if
and only if both X, εY are Gaussian.

Proof. Theorem 4.2 in Palachy [2019].

Definition 1.12. Nonlinear additive noise models (ANMs) are specific cases of
SCM, where f(X, εY ) = fY (X) + εY .

ANMs models with some (quite general) conditions on f and the distributions
of noise are also identifiable. For example, if noises are Gaussian, then only linear
functions generate non-identifiable models.

1.3.2 Causality in time series
Now we will deal with structural causal models in more general form, when we
potentially have dependent stochastic processes. There is a large number of
different notions of causality. Generally, the process X causes Y if the knowledge
of X can improve the prediction of Y .

In VAR processes, this definition is equivalent to the following definition,
which will be used in the thesis.

2To prevent some trivial cases, we should specify that f depends on its first argument on
some subset of the support of X with non-zero measure.
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Definition 1.13. Let (X, Y )⊤ = ((Xt, Yt)⊤, t ∈ Z) follow stable V AR(q) model,
specified by

Xt = α1Xt−1 + · · · + αqXt−q + γ1Yt−1 + · · · + γqYt−q + εX
t ,

Yt = β1Yt−1 + · · · + βqYt−q + δ1Xt−1 + · · · + δqXt−q + εY
t .

Then, we say that X (Granger) causes Y if there exists δi ̸= 0.

In the notion of Theorem 1.2, we can rewrite

Xt =
∞∑︂

i=0
aiε

X
t−i +

∞∑︂
i=0

ciε
Y
t−i,

Yt =
∞∑︂

i=0
biε

Y
t−i +

∞∑︂
i=0

diε
X
t−i.

Then, X causes Y if and only if di ̸= 0 for some i.

Definition 1.14. Let (X, Y )⊤ = ((Xt, Yt)⊤, t ∈ Z) follow additive NAAR model,
i.e. for each t ∈ Z holds

Xt = f1(Xt−1) + f2(Yt−1) + εX
t ,

Yt = g1(Yt−1) + g2(Xt−1) + εY
t .

Then, we say that X (Granger) causes Y if g2 is a non-constant function on the
support of Xt−1 (a.s.).

1.3.3 Testing causalities
There are many different tests and statistics for the causality detection. Perhaps
the most popular one is the so-called Granger test. For V AR(q) model as in
Definition 1.13, it uses linear regression to test the hypothesis if the sub-model
Yt = β1Yt−1 + · · · + βqYt−q + εY

t of model Yt = β1Yt−1 + · · · + βqYt−q + δ1Xt−1 +
· · · + δqXt−q + εY

t is sufficient (sum of squares is significantly smaller than in the
latter model). This was actually the very first definition of causality according
the famous article Granger [1969].

Another test can be done using transfer entropy. A basic approach from
an information theory for causality detection is using entropy and conditional
mutual information techniques. We recommend Paluš et al. [2007] for further
information.
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2. Causal tail coefficient for time
series
Let (X, Y )⊤ = ((Xt, Yt)⊤, t ∈ Z) be a bivariate time series. The main definition
of this thesis is the causal tail coefficient for time series Γtime

X,Y , which gives a
numerical value of the causal influence from X to Y . Causal tail coefficient for
a pair of random variables in SCM was first introduced in Gnecco et al. [2020].
We deal with time series as follows.

Definition 2.1. Let (X, Y )⊤ = ((Xt, Yt)⊤, t ∈ Z) be a bivariate (strictly) sta-
tionary time series. Causal tail coefficient for time series with lag q is defined as

Γtime
X,Y (q) := lim

u→1−
E [max{FY (Y0), . . . , FY (Yq)} | FX(X0) > u], (2.1)

where FX , FY are the distribution functions of X0, Y0, respectively (if the limit
exists). The coefficient Γtime

X,Y (q) without the zero term FY (Y0) will be denoted by

Γtime
X,Y (q; −0) := lim

u→1−
E [max{FY (Y1), . . . , FY (Yq)} | FX(X0) > u]. (2.2)

Lemma 2.1 (Obvious observations). Always Γtime
X,Y (q) ∈ [0, 1], and Γtime

X,Y (q; −0) ≤
Γtime

X,Y (q) ≤ Γtime
X,Y (q+ 1). Moreover, Γtime

X,Y (q) is invariant under linear transforma-
tions of our time series.

Remark. The previous definition mathematically expresses very natural questions:
How large Y will be if X is large? Does an extreme in X always cause an extreme
in Y ? If X0 is extremely large, will there be an Yi in the next q steps, which is
also extremely large?

We will show that, under some assumptions, Γtime
X,Y (q) = 1 if and only if X

causes Y . Hence, if Γtime
X,Y (q) = 1 and Γtime

Y,X (q) < 1, we found an asymmetry
between time series X, Y and we can detect a causal relationship.

First, we need to establish some assumptions for the time series.

2.1 Models
Definition 2.2 (Heavy-tailed VAR model). Let (X, Y )⊤ follow stable V AR(q)
model, specified by

Xt = α1Xt−1 + · · · + αqXt−q + γ1Yt−1 + · · · + γqYt−q + εX
t ,

Yt = β1Yt−1 + · · · + βqYt−q + δ1Xt−1 + · · · + δqXt−q + εY
t .

We will denote its causal representation by

Xt =
∞∑︂

i=0
aiε

X
t−i +

∞∑︂
i=0

ciε
Y
t−i,

Yt =
∞∑︂

i=0
biε

Y
t−i +

∞∑︂
i=0

diε
X
t−i.

Assumptions:
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• εX
t , ε

Y
t

iid∼ RV (θ),

• αi, βi, γi, δi ≥ 0 (this assumption is not necessary and will be discussed in
Chapter 3),

• ∃δ > 0 such that ∑︁∞
i=0 a

θ−δ
i < ∞,

∑︁∞
i=0 b

θ−δ
i < ∞,

∑︁∞
i=0 c

θ−δ
i < ∞,∑︁∞

i=0 d
θ−δ
i < ∞ (or the assumptions from Theorem 1.7 hold).

Then, we will say that (X, Y )⊤ follows Heavy-tailed VAR model.

Definition 2.3 (Heavy-tailed NAR model). Let (X, Y )⊤ follow stationary
NAR(q) model, specified by

Xt = f1(Xt−1) + f2(Yt−q) + εX
t ,

Yt = g1(Yt−1) + g2(Xt−q) + εY
t .

We require for functions f1, f2, g1, g2 to be either constant functions, or they are
continuous non-negative and satisfy limx→∞ h(x) = ∞ and limx→∞

h(x)
x

< 1 for
h = f1, f2, g1, g2.

Moreover, let εX
t , ε

Y
t

iid∼ RV (θ) be non-negative. Then, we will say that (X, Y )⊤

follows Heavy-tailed NAR model.

2.2 Causal direction
Theorem 2.1. Let (X, Y )⊤ be a time series which follows either Heavy-tailed
VAR or Heavy-tailed NAR model. If X causes Y , then Γtime

X,Y (q) = 1.

Remark. We assumed that we know the exact (correct) order q. But, for every
p ≥ q we also have Γtime

X,Y (p) ≥ Γtime
X,Y (q) = 1. The choice of appropriate q will be

discussed in Chapter 3.
Remark. Note that we did not use the heavy-tailed condition in the proof.

Theorem 2.2. Let (X, Y )⊤ be a time series which follows either Heavy-tailed
VAR or Heavy-tailed NAR model. If Y is not causing X then Γtime

Y,X (p) < 1 for all
p ∈ N.

Remark. The primary step of the proof stems from Proposition 5.2. The idea is
that large sums of independent, regularly varying random variables tend to be
driven by only a single large value. So if Y0 is large, it can be because some εY

i is
large, which does not affect Xk.
Example 2.1. Let (X, Y )⊤ follow the following stable VAR model:

Xt = 0.5Xt−1 + εX
t ,

Yt = 0.5Yt−1 + 0.5Xt−1 + εY
t ,

where εX
t , ε

Y
t

iid∼ Pareto(1, 1), i.e. with tail index θ = 1.
Its causal representation is
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Xt =
∞∑︂

i=0

1
2i
εX

t−i,

Yt =
∞∑︂

i=0

1
2i
εY

t−i +
∞∑︂

i=0

i

2i
εX

t−i.

In this case is lag q = 1, and it is sufficient to take only

Γtime
X,Y (1; −0) = lim

u→1−
E [FY (Y1) | FX(X0) > u]

(see also Section 3.3 for discussion). Let us give some vague computation of this
coefficient. From Theorem 2.1 is Γtime

X,Y (1) = 1. For the other direction, rewrite

lim
u→1−

E [FX(X1) | FY (Y0) > u] = lim
u→∞

E [FX(X1) |
∞∑︂

i=0

1
2i
εY

−i +
∞∑︂

i=0

i

2i
εX

−i > u].

First, note the following (first follows from the independence, second from Lemma
5.2):

lim
u→∞

E [FX(X1) |
∞∑︂

i=0

1
2i
εY

−i > u] = E [FX(X1)] = 1/2,

lim
u→∞

E [FX(X1) |
∞∑︂

i=0

i

2i
εX

−i > u] = 1.

Next, we know that P (X1 < K | ∑︁∞
i=0

1
2i ε

Y
−i + ∑︁∞

i=0
i

2i ε
X
−i > u) = P (X1<K)

2
for every K ∈ R, which holds due to Proposition 5.2 1. Simply put, with prob-
ability 1/2 has X1|{FY (Y0) > u} the same distribution as non-conditional X1,
and with complementary probability it diverges to ∞ (as u → ∞) . Together,
limu→1− E [FX(X1) | FY (Y0) > u] = 1

2 · 1 + 1
2 · 1

2 = 3
4 .

What if we do not know the exact lag q? If we put for example q = 2, we
obtain that Γtime

Y,X (2) = limu→1− E [max{FX(X0), FX(X1), FX(X2)} | FY (Y0) > u]
will be slightly larger than 3

4 . More precisely, it will be equal to 1
2 · 1 + 1

2 ·
E [max{FX(X0), FX(X1), FX(X2)}]. Using computer software and many simula-
tions, the true value is somewhere near 0.80.
Remark. Note that we keep the “zero term” FY (Y0) in our definition. Our models
do not allow instantaneous effects, i.e. cases where X0 causes Y0. In real data
sets, such situations can happen if the data have considerable time differences
between their measurements. Therefore, it is convenient to leave them in our
definition.

1Note the identities
∑︁∞

i=0
i

2i = 2 =
∑︁∞

i=0
1
2i .
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3. Properties and extensions

3.1 Modifications
Up to now, we assumed that large X causes large Y . In other words, we assumed
that all coefficients in our Heavy-tailed VAR model are non-negative. In this
section, we will discuss the extension to possibly negative coefficients and non-
direct proportional dependencies.

3.1.1 Modification for non-direct proportion
The most straightforward modification can be used when large X causes small
Y . For example, this is the usual case in some markets, where one shop’s profit
causes others’ loss. In this case, it is enough to use −X instead of X, as in the
following example.
Example 3.1. Let (X, Y )⊤ follow the following VAR model:

Xt = 0.7Xt−1 + εX
t ,

Yt = 0.6Yt−1 − 0.5Xt−1 + εY
t ,

where εX
t , ε

Y
t

iid∼ Cauchy 1. Then, by transforming X∗
t = −Xt, we obtain

X∗
t = 0.7X∗

t−1 − εX
t ,

Yt = 0.6Yt−1 + 0.5X∗
t−1 + εY

t ,

what fits into our previous theory. The same holds if we choose to transform Y
instead of X.

This modification can not be used in the general case.

3.1.2 Modification with absolute value
Consider that our time series are centred around zero (if E (X1),E (Y1) exist, they
are zero) and have full support on R. A simple transformation of our series can
achieve these conditions. The idea to extend the causal tail coefficient for time
series is to use the absolute values of |X|, |Y | instead of X, Y . However, the
general VAR series can have very complicated relations.
Example 3.2. Let (X, Y )⊤ follow the following VAR model:

Xt = 0.5Xt−1 + εX
t ,

Yt = Xt−1 − 0.5Xt−2 + εY
t .

Then, its causal representation is

Xt =
∞∑︂

i=0

1
2i
εX

t−i,

Yt = εY
t + εX

t−1.

1Cauchy distribution is a distribution with density function f(x) = 1
π

1
x2+1 , which is regularly

varying with the tail index θ = 1.
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Detecting some extremal causal relations can be very difficult, because even
though X causes Y , extreme of Xt−1 does not imply that Yt will be also ex-
treme (if Xt−2 was large, then Xt−1 will also be large, but Yt not). Therefore, we
will restrict our time series in such a way that this implication holds.

Definition 3.1 (Extremal causal condition). Let (X, Y )⊤ be a time series such
that X causes Y . Let (X, Y )⊤ follow a stable V AR(q) model, with its causal
representation in the form

Xt =
∞∑︂

i=0
aiε

X
t−i +

∞∑︂
i=0

ciε
Y
t−i,

Yt =
∞∑︂

i=0
biε

Y
t−i +

∞∑︂
i=0

diε
X
t−i.

We say that it satisfies an extremal causal condition, if there exists p ≤ q such
that the following implication holds:

∀i ∈ N ∪ {0} : ai ̸= 0 =⇒ di+p ̸= 0.

Lemma 3.1. The extremal causal condition holds in Heavy-tailed VAR model
(i.e. where the coefficients are non-negative), where X causes Y .

Proof. In the notion of the definition of Heavy-tailed VAR model and Theorem
2.2, if δp > 0, then

∞∑︂
i=0

diε
X
p−i +

∞∑︂
i=0

biε
Y
p−i = Yp = δpX0 + · · · = δp(

∞∑︂
i=0

aiε
X
−i +

∞∑︂
i=0

ciε
Y
−i) + . . . .

Therefore, if ai > 0, then di+p ≥ δpai > 0.

Remark. The extremal causal condition implies that for every k ≥ p, |Yk| will be
arbitrarily large, provided that |X0| is large enough.

Theorem 3.1. Let (X, Y )⊤ be a time series which follows Heavy-tailed VAR
model, with possibly negative coefficients, satisfying the extremal causal condi-
tion. Moreover, let εX

t , ε
Y
t have full support on R, are iid satisfying tail balance

condition. If X causes Y , but Y does not cause X, then Γtime
|X|,|Y |(q) = 1, and

Γtime
|Y |,|X|(q) < 1.

Remark. To detect the causal direction in time series such as in the previous
Example 3.2, we could change our coefficient (2.1) in the following way

Γtime
X,Y (q) := lim

u→1−
E [max{FY (Y0), . . . , FY (Yq)} | FX(X0) > u, FX(X−1) < u].

This would assure that the “extremal shock” happened at t = 0, not earlier. Such
a coefficient does not have good properties and is still not applicable for a general
class of VAR coefficients.
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3.1.3 Derivatives
Sometimes, it is more convenient to interpret a causal influence on a local scale,
where the “jump” will be the largest and not the global value will be the largest.
Let us define the time series of differences obtained from (X, Y )⊤ by

X∗
t := Xt −Xt−1,

Y ∗
t := Yt − Yt−1.

It is easy to see that if (X, Y )⊤ is a stable V AR process, then also (X∗, Y ∗)⊤ is
a stable VAR process.
Example 3.3. Let (X, Y )⊤ follow the following V AR(1) model:

Xt = 0.999Xt−1 + εX
t ,

Yt = 0.5Xt−1 + εY
t ,

where εX
t , ε

Y
t

iid∼ Cauchy. It is not hard to compute that Γtime
Y,X (1) ≈ 1. But on the

other hand, Γtime
|Y ∗|,|X∗|(1) ≈ 3

4 .
As we can see from Example 3.3, using (X∗, Y ∗)⊤ instead of (X, Y )⊤ can

sometimes lower the causal tail coefficient for time series, and it can be easier
to distinguish it from 1 (i.e. we need fewer data to obtain the same p-value).
Of course, it is not always true. The rule of thumb is to use this approach if
we have one process with long-range dependence and the other with short-range
dependence.

3.2 Common cause
Reichenbach’s common cause principle states that for every two random variables
X, Y holds exactly one of the following: They are independent, X causes Y , Y
causes X, or there exists Z causing both X and Y . The problem is to distinguish
between true causality and dependence due to a common cause.

Theorem 3.2. Let (X, Y, Z)⊤ follow a 3 dimensional stable V AR(q) model, with
iid regularly varying noise variables. Let Z be a common cause of both X and Y .
If X does not cause Y , then Γtime

X,Y (q) < 1.

Therefore, we can distinguish between true causality and common cause. We
do not observe all relevant data in practice, but the Theorem 3.2 holds even if
we do not observe the common cause. However, the common cause still needs
to fulfill the condition that noise is regularly varying with not greater tail index
than tail indexes of X and Y . We can not check this assumption if we do not
observe all the relevant data.
Example 3.4. Let (X, Y, Z)⊤ follow a 3 dimensional stable V AR(q) model, spec-
ified by

Zt = 0.5Zt−1 + εZ
t ,

Xt = 0.5Xt−1 + 0.5Zt−1 + εX
t ,

Yt = 0.5Yt−1 + 0.5Zt−1 + εY
t ,
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where εX
t , ε

Y
t

iid∼ Pareto(2, 2) and εZ
t

iid∼ Pareto(1, 1) (i.e. εZ
t has heavier tail than

εX
t ). Then, Γtime

X,Y (1) = Γtime
Y,X (1) = 1 even though X does not cause Y 2.

3.3 Estimating the lag q

3.3.1 Choosing lag q for the causal tail coefficient for time
series

We assumed that we know the exact order q of our time series in all previous
sections. What should we do if we do not know it? If we choose q too small,
we do not obtain correct causal relations. On the other hand, we can choose q
very large, and all the theoretical results will be still valid. The only problem is
that if we choose large q, then Γtime

Y,X (q) will be close to 1, which makes it harder
to statistically distinguish from 1 (i.e. we need more data to obtain the same
p-value). In the following, we propose a possible choice for q. Section 4.5 also
discusses this problem.

3.3.2 Extremogram
In classical time series, the well-accepted object for describing a serial dependence
between different time series is an auto-correlation function. In general, auto-
correlation function (or cross-correlation functions) do not behave properly under
heavy-tailed marginals. This problem partially solves an extremogram. Reference
is Davis and Mikosch [2009]. Some vague definition is that an extremogram is

γA,B(q) = lim
n→∞

n · cov(I{a−1
n X0∈A}, I{a−1

n Xq∈B}),

for an appropriate scaling sequence an → ∞, and A,B are Borel sets bounded
away from 0. Therefore, it can be seen as a limiting correlogram. If we estimate
the values for a wide range of q ∈ Z (and appropriate sets A,B), we obtain a tool
similar to the auto-correlation function, but adjusted for extremes. Choosing
the largest value out of all possible q, we have some choice for the lag. More
importantly, it can be a powerful graphical tool, where we can somehow visualize
the extremal dependence.

3.4 Time series synchronization
Consider the following problem: For time series (X, Y )⊤, where X causes Y , we
want to estimate how long it takes for information from X to affect Y . If we do
an intervention on X, when will it affect Y ? A typical example from the economy
can be the following. Let us have two time series representing prices of milk and
prices of cheese in time. One day, the government raises taxes for the prices of
milk by 10%. When can we anticipate an increase in the prices of cheese?

2We do not provide a rigorous proof of this equality, but such a proof follows the similar
steps as the proof of Theorem 2.1, using the fact that P (εZ

t + εX
t > u) ∼ P (εZ

t > u) and causal
representation X0 =

∑︁∞
i=0

1
2i εX

−i +
∑︁∞

i=0
i

2i εZ
−i and Y1 =

∑︁∞
i=0

1
2i εY

1−i +
∑︁∞

i=0
i

2i εZ
1−i.
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Definition 3.2 (Minimal lag). Let (X, Y )⊤ follow a stable V AR(q) model, spec-
ified by

Xt = α1Xt−1 + · · · + αqXt−q + γ1Yt−1 + · · · + γqYt−q + εX
t ,

Yt = β1Yt−1 + · · · + βqYt−q + δ1Xt−1 + · · · + δqXt−q + εY
t .

We call p ∈ N the minimal lag, if γ1 = · · · = γp−1 = δ1 = · · · = δp−1 = 0 and
either δp ̸= 0 or γp ̸= 0. If such p does not exist, we define the minimal lag as
+∞.

We propose a simple method for estimating the minimal lag.

Lemma 3.2. Let (X, Y )⊤ follow Heavy-tailed VAR model, where X causes Y .
Let p be the minimal lag. Then, Γtime

X,Y (r) < 1 for all r < p, and Γtime
X,Y (r) = 1 for

all r ≥ p.

Therefore, a statement that the minimal lag is equal to p is equivalent to a
statement that Γtime

X,Y (p) is the first coefficient which is equal to 1!

3.5 A note on other approaches
Using a causal tail coefficient for time series is undoubtedly not the only approach
for detecting a causal direction in a heavy-tailed time series. Many similar con-
cepts are present in the literature. In economy, the so-called conditional tail
expectation is often used, which is only a slight modification of our causal tail
coefficient (see Necir et al. [2010]). The conditional tail expectation is a function
of an extremogram (or, more precisely, a quotient of two exponent measures). It
may be interesting for a future research to show some connections between an
extremogram and the causal tail coefficient.

Another interesting approach for causal detection can be using an extremal
index (see e.g. Moloney et al. [2019]). Extremal index is a constant θ ∈ (0, 1]
associated with most stationary time series. For univariate series, it can be in-
terpreted as an inverse of an average cluster size of extremes. For instance, if
extremes appear in the size of 2, then θ = 1

2 . For bivariate time series, there can
be an asymmetry between cluster size of cause and effect extremes – if the cause
is extreme, the cluster will be larger because it implies that the effect will also be
extreme. It may be interesting for future research to examine such asymmetries
using spatial statistics.
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4. Estimations and simulations
All methods proposed in this chapter are programmed in R language (R Core
Team [2020]). They can be found in the supplementary package 1.

