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Abstract  

Climate change is currently one of the biggest threats that animal species must face. Increasing 

temperatures cause declines in wildlife populations all around the world. Ectothermic animals 

might be amongst the most threatened organisms by climate change due to their ecology that 

makes them dependent on ambient temperature. As ectotherms, snakes will most likely need 

to adapt to new climatic conditions, or they become extinct. To escape raising temperatures 

and decreasing precipitation, snakes might shift their ranges and move into more suitable 

areas. However, snakes have a low dispersal ability, which might lead to range reduction and 

in some populations even extinction. Climatic changes might affect health and behaviour of 

snake species as well. Increased temperatures can alter incubation period and embryonic 

development. Alterations in embryonic development and reduction of incubation period can 

cause different kinds of malformations, especially in oviparous snakes. These malformations 

can negatively impact fitness, depending on their severity. Some snake species might also 

benefit from climate change. Elevated temperatures allow snakes to be more active and, in 

some cases, even shorten hibernation duration. Snakes are also able to better escape 

predators in high temperatures than in low temperatures. Even though climate change is 

mostly seen as a threat to wildlife, it may actually benefit snakes in certain ways. 

 

Keywords: climate change, snakes, ecology, behavioural changes, distribution, health, 

temperature, precipitation 

  



 
 

Abstrakt  

Klimatické změny momentálně představují jednu z největších hrozeb, se kterými se živočišné 

druhy musí potýkat. Zvyšující se teploty ohrožují spoustu populací po celém světě. Ektotermní 

živočichové by mohli díky své ekologii, která je dělá závislými na okolní teplotě, patřit mezi 

organismy nejvíce ohrožené klimatickými změnami. Hadi se jako ektotermní živočichové 

pravděpodobně budou muset přizpůsobit měnícím se klimatickým podmínkám, nebo 

vyhynou. Aby hadi unikli vzrůstajícím teplotám a klesajícím srážkám, mohou se přesunout do 

míst s vhodnějšími klimatickými podmínkami. Hadi však mají omezenou schopnost disperze, 

což by mohlo vést k redukci areálu výskytu a u některých populací až k extinkci. Klimatické 

změny také s největší pravděpodobností ovlivní kondici a chování hadů. Zvýšená teplota může 

ovlivnit dobu inkubace a embryonální vývoj. Hlavně u vejcorodých druhů pak mohou změny v 

embryonálním vývoji a zkrácení doby inkubace způsobit různé malformace. Tyto malformace 

mohou v závislosti na jejich závažnosti negativně ovlivnit fitness jedince. Některé druhy hadů 

mohou však využít klimatické změny ve svůj prospěch. Zvýšená teplota prostředí dovoluje 

hadům být více či déle aktivní a v některých případech dokonce zkrátit dobu hibernace. Hadi 

dokážou při vyšších teplotách také lépe uniknout predátorům. Přestože jsou klimatické změny 

obecně považovány za hrozbu, některé druhy hadů je mohou využít ve svůj prospěch. 

 

Klíčová slova: změny klimatu, hadi, ekologie, behaviorální změny, rozšíření, kondice, teplota, 

srážky 
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1. Introduction 

Raising temperatures and decreasing precipitation associated with climate change are 

currently threatening many species. Ectotherms are more sensitive to climate change 

variables than endotherms (Aragón et al., 2010), because of their ecology. Performance of 

ectothermic animals depends on ambient temperatures (Kearney et al., 2009), which makes 

them especially prone to changes of climatic conditions.  Ectothermic species might be 

amongst the most vulnerable to climate change not only because their dependence on 

temperature, but also due to their inability to migrate over long distances.  

In this thesis, I will be dealing with snakes, because from the conservation perspective, 

they have been overlooked in comparison to the flagship organisms such as mammals or birds 

(Guedes et al., 2018; Lourenço-de-Moraes et al., 2019). Snakes are highly vulnerable to 

climate change due to their specialised habitat requirements and slow life histories (Araújo et 

al., 2006; Reading et al., 2010). However, snakes are known to prefer warm areas, hence they 

might be less severely affected by increasing temperatures and might even benefit from them. 

On the other hand, water availability might decrease under future climatic conditions and thus 

negatively impact snake species.  

