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2 LIST OF ABBREVIATIONS 

AGO2  argonaute 2 

AKAP12  A-kinase anchoring protein 12 

AML  acute myeloid leukaemia 

AML-MRC acute myeloid leukaemia with myelodysplasia-related changes 

BM   bone marrow 

CDR  commonly deleted region 

CEBPA  CCAAT enhancer binding protein alpha, transcription factor 

CLL  chronic lymphocytic leukaemia 

CPX-351 liposomal daunorubicin-cytarabine 

CR  complete remission 

c-FOS  proto-oncogene, the human homolog of the retroviral oncogene v-FOS 

c-MYB  avian myeloblastosis virus oncogene cellular homolog 

ddPCR  droplet digital PCR 

DRAM1  damage regulator autophagy modulator 1 

ECM  extracellular matrix 

ERK1 extracellular signal-regulated kinase 1, also known as mitogen-activated protein 

kinase 3 (MAPK3) 

ERK2 extracellular signal-regulated kinase 2, also known as mitogen-activated protein 

kinase 1 (MAPK1) 

EVs  extracellular vesicles 

FLI1  friend leukaemia virus integration 1 transcription factor 

HDL  high density lipoproteins 

HI  haematologic improvement 

HSCs  haematopoietic stem cells 

HSCT  haematopoietic stem cell transplantation 

HSPCs  haematopoietic stem/progenitor cells 

IHBT  Institute of Hematology and Blood Transfusion 

lncRNAs long noncoding RNAs 
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MCL1  myeloid cell leukaemia sequence 1 

mCR  marrow complete response 

MDS  myelodysplastic syndromes 

MDS-EB  MDS with excess blasts  

MDS-MLD MDS with multilineage dysplasia 

MDS-RS  MDS with ring sideroblasts 

MDS-SLD MDS with single lineage dysplasia 

MDS-U  MDS unclassifiable 

miRNAs  microRNAs 

mtDNA  mitochondrial DNA 

MTHFD2 methylenetetrahydrofolate dehydrogenase 2 

NF-κB   nuclear factor-κB 

NGS  next generation sequencing 

NPM1  nucleophosmin 1 

ORR  overall response rate 

OS  overall survival 

PB  peripheral blood 

PD  progressed disease 

PFS  progression-free survival 

piRNAs  piwi-interacting RNAs 

PR  partial remission 

PTEN  tumour supressor, phosphatase and tensin homologue deleted on chromosome 10 

PUS7  pseudouridine synthase 7 

qPCR  quantitative PCR 

RA  refractory anaemia 

RAEB  refractory anaemia with excess blasts 

RARS  refractory anaemia with ring sideroblasts 

RCMD  refractory cytopenia with multilineage dysplasia 

RCUD  refractory cytopenia with unilineage dysplasia 

RISC  RNA-induced silencing complex 
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RN  refractory neutropenia 

RPS14  ribosomal protein S14 

RT  refractory thrombocytopenia 

RT-qPCR  reverse transcription quantitative PCR 

SD  stable disease 

siRNAs  small interfering RNAs 

SMAD7  mothers against decapentaplegic homolog 7 

sncRNAs small noncoding RNAs 

snoRNAs small nucleolar RNAs 

snRNAs  small nuclear RNAs 

TET2  tet methylcytosine dioxygenase 2 

TGF-β  transforming growth factor β 

TIRAP  toll-interleukin-1 receptor domain-containing adaptor protein 

TNF-α  tumour necrosis factor α 

TRAF6  tumour necrosis factor receptor-associated factor-6 

tRNAs  transfer RNAs 

tsRNAs  tRNA-derived small RNAs  

TWIST1  twist basic helix-loop-helix transcription factor 1 
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3 ABSTRACT 

Myelodysplastic syndromes (MDS) are a heterogeneous group of bone marrow (BM) disorders 

characterized by ineffective haematopoiesis, BM dysplasia, and peripheral blood cytopenia. In recent 

years, substantial progress has been made towards understanding the molecular pathogenesis 

of MDS that has brought new possibilities in MDS diagnostics, prognostics, and treatment.  

Small noncoding RNAs (sncRNAs), especially microRNAs (miRNAs), are in the field of scientific interest 

in terms of their expression, function, role in disease development, and potential utilization 

as disease biomarkers. Special attention has been focused on extracellular sncRNAs present in blood 

circulation, so called ‘circulating’ sncRNAs, which may become easily accessible biomarkers of disease 

state or risk of progression. 

We have conducted several studies on intracellular and extracellular sncRNA profiles of CD34+ BM 

cells and blood plasma, respectively, from MDS patients using microarrays or next generation 

sequencing (NGS). We aimed to identify specific sncRNA profiles associated with MDS and search 

for sncRNA biomarkers predictive of the patient prognosis and response to treatment 

with azacitidine (AZA). Another goal was to characterize and compare circulating sncRNA profiles 

of two different extracellular materials, total plasma and plasma-derived extracellular vesicles (EVs), 

in order to determine their usefulness as sources of MDS biomarkers. 

Initially, using microarrays, we identified significantly lower levels of miR-27a-3p, miR-199a-5p, 

and miR-223-3p in total plasma of higher-risk MDS patients compared to lower-risk MDS patients. 

Further analyses indicated that the low levels of miR-223-3p and miR-451 are associated 

with unfavourable overall survival (OS) and progression-free survival, respectively.  

Using NGS, we found other deregulated sncRNAs, including non-miRNA species, between early 

and advanced stages of MDS. We observed increased levels of many circulating miRNAs related 

to haematopoiesis (e. g. miR-103a-3p, miR-103b, miR-107, miR-221-3p, miR-221-5p, and miR-130b-

5p) and miRNAs located in chromosomal region 14q32 (e.g. miR-127-3p, miR-154-5p, miR-323b-3p, 

miR-382-3p, miR-409-5p, and miR-485-3p) in early MDS compared to advanced MDS. 

We defined a signature of four sncRNAs (miR-1237-3p, U33, hsa_piR_019420, and miR-548av-5p) 

whose EV levels were the most significantly associated with OS. Further, a combined score of five 

plasma miRNAs (miR-423-5p, miR-126-3p, miR-151a-3p, miR-125a-5p, and miR-199a-3p) was 

determined as a predictor of response to AZA treatment. In CD34+ BM cells, the high level  

of miR-17-3p and low levels of miR-100-5p and miR-133b before treatment were associated 
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with favourable overall response rate to AZA therapy. Moreover, miR-100-5p was found 

as a predictor of survival, its low level before treatment associated with favourable OS in AZA treated 

patients. 

Regarding the two extracellular materials, total plasma and EVs, hierarchical cluster analysis showed 

that RNA content of EV samples is more homogeneous than that of total plasma samples. Further, 

substantially higher number of deregulated sncRNAs between these two materials was found in MDS 

patients than in control counterparts. 

In conclusion, our results demonstrate distinct sncRNA profiles in total plasma, EVs, and CD34+ cells 

of MDS patients. These profiles are specific for distinct MDS stages and may predict patient outcome. 

We identified several sncRNAs, mostly miRNAs, that are associated with patient survival 

and response to AZA therapy and thus, may be considered as potential biomarkers of the disease.  
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4 ABSTRAKT 

Myelodysplastický syndrom (MDS) je heterogenní onemocnění vyznačující se nedostatečnou 

krvetvorbou, dysplazií kostní dřeně a cytopenií jedné nebo více krevních řad v periferní krvi. Současný 

pokrok v porozumění patogenezi MDS na molekulární úrovni přináší nové možnosti v oblasti 

stanovení diagnózy, prognózy a léčby tohoto onemocnění. 

Malé nekódující RNA (sncRNA), obzvláště mikroRNA (miRNA), jsou středem zájmu v oblasti výzkumu 

jejich funkce, exprese, úlohy při vzniku a vývoji onemocnění a také jejich možného využití coby 

biomarkerů onemocnění. V poslední době je pozornost věnována také extracelulárním sncRNA a to 

obzvláště těm, které jsou přítomny v krevním oběhu, tzv. „cirkulujícím“ sncRNA. Cirkulující sncRNA 

jsou považovány za snadno dostupné potenciální biomarkery stavu onemocnění a rizika progrese. 

Základem této disertační práce je několik studií zabývajících se profily sncRNA u MDS pacientů. 

V rámci těchto studií jsme vyšetřovali jak profily intracelulárních sncRNA z CD34+ buňek kostní dřeně, 

tak profily extracelulárních sncRNA z celkové krevní plasmy a z extracelulárních vesikulů 

vyizolovaných z plasmy. K analýze jsme využili tzv. „high-throughput“ technologie, konkrétně 

microarrays a sekvenování nové generace (NGS). Cílem bylo určit profily sncRNA charakterizující MDS 

a nalézt konkrétní molekuly, které by byly schopné předpovědět další vývoj onemocnění a kvalitu 

odpovědi na léčbu azacitidinem (AZA). Také jsme porovnali profily cirkulujících sncRNA ze dvou 

extracelulárních materiálů (tj. z celkové plasmy a extracelulárních vesikulů) s cílem zjistit, jestli jsou 

vhodnými zdroji sncRNA biomarkerů pro MDS. 

Pomocí microarrays jsme nalezli významně snížené hladiny miR-27a-3p, miR-199a-5p a miR-223-3p 

v celkové plasmě pacientů s vysokorizikovým MDS oproti pacientům s nízkorizikovým MDS. Další 

analýzy ukázaly, že nízká hladina miR-223-3p předpovídá kratší dobu celkového přežití, zatímco nízká 

hladina miR-451 naznačuje kratší dobu do progrese onemocnění. 

Pomocí NGS jsme nalezli další sncRNA s odlišnými hladinami mezi pacienty s časnými a pokročilými 

stadii MDS. Kromě miRNA jsme zachytili i jiné druhy sncRNA. U pacientů s pokročilejšími stadii MDS 

jsme pozorovali zvýšené hladiny mnoha cirkulujících miRNA, které se účastní regulace krvetvorby 

(např. miR-103a-3p, miR-103b, miR-107, miR-221-3p,miR-221-5p a miR-130b-5p) a také miRNA 

lokalizovaných v chromosomální oblasti 14q32 (např. miR-127-3p, miR-154-5p, miR-323b-3p,  

miR-382-3p, miR-409-5p a miR-485-3p). 

Identifikovali jsme čtyři sncRNA (miR-1237-3p, U33, hsa_piR_019420 a miR-548av-5p), jejichž 

kombinované skóre vypočtené z naměřených hladin v extracelulárních vesikulech má spojitost 
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s trváním celkového přežití pacientů. Dále jsme určili pět miRNA (miR-423-5p, miR-126-3p,  

miR-151a-3p, miR-125a-5p a miR-199a-3p) z celkové plasmy, jejichž kombinované skóre předpovídá 

kvalitu odpovědi na léčbu AZA. V CD34+ buňkách kostní dřeně jsme pozorovali, že vysoká hladina 

miR-17-3p a nízké hladiny miR-100-5p a miR-133-b stanovené u pacientů před léčbou AZA ukazují 

na příznivou odpověď pacientů na tuto léčbu. Nízká hladina miR-100-5p před léčbou AZA navíc 

naznačuje delší celkové přežití léčených pacientů. 

Co se týče porovnání dvou extracelulárních materiálů, tj. celkové plasmy a extracelulárních vesikulů, 

klastrovací analýza ukázala, že obsah RNA je více homogenní u vzorků extracelulárních vesikulů 

oproti vzorkům celkové plasmy. Dále jsme zaznamenali podstatně více sncRNA s odlišnými hladinami 

mezi těmito dvěma materiály u MDS pacientů oproti zdravým jedincům. 

Z našich výsledků vyplývá, že celková plasma, extracelulární vesikuly izolované z plasmy a CD34+ 

buňky kostní dřeně MDS pacientů mají rozdílné profily sncRNA. Tyto profily jsou specifické pro různá 

stadia MDS a mohou předpovídat další vývoj onemocnění. Určili jsme několik sncRNA, většinou 

miRNA, jejichž deregulované hladiny souvisí s přežitím pacientů a odpovědí na léčbu AZA. Tyto 

sncRNA tedy mohou být považovány za potenciální biomarkery předpovídající další vývoj 

onemocnění u pacientů s MDS. 
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5 PREFACE 

Myelodysplastic syndromes (MDS) are a group of bone marrow (BM) disorders characterized 

by ineffective haematopoiesis leading to low numbers of mature blood cells. Substantial progress 

in understanding of MDS pathogenesis has been made in recent years. A vast literature has emerged 

regarding the spectrum of cytogenetic abnormalities, gene mutations, epigenetic modifications, gene 

expression patterns, and signalling pathways associated with the disease.  

Small noncoding RNAs (sncRNAs) include various species of endogenous RNAs. They are implicated 

in regulation of essential cellular processes. Cumulative evidence has shown that sncRNAs represent 

important regulators of haematopoiesis and their deregulation is also implicated in the pathogenesis 

of MDS. Generally, sncRNAs are considered to be potentially promising molecular biomarkers 

of disease development. 

We performed a comprehensive analysis of sncRNA profiles in all MDS subtypes and searched 

for sncRNAs with specific expression patterns that may be of clinical relevance in terms 

of diagnostics, prognostics, and prediction of treatment response. These sncRNAs as auxiliary 

biomarkers may contribute to better disease and therapy management, prediction of patient 

outcome, and prevention of the burden associated with ineffective drug application. 

The improvement in all these aspects would support a personalized approach to the MDS patients. 

The analyses were performed on different materials, i.e. CD34+ BM progenitor cells and blood 

plasma. The CD34+ cells are pivotal in the MDS pathogenesis and provide insight into the complete 

transcriptome of cellular sncRNAs specific for the disease. Identification of deregulated sncRNAs 

in the CD34+ cell population may reveal other factors contributing to the disease development 

or progression. However, the aspiration of BM is an invasive process carrying a risk of complication, 

such as persistent bleeding and infection. Thus, less invasive approach for continuous monitoring 

of patient condition would be beneficial. Extracellular sncRNAs circulating in blood (so called 

‘circulating’ sncRNAs) meet this requirement and have become the centre of interest in the field 

of noninvasive biomarkers. In this context, we analysed circulating sncRNA profiles in different 

fractions of blood, i.e. total blood plasma and separated extracellular vesicles (EVs) circulating 

in plasma. It is the very first study comparing sncRNA profiles in paired samples of the two 

extracellular materials (total plasma and EVs) in MDS.  

For investigation, we used high-throughput technologies, specifically microarrays and next 

generation sequencing (NGS). The initial studies were performed by microarray profiling, enabling 
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detection of thousands of sncRNA transcripts limited only to known sequences provided 

by databases (predominantly microRNAs). In the most recent study, due to easier access, we have 

employed the NGS technology, allowing the capture of complete range of RNA transcripts present 

in a sample and identification of novel sncRNA molecules. Together with the advantage of its wide 

dynamic range, NGS provides a global view on the complexity of sncRNA patterns and a deeper 

insight into the molecular background of MDS. 

This thesis summarizes the results from three publications (listed below), which analyse sncRNA 

profiles across MDS subtypes in BM cells, total plasma, and plasma-derived EVs. The thesis provides 

the novel data on sncRNAs in MDS, and explores the possibility of utilizing sncRNAs as molecular 

biomarkers of MDS. 

 

Publications that underlie this thesis 

This thesis is based on the following publications. They are listed in such order that keeps 

the continuity of the thesis, not according to the year they were published. In the text they are 

referred to as P1, P2, and P3 for Publication 1, Publication 2, and Publication 3, respectively. 

 

Publication 1 

Dostalova Merkerova M, Hrustincova A, Krejcik Z, Votavova H, Ratajova E, Cermak J, 

Belickova M. Microarray profiling defines circulating microRNAs associated 

with myelodysplastic syndromes. Neoplasma. 2017;64(4):571–8. PMID: 28485163 

Publication 2 

Hrustincova A, Krejcik Z, Kundrat D, Szikszai K, Belickova M, Pecherkova P, Klema J, Vesela J, 

Hruba M, Cermak J, Hrdinova T, Krijt M, Valka J, Jonasova A, Dostalova Merkerova M. 

Circulating Small Noncoding RNAs Have Specific Expression Patterns in Plasma 

and Extracellular Vesicles in Myelodysplastic Syndromes and Are Predictive of Patient 

Outcome. Cells. 2020 Mar 26;9(4):794. PMID: 32224889 

Publication 3 

Krejcik Z, Belickova M, Hrustincova A, Votavova H, Jonasova A, Cermak J, Dyr J E, Dostalova 

Merkerova M. MicroRNA profiles as predictive markers of response to azacitidine therapy 

in myelodysplastic syndromes and acute myeloid leukemia. Cancer Biomarkers. 

2018;22(1):101–10. PMID: 29630523 
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6 NOTE 

The term ‘sncRNAs’ used in this thesis stands for multiple sncRNA species (e.g. miRNAs, piRNAs, 

and tsRNAs), which are described in the Introduction. Actually, most of the information and results 

in this thesis cover only miRNAs, because miRNAs are the species that have opened a new 

perspective on noncoding RNA functions and have been exclusively studied up to recently. 

Due to NGS, data on other sncRNA species have emerged and these species have also become 

of scientific interest. Some of our results include data on other sncRNA species and they 

are introduced and discussed as well. Thus, for simplification, the general term ‘sncRNAs’ is used 

throughout the thesis when appropriate. 
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7 INTRODUCTION 

7.1 Myelodysplastic syndromes 

MDS are a heterogeneous group of clonal disorders of haematopoietic stem cells (HSCs) and their 

microenvironment, characterized by ineffective haematopoiesis, and manifested by BM dysplasia 

and peripheral cytopenia in one or more lineages. The incidence ranges from 3 to 4 per 100,000 

per year and increases with age. Rates per 100,000 per year in older patients increase from 7 in those 

aged 60 to 69 years to 35 in those aged over 80 years (1). MDS carry considerable risk 

of transformation to acute myeloid leukaemia (AML). On average, 30 percent of MDS patients 

develop AML during the course of the disease (2). 

 

7.1.1 Pathogenesis 

MDS are clonal disorders of HSCs caused by various genetic abnormalities. Chromosomal aberrations, 

gene mutations, copy number alterations, and abnormal gene expression are common in MDS. 

The initial abnormality leads to the formation of a pathological HSC clone with a certain growth 

advantage over its normal counterparts, resulting in a clonal haematopoiesis in BM. Increased 

genome instability of the abnormal HSC clone leads to acquisition of further aberrations. Additional 

abnormal clones can appear during the disease course and are associated with worsening conditions 

(3). 

Cytogenetic abnormalities are present in 35 to 50 percent of de novo MDS cases (4). It is well 

established that they are very heterogeneous in MDS. The most frequent chromosomal 

abnormalities in MDS are del(5q), del(7q)/-7, +8, del(11q), del(12p), del(17p), del(20q), and -Y (5). 

Hundreds of rare cytogenetic abnormalities have been reported in MDS, including for example 3q 

abnormalities, +13/del(13q), i(17q), +21/–21, and –X (6). Importantly, cytogenetic patterns are not 

stable in MDS, and a substantial number of patients acquire additional cytogenetic aberrations 

during the course of the disease, worsening the prognosis and increasing the risk of transformation 

to AML (7). 

Gene mutations participating in the MDS pathogenesis and progression affect RNA splicing 

machinery, DNA methylation, histone modifications, transcription factors, signal transduction 

proteins, and components of the cohesion complex. Mutations in RNA splicing and DNA methylation 
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genes occur early and are considered founding mutations, whereas others that occur later are 

regarded as subclonal mutations (8).  

In MDS, the malignant cellular population with impaired ability to differentiate (9) rapidly expands, 

however hyperproliferation is accompanied by excessive apoptosis (10,11). This leads to insufficient 

peripheral blood (PB) cell count, i.e. cytopenia, in one or more lineages (anaemia, thrombocytopenia, 

and neutropenia) that is variable in degree and combination depending on the lineages most 

affected by increased levels of apoptosis. The discrepancy between hyperproliferation in BM and 

cytopenias in PB is the characteristic feature of early MDS. During MDS progression, the induction 

of apoptosis is decreased (12,13), resulting in gradual increase of blast number in BM and often 

transformation towards AML.  

Previous studies reported that AML evolves from an ancestral MDS subclone that acquires further 

genetic mutations mostly in a linear and hierarchical manner (14,15). Recent results by Chen et al. 

(16), however, suggest a model of non-linear clonal evolution arising from the stem cell level. 

Accumulation of mutations in stem cell compartments gives rise to a highly diverse subclonal 

architecture in MDS stem cells. Certain subclones provide a shared basis for both MDS development 

as well as AML transformation. Formation of MDS blasts or AML stem cell is then driven by different 

additional mutations in a non-linear and rather parallel manner (16).  

Further, chronic inflammation plays a critical role in the MDS pathogenesis and may act as a trigger 

of MDS development (17). The inflammatory signalling within the BM microenvironment may drive 

the functional repression of normal HSCs and subsequently the induction, selection, and expansion 

of mutant clones that are likely to malignant transformation. This indicates that MDS should be 

considered a disease of tissue rather than a disease of haematopoietic cells in isolation (18). 

 

7.1.2 Diagnosis and classification 

The risk of MDS increases with advancing age. The typical age at diagnosis of MDS is between 60 and 

75 years. Diagnoses are rare in adults under 50 years and children. Males are slightly more commonly 

affected than females. Clinical presentation of MDS is nonspecific and varies considerably depending 

on subtypes and severity of cytopenias. Symptoms are connected to the most affected cell lineages 

and may include fatigue, weakness, pallor (secondary to anaemia), infections and fever (secondary 

to neutropenia), and increased bleeding and bruising (secondary to thrombocytopenia). 

The diagnosis is generally suspected based on the presence of an abnormal complete blood count 

and is confirmed by performing BM aspiration and biopsy demonstrating morphological evidence 
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of dysplasia. A number of additional tests, including cytogenetics, flow cytometry and molecular 

genetics, are needed to complete the laboratory evaluation of patients with MDS (19). Dysplastic 

changes are the most important diagnostic features of MDS. A BM cell lineage is considered picture 

of MDS if more than ten percent of cells are affected. Cytogenetic examination of BM aspirate plays 

a key role in determining clonality of cells (20). In the appropriate clinical context, some cytogenetic 

abnormalities are sufficient evidence to determine MDS diagnosis. In addition, cytogenetics is also 

an important tool to assess prognosis and to choose the most effective form of therapy (4). 

MDS are very heterogeneous group of disorders with substantial diversity of conditions across 

the entire spectrum of MDS. Moreover, the boundaries between MDS and related myeloid disorders 

can be vague and difficult to characterize (21). To improve the specificity of the diagnosis 

and prognosis, classification systems have been developed. 

According to the World Health Organization (WHO), MDS subtype classification is based 

on determination of the blast cell percentage in BM and PB, PB cytopenias, presence or absence 

of ringed sideroblasts in BM (sideroblasts are erythroblasts with iron-loaded mitochondria found 

exclusively in pathological conditions (22)), presence of specific chromosomal abnormalities, 

and cytogenetic detection of del(5q). The most emphasized criteria for classification are the degree 

of dysplasia and blast percentages, whereas specific cytopenias have only minor impact on MDS 

classification. The WHO classification guidelines from 2008 (23) define following MDS subtypes: 

refractory cytopenia with unilineage dysplasia (RCUD, comprising refractory anaemia (RA), refractory 

neutropenia (RN), and refractory thrombocytopenia (RT)), refractory anaemia with ring sideroblasts 

(RARS), refractory cytopenia with multilineage dysplasia (RCMD), refractory anaemia with excess 

blasts 1 and 2 (RAEB-1, RAEB-2), MDS with isolated del(5q), and MDS unclassifiable (MDS-U). 

The subtypes are described in Table 1 (23). The last edition of the WHO classification guidelines 

from 2016 (24) refines MDS subtypes as follows: MDS with single lineage dysplasia (MDS-SLD), MDS 

with multilineage dysplasia (MDS-MLD), MDS with ring sideroblasts (MDS-RS), MDS with excess 

blasts (MDS-EB), MDS with isolated del(5q), and MDS unclassifiable (MDS-U). The subtypes are 

described in Table 2 (24).  
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Table 1. MDS classification according to the WHO guidelines from 2008 (23). Peripheral blood (PB) 

and bone marrow (BM) findings in particular MDS subtypes. 

MDS subtype PB findings BM findings 

Refractory cytopenia with 
unilineage dysplasia (RCUD):  
refractory anaemia (RA),  
refractory neutropenia (RN), 
refractory 
thrombocytopenia (RT)  

Unicytopenia or 
bicytopenia*1, no or rare 
blasts (< 1 %)*2 

Unilineage dysplasia: ≥ 10 % of the 
cells in one myeloid lineage, < 5 % 
blasts, < 15 % of erythroid precursors 
are ring sideroblasts  

Refractory anaemia with 
ring sideroblasts (RARS)  Anaemia, no blasts  

≥ 15 % of erythroid precursors are 
ring sideroblasts, erythroid dysplasia 
only, < 5 % blasts  

Refractory cytopenia with 
multilineage dysplasia 
(RCMD)  

Cytopenia(s), no or rare 
blasts (< 1 %)*2, no Auer 
rods*3,  
< 1 × 109/l monocytes  

Dysplasia in ≥ 10 % of the cells in two 
or more myeloid lineages (neutrophil 
and/or erythroid precursors and/or 
megakaryocytes), < 5 % blasts in BM, 
no Auer rods, ± 15 % ring 
sideroblasts  

MDS with isolated del(5q) 
Anaemia, usually normal 
or increased platelet 
count, no or rare blasts  
(< 1 %)  

Normal to increased megakaryocytes 
with hypolobated nuclei, < 5 % blasts, 
isolated del(5q) cytogenetic 
abnormality, no Auer rods  

Refractory anaemia 
with excess blasts-1  
(RAEB-1)  

Cytopenia(s), < 5 % 
blasts*2, no Auer rods,  
< 1 × 109/l monocytes  

Unilineage or multilineage dysplasia, 
5 %-9 % blasts*2, no Auer rods  

Refractory anaemia 
with excess blasts-2  
(RAEB-2)  

Cytopenia(s), 5 %-19 % 
blasts*4, Auer rods 
present or not*4,  
< 1 × 109/l monocytes  

Unilineage or multilineage dysplasia, 
10 %-19 % blasts*4, Auer rods present 
or not*4  

MDS unclassifiable (MDS-U)  Cytopenias,  
< 1 % blasts*2  

Unequivocal dysplasia in < 10 % of 
cells in one or more myeloid lineages 
when accompanied by a cytogenetic 
abnormality considered as 
presumptive evidence for a diagnosis 
of MDS, < 5 % blasts  

*1 Bicytopenia may occasionally be observed. Cases with pancytopenia should be classified  
as MDS-U. 
*2 If the BM blast percentage is < 5 % but there are 2-4 % blasts in PB, the diagnostic classification 
is RAEB-1. Cases of RCUD and RCMD with 1 % blasts in PB should be classified as MDS-U. 
*3 Rod‐shaped inclusions formed by crystallisation of cytoplasmic azurophilic granules (25). 
*4 Cases with Auer rods and < 5 % blasts in PB and < 10 % in BM should be classified as RAEB-2. 
Although the finding of 5-19 % blasts in PB is diagnostic of RAEB-2, cases of RAEB-2 may have < 5 % 
blasts in PB if they have Auer rods or 10-19 % blasts in BM or both. Similarly, cases of RAEB-2 may 
have < 10 % blasts in BM but may be diagnosed by the other two findings, Auer rods and/or 5-19 % 
blasts in PB. 
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Table 2. MDS classification according to the WHO guidelines from 2016 (24). Peripheral blood (PB) 

and bone marrow (BM) findings and cytogenetics in particular MDS subtypes. 

MDS subtype Dysplastic 
lineages Cytopenias*1 

Ring sideroblasts  
as % of BM 
erythroid 
elements 

BM and PB 
blasts 

Cytogenetics  
by 
conventional 
karyotype 
analysis 

MDS with single 
lineage dysplasia 
(MDS-SLD)  

1  1 or 2  < 15 %/< 5 %*2 
BM < 5 %,  
PB < 1 %,  
no Auer rods*3 

Any, unless 
fulfills all 
criteria for 
MDS with 
isolated 
del(5q)  

MDS with 
multilineage 
dysplasia  
(MDS-MLD)  

2 or 3  1-3  < 15 %/< 5 %*2  
BM < 5 %,  
PB < 1 %,  
no Auer rods  

Any, unless 
fulfills all 
criteria for 
MDS with 
isolated 
del(5q)  

MDS with ring 
sideroblasts  
(MDS-RS)  

          

MDS-RS with 
single lineage 
dysplasia  
(MDS-RS-SLD)  

1  1 or 2  ≥ 15 %/ ≥ 5 %*2  
BM < 5 %,  
PB < 1 %,  
no Auer rods  

Any, unless 
fulfills all 
criteria for 
MDS with 
isolated 
del(5q)  

MDS-RS with 
multilineage 
dysplasia  
(MDS-RS-MLD)  

2 or 3  1-3  ≥ 15 %/ ≥ 5 %*2  
BM <5 %, PB 
<1 %,  
no Auer rods  

Any, unless 
fulfills all 
criteria for 
MDS with 
isolated 
del(5q)  

MDS with 
isolated del(5q)  1-3  1-2  None or any  

BM < 5 %,  
PB < 1 %,  
no Auer rods  

del(5q) alone 
or with 1 
additional 
abnormality 
except −7 or 
del(7q)  
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Table 2. 
 

MDS subtype Dysplastic 
lineages Cytopenias*1 

Ring sideroblasts  
as % of BM 
erythroid 
elements 

BM and PB 
blasts 

Cytogenetics  
by 
conventional 
karyotype 
analysis 

MDS with excess 
blasts (MDS-EB)            

MDS-EB-1  0-3  1-3  None or any  
BM 5-9 % or 
PB 2-4 %,  
no Auer rods  

Any  

MDS-EB-2  0-3  1-3  None or any  
BM 10-19 % or 
PB 5-19 % or 
Auer rods  

Any  

MDS 
unclassifiable 
(MDS-U)  

          

with 1 % blood 
blasts  1-3  1-3  None or any  

BM < 5 %,  
PB = 1 %*4, 
 no Auer rods  

Any  

with single 
lineage dysplasia 
and 
pancytopenia  

1  3  None or any  
BM < 5 %,  
PB < 1 %,  
no Auer rods  

Any  

based on 
defining 
cytogenetic 
abnormality  

0  1-3  < 15 %*5  
BM < 5 %,  
PB < 1 %,  
no Auer rods  

MDS-defining 
abnormality  

*1 Cytopenias defined as: haemoglobin, < 10 g/dl; platelet count, < 100 × 109/l; and absolute 
neutrophil count, < 1.8 × 109/l. Rarely, MDS may present with mild anaemia or thrombocytopenia 
above these levels. PB monocytes must be < 1 × 109/l. 
*2 If SF3B1 mutation is present. 
*3 Rod‐shaped inclusions formed by crystallisation of cytoplasmic azurophilic granules (25). 
*4 One percent PB blasts must be recorded on at least two separate occasions. 
*5 Cases with ≥ 15 % ring sideroblasts by definition have significant erythroid dysplasia, and are 
classified as MDS-RS-SLD. 
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MDS can also be classified according to their prognostic variables. To assess prognosis of primary 

untreated adult patients with MDS, the International Prognostic Scoring System (IPSS) was generated 

in 1997 (26). Based on cytogenetics, percentage of BM blasts and number of cytopenias (Table 3), 

the IPSS predicted disease outcome for survival and evolution to AML (Table 4). In 2012, the IPSS was 

refined and the Revised International Prognostic Scoring System (IPSS-R) was developed (27,28). 

The IPSS-R takes into account the risk of specific cytogenetic abnormalities present (Table 5), 

the number and degree of cytopenias, and proportion of blasts in BM. Score values for each 

prognostic variable are evaluated (Table 6) and the total score determines the risk category (Table 7). 

The IPSS-R stratifies patients into five risk categories: very low, low, intermediate, high, and very 

high. The two lowest categories are often referred to as ‘lower-risk’, whereas the two highest 

categories are referred to as ‘higher-risk’ MDS. The intermediate category is heterogeneous with 

some patient characteristics similar to lower-risk MDS and others to higher-risk MDS. Kaplan-Meier 

curves for clinical outcomes of patients within the five IPSS-R categories are shown in Figure 1 (27). 

To see how well prognostication or treatment work, overall survival (OS), progression-free survival 

(PFS), and overall response rate (ORR) are measured. 

 

Table 3. IPSS prognostic score values (26). 

Prognostic variable 
Score value 

0 0.5 1 1.5 2 

BM blasts (%) < 5 5-10 —  11-20 21-30 

Cytopenia*1 0-1 2-3    

Cytogenetics*2 Good Intermediate Poor   

— indicates not applicable 
*1 Number of lineages affected by cytopenia.  Cytopenias defined as: haemoglobin, < 10 g/dl; platelet 
count, < 100 × 109/l; and absolute neutrophil count, < 1.8 × 109/l. 
*2 Good: normal, -Y, -20q, -5q, Intermediate: all other, Poor: chromosome 7 aberration and/or ≥ 3 
chromosomal aberrations. 
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Table 4. IPSS risk categories, scores, and clinical outcomes (26). 

IPSS category IPSS score 

Overall survival*1 AML 25% evolution*2 

age at diagnosis (years) 

≤ 70 > 70 ≤ 70 > 70 
Low  0 9 3.9 > 9.4 (NR) > 5.8 (NR) 
Intermediate-1  0.5-1.0  4.4 2.4 5.5 2.2 

Intermediate-2  1.5-2  1.3 1.2 1.0 1.4 

High  > 2.5 0.4 0.4 0.2 0.4 
*1 medians, years 
*2 median time (years) to 25% AML evolution 
NR indicates not reached 

 

 

Table 5. MDS cytogenetic scoring system for IPSS-R (27). 

Cytogenetic  
prognostic subgroups 

Cytogenetic abnormalities 

Very good -Y, del(11q) 

Good Normal, del(5q), del(12p), del(20q), double including del(5q) 

Intermediate del(7q), +8, +19, i(17q), any other single or double independent clones 

Poor -7, inv(3)/t(3q)/del(3q), double including -7/del(7q),  
complex: 3 abnormalities 

Very poor > 3 abnormalities 
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Table 6. IPSS-R prognostic score values (27). 

Prognostic 
variable 

Score value 

0 0.5 1 1.5 2 3 4 

Cytogenetics  Very 
good  —  Good  —  Intermediate  Poor

  
Very 
poor  

BM blasts (%) ≤ 2  —  >2 - <5  —  5-10  > 10  —  

Hemoglobin (g/dl) ≥ 10  —  8 - < 10  < 8  —  —  —  

Platelets (x109/l) ≥ 100  50 - < 100  < 50  —  —  —  —  

Neutrophils 
(x109/l) ≥ 0.8  < 0.8  —  —  —  —  —  

— indicates not applicable 

 

Table 7. IPSS-R risk categories, scores, and clinical outcomes (27). 

IPSS-R 
category 

IPSS-R 
score 

Overall 
survival*1 AML 25%*2 

Very low  ≤ 1.5  8.8 NR 
Low  > 1.5-3  5.3 10.8 
Intermediate  > 3-4.5  3 3.2 

High  > 4.5-6  1.6 1.4 
Very high  > 6  0.8 0.7 
*1 medians, years 
*2 median time (years) to 25% AML evolution 
NR indicates not reached 
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Figure 1. OS duration (left) and time to AML evolution (right) for patients within the five IPSS-R 

categories (27). 

 

 

 

 

 

 

 

 

 

7.1.3 Somatic mutations 

Application of high throughput technologies such as next generation sequencing (NGS) has identified 

recurrent somatic mutations in MDS cells. Somatic mutations appear to have a great impact on MDS 

progression and prognosis, indicating their potential to contribute to better diagnosis and prognosis 

prediction. In 80 to 90 percent of MDS patients, recurring somatic mutations have been found 

in a number of genes involved in transcriptional regulation (TP53, RUNX1, GATA2, ETV6), signal 

transduction (JAK2, KRAS, CBL), DNA methylation (DNMT3A, TET2, IDH1/2), chromatin modification 

(EZH2, ASXL1), and RNA splicing (SF3B1, U2AF1, SRSF2) (29,30). Many specific mutations are strongly 

associated with the disease outcome in MDS, and the addition of mutation data improves 

the prognostic value of existing risk-stratification schemes in MDS (31). In particular, point mutations 

in TP53, EZH2, ETV6, RUNX1 and ASXL1 genes have been shown to be associated with specific clinical 

features and poor OS, independent of established risk factors (32). For example, TP53 mutations are 

associated with an aggressive course of MDS in general and appear to predict poorer response 

to lenalidomide treatment in patients with del(5q) (33). Evaluation for TP53 mutation status 

is recommended in patients with MDS with isolated del(5q) to identify an adverse prognostic 

subgroup (34,35) in this prognostically favourable MDS subtype. 

       OS                                                             AML evolution 
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Analysis of SF3B1 mutation is the first example of a genetic mutation included into the diagnostic 

criteria for MDS according to the 2016 WHO classification (24), as it is considered the important 

diagnostic method for diagnosis of MDS with ring sideroblasts (MDS-RS). Recurrent mutations 

in spliceosome SF3B1 gene are frequent and are associated with the presence of ring sideroblasts, 

which indicates more favourable prognosis of MDS-RS (36).  

In conclusion, patterns of somatic mutations are diverse in MDS. Even though majority of MDS 

patients carry at least one oncogenic mutation (29), there is a long list of mutations in more than 

50 genes with often unclear aetiology, complicating the use of somatic mutations as simple 

and universal markers of MDS prognosis. 

 

7.1.4 Treatment 

The heterogeneous nature of MDS demands a complex and personalized variety of therapeutic 

approaches. Among them, the only potentially curative option is haematopoietic stem cell 

transplantation (HSCT). Because MDS affect mostly the elderly, who are often frail with multiple 

comorbidities and cannot tolerate intensive therapeutic approaches, HSCT is accessible to only 

a limited number of fit patients. For majority of the patients with MDS, treatment strategies are 

nonintensive and risk-adapted, involving the definition of different aims of therapy according to the 

risk status of the patient (by the IPSS-R). These approaches are noncurative, but aimed at improving 

cytopenias and quality of life, and delaying disease progression. In all risk groups, supportive care 

with transfusions and antimicrobial drugs remains important. 

In the case of lower-risk MDS, therapy is mainly aimed at improving cytopenias, preventing 

complications, such as bleeding and severe infections, decreasing transfusion burden, and improving 

quality of life. In a substantial number of patients with mild and asymptomatic level of cytopenia, 

there is no need to go beyond supportive care, including blood transfusions and using antibiotics. 

For lower-risk patients with symptomatic anaemia, treatment with erythropoiesis-stimulating agents 

(ESAs) or immunomodulatory agent lenalidomide is appropriate. Studies suggest that treatment with 

ESAs leads to significant erythroid responses in 20 to 70 percent of unselected MDS patients and 

in approximately 40 percent of patients with LR-MDS. A median duration of treatment response 

is two years without an increasing risk of leukaemic progression. Lenalidomide was proven to be 

effective in the treatment of MDS patients with isolated del(5q) and lower-risk MDS patients, 

particularly in cases with 5q deletions. Some lower-risk patients may be candidates 

for immunosuppressive therapy, thrombopoiesis-stimulating agents, or DNA hypomethylating agents 
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(HMAs) azacitidine (AZA) and decitabine. All treatment decisions have to take into account 

a potential drug-induced deterioration of the patient’s clinical status (37–39).  

Among higher-risk patients, transplant candidates should undergo HSCT as soon as possible, 

with HMAs useful as a bridge to transplantation. For those patients who are not eligible for HSCT, 

HMAs therapy represents the only approved therapeutics and current standard of care (40). Further, 

HMAs and particularly AZA have been proven to be a valuable treatment also for patients who 

relapsed after HSCT (41). HMAs do not eradicate transformed cells, but can decrease clonal burden 

and may therefore improve haematopoiesis. They have been shown to improve OS, clinical 

outcomes, and quality of life of patients with advanced MDS (37,38). It was evaluated, however, that 

the ORR to AZA treatment ranges only between 40 to 50 percent (42,43) and the outcome of patients 

after treatment failure is very poor. 

Two HMAs approved for treatment of MDS, AZA and decitabine, are cytidine analogues which inhibit 

a group of enzymes called DNA methyltransferases (DNMTs) leading to demethylation of the cytosine 

residues in the promoter-associated CpG islands (40). The hypomethylation and subsequent 

turnaround in transcription of tumour suppressors and DNA repair genes is considered to be 

the main mechanism of HMAs action. In addition to epigenetic modulation, HMAs exhibit also 

immunomodulating effects and are able to incorporate into DNA and RNA molecules, but 

the contribution of these features to their clinical activity in MDS has not been established yet 

(40,44,45).  

 

7.1.5 Acute myeloid leukaemia 

AML is the most common acute leukaemia in adults. In majority of cases, it appears as a de novo 

malignancy in healthy individuals. However, it can also develop from an underlying haematologic 

disorder, or arise as a consequence of prior therapy. Regardless of its aetiology, the pathogenesis 

of AML involves the abnormal proliferation and differentiation of a clonal population of myeloid stem 

cells. The diagnosis of AML is established by the presence of 20 percent or more blasts of myeloid 

origin in BM or PB (46).  

AML is a highly heterogeneous disease and is classified into multiple categories by WHO according 

to cytogenetic and molecular abnormalities, degree of myeloid lineage differentiation, and dysplastic 

changes (24). Although AML patients can be stratified into favourable, intermediate, and adverse 

prognostic risk groups based on their cytogenetic profile, prognosis within these categories varies 

widely. AML associated with a prior haematologic disorder and therapy-related AML carry 
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a significantly poor prognosis. If AML is left untreated, patients usually die from infection or bleeding 

within months from diagnosis (46). 

About 30 percent of MDS patients develop AML (23), which is thus classified as AML 

with myelodysplasia-related changes (AML-MRC) (24). AML-MRC represents 25 to 34 percent of all 

AML diagnoses (47) and up to 48 percent of AML diagnoses in adults (48). It associates with adverse 

prognosis with lower remission rates and shorter OS compared to other AML categories. AML-MRC 

patients are treated with liposomal daunorubicin-cytarabine (CPX-351). Patients who are unable 

to tolerate intensive treatment with CPX-351 are commonly treated with AZA (47,48). 

 

7.2 Small noncoding RNAs 

At the end of the last millennium, the importance of noncoding RNAs was completely unknown. 

Up to that point, the scientific community had believed that noncoding RNAs are just transcriptional 

trash and had been focused exclusively on protein coding genes. Since the discovery of the first 

microRNA (miRNA), lin-4 from Caenorhabditis elegans, in 1993 (49,50), researchers have identified 

plenty of previously unknown noncoding RNA species and started to reveal their multiple functions 

affecting various biological processes and features of cells. 

 

7.2.1 Function and biogenesis of small noncoding RNAs 

Small noncoding RNAs (sncRNAs) refer to noncoding RNA species that are less than 200 nucleotides 

in length and share some molecular features and mechanisms of action in regulating of biological 

processes. SncRNAs are involved in the regulation of gene expression, RNA splicing, epigenetic 

processes, and chromatin structure remodelling. Thus, sncRNAs affect a variety of essential biological 

processes, such as cell proliferation, differentiation, apoptosis etc., and are critical for normal 

development. They are often expressed in a tissue-specific manner (51,52). A large amount 

of evidence indicates that sncRNA deregulation is associated with development of cancer and various 

diseases (53–56), including haematologic malignancies (57).  

So far, the most explored sncRNA species in humans are miRNAs. However, the current interest 

moves also towards non-miRNA sncRNA species such as piwi-interacting RNAs (piRNAs), small 

nuclear RNAs (snRNAs), small nucleolar RNAs (snoRNAs), small interfering RNAs (siRNAs), transfer 
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RNAs (tRNAs), and tRNA-derived small RNAs (tsRNAs) (Table 8). All these versatile sncRNA species are 

known to be key components of molecular interactions and gene regulation in eukaryotes (58). 

Although sncRNA families are different in their origin, they share specific steps in their biosynthetic 

pathways and regulatory mechanisms. They are produced by pathways containing specialized 

enzymes with nuclease activity able to excise small RNAs from specific RNA transcripts. 

The mechanism of sncRNA action is ensured by a group of effector proteins, that are commonly 

engaged within high molecular weight protein-RNA complexes, responsible for the stabilization, 

transport, and regulatory activity of sncRNAs.  

The following paragraphs provide a brief characterization of sncRNA species that are commonly 

detected within sncRNA profiling studies (i.e. miRNAs, piRNAs, snoRNAs, tRNAs, and tsRNAs) and are 

nowadays of special interest as potential disease biomarkers. 

 

Table 8. Basic characteristics of sncRNA species. 

sncRNA species Function Length 

miRNAs microRNAs 
RNAs that usually suppress the translation 

of target mRNA by binding to 3' UTR 

through RNA interference pathway. 
21-25 nt 

piRNAs 
piwi-

interacting 

RNAs 

RNAs involved in retrotransposon 

silencing through interactions with piwi 

proteins. 
26-31 nt 

siRNAs 
small 

interfering 

RNAs 

RNAs that guide sequence-specific 

degradation of target mRNAs through 

RNA interference pathway. 
10-25 bp 

snRNAs 
small 

nuclear 

RNAs 

RNAs located in the nucleus, involved 

in spliceosome formation (e.g., U1, U2, 

U5, U4, and U6) and RNA processing. 

Also commonly referred to as U-RNAs. 
 150 nt 

snoRNAs 
small 

nucleolar 

RNAs 

RNAs located in the nucleolus, mostly 

involved in modification of other RNAs, 

such as ribosomal RNAs or spliceosomal 

RNAs. 
 60-250 nt 

tRNAs transfer 
RNAs 

RNAs that transfer amino acids to 
the ribosome for protein construction. 76-90 nt 

tsRNAs 
tRNA-

derived 

small RNAs 

Recently identified RNA species 

with versatile roles in regulation 

of translation and ribosome biogenesis. 
14-50 nt 
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7.2.2 microRNAs 

miRNAs are short (∼ 22 nucleotides) endogenous single stranded noncoding RNA molecules and their 

sequences are highly conserved throughout various organisms. miRNAs play an essential role 

in the regulation of gene expression at the posttranscriptional levels. An individual miRNA is able 

to regulate the expression of more target mRNAs and each mRNA can be controled by several 

miRNAs. It is estimated that in humans, miRNAs regulate over 30 percent of protein coding genes 

(59). The ability of miRNAs to regulate thousands of mRNAs has raised an intensive interest in their 

role in physiological and pathological processes. It has been repeatedly proven that miRNAs play 

crucial roles in a wide variety of biological processes such as development, differentiation, 

proliferation, and apoptosis. Since they influence the expression of genes involved in fundamental 

signalling pathways, their deregulation often triggers various pathological processes and subsequent 

development of different diseases and cancers (60). In oncogenesis, some of deregulated miRNAs act 

as oncogenes or tumour suppressors (61). The majority of miRNAs are expressed in a tissue-specific 

manner. For example, miR-122 is preferentially expressed in liver (62), miR-124 in neurological 

tissues (63), miR-133 in muscles (64), and miR-208a in heart (65). Moreover, changes in the spectrum 

of tissue miRNAs correlate with various pathophysiological conditions (66). 

About half of all currently identified miRNAs are intragenic, mostly present in the intronic regions 

of protein coding genes, while the remaining miRNAs are intergenic, regulated by their own 

promoters. miRNAs can be localized in clusters and transcribed as one long transcript. 

In the dominant miRNA biogenesis pathway, the ‘canonical’ pathway (Figure 2), primary miRNA 

transcripts (pri-miRNAs) are cleaved into precursor miRNAs (pre-miRNA, ∼60 nt) by the ribonuclease 

III enzyme, Drosha. Pre-miRNAs are exported to the cytoplasm by Exportin 5, where they are cleaved 

into two mature (∼22 nt) miRNA molecules by the RNase III endonuclease Dicer generating a mature 

miRNA duplex. The directionality of the miRNA strand determines the name of the mature miRNA 

form. The 5p strand arises from the 5′ end of the pre-miRNA hairpin while the 3p strand originates 

from the 3′ end. Either of the strands derived from a mature miRNA duplex can be loaded 

into the Argonaute (AGO) family of proteins in an ATP-dependent manner to form the RNA-induced 

silencing complex (RISC). Although one of the strands is usually preferentially incorporated, 

the proportion of AGO-loaded 5p or 3p strand varies depending on the cell type or cellular 

environment, ranging from near equal proportions to predominantly one or the other. The sequence 

of the incorporated strand determines the targets that are recognized by RISC (67). Further, multiple 

non-canonical miRNA biogenesis pathways have been elucidated. These pathways use the proteins 

involved in the canonical pathway, mainly Drosha, Dicer, Exportin 5, and AGO2, but they use them 
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in different combinations. In general, the non-canonical miRNA biogenesis can be grouped 

into Drosha-independent (68) and Dicer-independent (69) pathways. 

Posttranscriptional regulation of gene expression is performed by binding of miRNAs to a specific 

sequence at the 3′ UTR of target mRNAs to trigger their degradation or repression depending 

on the miRNA/mRNA complementarity. Pairing with complete complementary target causes 

cleavage and subsequent degradation of the target mRNA, whereas imperfect complementarity 

leads to the RNA interference and translational repression. miRNAs bind also to 5′ UTR and coding 

regions, that have silencing effects on gene expression, and to promoter regions causing induction 

of transcription (67).  

 

Figure 2. The canonical pathway of miRNA biogenesis. Original figure from Wang et al. 2012 (70). 

The mature miRNA is highlighted in red. pri-miRNAs are processed by Drosha/DGCR8  

into pre-miRNAs. The pre-miRNA is transported from the nucleus to the cytoplasm by Exportin-5 

and Ran-GTP, where it is cut by a Dicer complex (Dicer/TRBP) into a miRNA/miRNA* duplex. One 

strand of the duplex is preferably incorporated into miRISC. DGCR8 – DiGeorge syndrome critical 

region 8, TRBP – TAR RNA-binding protein, miRISC – miRNA-induced silencing complex, ORF – open 

reading frame. 
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7.2.3 piwi-interacting RNAs 

piRNAs are short (24-31 nucleotides) single stranded RNA molecules longer than miRNAs. They bind 

to the piwi subfamily of Argonaut proteins forming piRNA silencing complex (piRISC), which is guided 

to the target nucleic acids in a sequence dependent manner. They arise from piRNA clusters located 

in genomic regions enriched in transposable and other repetitive elements, and are transcribed 

as long primary RNAs that are further processed to primary piRNAs through primary processing 

pathway. To enforce piRNA expression, primary piRNAs can subsequently enter an amplification 

system called the ‘ping-pong’ cycle, where they act as guides for the generation of secondary piRNAs 

(71). Unlike miRNAs, piRNAs have been described to function primarily through epigenetic 

modifications (71–73) rather than transcript targeting. While miRNAs are widely expressed in most 

mammalian cells and tissues, piRNAs are expressed mainly in the germline where they suppress 

transposable and repetitive elements to maintain genomic integrity. Nevertheless, it has been shown 

that piRNAs are expressed also in somatic tissues and tumour tissues in a tissue or cancer-specific 

manner (74,75). 

 

7.2.4 small nucleolar RNAs 

snoRNAs are noncoding RNAs that contribute to ribosome biogenesis and RNA splicing by modifying 

ribosomal RNA (rRNA) and spliceosomal RNAs, respectively. snoRNAs are longer than 

abovementioned sncRNA species and range from 60 to 300 nucleotides. They are components 

of small nucleolar ribonucleoproteins (snoRNPs), which are complexes controlling posttranscriptional 

modifications of ribosomal rRNA, snRNAs and probably other RNA species.  These modifications 

include 2′-O-methylation and pseudouridylation facilitating RNA folding and stability. snoRNAs are 

responsible for targeting the assembled snoRNPs to a specific target and directing the site-specific 

modifications of RNAs. Interestingly, instead of being transcribed from independent genes, most 

snoRNAs are processed from introns of precursor messenger RNAs (pre-mRNAs) (76,77). 

 

7.2.5 transfer RNAs and tRNA-derived small RNAs 

tRNAs help decode a messenger RNA (mRNA) sequence into a protein. Specific tRNAs transfer 

the appropriate amino acids to the ribosome for protein synthesis (78). Fragmentation of tRNAs 

generates a family of small RNAs collectively known as tRNA-derived small RNAs (tsRNAs). Although 

these tsRNAs were initially discarded as an artifact of RNA sequencing technology, there is 
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an increasing amount of evidence pointing to tsRNAs as biological entities with roles in translational 

regulation (79), gene silencing (80,81), and modulation of gene expression (82). They affect 

responses to various stress conditions (83–85), regulate mammalian development, haematopoietic 

stem cell fate and immune response (86), and play a role in pathological processes leading to cancer 

and other diseases development (87,88). Interestingly, some tsRNAs associate with Argonaute 

proteins and perform their functions as miRNAs (89). The biogenesis of tsRNAs is conserved 

and regulated process. They are generated from mature or precursor tRNAs by specific cleavage 

at different sites by specific RNases, including Dicer, RNase Z, and angiogenin (90,91). By different 

RNases, various types of tsRNAs are produced via different biogenesis pathways, which have not 

been fully uncovered yet.  

The nomenclature for tsRNAs is still inconsistent due to their recent identification. Based on cleavage 

sites of tRNAs and the length of generated tsRNAs, they can be divided into two main types:  

tRNA-derived fragments (tRFs), also called tRNA-derived RNA fragments (tdRs), and tRNA halves, also 

called stress-induced tRNA fragments (tiRNAs) as they are often generated in response to stress 

conditions. The first, tRFs, are about 14-30 nucleotides in length and are derived from the mature 

or pre-tRNAs. Up until now, four subtypes of tRFs have been identified and characterized by their 

location in the tRNA structure: 5-tRFs, 3-tRFs, 1-tRFs, and 2-tRFs. The second, tRNA halves, are 30-50 

nucleotides in length and produced by specific cleavage in the anticodon loop of mature tRNAs. Two 

subtypes of tRNA halves have been discovered, 5'-tRNA halves and 3'-tRNA halves. In summary, 

different types of tsRNA appear to accumulate during different biological processes via different 

biogenesis pathways (88). 

 

7.2.6 sncRNAs in normal haematopoiesis 

Stable haematopoiesis requires complex and careful regulation to maintain proper cellular 

proliferation and cell death modulation, cellular differentiation, and lineage commitment. During 

the last decade, the function of miRNAs in haematopoiesis was extensively studied, and many 

miRNAs playing a critical role in the development of both normal and malignant haematopoiesis 

were discovered. The role of other sncRNA species in haematopoiesis remain to be elucidated. 

In 2004, the first study exploring a role of miRNAs in the haematopoietic lineage differentiation 

showed that forced expression of miR-181 in haematopoietic stem/progenitor cells (HSPCs) markedly 

increases B cell differentiation, inhibits production of CD8+ T cells, and miR-142 decreases production 

of both CD4+ and CD8+ T cells, but does not affect B cells (92). Since then, many miRNAs specific 
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for the maintenance of the ‘stemness’ of HSCs and for the development of individual blood cell 

lineages have been determined (Figure 3). For example, it was shown that miR-125a and miR-29a are 

highly expressed in HSCs and modulates their self-renewal and numbers (93,94). Further,  

miR-29a is a key regulator of normal myeloid differentiation with tumour-suppressive function (95). 

miR-223 regulates granulocytic differentiation and function. This miRNA shows a highly lineage-

specific pattern of expression with its low levels in HSCs and common myeloid progenitors. 

The expression of miR-223 miRNA is steadily upregulated during differentiation to granulocytes and 

is repressed during differentiation to the alternative monocytic fate (96). MiR-451 is expressed 

predominantly in erythroid cells, its expression increasing during their maturation. In contrast,  

miR-221 and miR-222 are downregulated during erythroid differentiation. This downregulation 

enables the expression of their target gene encoding Kit receptor, whose activation triggers 

erythroblast expansion (97). Another miRNA, miR-150, is highly expressed in mature lymphocytes, 

whereas it is not active in HSCs (98). The target gene of miR-150 is transcription factor MYB that 

regulates lymphocyte development (99,100). miR-155, with its high levels in activated B-cells, T-cells, 

and monocytes, also participates in lymphoid differentiation (101). Further, the development  

of B-cells is positively regulated by miRNAs encoded in cluster miR-17-92. This cluster of miRNAs 

inhibits the expression of the apoptotic protein Bim and thus, plays a key role in pro-B cells to pre-B 

cells transition (102). Regarding specificity of miRNA profiles in haematopoietic cell lineages, 

expression analysis of 13 haematopoiesis related miRNAs in individual cell types from the PB 

of healthy individuals enables discrimination of individual blood cell lineages and determination 

of the cellular origin of in vitro cultured lines (103).  

Regarding recently acknowledged other sncRNA species, also snoRNAs were shown to be expressed 

in a lineage and development specific manner during haematopoiesis. Most significantly, snoRNAs 

located in DLK-DIO3 and SNURF/SNRPN imprinted loci are highly expressed in haematopoietic 

progenitors and downregulated during myeloid differentiation (104). 
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Figure 3. Schema of lineage differentiation in haematopoiesis and miRNAs involved in the process. 

Original  figure from Hrustincova et al. 2019 (105). CLP – common lymphoid progenitor, CMP – 

common myeloid progenitor, ETP – early thymic progenitor, GMP – granulocyte macrophage 

progenitor, HSC – haematopoietic stem cell, MEP – megakaryocyte erythroid progenitor, NK – natural 

killer cell, RBC – red blood cell, ↑ indicates increased level of miRNA, ↓ indicates decreased level 

of miRNA 

 

 

 

7.2.7 sncRNAs in malignant haematopoiesis 

Many miRNAs, including the abovementioned, have been found to play a critical role 

in the pathogenesis and progression of haematopoietic disorders. For example, miR-125a knockout 

mice were shown to develop myeloproliferative disorders (106). In vitro, miR-125a-5p induces 

granulocytic differentiation in different human AML cell lines as well as in normal human primary 

HSPCs (107). Upregulation of miR-125a and miR-99b in macrophages lead to their polarization 

and secretion of inflammatory cytokines to kill tumour cells (108). Levels of miR-10a regulating 

myeloid differentiation are increased in AML (109) and atypical myeloproliferative neoplasms (110). 

Reduced levels of miR-29a and miR-142-3p were observed to be involved in AML development (95). 

Another study suggested that miR-29a initiates AML by converting myeloid progenitors into self-

renewing leukaemia stem cells (94). Further, miR-221 and miR-222 were found to be consistently 

overexpressed in AML (111). In AML cell lines, miR-223 was demonstrated to inhibit cell proliferation 

and enhance cell apoptosis, whereas it was observed to be suppressed in AML patients (112).  
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miR-126 inhibits cell apoptosis and increases viability of AML cells in vitro (113) and its higher level 

correlate with poorer prognosis in AML patients (114). Highly expressed miR-181a and miR-181b 

were identified in association with CEBPA gene mutations in cytogenetically normal AML patients 

(115). Finally, increased miR-150 expression was found to contribute to myelodysplastic 

haematopoiesis in MDS-del(5q) via its negative regulation of the transcription factor MYB (116). 

More details on sncRNAs in MDS are introduced in the chapter 7.3. 

The data on the role of other sncRNA species in haematopoietic diseases are still limited. A study 

focusing on snoRNA profiling in AML found a subset of snoRNAs that show consistent differential 

expression between AML and normal CD34+ cells, with the great majority of them being decreased 

in the AML samples (104). Another study found two tsRNAs downregulated in chronic lymphocytic 

leukaemia (CLL) patients. The authors performed further experiments to determine whether other 

tsRNAs are involved in CLL and revealed specific tsRNA signatures indicating that tsRNAs, like 

miRNAs, may have an oncogenic and/or tumour suppressor function in haematopoietic malignancies 

(117). In conclusion, it is evident that miRNAs and other sncRNA species are involved 

in haematopoiesis maintenance and their deregulation is associated with development 

of haematopoietic disorders. 

 

7.2.8 Circulating sncRNAs 

First extracellular sncRNAs were observed in blood in 2004 (118). In 2008, miRNAs were found 

in serum of patients suffering from diffuse large B-cell lymphoma (119). Since then, a great effort has 

been devoted to the research of this phenomenon. Nowadays, it is evident that miRNAs and other 

sncRNA species, originally found in tissues, are present not only in intracellular environment but also 

extracellularly in various body fluids such as blood plasma (120), serum (121), saliva (122), and urine 

(123). Moreover, their sncRNA profiles are significantly different. Examination of 12 human body 

fluids shows a distinct composition of the miRNA spectrum in various fluid types (124). 

The emergence of novel high-throughput technologies has allowed to analyse complete sncRNA 

profiles in different tissues as well as in biological fluids from healthy and diseased individuals.  

Extracellular sncRNAs released into blood circulation are referred to as ‘circulating’ sncRNAs. They 

are of special interest, because they originate from every tissue in the body, and their spectrum 

reflects overall condition of an organism. Thus, they are believed that they may serve as good blood-

based biomarkers of various diseases (125,126). Regarding this possibility, it was demonstrated that 

the quantity of some sncRNA species in blood would be sufficient to use them as biomarkers. Except 
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for most abundant miRNAs, also piRNAs and tRNAs are highly represented sncRNA species in body 

fluids (127,128). Most of the studies on circulating sncRNAs have been performed on total blood 

plasma or serum so far. With the extending knowledge that circulating RNAs are included 

in extracellular vesicles (EVs), which appear to have function in cell-to-cell communication, 

the studies move to exploring sncRNA contents also in plasma-derived EVs. Lots of studies were 

conducted in order to explore circulating sncRNA stability, functions, profiles, and their potential 

to serve as disease biomarkers. The knowledge is introduced in the following subsections. 

  

7.2.9 sncRNA stability, carriers, and sorting 

Several studies focused on sncRNA stability in human blood plasma and serum and found that they 

are remarkably stable under distinct conditions such as storage in room temperature, multiple 

freeze-thaw cycles (129), and long-term storage (130). It has been shown that circulating sncRNAs 

are protected from endogenous RNase activity (129), that degrades exogenously added RNA within 

seconds (131). This indicates that extracellular sncRNAs are unlikely to exist in an unprotected state. 

In the last decade, different sncRNA carriers and ways of sncRNA release from cells were revealed. 

Specifically, sncRNAs have been found to be included in EVs (132,133), incorporated in high density 

lipoproteins (HDL) (134), and associated with proteins such as AGO2 (135), the effector component 

of the RISC complex that directly binds miRNAs, or nucleophosmin 1 (NPM1) (136), which is involved 

in the biogenesis of ribosomes (Figure 4). 

Several types of EVs have been identified differing in their sizes and biogenesis. Exosomes  

(30-150 nm) (137) are formed as intraluminal vesicles within multivesicular bodies and are released 

into the extracellular space upon fusion of multivesicular bodies with the plasma membrane, 

whereas microvesicles (100-1000 nm) (138,139) are shed from the plasma membrane by outward 

blebbing (140). Another type of vesicles containing sncRNAs are apoptotic bodies (500-2000 nm) 

(141,142), which are released from the cell that undergoes apoptosis. 

Savelyeva et al. (143) found that a variety of blood plasma RNAs are comparable to the variety 

of cellular RNA species. Not only extensive set of miRNAs but also fragments of other cellular RNAs, 

such as rRNAs, tRNAs, mRNAs, lncRNAs, sncRNAs, and RNAs encoded by mitochondrial DNA (mtDNA) 

can be detected within EVs as well as in EV-depleted plasma (143). For example, a study profiling 

circulating RNAs of healthy individuals and cancer patients showed that in EVs, piRNAs are almost 

equally abundant as miRNAs (127).  
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Interestingly, EV-associated miRNAs appear to be more stable than those not associated with EVs 

(144). Another study suggested that exosomes are more protective of RNA degradation and provide 

more consistent source of miRNAs compared to intracellular and exosome-free plasma/serum 

miRNA contents (145).  

The sorting of sncRNAs into EVs and their secretion appear to be selective and controlled process. 

For example, HDL-associated miRNA profiles significantly differ from the exosome profiles both 

in miRNA spectrum and abundance (134). Another study revealed a significant difference in miRNA 

spectrum between microvesicles and their maternal cells, suggesting selective sorting of miRNAs 

into microvesicles (132). It was found that the sorting of miRNAs into exosomes is controlled 

by recognition of specific sequence motifs present in these miRNAs (146). Gámbaro et al. (147) 

investigated how sncRNA stability influences the sorting. They transfected cells with highly stable 

glycine 5' tRNA halves, which belong to the group of stress-induced tRNA fragments frequently 

detected in extracellular space and biofluids, and found that in contrast to unstable RNAs, these 

tRNA halves are present in EVs and in recipient cells in amounts proportional to the concentration 

of RNA used for transfection. Thus, the results suggested that even in the presence of selective 

sorting, the concentration of specific RNAs, which is given also by their stability, affects sorting 

of specific RNAs into EVs and their delivery in recipient cells (147).  

All these observations indicate that extracellular sncRNAs are not only mere leftovers of cellular 

metabolism as was believed not long ago, but they appear to play a critical role in intercellular 

communication that is mediated by EVs, and modulation of recipient cell features and functions. 
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Figure 4. Different ways of sncRNA release from cells to the extracellular environment. Edited figure 

from Hrustincova et al., 2015 (148). sncRNAs are included in EVs such as microvesicles and exosomes, 

incorporated in high density lipoproteins (HDL), and associated with proteins such as AGO2 and 

NPM1. 

 

 

7.2.10 EVs mediate cell-to-cell communication 

Nowadays, it is accepted that EVs released into extracellular environment enable a transfer of their 

molecular cargo to the recipient cells in the immediate vicinity or at distant locations via blood 

circulation and thus, EVs mediate cell-to-cell communication (149–151). In 2007, Valadi et al. (152) 

found that RNA cargo from exosomes can be delivered to another cell and in this recipient cell, it can 

be functional (152). Zhang et al. (153) reported that in human blood cells and cultured cells, miR-150 

is selectively packaged into microvesicles, actively secreted, and delivered into recipient cells, where 

it can participate in regulatory processes (153). It was observed that in AML, both primary cells 

and cell lines release exosomes that are received by neighboring cells. The exosomes are enriched 

for several RNAs, including miRNAs, relevant to AML pathogenesis. Moreover, these miRNAs regulate 

the biological functions of recipient cells (154). Another study indicated a direct effect of miR-150 

and miR-155 from AML exosomes on HSPCs. These miRNAs are enriched in AML exosomes 

and suppress translation of c-MYB, a transcription factor involved in HSPC differentiation 

and proliferation (155).  

Further findings of Huan et al. (156) suggested that AML exosomes regulate not only functions 

of HSPC directly, but also modulate BM compartmental signalling. Both in vivo and in vitro results 
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showed that AML cells increase exosome production under physiological oxygen conditions, which 

inhibits expression of HSC maintenance factors by stromal cells. Moreover, AML exosomes 

from extramedullary myeloid tumours appeare to traffic to BM niche and dysregulate niche signalling 

(156). Kumar et al. (157) showed that AML blast-derived exosomes transform the BM niche 

into a leukaemia growth-permissive microenvironment. These exosomes increase the number 

of mesenchymal stromal progenitors, block osteolineage development and bone formation in vivo, 

and accelerate AML growth. Conversely, disruption of exosome secretion in AML cells significantly 

delays AML development. Furthermore, AML-derived exosomes suppress production of HSC 

maintenance factors by stromal cells and thus, reduce their ability to support normal haematopoiesis 

(157). Regarding treatment, Chen et al. (158) indicated that AML-derived exosomes protect AML cells 

against chemotherapy via induction of IL-8 production in BM stromal cells. In addition, the study 

showed that IL-8 inhibition increases the sensitivity of AML cells to cell death (158). Another study 

showed that pre-therapy plasma of refractory or relapsed AML patients contains elevated levels 

of exosomes carrying immunosuppressive cargo that interfere with anti-leukaemia functions 

of activated immune cells used for adoptive cell therapy and reduce their therapeutic potential (159). 

In summary, exosomes mediate disruption of normal haematopoiesis in AML. Strategies to block 

their formation, secretion, and/or their modulatory effect on recipient cells might be utilized 

as a novel therapeutic approach in AML (160).  

The crosstalk between HPCs and their microenvironment was observed also in MDS. EVs derived 

from mesenchymal stromal cells of MDS patients were shown to carry different cargo compared 

to that of controls, including upregulated miR-10a and miR-15a. Further, they are able to incorporate 

into CD34+ cells, where their cargo modifies gene expression of MDM2 and p53, and induces cell 

viability and clonogenic capacity (161). Interestingly, miRNAs and piRNAs from BM mesenchymal 

stem cell EVs induce cell survival and inhibit cell differentiation of HSCs in umbilical cord blood (162). 

Because umbilical cord blood is an alternative source of HSCs for patients with haematologic 

diseases, who can be cured by allogeneic HSCT (163), this observation provides a new insight into 

the biology of umbilical cord blood transplantation. 

In conclusion, many studies have reported the significance of cell-to-cell communication through 

delivery of signal and regulatory molecules mediated by EVs. It has been shown that EVs carry a vast 

number of various molecules such as different RNA species (mRNAs, sncRNAs, and long noncoding 

RNAs), oncoproteins and oncopeptides, DNA fragments, and lipids, which induce phenotypic changes 

in recipient cells (164). There is comprehensive information on how the EVs derived 

from stem/progenitor cells inhibit or enhance immune response by affecting natural killer cells, 

dendritic cells, monocytes/macrophages, microglia, T cells, and B cells (165). Thus, EVs have crucial 
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roles in processes associated with cancer development (166–168), including leukaemia (169), where 

they modulate BM microenvironment, haematopoiesis, and the immune system to facilitate 

the malignancy. 

 

7.2.11 Circulating sncRNAs as biomarkers in haematologic malignancies 

The existing observations indicate that circulating sncRNAs play a critical role in (patho)physiological 

processes occurring in an organism. As they can be secreted from every cell and tissue in the body, 

they may very good reflect the actual condition of an organism and thus, may serve as valuable 

blood-based biomarkers of various diseases and cancers (125,126). Moreover, blood plasma and EVs 

are of special interest as a source of biomarkers because they can be obtained noninvasively, offering 

a novel feasible alternative to routine invasive BM biopsies, which can be demanding, especially 

for elderly patients with many comorbidities.  

The first evidence of the potential applicability of circulating miRNAs as noninvasive diagnostic 

markers was reported by Lawrie et al. in 2008 (119). They demonstrated that the levels of three 

tumour-associated miRNAs (miR-155, miR-210 and miR-21) were higher in the serum from patients 

with diffuse large B-cell lymphoma (DLBCL) than in controls. Moreover, they showed high level 

of miR-21 to be associated with relapse-free survival (119). Another study reported increased levels 

of miR‐21 in DLBCL cell lines and serum of DLBCL patients compared to controls (170), suggesting its 

potential utilization as biomarker for DLBCL diagnosis. On the contrary, Fang et al. (171) did not 

observe deregulated serum levels of miR-21 in DLBLC patients, but demonstrated increased levels 

of miR-15a, miR-16-1, miR-29c, and miR-155, and decreased level of miR-34a in DLBCL patients 

compared to controls (171).  

In AML, Fayyad-Kazan et al. (172) reported that miR‐150 and miR‐342 are significantly 

downregulated in plasma, and indicated that they may be potentially utilized as predictors of AML 

relapse (172). Plasma levels of miR-92a, miR-143 and miR-342 are decreased in AML patients 

and according to their specificity and sensitivity values, these miRNAs appear to be promising 

circulating biomarkers in clinical detection of AML (173). Further, Gado et al. (174) demonstrated 

decreased levels of miR-29a-3p and miR-92a-3p in both plasma and BM from AML patients along 

with increased expression of their target gene myeloid cell leukaemia sequence 1 (MCL1) in blood 

cells, which indicates diagnostic and therapeutic potential of these miRNAs (174).  

Low levels of circulating miR-92a were observed not only in AML (173–176), but also in multiple 

myeloma (177) and non-Hodgkin's lymphoma (178), suggesting that measurement of miR-92a level 



  INTRODUCTION 

43 
 

in plasma may be useful for monitoring disease status or initiation of therapy in haematologic 

malignancies in general. miR-92a is a component of mir-17-92 cluster coding for a polycistronic 

transcript with pleiotropic functions. mir-17-92 is considered a polycistronic miRNA oncogene, whose 

overexpression is frequently observed in a variety of tumour types (179). Interestingly, Gu et al. (180) 

showed that miR-92a is downregulated in AML cell lines and its overexpression suppresses 

proliferation and induces apoptosis of AML cells through directly targeting 

methylenetetrahydrofolate dehydrogenase 2 (MTHFD2). Further, miR-92a overexpression in mice 

dramatically decreases tumour growth and MTHFD2 expression in vivo. The authors suggested that 

miR-92a may act as a tumour suppressor in AML and may be a promising therapeutic target for AML 

patients (180).  

Regarding circulating EVs and their sncRNA content, Hornick et al. (181) suggested that AML-derived 

exosomes and their miRNA content may be promising early biomarkers of AML as they can be 

detected in blood in advance of circulating blasts (181). Another study investigated the role 

of increased miR-125b level in circulating exosomes of intermediate risk AML patients. The results 

showed that high level of miR-125b is associated with higher-risk of relapse and overall death (182). 

 Relevance of circulating miRNAs to be blood-based disease biomarkers was further tested on other 

haematologic malignancies such as multiple myeloma (177,183–185), Hodgkin lymphoma (186),  

T-cell leukaemia (187), or chronic lymphocytic leukaemia (188–191). All of these studies suggested 

individual circulating miRNAs, such as miR-16-5p, miR-34a-5p, hsa-miR-29a-3p, hsa-miR-150-5p,  

hsa-miR-155-5p, miR-181a, miR-221, and miR-223-3p, to be useful diagnostic, prognostic, predictive, 

and survival biomarkers of specific diseases and also potential targets for therapy.  

 

7.2.12 Methodological aspects of sncRNA detection 

sncRNAs, especially those circulating in blood, appear to represent promising disease biomarkers. 

However, methods for sncRNA isolation, measurement, and quantification have specific limitations 

and critical technical hotspots, such as sample processing, inefficient isolation, haemolysis in blood 

samples, variable efficiency of reverse transcription and PCR, inconsistency in reference genes, 

and variability in genome-wide platforms used for sncRNA detection (148). Glinge et al. (192) 

highlighted the importance of proper and systematic sample collection, handling, and storage when 

measuring circulating sncRNAs. The study demonstrated that the results are affected by factors such 

as a type of collection tube (192). Variance in all procedures and methodological aspects lead 

to a discrepancy of the reported results. The inconsistent results obtained by various methods make 
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it difficult to define consensus disease biomarkers that may be implicated in clinical use. Thus, 

the methods are still being under development in order to improve their sensitivity, specificity, 

and reproducibility to avoid confounding variables influencing the results. More information 

on methodological aspects of sncRNA detection and quantification are discussed in our review (148). 

 

7.3 Small noncoding RNAs in myelodysplastic syndromes 

Nowadays, miRNAs and other sncRNA species are accepted as important regulators 

of haematopoiesis. Their abnormal function has serious implications for haematopoietic cell features 

and phenotypes. sncRNA deregulation has been found in haematopoietic disorders and naturally, 

it also contributes to the development and progression of MDS. Properties of sncRNAs such 

as stability and tissue specificity make these molecules highly promising diagnostic and prognostic 

biomarkers as well as interesting therapeutic targets. Particularly circulating sncRNAs are of special 

interest as they can be obtained noninvasively, unlike BM biopsies, which can be demanding for MDS 

patients. So far, miRNAs are the most explored sncRNA species in MDS. Although many studies have 

been conducted to investigate miRNA profile in MDS, there are not much overlapping results 

regarding deregulated individual miRNAs. This inconsistency may reflect large heterogeneity of MDS, 

but it may also be explained by nonuniformity in sample handling and processing procedures, 

and variability in platforms used for miRNA detection. Nevertheless, there is evidence that sncRNAs 

are aberrantly expressed in MDS, but their functions in MDS pathophysiology are mostly unknown 

and remain to be elucidated. Identifying the putative targets of specific sncRNAs is critical for better 

understanding of MDS. This section summarizes our knowledge on the contribution of sncRNAs 

to the pathogenesis of MDS and discusses their potential applicability in the assessment of disease 

diagnosis and prognosis. 

 

7.3.1 miRNAs deregulated in MDS and in particular MDS subtypes 

The initial studies in the field of miRNAs in MDS focused on characterization of miRNA profiles that 

are common in MDS or specific for individual MDS subtypes. In 2009, Pons et al. (193) measured 

expression levels of 25 haematopoiesis-related miRNAs in BM and PB of MDS patients. The study 

reported differentially expressed miRNAs between MDS and controls, such as an overexpression 

of miR-17-92 cluster in both BM and PB of MDS (193). Hussein et al. (194) demonstrated that 

the miRNA expression profile in BM cells can distinguish MDS patients with chromosomal alterations 
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from those with normal karyotypes (194). Another study examined global miRNA expression in BM 

mononuclear cells and observed high levels of miR-222 and miR-10a and low levels of miR-146a,  

miR-150, and let-7e in MDS (195). Dostalova Merkerova et al. (196) analysed miRNA expression 

at the genome-wide level in CD34+ BM cells and found significant differences in miRNA expression 

between early and advanced MDS subtypes. They further identified strong upregulation of miR-34a 

in early subtypes of MDS (196), corresponding with the results of another study, which reported 

substantial overexpression of miR-34a in MDS patients with del(5q) (197). 

MDS with isolated del(5q), formerly referred to as 5q-syndrome, is one of the best characterized 

MDS subtype. MDS with del(5q) is determined by haploinsufficiency of specific genes within 

commonly deleted region (CDR) localized in 5q31.3-5q33 locus, which is essential for its specific 

phenotype. In CDR, besides protein coding genes, 13 genes encoding miRNAs are located. In MDS 

with del(5q), decreased levels of miR-143-5p, miR-146a, and miR-378, mapped within CDR, were 

detected (196,197). Importantly, Starczynowski et al. (198) showed that the deletion of chromosome 

5q correlates with loss of miR-145 and miR-146a, which are abundant in HSPCs. TIRAP and TRAF6 

were identified as respective targets of these miRNAs. It is known that TIRAP lies upstream of TRAF6 

in an innate immune signalling pathway. Knockdown of miR-145 and miR-146a together or enforced 

expression of TRAF6 in mouse HSPCs result in thrombocytosis, mild neutropenia and megakaryocytic 

dysplasia. A subset of mice transplanted with TRAF6-expressing BM were observed to progress either 

to BM failure or to AML (198). Kumar et al. (199) showed that miR-145 loss in MDS with del(5q) 

affects megakaryocyte and erythroid differentiation. They reported that miR-145 functions through 

the repression of FLI1, a megakaryocyte and erythroid regulatory transcription factor. Inhibition 

of miR-145 increases the production of megakaryocytic cells relative to that of erythroid cells (199). 

Another study showed substantial overexpression of miR-34a in MDS patients with del(5q) (197). 

The expression of miR-34a is induced by p53 and it promotes apoptosis through inhibition of BCL2 

gene (200). Thus, high expression of miR-34a in MDS patients with del(5q) is likely to be related 

to an increased apoptosis of BM progenitors (201). 

 

7.3.2 miRNAs as MDS biomarkers 

Many studies have also focused on miRNA relevance and significance as potential MDS biomarkers. 

The earliest study in this area showed close association of miRNA profiles with IPSS score of MDS. 

A unique signature consisiting of ten miRNAs permitted discrimination between lower-risk 

and higher-risk disease. In addition, miR-181 family members were selectively overexpressed 

in higher-risk MDS and associated with shorter patient survival (195). Another study suggested that 
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increased expression of miR181a/b/d-5p may predict MDS to AML transformation (202). Pons et al. 

(193) explored the levels of haematopoiesis related miRNA in MDS and AML in order to seek a link 

between these miRNAs and MDS progression to AML. The results showed that the expression levels 

of miR-222 and miR-181a are higher in AML than in MDS in both BM and PB. Further, differential 

expression of miR-15a and miR-16 between lower-risk and higher-risk MDS groups was observed, 

suggesting that all these miRNAs may be implicated in the progression of MDS to AML (193). Lovat 

et al. (203) reported that double knockout of the two miR-15/16 loci in mouse leads 

to the development of AML and indicated that decreased levels of miR-15a/-15b/-16 in MDS patients 

predict the progression to AML (203). Finally, miR-22 upregulation in MDS appears to correlate 

with poor patient survival (204). 

 

7.3.3 miRNA functions in MDS 

Several studies focused on regulatory pathways and specific targets of individual miRNAs in MDS. 

For example, it was shown that overexpression of miR-125a in MDS CD34+ cells modulates NF-κB 

activation and enhances erythroid differentiation arrest (205). Upregulation of miR-34a in MDS 

reduces c-FOS expression leading to TNF-α overproduction, which is considered to cause ineffective 

haematopoiesis (206). miR-21 mediates ineffective haematopoiesis in MDS by activating TGF-β 

signalling via reducing expression of SMAD7 (207). Deregulation of miR-10a/b is controlled 

by TWIST1 and appeares to promote apoptosis via NF-κB and p53 (208). Another study reported 

induction of apoptosis in MDS via p53 activation by upregulated miR-661 (209). Similarly, miR‑143 

induces apoptosis in MDS through the Fas/FasL pathway (210). Downregulation of microRNA-144 

inhibits proliferation and promotes apoptosis of MDS cells through the activation of the AKAP12-

dependent ERK1/2 signalling pathway (211). Overexpression of miR-205-5p induces cell proliferation 

by suppressing PTEN (212). Finally, miR-22 targets TET2 tumour suppressor (204) leading to increased 

HSC self-renewal accompanied by defective differentiation (204). 

 

7.3.4 non-miRNA sncRNA species in MDS 

With the development of high-throughput sequencing technology, the first studies observing other 

sncRNA species have emerged, investigating their expression and potential as disease biomarkers. 

Beck et al. (213) determined sncRNA and coding gene expression in primary BM cells of MDS patients 

and performed integrative analysis of the data. The analysis showed that in early MDS, the sncRNA 

profile is enriched in piRNAs, potentially protecting DNA from the accumulation of mutations. 
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In advanced MDS, tRNAs are enriched, possibly contributing to the reduction of apoptosis, which is 

characteristic for advanced stage of the disease (213). Guo et al. (202,214) demonstrated the utility 

of tsRNAs as predictive biomarkers for both, response to therapy with HMAs (214) and MDS 

progression to AML (202). In the first study (214), the authors reported that tsRNAs are one 

of the most common sncRNA species and some of them are associated with response 

to the treatment (214). In the second study (202), they identified miRNAs (miR-181a/b/d-5p,  

miR-199b-5p, and miR-486-5p) and tsRNAs that predict progression of MDS to AML independently 

of increased blast percentage, emphasizing their value as true predictive markers of future 

transformation instead of just documentation of the disease progression. In addition, the results 

indicated that the production of tsRNAs is specific (202). Interestingly, it was shown that 

pseudouridylation of tsRNAs mediated by pseudouridine synthase 7 (PUS7) directs them to inhibit 

translation and this phenomenon critically governs HSC commitment, HSPCs differentiation 

and haematopoietic lineage specification. Moreover, deregulation of this regulatory pathway 

appears to be common for MDS with the deletion of chromosome 7, where PUS7 gene is located 

(215). 

 

7.3.5 Circulating sncRNAs in MDS 

To date, only a few studies have investigated circulating sncRNAs in MDS. First studies focused 

on plasma/serum levels of specific miRNAs. Guo et al. (216) found that the levels of let-7a and  

miR-16 are decreased in MDS plasma compared to controls, and associated with patient PFS and OS 

(216). Kim et al. (217) investigated the level of miR-21 in serum of MDS patients treated with HMAs. 

The results showed that serum level of miR-21 differentiate responders from nonresponders and is 

associated with ORR and PFS of MDS patients treated with HMAs (217). Thus, initial studies showed 

that in MDS, specific circulating miRNAs may serve as predictive biomarkers of survival and response 

to HMAs therapy.  

With developing high-throughput technologies, analysis of up to thousands of predefined miRNAs 

became available.  Zuo et al. (218) were the first who investigated the global profile of circulating 

miRNAs in MDS plasma. They analysed 800 miRNAs and identified a 7-miRNA signature (let-7a,  

miR-16, miR-25, miR-144, miR-451, miR-651, and miR-655) as an independent predictor of survival 

in MDS patients with normal karyotypes (218). With unravelling the role of EVs as mediators 

of intercellular communication, research has focused on investigation of the EV cargo. Giudice  

et al. (219) explored the possible diagnostic and prognostic potential of plasma exosomal  

miRNAs and found 21 miRNAs that appear to be strongly associated with MDS.  
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Further, with the development of next generation sequencing, other sncRNA species became 

detectable. Enjeti et al. (220) sequenced sncRNA content in microvesicles of MDS patients and 

revealed that the sncRNA cargo of MDS microvesicles is approximately twice as high as that 

of microvesicles of controls. Furthermore, miRNA content and characteristics of microvesicle 

population of MDS patients were significantly different than those of controls (220).  

To conclude, circulating sncRNAs have a great potential to become a noninvasive biomarkers 

of the disease, which would highly contribute to improving MDS diagnostics, prognosis assessment, 

treatment, and patient comfort. Thus, there is a great effort to uncover the real value and features 

of these molecules, and find a way to utilize them in clinical practice.  

 



  AIMS 

49 
 

8 AIMS 

We aimed to analyse sncRNA expression using high-throughput technologies to identify sncRNA 

profiles associated with MDS development, progression, and treatment, and to search for novel 

prognostic and predictive biomarkers of the disease and response to AZA therapy, respectively. 

 

8.1.1 Specific aims 

1. Characterization of specific sncRNA profiles associated with MDS subtypes and risk groups 

and determination of sncRNAs with different levels between 

i. MDS patients and healthy individuals 

ii. patients with different MDS subtypes 

iii. patients with lower-risk and higher-risk MDS  

iv. MDS and AML-MRC patients 

v. MDS patients responsive and nonresponsive to AZA therapy. 

 

2. Characterization of sncRNA profiles in different materials and their comparison between 

i. BM cells and total plasma (i.e. intracellular versus extracellular sncRNAs) 

ii. total plasma and EVs (different extracellular materials) 

in order to define source-related specificities in sncRNA levels, their association with the patient 

outcome and to find which of the two extracellular materials would be suitable as possible source 

of circulating sncRNA biomarkers. 

 

3. Determination of sncRNAs that may serve as auxiliary MDS biomarkers for prediction of patient 

outcome and AZA therapy responsiveness. Achieving this goal included  

i. correlation of specific sncRNA signatures with clinical data, particularly with regard to patient 

follow-up (i.e. patient survival, progression of the disease, and response to AZA therapy) 
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ii. assessing of predictive value of selected sncRNAs at the level of both individual molecules 

and multiple molecule signature 

iii. validation of the high-throughput data of particular sncRNAs on an independent or extended 

sample cohorts using quantitative methods to prove the accuracy of the results and to study 

association of these sncRNAs with clinical characteristics more precisely. 

 

4. Identification of biological pathways potentially affected by the deregulated sncRNAs that may 

underlie the pathophysiology of MDS. 
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9 METHODS 

Most of the methods described below were applied in all the three publications that underlie this 

thesis. When applied under specific conditions in the particular publication, it is indicated as P1, P2, 

and P3. For references see the Preface.  

 

9.1.1 Patient samples 

The PB and BM aspirates were collected from patients with MDS and AML-MRC with no known 

history of previous malignancy, chemotherapy, or radiation therapy. The samples were obtained 

from the Clinical Departments of the Institute of Hematology and Blood Transfusion and the General 

University Hospital in Prague. None of the patients had received drug therapy for their disease 

or HSCT prior to blood collection, except for patients involved in the study of AZA treatment 

response. The patient’s diagnoses were assessed based on the standard 2008 or 2016 WHO 

classification criteria (23,24), and all the patients were classified according to the IPSS (26) or IPSS-R 

categories (27).  

PB samples and BM aspirates from age-matched healthy donors with no adverse medical history 

were used as controls. Written informed consents were obtained from all tested subjects 

in accordance with the ethical standards of the Declaration of Helsinki and its later amendments. 

The study was approved by the Institutional Scientific Board and the Local Ethics Committee. 

Regarding AZA therapy, AZA was administered at 75 mg/m2/day for seven consecutive days every 

28 days. The haematologic evaluation of the response to the treatment was performed after the 

fourth cycle according to the International Working Group (IWG) criteria for MDS (221) and AML 

(222). Patients who achieved complete remission (CR), partial remission (PR), marrow complete 

remission (mCR), or haematologic improvement (HI) were considered responders, whereas patients 

with stable disease (SD) or progressive disease (PD) were considered nonresponders.  

The detailed characteristics of individual sample cohorts are included in the appropriate Results 

sections of P1, P2, and P3. 
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9.1.2 Cell separation 

Mononuclear cells (MNCs) were separated from the BM aspirates by Ficoll-Paque density 

centrifugation (GE Healthcare, Munich, Germany). CD34+ cells were isolated from MNCs using 

the Direct CD34 Progenitor Cell Isolation MACS Kit (Miltenyi Biotec, Bergisch Gladbach, Germany). 

Both procedures were performed according to the manufacturer’s instructions.  

 

9.1.3 Separation of blood plasma 

PB was collected in EDTA tubes, and blood plasma was separated from the PB by centrifugation 

at 460 g for 10 min. The absence of haemolysis in plasma samples was confirmed 

spectrophotometrically by measuring oxyhaemoglobin absorbance at 414 nm and by qPCR evaluating 

the ratio of miR-451 to miR-23a (delta Cq (miR-23a - miR-451a)) (223,224) using StepOnePlus  

Real-Time PCR System (Thermo Fisher Scientific, Waltham, MA, USA). Only samples 

with the oxyhaemoglobin absorbance less than 0.2 and delta Cq (miR-23a - miR-451a) less than 

5 were included. Plasma samples were further centrifuged at 12,000 g at 4°C for 15 min to remove 

cell debris and after gradual freezing stored at -80°C. 

 

9.1.4 Separation of extracellular vesicles 

EVs were extracted from plasma using the ExoQuick Plasma Prep and Exosome precipitation kit 

(System Biosciences, Palo Alto, CA, USA). Briefly, plasma samples were pretreated with thrombin  

(5 U/mL) and centrifuged to dispose of fibrin and cell debris. Then, EVs were precipitated from 250 

µL of pretreated plasma using ExoQuick according to the manufacturer’s protocol.  

 

9.1.5 Transmission electron microscopy 

Transmission electron microscopy (TEM) was used to confirm the presence and size of EVs. It was 

done in cooperation with Romana Hadravová from the Institute of Organic Chemistry 

and Biochemistry of Academy of Sciences of the Czech Republic. EVs were visualized by negative 

staining. Briefly, Parlodion-carbon-coated grids were floated on the top of a 5 µl drop of the sample 

for 5 min. Then, the grids were transferred on the top of a drop of 2% phosphotungstic acid (pH 7.4), 

stained for 2×1 min and dried. Photomicrographs were taken with JEOL JEM-1011 electron 

microscope (JEOL, Peabody, MA, USA) operated at 80 kV.  
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9.1.6 Nanoparticle tracking analysis  

Nanoparticle tracking analysis (NTA) was used to define size and quantity of EVs. It was done 

in cooperation with Jaroslav Hanuš from the University of Chemistry and Technology in Prague. NTA 

was performed using Malvern NanoSight NS300 instrument (Malvern Panalytical, Malvern, UK). 

Briefly, purified EVs were diluted 5 x 103 in PBS and tracked using NTA analysis software. Each sample 

was analysed 3 times, and the counts were merged.  

 

9.1.7 Western blotting 

Western blotting was performed to confirm the presence of exosomes in isolated EV fractions. It was 

done in cooperation with Tereza Hrdinová and Matyáš Krijt from the Department of Proteomics, 

Institute of Hematology and Blood Transfusion (IHBT) in Prague. Briefly, EVs and K562 total cell lysate 

(used as a positive or a negative control) were lysed in 200 µl of NaCl-HEPES + 0,15% Triton  

(Sigma-Aldrich, St. Louis, MO, USA) and incubated on ice for 20 min. Total protein concentration was 

quantified by the Bradford protein assay (Bio-Rad, Hercules, CA, USA) and 30 µg of proteins were 

separated on 4 - 15% Mini-PROTEAN TGXTM gels (Bio-Rad) and transferred to polyvinylidene 

difluoride (PVDF) membrane. The membrane was blocked with SuperBlock blocking buffer (Thermo 

Fisher Scientific) and immunostained. The following primary antibodies were used: mouse anti-CD81 

antibody (1:1,000) (B11, sc-166029, Santa Cruz Biotechnology, Dallas, Texas, USA), rabbit anti-CD9 

antibody (1:1,000) (EXOAB Kit 1, System Biosciences, Palo Alto, CA, USA) and rabbit anti-calnexin 

(C5C9) antibody (1:1,000) (2679, Cell Signaling Technology, Danvers, MA, USA). Secondary 

horseradish peroxidase-conjugated anti-rabbit (7074P2, Cell Signaling Technology) or anti-mouse 

(7076P2, Cell Signaling Technology) antibodies were used. For imaging, Westar Supernova ECL 

substrate was used (Cyanagen, Bologna, Italy). 

 

9.1.8 RNA extraction 

Different methods of RNA extraction were used to meet the requirements of downstream 

applications on RNA purity and input. 

In P1 and P3, RNA from total plasma and CD34+ cells, respectively, were isolated using a phenol-

chloroform extraction (225). In P1, Trizol LS reagent (Invitrogen, Basel, Switzerland) was used 

and the procedure was modified according to Filková et al. (226). 
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In P2, RNA from total plasma and EVs was extracted using the miRNeasy Serum/Plasma Kit (QIAGEN, 

Hilden, Germany) according to the manufacturer’s protocol.  

RNA concentration was quantified with NanoDrop spectrophotometer (Thermo Fisher Scientific) 

and Qubit 2.0 fluorometer using Qubit microRNA Assay Kit, Qubit RNA HS Assay Kit, and Qubit RNA 

BR Assay Kit (Thermo Fisher Scientific). Integrity of RNA from CD34+ cells was evaluated with Agilent 

Bioanalyzer 2100 (Agilent Technologies, Santa Clara, CA, USA). 

 

9.1.9 miRNA profiling with microarrays and data analysis 

miRNA profiles were determined using Agilent Human miRNA Microarrays (Sure Print G3 

Unrestricted miRNA 8x60K, Release 19.0, Agilent Technologies). The input amounts of total RNA 

from plasma (P1) and from cells (P3) were 350 ng and 200 ng per sample, respectively. The samples 

were processed according to the manufacturer’s protocol. Scanning was performed on an Agilent 

Microarray Scanner.  

Data extraction and quality control were performed by Agilent Feature Extraction Software 

(v10.7.3.1). The data were normalized and processed in R statistical software (www.r-project.org) 

with the AgiMicroRNA (227) and its web interface MagiCMicroRna (228) packages in cooperation 

with Viktor Stránecký from the Institute of Inherited Metabolic Disorders in Prague. 

Differential gene expression analyses were performed in R using the gtools package (|FC| and its 

modifications). Subsequent data analyses were performed using MeV v4.8.1 software (229). Analysis 

of variance (ANOVA) was performed to identify differentially expressed miRNAs between different 

groups of samples. Welch’s approximate t-test was applied to determine differentially expressed 

miRNAs between two sample groups. Multiple testing correction was performed using  

the Holm-Bonferroni method. Hierarchical clustering of the miRNA expression data was done 

by using average linkage and Euclidean distance. 

 

9.1.10 Small RNA-seq and data analysis 

All sequencing libraries were constructed from 5 µl of RNA (RNA was isolated from plasma (200 µl) 

and EVs (precipitated from 250 µl of plasma) and was eluted to 30 µl Rnase-free water). The libraries 

were prepared, amplified, and purified using a QIAseq miRNA Library Kit (QIAGEN) following 

the manufacturer’s protocol. The concentration and size of the purified libraries were measured 
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with Qubit 2.0 fluorometer using Qubit dsDNA HS Assay Kit and Agilent 4200 TapeStation using 

D1000 Screen Tape Assay (Agilent Technologies), respectively. Libraries were adjusted to 4 nM, 

pooled together, and sequenced on HiSeq 2500 sequencer (Illumina, San Diego, CA, USA) as single 

reads for 83 cycles. 

After quality control of raw data using the FastQC tool (230), the sequences were processed using 

the QIAseq miRNA Primary Quantification pipeline (QIAGEN) available via The GeneGlobe Data 

Analysis Center. Briefly, 3’ adapter and low-quality bases were trimmed using Cutadapt (231), 

and the insert sequences and unique molecular indices (barcodes) were identified. The reads shorter 

than 16 nucleotides were discarded from the analysis. Sequences were then aligned using 

a sequential alignment strategy to map to different databases (perfect match to miRBase mature, 

miRbase hairpin, noncoding RNA, mRNA and other RNA, and finally the second mapping to miRBase 

mature, in which up to two mismatches were tolerated) using Bowtie (232). At each step, only 

unmapped sequences were passed to the next step. miRBase v21 was used for annotation 

of miRNAs, and piRNABank was used for piRNAs. All remaining unaligned sequences were mapped 

to the GRCh38 genome.  

De novo miRNAs were predicted using the miRdeep2 tool. The origin of nonhuman RNAs was 

identified by metagenome analyzer MEGAN (233). Due to an excessive amount of data, 

the nonhuman RNAs were analysed only on some of the samples (11 patients and 3 controls) using 

50,000 randomly selected reads (the number was assessed as sufficient for the analysis based 

on a taxonomy rarefaction plot). 

Annotated read counts were subsequently processed in R statistical environment. Data normalization 

and subsequent statistical analyses were performed using the edgeR package (234). Binary 

logarithms of fold changes (logFC) and q values (False Discovery Rate (FDR) adjusted p value) were 

generated as an output of edgeR package for differential expression analysis of the data. Analyses 

were considered statistically significant if q < 0.05. Hierarchical cluster analysis was performed using 

the pvclust package (235) with average correlation. RNA-seq analysis was done in cooperation 

with David Kundrát, Department of Genomics, IHBT, Prague. 

 

9.1.11 Reverse transcription quantitative PCR 

Reverse transcription quantitative PCR (RT-qPCR) was performed for relative quantification 

of individual sncRNA levels. Reverse transcription reactions were prepared with TaqMan MicroRNA 

cDNA synthesis kit (Thermo Fisher Scientific) following the manufacturer´s instructions.  
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A no template control and a negative control for each RT reaction were included in every assay.  

qPCR reactions were prepared using TaqMan MicroRNA assays and TaqMan Universal Master Mix II, 

no UNG (both Thermo Fisher Scientific) and performed on StepOnePlus real-time PCR system 

(Applied Biosystems, Foster City, CA, USA). The assays were designed and verified by the producing 

company (Thermo Fisher Scientific) and are commercially available. The individual assays  

are specified in the Results. The data were normalized to RNU48 and processed by the 2-ΔΔCT method 

(236).  

 

9.1.12 Droplet digital PCR 

Droplet digital PCR (ddPCR) was performed to quantify absolute levels of individual sncRNAs.  

RT reactions were prepared with TaqMan MicroRNA Reverse Transcription Kit (Thermo Fisher 

Scientific) following the manufacturer´s instructions. A no template control and a negative control for 

each RT reaction were included in every assay. PCR reactions were prepared using ddPCR Supermix 

for Probes (Bio-Rad) and TaqMan MicroRNA assays (Thermo Fisher Scientific). The assays were 

designed and verified by the producing company (Thermo Fisher Scientific) and are commercially 

availabe. The individual assays are specified in the Results. Droplets were prepared using QX200 

Automated Droplet Generator. After PCR, signals were detected on QX200 Droplet Reader 

with QuantaSoft software (all from Bio-Rad).  

 

9.1.13 Mutational screening and data analysis 

Mutational screening was performed as a part of routine clinical assessment using the TruSight 

Myeloid Sequencing Panel Kit (Illumina) containing 568 amplicons of 54 genes associated with 

myeloid malignancies. It was done in cooperation with Jitka Veselá, Monika Hrubá, and Katarina 

Szikszai, Department of Genomics, IHBT, Prague. The amplicon library was constructed according 

to the manufacturer’s recommendations. The libraries were 2x150 bp paired-end sequenced 

on a MiSeq instrument (Illumina), and the data were analysed using NextGENe software 

(SoftGenetics, State College, PA, USA). The clinical significance of each variant was verified in several 

genomic databases (UCSC, COSMIC, ExAC, and PubMed). The arbitrary cut off was set at three 

percent of variant allele frequency (VAF). 
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9.1.14 Statistical analysis 

Statistical analyses were performed using GraphPad Prism (GraphPad Software, La Jolla, CA, USA). 

Unpaired or paired tests (when appropriate) were used to compare continuous variables between 

different groups of samples. Based on data normality distribution (according to Shapiro-Wilk test), 

appropriate parametric or nonparametric variants of testing were utilized. The chi-squared test was 

applied for the comparison of categorical clinical variables. Pearson correlation analysis was 

performed to identify possible dependence between continuous variables. The sensitivity 

and specificity of the optimum cut-off points were defined as the values that maximized the area 

under the receiver operating characteristic (ROC) curve (AUC). The progression-free survival (PFS) 

and overall survival (OS) curves were generated by the Kaplan-Meier method, and the differences 

between groups were assessed by the log-rank test. Multivariate analysis was performed using 

the Cox proportional regression model. Results were considered statistically significant if p < 0.05. 

All statistical analyses were done in cooperation with Pavla Pecherková, Department of Biostatistics 

and Bioinformatics, IHBT, Prague. Analyses with more details are specified in the Results. 

 

9.1.15 miRNA pathway analysis 

Pathway analysis was done to identify signalling pathways that may be affected by specific miRNAs. 

The analysis was based on the data on significant differences in miRNA levels using DIANA-miRPath 

v3.0 (237). Within the analysis, target prediction of miRNAs was computed using the DIANAmicro 

T-CDS, and the most significantly affected KEGG pathways were identified. 
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10 RESULTS 

The Results section comprises three subsections presenting the results from the three publications 

(Publication 1, Publication 2, and Publication 3 as indicated in the Preface). 

 

10.1 Publication 1 

Dostalova Merkerova et al., Microarray profiling defines circulating microRNAs associated 

with myelodysplastic syndromes, Neoplasma, 2017 

 

In this study, we investigated levels of 2,006 predefined miRNAs in total blood plasma from MDS 

patients using microarrays. We found that specific miRNAs are significantly deregulated between 

lower-risk and higher-risk MDS patients and associate with progression and survival, suggesting that 

specific circulating miRNAs may serve as biomarkers of MDS patient outcome.  

 

10.1.1 Patient cohort 

The study was conducted on a cohort of 60 individuals, who included 40 MDS patients and 20 healthy 

individuals as controls. Based on the WHO classification criteria from 2008 (23), the diagnoses 

of MDS patients were as follows: 2 RCUD, 3 RARS, 17 RCMD, 4 RAEB-1, and 14 RAEB-2. The detailed 

clinical characteristics of all patients are summarized in Table 9. 
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Table 9. Characteristics of the patients. The data are presented as the mean and range for all 

continuous variables. 

Number of patients 40 

Sex (male/female) 30/10 

Age (years) 66 (40-85) 

Diagnosis (RCUD/RARS/RCMD/RAEB-1/RAEB-2) 2/3/17/4/14 

IPSS category (low/intermediate-1/intermediate-2/high) 4/20/10/6 

IPSS karyotype (good/intermediate/poor) 25/9/6 

Cytogenetics  

normal karyotype 23 

isolated del(20q)   2 

isolated +8  2 

complex 6 

other  7 

BM blasts (%) 6.1 (0.0-19.6) 

Haemoglobin (g/l) 100 (51-138) 

Neutrophils (x109/l)  1.9 (0.2-8.6) 

Platelets (x109/l)   123 (13-528) 

Follow-up               number of patients 
                                 mean follow-up (months) 

38 
22.7 (2.3-78.5) 

i. stable disease    number of patients  
                                 mean follow-up (months) 

16 
27.7 (3.2-78.5) 

ii. progression       number of patients 
                                 mean time from diagnosis (months) 

22 
14.3 (2.3-58.0) 

iii. HSCT                   number of patients 
                                 mean time from diagnosis (months) 

7 
6.7 (2.3-13.4) 

iv. death                 number of patients 
                                 mean time from diagnosis (months) 

11 
18.5 (3.6-46.7) 

 

 

10.1.2 miRNA profiling in MDS plasma 

miRNA profiling was performed using microarrays. For this high-throughput analysis, only 21 samples 

(14 patients and 7 controls) were selected, due to limited budget. The complete raw and normalized 

data have been deposited in the NCBI Gene Expression Omnibus (GEO) database and are accessible 

through GEO Series accession number GSE76775.  

Among 2,006 miRNAs present on the array, expression of 207 and 201 miRNAs was detectable 

in MDS and control samples, respectively. Only the miRNAs that were detected in more than 

4 samples were included for further analysis. The Welch t-test was applied to determine miRNAs 

differentially expressed between two groups of samples: (i) patients and controls and (ii) lower-risk 

and higher-risk patients. Comparative analysis identified 48 miRNAs showing significantly (p < 0.01) 
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altered levels in plasma of MDS patients (irrespective of their clinical parameters) compared to those 

in plasma of controls (Figure 5). Among these miRNAs, 19 were downregulated (e.g. miR-451a,  

miR-92a-3p, miR-320a/b/d/e, and miR-142-3p/5p), and 29 were upregulated (e.g. miR-150-5p, 

miR188-5p, and miR-371b-5p) in patients. Between lower-risk (N = 8) and higher-risk (N = 6) MDS 

patients, 17 miRNAs were identified as deregulated. For example, miR-16-5p, miR-17-5p,  

miR-27a-3p/b-3p, miR-223-3p were downregulated and miR-188-5p, miR-623 were upregulated 

in higher-risk patients (Figure 6). 

 

10.1.3 Quantification of individual miRNA levels by ddPCR 

Levels of specific miRNAs were quantified by ddPCR in the cohort of all samples. Based 

on the microarray results, we selected six haematopoiesis and/or oncology related miRNAs  

(miR-16-5p, miR-27a-3p, miR-150-5p, miR-199a-5p, miR-223-3p, and miR-451a) that showed 

deregulated levels in MDS plasma. In concordance with the microarray data, plasma miR-150-5p was 

increased and miR-16-5p, miR-27a-3p, miR-199a-5p, and miR-451a were decreased in MDS patients 

compared to controls. Comparison of miRNA levels between higher-risk and lower-risk patients 

revealed significantly (p < 0.05) lower levels of miR-27a-3p, miR-199a-5p, and miR-223-3p  

in higher-risk patients (Figure 7).  
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Figure 5. miRNAs deregulated in MDS plasma compared to control plasma. The heatmap shows 

miRNAs with deregulated levels (p < 0.01) in all MDS patients compared to controls. Color gradient 

intensity scale indicates binary logarithm of fold change (logFC) of signal intensities compared with 

the mean signal intensity of controls. Red indicates increased level of miRNA, green indicates 

decreased level of miRNA. Each column represents a patient, and each row represents a miRNA.  

LR – lower-risk MDS patient, HR – higher-risk MDS patient 
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Figure 6. miRNAs altered between lower-risk and higher-risk MDS in plasma. The heatmap shows 

miRNAs with deregulated levels (p < 0.01) between lower-risk and higher-risk MDS patients. Color 

gradient intensity scale indicates logFC of signal intensities compared with the mean signal intensity 

of controls. Red indicates increased level of miRNA, green indicates decreased level of miRNA. Each 

column represents a patient, and each row represents a miRNA. LR – lower-risk MDS patient,  

HR – higher-risk MDS patient 

 

 

 

Figure 7. Levels of specific miRNAs in plasma. Absolute amounts of miR-16-5p, miR-27a-3p,  

miR-150-5p, miR-199a-5p, miR-223-3p, and miR-451a were quantified with ddPCR. CTR – control,  

LR – lower-risk MDS, HR – higher-risk MDS, * p < 0.05, ** p < 0.01, *** p < 0.001 
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10.1.4 Correlation of circulating miRNA levels with clinical variables 

A series of univariate analyses was performed for various clinical variables and for each of the six 

selected miRNAs to evaluate whether their plasma levels are potential predictors of patient 

outcomes. The mean patient follow-up was 22.7 months, and within the monitoring period,  

22 patients progressed, and 11 patients died. The univariate analysis indicated significantly different 

PFS (p < 0.05) associated with the following parameters: IPSS karyotype, IPSS score, amount 

of cytopenias, WHO-based diagnosis, and the levels of five miRNAs (miR-27a-3p, miR-150-5p,  

miR-199a-5p, miR-223-3p, and miR-451a). The univariate analysis for OS showed distinct 

stratification of MDS patients based on miR-27a-3p and miR-223-3p plasma levels. The cut-off values 

for each miRNA (assessed based on ROC curve analysis), mean PFS and OS values, 95% confidence 

intervals (CIs) and p values are listed for each of the tested variables in Table 10.  

Multivariate Cox analyses confirmed that miR-451a plasma level (cut off 100x104 copies/µl of plasma) 

and amount of cytopenias are associated with PFS and that plasma level of miR-223-3p (cut off 

17x104 copies/µl of plasma) are associated with OS (Table 11). Kaplan-Meier curves (Figure 8) 

showed that patients with low miR-451a expression have significantly decreased PFS (25.7 months, 

95% CI 10.4 to 41.1) compared to those with high expression (41.5 months, 95% CI 29.1 to 54.0) 

and that patients with low miR-223-3p expression have significantly decreased OS (27.7 months, 95% 

CI 13.4 to 41.9 months) compared to those with high expression (70.6 months, 95% CI 57.1 to 84.1 

months). Thus, the results suggest that miR-451a and miR-223-3p may potentially serve as predictive 

biomarkers of patient outcome. 

Further, we performed Pearson correlation analysis for the six selected miRNAs with clinical variables 

(numbers of erythrocytes, platelets, neutrophils, monocytes, leukocytes, and lymphocytes, 

haemoglobin concentration, and percentage of blasts in BM). However, we did not find any 

significant correlation between tested miRNA levels and clinical variables. The absence of correlation 

between miRNA levels and blood cell counts suggests that miRNAs are not simply released from one 

type of blood cells, but their release from cells may be more complex and selective process. 
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Table 10. Univariate analysis for PFS and OS. 

Variable PFS OS 

Mean 

est. 

(mo) 

95% CI p 

value 

Mean 

est. 

(mo) 

95% CI p 

value 

Age < 65 years 26.0 9.5-42.4 .155 52.1 29.9-74.3 .739 

≥ 65 years 35.9 23.3-46.6 42.6 27.6-57.6 

Gender male 36.8 23.3-50.4 .375 46.3 33.0-65.6 .507 

female 23.8 8.6-39.1 49.3 29.4-63.1 

Diagnosis RCUD/ RARS 41.7 19.5-63.9 .038 41.7 19.5-63.9 .958 

RCMD 41.2 24.6-57.8 50.6 32.4-68.9 

RAEB-1/ RAEB-2 13.2 7.5-18.9 26.8 20.1-33.5 

IPSS category lower-risk 42.2 27.9-56.4 .013 50.8 35.2-66.5 .709 

higher-risk 12.7 6.9-18.6 26.3 19.2-33.5 

IPSS karyotype good 42.5 27.9-57.2 .005 53.6 36.8-70.5 .082 

intermediate 24.7 10.6-38.9 42.0 30.7-53.3 

poor 6.4 3.3-9.6 10.2 6.4-13.9 

Blasts < 5% 38.5 24.0-53.0 .191 45.3 28.9-61.7 .314 

≥ 5% 22.0 8.8-35.1 47.6 28.4-66.8 

Haemoglobin < 100 g/l 26.2 12.9-39.5 .082 48.5 29.5-67.5 .699 

≥ 100 g/l 37.0 22.7-51.2 42.3 27.7-57.0 

Neutrophils < 1.5x109/l 29.4 15.1-43.7 .467 40.7 24.1-57.3 .183 

≥ 1.5x109/l 34.5 20.7-48.3 59.7 46.9-72.4 

Platelets < 150x109/l 27.3 15.0-39.5 .126 43.8 26.7-60.7 .179 

≥ 150x109/l 38.8 23.2-54.4 49.6 32.4-66.8 

Cytopenia 0-1 lineage 46.8 31.0-62.5 .024 59.0 49.2-68.7 .084 

2-3 lineages 24.9 13.7-36.1 40.0 23.8-56.2 

miR-16-5p 

 

< 12x104 copies/µl of plasma 25.6 11.4-39.8 .338 49.8 29.1-70.4 .769 

≥ 12x104 copies/µl of plasma 33.6 20.3-47.0 41.8 25.7-58.0 

miR-27a-3p < 2.7x103 copies/µl of plasma 11.2 6.2-16.2 .005 18.0 11.8-24.1 .001 

≥ 2.7x103copies/µl of plasma 41.9 28.0-55.8 60.7 45.7-75.6 

miR-150-5p < 25x103 copies/µl of plasma 26.9 14.0-40.0 .038 44.9 27.6-62.2 .089 

≥ 25x103 copies/µl of plasma 50.1 36.0-64.1 60.0 43.4-76.4 

miR-199a-5p < 2.6x103 copies/µl of plasma 21.9 8.9-34.9 .048 37.9 19.4-56.5 .100 

≥ 2.6x103 copies/µl of plasma 37.4 24.3-50.5 47.6 30.9-64.4 

miR-223-3p < 17x104 copies/µl of plasma 18.3 9.0-27.7 .008 27.7 13.4-41.9 .001 

≥ 17x104 copies/µl of plasma 49.6 32.1-67.2 70.6 57.1-84.1 

miR-451a < 100x104 copies/µl of plasma 25.7 10.4-41.1 .029 56.3 38.6-74.1 .709 

≥ 100x104 copies/µl of plasma 41.5 29.1-54.0 47.6 33.3-61.9 
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Table 11. Multivariate Cox analysis for PFS and OS. HR – hazard ratio, CI – confidence interval,  

n.a. – not analysed 

 PFS OS 

Variable HR 95% CI p value HR 95% CI p value 

Diagnosis 0.512 0.040-6.488 .300 0.923 0.148-5.744 .932 

IPSS category 6.398 0.835-49.032 .074 1.089 0.089-13.369 .947 

IPSS karyotype 1.207 0.358-4.064 .762 0.151 0.014-1.693 .125 

Cytopenia 12.647 1.578-101.358 .017 2.128 0.172-26.287 .556 

miR-27a-3p  0.177 0.026-1.201 .076 0.682 0.103-4.511 .691 

miR-150-5p  2.983 0.376-23.685 .301 n.a. n.a. n.a. 

miR-199a-5p  4.133 0.527-32.404 .177 n.a. n.a. n.a. 

miR-223-3p  0.739 0.155-3.513 .704 0.039 0.002-0.856 .032 

miR-451a  0.072 0.011-0.467 .006 n.a. n.a. n.a. 

 

 

Figure 8. Patient survival according to miRNA levels. Kaplan-Meier curves for PFS based on miR-451a 

plasma level (p < 0.05) (A) and OS according to miR-223-3p plasma level (p = 0.01) (B). 

 

 

10.1.5 Comparison of circulating miRNA levels with their levels in CD34+ cells 

Previously, we have assessed miRNA profiles in CD34+ MDS cells using microarrays (196). We used 

these data to evaluate the cellular levels of the six miRNAs deregulated in MDS plasma (miR-16-5p, 

miR-27a-3p, miR-150-5p, miR-199a-5p, miR-223-3p, and miR-451a). We observed some expression 

changes between controls, higher-risk, and lower-risk patient groups (Figure 9). However, we did not 

find any apparent relation of circulating miRNA levels to their levels in CD34+ cells, again suggesting  

that miRNA release from cells may be specific process. 
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Figure 9.  miRNA levels in CD34+ MDS cells. Relative expression of miR-16-5p, miR-27a-3p,  

miR-150-5p, miR-199a-5p, miR-223-3p, and miR-451a in CD34+ MDS cells were calculated based 

on microarray data (196). CTR – controls, LR – lower-risk, HR – higher-risk MDS patients, * p < 0.05,  

** p < 0.01, *** p < 0.001 
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10.2 Publication 2  

Hrustincova et al., Circulating small noncoding RNAs have specific patterns in plasma 

and extracellular vesicles in myelodysplastic syndromes and are predictive of patient outcome,  

Cells, 2020 

 

In this study, we continued to analyse sncRNA profiles in blood plasma. Notably, we moved from 

microarray profiling to the next generation sequencing (NGS), which provides identification of all 

sncRNAs present in a sample, including non-miRNA sncRNA species. Thus, except for the most 

abundant miRNAs, we detected also other sncRNA species such as piRNAs, tsRNAs, and snoRNAs. 

Importantly, we investigated not only samples of total blood plasma, but also samples of plasma-

derived EVs. It is the very first study in the field of MDS that analyses sncRNA profiles in paired 

samples from two extracellular sources (total plasma and EVs) and draws a comparison between 

them. We identified sncRNAs that may be useful as prognostic and predictive biomarkers of MDS 

outcome and AZA treatment response, respectively.  

In order to keep clarity of this thesis, the large amount of results presented in the publication were 

reduced to only a major link. All the data can be found in the publication and its supplemental 

information. 

 

10.2.1 Patient cohorts 

The study was conducted on 114 blood plasma samples that were randomly divided in two cohorts – 

discovery and validation cohorts. The discovery cohort analysed by NGS comprised 59 individuals, 

including 31 MDS, 11 AML-MRC patients, and 17 healthy controls. Based on the WHO classification 

criteria from 2016 (24), the diagnoses of MDS patients were as follows: 5 MDS-MLD, 5 MDS-RS,  

3 MDS with isolated del(5q), 5 MDS-EB1, and 13 MDS-EB2. The diagnoses MDS-MLD, MDS-RS, 

and MDS with isolated del(5q) were considered early MDS and the diagnoses MDS-EB1 and MDS-EB2 

were considered advanced MDS. The time from diagnosis ranged from zero months (i.e. diagnostic 

samples) to five years from the initial assessment of the diagnosis, with the majority of samples 

obtained within one year from the diagnosis (81 %). The detailed clinical characteristics of all patients 

are summarized in Table 12. An independent validation cohort analysed by ddPCR comprised  

55 individuals, including 36 MDS, 7 AML-MRC patients, and 12 healthy controls (Table 13).  
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Mutational screening for 54 genes associated with myeloid malignancies was done for 18 of 31 MDS 

patients in the discovery cohort (58 %). Of them, 83 % bore at least one somatic mutation with 1.8 

mutational events per patient on average (range 1-5). The most frequently mutated genes 

in the cohort were SF3B1 (5 patients, 28 %, variant allele frequency (VAF) ranging from 26 to 50 %) 

and DNMT3A (5 patients, 28 %, VAF ranging from 26 to 47 %). These two most commonly mutated 

genes were selected for further investigation. 

In the follow-up period, 24 patients received AZA therapy. The mean time from sample collection 

to AZA treatment initiation was 1 month (0-7 months). The mean number of administered AZA cycles 

was 9 (2-56 cycles), the mean time to the best response in the responder cohort was 4.5 months  

(3-6 months), and the mean duration of the response was 15 months (6-56 months). In this AZA 

cohort, 9 patients were considered responders, i.e. they achieved complete remission (CR), partial 

remission (PR), marrow complete remission (mCR), or haematologic improvement (HI), 6 patients 

had stable disease, and 9 patients progressed after AZA treatment initiation. The overall response 

rate (ORR) including rates for all responders within the cohort was 37.5 %. 

Furthermore, we analysed the survival of MDS patients stratified according to clinical variables.  

We found that diagnosis, IPSS-R category, IPSS-R-based karyotype, BM blasts, haemoglobin level, 

and platelet count were significantly associated with OS (univariate analysis, p < 0.05). 
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Table 12. Characteristics of the patients in the discovery cohort. The data are presented as the mean 

and range for all continuous variables.  

MDS 31 

Age (years) 67 (29-87) 

Sex (male/female) 20/11 

Diagnosis  
MLD/RS/5q-/EB1/EB2 

5/5/3/5/13 

IPSS-R category  
very low/low/intermediate/high/very high/n.a. 

3/10/4/6/6/2 

BM blasts (%) 7.4 (0.4-19.4) 

White blood count (x109/l) 4.3 (1.2-11.9) 

Haemoglobin (g/l) 100 (72-138) 

Neutrophils (x109/l) 2.4 (0.1-8.6) 

Platelets (x109/l) 136 (13-390) 

Cytogenetic features 
          normal karyotype 
          isolated del(5q)  
          complex 
          other 
          n.a. 

 
13 
3 
4 
8 
3 

IPSS-R karyotype  
very good/good/intermediate/poor/very poor/n.a. 

0/18/4/2/4/3 

Somatic mutations 
          No. of analysed patients 
          No. of mutations per patient: 0/1/2/3/4/5 
          The most frequent mutations 
                  SF3B1/DNMT3A/RUNX1/ASXL1/EZH2/SETBP1 

 
18 (58 %) 
3/5/6/2/1/1 
 
5/5/4/3/3/3 

Follow-up 
          mean follow-up (months) 

22 (1-61) 

Deceased, number of patients 
          mean time to death (months) 

19 (61 %) 
19 (1-43) 

Follow-up treatment with AZA, number of patients 
          No. of responders 
          No. of patients with stable disease 
          No. of patients with progressed disease 

24 
9 
6 
9 

AML-MRC 11 

Age 69 (58-77) 

Sex (male/female) 6/5 

BM blasts (%) 26.0 (20.1-41.0)  

White blood count (x109/l) 3.0 (0.8-8.1) 

Haemoglobin (g/l) 95 (77-127) 

Neutrophils (x109/l) 1.0 (0.1-3.4) 

Platelets (x109/l) 116 (24-258) 

Cytogenetic features 
          normal karyotype 
          isolated del(5q)  
          complex 
          other 
          n.a. 

 
5 
1 
1 
2 
2 

n.a. – not analysed 
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Table 13. Characteristics of the patients in the validation cohort. The data are presented as the mean 

and range for all continuous variables.  

MDS 36 

Age 60 (29-81) 

Sex (male/female) 26/10 

Diagnosis  
SLD/MLD/RS/5q-/EB1/EB2 

2/10/2/1/5/16 

IPSS-R category  
very low/low/intermediate/high/very high/n.a. 

6/10/5/4/11 

BM blasts (%) 7.1 (0.2-19.8) 

White blood count (x109/l) 3.8 (0.9-11.4) 

Haemoglobin (g/l) 101 (59-138) 

Neutrophils (x109/l) 1.8 (0.1-7.6) 

Platelets (x109/l) 126 (26-273) 

Cytogenetic features 
          normal karyotype 
          isolated del(5q)  
          complex 
          other 

 
16 
2 
9 
9 

IPSS-R karyotype  
very good/good/intermediate/poor/very poor 

1/20/3/3/9 

Follow-up 
          mean follow-up (months) 

11 (0-77) 

Deceased, number of patients 
          mean time to death (months) 

17 (47 %) 
7 (1-23) 

AML-MRC 7 

Age 68 (62-76) 

Sex (male/female) 5/2 

BM blasts (%) 36.3 (23.0-62.0)  

White blood count (x109/l) 2.2 (1.0-4.8) 

Haemoglobin (g/l) 100 (85-127) 

Neutrophils (x109/l) 0.8 (0.1-2.9) 

Platelets (x109/l) 91 (10-202) 

Cytogenetic features 
          normal karyotype 
          complex 
          other 

 
2 
3 
2 

n.a. - not analysed 

 

10.2.2 Characterization of extracellular vesicles in MDS plasma 

To characterize the EVs in MDS plasma, we analysed several total plasma samples by nanoparticle 

tracking analysis (NTA). We observed that neither particle counts, nor their cumulative volumes were 

associated with the disease. However, we observed a fraction of particles with larger sizes specifically 

in the plasma of higher-risk MDS patients (Figure 10, A and B). More importantly, we obtained 
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significantly higher amounts of RNA material from patient samples compared to controls when 

isolated from total plasma samples (44.7 ± 3.2 ng/ml of plasma in controls vs. 92.9 ± 8.8 ng/ml 

in patient samples, p = 0.01) as well as from EV fractions (7.3 ± 0.5 ng/ml of plasma in controls  

vs. 17.5 ± 1.3 ng/ml in patient samples, p = 0.0005) (Figure 10C). 

 

Figure 10. Characterization of extracellular particles in plasma. (A) Particle size (mean size with 10th 

and 90th percentiles) measured by nanoparticle tracking analysis (NTA). (B) NTA report 

of representative samples of total plasma from one control and one MDS-EB2 patient. (C) RNA yield 

obtained from (a) 1 ml of total plasma and (b) EV samples that were isolated from 1 ml of the plasma 

is plotted. 
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After separation, we reanalysed the isolated EVs by transmission electron microscopy (TEM), NTA, 

and western blotting. TEM imaging showed that the majority of isolated EVs ranged in size from 

50 nm to 100 nm, suggesting sufficient exosome enrichment in the samples (Figure 11A). Based 

on the NTA measurements, we determined that the obtained EVs had a mode size of 96 nm (the size 

that has the highest number of recurrences in the sample), with particle sizes ranging from 87 to 180 

nm (10th to 90th percentile) (Figure 11B). Using western blotting, we confirmed the presence 

of exosomes. Common exosome markers CD9 and CD81 were detected in MDS and control EV 

samples, whereas cell organelle (endoplasmic reticulum) marker calnexin tested as a negative control 

was not detected (Figure 11C). Based on these data, we conclude that although enriched 

in exosomes, our precipitated EV fractions contain a heterogeneous mixture of exosomes and,  

to a lesser extent, microvesicles. This is consistent with outputs from other protocols including those 

based on high-speed ultracentrifugation, e.g. (238). 

 

Figure 11. Transmission electron microscopy (TEM) (A) and nanoparticle tracking analysis (NTA) (B) of 

one representative EV sample. Characterization of exosomes in EV samples by western blotting (C). 

Common exosome markers CD9, CD81, and cell organelle marker calnexin (negative control). K562 

Total Cell Lysate (TCL) was loaded as a control.  
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10.2.3 General overview of circulating sncRNAs in MDS patients 

To systematically characterize the sncRNAs circulating in MDS plasma, we performed small RNA-seq 

analysis in paired samples (118 samples from 59 individuals) of total plasma and plasma-derived EVs. 

On average, we captured 8.3 millions (M) of total reads per sample (4.0-18.0 M reads) 

and after filtering, 5.0 M reads on average per sample (2.6-12.6 M reads) were retained 

in the analysis. In the filtering process, we removed all reads that had low quality scores, defective 

or missing adapters and/or barcodes, and were shorter than 16 nucleotides. The data have been 

deposited in the SRA (Sequence Read Archive) database under accession no. PRJNA574254. 

The retained sequences were annotated and assigned to several categories of transcripts. The most 

abundant categories of transcripts were miRNAs (51.0 % of reads on average), followed by rRNAs  

(4.1 %), piRNAs (0.7 %), tRNAs (0.4 %), and mRNAs (0.4 %). Of the retained reads, 42.2 % were 

uncharacterized (of these, 8.5 % were mappable and 33.7 % were not mappable to the human 

genome). In total, we identified 2,543 miRNAs, 141 piRNAs and 364 tRNAs with at least one read 

in one sample. 

Because a large proportion of the mapped reads were uncharacterized, we predicted potential 

de novo miRNAs among these sequences. Using the miRdeep2 tool, we identified 7,667 de novo 

miRNAs in total. On average, we found 168 and 146 de novo miRNAs per sample of total plasma and 

EVs, respectively. These de novo identified miRNAs were included in subsequent differential 

analyses.  

Furthermore, we addressed the question of the features and origin of the uncharacterized 

unmapped reads. Interestingly, their proportion increased with read length. While almost all 

of the reads with lengths of 20-22 bp mapped to the human genome, the unmapped reads were 

longer  

( > 31 bp). A high percentage of unmapped sequences was annotated as 16S/18S rRNA molecules 

of nonhuman origin (approx. 20 %), suggesting that numerous RNAs originating from other species 

are present in human plasma. The majority of these reads were mappable to Proteobacteria, 

Ascomycota, Streptophyta, and Chlorophyta. No apparent profile specific to MDS patients either 

in total plasma or in EVs was found (Figure 12). However, a deeper analysis of these nonhuman 

sequences with respect to differential representation of individual taxa has not been done as is 

beyond the scope of this study. 
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Figure 12. Taxonomy profile of reads mappable to nonhuman genomes. The proportion of the reads 

assigned to individual phyla is shown. 

 

 

10.2.4 Comparison of total plasma samples with EV samples 

We focused on human sncRNAs and observed that total plasma samples had a substantially higher 

proportion of miRNA reads compared to EV samples (60 % in total plasma and 46 % in EVs 

on average). In contrast, EV samples had higher proportion of uncharacterized reads than total 

plasma samples (38 % in EVs and 27 % in total plasma on average). Hierarchical cluster analysis of all 

samples revealed that EV content was more homogeneous than the sncRNA content of total plasma, 

preferentially clustering the majority of EV samples into one cluster (Figure 13).  

Further, we performed differential expression analysis between paired samples of total plasma and 

EVs. We identified a striking difference between MDS and control samples. In MDS samples, 419 

sncRNAs were differentially represented between total plasma and EVs (|logFC| > 1 and q < 0.05). 

In controls, only 44 sncRNAs reached this statistical significance cut off and the majority of them 

were also found in MDS samples. However, 385 differentially represented sncRNAs between total 

plasma and EVs were uniquely identified only in MDS. Interestingly, levels of miRNAs were 
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proportionally deregulated between the two materials (114 miRNAs were increased in total plasma 

and 105 miRNAs were increased in EVs), but the levels of piRNAs, tRNAs, and other RNA categories 

were almost exclusively increased in total plasma (25 piRNAs and 105 tRNAs were increased in total 

plasma and only four piRNAs and three tRNAs were increased in EVs). These data suggest substantial 

deregulation of circulating sncRNAs associated with MDS. Moreover, the process of RNA release 

from cells may be specific for distinct sncRNA species, for example particular sncRNA species may be 

selectively loaded into EVs.  

 

Figure 13. Hierarchical cluster analysis of total plasma and EV samples based on all RNA-seq data. 

The blue frame highlights the clustered EV samples. CTR – controls, PTS – MDS/AML-MRC patients 

 

 

10.2.5 sncRNAs differentially expressed in MDS 

To characterize sncRNA profiles specific for MDS, we compared sncRNA levels between MDS 

patients, AML-MRC patients, and controls in each material separately. The results show relatively 

higher numbers of differentially represented sncRNAs (|logFC| > 1 and q < 0.05) between MDS 

patients and controls in total plasma (391 sncRNAs with 316 increased and 75 decreased sncRNAs 

in MDS) than in EVs (219 sncRNAs with 179 increased and 40 decreased sncRNAs in MDS). Table 14 

shows the distribution of deregulated sncRNAs among various sncRNA species. Many of these 

sncRNAs were uniquely deregulated either in total plasma or EVs. Importantly, we found that 

the levels of many haematopoiesis-related miRNAs were significantly increased (q < 0.05) in MDS 

patients compared to controls, mostly in both plasma and EVs (e.g. miR-10a-5p, miR-29a-3p,  

miR-34a-5p, miR-99b-5p, miR-125a-5p, miR-146b-5p, and miR-150-3p/5p were increased in both 
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total plasma and EVs, and let-7a-3p, miR-21-3p, miR-221-3p, miR-221-3p/5p, and miR-223-3p were 

increased only in total plasma). Regarding other types of sncRNAs, hsa_piR_019914/gb/DQ597347, 

hsa_piR_020450/gb/DQ598104, chr2.trna27-GlyCCC, chr18.trna4-LysCTT, SNORD119, and U33 were 

upregulated in MDS samples (q < 0.05). 

On the other hand, there were almost no significant differences between sncRNA profiles of MDS 

and AML-MRC patients. There were only 9 and 14 differentially represented RNAs in plasma and EVs, 

respectively (Table 15). 

 

Table 14. Numbers of significantly deregulated (|logFC| > 1 and q < 0.05) circulating sncRNAs in MDS 

patients compared to controls. 

Type of transcripts total plasma EVs 

increased decreased increased decreased 

all annotated RNAs 316 75 179 40 

annotated miRNAs 112 36 65 18 

de novo identified miRNAs 19 39 26 20 

piRNAs 24 0 15 1 

tRNAs 120 0 43 1 

other annotated RNAs 41 0 30 0 

 

 

Table 15. Numbers of significantly deregulated (|logFC| > 1 and q < 0.05) circulating sncRNAs in MDS 

patients compared to AML-MRC patients. 

Type of transcripts total plasma EVs 

increased decreased increased decreased 

all annotated RNAs 1 8 0 14 

annotated miRNAs 0 3 0 1 

de novo identified miRNAs 1 5 0 10 

piRNAs 0 0 0 1 

tRNAs 0 0 0 2 

other annotated RNAs 0 0 0 0 

 

 

10.2.6 sncRNAs differentially expressed between early and advanced stages of MDS 

To define sncRNAs with changed levels during MDS progression, we investigated the differences 

in sncRNA profiles between early (MDS-MLD, MDS-RS, and MDS with isolated del(5q)) and advanced 

stages of MDS (MDS-EB1 and MDS-EB2). These results showed 100 and 43 differentially represented 

sncRNAs (|logFC| > 1 and q < 0.05) in plasma (81 increased and 19 decreased in early MDS) and EVs 
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(34 increased and 9 decreased in early MDS), respectively. Their distribution among various sncRNA 

species is shown in Table 16. Heatmaps in Figure 14 show apparently distinct levels of these sncRNAs 

associated with the stage of the disease when the patients are divided according to either WHO 

classification or IPSS-R score.  

The detailed examination of significantly deregulated sncRNAs (|logFC| > 1 and q < 0.05) between 

early and advanced stages of MDS revealed that only 14 sncRNAs were deregulated in both types 

of materials, total plasma and EVs. Regarding haematopoiesis related miRNAs, levels of some 

of them (e.g. miR-103a-3p, miR-103b, miR-107, miR-221-3p, miR-221-5p, and miR-130b-5p) were 

significantly decreased (q < 0.05) in total plasma of advanced MDS compared to early MDS. 

Interestingly, multiple miRNAs (e.g. miR-127-3p, miR-154-5p, miR-323b-3p, miR-382-3p, miR-409-5p, 

and miR-485-3p) clustered in chromosomal region 14q32 were found among the significantly 

upregulated (q < 0.05)  miRNAs in total plasma and/or EVs of early MDS. Regarding other sncRNA 

species, hsa_piR_000805/gb/DQ571003, hsa_piR_019420/gb/DQ596670, chr6.trna152-ValCAC, 

and chr7.trna5-CysGCA were significantly deregulated (q < 0.05) between early and advanced MDS. 

 

Table 16. Numbers of significantly deregulated (|logFC| > 1 and q < 0.05) circulating sncRNAs in early 

MDS patients compared to advanced MDS patients. 

Type of transcripts total plasma EVs 

increased decreased increased decreased 

all annotated RNAs 81 19 34 9 

annotated miRNAs 55 12 24 7 

de novo identified miRNAs 12 4 8 0 

piRNAs 7 1 1 2 

tRNAs 5 1 1 0 

other annotated RNAs 2 1 0 0 
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Figure 14. Heatmaps of differentially represented sncRNAs between early and advanced MDS in total 

plasma (left) and EVs (right) (q < 0.05). Color gradient intensity scale shows the row z-score of CPM 

(binary logarithm) of individual RNAs. Red indicates increased level of RNA, blue indicates decreased 

level of RNA. Each column represents a patient, and each row represents an RNA. 

 

 

10.2.7 Quantification of individual sncRNA levels by ddPCR 

To validate the results of NGS analysis, we evaluated the levels of miR-16-5p, miR-34a-5p,  

miR-125a-5p, miR-125b-5p, miR-127-3p, miR-221-3p, and hsa_piR_001170/DQ571526 by ddPCR 

in an independent validation cohort (36 MDS patients, 7 AML-MRC patients, and 12 controls, Table 

13). These sncRNAs were selected based on their previously described relevance for MDS  

and/or significantly different levels in the small RNA-seq experiments. After absolute quantification 

of sncRNA levels, we compared these results with those of the small RNA-seq analysis by performing 

Pearson correlation of the mean expression values measured in the individual sample groups 

(controls, early MDS, advanced MDS, and AML-MRC). The correlation analysis proved concordance 

between both methods (r = 0.606, p = 0.0001) as shown in Figure 15. 
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Figure 15. Correlation of sncRNA levels measured by different methods in two independent sample 

cohorts. In the testing cohort, the data were obtained using small RNA-seq (NGS) and  

in the validation cohort, by ddPCR method. (A) The mean values of sncRNA levels (miR-16-5p,  

miR-34a-5p, miR-125a-5p, miR-125b-5p, miR-127-3p, miR-221-3p, and hsa_piR_001170/DQ571526) 

in individual sample groups (controls, early MDS, advanced MDS, and AML-MRC) were plotted  

in the graph and Pearson correlation was calculated. (B) Detailed comparison of NGS and ddPCR 

results for miR-34a levels are shown for illustration. 

 

 

 

10.2.8 Pathway analysis based on miRNA profiles specific for MDS 

To identify biological functions potentially influenced by deregulated miRNAs circulating in MDS 

plasma, we performed miRNA target prediction coupled with pathway enrichment analysis. 

The analyses were performed for miRNAs differentially represented (|logFC| > 1, q < 0.05) between 

MDS and control samples, and between early and advanced MDS samples either in plasma or EVs. 

As shown in Table 17 and Table 18 in more detail, we found that the deregulated miRNAs were 

associated with multiple pathways related to cancer (namely, the Ras, TGF-beta, ErbB, and Rap1 

pathways), pluripotency of stem cells, extracellular matrix (ECM), and focal adhesion. 

  



  RESULTS 

80 
 

Table 17. The most significantly enriched pathways in the sets of deregulated miRNAs between MDS 

and controls. The top ten pathways with the most significant p values are listed for each dataset. 

 

KEGG pathway p value 

plasma: MDS vs. CTR   

Mucin type O-Glycan biosynthesis 9.77e-15 

Proteoglycans in cancer 6.05e-09 

ErbB signalling pathway 2.80e-08 

Ras signalling pathway 2.02e-07 

Axon guidance 2.02e-05 

Pathways in cancer 2.02e-05 

Rap1 signalling pathway 3.30e-05 

Lysine degradation 3.33e-05 

Glioma 6.23e-05 

Signalling pathways regulating pluripotency of stem cells 9.51e-05 

EVs: MDS vs. CTR   

ECM-receptor interaction 1.16e-26 

Fatty acid biosynthesis 1.41e-08 

ErbB signalling pathway 1.41e-08 

Proteoglycans in cancer 1.57e-08 

Axon guidance 3.54e-08 

Glioma 5.42e-08 

Mucin type O-Glycan biosynthesis 5.18e-06 

Estrogen signalling pathway 3.52e-05 

Focal adhesion 5.71e-05 

Signalling pathways regulating pluripotency of stem cells 5.71e-05 
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Table 18. The most significantly enriched pathways in the sets of deregulated miRNAs between early 

and advanced MDS. The top ten pathways with the most significant p values are listed for each 

dataset. 

 

KEGG pathway p value 

plasma: early vs. advanced MDS  

Amphetamine addiction 1.56e-07 

Signalling pathways regulating pluripotency of stem cells 5.60e-06 

Transcriptional misregulation in cancer 1.35e-05 

Gap junction 2.31e-05 

Glioma 3.38e-05 

FoxO signalling pathway 5.34e-05 

Hippo signalling pathway 0.000116 

ErbB signalling pathway 0.000172 

Proteoglycans in cancer 0.000175 

TGF-beta signalling pathway 0.000254 

EVs: early vs. advanced MDS  

Biotin metabolism 0.00716 

Central carbon metabolism in cancer 0.00716 

Signalling pathways regulating pluripotency of stem cells 0.00716 

Lysine degradation 0.00983 

TGF-beta signalling pathway 0.00983 

Steroid biosynthesis 0.0129 

Glioma 0.0139 

RNA transport 0.0141 

ErbB signalling pathway 0.0145 

Morphine addiction 0.0145 
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10.2.9 Relation between somatic mutations and levels of circulating sncRNAs in MDS 

We explored the possible relation between the presence of somatic mutations and the levels 

of circulating sncRNAs in MDS. Using differential expression analyses, we searched for sncRNAs 

with differential expression between MDS patients with vs. without a mutation in SF3B1 or DNMT3A 

genes. The analysis identified only a few significantly deregulated sncRNAs (SF3B1: no sncRNAs, 

DNMT3A: miR-7515 in total plasma, miR-6857-3p, miR-9-3p, and hsa_piR_020485/gb/DQ598159 

in EVs, p < 0.05, Figure 16A). 

To gain better insight into the potential effects of SF3B1 and DNMT3A mutations on levels 

of circulating sncRNAs, we refined the selection criteria and included all sncRNAs at raw p < 0.01 

(non-adjusted for multiple testing) with the awareness of potential high numbers of false positive 

results. Regarding the SF3B1 mutations, we identified 22 and 15 sncRNAs deregulated in total plasma 

and EVs, respectively. The DNMT3A mutations were associated with the deregulation of 34 sncRNAs 

in total plasma and 32 sncRNAs in EVs (p < 0.01). Finally, we intersected deregulated sncRNAs  

in the two materials and found that total plasma and EVs displayed different sncRNA profiles. Only 

miR-100-5p and miR-450b-5p of SF3B1-mutated samples were deregulated in both materials, plasma 

and EVs (Figure 16B). 
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Figure 16. Differential sncRNA levels associated with presence of somatic mutations in (A) DNMT3A 

gene and (B) SF3B1 gene. CTR – controls, mut – mutated, wt – wild type, ns – not significant 
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10.2.10 Circulating sncRNAs as prognostic biomarkers of MDS survival 

The OS‐associated sncRNAs were identified by performing univariate Cox regression along 

with a permutation test using BRB‐ArrayTools (239). sncRNAs with permutation p values < 0.001, 

which were computed based on 10,000 random permutations, were considered significantly 

associated with survival. Two sets of sncRNAs (separately for the two materials, total plasma 

and EVs) whose levels significantly correlated with OS were identified. Of the 3,130 sncRNAs 

uploaded into the analysis tool, 173 and 122 sncRNAs were significantly (univariate p < 0.05) 

associated with OS in total plasma and EVs, respectively. Of these, only the sncRNAs with the highest 

level of association (permutation p < 0.001) were chosen for further analyses, i.e. three sncRNAs 

in total plasma (miR-1260b, miR-3191-3p, and miR-328-3p) and four sncRNAs in EVs (miR-1237-3p, 

U33, hsa_piR_019420/gb/DQ596670, and miR-548av-5p). The results are summarized in Table 19 

and Kaplan-Meier plots are shown in Figure 17. 

To test the combination strategy of multiple survival-associated sncRNAs for better patient 

stratification, we defined a risk prediction score that combined the effects of the selected sncRNAs 

above. A formula of survival risk score was constructed by including each of the selected sncRNAs, 

weighted by their estimated regression coefficients in the univariate Cox regression model. 

The leave‐one‐out cross‐validation (LOOCV) method was employed to evaluate the accuracy  

of the score system. The prognostic index of sample was computed by the formula ∑iwi xi + C, where 

wi is the estimated regression coefficient, xi is the logged level for the i-th gene, and C is a coefficient 

for recalculation of the final index to zero.  

The coefficients of survival risk formula for these individual sncRNAs contributing to final risk 

assessment and p values of cross-validation tests are included in Table 19. The final survival risk score 

of a total plasma sample was calculated based on the following formula: 

Plasma risk score = - 0.631 × log2 (level of miR-1260b) - 0.24 × log2 (level of miR-328-3p) + 6.861. 

Similarly, the survival risk score of an EV sample was calculated as follows: 

EV risk score = 0.615 × log2 (level of miR-1237-3p) + 0.917 × log2 (level of U33) - 0.106 × log2  

(level of hsa_piR_019420) - 1.01 × log2 (level of miR-548av-5p) - 4.948. 

A higher score (> 0) indicated an increased risk of mortality, whereas a lower score ( ≤ 0) denoted 

a better outcome. Thus, the patient cohort was partitioned into two risk groups according  

to the survival risk score (> 0 for the higher‐risk group and ≤ 0 for the lower‐risk group). 
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To evaluate the performance of combined prognostic signatures, Kaplan-Meier curves and receiver 

operation characteristic (ROC) curves were plotted for the samples divided into higher-risk 

and lower-risk groups according to the computed score formulas. The results showed that combining 

sncRNA level scores increased the predictive power of the survival risk model more significantly in EV 

material (univariate p < 0.001, ROC: AUC = 0.860, p = 0.0009) than in total plasma (univariate  

p = 0.008, ROC: AUC = 0.636, p = 0.206) as shown in Figure 18. 

Furthermore, we tested the relation between individual survival-associated sncRNAs and their 

combination scores with clinical parameters. A series of Pearson correlation tests showed 

a significant association between the levels of the majority of these sncRNAs and BM blast count 

and platelet count (Table 20). However, Cox multivariate analysis revealed that the EV combined 

score (HR = 5.866, 95% CI 2.262 to 15.210, p < 0.001) was the variable most significantly associated 

with OS, even when compared with the IPSS-R score (HR = 1.410, 95% CI 0.840 to 2.366, p = 0.193) 

(Table 21). 

 

Table 19. sncRNAs associated with OS of MDS patients. Prediction model coefficients are applicable 

to the formula of survival risk score. The survival risk score of a total plasma sample = - 0.631 × log2 

(level of miR-1260b) - 0.24 × log2 (level of miR-328-3p) + 6.861. Similarly, the survival risk score of an 

EV sample = 0.615 × log2 (level of miR-1237-3p) + 0.917 × log2 (level of U33) - 0.106 × log2 (level 

of hsa_piR_019420) - 1.01 × log2 (level of miR-548av-5p) - 4.948. A sample is predicted as high (low) 

risk if its prognostic index is > 0 (≤ 0). n.a. – not applicable, n.s. – nonsignificant 

sncRNA Univariate Cox regression analysis Prediction model 

Univariate Cox 
regression, 
p value 

Permutation,  
p value 

Hazard ratio Coefficient Cross-
validation, 
p value 

Total plasma 

miR-1260b 0.0007 0.0006  0.441 -0.631 0.0002 

miR-3191-3p 0.0009 0.0009 0.338 n.a. n.s. 

miR-328-3p 0.0009 0.0008 0.474 -0.24 0.0008 

EV fraction 

miR-1237-3p 0.00002 < 1e-07 20.135 0.615  5e-07 

U33 0.0006 0.0006 2.499 0.917  0.0002 

hsa_piR_019420 0.001 < 1e-07 20.135 -0.106  0.0008 

miR-548av-5p 0.001 0.001 0.217 -1.01 0.0009 
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Figure 17. Kaplan-Meier curves for individual sncRNAs significantly associated with OS of MDS 
patients in samples of (A) total plasma and (B) EVs. 

 

 

Figure 18. Performance of the combined prognostic model for OS of MDS patients. Kaplan-Meier 
curves and ROC curves are shown for (A) a two-sncRNA signature (miR-1260b and miR-328-3p) 
in total plasma and (B) a four-sncRNA signature (miR-1237-3p, U33, hsa_piR_019420,  
and miR-548av-5p) in EVs. 

 



  RESULTS 

87 
 

Table 20. Correlation of clinical variables with individual sncRNA levels and with combined scores 

for OS. The Pearson correlation coefficient is listed. *** p < 0.001, ** p < 0.01, * p < 0.05. 

  age blasts haemoglobin neutrophils platelets karyotype 

Total 
plasma 

miR-1260b -0.334 -0.510** 0.046 0.015 0.838*** -0.225 

miR-3191-3p -0.253 -0.199 -0.125 0.061 0.337 -0.300 

miR-328-3p -0.453* -0.487** 0.239 0.029 0.826*** -0.203 

combined score (total plasma) 0.284 0.531** -0.088 -0.053 -0.818*** 0.218 

EVs 

U33 0.090 0.365* -0.229 0.146 -0.372* -0.093 

hsa_piR_019420/DQ596670 0.090 0.412* -0.119 0.140 -0.473** -0.053 

miR-548av-5p 0.045 -0.207 0.357* -0.114 0.270 -0.204 

combined score (EVs) 0.168 0.413* -0.374* 0.066 -0.490** 0.264 

 

 

Table 21. Cox multivariate analysis for OS of MDS patients. 

variable HR 95.0% CI for HR p value 

Lower Upper 

age 1.044 0.945 1.153 0.397 

blasts 0.882 0.767 1.013 0.076 

haemoglobin 1.001 0.961 1.043 0.948 

neutrophils 0.778 0.577 1.048 0.099 

platelets 1.003 0.993 1.013 0.602 

IPSS-R score 1.410 0.840 2.366 0.193 

combined score (total plasma) 1.764 0.666 4.677 0.254 

combined score (EVs) 5.866 2.262 15.210 < 0.001 

 

 

10.2.11 Circulating sncRNAs predictive of response to AZA therapy 

To search for sncRNAs applicable as predictive biomarkers of the AZA treatment response,  

we analysed RNA-seq data from AZA-treated MDS/AML-MRC patients. Using differential expression 

analysis, we found only a few sncRNAs significantly (|logFC| > 1, q < 0.05) associated with patient 

response to AZA. In total plasma, the levels of miR-4774-3p and miR-762 were increased, 

and the levels of miR-125b-5p, miR-4324, miR-3156-5p, and miR-3692-3p were decreased in relation 

to later response to AZA treatment. In EVs, different sncRNAs were associated with AZA response. 

Levels of miR-6857-3p, miR-1299, miR-183-5p and miR-513b-3p were increased, and miR-6832-3p 

levels were decreased. 
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Because the results of differential expression analysis were limited to only several miRNAs of low 

predictive value, we performed additional machine learning analysis (with support of Jiří Kléma, 

Czech Technical University, Prague) to define a combined sncRNA signature that would predict 

the AZA response with higher accuracy compared to individual sncRNAs. The Recursive Feature 

Elimination (RFE) method implemented in Support Vector Machine (SVM) regression model was used 

to define sncRNA classifiers that discriminated AZA responders and nonresponders based on sncRNA 

pretreatment levels and interactions between them. Accuracy (Acc) and AUC were calculated 

to define the optimal number of features. Since the data sample was limited, the LOOCV method was 

employed to provide an unbiased evaluation of a model fit. The group of best classifiers was further 

tested and reduced by backward stepwise logistic regression algorithms using the maximum 

likelihood estimation (MLE) method. The resulting predictive formula was calculated by logistic 

regression using the KNIME platform and sag solver. 

The results from the SVM-RFE regression model showed that the best classification of responders  

vs. progressors could be achieved using cumulative expression data of five sncRNAs measured 

in total plasma (AUC = 0.815, Acc = 0.778), with 6 to 10 sncRNAs combined being of less predictive 

value (Figure 19, A and B). The five most common sncRNAs with the best cumulative predictive value 

determined by SVM were miR-423-5p, miR-126-3p, miR-151a-3p, miR-125a-5p, and miR-199a-3p 

(Figure 19C). These results, however, were achieved only for the total plasma and for the clearly 

defined groups of patients (responders vs. progressors). When testing the data from EV samples 

or trials involving patients with stable disease after AZA treatment, no significant differences were 

detected. 

The sncRNAs preselected by differential expression analysis (miR-125b-5p, miR-4324,  

and miR-4774-3p) and the sncRNAs with the best cumulative predictive value in the SVM model  

(miR-423-5p, miR-126-3p, miR-151a-3p, miR-125a-5p, miR-199a-3p, miR-142-5p, Ro-associated RNA, 

miR-185-5p, miR-30d-5p, miR-92a-3p, let-7a-5p, let-7f-5p and miR-26b-5p) for total plasma samples 

of responders vs. progressors were further statistically tested together by logistic regression analysis 

using maximum likelihood estimation, and their number was reduced to five (miR-423-5p,  

miR-126-3p, miR-151a-3p, miR-125a-5p, and miR-199a-3p), which was in agreement with the SVM 

method. The following predictive formula was calculated with these five miRNAs (Figure 19D): 

Prediction score = 2.629 × ln(level of miR-423-5p) - 2.471 × ln(level of miR-126-3p) + 0.427 x ln(level 

of miR-151a-3p) – 0.203 x ln(level of miR-125a-5p) – 0.1 x ln(level of miR-199a-3p) + 0.808. 
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A score > 0 predicted future response to AZA, whereas a score ≤ 0 predicted progression  

of the disease despite AZA treatment. The quality of the prediction was 88.9 % (16 out of 18 

patients). 

 

Figure 19. Combined prediction model for response to AZA treatment in MDS/AML-MRC patients.  

(A) Results of the SVM-RFE regression model determining the optimal number of sncRNAs whose 

combined expression could be predictive of the likelihood of response. (B) ROC curve for the five 

sncRNA predictors. (C) Total plasma levels of the best/most common predictors (miR-423-5p,  

miR-126-3p, miR-151a-3p, miR-125a-5p, and miR-199a-3p). (D) Coefficients for calculation 

of predictive formula for AZA treatment response. AUC – area under the ROC curve, Acc – accuracy 
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10.3 Publication 3 

Krejcik et al., MicroRNA profiles as predictive markers of response to azacitidine therapy 

in myelodysplastic syndromes and acute myeloid leukaemia, Cancer Biomarkers, 2018 

 

In this study, we focused on intracellular miRNA profiles in BM samples in order to search 

for potential miRNA biomarkers that would predict patient responsiveness to AZA therapy. We found 

that responders and nonresponders show distinct miRNA profiles and that the pretreatment levels 

of specific miRNAs may predict patient response to AZA therapy. 

 

10.3.1 Patient cohort 

The study was conducted on a cohort of 27 patients (19 MDS and 8 AML-MRC patients) and 11 

healthy controls. Based on the WHO classification criteria from 2008 (23), the diagnoses of MDS 

patients are as follows: 1 MDS patient with RCMD, 2 MDS patients with RAEB-1, and 16 MDS patients 

with RAEB-2. The detailed clinical characteristics of all patients are summarized in Table 22.  

Altogether, the study included 50 samples from 27 patients with MDS/AML-MRC at baseline  

(i.e. patients before AZA administration) and during AZA therapy (collected at the time of the best 

response, between cycles 4 and 11). Serial samples (i.e. samples taken from one patient at baseline 

and during the therapy) were available for 23 patients, four patients were screened only before AZA 

therapy. The microarray profiling was performed on a discovery cohort that comprised of 28 samples 

including serial samples from 12 patients prior to and during AZA therapy and four control samples. 

The validation cohort analysed by RT-qPCR included all 50 patient samples and 11 control samples. 

The median number of administered AZA cycles was eight (range, 3-34 cycles), the median time 

to the best response in the responder cohort was five months (range, 3.2-11.0 months),  

and the median duration of response was 16.8 months (range, 8.0-29.1 months). ORR that included 

rates for all responders was 40 % within the cohort. The responses were complete remission (CR) 

in four cases (15 %), partial remission (PR) in three cases (11 %), marrow CR (mCR) in two cases (7 %), 

and haematologic improvement (HI) in two cases (7 %). The nonresponders (60 %) consisted of eight 

patients with stable disease (SD, 30 %) and eight patients with progressed disease (PD, 30 %). 

The median patient follow-up from the initiation of AZA treatment was 21.1 months (range, 3.4-47.1 

months), 25 patients died and two patients were censored at the time of last follow-up. The OS was 

defined as the time from the beginning of treatment until death from any cause or the last follow-up. 
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Based on Cox-regression analysis, the responders and nonresponders showed significantly different 

OS (hazard ratio [HR] = 0.195, 95 % confidence interval [CI], 0.070 to 0.542, p < 0.01).  

 

Table 22. Characteristics of the patients. The data are presented as the median and range for all 

continuous variables.  

Patients 19 MDS 
8 AML-MRC 

Age 68 (63-82) 

Sex (male/female)                                                                                                                                                       15/12 

Diagnosis 
RCMD/RAEB-1/RAEB-2/AML-MRC 

 
1/2/16/8 

BM blasts 18 (4-27) 

Karyotype                                                                                                                                                                      

           Isolated del(5q) / del(5q) + any other abnormality 5/10 

           Isolated trisomy 8 / trisomy 8 + any other abnormality 2/5 

           Normal 8 

Cytogenetics by IPSS-R*             
good/intermediate/poor/very poor/n.a.                                                                                                                                                       

    
17/6/1/2/1                                                                                                                                                          

IPSS-R (MDS patients only)        
intermediate/high/very high                                                                                                                                                             

            
5/9/5                                                                                                                                                    

AZA cycles administered 8 (3-34) 

Follow-up (months) 21.1 (3.4-47.1) 

Alive                                                                                                                                                                    2 (7 %) 

Response                                                                                                                                                                         

           complete remission 4 (15 %) 

           partial remission 3 (11 %) 

           marrow complete remission 2 (7 %) 

           haematologic improvement 2 (7 %) 

           stable disease 8 (30 %) 

           progressed disease 8 (30 %) 

Overall response rate                                                                                                                                                             11 (40 %) 

n.a. – not available  
* The IPSS-R cytogenetic risk score has been established for patients with MDS and is not commonly 
used to stratify AML patients. However, we used this score for both MDS and AML patients,  
with the aim to compare frequencies of karyotypes across these patient groups. 

 

10.3.2 miRNA profiling in samples at baseline 

miRNA profiling was performed on selected samples from 12 patients at baseline and 4 controls 

using microarrays. ANOVA identified 64 differentially expressed miRNAs (p < 0.05) in samples 

at baseline, which were stratified according to their later response status (three CR, two PR, four SD, 

and three PD patient samples) as shown in Figure 20. Hierarchical clustering of these miRNAs clearly 

defined four sample clusters with different miRNA profiles: i) controls, ii) patients with CR,  
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iii) patients with PR, and iv) a mixed cluster of nonresponders (SD and PD). The baseline  

samples obtained from patients who later achieved CR exhibited the most distinct profile  

with the downregulation of let-7c, miR-27b-3p, miR-100-5p, mir-140-3p, and miR-423-5p 

and upregulation of miR-21-5p, miR-211-3p, miR-1246, miR-5739, miR-6085, miR-6124, miR-6132, 

and miR-6165. In nonresponders, significant downregulation of miR-10a/b-5p and upregulation 

of miR-1 and miR-133b were observed compared to patients with CR and PR.  

For all subsequent analyses, patients were divided in the two groups of responders 

and nonresponders, because the study comprised limited number of samples and no significant 

differences in miRNA profiles between SD and PD samples were found. 

 

10.3.3 miRNA profiling in samples before and during AZA therpy 

To identify the miRNAs affected by AZA therapy, miRNA expression profiles in samples at baseline 

and during AZA treatment from 12 patients were compared by paired t-tests. miRNAs with median 

expression level change of 30 % and more (p < 0.05) compared to their level at baseline included 

20 downregulated (i.e. let-7f-5p/7g-5p, miR-10a-5p, miR-142-3p, miR-146a-5p, miR-148a-3p,  

miR-181a-3p/b-5p/c-5p, miR-196b-5p, and miR-451a) and 14 upregulated miRNAs (i.e. miR-1202, 

miR-1260a, and miR-3656) in all tested patients irrespective of their response status (Figure 21). 

To determine the miRNAs involved in response to AZA therapy, miRNA expression levels after AZA 

treatment in responders and nonresponders were compared. 30 miRNAs with significantly different 

expression levels (p < 0.05) in responders along with unchanged levels in nonresponders were found 

(Figure 22). Among these, miR-10b-5p, miR-15a-5p/b-5p, miR-24-3p, miR-148b-3p, and miR-199a-3p 

were downregulated and miR-1202 or miR-1260a were upregulated in responders after AZA 

treatment compared to the baseline samples. 
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Figure 20. Differentially expressed miRNAs in the baseline samples. The heatmap shows altered 

miRNA expression (p < 0.05) between sample groups with different response status. Color gradient 

intensity scale indicates logFC of signal intensities compared with the mean signal intensity 

of controls. Red indicates an increased level of RNA, blue indicates a decreased level of RNA.  

Each column represents a patient, and each row represents a miRNA. CTR – control, CR – complete 

response, PR – partial response, SD – stable disease, PD – progressed disease 
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Figure 21. Differentially expressed miRNAs after AZA treatment irrespective to patient response 

status. The heatmap shows altered miRNA expression in samples after AZA treatment compared 

to paired samples at baseline. Color gradient intensity scale indicates logFC of signal intensities 

compared with the mean signal intensity of controls. Red indicates an increased level of RNA, blue 

indicates a decreased level of RNA. Each column represents a patient, and each row represents 

a miRNA. CR – complete remission, PR – partial remission, SD – stable disease, and PD – progressed 

disease 

 

 

Figure 22. Differentially expressed miRNAs (p < 0.05) between responders and nonresponders after 

AZA treatment. The heatmap shows altered miRNA expression in AZA treated samples 

from responders and nonresponders. Color gradient intensity scale indicates logFC of miRNA signal 

intensities compared to the signal intensity of a given miRNA in a paired sample at baseline.  

Red indicates an increased level of RNA, blue indicates a decreased level of RNA. Each column 

represents a patient, and each row represents a miRNA. CR – complete remission, PR – partial 

remission, SD – stable disease, and PD – progressed disease 
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10.3.4 Quantification of individual miRNA levels by RT-qPCR 

To verify the microarray results, the levels of miR-17-3p, miR-27b-3p, miR-100-5p, miR-133b,  

and miR-142-3p were quantified in the validation cohort by RT-qPCR (Figure 23). These miRNAs were 

selected based on their significant differential expression in microarray profiling. In concordance 

with the microarray data, miR-17-3p, miR-100-5p, and miR-133b were differentially expressed 

between the responders and nonresponders. The level of miR-17-3p was significantly increased  

(p < 0.05), and the levels of miR-100-5p and miR-133b were significantly reduced (p < 0.01) 

in responders compared to nonresponders.  

Comparison of the baseline samples with those collected during AZA treatment revealed increased 

level of miR-27b-3p and decreased level of miR-142-3p (p < 0.01) during AZA treatment. Levels 

of both miRNAs during AZA treatment were approaching closer to their levels in control samples.  

 

Figure 23. Relative expression of selected miRNAs measured by RT-qPCR. CTR – controls,  

RS – responders at baseline, RS AZA – AZA treated responders, nRS – nonresponders at baseline,  

nRS AZA – AZA treated nonresponders, *p < 0.05, **p < 0.01, ***p < 0.001 
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10.3.5 Correlation of clinical parameters with miRNA levels  

Further, miR-17-3p, miR-100-5p, and miR-133b, which were significantly deregulated between 

responders and nonresponders, were tested as potential predictive biomarkers of AZA treatment 

response. Based on the ROC curve analysis, the cut-off values for miR-17-3p, miR-100-5p,  

and miR-133b were defined (Table 23) and according to them, patients were divided in ‘high-miR’ 

and ‘low-miR’ groups. A series of statistical tests were performed to compare these two groups. 

The ORR was significantly higher in patient groups with high-miR-17-3p (p < 0.05), low-miR-100-5p  

(p < 0.05), and low-miR-133b (p < 0.01) (Table 24). There were no differences in patient age, sex, 

percentage of BM blasts, cytogenetics, and diagnosis between the groups divided according  

to the levels of these miRNAs. Similarly, the number of AZA cycles, follow-up period,  

and the proportion of patients who died during this period were comparable between the groups.  

Further statistical testing examined an impact of clinical and molecular variables on the OS after AZA 

treatment initiation. Univariate analysis revealed that OS was not significantly associated with age, 

sex, percentage of BM blasts, WHO-based diagnosis, miR-17-3p or miR-133b level. The only variables 

significantly associated (p < 0.05) with OS were the IPSS-R cytogenetics and the level of miR-100-5p 

(Table 24 and Figure 24). The patients with good karyotype had significantly longer OS than those 

with unfavourable karyotype. Stratification by miR-100-5p expression showed prolonged OS  

in the low-miR-100-5p group compared to the high-miR-100-5p group. Multivariate Cox regression 

analysis confirmed that both the IPSS-R cytogenetics and the level of miR-100-5p represented 

prognostic factors for the OS (Table 25). 

 

Table 23. Cut-off values (miRNA expression fold change compared to mean miRNA level in healthy 

controls) for selected miRNAs based on ROC curve analysis. 
 

Cut-off value AUC 95 % CI 
miR-17-3p  2.0 0.641 0.427-0.855 
miR-100-5p 0.4 0.713 0.518-0.908 
miR-133b 0.6 0.715 0.509-0.921 
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Table 24. Relation of clinical and molecular variables to ORR and OS. Int – intermediate 

Variable n ORR 
n (%) 

p value OS  
median (mo.) 

p value 

Age < 70 years 15 6 (40 %) .930 19.6 .385 

≥ 70 years 12 5 (42 %) 21.2 

Sex Male 15 6 (40 %) .930 19.6 .837 

Female 12 5 (42 %) 24.9 

Blasts < 10 % 7 3 (43 %) .895 23.9 .515 

≥ 10 % 20 8 (40 %) 19.4 

Karyotype Normal 8 3 (38 %) .330 21.2 .853 

Isolated del(5q) 5 3 (56%) 25.9 

Other 13 3 (33 %) 13.0 

Cytogenetics by IPSS-R Good 17 7 (41 %) .334 25.9 .033 

Int/poor/very 
poor 

9 2 (22 %) 11.3 

Diagnosis MDS 19 8 (42 %) .824 21.1 .953 

AML-MRC 8 3 (38 %) 20.4 

miR-17-3p  Low  15 3 (20 %) .014 21.2 .215 

High  12 8 (67 %) 19.1 

miR-100-5p  Low  13 8 (62 %) .034 25.9 .047 

High  14 3 (21 %) 16.4 

miR-133b Low  9 7 (78 %) .005 19.1 .915 

High  18 4 (22 %) 22.4 

 

 

Figure 24. OS of patients stratified according to IPSS-R cytogenetics and miR-100-5p level (p < 0.05). 
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Table 25. Multivariate Cox analysis for OS. Int – intermediate, HR – hazard ratio, CI – confidence 

interval 

Variable HR 95 % CI p value 

Age (≥ 70 years) 2.540 0.795 to 8.123 .116 

Female sex 0.659 0.243 to 1.788 .413 

Blasts (≥ 10 %) 4.245 0.930 to 19.372 .062 

Cytogenetics by IPSS-R (int/poor/very poor) 10.040 2.649 to 38.058 .001 

AML-MRC diagnosis 1.289 0.474 to 3.508 .620 

High miR-100-5p 4.066 1.444 to 11.445 .008 
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11 DISCUSSION 

Because MDS are a heterogeneous group of disorders, the need to investigate further possibilities 

of the disease classification, prognosis assessment, and treatment responsiveness is still emerging. 

Since the discovery of sncRNA importance in cellular processes and disease development, there has 

been a great effort to investigate functions and relevance of these molecules in the pathophysiology 

of MDS as well. So far, mostly cellular miRNAs have been explored in MDS. Most of these studies 

associate MDS subtypes with different miRNA profiles, indicating that miRNAs are able to classify 

MDS. Concerning circulating sncRNAs in MDS, only a few studies have been performed up to now. 

However, circulating sncRNAs are of a great interest as potential novel noninvasive molecular 

biomarkers of the disease. The investigation of their profiles, functions, and regulation in plasma 

is needed to better understand their relevance and find the way of their application as biomarkers.  

Thus, we studied profiles of circulating sncRNAs in plasma (P1 and P2) in order to search 

for individual miRNAs associated with MDS, its progression and AZA therapy. Except for circulating 

sncRNAs, we also investigated miRNA profiles in BM cells exclusively focusing on specific miRNAs that 

may predict patient response to AZA therapy (P3). 

 

11.1 Publication 1  

Dostalova Merkerova et al., Microarray profiling defines circulating microRNAs associated 

with myelodysplastic syndromes, Neoplasma, 2017 

 

In our initial study, we aimed to investigate circulating miRNA profiles in total plasma of MDS 

patients and to determine specific miRNAs that could serve as disease biomarkers. In view of the fact 

that comprehensive profiling by NGS was not available to us at that time, we used a microarray 

platform that allowed an investigation of 2,006 predefined miRNAs. 

The results showed altered miRNA profiles between MDS patients and controls, and between lower-

risk and higher-risk MDS groups. Based on the expression data, we selected several haematopoiesis 

and/or oncology related miRNAs (miR-16-5p, miR-27a-3p, miR-150-5p, miR-199a-5p, miR-223-3p, 

and miR-451a) to explore their levels and association with MDS in detail. When comparing miRNA 

levels between lower-risk and higher-risk MDS groups, significantly decreased levels of miR-27a-3p, 
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miR-199a-5p, and miR-223-3p were revealed in higher-risk disease, suggesting that higher levels 

of these miRNAs are associated with favourable prognosis. Further, we evaluated prognostic values 

of these miRNAs for PFS and OS. The results showed that high level of miR-451a indicate better PFS 

and high level of miR-223-3p associates significantly with better OS.  

Because patients with different prognoses showed specific levels of plasma miRNAs, it may be 

anticipated that these miRNAs play a role in the disease progression. It was demonstrated that  

miR-27 enhances differentiation of myeloblasts via posttranscriptional downregulation of RUNX1 

(240), which is a key transcription factor in haematopoiesis (241). Level of miR-199a-5p was found 

to be significantly higher in BM of AML patients who achieved complete remission 

after chemotherapy compared to refractory/relapsed AML patients. It was demonstrated that  

miR-199a-5p represses protective autophagy of AML cells and overcomes chemoresistance 

by directly targeting damage regulator autophagy modulator 1 (DRAM1) (242). miR-451 is a positive 

regulator of erythroid cell maturation (97) and miR-223 is a key regulator of myeloid lineage (243). 

Both miR-451 and miR-223 are believed to act as tumour suppressors, and the low plasma levels 

of these miRNAs in higher-risk MDS patients may contribute to the promotion of leukaemic cell 

growth. It was shown that miR-223 blocks cell cycle progression in myeloid cells and its expression is 

suppressed in AML (244,245). Further, AML patients with significantly higher levels of miR-223 

in blasts show favourable prognosis, whereas miR-223 levels are low in patients with worse 

outcomes (246). Most recently, it has been demonstrated that miR-223 inhibits the expression 

of ribosomal protein S14 (RPS14) in all risk groups and different MDS subtypes (247). RPS14 is 

commonly deleted in del(5q) MDS (248), but its low expression was also shown to be frequently 

detected in MDS patients without 5q deletion, and is associated with prolonged survival of these 

patients (249). This evidence indicates that high level of miR-223 suppressing RPS14 may contribute 

to better survival of patients, which is in concordance with our results. Notably, we have previously 

detected overexpression of cellular miR-451 and miR-223 in CD34+ cells in MDS patients with del(5q) 

(197), further supporting our findings that high levels of miR-451 and miR-223 are associated with 

a favourable prognosis in MDS. 

There is a great interest in revealing the origin of circulating miRNAs in haematopoietic diseases. 

Pritchard et al. (250) demonstrated that blood cells are major contributors to circulating miRNAs 

and their levels are strongly influenced by changes in blood cell counts. They showed that plasma 

levels of miRNAs expressed by myeloid (e.g. miR-223, miR-227, miR-574-3p, and let-7a) and lymphoid 

(e.g. miR-150) blood cells correlate with corresponding blood cell counts (250). Further, 

Stamatopoulos et al. (189) demonstrated that high serum level of miR-150 in CLL patients is linked 

to a high lymphocyte count and cellular miR-150 level might be regulated by its release 
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from leukaemic cells into the extracellular space. However, they could not definitively prove 

the correlation between cellular and serum levels of miR-150, suggesting that it might be released by 

multiple cell types (189). We also attempted to trace the origin of circulating miRNAs. As cytopenia is 

one of the main features of MDS, we examined whether miRNAs enriched in the cytopenic lineages 

exhibit reduced levels in MDS plasma. We tested levels of miR-223, which is enriched in myeloid cells 

(250,251), miR-451a and miR-16 enriched in erythrocytes (97,250), miR-27 enriched in granulocytes 

(240), miR-150 enriched in lymphocytes (250,251), and miR-199 enriched in platelets (252). However, 

we did not observe any correlation between circulating miRNA levels and blood counts of the tested 

lineages. Furthermore, we examined the myeloblastic cell population as a source of circulating 

miRNAs in MDS. To assess the correlation between cellular and circulating miRNA levels, we used our 

previously measured data on miRNA expression profiles of CD34+ MDS cells (196), which form 

the majority of MDS myeloblasts (253). The levels of circulating miRNAs, however, did not reflect 

their levels in CD34+ cells. These results suggest that the release of miRNAs from cells is more likely 

miRNA specific, not cell specific process. This finding is in agreement with other studies reporting 

that extracellular miRNA profiles do not reflect profiles of original cells (132,254), suggesting that 

miRNAs are retained or released selectively and that cellular and extracellular miRNAs should be 

considered independently when evaluating them as disease biomarkers. 

 

11.2 Publication 2 

Hrustincova et al., Circulating small noncoding RNAs have specific patterns in plasma 

and extracellular vesicles in myelodysplastic syndromes and are predictive of patient outcome, Cells, 

2020 

 

In the most recent publication, we have performed small RNA-seq of circulating RNAs, which allowed 

us to study not only miRNAs, but also other sncRNA species present in MDS plasma. In recent years, 

investigation of circulating sncRNAs has moved from analysing of their content in total plasma 

to analyses of separated EVs. Thus, we compared circulating sncRNA profiles of paired samples from 

total plasma and EVs to find whether their sncRNA contents reflect each other or not and which 

of these two materials would be a better source of circulating sncRNA biomarkers for MDS. 

EVs are lipid bound vesicles secreted by cells into the extracellular space. They contain a cargo 

of diverse molecules and are considered to play a role in cell-to-cell communication (255), which is 
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of special scientific interest. Moreover, they appear to be more protective of RNA degradation 

compared to plasma or serum, suggesting that they may provide more reliable profile of sncRNAs 

(145). It was reported that tumour cells secrete significantly more exosomes into the tumour 

microenvironment than normal cells, leading to an increased number of exosomes in the circulatory 

system (256). Szczepanski et al. observed that serum of AML patients contained higher levels 

of microvesicles compared to that of controls (257). On the contrary, Enjeti et al. (220) found 

significantly lower levels of microvesicles in MDS plasma than in controls (220). In our study, we did 

not identify different levels of EVs between MDS and control plasma but rather noticed differences 

in their sizes, specifically an increase in EVs of larger diameters. Further, we observed a higher 

content of their RNA cargo, which is in agreement with a study of Enjeti et al. (220) determining 

doubled RNA content in EVs from MDS plasma compared to controls (220). These results indicate 

that features and content of EVs are changed in MDS and further exploration is needed. 

Importantly, we compared RNA content between total plasma and EVs. Hierarchical clustering of all 

samples based on their RNA profiles showed that the RNA content of EVs is more homogeneous than 

that of total plasma. The larger heterogeneity of RNAs in total plasma can be expected because 

plasma includes not only various EVs but also other RNA carriers, such as proteins, lipoprotein 

particles, and apoptotic bodies, whereas our isolated EV fraction contained mostly exosomes. 

The larger homogeneity of RNA content in EV samples may be promoted by a selective packaging of 

specific RNAs in EVs (132,134,146). Although the numbers of particular miRNAs and their levels 

detected in exosomes were found to be significantly lower than in plasma (258), specific miRNAs 

were found to be enriched in exosomes (258,259), indicating exosomes to be the major source 

for some circulating miRNAs. These results suggest that the contents of the two materials do not 

completely reflect one another but rather represent independent sources of RNA, which may provide 

different insights into the biological processes occurring during disease pathogenesis. 

Subsequent classification of read sequences into various RNA categories revealed additional 

differences between the two materials. Samples of total plasma had a substantially higher proportion 

of miRNA reads (60 and 46 percent of miRNA reads in total plasma and EVs, respectively) and a lower 

proportion of uncharacterized reads (33 and 48 percent of uncharacterized reads in total plasma and 

EVs, respectively). Xie et al. (258) measured miRNA levels in total plasma and exosomes and also 

found significantly higher miRNA levels in total plasma (258). It is still debated whether EVs contain 

biologically meaningful amount of miRNAs able to provide a reliable source of miRNA biomarkers. 

Chevillet et al. (260) suggested that most individual exosomes do not carry any biologically significant 

numbers of miRNAs and are, therefore, unlikely to be of physiologic relevance in miRNA-based  

cell-to-cell communication (260). A significant underrepresentation of miRNAs over other RNA 
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species in exosomes has been confirmed by other studies (259,261,262). On the contrary, there are 

studies demonstrating that exosomes provide a sufficient source of miRNAs for disease biomarker 

detection (145,263). Thus, there is still no definitive consensus on the relevance of EV-mediated  

cell-to-cell communication and further investigation is needed. 

One of the most interesting findings of this study was the discovery that RNA profiles of paired total 

plasma and EV samples substantially differed in MDS patients, whereas they remained closely similar 

in healthy individuals. The number of deregulated sncRNAs between paired samples of total plasma 

and EVs was almost ten-fold higher in MDS compared to controls. Such a great increase suggests that 

regulation and mechanisms of sncRNA release into the blood circulation are specifically affected 

in MDS, changing sncRNA profile as a whole. In agreement with our observation, Xie et al. (258) 

found deregulated miRNA levels between plasma and exosomes in animal models with kidney 

disease (258), whereas no significant differences in miRNA profiles between plasma and exosomes 

were found in healthy people (264). Therefore, it seems that the release of sncRNAs into blood 

circulation is specifically affected under various pathological conditions. As a result, these changes 

may affect cell-to-cell communication of blood cells, potentially contributing to ineffective 

haematopoiesis and disease progression. 

Regarding other sncRNA species, such as piRNAs and tRNAs, we noticed an interesting pattern 

in their levels in total plasma and EVs. Whereas differentially represented miRNAs between total 

plasma and EVs were equally increased and decreased in the two materials, other sncRNA species 

were almost exclusively increased in plasma compared to EVs. Several studies demonstrated that 

different sncRNA species are preferentially loaded into different types of carriers (140,262). 

Moreover, packaging of RNA molecules within individual RNA species into carriers seems to be 

selective, i.e. specific RNA molecules are preffered to the others (258,265). Thus, sncRNA release 

appears to be thoroughly regulated process. 

To characterize the profile of circulating sncRNAs specific for MDS, we compared sncRNA levels 

of MDS samples with those of AML-MRC and control samples. We found hundreds of differentially 

represented sncRNAs between MDS and control samples in both total plasma and EVs, indicating 

molecular changes related to the disease. However, we found almost no significant differences 

in sncRNA profiles between MDS and AML-MRC samples. It has been emphasized that MDS should 

not be considered as an early phase of AML as there are biological and clinical differences between 

them (266). Still, MDS and AML share important signatures at the molecular level in terms 

of signalling pathways and genetic markers (267,268). In MDS and AML-MRC, which share 

myelodysplasia-related features, we observed similar molecular characteristics described here 
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and in our preceding paper (196). The link between MDS and AML-MRC may enable the application 

of similar therapeutic approaches that specifically address both of these clinical entities. 

Further, we investigated changes in levels of individual miRNAs between MDS and controls 

and observed that the majority of the deregulated miRNAs were increased in MDS in both, total 

plasma and EVs. Among these miRNAs, we found many miRNAs whose intracellular deregulation has 

been already associated with various haematopoietic disorders, including MDS, such as miR-34a, 

miR-125a, miR-99b, miR-10a, miR-221, miR-222, miR-223, miR-29a, and miR-150 (57,193). Although 

the roles of circulating miRNAs and the impact of their deregulation on (patho)physiological 

processes are still unclear, there is convincing evidence of their intracellular regulatory functions 

in haematopoiesis and disease development. Altogether, it appears that these circulating sncRNAs 

may affect recipient cells and contribute to the development of myelodysplasia. 

To obtain an additional look at biological functions that may be affected by deregulated miRNAs 

in MDS, we performed a miRNA target prediction and pathway enrichment analyses. Although 

different miRNAs were deregulated in total plasma versus EVs, considerable similarities  

in the affected pathways were observed, pointing to the shared targets of different miRNAs. Several 

signalling pathways associated with cancer and pluripotency of stem cells were identified 

as potentially targeted by the deregulated miRNAs (i.e. the Ras, TGF-β, and ErbB pathways). 

Furthermore, the deregulated miRNAs were also associated with pathways related  

to the extracellular environment and cell interactions (ECM-receptor interactions, focal adhesion, 

and proteoglycans in cancer). Extracellular matrix (ECM) is a complex network of extracellular 

macromolecules that provides support for surrounding cells. Specific interactions between cells 

and the ECM are mediated by transmembrane and cell-surface-associated components, leading 

to the control of different cellular activities, such as adhesion, migration, differentiation, 

proliferation, and apoptosis. Proteoglycans have been shown to be key macromolecules that 

contribute to the biology of various types of cancers through the abovementioned processes (269). 

Exosomes can also be considered integral components of the ECM since they modulate the assembly 

of the molecular network and signalling through the ECM (270). The pathway analysis thus suggest 

that the miRNAs released into blood circulation in MDS patients may further potentiate 

dysregulation of biological processes in the extracellular environment. The miRNAs may even act as 

a kind of regulatory loop affecting the functionality of EVs themselves and/or facilitating changes 

in the haematopoietic niche microenvironment. 

Somatic mutations in multiple genes have been recently described in MDS and are rapidly becoming 

the most frequently discussed aberrations associated with MDS (8). The most frequently mutated 
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genes in our patient cohort were SF3B1 and DNMT3A. Therefore, we investigated the association 

between mutational status of these genes and the levels of circulating sncRNAs. Only low numbers 

of circulating sncRNAs, however, were significantly associated with the mutational status of SF3B1 

or DNMT3A genes. This raises the question of whether the effects of a somatic mutation in a single 

gene on deregulation of circulating sncRNA levels are either negligible or whether the analysis was 

affected by a bias. Regarding possible bias, a low number of patients with detected mutations were 

analysed. Moreover, the data were undoubtedly influenced by substantial heterogeneity on multiple 

levels (i.e., additional presence of various cytogenetic aberrations that are more penetrant, 

differences in variant allele frequencies, cooccurrence of several mutations in a single patient,  

or a wide spectrum of variants in one gene that may differentially influence protein activity). Taken 

together, we observed only slight trends in deregulation of sncRNA levels, suggesting that there is no 

fundamental association between mutational status of SF3B1 or DNMT3A and levels of circulating 

sncRNAs. However, with respect to possible significant bias, further investigations would be 

beneficial. 

We also evaluated circulating sncRNAs as potential biomarkers of MDS. To define the sncRNAs that 

are associated with MDS progression and are able to predict the outcome of MDS patients,  

we compared sncRNA profiles between early and advanced MDS. Interestingly, in both plasma 

and EVs, 80 percent of the total amount of deregulated sncRNAs were increased in early MDS 

compared to advanced MDS. Among these we identified many miRNAs from a large cluster located 

within the 14q32 locus, e.g. miR-127-3p, miR-154-5p, and miR-323b-3p. These miRNAs are frequently 

altered in various cancers, and their deregulation has been linked to abnormal induction of apoptosis 

and suppression of proliferation. They are also involved in HSC differentiation (271). Interestingly,  

an in vitro study showed that miRNAs from 14q32 locus are selectively and massively released 

via exosomes, whereas they are nearly undetectable in lymphoblastoid B-cell lines (272). Moreover, 

their levels were reported to be stable in serum of healthy individuals in the course of longitudinal 

study and able to discriminate between healthy individuals and those who had been diagnosed 

with cancer over the study period (273). In MDS, the upregulation of miRNAs within the 14q32 locus 

was reported by several studies (197,274,275). In our study (276), we observed increased expression 

of 14q32 miRNAs in CD34+ cells in advanced stages of MDS and in AML-MRC and this elevation was 

associated with poor outcome. Moreover, the increased intracellular levels of 14q32 miRNAs were 

reduced after AZA treatment (276). Altogether with our current data showing the upregulation 

of miRNAs from 14q32 locus in early MDS plasma, it could be suggested that the levels of 14q32 

miRNAs have opposite trends in HSCs and in plasma in different stages of MDS. These miRNAs seem 
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to be released into the extracellular environment in early proapoptotic stages of MDS but appear 

to be retained intrinsically along with the disease progression. 

Besides association of some miRNAs with MDS progression, we intended to identify the sncRNA 

biomarkers with the highest predictive values of patient outcome throughout various sncRNA species 

circulating in MDS patient blood. Therefore, we performed additional series of bioinformatic analyses 

of RNA-seq data with regard to the survival of MDS patients and their response to AZA therapy. 

At the level of individual molecules, we identified several sncRNAs whose levels were strongly 

associated with OS of MDS patients in both total plasma and EVs. However, we almost completely 

failed to predict the response to AZA therapy. The predictive value of circulating sncRNAs 

for prediction of both patient survival and response to the therapy was substantially increased by 

the generation of combined panels of specific sncRNAs. More importantly, multivariate analysis 

proved that the combined sncRNA panel for EV samples was associated with patient OS more 

significantly than the clinical variables typically used for routine MDS diagnostics, which clearly points 

to the considerable potential of sncRNA applicability for better stratification of MDS patients.  

In addition to miRNAs, we identified a large set of other sncRNA species deregulated in our MDS 

cohort. To date, only two studies on MDS addressing intracellular non-miRNA sncRNA species have 

emerged demonstrating the utilization of tsRNAs from BM samples as predictive biomarkers 

of response to therapy and progression to AML (202,214). However, little is known about non-miRNA 

sncRNA species in blood circulation. Savelyeva et al. (277) reported that also snRNAs and snoRNAs 

represent prominent sncRNA species as promising circulating biomarkers of disease (277). Yet, in our 

results, mostly miRNAs were represented among sncRNAs with the highest predictive values 

for patient outcome. Therefore, utilizing miRNAs as possible biomarkers seems to be the most 

meaningful approach under the present circumstances. Further exploration of other sncRNA species 

is essential to represent real conditions and to bring new insights into sncRNA functions in health 

and disease. 

Altogether, all the evidence suggests the considerable potential of circulating sncRNAs to become 

auxiliary noninvasive biomarkers in MDS prognostication. However, further validation of the data 

on larger independent patient cohorts is necessary before application of sncRNA biomarkers 

into routine clinical practice. 
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11.3 Publication 3 

Krejcik et al., MicroRNA profiles as predictive markers of response to azacitidine therapy 

in myelodysplastic syndromes and acute myeloid leukaemia, Cancer Biomarkers, 2018 

 

Besides studies on circulating sncRNAs, we also focused on cellular miRNAs as predictive biomarkers 

of AZA treatment response. Despite the fact that AZA therapy improves clinical outcomes of patients 

with advanced MDS (37,38), the ORR is only between 40 to 50 percent (42,43). Therefore, 

the identification of biomarkers predictive of AZA treatment response would greatly contribute 

to individualized therapy and avoidance of therapy-related burden. 

There is an increasing number of studies focusing on search for predicitve biomarkers of response 

to AZA therapy. A variety of clinical features and molecular markers have been identified 

as potentially predictive of AZA treatment response. For example, factors such as lower haemoglobin 

level, low platelet count (278), absence of aberrant myeloid progenitors (279), mRNA expression 

of PARP1 (280), GATA1, and FLI1 (281) in BM, and mutational status of SF3B1, SETBP1, NPM1, RUNX1 

(282), TET2 (283,284), and U2AF1 (278) were reported to predict either favourable or poor response 

to AZA therapy in MDS. However, existing results are highly inconsistent and favourable response 

rates do not often associate with improved OS (285). Thus, further search for biomarkers predictive 

of AZA therapy response is needed. 

In this publication, we analysed changes in miRNA profiles of BM CD34+ cells from higher-risk MDS 

and AML-MRC patients treated with AZA. We aimed to determine miRNA profiles associated 

with therapy response and to find miRNA biomarkers that could predict response to AZA therapy. 

For this purpose, we utilized the same microarray platform as in P1, which allowed an investigation 

of 2,006 predefined miRNAs. 

The data from miRNA expression profiling demonstrated distinct miRNA profiles at baseline  

(i.e. in samples before AZA administration) between patients who later achieved a response to AZA 

therapy (responders) and patients who exhibited stable disease (SD) or progressed disease (SD) 

after AZA therapy (patients with SD and PD were considered nonresponders). As expected, miRNA 

profiles of patients with SD and PD did not exhibit significant differences and clustered together. 

With respect to this finding and the limited number of patients in the study, we performed 

subsequent analyses on the two groups, responders and nonresponders. 
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We focused on individual miRNAs with deregulated levels at baseline between later responders 

and nonresponders and found that the patients with upregulated miR-17-3p and downregulated 

miR-100-5p and miR-133b achieved a response to AZA more often. Moreover, low level  

of miR-100-5p associated with favourable OS of the AZA treated patients. miR-100 has been reported 

to act as an tumour suppressor and its reduction has been found in solid tumours (286–288). 

The upregulation of miR-100, however, has been observed in AML (289–291), indicating that it may 

act differently in various cancers. In haematopoiesis, the upregulation of miR-100 was found to arrest 

granulocyte and monocyte differentiation and promote cell survival (289). Increased level of miR-100 

is associated with advanced clinical features (290) and unfavourable karyotypes (291) of pediatric 

AML patients and predicts shorter relapse-free survival and OS (290). The upregulation of miR-100 

was also observed in AML cell lines (291). The direct target of miR-100 is ATM transcript (291), whose 

protein product is a protein kinase that acts upstream of p53 and responds to DNA damage (292). 

Overexpression of ATM protein in vitro suppresses cell viability and induces cell apoptosis. miR-100 

downregulates ATM expression leading to inhibition of cell apoptosis and increased AML cell viability  

(291). Taken together, the data indicate that upregulated miR-100 is associated with worse prognosis 

and may play an important role in the development of AML. Based on this evidence and our results, 

we propose that the decreased level of miR-100 detected in MDS/AML-MRC patients who later 

responded to AZA treatment may reflect lower aggressiveness of the disease and may be associated 

with better responsiveness to AZA therapy and patient survival.  

Among the miRNAs deregulated between AZA responders and nonresponders at baseline,  

we identified other miRNAs that are implicated in cell proliferation and oncogenesis. For example, 

miR-1 and miR-133b showed increased levels in nonresponders. These miRNAs are encoded 

in homologous clusters of miR-1/133a and miR-206/133b (293). Although miR-1 is downregulated 

in many tumours (293), its overexpression was detected in AML (294,295) in which it promotes cell 

proliferation, suggesting that it may act as an oncogene in haematologic malignancies (295). 

The HOX-related miRNAs (296), miR-10a and miR-10b, showed decreased levels in nonresponders 

and increased levels in responders. It has been shown that these miRNAs are aberrantly expressed 

in myeloid malignancies (196,297,298) and high baseline expression of the miR-10 family 

in untreated AML patients is associated with complete remission in response to induction 

chemotherapy (196). 

In the final part of this study, we determined miRNAs with changed levels after AZA therapy 

compared to their levels at baseline, indicating that they might be modulated by AZA exposure. 

Among them, numerous haematopoiesis and oncology related miRNAs, such as let-7f, miR-10,  

miR-15, and miR-181 families, were found. For example, the expression of miR-181 family members 
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was significantly reduced after the therapy. miR-181 family plays an important role in the regulation 

of haematopoiesis, including proliferation and differentiation of HSPCs and megakaryocytic lineage 

development (299). Increased expression of miR-181 family members was previously detected 

in higher-risk MDS (195), in MDS patients who later transformed to AML (202), and M1 and M2 

subtypes of AML (300). The reduction in the level of miR-181 may therefore be one  

of the downstream effects of the treatment with AZA, modulating the aberrant proliferation 

and differentiation in myeloid disorders.  

With respect to response status, we identified that the level of miR-199a-3p was exclusively 

decreased in responders after AZA therapy. Interestingly, our results (P2) also determined this 

miRNA to be one of the most common sncRNAs with the best cumulative predictive values of AZA 

treatment in total plasma. Increased level of miR-199a-3p was demonstrated to enhance 

proliferation of myeloid progenitor cells and cause AML in a preleukaemic mouse model (301), 

indicating its oncogenic role in myeloid disorders. Decreased level of miR-199-3p exclusively 

in responders after the therapy suggests that AZA may contribute to the improved patient outcome 

via downregulating the expression of miR-199a-3p. 

To conclude, our data indicate that AZA responders and nonresponders show distinct miRNA profiles 

and that specific miRNA levels before therapy initiation may predict the efficacy of AZA therapy.  
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12 SUMMARY 

In this thesis, we focused on profiling of extracellular (total plasma and EVs) and intracellular (CD34+ 

BM cells) sncRNAs in MDS. In general, our results indicate that sncRNA profiles measured in both 

plasma and BM samples are specific to different stages of the disease and may predict patient 

outcomes. We identified several miRNAs and other sncRNAs that are associated with the disease 

development and may be considered as potential novel biomarkers of MDS progression 

or responsiveness to the treatment. Moreover, the sncRNA profiling performed on MDS plasma 

provides new information on the phenomenon of circulating miRNAs in MDS pathophysiology. 

One of the important aims of this study was to compare sncRNA profiles in different materials 

and to define which of them would be more suitable for monitoring of MDS biomarkers. Our results 

show specific sncRNA profiles to CD34+ BM cells, total plasma, and EVs. Thus, it appears that each 

material as a source of sncRNAs provide different point of view on the actual condition 

of an organism. Nowadays, BM cells are considered the most meaningful source of MDS biomarkers. 

The necessity of BM biopsy, however, leads to an effort to find less invasively accessible source 

of biomarkers, such as blood plasma. Hornick et al. (181) proposed that exosome miRNAs may serve 

as biomarkers for early detection of AML recurrence as exosomes derived from aberrant blasts can 

be detected in blood circulation earlier than the blasts themselves. In addition, they indicated that 

AML exosomes reflect contributions from both leukaemic blasts and marrow stromal cells modified 

by the presence of the malignancy and suggested them to be the first potential leukaemia biomarker 

representing multiple components of the malignant microenvironment (181).  

Remarkably, our results indicate that the two extracellular materials, total plasma and EVs, do not 

show the same sncRNA profiles. It is in agreement with the findings that sncRNAs are released 

from cells selectively in different ways. A study that compared miRNA content in total plasma 

and plasma-derived exosomes in kidney disease (258) showed that miRNAs in plasma and 

in exosomes are differentially regulated and thus, the measurement of exosomal miRNAs cannot be 

replaced by the measurement of miRNAs in plasma, or vice versa (258). It remains to be elucidated 

which of the materials would be most useful in particular circumstances. Based on our results, EVs 

seem to be a better source of sncRNA biomarkers for patient survival, whereas sncRNAs circulating 

in total plasma might be predictive of AZA treatment response. 

Regarding biomarkers predictive of response to AZA treatment, our results show that BM cells 

and total plasma may be useful sources. In both materials, we identified specific miRNAs that show 

potential to predict the therapy response. The specific miRNAs were different between BM cells and 
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total plasma except for miR-199a-3p, which was identified as a predictive biomarker in both 

materials. Importantly, the predictive value of circulating miRNAs substantially increased when 

the predictive score was generated from the data of multiple miRNAs. Further investigation 

of expression and functions of these miRNAs (particularly of miR-199a-3p) would clarify 

the significance of their ability to predict the response to AZA therapy. 

Along with MDS progression, sncRNA profiles change, showing alterations at the levels of many 

haematopoiesis-related miRNAs as well as other sncRNA species. It remains to be clarified whether 

changes in circulating sncRNA levels are a consequence of deregulated sncRNA release from cells 

related to a disease without any specific function, when its impact on recipient cells would be just 

an accident, or if there is a purpose of affecting specific recipient cells in a particular way. Notably, 

the effects of sncRNAs taken up by recipient cells may lead either towards improvement of disease 

outcome or disease progression. It may be influenced by the origin of particular EVs, i.e. whether 

they are derived from the normal or the aberrant cells. It has been shown that tumour cells secrete 

often increased amount of exosomes than normal cells, carrying molecules specific to the tumour 

cells from which the EVs were derived (302). EVs in haematologic malignancies have been reported 

to modify malignant cells themselves and also cells of BM microenvironment, making 

the microenvironment more supportive of malignancy, suppressing the immune system, 

and inducing drug resistance (303). For example, Hornick et al. (155) observed that a unique miRNA 

profile of exosomes released from AML cells has the potential to increase leukaemic fitness 

by dysregulating other cell types (155). Based on this evidence, it appears that EVs may be implicated 

in disease development and progression. 

With the increasing evidence of EV-mediated intercellular communication, their ability to alter 

the functions of recipient cells, and their role in disease development and progression, EVs have 

become considered as novel therapeutic targets. The strategy is to inhibit aberrant cell 

communication via EVs to prevent their growth and spread.  Different approaches can be applied,  

i.e. interfering with EV biogenesis and release from cells, blocking EV uptake by recipient cells,  

and removing of EVs from the circulation (303,304). Further, EVs have potential to be utilized 

for therapeutic purposes in terms of both drug delivery and regenerative medicine. They have 

natural features that make them suitable therapeutic vehicles, such as natural stability in body fluids, 

protection of their cargo from degradation, inherent targeting ability, low immunogenicity, 

and finally, the possibility of engineering them (303,305,306). However, despite of recent advances, 

in order to effectively utilize EVs as therapeutic targets and tools, it would be highly appropriate 

to improve the understanding of their biology and become fully aware of the intricacy of the targeted 

therapy application. 
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To conclude, our data provide not only a rationale for the potential clinically effective application 

of circulating sncRNAs as prognostic and predictive biomarkers of MDS but also raise new intriguing 

questions about the pathobiology of release mechanisms and possible consequences of their defects 

in haematopoietic disorders. Further investigations on sncRNA function, role in cell-to-cell 

communication, and their release dynamics in health and disease conditions are still needed to gain 

better insight and draw meaningful application of sncRNAs in diagnostics, prognostics and prediction 

of treatment response in MDS. 
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