4.1 Non-parametric estimator
In this section we discuss a possible estimator of a causal tail coefficient for a
time series with lag q ∈ N,

Γtime
X,Y (q) = lim

u→1−
E [max{FY (Y0), . . . , FY (Yq)} | FX(X0) > u],

based on a finite sample (X1, Y1)⊤, · · · , (Xn, Yn)⊤.
We propose a very natural estimator, which computes the estimate using only

those values of Yi, . . . , Yi+q where Xi is larger than some threshold.

Definition 4.1. We define

Γ̂time

X,Y (q) := 1
k

∑︂
i:Xi≥τX

k

max{F̂ Y (Yi), . . . , F̂ Y (Yi+q)},

where τX
k = X(n−k+1) is the k-th largest value of X1, . . . , Xn, and F̂ Y (Yi) =

1
n

∑︁n
j=1 1{Yj ≤ Yi}.

Remark. This coefficient can possibly depend on random variables Yn+1, . . . , Yn+q.
If we want to be fully rigorous, we should assume that we observe n+ q data, or
define that Yn+i = Yn, which is a negligible modification for large n.

The number k represents number of extremes which we will take into account.
In the following, k will depend on n, so to be more precise, we will write kn instead
of k. The basic condition in extremal value theory is that

kn → ∞,
kn

n
→ 0, as n → ∞. (4.1)

In the following methods we take kn =
√
n. This choice is briefly discussed in

Section 4.4.
The next theorem shows that such a statistic is “reasonable”, by showing

that it is (under much more general setting than just assuming VAR model)
asymptotically unbiased.

Theorem 4.1. Let (X, Y )⊤ = ((Xt, Yt)⊤, t ∈ Z) be a stationary bivariate time
series, whose marginal distributions are absolutely continuous with support on
some neighbourhood of infinity. Let Γtime

X,Y (q) exists. Let kn satisfy (4.1) and
n

kn

P ( n
kn

sup
x∈R

|F̂X(x) − F (x)| > δ) n→∞→ 0, ∀δ > 0. (4.2)

Then, E Γ̂time

X,Y (q) n→∞→ Γtime
X,Y (q) 2.

1Or on the webpage https://github.com/jurobodik/Master thesis.
2Γ̂

time

X,Y (q) depends on n, although it does not have such an index.
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Remark. The condition (4.2) is satisfied for iid random variables when k2
n

n
→ ∞

(this follows from Dvoretzky–Kiefer–Wolfowitz inequality). For linear time series,
the condition differs for different linear coefficients.

4.2 Some insight using simulations

We will simulate how the estimates Γ̂time

X,Y work for a series of models. First, we
(using Monte Carlo principle) estimate the distribution of Γ̂time

X,Y and Γ̂time

Y,X for the
following model.

Definition 4.2. Let (X, Y )⊤ follow

Xt = 0.5Xt−1 + εX
t ,

Yt = 0.5Yt−1 + δXt−2 + εY
t ,

where εX
t , ε

Y
t are iid and (X, Y )⊤ is stable.

Consider δ = 0.5 and εX
t , ε

Y
t

iid∼ Cauchy. We simulate such a time series with
length n = 10000, and compute both Γ̂time

X,Y and Γ̂time

Y,X . We repeat this 1000 times
and the resulting numbers are drawn in Figure 4.1.

Figure 4.1: The histogram represent approximate distributions of Γ̂time

X,Y (blue) and
Γ̂time

Y,X (red) from a model with a correct causal direction X → Y and a number
of data n = 10000.

In the following, we will perform simulations for (X, Y )⊤ following the model
given by Definition 4.2. We consider the following three choices for the parameter
δ and three choices for the sample size n: δ = 0.1, 0.5 and 0.9, n = 100, 1000 and
10000. The random variables εX

t and εY
t are generated either from the standard

normal or the standard Pareto distribution. For each δ, each noise distribution
and each n, we compute the estimators Γ̂time

X,Y := Γ̂time

X,Y (2). The procedure is
repeated 200 times, and the means and quantiles of the estimators are computed.
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Table 4.1 shows the results; each cell corresponds to the model with given δ, noise
distribution and number n of data-points.

Example 4.1. The notation Γ̂time

X,Y = 0.5 ± 0.1 means that out of all 200 simulated
series from Definition 4.2, Γ̂time

X,Y was on average equal to 0.5 and exactly 190 of
those simulations were Γ̂time

X,Y ≤ 0.6. We write ±, because the 5% quantiles were in
all cases symmetrical, i.e. cca 190 of those simulations fulfilled also Γ̂time

X,Y ≥ 0.4.

Errors with standard Pareto distributions
n = 100 n = 1000 n = 10000

δ = 0.1 Γ̂time

X,Y = 0.83 ± 0.14 Γ̂time

X,Y = 0.94 ± 0.04 Γ̂time

X,Y = 0.98 ± 0.01
Γ̂time

Y,X = 0.66 ± 0.23 Γ̂time

Y,X = 0.66 ± 0.16 Γ̂time

Y,X = 0.65 ± 0.12

δ = 0.5 Γ̂time

X,Y = 0.91 ± 0.07 Γ̂time

X,Y = 0.98 ± 0.01 Γ̂time

X,Y = 0.994 ± 0.002
Γ̂time

Y,X = 0.71 ± 0.18 Γ̂time

Y,X = 0.75 ± 0.19 Γ̂time

Y,X = 0.79 ± 0.11

δ = 0.9 Γ̂time

X,Y = 0.93 ± 0.05 Γ̂time

X,Y = 0.98 ± 0.01 Γ̂time

X,Y = 0.996 ± 0.001
Γ̂time

Y,X = 0.75 ± 0.17 Γ̂time

Y,X = 0.8 ± 0.15 Γ̂time

Y,X = 0.84 ± 0.1
Errors with standard Gaussian distributions

n = 100 n = 1000 n = 10000

δ = 0.1 Γ̂time

X,Y = 0.68 ± 0.14 Γ̂time

X,Y = 0.68 ± 0.1 Γ̂time

X,Y = 0.69 ± 0.07
Γ̂time

Y,X = 0.63 ± 0.19 Γ̂time

Y,X = 0.63 ± 0.13 Γ̂time

Y,X = 0.62 ± 0.08

δ = 0.5 Γ̂time

X,Y = 0.83 ± 0.11 Γ̂time

X,Y = 0.86 ± 0.06 Γ̂time

X,Y = 0.90 ± 0.03
Γ̂time

Y,X = 0.64 ± 0.2 Γ̂time

Y,X = 0.65 ± 0.13 Γ̂time

Y,X = 0.66 ± 0.06

δ = 0.9 Γ̂time

X,Y = 0.88 ± 0.07 Γ̂time

X,Y = 0.93 ± 0.03 Γ̂time

X,Y = 0.96 ± 0.01
Γ̂time

Y,X = 0.64 ± 0.19 Γ̂time

Y,X = 0.65 ± 0.13 Γ̂time

Y,X = 0.66 ± 0.09
X with Pareto error, Y with Gaussian error

n = 100 n = 1000 n = 10000

δ = 0.5 Γ̂time

X,Y = 0.96 ± 0.02 Γ̂time

X,Y = 0.98 ± 0.0013 Γ̂time

X,Y = 0.997 ± 0.001
Γ̂time

Y,X = 0.80 ± 0.1 Γ̂time

Y,X = 0.92 ± 0.04 Γ̂time

Y,X = 0.98 ± 0.011
X with Gaussian error, Y with Pareto error

n = 100 n = 1000 n = 10000

δ = 0.5 Γ̂time

X,Y = 0.65 ± 0.15 Γ̂time

X,Y = 0.67 ± 0.1 Γ̂time

X,Y = 0.68 ± 0.05
Γ̂time

Y,X = 0.62 ± 0.20 Γ̂time

Y,X = 0.63 ± 0.13 Γ̂time

Y,X = 0.63 ± 0.08

Table 4.1: Consider 200 simulated time series following a model from Definition
4.2. Each cell represents a different coefficient δ, a different number of data-points
n and a different noise distribution. Each value Γ̂time

X,Y = · ± · represents a mean of
all 200 estimated coefficients Γ̂time

X,Y , and a difference between this mean and 95%
quantile out of all 200 simulations. In every case, X causes Y .

Conclusion. The method works surprisingly well under violating the heavy-tails
assumption. If we consider Gaussian noise, the correct theoretical value is Γtime

X,Y =
Γtime

Y,X = 1. But if we estimate these values, for finite u < 1 is the value of
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E [max{FY (Y0), . . . , FY (Yq)} | FX(X0) > u] still larger than in the other direction.
This results in seemingly correct causal directions.

On the other hand, if the cause has heavier tails than the effect, our method
suggests Γtime

X,Y = Γtime
Y,X = 1. In this case, for large n, both estimates are very

close to 1, and this results in the wrong causal directions. Therefore, the main
problems are caused by a different tail behaviour.

4.3 Testing
We want to develop a method that tells us the causal direction between two time
series. One (quite trivial) option is to put a threshold, e.g. we say that X causes
Y if and only if Γ̂time

X,Y (q) ≥ τ where τ = 0.9 or 0.95. The choice of τ should
depend on number of data n – we can not expect for n = 100 to Γ̂time

X,Y (q) be large.
On the other hand, choosing small τ can lead to wrong conclusions.

Ideally, we would want to test the hypothesis Γtime
X,Y (q) = 1 against the alter-

native Γtime
X,Y (q) < 1. To do that, we would need to know (at least asymptotically)

the distribution of Γ̂time

X,Y (q). This is beyond the scope of this work (although the
simulations suggest that it may follow some normal distribution).

Another method to estimate the confidence intervals is to use the block (some-
times called stationary) bootstrap technique3.

Definition 4.3. Let (X, Y, Z)⊤ follow

Zt = 0.5Zt−1 + εZ
t ,

Xt = 0.5Xt−1 + 0.5Zt−2 + εX
t ,

Yt = 0.5Yt−1 + 0.5Zt−1 + (Xt−3)
3
4 + 5εY

t ,

where εX
t , ε

Y
t , ε

Z
t

iid∼ Pareto(1, 1). In this case, process Z represents (not observed)
common cause. A sample realization can be found in Figure 4.2.

We understand that Z from Definition 4.3 is an unobserved common cause.
Granger testing fails for such a case because Z creates spurious Y → X direc-
tion, although the truth is the opposite (also, Granger testing can not deal with
nonlinearities and has problems with heavy-tailness). However, we obtain correct
causal directions using Γ̂time

X,Y (q). E.g. for n = 1000 we obtain very similar values
of Γ̂time

X,Y (q) and Γ̂time

Y,X (q) such as in Figure 4.1. We will try to use the bootstrap
method in the rest of the section to make this more formal.

We will perform small simulations. Consider two models of time series. The
first is a simple model given by Definition 4.2 (with δ = 0.5 and Pareto(1, 1)
noise) as in the beginning of Section 4.2. The second model follows Definition 4.3.
We will discuss three different methods for detecting the causal directions. First
is the bootstrap method mentioned above. The second method is the classical
Granger test4. We consider the significance level α = 0.05. We will also use

3More precisely so-called Reverse Bootstrap Percentile Interval (see e.g. Section 5.4 in Hes-
terberg [2014]). Although in each resample is always Γ̂

time

X,Y (q) < 1, this bootstrap modification
can overcome this problem.

4using “grangertest” function from ”lmtest” package Zeileis and Hothorn [2002].
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Figure 4.2: A sample realization of (X, Y )⊤ from Definition 4.3. Here, X is the
blue line and Y the red one.

First model First model
Bootstrap method Granger test Γ̂time

X,Y > τ = 0.9
n = 500 n = 5000 n = 500 n = 5000 n = 500 n = 5000

Sensitivity 65% 60% 100% 100% 99% 100%
Specificity 86% 96% 95% 96% 79% 100%

Second model Second model
Bootstrap method Granger test Γ̂time

X,Y > τ = 0.9
n = 500 n = 5000 n = 500 n = 5000 n = 500 n=5000

Sensitivity 75% 73% 68% 52% 90% 100%
Specificity 65% 90% 33% 43% 60% 100%

Table 4.2: We consider two time series models, one is simple VAR model, the
second is more complex nonlinear model with a common cause. We used three
methods for the causal inference. The resulting percentage shows how many times
the result was correct (in each direction, sensitivity corresponds to the X → Y
direction, specificity to the other one). For the first and second tests, the results
represent the percentage of cases when the corresponding p-value was less than
α = 0.05. For the third method (it is not a formal test), sensitivity 99% represents
that in 99% of cases was Γ̂X,Y > τ . Specificity 79% represents that in 79% of
cases was Γ̂Y,X ≤ τ .

the method (not a formal test!), when we estimate Γ̂time

X,Y (3) and conclude that X
causes Y if and only if Γ̂time

X,Y (3) ≥ τ with the choice τ = 0.9.
We perform 100 simulations of the time series mentioned above, with the

number of data n = 500, 5000. Finally, we compute the number of correctly
inferring the causal directions X → Y and Y ̸→ X using these three methods.
Table 4.2 shows the results in percentage. Here, the specificity represents the
percentage of correct conclusions “X causes Y ”. The sensitivity represents the
percentage of correct conclusions “Y does not cause X”.

The results suggest that the Granger test behaves well under a simple model
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but can not handle a more complex model. The bootstrap method does not
behave properly either. It is a common problem of bootstrap that we obtain
smaller confidence intervals, and it is anti-conservative. Even for n = 5000, we
still rejected the hypothesis Γtime

X,Y (3) = 1 in 40% of cases even though the hypoth-
esis holds. Therefore, using the bootstrap method may not be an appropriate
approach here.

4.4 Choice of a threshold
A common problem in the extremal value theory is a choice of a threshold. In
our case, it is the choice of the parameter k from Definition 4.1. There is a bias-
variance trade-off; the smaller k, the smaller the bias (and the larger the variance)
and vice versa. There is no universal method how to choose the threshold. It
very much depends on the extremes of our series.

To give an idea of the behaviour, consider the time series model given by
Definition 4.2 with the number of data n = 1000. Figure 4.3 represents the
estimators Γ̂time

X,Y (2) and Γ̂time

Y,X (2) using different k. The thick line represents the
mean of 100 realizations; the thin lines are 5% and 95% quantiles. The variance
of Γ̂time

Y,X (2) for small k is very large. On the other hand, the larger k, the more is
Γ̂time

X,Y (2) negatively biased.
Concluding from this example (and a few others), it seems that k =

√
n may

be a reasonable choice. We want to emphasize that it may not be optimal and
does not behave well in general.

Figure 4.3: The figure represents the estimators Γ̂time

X,Y (2) (blue) and Γ̂time

Y,X (2)
(red) with different choices of a parameter k for a specific model of time series
with n = 1000. The thick line represents the mean of 100 realizations, the thin
lines are 5% and 95% quantiles.
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Figure 4.4: The figure represents the estimators Γ̂time

X,Y (q) (blue) and Γ̂time

Y,X (q)
(red) with different choices of the lag q for a specific model of time series with
n = 1000. The thick line represents the mean of 100 realizations, the thin lines
are 5% and 95% quantiles.

4.5 Choice of the lag
How does Γtime

X,Y (q) behave for different lags q? To give an example, consider a
model for (X, Y )⊤where

Xt = 0.5Xt−1 + εX
t ,

Yt = 0.5Yt−1 + 0.5Xt−6 + εY
t ,

and εX
t , ε

Y
t

iid∼ Cauchy. Notice that the minimal lag is q = 6.
Similarly as in Subsection 4.4, we did many simulations from this model with

n = 1000 and computed Γ̂time

X,Y (q) and Γ̂time

Y,X (q) for different q. The mean, 5% and
95% quantiles of those estimates are drawn in Figure 4.4.

Usually (at least on the artificial datasets where X causes Y ), the coefficient
Γ̂time

X,Y (q) in the causal direction rises much faster than in the other direction, until
it reaches the “correct” lag. Then, this coefficient is very close to 1, and it stays
there even for all larger q (just as the theory suggests). On the other hand,
Γ̂time

Y,X (q) rises slower and slowly but steadily converges to 1.

4.6 Application
In the following, we will be dealing with a problem from space weather studies.
The term “space weather” refers to the variable conditions on the Sun and in space
that can influence the performance of technology we use on Earth. Extreme space
weather could potentially cause damage to critical infrastructure – especially the
electric grid. In order to protect people and systems that might be at risk from
space weather effects, we need to understand the causes of space weather 5.

Geomagnetic storms and substorms are indicators of geomagnetic activity.
Visually, a substorm is seen as a sudden brightening and increased movement of

5Text taken from a webpage https://www.ready.gov/space-weather, accessed 18.5.2021.
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Figure 4.5: Space weather. The first plot represents SYM (magnetic storm
index), the second one AE (substorm index) and the last one BZ (vertical com-
ponent of an interplanetary magnetic field). Data were measured in 5 minutes
intervals for a year 2000 by NASA.

auroral arcs. It can cause magnetic field disturbances in the auroral zones up
to a magnitude of 1000 nT (Tesla units). The basis of this geomagnetic activity
begins in the Sun; specifically, there is a significant correlation with the solar
wind (stream of negatively charged particles from the Sun) and also with an
interplanetary magnetic field (a component of solar magnetic field dragged away
from the Sun by the solar wind).

One of the fundamental problems in this area is determining and predicting
some specific characteristics – magnetic storm index (SYM) and a substorm index
(AE). It may seem that AE is a driving factor (cause) of SYM because usually,
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the accumulation of successive substorms precedes the occurrence of magnetic
storms. However, a recent article Manshour et al. [2021] induces that it is not
the case. A vertical component of an interplanetary magnetic field (BZ) seems to
be a common cause of both of these indexes. We will apply our method to check
this result and determine if the causal influence manifests itself in the extremes.

Our data consist of three time series (SYM, AE, BZ) with about 100000
measurements (every 5 minutes for the entire year 2000). Data (together with a
commented R code) are available in the supplementary package or online6. Their
plot can be found in Figure 4.5. From the nature of the data, we will compare
extremes when SYM is extremely small, AE extremely large, BZ is extremely
small (i.e. taking −SYM, +AE, −BZ and comparing only maximums). We also
know that an appropriate lag will be smaller than q = 24 (2 hours).

First things first, we will discuss if the assumptions for our method are fulfilled.
We estimate the tail indexes of our data7. Resulting numbers are the following:
SYM has the estimated tail index 0.25 (0.015, 0.5), AE has 0.18 (0.08, 0.28) and
BZ has 0.30 (0.12, 0.46). Therefore, the assumption of the regular variation with
the same tail index seems reasonable. Moreover, all confidence intervals do not
include the zero value (although SYM is quite close), and therefore our time series
can be considered heavy-tailed. The time series also seem stationary, therefore
all our assumptions seem reasonable for this application.

Finally, we will compute the causal tail coefficient with different lags (with
k =

√
n, but the results were similar if we consider k other than

√
n). The

resulting numbers can be found in Figure 4.6. They suggest that there is a
strong asymmetry between BZ and SYM (Γ̂BZ,SY M ≈ 1, and Γ̂SY M,BZ ≪ 1),
the asymmetry between BZ and AE (Γ̂BZ,AE ≈ 1, and Γ̂SY M,AE < 1) and no
asymmetry between SYM and AE (Γ̂AE,SY M < 1 is only negligibly larger than
Γ̂AE,SY M).

Such results correspond to the hypothesis about BZ being a common cause of
SYM and AE, with no causal relation between them. Note that our method can
deal with a common cause (at least in theory). Although classical methods sug-
gest that AE causes SYM, there are some extremal events where AE is extreme,
but SYM is not.

6NASA webpage https://cdaweb.gsfc.nasa.gov, accessed 18.05.2021.
7Using “HTailIndex” function in “ExtremeRisks” package in R with variable k=500, refer-

ence Padoan and Stupfler [2020].
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Figure 4.6: The figure refers to the real dataset from Section 4.6. It represents
all values of Γ̂·,·(q) for a range of lag q ∈ [1, 24], with all pairs of time series SYM
(magnetic storm index), AE (substorm index) and BZ (interplanetary magnetic
field). We can see an asymmetry in the causal influence between the time series
BZ-SYM and BZ-AE.
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5. Auxiliary propositions

5.1 Proposition 5.1
Proposition 5.1. Let X, Y, (εi, i ∈ N) be independent continuous random vari-
ables with support on some neighbourhood of infinity. Let ai, bi ≥ 0, i ∈ N and
M1,M2 ∈ R be constants. Then

P (X + Y > M1 | a1X + a2Y > M2) ≥ P (X + Y > M1),

or more generally,

P (
∞∑︂

i=1
aiεi > M1 |

∞∑︂
i=1

biεi > M2) ≥ P (
∞∑︂

i=1
aiεi > M1),

provided that the sums are a.s. summable, non-trivial.

Proof. First, we will prove that for all n ∈ N holds the following:

P (
n∑︂

i=1
aiεi > M1 |

n∑︂
i=1

biεi > M2) ≥ P (
n∑︂

i=1
aiεi > M1).

We will use the following fact: Let ε = (ε1, . . . , εn), then for any non-
decreasing functions f, g : Rn → R holds

cov(f(ε), g(ε)) ≥ 0.

This is a well-known result from the theory of associated random variables, see
e.g. Theorem 2.1 in Esary et al. [1967]. Take f(x1, . . . , xn) = 1{∑︁n

i=1 aixi >
M1}, g(x1, . . . , xn) = 1{∑︁n

i=1 bixi > M2}. They are non-decreasing because
ai, bi ≥ 0. Therefore, we obtain

0 ≤ cov(f(ε), g(ε))

= P (
n∑︂

i=1
aiεi > M1,

n∑︂
i=1

biεi > M2) − P (
n∑︂

i=1
aiεi > M1)P (

n∑︂
i=1

biεi > M2).

Dividing by P (∑︁n
i=1 biεi > M2) (which is positive), we obtain the desirable in-

equality.
Next, we will give an argument for the infinite case. Denote Xn := ∑︁n

i=1 aiεi,
X := ∑︁∞

i=1 aiεi,Yn := ∑︁n
i=1 biεi, X := ∑︁∞

i=1 biεi. We know that Xn
a.s.→ X and

Yn
a.s.→ Y from the assumptions. Therefore,

P (Xn > M1 | Yn > M2) = P (Xn > M1, Yn > M2)
P (Yn > M2)

n→∞→ P (X > M1, Y > M2)
P (Y > M2)

= P (X > M1 | Y > M2).

But we know that

P (Xn > M1 | Yn > M2) ≥ P (Xn > M1) n→∞→ P (X > M1).

Combining these results, our proposition follows.
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5.2 Proposition 5.2
Proposition 5.2. • Let (εX

i , ε
Y
i , i ∈ Z) be iid RV (θ) continuous random

variables.

• Let ai, bi, ci ≥ 0 be constants, such that for some δ > 0 is ∑︁∞
i=0 a

θ−δ
i <

∞,
∑︁∞

i=0 b
θ−δ
i < ∞,

∑︁∞
i=0 c

θ−δ
i < ∞ (i.e. all ∑︁∞

i=0 aiε
X
i ,

∑︁∞
i=0 biε

X
i ,

∑︁∞
i=0 ciε

Y
i

are a.s. summable).

• Denote A = ∑︁∞
i=0 a

θ
i , B = ∑︁∞

i=0 b
θ
i , C = ∑︁∞

i=0 c
θ
i , for which it holds that

A,B,C ∈ (0,∞).

• Let Φ = {i ∈ N ∪ {0} : bi > 0 = ai}.
Then

lim
u→∞

P (
∞∑︂

i=0
aiε

X
i < M |

∞∑︂
i=0

biε
X
i +

∞∑︂
i=0

ciε
Y
i > u) = P (

∞∑︂
i=0

aiε
X
i < M)C + ∑︁

i∈Φ b
θ
i

C +B
,

which holds for all M ∈ R.

We will consider only those M ∈ R such that P (∑︁∞
i=0 aiε

X
i < M) > 0, other-

wise the statement is trivial. We will prove this proposition using the following
series of lemmas.

Lemma 5.1. Let X, Y ∼ RV (θ) be independent. Then

lim
u→∞

P (X < M | X + Y > u) = P (X < M) lim
u→∞

P (Y > u)
P (Y > u) + P (X > u) ,

for every M ∈ R.

Lemma 5.2. Under the conditions from Proposition 5.2,

lim
u→∞

P (
n∑︂

i=0
aiε

X
i < M |

n∑︂
i=0;i/∈Φ

biε
X
i > u) = 0,

which holds for all n ∈ N.

Lemma 5.3. Let Z ∼ RV (θ) be independent of (εX
i , i ∈ Z). Under the conditions

from Proposition 5.2

lim
u→∞

P (
n∑︂

i=0
aiε

X
i < M |

n∑︂
i=0;i/∈Φ

biε
X
i + Z > u)

= P (
n∑︂

i=0
aiε

X
i < M) lim

u→∞

P (Z > u)
P (Z > u) + P (∑︁n

i=0;i/∈Φ biεX
i > u) ,

which holds for all n ∈ N.

Proof of Lemma 5.1. Using the Bayes theorem, we obtain

lim
u→∞

P (X < M | X + Y > u) = lim
u→∞

P (X + Y > u | X < M) P (X < M)
P (X + Y > u) .
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For the denominator we use the sum-equivalence P (X + Y > u) ∼ P (X >
u) + P (Y > u). Therefore, it is enough to show that P (X + Y > u | X < M) ∼
P (Y > u).

Now, let W be a random variable independent of Y with a distribution sat-
isfying P (W ≤ t) = P (X ≤ t | X < M) for all t ∈ R. Then, P (X +
Y > u | X < M) = P (W + Y > u). We obviously have limu→∞

P (W >u)
P (Y >u) =

0 and we can use e.g. Theorem 2.1. from Bingham et al. [2006] to obtain
limu→∞

P (X+Y >u|X<M)
P (Y >u) = limu→∞

P (Y +W >u)
P (Y >u) = 1. Therefore limu→∞ P (X + Y >

u | X < M) = limu→∞ P (Y > u), what we wanted to prove.

Proof of Lemma 5.2. WLOG Φ = ∅, otherwise we have only lower n. Denote
ω = mini≤n ai, it holds that ω > 0. In this proof only, we will denote B = ∑︁n

i=0 bi,
and A = ∑︁n

i=0 ai. The following events relation hold:

{
n∑︂

i=0
aiε

X
i < M ;

n∑︂
i=0

biε
X
i > u} ⊂ {∃j ≤ n : εX

j >
u

B
,

n∑︂
i=0

aiε
X
i < M}

⊂ {∃i, j ≤ n : εX
j >

u

B
, εX

i <
M − ωu

B

A
}.

(Simply put, there needs to be one large and one small εX
· ). Therefore, we can

rewrite

lim
u→∞

P (
n∑︂

i=0
aiε

X
i < M |

n∑︂
i=0;i/∈Φ

biε
X
i > u)

= lim
u→∞

P (∑︁n
i=0 aiε

X
i < M ; ∑︁n

i=0 biε
X
i > u)

P (∑︁n
i=0 biεX

i > u)

≤ lim
u→∞

P (∃i, j ≤ n : εX
i <

M− ωu
B

A
, εX

j > u
B

})
P (∑︁n

i=0 biεX
i > u)

≤ lim
u→∞

n(n+ 1)P (εX
1 <

M− ωu
B

A
, εX

2 > u
B

)
P (∑︁n

i=0 biεX
i > u)

= n(n+ 1) lim
u→∞

P (εX
1 <

M− ωu
B

A
)P (εX

2 > u
B

)∑︁n
i=0 b

θ
i · P (εX

2 > u)

= n(n+ 1) lim
u→∞

P (εX
1 <

M − ωu
B

A
) Bθ∑︁n

i=0 b
θ
i

= 0.

Proof of Lemma 5.3. WLOG Φ = ∅, otherwise we have only lower n. Proof
is very similiar to the proof of Lemma 5.1. In this proof only, we will denote
B = ∑︁n

i=0 bi, and A = ∑︁n
i=0 ai.

Let W be a random variable independent of Z with a distribution satisfying
P (W ≤ t) = P (∑︁n

i=0 biε
X
i ≤ t | ∑︁n

i=0 aiε
X
i < M) for all t ∈ R. Then, P (X + Y >

u | X < M) = P (W + Y > u). Using Bayes theorem, we have
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lim
u→∞

P (
n∑︂

i=0
aiε

X
i < M |

n∑︂
i=0

biε
X
i + Z > u)

= lim
u→∞

P (
n∑︂

i=0
biε

X
i + Z > u |

n∑︂
i=0

aiε
X
i < M) P (∑︁n

i=0 aiε
X
i < M)

P (∑︁n
i=0 biεX

i + Z > u)

= P (
n∑︂

i=0
aiε

X
i < M) lim

u→∞

P (W + Z > u)
P (∑︁n

i=0 biεX
i + Z > u)

= P (
n∑︂

i=0
aiε

X
i < M) lim

u→∞

P (W > u) + P (Z > u)
P (∑︁n

i=0 biεX
i > u) + P (Z > u) .

In the last equality, we used the fact that W does not have a heavier tail than Z
and therefore we can use the sum-equivalence.

All we need to prove is that limu→∞
P (W >u)

P (
∑︁n

i=0 biεX
i >u) = 0. Again, using the

Bayes theorem, we obtain

lim
u→∞

P (W > u)
P (∑︁n

i=0 biεX
i > u) = lim

u→∞

P (∑︁n
i=0 biε

X
i > u | ∑︁n

i=0 aiε
X
i < M)

P (∑︁n
i=0 biεX

i > u)

= lim
u→∞

P (∑︁n
i=0 aiε

X
i < M | ∑︁n

i=0 biε
X
i > u) P (

∑︁n

i=0 biε
X
i >u)

P (
∑︁n

i=0 aiεX
i <M)

P (∑︁n
i=0 biεX

i > u)

= lim
u→∞

1
P (∑︁n

i=0 aiεX
i < M)P (

n∑︂
i=0

aiε
X
i < M |

n∑︂
i=0

biε
X
i > u).

The rest follows from Lemma 5.2.

Proof of Proposition 5.2. Let δ > 0, define ζ = 1 −
√

1 − δ > 01 and choose large
n0 ∈ N such that the following hold:

• P (| ∑︁∞
i=n0+1 aiε

X
i | > δ) < δ,

•
∑︁n0

i=0 bθ
i +C∑︁∞

i=0 bθ
i +C

> 1 − ζ,

• P (| ∑︁∞
i=n0+1;i/∈Φ biε

X
i | < δ) > 1 − ζ.

Denote

• E = ∑︁n0
i=0 aiε

X
i , F = ∑︁∞

i=n0+1 aiε
X
i ,

• G = ∑︁n0
i=0;i/∈Φ biε

X
i , H = ∑︁∞

i=n0+1;i/∈Φ biε
X
i ,

• Z = ∑︁∞
i=0 ciε

Y
i + ∑︁

i∈Φ biε
X
i .

Then, E,F, Z and also G,H,Z are pair-wise independent. With our notation,
we want to prove that

lim
u→∞

P (E + F < M | G+H + Z > u)

?= P (E + F < M) lim
u→∞

P (Z > u)
P (G+H > u) + P (Z > u) .

11 −
√

1 − δ is a solution of 1 − (1 − ζ)(1 − ζ) = δ. When δ → 0 then also ζ → 0.
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It is enough, because due to the sum-equivalence holds P (Z > u) ∼ [∑︁∞
i=0 c

θ
i +∑︁

i∈Φ b
θ
i ]P (εX

1 > u), and the denominator P (G + H + Z > u) ∼ [∑︁∞
i=0 c

θ
i +∑︁∞

i=0 b
θ
i ]P (εX

1 > u). Therefore, their quotient is precisely the statement of our
proposition.

First, due to Lemma 5.1

lim
u→∞

P (H > δ | H + (G+ Z) > u) = 1 − lim
u→∞

P (H ≤ δ | H + (G+ Z) > u)

= 1 − P (H ≤ δ) lim
u→∞

P (G+ Z > u)
P (G+ Z +H > u) = 1 − P (H ≤ δ)

∑︁n0
i=0 b

θ
i + C∑︁∞

i=0 b
θ
i + C

< 1 − (1 − ζ)(1 − ζ) = δ.

Second, using previous results and independence of F and G,Z we obtain

lim
u→∞

P (F > δ | G+H + Z > u)

= lim
u→∞

P (F > δ,G+H + Z > u,H > δ)
P (G+H + Z > u) + P (F > δ,G+H + Z > u,H ≤ δ)

P (G+H + Z > u)

≤ lim
u→∞

P (G+H + Z > u,H > δ)
P (G+H + Z > u) + P (F > δ,G+ Z > u− δ)

P (G+H + Z > u)

= lim
u→∞

P (H > δ | G+H + Z > u) + P (F > δ)P (G+ Z > u− δ)
P (G+H + Z > u)

< δ + P (F > δ) lim
u→∞

P (G+ Z > u)
P (G+ Z > u) + P (H > u) ≤ δ + P (F > δ) < 2δ.

Finally, we obtain (first inequality is trivial; second uses the identity P (A ∩
B) ≥ P (A) − P (Bc); third uses the previous result; the equality follows from
Lemma 5.3; the next two inequalities follow from the sum-equivalence and trivial
P (H > u) ≥ 0; the next is trivial and the last inequality follows from P (F + δ >
0) > 1 − δ and independence of E,F ):

lim
u→∞

P (E + F < M | G+H + Z > u)

≥ lim
u→∞

P (E + δ < M ;F ≤ δ | G+H + Z > u)

≥ lim
u→∞

P (E + δ < M | G+H + Z > u) − P (F > δ | G+H + Z > u)

≥ lim
u→∞

P (E < M − δ | G+ (H + Z) > u) − 2δ

= P (E < M − δ) lim
u→∞

P (H + Z > u)
P (H + Z > u) + P (G > u) − 2δ

≥ P (E < M − δ) lim
u→∞

P (H > u) + P (Z > u)
P (Z > u) + P (H > u) + P (G > u) − 2δ

≥ P (E < M − δ) lim
u→∞

P (Z > u)
P (Z > u) + P (G+H > u) − 2δ

≥ P (E + (F + δ) < M − δ; (F + δ) > 0) lim
u→∞

P (Z > u)
P (Z > u) + P (G+H > u) − 2δ

≥ (1 − δ)P (E + F + δ < M − δ) lim
u→∞

P (Z > u)
P (Z > u) + P (G+H > u) − 2δ.

When we send δ → 0 we finally obtain
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P (E + F < M | G+H + Z > u)

≥ P (E + F < M) lim
u→∞

P (Z > u)
P (Z > u) + P (G+H > u) ,

what we wanted to show. The inequality in the other direction can be done
analogously.

Consequence. Under the conditions from Proposition 5.2

lim
u→∞

P (
∞∑︂

i=0
ai|εX

i | < M |
∞∑︂

i=0
biε

X
i +

∞∑︂
i=0

ciε
Y
i > u) = P (

∞∑︂
i=0

ai|εX
i | < M)C + ∑︁

i∈Φ b
θ
i

C +B
.

Proof. The proof can be done analogously as the proof of the Proposition 5.2.
Modified Lemma 5.1 and Lemma 5.3 are still valid, just with |εX

i | instead of εX
i

in the equations. Modification for Lemma 5.2 is trivial, because

lim
u→∞

P (
n∑︂

i=0
ai|εX

i | < M |
n∑︂

i=0;i/∈Φ
biε

X
i > u)

≤ lim
u→∞

P (
n∑︂

i=0
aiε

X
i < M |

n∑︂
i=0;i/∈Φ

biε
X
i > u) = 0.

The limiting argument for n → ∞ remains the same.

5.3 Proposition 5.3
Proposition 5.3. Let (X, Y )⊤ follow NAR model, specified by

Xt = f(Xt−1) + εX
t ,

Yt = g1(Yt−1) + g2(Xt−q) + εY
t ,

where f, g1, g2 are continuous and satisfy limx→∞ h(x) = ∞ and limx→∞
h(x)

x
< 1,

h = f, g1, g2. Moreover, let ε, εX
t , ε

Y
t

iid∼ RV (θ) be non-negative. If (X, Y )⊤ is
stationary, then

lim
u→∞

P (Yt > u)
P (ε > u) < ∞.

Lemma 5.4. Under assumptions of Proposition 5.3

lim
u→∞

P (Xt > u)
P (ε > u) < ∞.

Proof of Lemma 5.4. Let c = limx→∞
f(x)

x
∈ [0, 1). First, notice that

lim
u→∞

P (f(Xt) > u)
P (Xt > u) = cθ.
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Compute

lim
u→∞

P (Xt > u)
P (ε > u) = lim

u→∞

P (f(Xt−1) + εX
t > u)

P (ε > u)

= 1 + lim
u→∞

P (f(Xt−1) > u)
P (ε > u) ≤ 1 + cθ lim

u→∞

P (Xt−1 > u)
P (ε > u)

= 1 + cθ lim
u→∞

P (Xt > u)
P (ε > u) .

We have used max-sum equivalence, independence and the previous equation.
Therefore, we have limu→∞

P (Xt>u)
P (ε>u) = 1

1−cθ < ∞.

Proof of Proposition 5.3. Find c < 1, K ∈ R such that for all x > 0 is

f(x) < K + cx, g1(x) < K + cx, g2(x) < K + cx.

Specially note that f(x+ y) ≤ (K + cx) + (K + cy). Then, a.s. holds

Y0 = εY
0 + g2(X−q) + g1(Y−1) ≤ εY

0 + g2(X−q) +K + cY−1

≤ εY
0 + g2(X−q) +K + c(εY

−1 + g2(X−q−1) +K + cY−2)
≤ (εY

0 + cεY
−1 + c2εY

−2 + . . . )+
+ (g2(X−q) + cg2(X−q−1) + c2g2(X−q−2) + . . . ) + (K + cK + c2K + . . . )

=
∞∑︂

i=0
ciεY

−i +
∞∑︂

i=0
ciK +

∞∑︂
i=0

cig2(Xq−i) ≤
∞∑︂

i=0
ciεY

−i + 2K
1 − c

+
∞∑︂

i=0
ci+1Xq−i.

Finally, because Xi and εY
j are all independent, holds

lim
u→∞

P (Yt > u)
P (ε > u) ≤ lim

u→∞

P (∑︁∞
i=0 c

iεY
−i + 2K

1−c
+ ∑︁∞

i=0 c
i+1Xq−i > u)

P (ε > u)

= lim
u→∞

P (∑︁∞
i=0 c

iεY
−i > u) + P (∑︁∞

i=0 c
i+1Xq−i > u)

P (ε > u)

=
∞∑︂

i=0
ciθ + lim

u→∞

P (∑︁∞
i=0 c

i+1Xq−i > u)
P (ε > u) < ∞,

where we used regular variation property, sum-equivalence, and the Lemma 5.4.

Remark. We proved a stronger claim. We showed that for every Heavy-tailed
NAR model, there exists stable V AR(q) sequence which is a.s. larger. Note that
V AR(q) process defined by

Xt = aXt−1 + εX
t ,

Yt = bYt−1 + dXt−q + εY
t ,

with 0 < a, b, d < 1, is stable.

38



6. Proofs of theorems
Observation: Let X, Y be continuous random variables with support on some
neighbourhood of infinity, and FX , FY their distribution functions. Then,

lim
u→1−

E [FY (Y ) | FX(X) > u] = 1

if and only if limu→∞ P (Y > M | X > u) = 1 for every M ∈ R.

Proof. Trivial.

6.1 Theorem 2.1.
Theorem 2.1. (Heavy-tailed VAR model). Let (X, Y )⊤ be a time series
which follows Heavy-tailed VAR model. If X causes Y then Γtime

X,Y (q) = 1.

Proof. Because X causes Y , for some p ≤ q is δp > 0.
Then,

Γtime
X,Y (q) = lim

u→1−
E [max{FY (Y0), . . . , FY (Yq)} | FX(X0) > u]

≥ lim
u→1−

E [FY (Yp) | FX(X0) > u] = lim
u→∞

E [FY (Yp) | X0 > u].

Now, if we prove that ∀M ∈ R is limu→∞ P (Yp > M | X0 > u) = 1, it will
imply that limu→∞ E [FY (Yp) | X0 > u] = 1. Rewrite

lim
u→∞

P (Yp > M | X0 > u)

= lim
u→∞

P (δpX0 +
q∑︂

i=1
βiYp−i +

q∑︂
i=1;i ̸=p

δiXp−i + εY
p > M | X0 > u)

≥ lim
u→∞

P (δpu+
q∑︂

i=1
βiYp−i +

q∑︂
i=1;i ̸=p

δiXp−i + εY
p > M | X0 > u).

Now, using causal representation (Theorem 1.2), we can rewrite all

X0 =
∞∑︂

i=0
aiε

X
−i +

∞∑︂
i=0

ciε
Y
−i

q∑︂
i=1

βiYp−i +
q∑︂

i=1;i ̸=p

δiXp−i + εY
p =

∞∑︂
i=0

ϕiε
X
p−i +

∞∑︂
i=0

ψiε
Y
p−i

for some ϕi, ψi ≥ 0.
We obtain

lim
u→∞

P (δpu+
q∑︂

i=1
βiYp−i +

q∑︂
i=1;i ̸=p

δiXp−i > M | X0 > u)

= lim
u→∞

P (
∞∑︂

i=0
ϕiε

X
q−i +

∞∑︂
i=0

ψiε
Y
q−i > M − δpu |

∞∑︂
i=0

aiε
X
−i +

∞∑︂
i=0

ciε
Y
−i > u)

≥ lim
u→∞

P (
∞∑︂

i=0
ϕiε

X
q−i +

∞∑︂
i=0

ψiε
Y
q−i > M − δpu) = 1,
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where we used Proposition 5.1 in the last step. Therefore, limu→∞ P (Yp > M |
X0 > u) ≥ 1, which proves the theorem.

Theorem 2.1. (Heavy-tailed NAR model). Let (X, Y )⊤ be a time series
which follows Heavy-tailed NAR model. If X causes Y then Γtime

X,Y (q) = 1.

Proof. We proceed very similarly as in the proof of Heavy-tailed VAR model. We
rewrite Γtime

X,Y (q) ≥ limu→∞ E [FY (Yq) | X0 > u], which is equal to 1 if ∀M ∈ R is
limu→∞ P (Yq > M | X0 > u) = 1. We rewrite

lim
u→∞

P (Yq > M | X0 > u) = lim
u→∞

P (g1(Yq−1) + g2(X0) + εY
q > M | X0 > u).

Because X causes Y , it holds that g2 is not constant and limx→∞ g2(x) = ∞.
This implies that there exists x0 ∈ R : ∀x ≥ x0 : g2(x) > M . Therefore, for all
u > x0 holds

P (g2(X0) > M | X0 > u) = 1.
Finally, we only use the fact that εY

t and g1 are non-negative.

lim
u→∞

P (g1(Yq−1) + g2(X0) + εY
t > M | X0 > u)

≥ lim
u→∞

P (g2(X0) > M | X0 > u) = 1,

what we wanted to prove.

6.2 Theorem 2.2.
Theorem 2.2. (Heavy-tailed VAR model). Let (X, Y )⊤ be a time series
which follows Heavy-tailed VAR model. If Y is not causing X then Γtime

Y,X (p) < 1
for all p ∈ N.

Proof. Let M ∈ R such that P (X0 < M) > 0. We will show that

lim
u→∞

P (max(X0, . . . , Xp) < M | Y0 > u) > 0,

from which it follows that limu→∞ E [max(FX(X0), . . . , FX(Xp)) | Y0 > u] < 1.
Rewrite

P (max(X0, . . . , Xp) < M | Y0 > u) = P (X0 < M, . . . , Xp < M | Y0 > u)
≥ P (|X0| + |X1| + · · · + |Xp| < M | Y0 > u).

Now, we will use causal representation of the time series, which, because we
know that Y is not causing X, can be written in the form

Xt =
∞∑︂

i=0
aiε

X
t−i,

Yt =
∞∑︂

i=0
biε

Y
t−i +

∞∑︂
i=0

diε
X
t−i.
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We obtain

P (
p∑︂

t=0
|Xt| < M | Y0 > u) = P (

p∑︂
t=0

|
∞∑︂

i=0
aiε

X
t−i| < M | Y0 > u)

≥ P (
p∑︂

t=0

∞∑︂
i=0

ai|εX
t−i| < M | Y0 > u)

= P (
∞∑︂

i=0
ϕi|εX

p−i| < M |
∞∑︂

i=0
biε

Y
−i +

∞∑︂
i=0

diε
X
−i > u),

for ϕi = ai + · · · + ai−p (we define aj = 0 for j < 0). Finally, it follows from the
consequence of Proposition 5.2 that

lim
u→∞

P (
∞∑︂

i=0
ϕi|εX

p−i| < M |
∞∑︂

i=0
biε

Y
−i +

∞∑︂
i=0

diε
X
−i > u) > 0,

what we wanted to prove (Theorem 5.2 requires non-trivial sums, but if ∀i : di = 0
then the series are independent and this inequality holds trivially).

Theorem 2.2. (Heavy-tailed NAR model). Let (X, Y )⊤ be a time series
which follows Heavy-tailed NAR model. If Y is not causing X then Γtime

Y,X (p) < 1
for all p ∈ N.

Proof. We have

Xt = f(Xt−1) + εX
t ,

Yt = g1(Yt−1) + g2(Xt−q) + εY
t .

Choose large M ∈ R, such that supx<M f(x) < M and such that 1

P (εX
0 < M − sup

x<M
f(x)) > 0.

Denote M⋆ = supx<M f(x). Rewrite

P (max(X0, . . . , Xq) < M | Y0 > u) = P (X0 < M, . . . , Xq < M | Y0 > u)

=
q∏︂

i=0
P (Xi < M | X0 < M, . . . , Xi−1 < M,Y0 > u).

Then, as in the proof of Heavy-tailed VAR model case, if we show that this is
strictly larger than 0, it will imply that Γtime

Y,X (q) < 1. We know that for every
i ≥ 1 holds the following

lim
u→∞

P (Xi < M | X0 < M, . . . , Xi−1 < M,Y0 > u)

= lim
u→∞

P (f(Xi−1) + εX
i < M | X0 < M, . . . , Xi−1 < M,Y0 > u)

≥ lim
u→∞

P (M⋆ + εX
i < M | X0 < M, . . . , Xi−1 < M,Y0 > u)

= P (M⋆ + εX
i < M) > 0.

1This is possible from the assumptions on continuity and the limit behaviour of f .
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We only need to show for the case when i = 0 that limu→∞ P (X0 > M | Y0 >
u) < 1. Let Z = g1(Y−1) + g2(X−q), Z is independent with εY

0 . After rewriting,
we obtain

P (X0 > M | Y0 > u) = P (X0 > M | εY
0 + Z > u) = P (X0 > M ; εY

0 + Z > u)
P (εY

0 + Z > u) .

Let 1
2 < δ < 1 (we will send δ → 1). Now, note the following events relation

{X0 > M ; εY
0 + Z > u}

⊆ {X0 > M ; εY
0 > δu} ∪ {Z > δu} ∪ {Z > (1 − δ)u; εY

0 > (1 − δ)u}.
Applying it to the previous equation, we obtain

lim
u→∞

P (X0 > M ; εY
0 + Z > u)

P (εY
0 + Z > u)

≤ lim
u→∞

P (X0 > M ; εY
0 > δu) + P (Z > δu) + P (Z > (1 − δ)u; εY

0 > (1 − δ)u)
P (εY

0 + Z > u)

= lim
u→∞

P (X0 > M)P (εY
0 > δu)

P (εY
0 + Z > u) + P (Z > δu)

P (εY
0 + Z > u)

+ lim
u→∞

P (Z > (1 − δ)u)
( 1

1−δ
)θP (εY

0 > u)
P (εY

0 + Z > u)

= 1
δθ

lim
u→∞

P (X0 > M)P (εY
0 > u)

P (εY
0 + Z > u) + P (Z > δu)

P (εY
0 + Z > u) + 0.

The last element is 0 because limu→∞ P (Z > (1 − δ)u) = 0 and P (εY
0 >u)

P (εY
0 +Z>u) ≤ 1

(simply because Z is non-negative random variable).
Now, we will use the result from Proposition 5.3. In the case when

limu→∞
P (Z>u)
P (εY

0 >u) = 0, we obtain (see e.g. Lemma 1.3.2 in Kulik and Soulier [2020])

limu→∞
P (εY

0 >u)
P (εY

0 +Z>u) = 1 and limu→∞
P (Z>u)

P (εY
0 +Z>u) = 0. Therefore,

lim
u→∞

1
δθP (X0 > M)P (εY

0 > u) + P (Z > δu)
P (εY

0 + Z > u) = 1
δθ
P (X0 > M) < 1,

for δ close enough to 1.
On the other hand, if limu→∞

P (Z>u)
P (εY

0 >u) = c ∈ R+, we also have that Z ∼ RV (θ)
(this follows trivially from the definition of regular variation, tails behaviour is
the same up to a constant). Therefore, we can apply sum-equivalence and we
obtain

lim
u→∞

P (X0>M)
δθ P (εY

0 > u) + P (Z > δu)
P (εY

0 + Z > u)

= 1
δθ

lim
u→∞

P (X0 > M)P (εY
0 > u) + P (Z > u)

P (εY
0 > u) + P (Z > u)

= 1
δθ

lim
u→∞

P (X0 > M)P (εY
0 > u) + cP (εY

0 > u)
P (εY

0 > u) + cP (εY
0 > u)

= 1
δθ

P (X0 > M) + c

1 + c
,

which is less than 1 for δ close enough to 1. Therefore, we obtained
limu→∞ P (X0 > M | Y0 > u) < 1, what we wanted to prove.
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6.3 Theorem 3.1.
Theorem 3.1. Let (X, Y )⊤ be a time series which follows Heavy-tailed VAR
model, with possibly negative coefficients, satisfying the extremal causal condi-
tion. Moreover, let εX

t , ε
Y
t have full support on R, are iid satisfying tail balance

condition. If X causes Y , but Y does not cause X, then Γtime
|X|,|Y |(q) = 1, and

Γtime
|Y |,|X|(q) < 1.

Proof. First, we will show that if Y does not cause X, then Γtime
|Y |,|X|(q) < 1. This

holds even without the extremal causal condition. Similarly as in the proof of The-
orem 2.1, it is enough to show that for some M > 0 is limu→∞ P (| ∑︁∞

i=0 aiε
X
t−i| >

M | | ∑︁∞
i=0 biε

Y
−i + ∑︁∞

i=0 diε
X
−i| > u) < 1 for t ≤ q.

We will use the following fact. Because we assumed that εX
i are RV (θ) and

satisfy tail balance condition, the following holds:

P (|
∞∑︂

i=0
aiε

X
t−i| > u) ∼ [

∞∑︂
i=0

|ai|θ]P (|εX
0 | > u) ∼ P (

∞∑︂
i=0

|ai||εX
t−i| > u),

see e.g. page 6 in Jessen and Mikosch [2006]. Second step follows simply from the
sum-equivalence. Finally, we use this fact and the triangle inequality to obtain
the following relations

P (|
∞∑︂

i=0
aiε

X
t−i| > M | |

∞∑︂
i=0

biε
Y
−i +

∞∑︂
i=0

diε
X
−i| > u)

≤
P (∑︁∞

i=0 |ai||εX
t−i| > M ; ∑︁∞

i=0 |bi||εY
−i| + ∑︁∞

i=0 |di||εX
−i| > u)

P (| ∑︁∞
i=0 biεY

−i + ∑︁∞
i=0 diεX

−i| > u)

∼
P (∑︁∞

i=0 |ai||εX
t−i| > M ; ∑︁∞

i=0 |bi||εY
−i| + ∑︁∞

i=0 |di||εX
−i| > u)

P (∑︁∞
i=0 |bi||εY

−i| + ∑︁∞
i=0 |di||εX

−i| > u)

= P (
∞∑︂

i=0
|ai||εX

t−i| > M |
∞∑︂

i=0
|bi||εY

−i| +
∞∑︂

i=0
|di||εX

−i| > u).

This is for u → ∞ less than 1 due to the classical non-negative case from
Proposition 5.2 (for any M ∈ R such that P (| ∑︁∞

i=0 aiε
X
t−i| > M) < 1).

Second, we will show that if X causes Y , then Γtime
|X|,|Y |(q) = 1. Similarly, as in

the proof of Theorem 2.1, it is enough to show that for every M ∈ R is

lim
u→∞

P (|Yp| < M | |X0| > u) = 0.

Here, p ≤ q is some index with δp ̸= 0. Using causal representation with the same
notation as in the proof of Theorem 2.1,

lim
u→∞

P (|
∞∑︂

i=0
biε

Y
p−i +

∞∑︂
i=0

diε
X
p−i| < M | |

∞∑︂
i=0

aiε
X
−i| > u)

≤ lim
u→∞

P (
∞∑︂

i=0
|bi||εY

p−i| +
∞∑︂

i=0
|di||εX

p−i| < M | |
∞∑︂

i=0
|ai||εX

−i| > u),

where we used the same trick as in the first part of the proof. Therefore, we
simplified our model and obtained the classical non-negative case. The result
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follows from the previous theory. Using Lemma 5.2 we obtain the result for finite
n,

lim
u→∞

P (
n∑︂

i=0
|bi||εY

p−i| +
n∑︂

i=0
|di||εX

p−i| < M | |
n∑︂

i=0
|ai||εX

−i| > u) = 0,

because due to the extremal causal condition is Φ = ∅. The argument for limiting
case n → ∞ follows the same steps as those in the proof of Proposition 5.2.

6.4 Theorem 3.2
Theorem 3.2. Let (X, Y, Z)⊤ follow three-dimensional stable V AR(q) model,
with non-negative coefficients, where independent noise variables have RV (θ)
distribution. Let Z be a common cause of both X and Y , and neither X nor Y
are causing Z. If Y does not cause X, then Γtime

Y,X (q) < 1.

Proof. Let our series have the following representation:

Zt =
∞∑︂

i=0
aiε

Z
t−i,

Xt =
∞∑︂

i=0
biε

X
t−i +

∞∑︂
i=0

ciε
Z
t−i,

Yt =
∞∑︂

i=0
diε

X
t−i +

∞∑︂
i=0

eiε
Y
t−i +

∞∑︂
i=0

fiε
Z
t−i.

Just as in the proof of Theorem 2.2, it is enough to show that limu→∞ P (Xt >
M |Y0 > u) < 1 for some M > 0. After rewriting,

lim
u→∞

P (
∞∑︂

i=0
biε

X
t−i +

∞∑︂
i=0

ciε
Z
t−i > M |

∞∑︂
i=0

diε
X
−i +

∞∑︂
i=0

eiε
Y
−i +

∞∑︂
i=0

fiε
Z
−i > u) < 1,

which follows from Proposition 5.2 (two countable sums can be written as one
countable sum).

6.5 Lemma 3.2
Lemma 3.2. Let (X, Y )⊤ follow the Heavy-tailed VAR model, where X causes
Y . Let p be the minimal lag. Then, Γtime

X,Y (r) < 1 for all r < p, and Γtime
X,Y (r) = 1

for all r ≥ p.

Proof. The second part, i.e. proving that Γtime
X,Y (r) = 1 for all r ≥ p, is an obvious

consequence of the proof of Theorem 2.1 (in the first row of the proof, instead of
choosing some p ≤ q : δp > 0, we choose p to be the minimal lag).

Concerning the first part, we only need to prove that Γtime
X,Y (p−1) < 1, because

then also Γtime
X,Y (p − i) ≤ Γtime

X,Y (p − 1) < 1. As in the proof of Theorem 2.2, we
only need to show that limu→∞ P (Yp−1 < M |X0 > u) > 0 for some M > 0. By
rewriting to its causal representation, we obtain the following relation
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lim
u→∞

P (
∞∑︂

i=0
biε

Y
p−1−i +

∞∑︂
i=0

diε
X
p−1−i < M |

∞∑︂
i=0

aiε
X
−i +

∞∑︂
i=0

ciε
Y
−i > u) > 0.

We only need to realize that di = 0 for i ∈ {1, . . . , p−1} because p is the minimal
lag. Therefore, εX

0 is independent of Yp−1 and the rest follows from Proposition 5.2
(where we deal with the two sums as one, and single εX

0 is the second “sum”).

6.6 Theorem 4.1
Theorem 4.1. Let (X, Y )⊤ = ((Xt, Yt)⊤, t ∈ Z) be a stationary bivariate time
series, whose marginal distributions are absolutely continuous with support on
some neighbourhood of infinity. Let Γtime

X,Y (q) exists. Let kn satisfy (4.1) and
n

kn

P ( n
kn

sup
x∈R

|F̂X(x) − F (x)| > δ) n→∞→ 0, ∀δ > 0. (4.2)

Then, E Γ̂time

X,Y (q) n→∞→ Γtime
X,Y (q) 2.

Proof. Throughout the proof, we will use the copula fact that P (FX(X1) ≤ t) = t
for t ∈ [0, 1] and the fact following from the stationarity P (F̂X(X1) ≤ k

n
) =

P (X1 ≤ X(k)) = k
n
, for k ≤ n, k ∈ N. Please note that X(k) is always meant with

respect to (not written) index n.
First, notice the following (third equation follows from the linearity of expec-

tation and stationarity of our series. Fourth equation follows from the definition
of conditional expectation. Fifth is quite trivial):

E Γ̂time

X,Y (q) = E
1
kn

∑︂
i:Xi≥τX

kn

max{F̂ Y (Yi), . . . , F̂ Y (Yi+q)}

= E
1
n

n∑︂
i=1

n

kn

max{F̂ Y (Yi), . . . , F̂ Y (Yi+q)}1[F̂X(Xi) > 1 − kn

n
]

= n

kn

E [F̂ Y (max{Y1, . . . , Yq+1})1[F̂X(X1) > 1 − kn

n
]]

= n

kn

P (F̂X(X1) > 1 − kn

n
)·

· E [F̂ Y (max{Y1, . . . , Yq+1}) | F̂X(X1) > 1 − kn

n
]

= E [F̂ Y (max{Y1, . . . , Yq+1}) | F̂X(X1) > 1 − kn

n
].

Now, use F̂ = F + F̂ − F to obtain

E [F̂ Y (max{Y1, . . . , Yq+1}) | F̂X(X1) > 1 − kn

n
]

= E [FY (max{Y1, . . . , Yq+1}) | F̂X(X1) > 1 − kn

n
]

+ E [(F̂ Y − FY )(max{Y1, . . . , Yq+1}) | F̂X(X1) > 1 − kn

n
].

2Do not forget that Γ̂
time

X,Y (q) depends on n.
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The second term is less than E [supx∈R |F̂ Y (x) −FY (x)|] → 0 as n → ∞ from the
assumptions. All we need to show is that the first term converges to Γtime

X,Y (q).
Rewrite

E [FY (max{Y1, . . . , Yq+1}) | F̂X(X1) > 1 − kn

n
]

= E [FY (max{Y1, . . . , Yq+1}) | X1 > X(n−kn)].

Therefore, all we need to show is the following

Γtime
X,Y (q) = lim

u→∞
E [FY (max{Y1, . . . , Yq+1}) | X1 > u]

?= lim
n→∞

E [FY (max{Y1, . . . , Yq+1}) | X1 > X(n−kn)].

Denote Z = FY (max{Y1, . . . , Yq+1}). Choose un ∈ R such as 1 − kn

n
quantiles of

X1, i.e. numbers fulfilling P (X1 > un) = kn

n
. Because un → ∞ it is sufficient to

show that
lim

n→∞
E [Z | X1 > un] ?= lim

n→∞
E [Z | X1 > X(n−kn)].

Rewrite (using identity 1[a > b] = 1[c > a > b] +1[a > c > b] +1[a > b > c] when
no ties are present):

E [Z | X1 > un] = 1
P (X1 > un)

∫︂
Ω
Z · 1[X1 > un]dP = n

kn

∫︂
Ω
Z · 1[X1 > un]dP

= n

kn

∫︂
Ω
Z · 1[X(n−kn) > X1 > un]dP + n

kn

∫︂
Ω
Z · 1[X1 > X(n−kn) > un]dP

+ n

kn

∫︂
Ω
Z · 1[X1 > un > X(n−kn)]dP.

On the other hand, rewrite also

E [Z | X1 > X(n−kn)] = 1
P (X1 > X(n−kn))

∫︂
Ω
Z · 1[X1 > X(n−kn)]dP

= n

kn

∫︂
Ω
Z · 1[X1 > X(n−kn)]dP = n

kn

∫︂
Ω
Z · 1[un > X1 > X(n−kn)]dP

+ n

kn

∫︂
Ω
Z · 1[X1 > X(n−kn) > un]dP + n

kn

∫︂
Ω
Z · 1[X1 > un > X(n−kn)]dP.

Note that these two equations differ only in the first term. Therefore, to show
the equality, we only need to show that

lim
n→∞

n

kn

∫︂
Ω
Z · 1[X(n−kn) > X1 > un]dP − n

kn

∫︂
Ω
Z · 1[un > X1 > X(n−kn)]dP = 0.

We will show that the first term goes to 0. The second term can be shown
analogously that it also converges to 0, and from that we will have proven that
this limit goes to 0.

We know that 0 ≤ Z ≤ 1, so we know that for the first term holds the
following:
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n

kn

∫︂
Ω
Z · 1[X(n−kn) > X1 > un]dP ≤ n

kn

P (X(n−kn) > X1 > un)

= P (X(n−kn) > X1 | X1 > un) = P (X(n−kn) > X1 | FX(X1) > 1 − kn

n
)

= 1 − P (X1 ≥ X(n−kn) | FX(X1) > 1 − kn

n
)

= 1 − P (F̂X(X1) ≥ 1 − kn

n
| FX(X1) > 1 − kn

n
)

= 1 − P (FX(X1) + (F̂X(X1) − FX(X1)) ≥ 1 − kn

n
| FX(X1) > 1 − kn

n
)

≤ 1 − P (FX(X1) − sup
x∈R

|F̂X(x) − FX(x)| ≥ 1 − kn

n
| FX(X1) > 1 − kn

n
).

Denote Sn := supx∈R |F̂X(x) − FX(x)|. It is sufficient for our proof to show that

P (FX(X1) − Sn ≥ 1 − kn

n
| FX(X1) > 1 − kn

n
) n→∞→ 1.

Choose ε > 1, define δ = 1 − 1
ε
. Rewrite

P (FX(X1) − Sn ≥ 1 − kn

n
| FX(X1) > 1 − kn

n
)

= n

kn

P (FX(X1) − Sn ≥ 1 − kn

n
;FX(X1) > 1 − kn

n
)

≥ n

kn

P (FX(X1) − Sn ≥ 1 − kn

n
;FX(X1) > 1 − kn/ε

n
)

≥ n

kn

P (Sn ≤ kn − kn/ε

n
;FX(X1) > 1 − kn/ε

n
)

= n

kn

P ( n
kn

Sn ≤ δ;FX(X1) > 1 − kn/ε

n
).

Use the identity P (A ∩B) = 1 − P (Ac) − P (Bc) + P (Ac ∩Bc) and continue

n

kn

P ( n
kn

Sn ≤ δ;FX(X1) > 1 − kn/ε

n
)

= n

kn

[1 − P ( n
kn

Sn > δ) − P (FX(X1) ≤ 1 − kn/ε

n
)

+ P ( n
kn

Sn > δ;FX(X1) ≤ 1 − kn/ε

n
))]

≥ n

kn

[1 − P ( n
kn

Sn > δ) − (1 − kn/ε

n
) + 0]

= n

kn

[kn/ε

n
− P ( n

kn

Sn > δ)] = 1
ε

− n

kn

P ( n
kn

Sn > δ) n→∞→ 1
ε

ε→1→ 1.

All together, we proved that limn→∞ E [Z | X1 > un] = limn→∞ E [Z | X1 >
X(n−kn)], from which the theorem follows.
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Conclusion
In this thesis, we dealt with an open problem of detecting causal relations between
two possibly nonlinear heavy-tailed time series. We proposed an original method
how to estimate the causal influence from the extremes. The causal tail coefficient
for time series,

Γtime
X,Y (q) := lim

u→1−
E [max{FY (Y0), . . . , FY (Yq)} | FX(X0) > u],

was defined in Chapter 2. Under certain assumptions is Γtime
X,Y (q) = 1 if and only

if X causes Y (for an appropriate q). It is the core of our method for detecting
the causal directions. This holds for regularly varying time series, even in a
certain class of nonlinear relations and without any assumptions on the bulk of
the distributions. To our knowledge, no literature deals with such a case.

We rigorously proved some properties of this coefficient Γtime
X,Y and discussed

its extensions. Many examples of how this coefficient can be computed were
provided, and it was shown that even an unobserved common cause does not
change the output. We also discussed some possibilities and methods on how to
estimate the lag between the time series.

The problem of estimating this coefficient was solved by choosing a statistic

Γ̂time

X,Y (q) := 1
k

∑︂
i:Xi≥τX

k

max{F̂ Y (Yi), . . . , F̂ Y (Yi+q)}.

We showed on a simulation study how such a method works in practice. We also
programmed everything in an R language. Finally, we applied our method to
a real dataset concerning a geomagnetic storms. We confirmed results demon-
strated by another article, implying that the interplanetary magnetic field from
the Sun is a common cause of both geomagnetic storms and substorms, using
NASA dataset.

This work can potentially have a broad impact on the causal inference the-
ory. It sheds light on some connections between causality and extremes. Many
scientific disciplines use causal inference as a baseline of their work. A method
that can detect a causal direction in complex heavy-tailed datasets can be very
useful in some domains.

This topic provides a wide range of possibilities for future research. For ex-
ample, can Γtime

X,Y (q) be written as some function of an extremogram? What is the
distribution of Γ̂time

X,Y (q)? Can we create some better (consistent) statistic where
we cancel the negative bias of Γ̂time

X,Y (q) and provide better testing than by a boot-
strap? Does this method work even for some light-tailed time series? Can a
similar method be used in neural networks or machine learning? These questions
can lead to potential future research and important results.
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