Climate change will most likely benefit snakes from temperate zones the most, because 

they should spend less time thermoregulating under future climatic conditions (Weatherhead 

and Madsen, 2009). Conversely, snakes from the tropical zones or regions where water and 

shade availability is already low, will most likely experience the most negative consequences 

(e.g. Brito et al., 2011; Penman et al., 2010). Dispersal ability will probably determine the 

survival of species from areas that will become unsuitable under future climate conditions 

(Araújo et al., 2006).  

Elevated temperatures and decreased precipitation will most likely alter many life 

history traits of snakes, such as size of offspring, growth pattern etc., and distribution (e.g. 

Idrisova and Khairutdinov, 2018; O’Donnell and Arnold, 2005; Zacarias and Loyola, 2019). 

Elevated temperatures might allow snakes to be more active and alter their predatory and 

antipredatory behaviour as well (e.g. Capula et al., 2016; Mori and Burghardt, 2001).  This 

thesis aims to find out how those traits will change and whether snakes will be able to adapt 

to future climatic conditions, based on what we currently know about snakes and future 
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predictions. I would also like to determine the benefits that climate change brings to snakes 

and whether or not they are insignificant compared to the threats that snakes will have to 

face under future climatic conditions. 

In the last chapter, I would like to compare snake vulnerability to climate change to other 

ectothermic vertebrates to find out, whether snakes are more prone to climate change than 

others. I assume that amphibians will be more inclined to extinction than snakes and other 

reptiles, due to their high dependence on water. 

 

2. Impacts of climate change on distribution 

One of the effects that climate change may have on snakes are changes in geographic 

distribution of species (Zacarias and Loyola, 2019). Climate changes could significantly change 

distribution of natural habitats and biodiversity patterns. (Malcolm et al., 2006; Thomas et al., 

2019). Although climate cooling would probably cause more harm to snakes than climate 

warming, their ability to cope with the warming climate might be affected by associated 

decrease in water availability (Araújo et al., 2006). As many areas of current distribution might 

become unsuitable for snakes under future climate change (e.g. Araújo et al., 2006; Penman 

et al., 2010; Lourenço-de-Moraes et al., 2019), species survival will mostly depend on their 

dispersal ability and range shifts (Araújo et al., 2006). The direction of range shifts in snakes 

seems to tend towards poles and higher elevations. Snake populations in the northern 

hemisphere are predicted to shift northwards and populations in the southern hemisphere, 

southwards. However, continentality of climate or topography play also an important role in 

range shifts, contractions or expansions. (e.g. Bombi, Akani, et al., 2011; Needleman et al., 

2018). 

To be able to determine future changes in species distribution, scientists often use 

Ecological Niche Models (ENMs) (e.g. Sahlean et al., 2014; Vasconcelos, 2014; Zacarias and 

Loyola, 2019). ENMs use known distribution of species and environmental conditions (mainly 

precipitation and temperature) to predict future species response to climate change (Márquez 

et al., 2011). Distribution modelling is a good alternative to other experiments and field 

research, however, combination of both approaches should be favoured (Bombi, Capula, et 

al., 2011). Knowing how species  shifted their distribution as a response to past climate change 
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can play an important role in predicting possible future range shifts (Wu, 2016). Studies on 

the effects of climate change should also consider other influential factors (e.g. habitat 

destruction and changes in vegetation cover) to be able to better predict changes in species 

distribution (Márquez et al., 2011; Winter et al., 2016).  

Even though Ecological Niche Models are widely used by researchers, we need to keep in 

mind that these algorithms work at a probability level and have many limitations. For instance, 

studies that only investigate effects of climatic variables might be biased, because they do not 

consider other variables such as anthropogenic impact on habitats (Winter et al., 2016) and 

therefore predicted outcomes might differ from actual possible impacts (Wu, 2016). However, 

Winter et al. (2016) also stated that similar results of climate change effects on species 

distribution occurred in their study, no matter if other causes of change were examined. This 

implies that reporting bias might be minimal even in studies that examine climate change as 

the only influential factor. Climate envelope models (they define climatic niche of species - 

envelope) might be even more reliable than conclusions based solely on field research. 

Current studies based on field research have only gathered data over short periods of time 

and thus climate change effects might not have been strong enough to be detectable yet 

(Winter et al., 2016). Ecological Niche Models can additionally be used to predict future 

effectiveness of conservation function of protected areas as they might lose it due to species 

distribution changes and emigration (Lourenço-de-Moraes et al., 2019).  

The chapters that follow break down how snake distributions change on different 

continents. Snakes from different climatic conditions will most likely react differently to 

climatic changes, which is indicated in the following chapters. 

 

2.1 Europe 

European species of snakes are generally predicted to lose suitable habitats in areas with 

high annual temperature and decreases in annual precipitation. Increase in suitable habitats 

for most of the species is expected in cooler regions that are anticipated to become warmer 

in the future. Losses in species richness are therefore predicted for instance in southern 

France, Italy, and the Iberian Peninsula. Habitat expansion is, on the other hand, anticipated 
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in the southern and eastern rims of Central Europe, however habitat fragmentation and 

degradation might make it harder for snake species to disperse (Araújo et al., 2006). 

 Research from Spain (Moreno-Rueda et al., 2012) found out that between the years 1940 

and 2005 some European species have already shifted their range northwards, which indicates 

that extinction driven by climate change might not be as bad as previously anticipated. 

However, many European snake species are predicted not only to shift their range 

northwards, but also to lose significant parts or even almost all of their current ranges (e.g. 

isolated island and montane species and populations) under future climatic conditions (e.g. 

Santos et al., 2009; Sahlean et al., 2014; Ahmadi et al., 2019).  

Isolated populations of snakes might be more prone to habitat loss and local extinctions 

(e.g. Santos et al., 2009; Bombi, Capula, et al., 2011). For example, suitable habitats of 

Sardinian populations of Hemorrhois hippocrepis are predicted to reduce from the original 

1391 km2  to 11 km2  by 2050 (Fig. 1), out of which only 1 km2 falls into the protected areas 

(Bombi, Capula, et al. 2011). Similar fate is anticipated for Vipera graeca, which is a cold-

adapted snake inhabiting the highest and coldest areas of Pindos Mountains in Greece and 

Albania (Mizsei et al., 2016; 2020). Mizsei et al. (2020) expect an 81-90% reduction of its 

suitable habitat by the end of the 2080s. Moreover, their limitation to highest and coldest 

areas makes it impossible for long-distance dispersal to other suitable high-elevation 

mountains. 

 Some European snake species are anticipated to gain suitable habitat north of their 

current ranges (e.g. Popescu et al., 2013; Sahlean et al., 2014). According to Popescu et al. 

(2013), three (Coluber/Dolichophis caspius, Elaphe quatrolineata and Vipera ammodytes) out 

of eight snake species they studied in Romania are predicted to gain new suitable habitat by 

the 2050s. Findings of a different independent study on  Dolichophis caspius predict slight loss 

of habitat in southern range limit but also gaining new climatically suitable areas north of its 

current range (Sahlean et al., 2014), which agrees with the findings of Popescu et al. (2013).  

In summary, distributions of European species will most likely shift northwards, although 

isolated species or populations might experience major losses in suitable habitats under future 

climate conditions. In my opinion, raising habitat fragmentation and anthropogenic habitat 
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degradation, which the studies mentioned above did not consider, might make it even harder 

for certain species to disperse and thus lead them to extinction. 

 

 

Figure 1 Models of suitable habitat of Hemorrhois hippocrepis in Sardinia, a – climatic conditions in 2011, b – 
climatic scenario for 2020, c – climatic scenario for 2050. The light grey colour represents unsuitable areas, dark 
grey and black colour represent suitable areas. The squares represent the known distribution of H. hippocrepis 
in Sardinia in 2011. Source - Bombi, Capula, et al. (2011) 

 
 
 

2.2 Africa 

Distribution changes of snake species in Africa are driven by temperature and especially 

precipitation (e.g. Bombi, Akani, et al., 2011; Brito et al., 2011; Sow et al., 2014). Unlike 

European snakes, African snakes are expected to shift ranges not only northwards but in some 

cases also southwards (e.g. Bombi, Akani, et al., 2011; Zacarias and Loyola, 2019). African 

snake species will most likely face similar distribution changes to those in Europe, with many 

species losing a fair portion of their current suitable habitat, especially those in north Africa 

(e.g. Brito et al., 2011; El-Gabbas et al., 2016). Some species might also be expanding to new 

areas under future climatic conditions (e.g. Bombi, Akani, et al., 2011; Zacarias and Loyola, 

2019). 
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Among the species that are predicted to lose suitable habitat are African populations of 

Vipera latastei in Morocco (Brito et al., 2011). Brito et al. (2011) found out that precipitation 

was the most important variable for occurrence of the species. Future projections predicted a 

major habitat loss by 2080 and no new suitable areas to occur for Vipera latastei under future 

climate conditions. The current range of the species in Morocco is severely fragmented. The 

habitat fragmentation, and the Sahara Desert being an ecological barrier, might be the reason 

for the improbability of gaining new suitable habitats. Other African species projected to lose 

range are Thelotornis capensis and Causus rhombeatus, both losing more than a half of their 

current range. (Zacarias and Loyola, 2019). 

A study of iconic vipers Bitis gabonica and Bitis nasicornis in southern Nigeria (Bombi, 

Akani, et al., 2011) determined temperature and precipitation to be an important climatic 

variable for distribution of both species. Both of the species have similar ecology and inhabit 

rainforest habitats (Luiselli, 2006b), but Bitis gabonica preys solely on mammals and Bitis 

nasicornis also preys on amphibians (Luiselli, 2006a). They imply that the distribution of the 

high-abundance species of Bitis gabonica will expand to southern Nigeria and neighbouring 

areas of Cameroon under future climatic conditions. They also believe that interspecific 

competition between the two species will increase with possible negative impacts on 

demography and population density of Bitis nasicornis. Additionally, the dispersal of Bitis 

nasicornis into new suitable habitats seems unlikely as those future suitable areas are densely 

populated, fragmented, and degraded. Their findings agree with those of Zacarias and Loyola 

(2019), who also predict Bitis gabonica to gain new suitable areas in the future. Besides Bitis 

gabonica, Zacarias and Loyola (2019) also expect Naja melanoleuca to gain new suitable 

habitats of almost the same area size it currently occupies.  

Future expansion of venomous snakes’ habitats mentioned above can increase the risk of 

snakebite. Zacarias and Loyola (2019) state that snakebite risk might increase e.g., in the 

southern part of Mozambique due to changes in distribution of venomous snakes. Most 

species mentioned in their study are connected to human settlements and their range shifts 

might cause more areas to become risky. This could raise the numbers of both human and 

snake fatalities. 
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2.3 The Americas 

Predictions for South American snake species are quite alarming, with many species being 

anticipated to lose significant parts of their distribution ranges rather than gain new suitable 

areas (Lourenço-de-Moraes et al., 2019; Nori et al., 2016; Vasconcelos, 2014). Compared to 

those in South America, North American species seem to have a better future ahead of them. 

Some species are predicted to be able to disperse and shift their range into more suitable 

areas (Archis et al., 2018; Yañez-Arenas et al., 2016) and some will possibly lose suitable 

habitat with low probability of dispersal (Davis et al., 2015). 

Studies conducted in South America seem to show similar outcomes for snake species, for 

most of them, decrease in suitable habitat is predicted. For example, Mesquita et al. (2013) 

carried out a study on future climate conditions effects on Liophis reginae, which is a species 

widespread in South America. Their models predicted 30% loss of suitable habitat and 40% 

increase of its habitat fragmentation under future conditions. According to their findings, 

populations most affected by habitat reduction will be those in the northern coastal areas and 

especially those in Brazil, where isolated populations might also occur.  However, they also 

imply that southern limits of the species habitat might become more suitable and even expand 

in the future. Other South American species that are predicted to lose their range are for 

example Bothrops diporus and Bothrops ammodytoides (Nori et al., 2016) and Phalotris 

lativittatus (Vasconcelos, 2014). 

Lourenço-de-Moraes et al., (2019) assessed distribution changes of viviparous and 

oviparous species in the Atlantic Forest under future climate change. They predict range 

contraction as well, however, oviparous snakes appear to be more inclined to range loss than 

viviparous species, although they currently inhabit a broader area in the Atlantic Forest. The 

cause behind it might be the fact that viviparous snakes can regulate the temperature of their 

body and of their offspring by moving and therefore adapt better to changes in their 

distribution (Shine, 2004). According to their findings, only two out of 110 oviparous species 

inhabiting the Atlantic Forest are anticipated to gain new suitable areas (Xenodon merremii by 

37% and Drymachron corais by 14%) and Clelia Hussami was found to be most endangered by 

climate change and might even become completely extinct in the future. Their results agree 

with those of Mesquita et al. (2013), that major losses in suitable habitat should occur in the 

coastal areas. Lourenço-de-Moraes et al. (2019) also suggest expanding the protected areas 
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network as the effectiveness of protected areas in the Atlantic Forest is insufficient and its 

insufficiency will most likely keep rising in the future.  

Species in North America will probably tend to shift northwards (Whiting and Fox, 2020; 

Yañez-Arenas et al., 2016) with some range-restricted endemic species predicted to lose most 

of their suitable habitats (Davis et al., 2015). A study of Micrurus fulvius (Archis et al., 2018) 

forecasts northern increase in suitable habitat and northward shifts in current range with 

minimal contractions by 2050. Unlike for South American species, coastal areas of North 

America are anticipated to become more suitable in the future, at least for Micrurus fulvius. 

However, Archis et al. (2018) point out that their fossorial nature and activity patterns of the 

species might mean that their thermal optimum could be surpassed in the future in some 

areas of their distribution. This and the fact that the south-eastern part of their habitat is 

highly fragmented, could limit their ability to disperse in the future (Archis et al., 2018). 

Range-restricted endemic species like Crotalus willardi obscurus might face extinction 

under future climate conditions. Models predict its range to shift northwards, however, the 

species displays restricted dispersal ability and therefore the only possibility is to shift into 

higher elevation within its current range. This area of possible suitable habitat is very small, 

which could drive this species to extinction (Davis et al., 2015). 

The Americas might face an increase in numbers of snakebite under future climate change 

(Needleman et al., 2018; Nori et al., 2014; Yañez-Arenas et al., 2016). In South America, 

snakebite numbers might increase due to the tendency of species to shift ranges from north 

to south (Nori et al., 2014). Snakes might expand to areas where people are not used to 

venomous snakes. According to Yañez-Arenas et al. (2016), snakebite risk might increase in 

Argentina and Chile. Another example, Nori et al. (2014) predict Bothrops ammodytoides to 

expand southwards to places where there have never been venomous snakes. Nori et al. 

(2014) also imply that this range expansion could cause snakebites in human populations with 

no proper personnel and health care available. In North America, Yañez-Arenas et al. (2016) 

anticipate snakebite risk to expand northwards. They estimate a future increase of people 

being at risk of snakebite to be 5.5 to 6.7 million in the Americas alone. 
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2.4 Asia and Australia 

The number of studies dedicated to the effects of climate change on distribution of snakes 

in Asia and Australia is low compared to the rest of the world, even though both regions have 

a very high abundance of snake species. In Asia, dispersal ability of snakes might be affected 

by habitat loss and fragmentation associated with deforestation, and population isolation (on 

both mainland and islands). As for Australian snakes, populations along the east coast and 

temperate regions seem to be most inclined to habitat loss, most likely because of their high 

habitat specialisation (Cabrelli et al., 2014). 

Asian snake species are predicted to gain more suitable areas than they are expected to 

lose (Huang et al., 2013; Wu, 2016), however, with increasing drought, fossorial taxa, such as 

Calamaria spp. might need to burrow deeper into the soil in order to find sufficient moisture 

(Bickford et al., 2010). Some species have already exhibited range shifts as a response to 

climatic changes. Wu (2016) found out that seven out of nine species in China that he studied, 

had not only shifted ranges, but gained new suitable habitat as well. His data indicate that 

ranges of studied species had shifted in all directions, but mostly northwards or westwards. 

He associated those changes with temperature, precipitation, and potential 

evapotranspiration rate. Even some high-elevation species might be able to gain new suitable 

habitat under future climatic conditions (Huang et al., 2013). As Huang et al. (2007) imply, 

neither critical thermal maximum nor critical thermal minimum are a limiting factor for 

altitudinal distribution of some species. In my opinion, this might indicate that these species 

will be able to disperse more easily to escape the changing climate in the future.  

In Australia, predictions are a lot more pessimistic compared to Asia. Many species are 

anticipated to lose suitable habitat under future climatic conditions rather than gain new 

suitable areas (Cabrelli et al., 2014; Penman et al., 2010). Most elapid snake species are 

predicted to lose suitable habitat by 2050, with some populations losing more than 50% of its 

current habitat. Range loss will probably affect populations in coastal and temperate areas the 

most. However, thirteen elapid snake species might experience range expansion (Cabrelli et 

al., 2014). Among the elapid snakes that will lose range is Holocephalus bungaroides. This 

species will probably lose nearly all of its current range under future climatic conditions (Fig. 

2) and Penman et al. (2010) suggest that other actions such as translocation of snakes might 

be needed as current protection areas might become inefficient in the future.  
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Figure 2 Models of possible future distributions of Holocephalus bungaroides using Maxent (ENM), 
a – climatic conditions in 2010, b – low warming scenario for 2030 (temperature increased by 0.5 ˚C, rainfall 
reduced by 5%), c – high warming scenario for 2030 = low warming scenario for 2070 (temperature increased by 
1.5 ˚C, rainfall reduced by 5%), d – high warming scenario for 2070 (temperature increased by 4 ˚C, rainfall 
reduced by 5%), (n = 159). Source - Penman et al. (2010) 
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2.5 Sea snakes 

Effects of climate change on distribution of sea snakes have not been thoroughly studied 

yet. Although Dunson and Ehlert (1971) conducted a study of Pelamis platurus and its 

response to high and low temperatures. Pelamis platurus is a cosmopolitan species and its 

range is the broadest range of all sea snakes. Their findings indicate that temperature might 

be one of the factors limiting the species from colonizing cooler southwest coasts of South 

America and Africa in present times. Their upper limit of temperature tolerance seems to 

slightly differ in water and air. The upper lethal temperature level of these snakes seems to 

be higher in air (over 34 ˚C) than in water (between 33.2 and 33.6 ˚C). Dunson and Ehlert 

(1971) also suppose that this species uses a behavioural thermoregulation by diving into 

colder waters to escape deadly temperatures, because some individuals they caught were 

close to their upper lethal level. In conclusion, sea snake species are most likely sensitive to 

too high or too low temperatures, however, thorough research on how the temperatures alter 

their dispersal has yet to be conducted. 

 

3. Effects of climate change on health 

Changes in temperature and precipitation linked to climate change will most likely affect 

health and overall fitness of snake species. As ectotherms, snakes rely on external 

temperatures and thus too high temperatures might have a serious impact on their health. 

Scientists imply that climate change will probably affect development of snakes, embryo 

mortality, phenotype, and more (e.g. O’Donnell and Arnold, 2005; Brown and Shine, 2006; 

Pincheira-Donoso and Meiri, 2013). Inbreeding and genetic isolation combined with changes 

in climatic conditions might also cause declines in snake populations (e.g. isolated population 

of Crotalus horridus in New Hampshire) (Clark et al., 2011). Combrink et al. (2021) suggest 

innate immunity to be affected by climatic variables as well. Annual spring precipitation was 

associated with innate immunity of Thamnophis elegans and Thamnophis sirtalis, therefore 

decrease in precipitation might decrease immune function in some species. 
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3.1 Embryonic development 

Incubation temperature, and in some cases also moisture, have a significant impact on 

embryonic development of snakes. High temperatures cause a number of alterations in 

development, which can cause elevated mortality rates in embryos and neonatal snakes 

(Idrisova and Khairutdinov, 2018; O’Donnell and Arnold, 2005) or affect vitality and fitness 

later in life (Lin et al., 2005).  

Viviparous and ovoviviparous species. In Vipera aspis (viviparous), high temperatures 

during summer caused faster embryonic development and early birth. Mean temperature in 

early stages of embryogenesis affected ventral scalation of neonatal snakes, with higher 

temperatures causing an increase in the number of ventral scales (Lourdais et al., 2004). 

O’Donnell and Arnold (2005) found out that temperature affected sex ratio of stillborn 

offspring in the viviparous snake Thamnophis elegans. Higher temperatures caused more of 

the stillborn offspring to be male, which was probably caused by maladaptation induced by 

sexual selection. Preferred body temperature (PBT) in ovoviviparous neonates can be affected 

by temperature, which was not found in oviparous species. PBT was affected by incubation 

temperature in Nerodia sipedon (ovoviviparous) but not in Elaphe obsoleta (oviparous). The 

reason behind this difference might be the fact that females of Nerodia sipedon are able to 

alter the effects of ambient temperature on offspring development by thermoregulation, 

whereas eggs of Elaphe obsoleta are completely dependent upon the nest temperature 

(Blouin-Demers et al., 2000). 

Oviparous species. Effects of climate change on oviparous species slightly differ from 

effects on viviparous or ovoviviparous species. According to Brown and Shine (2006), nest 

temperature and moisture affect mass of the eggs and phenotypic traits of hatchlings of 

Tropidonophis mairii. However, soil moisture had a more significant impact on phenotypes of 

the hatchlings than temperature. High temperatures reduce the incubation period length and 

hatched snakes are less developed and smaller (Idrisova and Khairutdinov, 2018; Lin et al., 

2005). The cause behind it might be higher basal metabolic demands caused by high-

temperature incubation, which may reduce growth efficiency (Souchet et al., 2021). Snakes 

incubated in high temperatures can also develop malformations like scale deviations (similar 

to those in viviparous snakes), kyphosis (tail curvature) or scoliosis (spine curvature) (Fig. 3). 

These malformations are often shared by siblings or mother and her offspring (Idrisova and 
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Khairutdinov, 2018). However, Burger (1998b) states that hatchlings of Pituophis 

melanoleucus incubated in high temperatures were more likely to survive in the wild than 

those from low temperatures. A study of Natrix maura incubated in high temperatures and 

hypoxia implies that even though chances of survival are lowered, majority of embryos were 

able to develop into viable snakes nevertheless (Souchet et al., 2021). Females of viviparous 

snake species might be able to decrease the impact of high temperatures on embryos by 

choosing nest-sites with lower temperatures and higher moisture (Brown and Shine, 2006). 

Figure 3 Malformations in hatchlings of Natrix natrix incubated in high temperatures: a - kyphosis;  
b - scoliosis; c - tail curvature; d - head deformation; e - microphthalmia; f - ventral scales deviations (green 
colour) in an individual with spine curvature; g - stripe pattern of an individual with spine curvature. Source - 
Idrisova and Khairutdinov (2018) 

 
 

3.2 Growth 

As mentioned above, climate change might alter embryonic growth in snakes. When it 

comes to embryonic growth changes, results mostly correspond across studies. That is not the 

case with growth after hatching. There is just a small number of studies and their results vary. 

Accelerated growth might negatively impact lifespan of snakes.  
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According to Pincheira-Donoso and Meiri (2013), temperature and precipitation do have 

an impact on snake growth, but only in some species they studied. Temperature and 

precipitation also seem to have opposite effects on snakes. Body size of some snakes increases 

with higher temperature (e.g. Cerastes cerastes), whereas with increasing precipitation, body 

size of some snakes decreases (e.g. Natrix tesselata) (Pincheira-Donoso and Meiri, 2013). 

However, climate change trends show raising temperatures and decreasing precipitation, 

which implies that species mentioned above should both experience an increase in growth 

rates. High temperatures also increase metabolic rates and lead to high energy expenditure 

(Michel and Bonnet, 2010), which might cause reduction in lifespan. Some studies found 

growth rates to be linked to food availability rather than climatic conditions (Madsen and 

Shine, 2000; Michel and Bonnet, 2010), which implies that some snakes might not experience 

any changes in growth associated directly to climate change. However, food availability might 

decrease under future climatic conditions, which could affect growth. 

 

4. Effects of climate change on behaviour 

Ambient temperature greatly affects behaviour of ectotherms. Their activity levels are 

linked to body temperature and body temperature is dependent on ambient temperature. 

Elevated temperatures can affect a wide range of behavioural traits in snakes, such as  

antipredatory and predatory behaviour, which are crucial for survival or diurnal activity and 

reproductive behaviour. Climate change and elevated temperatures that are associated with 

it will therefore most likely affect behaviour of many snake species.  

 

4.1 Antipredatory behaviour 

Antipredatory behaviour is an important behavioural trait, which allows organisms to 

avoid being killed by a predator. All animals that are exposed to predators need to recognize 

a threat and respond accordingly. Antipredatory behaviour is crucial for survival of individuals 

and elevated temperatures associated with climate change will most likely alter it.  

Snakes seem to be most at risk of predation when their body temperatures are low (e.g. 

Brodie and Russell, 1999; Mori and Burghardt, 2001). Multiple studies observed that snakes 

tend to choose static responses at low temperatures and dynamic responses at higher 
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temperatures to avoid a predator (e.g. