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Abstract

In this thesis I investigate the empirical evidence on the relationship between
temperature and suicide rates. The previous survey on the relationship sug-
gested that a 1°C increase in temperature is associated with a 1% increase in
suicide risk. An estimate of this magnitude would play a significant role in the
computation of the social cost of carbon, a concept used to set climate-related
regulations by policymakers around the world. I challenge this conclusion using
novel, state-of-the-art meta-analysis methods. By expanding the dataset and
correcting for publication bias I show that the effect of temperature on suicide
rates is three times less than previously suggested, deeming the relationship
economically insignificant. Moreover, I did not find any robust evidence for a
specific study design that would systematically influence the magnitude of the

estimated effect quantifying this relationship.

Keywords temperature, weather, climate, suicide, suicidal-
ity
Title Effect of Temperature on Suicide - Meta Analy-

sis



Abstrakt

V této praci zkoumam empirické dikazy o vztahu mezi teplotou a poctem se-
bevrazd. Predchozi prizkum tohoto vztahu ukazuje, ze zvyseni teploty o 1°C
je spjato se zvySenim rizika sebevrazdy o 1%. Odhad této velikosti by hrél vyz-
namnou roli pfi vypoctu socidlnich nédkladi uhliku, coz je koncept, ktery pouzi-
vaji regulatofi po svété ke stanoveni zakont souvisejicich s klimatem. Tento
zévér zpochybnuji pomoci nejmodernéjSich metod meta-analyzy. Rozsifenim
datasetu a osetfenim odhadu o publikac¢ni selektivitu ukazuji, ze vliv teploty
na miru sebevrazd je tfikrat mensi, nez hodnota prezentovand v predchozi
meta-analyze, coz povazujeme za ekonomicky nevyznamné. Dale nebyl nalezen
diikaz pro konkrétni charakteristiky studie, které by systematicky ovliviiovaly

velikost odhadovaného efektu pro tento vztah.

Klicova slova teplota, pocasi, klima, sebevrazdy
Nazev prace Vliv teploty na miru sebevrazd: Meta-

Analyza
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Chapter 1
Introduction

Globally, suicide is the leading cause of violent death (World Health Organisa-
tion 2019). Although the number of suicide deaths has been in decline, WHO
estimates about 800 thousand people kill themselves each year, which is more
than those murdered in homicides and killed in wars combined. Especially
now, in the midst of global pandemics, the suicide rates are increasing due
to COVID-19 (Sher 2020). Why do suicides happen? Researchers, such as
Deisenhammer (2003), argue that no individual suicide can be causally related
to a single event, but one can show that the risk of suicide increases with some
risk factors. Such risk factors identify with social, psychological, and demo-
graphic influences; the two echoed by many include weather conditions and
economic status of an individual (Schneider et al. 2020). Fountoulakis et al.
(2016), for example, indicate that climate variables can explain more than a
third of the variation in suicide rates while economic variables explain no more
than a quarter of the variation.

Most of the climate variables have a clearly documented contribution to the
risk of suicide: for example, less sunlight and higher air pollution significantly
increase the risk of suicide (Fountoulakis et al. 2016; Kim et al. 2016). However,
the message about the effect and its significance, becomes less clear when one
searches through the literature examining the impact of ambient temperature.
Some studies suggest that colder temperatures are associated with a higher
rate of suicide (Kim et al. 2016; Page et al. 2007), while some studies suggest
the exact opposite (Deisenhammer 2003; Preti & Miotto 2000). Several others,
including Dixon & Kalkstein (2009) and Tsai (2010), propose that there is
no link between the temperature and suicide rates. To make sense of the

diverse study results, Gao et al. (2019) constructed a quantitative literature
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review, so-called meta-analysis. The authors impose strict limitations for their
quantitative analysis. Based on the subsample of 23 observations of the effect
in question, they conclude that the relationship is positive and postulate that
a 1°C increase in temperature is significantly associated with a 1% increase in
the incidence of suicide.

In my thesis, I build on the work of Gao et al. (2019) and examine the
relationship between the temperature and suicide rates more thoroughly. I
ask three main questions: first, how large is the effect beyond biases; second,
what drives the magnitude of the effect; and third, what are the economic im-
plications stemming from the risk associated with this effect. To accomplish
this goal, I enlarge the sample by Gao et al. (2019) to 186 estimates gathered
from 31 studies, use state-of-the-art meta-analysis tools to address the issue of
publication bias and heterogeneity in the literature, and exploit the Doucou-
liagos et al. (2012) estimate of the statistical value of life and the Havranek
et al. (2015) estimate of the social cost of carbon (SCC) to tackle the economics
behind the lost lives.

The Value of statistical life (VSL) is the economic benefit of avoiding the
death of a person. Since negative VSL implies that the society would save
money for every non-living person, which is a controversial statement, it is
also subject to publication bias. We use the estimate corrected for bias by
Doucouliagos et al. (2012). The authors report a value of 1.66 million dollars.
Using the suicide report from World Health Organisation (2019), a 1% rise
in suicides would increase the minimum estimate of annual lives lost due to
temperature by 8 000. In that case, the effect of temperature on suicide should
be a significant factor in the computation of the SCC.

The SCC metric is defined as the monetary value of the damage done by
emitting an additional tone of carbon (Pearce 2003). Carbon produces carbon
dioxide, which has been widely recognized as the main driving factor behind
global warming (Nordhaus 2017). If release of carbon increases the temperature
and if increase of temperature is associated with higher suicide rates, than
setting the carbon tax right could be of incremental influence to the suicide
rates.

The majority of the methods used, including the precision-weighted Funnel-
asymmetry test (FAT) test utilized by Gao et al. (2019), identified a presence
of publication bias. Contrary to the findings of Gao et al. (2019), our results
suggest that the temperature association with suicide rates is subject to selec-

tion bias among the researchers. Out of the eight methods deployed to identify



1. Introduction 3

the mean estimate beyond this bias, only the Random-effect (RE) and simple
OLS identified a statistically significant effect. Interestingly, RE was also used
as the primary method for Gao et al. (2019) with comparable results. Never-
theless, we rely on the more sophisticated non-linear techniques, which suggest
that there is no statistically significant effect of temperature on suicide. If we
simply average the estimated mean beyond bias from our methods, of the publi-
cation bias methods, we obtain a value of 0.003. Thus, according to our results,
the relationship of suicide increase due to temperature changes is overvalued
threefold.

To study the heterogeneity behind the effect of temperature changes, Gao
et al. (2019) use the measure of I? on subsets ranging from 18 to 31 estimates.
According to the authors, variables such as gender, type of temperature used
for the analysis, or climate, show higher heterogeneity. Nevertheless, I? is im-
precise and likely biased when used with a small dataset (von Hippel 2015). We
deploy Bayesian model averaging to identify variables driving the heterogeneity
behind the effect. In our main specification, as well as the robustness check, the
standard error stood out as the main variable driving the heterogeneity. This
contradicts the findings of Gao et al. (2019), who did not identify the pres-
ence of publication bias. Controlling for seasonality and humidity levels also
affects the estimate, although only in the weighted specification of Bayesian
model averaging (BMA). Seasonality control is crucial for establishing the ef-
fect of temperature on suicide rates, as most studies report the peak in suicides
during spring. This finding is consistent with the systematic review by Deisen-
hammer (2003). The author puts forward humidity and temperature as the
main meteorological factors associated with suicide rates. Lastly, the weighted
specification supports the notion, that males are more affected by temperature
changes than females.

The rest of the thesis is structured as follows: Chapter 2 elaborates on the
methods used to measure attempted and completed suicides, and further de-
scribes the recent meta-analysis by Gao et al. (2019). Chapter 3 describes our
inclusion criteria, the methods used for standardizing the effect, and the sum-
mary statistics of the effect. Chapter 4 includes comments on the importance
of correcting estimates for publication bias and presents our results of the uti-
lized methods. Chapter 5 describes the methodology behind Bayesian model
averaging and presents the explanatory variables. Furthermore, this chapter
provides the results of our heterogeneity test, along with possible reasoning for

the effect of temperature on suicide. Lastly, Chapter 6 summarizes the findings
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and describes the limitations of this meta-analysis.



Chapter 2

Motivation for the effect and its

estimation

2.1 Motivation for the effect

It is possible to find support for the association of temperature and suicide in
several scientific fields. From a biological point of view, there are two possible
explanations at hand. Helama et al. (2013) attribute the relationship to brown
adipose tissue (BAT), which reacts to temperature by creating tolerance to one
temperature extreme at expense of the other. Active BAT is linked to suicides
associated with depression. Over-activation of BAT due to outdoor temperature
swings or lifestyle choices leads to increased suicide risk. Another explanation
points to the effect of L-tryptophan, which changes in the brain into serotonin.
Maes et al. (1995) show that high ambient temperature and humidity levels
are related to lower L-tryptophan availability, which leads to depression and
suicidality. These factors are likely more relevant to men, as they traditionally
work outdoors more than women.

Furthermore, women regulate body temperature better than men (Barker
et al. 1994). From a psychological standpoint, Maes et al. (1995) also argue that
dysfunctional serotonin activity due to L-tryptophan increases impulsivity and
aggression, leading to reckless decisions. People with a mental illness treated
by drugs could also be at increased risk during higher temperatures due to
dehydration from antidepressant intake (Lin et al. 2008). The association can
also be attributed directly to socioeconomic reasons, namely the agricultural
income. A study by Carleton (2017) compared suicides in growing seasons and

discovered that low crop yields due to droughts increase the risk of suicide
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among farmers during the growing season. They also estimate that heat and
drought have been responsible for 59 000 suicides in India over 30 years. This

effect was not apparent during the non-growing season.

2.2 Suicide data

In 2019, World Health Organisation (2019) published a brochure with statistics
of suicide deaths in 2016. Some of the main findings are that men have a 1.8
times higher suicide rate on average than women and almost three times more
in high-income countries. Low and middle-income countries report 79% of total
suicides. Regarding age-specific suicide rates, 52.1% of suicides occur before
the age of 45 years. Moreover, it is the second leading cause of death for the age
group 15-29 years. The mean suicide rate around the world is approximately
12 per 100 000, although this statistic varies substantially.

Tracking and preventing suicide attempts is, in many cases, challenging to
manage. Although there have been some attempts to create scales for estimat-
ing the risk of suicide, there are some issues. Firstly, the description of steps
people take while developing suicidal thoughts is not standardized. Studies use
different methods to estimate the thinking process behind developing suicide
ideation. Suicide itself is often impulsive. It has been stated that the major-
ity of steps preceding suicide, such as thinking of the place or method, occur
within 12 hours before the act, or even simultaneously (Mann 2002; Millner
et al. 2017).

Nevertheless, even data regarding completed suicide are often misreported.
World Health Organisation (2019) states that more than 50% out of the 180
countries used for their dataset have unreliable data, which undermines the
data usability in the studies. In addition to that, using datasets of self-reported
suicides is questionable in the least, as the data are likely to be underestimated.

A recent study by Snowdon & Choi (2020) provides a review of the main
reasons for suicide data under-reporting. When reporting deaths by means of
the ICD-10 classification, for example, there is evidence that categories ‘ill-
defined or unknown cause’, ‘undetermined intent’, or ‘accidental deaths’, are
sometimes used in case of completed suicide. Drowning, accidental suffocation,
falls from a height, drug overdose, and road accidents are all examples of deaths
where suicide could not be recognized.

Furthermore, in Islamic states or South Korea, there is stigma and shame as-

sociated with suicide. Family members of the deceased may report the death to
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be due to natural causes or an accident (Snowdon & Choi 2020), (Karamouzian
& Rostami 2019). There are also expenses related to suicide. In some coun-
tries, the cost of medical care associated with suicide is not covered by insurance
companies (Karamouzian & Rostami 2019). Moreover, the autopsy is usually
requested by the family. Thus, in case of the death of an elderly relative, the
family might not request an autopsy. Even if requested, the autopsy might not
be thorough, resulting in an ‘unnatural’ cause of death reported (Snowdon &
Choi 2020). Lastly, taking account of death causes in developing countries and
rural areas can be troublesome, introducing another factor in suicide under-
reporting. To sum up, under-reporting is a major limitation of any study that

uses suicide data.

2.3 Measuring suicide

To quantify the effect of temperature changes on suicide, it is necessary to
standardize the effect to one common measure. Out of the different measures
further presented in Chapter 3, the most optimal strategy appears to be stan-
dardizing to the risk of suicide, defined as the change in suicide rate divided by
the reported suicide rate. By simply multiplying the value by 100, we obtain the
percentage change in the suicide rate, which is also a convenient interpretation.

The meta-analysis from Gao et al. (2019) uses the Incidence Rate Ra-
tio (IRR) to specify the relationship. Since we want to compare our results
with those of Gao et al. (2019), it is necessary to find means of recalculating
our results to this measure. The incidence rate is simply the frequency of some
event. Rate ratio utilizes the incidence rate in groups exposed and unexposed
to the effect in question. In our case, the effect is a marginal move in temper-
ature, and by incidence, we mean the suicide rate. The suicide rate is usually
presented as the number of suicides per 100 000. Under the presumption that
there is no effect of temperature increase on rates of suicide, the incidence
rate of the group exposed to an increase in temperature will be similar to the
unexposed group. Thus the IRR will be equal to 1.

The formula for incidence ratio is:

Rat@e;v osed SRbase + SRchan e SRchom e
IRR = L = 9 =1 4 e
Ratebase SRbase - SRbase

=1+ risk

Where ’exposed’ symbolizes the suicide rate under the effect of 1°C rise in
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temperature, and ’base’ stands for the baseline suicide rate in the study. A
clear conclusion from the formula is that we derive IRR from the risk of suicide
by simply adding 1 to our results. The effect distribution is therefore expected
to be around 0. Conventionally, studies attempt to show that the researched
elasticity is statistically different from 0, and methods used in meta-analyzes
are tailored for the 0 value. If we were to perform our analysis using the IRR

values, we would also have to alter these statistical methods.

2.4 Previous findings

So far, there has been only one meta-analysis conducted on this topic (Gao
et al. 2019). The authors estimate the IRR associated with suicide to be 1.01.
In other words, an increase in temperature by 1°C increases the risk of suicide
by 1%. There are several limitations to this finding. First, authors impose
strict inclusion criteria: suicides needed to be reported via the International
Classification of Diseases (ICD) and effects already needed to be reported in the
form of IRR . Furthermore, the authors only select estimates presented as the
final results, or estimates with most covariates, and exclude results of simple
OLS. For that reason, only 22 relevant estimates from just 13 studies were used
in the main model. Moreover, Gao et al. (2019) did not perform robustness
checks for their publication bias test. Heterogeneity was assessed by doing
subgroup analyzes of gender, climate zone, latitude, and income, dividing the
sample into even smaller pieces. To measure the heterogeneity, the authors
use I?, which can be biased to either side for small sample sizes (von Hippel
2015). Lastly, the results were rounded to two decimals, so it is impossible to
observe smaller differences in the estimates. For example, the IRR associated
with temperature for the middle-income level is 1.02, whereas the high-income
estimate is only 1.01. The results can hardly be plausible. This study aims
to fix these flaws by expanding the sample of studies and conducting methods,

which correct the estimates for heterogeneity and publication bias.



Chapter 3

Data

3.1 Inclusion criteria

Studies were gathered using Google Scholar. The algorithm used in its search
engine matches queried words in full texts of studies, rather than simply match-
ing the title, keywords, or abstract. The coverage is thus more precise (Gechert
et al. 2020). The query used was adjusted to feature most studies included in
the quantitative analysis of the meta-study by Gao et al. (2019). The final form
of the query is (‘temperature’ OR ‘temperatures’” OR ‘climate’ OR ‘climatic’
OR ‘weather)AND(‘suicide’ OR ‘suicidal’ OR ‘suicidality").

The query returned approximately 850 000 results, out of which the first 200
were examined. Additional sources include studies provided by the supervisor
and studies identified with snowballing. Snowballing is the process of examining
references in studies, which could provide additional estimates. The query was
also applied to a restricted time span from 2020 in order to capture recently
published studies.

In total, 75 studies with usable effects were identified. The cumulative
number of effects in those studies was 743. The following inclusion criteria

have been set for the quantitative analysis:

o The effect presented in the study can be recalculated to the risk of suicide

and IRR.

o The studies have to present the sample size or a feasible way to estimate
it. In the end, only a measure of the mean number of suicides over some
time span was approved, as it was most likely calculated from the sample

size.
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o The final estimate has to be calculated using minimum, mean, or maxi-
mum temperature measures. This condition was used to restrict stud-
ies that used maximum or minimum suicide-temperature (MaxST or
MinST). Several studies calculated temperature associated with the low-
est and highest risk of suicide and used this measure in the analysis.
These measures produced systematically different effects compared to the

normal temperature measures. Therefore, they were also left out.

After this process, our dataset was restricted to 31 studies and 186 data
points. For comparison, Gao et al. (2019) only used 16 studies. An overview

of the studies is available in the Appendix.

3.2 Recalculating effects and standard errors

Three types of estimates other than the risk of suicide were identified. Their
distribution is presented in Figure 3.2. Methods of standardizing each of these

methods are described below.

Incidence rate ratio As stated in Chapter 2, the only standardization necessary

is to subtract one from the estimates.

Relative Risk There are inconsistencies in the use of relative risk and rate ratio.
Both measures compare rates of incidence. The only difference is that the
rate ratio differentiates the group by using two time spans, while relative
risk measurement divides groups by the exposure to the observed variable.
Nevertheless, the time span in rate ratio is utilized for quantifying the
temperature difference. Thus, the rate ratio can be treated similarly to

relative risk.

Percentage increase When study reports their estimate in terms of percentage
increase in the suicide rate or the number of suicides associated with the

change in temperature, the calculation is trivial as well:

percent__increase
100

risk =

Regression coefficient Some studies reported their result as an absolute change
to suicide rate (SR) or the number of daily suicides. Fortunately, most

studies also reported the suicide rate or daily suicide count in the area.
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Figure 3.1: Distribution of estimates for every study
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Notes: Every row represents the distribution of effects in the respective study. Interquantile range is
denoted by the box length. Blue vertical line is the 0 intercept, while red line represents simple mean of
all estimates. The plot is cutoff at estimate value of 0.2 to better show the between-study variation.
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To obtain the risk of suicide, we simply divide the absolute change by the

reported suicide rate.

SRchange
SRbase

risk =

There were 36 estimates, which included suicide attempts in their analysis, 19
of which require the reported suicide rate for the recalculation to IRR. Natu-
rally, attempted suicide has a substantially higher rate than completed suicide.
Should we use this value in our calculations, the risk of suicide would always be
lower for these estimates. According to McIntosh & Drapeau (2012), for every
complete suicide, there are 25 suicide attempts. Therefore, attempted suicide
rates were scaled by 25.

Given the heterogeneity of the studies, computing the standard error of
suicide risk could not be performed using only one method. We identified three

types of cases, which required different computation of the standard error.

o Ideally, the study would present the standard error along with the ef-
fect. In that case, we apply the Delta Method to transform the original
standard error. The Delta Method form depends on the method used to
calculate the suicide risk. Namely, for the regression coefficient transfor-

mation representing an absolute change in suicide rates, we use:

1/2 1 2 1/2
se(risk) = var (Sé%g::je) _ ( — *W<SRchange)> — 36<§§;§jjge>

o When there is no standard error, the confidence interval of the reported
effect is a sufficient alternative to the Delta Method since it produces com-
parable results. For the confidence interval of 95%, we use the following

formulas:

O]upper - C(Ilower
3.92

se(risk) =

o For some estimates, only the p-value has been reported. In that case, we
determined the t-statistics from the p-value and calculated the standard

error using the relationship between t-statistics and the effect.
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Figure 3.2: Cumulative estimate distribution
Notes: Left plot shows the distribution of effect types in our dataset, which have been described in Chapter 3
section. Plot on the right shows the distribution of estimates. For convenience, estimates outside the -0.1
to 0.1 range are not included. There are 7 such estimates. Red vertical line represents the 0 threshold.

3.3 Summary statistics

The effects are dispersed between the studies, as well as within (Figure 3.1).
Some studies report only a single value, such as Akkaya-Kalayci et al. (2017)
with a suicide risk estimate of 0.0016. On the other hand, some produce esti-
mates spanning over the whole range of other estimates (Kim et al. 2016). In
addition, several studies produce a range of effects significantly further from
the mean threshold of 0 (Wu et al. 2014).

A simple average of all the effects yields a value of 0.0188, which translates
to IRR of 1.019. This value is substantially higher than the results of Gao et al.
(2019). Clearly, a simple average of the effects is not representative enough
to draw any conclusions. By computing the weighted average, where weights
are equal to the inverse of the number of estimates in each study, we obtain a
significantly lower IRR value equal to 1.0033. Both the minimum and maximum
estimate in our dataset are not credible. Should the maximum estimate be the
true underlying effect, a 1 °C would raise the risk of suicide by 20%. Summary
statistics are presented in Table 3.1. The simple average effect for attempted
suicides is 0.007, which is three times less than for the completed suicides.
The ratio supports the notion of Gao et al. (2019) that completed suicides
are more affected by the temperature changes than suicide attempts. Studies
using only elderly suicides have, on average, 40% higher estimate than for the
unrestricted sample. Nevertheless, there are only 11 estimates for the elderly
suicides, so the difference could be due to sampling error. Similarly, studies

deploying non-linear methods for their estimation produce, on average, 40%
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higher estimates than studies using linear methods. Approximately 22% studies
did not control for any meteorological variables or seasonality. These studies
produce an average estimate of 0.008, which is 3 times less than the average
estimate of studies controlling for both seasonality and meteorological variables.
Our measures of income and latitude are in form of continuous variables, so
subsetting is not possible. Nevertheless, simple regression shows that the effect
size decreases with lower latitude, which contradicts the findings of Gao et al.
(2019). Each of these observations will be tested for statistical significance in
Chapter 5. The data is available upon request.

Due to the high variance in our data, winsorization was considered. Win-
sorization is a method for treating outliers in data by making them less extreme.
Since there are not enough estimates gathered, this method is preferred to sim-
ply trimming the outliers. However, leaving outliers untreated could distort
the analysis. Moreover, due to our extremely low values of standard errors for
some estimates, several methods dealing with publication bias could not have

been used. Therefore, we winsorized our data at the 1% level.

Table 3.1: Summary statistics of the estimate and standard error

Mean Standard Error Median Weighted Mean

Effect 0.0188 0.03755 0.0112 0.0033
Standard error 0.0108 0.0166 0.0053 0.0024

Notes: The summary statistics have been calculated from the full sample. The dataset is consisted of
186 studies from 31 studies. The weighted mean has been computed by dividing every observation by
the number of estimates reported by the respective study.



Chapter 4

Publication Bias

4.1 About publication bias

Without any data-based knowledge, the common guess would be that consecu-
tive days of cold temperatures must increase the suicide rate. Early researchers
of the effect could be conducting their research with this notion in mind and
possibly alter their methods to fit the general view. For example, a model
which gives results in accordance with their view could be favored. Further-
more, the journal might be keener to publish statistically significant results that
support the current notion (Card & Krueger 1995). Nevertheless, with better
methodologies being developed and systematical reviews being published, the
conventional view started to be questioned. Review by Deisenhammer (2003)
was perhaps the most influential in challenging the classical view:

“This finding is a further confirmation of the fact that the emergence of sui-

cidality in a particular person is a phenomenon profoundly distinct from the

so-called mormal, generally understandable reactions to environmental influ-

ences but is the consequence of an individual psychopathological process that is

subject to an interaction of exogenous and endogenous factors” (Deisenhammer
2003, p. 403)

Deisenhammer comments further on the heterogeneity of methodology, and
study-specific characteristics, such as seasonality and data granularity, which
could have impacted the results of reviewed studies. This review gave rise
to more studies analyzing this relationship, the majority of which reported a
positive link. However, the motive to publish an effect of a selected sign likely
did not disappear. It could have merely changed direction.

This issue is called publication bias. One reason for it is the need to se-

lect results and robustness checks that will be included in the work to keep it
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concise. Another reason is that the researchers are motivated to produce statis-
tically significant results of a certain sign. When a study fails to reject the null
hypothesis due to large standard errors, the conductors will attempt to collect
more data or restrict their sample size in order to make their results significant.
On the contrary, effects with a lower magnitude that are statistically signifi-
cant do not meet this constraint and will be published (Card & Krueger 1995;
Brodeur et al. 2020). Another case could be that effects failing to reject the
null hypothesis will stay unpublished, called the file-drawer problem (Stanley
2005; Brodeur et al. 2016). Both of these customs might overstate the actual
effect.

We can take the work of Blanco-Perez & Brodeur (2020) as an example. In
2015, an editorial statement for health economic journals had been published,
urging researchers not to omit findings that do not reject the null hypothesis.
Using the difference-in-differences method, they found that the proportion of
statistically significant results decreased by 18%. Moreover, Brodeur et al.
(2020) compared results published in top economic journals and showed that
certain methods produce systematically larger estimates than others.

Perhaps the most convenient method for detecting publication bias is simply
plotting the data using a funnel plot. When estimates are plotted against the
inverse of their standard errors, we can expect the most precise values to be
densely distributed around the true effect. In contrast, less precise estimates are
scattered on both sides of this effect (Stanley et al. 2010). Without publication
bias, the plot should be symmetrical around the true effect, forming the shape
of an inverted funnel, hence the name ‘funnel plot’ The left plot in Figure 4.1
shows minor right skewness of the estimates, as well as the cut-off at 0. The
bias is even less apparent in the right plot, where only median points from
each study are plotted. In our case, making a decision solely by a subjective
judgement of the funnel plot is insufficient. Thus, it is needed to compute the

bias numerically using state-of-the-art baseline methods.

4.2 Baseline methods

As previously mentioned, publication bias happens when researchers lower their
standard errors to make their estimates statistically significant. Consequently,
we can expect the standard error to be correlated with the effect itself. When

we regress the estimate on the standard error, the intercept represents the
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Figure 4.1: Funnel plot

Notes: The funnel plot with all estimates is on the left. Estimate values are plotted against the inverse of
their standard errors. Precise estimates will be distributed around the true vale, while less precise estimates
are dispersed at lower levels of the plot. Funnel plot with only median effect from each study is on the
right. To better observe the funnel shape, we plot only estimates with precision less than 1200, which
leaves out 12 data points from the left plot.

mean effect corrected for the influence of standard errors. This intercept can
therefore be viewed as the ‘true effect’ (Stanley 2005).

Thus, we are interested in the intercept [y in the following model:
m’sk:ij = ﬁo + Bl * SE(TZSA]{Z]) + Uij

Where risk;; is the i-th estimate from j-th study. We can then perform a
FAT test to identify the publication bias by rejecting the null hypothesis that
the beta coefficient of SE is 0. Moreover, Precision-effect test (PET) provides
further confirmation of a genuine effect beyond this bias by testing the null
hypothesis that the intercept is not 0 (Stanley 2005; Stanley et al. 2010).

Since a large sample size also decreases the variance, the standard error is
likely heteroskedastic. Therefore, it is recommended to apply the inverse of
the standard error as weights for the regression (Ioannidis et al. 2017). An-
other commonly used weighing scheme is the inverse of the number estimates
produced by a single study since heterogeneity of studies could also affect the
estimates. The range of estimates from a single study in this meta-analysis
spans from 1 to 33. By applying weights to the regression, we assure that
every study impacts the result in the same way.

Another way of dealing with unexplained heterogeneity in studies is to use
the study-level Fixed-effect (FE) and the Random-effect (RE) methods. In FE,

it is assumed that studies come from one sample and have one common true
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effect. Thus, sampling error can only arise within each study. RE recognizes
that the effect can not be similar due to heterogeneity between the studies.
Therefore, RE uses a weighing matrix of both the within and between-study
variance (Bom & Rachinger 2019).

To summarize, we are using five variations of the primary regression, four of
which use convenient weighing schemes. The results are presented in Table 4.1,
along with their standard errors. The standard errors are clustered on the study
level in order to account for the within-study correlation since non-clustered
errors could introduce false precision levels of models.

Considering the FAT test, every method we used identified a presence of
publication bias in our data, which was not previously apparent from the funnel
plots. The tests support our initial notion that studies analyzing the effect
of temperature on suicide are indeed subject to publishing results based on
their significance. On the other hand, the mean estimates corrected for the
relationship with standard errors are not uniform. The reason behind the
statistical significance of RE method is that it balances the dataset by putting
more weight on smaller studies. The main benefit is that unique environments
and methods used in studies are valued, which arguably provides more credible
results. In comparison, FE would have been more plausible if studies came from
an identical environment, were performed by the same researchers, and used
common methods, which is not the case.

Each estimate is below 0.01, which translates to the estimate of 1.01 re-
ported by Gao et al. (2019). Due to the correction for publication bias, our
results are lower than 0.01 and insignificant in the majority. Since only two
out of our five methods identified statistically significant presence of non-zero
mean estimate, we can not claim that temperature does have an effect on the
suicide rate based on these linear tests.

The methods mentioned above assume a linear relationship between the
estimate and its standard error. At some values, however, we could expect to
find non-linear jumps or kinks in these variables. The true effect could then
be underestimated by the FAT-PET tests, assuming that the mean beyond
bias is bigger than 0 (Bom & Rachinger 2019). There could also be bias in
the standard error due to random sampling error introduced by the researchers
(Stanley 2005). For this reason, we apply several new methods, which account
for publication bias, while assuming non-linearity. The general idea behind the
majority of the so-called selection models is to impose restrictions on the dataset

by either treating subsamples of estimates or removing them completely.
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Table 4.1: Linear tests of publication bias

OLS FE RE Precision Study

SE 0.854*** 2. 7676***  1.0914*  2.7155***  (.8214*

Publication bias (0.218) (0.5189)  (0.4156)  (0.5449)  (0.3335)

Constant 0.0095*  -0.0001  0.0079**  -0.00002 0.0013

Mean beyond bias (0.0038)  (0.0005)  (0.0025)  (0.0009)  (0.0009)
Studies 31 31 31 31 31
Observations 186 186 186 186 186

Notes: This table provides results for the linear techniques estimating publication bias. Upper row
represents the FAT test of publication bias. Lower row tests for the mean estimate beyond bias. Study-
clustered standard errors are provided below each coefficient. All tests are based on the regression
riski; = Bo+ B1 - SE(risk;;) +uij. First column provides results of this simple regression. FE accounts
only for within-study variation, while RE considers the between, as well as within, study variation.
Precision column applies weight proportional to the standard error of each estimates, while the study
column weights the effect by the number of estimates reported in every study.

. p<0.10, * p < 0.05,* p < 0.01, *** p < 0.001.

Perhaps the simplest method of non-linear publication bias estimation is the
Topl0 developed by Stanley et al. (2010), whose work shows that if levels of
statistical significance affect the chance of a paper being published, the sample
of effects is indeed not representative and any statistical computation method
will be biased. Therefore, meta-analysts might be better of by simply discarding
90% of data having lower levels of precision and leaving the rest with higher
precision. However, Stanley et al. (2010) recognize that this method contradicts
the traditional Central Limit Theorem and rather presents the work with the
intention to highlight this issue. When applied to our dataset, the final estimate
is equal to 1.03, which is significantly higher than in other methods, both
linear and non-linear. This is due to the fact, that the subset with the highest
precision also reports some of the highest estimates. Thus, it is necessary to
employ more sophisticated methods.

Another method used to detect publication bias is called the Weighted
average of adequately powered by loannidis et al. (2017). This method also
recognizes the tendency to publish estimates simply by gaining statistical sig-
nificance, or in other words, passing the 1.96 t-statistic threshold. Eligible
estimates in this method should have adequate power and their standard error
should be smaller than the absolute value of the effect divided by 1.96 + 0.84,
where the former comes from the statistical significance and the latter from the
definition of adequate power (loannidis et al. 2017). Our dataset contains eight
adequately powered estimates, all of which come from one study by Carleton

(2017). High precision of these estimates is likely due to the statistical methods
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used rather than the structure of the underlying dataset. Therefore, the results
of this method should not be valued too highly.

Under the notion that insignificant results are under-reported, Andrews &
Kasy (2019) apply weighted distribution theory to the insignificant estimates
rather than removing data based on precision. Instead of choosing one weighing
scheme for the whole range of values, a step function will be used to apply
different weights to every interval of the reported p-values. The cut-offs in
these intervals are set to the conventionally reported values of 0.001, 0.01, 0.05.
The correct functional form of these weights is determined with the maximum
likelihood function (Hedges 1992). Jumps at the conventional values, such as
0 and 1.96, are not visible in our data (Figure 4.2). This method also provides

a mean estimate calculated using the weighted data presented in Table 4.2.

Figure 4.2: T-statistics distribution of the effects
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Notes: The figure shows the distribution of t-statistics in our dataset. Black vertical lines represent the
1.96 threshold, which translates to the commonly used p-value of 0.05. Red vertical line denotes the 0
threshold. Suspected jumps at these values are not apparent judging by the plot.

The last method we chose is The Stem Based Method (Furukawa 2020),
which uses the logic of Stanley et al. (2010), but makes the threshold relative
to the sample. The optimal number of studies is determined by minimizing the
mean squared error in equation min M SE(n) = Bias*(n) + Var(n). As the
number of studies increases, bias increases due to the inclusion of less precise
studies. On the other hand, the variance decreases due to more information. In

our sample, only 12 out of 186 meets the criteria of this method (Figure 4.2).
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Unfortunately, our dataset was not fit to utilize the Endogenous kink method
by Bom & Rachinger (2019). Similarly to Hedges (1992), the authors identify
important p-values resembling significance thresholds and alter the standard
errors at these cut-offs with a piecewise linear function. Nevertheless, the
standard errors in our sample are too small, making a key value, calculated
as (SSR/SE)?, too high to identify spurious standard errors. In our case, the
Endogenous kink only differs from linear estimation by applying 1/SE? weights
to the regression, which is known as the PEESE method (Stanley 2005).

Table 4.2: Non-linear tests of publication bias

Andrews & Kasy Ioannidis et al Furukawa

(2019) (2017) (2019)
Mean beyond bias 0.003 0.00015 0.0008
(0.002) (0.00018) (0.0014)

Notes: This table provides results of our 3 main non-linear techniques for publication bias determina-
tion. These methods only provide estimation of the mean beyond bias. Clustered standard errors are
presented in the parenthesis. None of the techniques identified the estimate to be statistically different
from zero.

4.3 Extensions

As an extension to our baseline methods, we use the caliper test, developed by
Gerber et al. (2008). While the caliper test does not establish an estimate of
the underlying effect, it provides a test of publication bias using different rules
in comparison with the baseline methods. The caliper test does not assume
a relationship between the main effect and the standard error. Instead, it
compares frequencies around key values in the distribution of the t-statistics to
identify sudden jumps, which would indicate the presence of publication bias.
In our case, these values will be set to 0 and 1.96, as we have right-skewed data.
It is not feasible to make similar tests for the -1.96 value due to a low number
of data points around that value.

Since we have a low number of observations, it is necessary to set the calipers
large enough to secure statistical significance. On the other hand, setting the
caliper too wide would not capture the possibility of jumps around the threshold
well, as values further from the thresholds are less likely to be biased. The
lowest caliper we set comprised only 28 variables. All six of our tests failed to
identify a publication bias since the frequencies on both sides of the thresholds

have similar distribution (Figure 4.2).



4. Publication Bias 22

Table 4.3: Caliper tests for selected thresholds

Caliper size 0.4 0.6 0.8
Threshold: 0.036 0.059 0.059
0 (0.096) (0.086) (0.086)
Observations 28 34 34
Threshold: 0.081 0 0.012
1.96 (0.09) (0.08) (0.079)
Observations 31 38 41

Notes: In total, 6 caliper tests have been performed. For the two significant thresholds, 3 calipers of
different sizes were used. None of the tests identified a presence of publication bias. Caliper around the
0 threshold did not comprise more values upon expanding from the band 0.6 to 0.8.

To conclude, most of the methods applied in this meta-analysis identified
a presence of publication bias. Results concerning the mean corrected for the
publication bias are inconsistent. A majority of the methods used estimated
the effect to be less than the IRR equal to 1.01, reported by Gao et al. (2019).
Out of the eight methods utilized to estimate the mean beyond bias, only two
found a statistically significant value. One of these methods, the RE, was also
used by Gao et al. (2019) with comparable results. According to our results, the
claim that temperature changes affect suicide rates can not be made. Perhaps
the only certain observation is that the standard error affects the magnitude of
the estimate. The next chapter of this meta-analysis will put other explanatory
variables to use, rather than modelling the regression using only the standard
error. Using a broader context of the studies, we should be able to identify the

study characteristics, which also affect the estimate.



Chapter 5

Why estimates vary?

5.1 Heterogeneity

Although publication bias affects the underlying mean estimate, there are still
other study characteristics that could systematically move the effect in either
direction. We divide potential sources of heterogeneity into categories such as
the data origin, methods used, publication characteristics, or factors that the
original study controls for. Every factor from these categories could be of a
significant effect on the final mean estimate. For instance, families in countries
with low socioeconomic status might not own an AC unit, which would expose
them further to the effect of heat waves (Burke et al. 2018). Another example
is that studies might restrict their sample to younger or elderly aged people.
Elderly people might deal with extreme temperatures worse, resulting in higher
suicide rates. Lastly, suicide is a highly seasonal matter. Out of the 31 studies in
our dataset, 17 reported a peak in suicide frequency for one of the seasons. Only
two studies reported the peak in fall or winter, while the rest finds it in spring
or summer. Therefore, studies that do not control for seasonality will likely
find a positive association of temperature with suicide since temperature also
rises with the spring season. Contrary to Gao et al. (2019), we include results
of simple OLS since they also carry information of the place and time during
which the study was conducted. To individualize the effect of temperature, it is
recommended to deploy methods, which identify these variables in the context
of the estimates by simple regression. Our data consists of 37 variables which
could be of importance for the mean estimate. Thus, the regression will have

this form:
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37
riski; = Bo+ > BiXiij + ¥SE(64) + uig
=1

However, not every variable affects the estimate. Should every study charac-
teristic be included, we risk overfitting our model and introducing collinearity,
which reduces the precision of the model. Using only variables, which we deem
logical to use with respect to previous literature, is not ideal as well because
we might miss some relationship, which is not apparent at first sight.

The first step is to treat collinearity. Since we have a high number of vari-
ables but not too many observations, multicollinearity is likely. The convention
in meta-analysis is to reduce the number of variables until the maximum value
of Variance inflation factor (VIF) is under 10. By removing variables with high
VIF and ambiguous relationship to suicide risk, we cut down the number of
variables to 25. Using this procedure, we obtain the maximum VIF value of
9.09.

It is not feasible to manually select the correct variables from the rest. Given
our 25 independent variables, we would have to run 2% = 33000000 different
combinations, which would take an immense amount of time. This issue, called
model uncertainty, can be addressed using BMA (Eicher et al. 2011).

BMA does not require a concrete set of independent variables to be cho-
sen in advance. Instead, it runs a set number of models and assigns to each
model its posterior model probability, which increases with the model fit, but
decreases with the number of variables in the model (Havranek 2019). We can
then specify for each variable its Posterior inclusion probability (PIP), which is
calculated as the sum of all posterior model probabilities in which the variable
has been included (Gechert et al. 2020). Markov chain Monte Carlo algorithm
is then used to traverse only models with high PIP (Madigan et al. 1995). After-
wards, variables with PIP higher than an artificially set threshold are included
in the final set of statistically significant variables. The coefficients for these
variables is calculated as the weighted average of the coefficients in previously
run models, using the posterior model probabilities as weights (Havranek et al.
2018).

To use BMA, it is necessary to choose the weight of the prior probability of
each coefficient, called the g-prior. Priors are usually set to zero unless there is
a strong conviction for some of the variables affecting the main estimate. For
the g-prior, we will be using the unit information prior, which assigns weights

equal to one individual observation (Havranek et al. 2018). Moreover, prior
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model probabilities also have to be set in advance. Regarding model priors,
the dilution prior will be used as our primary choice. Dilution prior treats
multicollinearity between the variables by weighing the models based on the
correlation matrix of included variables. This is our preferred choice due to a
high number of explanatory variables with respect to a relatively small dataset.

To observe the gender differences, we will restrict the subset to studies re-
porting the proportion of males and females in their data. In this specification,
we will only comment on the effect of gender since the full sample is more
representative for describing the rest of the variables.

It is appropriate to compute BMA using other modifications. Apart from
increasing the number of iterations, the choice of priors in BMA also matters.
As reported by Havranek et al. (2018), the choice of g-priors rarely produces
significantly different results. On the other hand, the choice of model prior
affects them considerably. Typically, the uniform prior would be the preferred
option. Uniform model prior assigns a similar probability to all models. There-
fore, models with a mean number of variables will be more heavily represented,
while models with very little or close to all variables will not be valued well.
Another option would be to deploy Frequentist model averaging (FMA) with
robust standard errors (Hansen 2007). FMA includes all explanatory variables
and weights them. Unfortunately, neither of these methods treats the presence
of multicollinearity in the data. For that reason, we are not able to use these
methods as a valid robustness check.

Apart from focusing on the priors in BMA parameters, it is also possible
to perform robustness checks with weighted data. For similar reasons to the
ones mentioned in Chapter 4, we will apply weights proportional to the num-
ber of estimates per study. Weighing by the standard error was not possible.
Small standard errors in our dataset introduce VIF values over 6000, and we
would have to remove a majority of explanatory variables to treat it. The last
convenient robustness check we use is an ordinary least squares regression with
variables from our BMA specifications, unweighted or weighted, which passed
the significance PIP threshold of 0.75.

5.2 Variables

Data characteristics This category includes information related to the sam-
ple of the respective studies. As we have established in Chapter 4, the standard

error affects the effect magnitude, and the number of observations in original
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studies is by definition correlated with the standard error. Thus, this variable
will not be included in our BMA specification.

Regarding data granularity, more than half of the studies use daily suicide
data. At first thought, this is preferred to broader time spans. However,
temperature changes might affect people with days of delay, which would not
have been captured by daily data (Deisenhammer 2003). For that reason, we
use a dummy with a baseline category for studies with daily data and with a
reference category of weekly, monthly, or even annual data granularity. Some
estimates only used data for the elderly population, which is also accounted for
using a dummy variable, for reasons stated at the beginning of this chapter.

Some studies, such as Barker et al. (1994), used suicide data from multiple
countries to determine the effect of temperature on suicide. In comparison with
the panel data, analysis of suicide using simple time-series from only one source
could be lead by local variables, not necessarily the temperature itself (Dixon
& Kalkstein 2009; Fernandez-Nino et al. 2018). Therefore, this will be included
in our BMA model.

Another dummy variable will denote whether the study used only completed
suicides or included attempts as well. According to Preti & Miotto (2000), at-
tempted suicide is more sensitive to seasonality and also under-reported in
comparison with complete cases. Moreover, it is necessary to account for our
scaling of the attempted suicide rate by 25. We presume that attempted sui-
cide will have a negative effect on the overall estimate. As previously stated in
Chapter 2, suicide is often misclassified. Therefore, we include a dummy vari-
able controlling for the use of ICD codes to identify suicides. ICD is a credible

international classification of diseases.

Specification This category comprises the study setting and the controlling
factors in each study. Regarding socioeconomic variables, few studies accounted
for them in their analysis. Deisenhammer (2003) points out that controlling
for non-climatic variables is needed to identify suicide-temperature association
correctly. For that reason, we gathered state-level median expenditures and
standard suicide rates in each country, as these variables play an important part
in explaining the effect of temperature. Unfortunately, few studies controlled
for psychological state or different socioeconomic factors in their dataset. The
effect of temperature could be the catalyst for people already having psycho-

social risk factors related to suicide (Deisenhammer 2003; Schneider et al. 2020).
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Data of individuals is difficult to obtain. Thus, we will only make use of the
aforementioned macro-level indicators.

Since temperature changes are likely experienced more severely in some
climatic zones than others, we include the absolute value of latitude in each
country (Dixon & Kalkstein 2009). For example, Kim et al. (2019) conducted
their results on several areas worldwide, and attributed the non-linearity of
temperature-suicide relationship to areas having a broader range of tempera-
ture extremes. Moreover, since most studies identified a peak in suicide rates in
spring, the non-linearity of the effect is more probable (Schneider et al. 2020).
The latitude variable reflects an overall climate state in every country. Lastly,
a variable for the gender proportion of the sample was also gathered, although
only for approximately two thirds of studies. We also attempted to categorize
the types of suicide as violent or non-violent. Unfortunately, only 7 out of our
studies reported this measure, so a subset analysis was not possible.

Studies use minimum, mean, as well as maximum temperature values to
model the association with suicide rates, which will also be represented by
dummy variables. This variable captures the possibility that people could be
sensitive to extremes rather than responding to deviations from the mean.
Dummy variables will also be deployed to denote whether a study controls for
seasonality or time trend. Undoubtedly, temperature is closely correlated with
the seasons. Day in the week, weekends, and holidays will also be coded in our
BMA model. Moreover, temperature is correlated with other meteorological
variables, which alter depending on the seasons. These variables, such as sun-
shine, rainfall, atmospheric pressure, or humidity, could also create biological

impulses inducing suicide.

Statistical approach Studies which reported their effect in an absolute change
to suicide rate or count could be less biased compared to those with effect mea-
sured in IRR. For that reason, we divided the variable definition into categories
and included them in our model. As stated earlier, periods with temperatures
far from the average might be of greater effect than a simple daily association
(Dixon & Kalkstein 2009). Therefore, we deploy a dummy variable equal to
1, if studies allow lagged forms of temperature in their model or compute cu-
mulative effects of temperature on suicide. Surely, the relationship between
temperature and suicide could prove to be non-linear. Thus, we control for

whether the model of choice in a study allows non-linear relationship. This
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also includes studies that only allow temperature above a certain level in their

analysis, as they also impose non-linear restrictions on their data.

Publication characteristics We include the number of citations of each paper
since more cited papers are often conducted using correct statistical procedures
and published in trusted journals. Furthermore, suicide data in our dataset
ranged from 1967 up to 2019. Over the years, researchers likely developed bet-
ter techniques, which yield more robust results. Moreover, the effect of temper-
ature on suicide could have changed due to socioeconomic status improvement
or global warming. For these reasons, we deploy a variable representing the
midpoint year of every study to capture the change over time.

It is important to pronounce one distinguishing feature of our data. Re-
searchers often analyzed suicide in association with other meteorological vari-
ables along with temperature. It would not always be clear whether there is
one model containing all the variables or whether we are dealing with multiple
simple regressions. Moreover, researchers often acknowledged the importance
of lagged temperature inputs, non-linear specifications, and seasonal trend but
did not include them in their final model after discovering negligible effects
of these variables, for example, using the hiearchical regression model (Barker
et al. 1994; Deisenhammer 2003; Fernandez-Nifio et al. 2018; Grjibovski et al.
2013; Likhvar et al. 2011; Williams et al. 2015; Schneider et al. 2020; Preti &
Miotto 2000). This issue required increased attention during the coding of the

study characteristics.

Table 5.1: Definitions and summary statistics of explanatory vari-

ables
Variable Description Mean SD WM
Variable definition
Risk Estimate Estimated risk associated with 1°C increase in temperature 0.019 0.003 0.003
Standard error Standard error of the risk estimate 0.011  0.001 0.002

Data characteristics

Panel data =1 if panel data are used in study (reference category: time- 0.301 0.034 0.04
series)

Daily data = 1 if study used daily data of suicide and temperature 0.688 0.034 0.091
(reference category: weekly, monthly, annually)

Complete cases =1 if study uses only completed suicides in analysis (refer- 0.796 0.03 0.118
ence category: pooled complete suicides and attempts)

Elderly sample =1 if if study used elderly sample in analysis (reference cat- 0.059 0.017 0.015
egory: no age restrictions)

Specification

Day of the week =1 if study controls for day of the week, or weekends com- 0.392 0.036 0.029

control pared to workdays

Holidays control =1 if study controls for holidays 0.14 0.025 0.022

Seasonality control =1 if study controls for seasonality or time trend 0.769 0.031 0.105

Continued on next page
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Table 5.1: Definitions and summary statistics of explanatory vari-
ables (continued)

Variable Description Mean SD WM
Daylight control = 1 if study controls for sunlight, sunshine or radiation 0.403 0.036 0.08
Rainfall control = 1 if study controls for amount of precipitation or rainy 0.43 0.036 0.097
days
Humidity control = 1 if study controls for humidity 0.43 0.036 0.4
Atmospheric pres- = 1 if study controls for atmospheric pressure 0.371 0.036 0.042
sure control
Lagged tempera- =1 if study allows lagged forms of temperature in analysis 0.296 0.034 0.048
ture analysis (reference category: only direct association)
Minimum tempera- = 1 if study uses minimum temperature in analysis of the 0.07 0.019 0.021
ture analysis relationship
Maximum temper- = 1 if study uses minimum temperature in analysis of the 0.134 0.025 0.029
ature analysis relationship
ICD Coding = if suicides in study sample have been labeled with ICD 0.672 0.035 0.092
codes
Log median expen-  The logarithm of median expenditures in country, where the 6.513 0.055 1.102
ditures study was conducted
Log latitude The absolute value of latitude in country, where the study 3.368 0.045 0.579
was conducted
Log suicide rate Logarithm of rate of suicide per 100 000 2.102 0.072 0.341
Statistical approach
Non-linear model = 1 if study used model, which allows non-linear relationship 0.280 0.033 0.054
between temperature and suicide rate, or if input tempera-
ture values are restricted
IRR variable mea- = 1 if study reports the effect as rate ratio or relative risk 0.247 0.032 0.043
sure (reference category: association with suicide rate)
Absolute variable = 1 if study reports the effect in absolute change to suicide 0.25 0.03 0.26
measure rate or count (reference category: association with suicide
rate)
Publication characteristics
Log citations Logarithm of the number of times the study has been cited 3.238 0.110 0.534
(Google Scholar citations)
Midpoint Mean year of the data used minus the earliest mean year in  17.422  0.688 2.813

the data

Notes: This table contains the selected summary statistics for the variables included in the BMA model.
SD = in sample standard deviation, WM = weighted mean proportionally to the number of estimates in
each study, ICD = international classification of diseases, IRR = incidence rate ratio associated with the

temperature change

5.3 Results and Robustness Check

Results of BMA are illustrated in Figure 5.1. Variables are presented on the
vertical axis, sorted by their PIP. The horizontal axis represents regression
The most

successful models are on the left. For each model, the colored variables in a

models, which are sorted by their posterior model probabilities.

column have been included. Red color means that variable has a negative effect

on the estimate, while blue color symbolizes a positive sign. Considering the

top model in our primary specification of BMA, only one variable is included.
To our surprise, only the standard error has been evaluated as statistically

significant for the estimate, with PIP ~ 1. Other variables have PIP less than
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Figure 5.1: Model inclusion in Bayesian model averaging
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Notes: This figure illustrates the results of our baseline Bayesian model averaging specification. Every row
symbolizes a single explanatory variable used in the models, sorted by their posterior inclusion probability.
The columns represent individual models. Blue color means that the variables increases the effect, while red
color decreases the effect. If the cell is white, the variable was not used in the model. Models are sorted by
their posterior model probabilities. The best models are on the left. In the best model, only the standard
error was included.
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0.5, which is by common standards viewed as non-significant since there is not
enough evidence to show the presence of the underlying relationship (Havranek
et al. 2021). Thus, the standard error is still the primary variable affecting the
overall estimate, and higher values of standard error are associated with higher
estimates. This observation is sufficient to claim that the correlation between
estimates and their standard errors was not driven by omitted variable bias
hidden in the context of studies. Therefore, BMA also serves as a robustness
check for the findings presented in Chapter 4.

None of the other variables passed the minimal PIP threshold of 0.75. Since
the variables are not statistically significant, there is no reason to comment
on the sign of their posterior mean coefficients. The main finding from this
specification is that the setting and methods chosen by the researchers have
little importance when performing an analysis on the effect of temperature on
suicide. PIP and mean values of the explanatory variables are presented in
Table 5.2.

Nonetheless, the absence of statistical significance is a valuable observation
on its own for several of our inputted variables, specifically the ones denoting
controlling for seasonality, the use of non-linear techniques, and inclusion of
suicide attempts along with completed suicides. Apart from the explanation
associated with the coding of the explanatory variables, we can find further
reasoning in the literature.

A potential explanation for the lack of seasonality could be drawn from
studies, which reported the peak in suicide rates during winter months. A
study by Ajdacic-Gross et al. (2007) reported the highest positive correlation
of temperature with suicide rates in the winter months. The authors suggest
that the lack of cold in winter, rather than periods of hot temperatures in
summer, triggers suicidality. Therefore, the positive relationship of tempera-
ture and suicide could be observed in any season, which mitigates the effect of
seasonality:.

Our analysis reports no significant change in using non-linear models, al-
though some authors provided valid reasoning for a possible non-linear rela-
tionship (Kim et al. 2016). Newer studies by Kim et al. (2019) and Sim et al.
(2020) use non-linear methods and identify an inverted J-shaped curve for the
association. The findings of Kim et al. (2019) apply only on Asian countries
with warmer climates since they have more days with higher temperatures,
allowing for precise results. Sim et al. (2020) report overall results consistent

with Kim et al. (2019), whose research was set in Japan. Nonetheless, the
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colder areas were more subject to the non-linear trend in their regional analy-
sis. A clear argument would be that people living in colder areas adapt worse to
sudden temperature jumps. Unfortunately, these studies firstly estimate tem-
perature levels, for which the highest suicide rates are reported, and use that
as a measure for their analysis. This measure is called the maximum suicide-
temperature (MaxST), and estimates using it are in some cases 20 to 30 times
higher than our reported mean. Therefore, using these studies would greatly
affect our mean estimate.

No differences were found between studies using only completed suicides in
comparison with pooled suicides and attempts. This contradicts the results of
Gao et al. (2019), who find the association to be higher for completed suicides.
To better differentiate between suicide attempts and completed suicide, more
studies using only one of the options, such as Miiller et al. (2011); Preti &
Miotto (2000), would be needed.

When using our proposed weighing scheme, it is necessary to apply it to
discrete variables and the dummy variables. Characteristics of studies with
few estimates will then be more heavily valued since their dummy variables
remain equal to one. On the other hand, the same variable in a study with 33
estimates reduces the value of the same dummy variable to 1/33. As a result,
using this measure as weights effectively treats the within-study correlation.
The presence of a within-study correlation can be expected for studies in which
the researchers alter few study aspects between their reported estimates. In
our case, several studies report a half of their estimates with control for some
meteorological factor and a half without it (Kim et al. 2016).

Moreover, since gender and type of suicide are not included in our baseline
BMA specification, studies distinguishing their estimates solely by these factors
would have a 100% within-study correlation for the characteristics of their
estimates (Burke et al. 2018; Lee et al. 2006; Ruuhela et al. 2009; Carleton
2017). By weighing the data, we also increased the maximum variance inflation
factor. In order to use weighted BMA as a valid robustness check, we had to
reduce VIF from 33 to 15.5 by omitting median expenditures and latitude from
the model. Since these variables were not significant in the main specification,
we are not omitting any crucial information.

Applying weights equal to the inverse of the number of estimates reported in
each study produces several estimates with PIP higher than 0.5 (Figure B.3).
The standard error remains the best variable for explaining the variance in

estimates, although its PIP has decreased to 0.87. The variable representing
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control for seasonality now has almost identical PIP, while its statistical signif-
icance in the baseline model was negligible. This further highlights the effect
of within-study correlation in our data. If certain studies with homogeneous
model specification dominate the effect of explanatory variables due to high
number of estimates, the within-study differences are not apparent, which is
the case in our baseline specification.

There were only four studies, which reported estimates treated, as well as
untreated, for seasonality. Seasonality likely became significant due to those
studies. The importance of controlling for seasonality has been argued for at the
beginning of this chapter. Most researchers likely acknowledge the importance
of controlling for time trend or seasonality as a crucial variable and considered
untreated potential untreated estimates as not precise enough to be published.
Furthermore, seasonality and temperature are hardly distinguishable in studies
using monthly or even annual data granularity. In both our model specifica-
tions, controlling for seasonality increases the effect size on average. In other
words, failing to control for the time trend or seasonality reduces the estimate
size, as seasonality itself is likely partly responsible for suicide cases. Frequen-
tist OLS analysis also confirms the positive effect of seasonality control on the
10% significance level.

Although the proportion of males in the sample has not been found as signif-
icant with PIP equal to 0.2 for our baseline specification, applying our weighing
scheme increased the PIP of this variable to 0.746, making it the third most
statistically significant variable in the restricted dataset. Similarly to seasonal-
ity, the insignificance in the baseline model could be driven by studies having
an above average number of estimates with the same proportion of males to
females. By weighing the data, smaller studies that report estimates for sub-
samples consisting of strictly men or women reveal the likely significance. For
both the baseline and the weighted model, the coefficient for the proportion of
males was positive. This serves as a confirmation that males are more affected
by temperature changes than women, which we briefly argued for in Chap-
ter 1. To an extent, this could be attributed to a higher overall proportion
of males in the included studies (Preti & Miotto 2000; Wu et al. 2014). Men
likely experience temperature changes in a worse manner due to lower ability
of temperature regulation. Moreover, men traditionally work more outdoors
than women, which makes them exposed to weather effects.

Nonetheless, the seasonality of male suicide could be driven by some other

unobserved factor. The difference in suicide between men and women changed
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drastically with the transformation of traditions in a postmodern age. Among
the main reasons for gender discrepancy in suicide rates, Moller-Leimkiihler
(2003) puts forward masculine inexpressivness, increased alcohol and drug
consumption, and strengthening male gender-role as a competitive and self-
actualized human being, which can create overload-induced stress. Although
none of these reasons is clearly seasonal, some unmentioned factors might better
explain the difference in suicide.

In the weighted BMA version, humidity almost passed the PIP significance
threshold with a value of 0.749. Similarly to controlling for seasonality and
time trend, it holds that when humidity levels are not controlled for in the
model, the effect of temperature on suicide rates is underestimated. Therefore,
humidity also affects the estimate. In our baseline BMA specification and the
OLS model, the positive sign of this relationship is confirmed. The coefficient
in our OLS model is significant on the 5% significance level. Temperature
and humidity were identified as main meteorological factors by Deisenhammer
(2003), whose study represented the turning point with regards to studying the
relationship between meteorological variables and suicide.

The last variable with a relatively higher PIP of 0.73 in the weighted model
is atmospheric pressure control. While the sign of this variable is positive
in the baseline specification, which would imply similar reasoning as above,
weighted BMA and OLS report a negative sign. Nonetheless, this variable is
not statistically significant in the OLS model, and the PIP threshold was not

passed.
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Chapter 6
Conclusion

The purpose of this work was to shed some light on the topic of suicide rates in
relation to temperature changes. A recent meta-analysis by Gao et al. (2019)
reported that an increase of 1°C resulted in a 1% increase in suicide risk.
This association would play a significant role in the computation of the social
cost of carbon, which is used by policy makers to set the value of carbon tax
(Nordhaus 2017). By correcting the estimate for publication bias, we did not
identify a statistically significant effect of temperature changes on suicide rates.
Furthermore, a simple estimate average of our methods used to identify the bias
produces a value three times lower than that of Gao et al. (2019).

The authors limited the dataset with strict criteria and used only 23 es-
timates from 13 studies to determine their pooled estimate. Moreover, the
authors only used one technique for the publication bias determination and did
not identify an effect of the standard error on the estimates. Heterogeneity
tests were performed using the measure of I? on subsets ranging from 18 to 31
estimates, which likely makes the measure biased (von Hippel 2015).

This thesis expands on the temperature-suicide association topic in three
important domains: bigger dataset, sophisticated treatment of publication bias,
and heterogeneity analysis using detailed study characteristics. We create
methodology for standardizing various measures of this relationship, and in-
crease the dataset used in the quantitative analysis to 186 estimates from 31
studies.

Apart from Gao et al. (2019), the majority of our tests identified the pres-
ence of publication bias in our data, including the precision weighted FAT test
used by the authors of the aforementioned meta-analysis. In other words, re-

searchers of the temperature-suicide relationship likely under-report negative
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or non-significant estimates. A possible explanation for this under-reporting is
that researchers select their robustness checks in accordance with the primary
results of their research since they can not include every specification at hand.

Analysis of the variance between estimates further strengthened the notion
that bigger estimates are accompanied by inflated standard errors. In every
robustness check we present, the standard error explains the most variance in
the estimates. Our baseline specification states that the mean estimate is in-
flated by 0.165, on average. In our baseline model averaging specification, no
other variable was statistically significant, meaning that the study characteris-
tics have little importance when measuring the effect of temperature on suicide.
By applying weights proportional to the number of estimates in each study, we
discover the importance of controlling for seasonality and humidity levels. The
weighted model also showed that males are affected by temperature changes
more than females, although this finding needs to be supported by including
other socioeconomic variables.

Our work mitigates the impact of prolonged temperature deviances from
the mean on suicide rates. Nevertheless, the seasonality of suicide has been
confirmed by numerous studies, including the ones used in our analysis. Out of
the 17 studies used for our analysis, which reported a season peak, 15 identified
the peak to be in spring or summer. On the other hand, some studies report a
strong positive correlation for above-average temperatures in winter, suggesting
that the lack of cold in the winter months is also responsible for suicidality.

There are several limitations associated with our results. Firstly, not enough
studies reported the proportions of violent to non-violent, and completed to at-
tempted suicides. These are promising characteristics for explaining the vari-
ance in the suicide-temperature association (Lin et al. 2008; Tsai & Cho 2012;
Wu et al. 2014). To make the completed and attempted suicides estimates
aggregable, we divided the reported rate of attempted suicide per 100 000 by
25, since for every one completed suicide, there are 25 attempts (McIntosh &
Drapeau 2012). We acknowledge that this measure differs in time and place,
but it is not an easily obtainable statistic. Another limitation is the inability
to account for studies measuring the relationship using the maximum or min-
imum suicide-temperature. In some cases, such studies produce estimates 20
to 30 times larger than the usual method (Kim et al. 2019; Sim et al. 2020).
Using them would distort our mean estimate. Lastly, the ecological design of
the studies made it impossible for us to collect data regarding the psychological

and socioeconomic state on the individual level. The socioeconomic status was



6. Conclusion 38

supplemented using the macro-level median expenditure data for each state.
However, this characteristic was not identified as statistically significant in our

model averaging procedure.
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Appendix B

BMA Diagnostics and Robustness
Check

Table B.1: Diagnostics of the baseline BMA estimation

Mean no. regressors Draws  Burn-ins Time No. models visited
2.9092 300000 100000 27.53728 secs 57680

Modelspace Visited  Topmodels Corr PMP No. obs

16777216 0.34%  100% 0.9997 186

Model prior g-prior  Shrinkage-stats

Random-dilution / 12 UIP Av=0.9947

Notes: This table provides the summary of our baseline Bayesian model averaging settings. The model
prior has been set as the dilution prior to account for the collinearity in our dataset. This settings
corresponds to the results presented in Chapter 5.
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Figure B.1: Model size and convergence of the baseline BMA estima-

tion
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Notes: This figure shows the posterior model probabilities for different model sizes. Judging by the upper

plot, models with less variables are more efficient.
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Figure B.2: Bayesian model averaging - weighted data
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Notes: This figure illustrates the results of our weighted Bayesian model averaging specification. Every row
symbolizes a single explanatory variable used in the models, sorted by their posterior inclusion probability.
The columns represent individual models. Blue color means that the variables increases the effect, while red
color decreases the effect. If the cell is white, the variable was not used in the model. Models are sorted by
their posterior model probabilities. The best models are on the left. In the best model, only two variables

are included.
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Table B.2: Diagnostics of the weighted BMA estimation

Mean no. regressors Draws — Burn-ins Time No. models visited
5.9662 300000 100000 35.15151 secs 70763

Modelspace Visited  Topmodels Corr PMP No. obs

4194304 1.7% 100% 0.9988 186

Model prior g-prior  Shrinkage-stats

Random-dilution / 11 UIP Av=0.9947

Notes: This table provides the summary of our weighted Bayesian model averaging settings. The model
prior has been set as the dilution prior to account for the collinearity in our dataset.
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Figure B.3: Model size and convergence of the weighted BMA esti-

mation
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Notes: This figure shows the posterior model probabilities for different model sizes for the weighted spec-
ification. In contrast with the baseline approach, weighted specification produces better posterior model

probabilities for models with more variables.
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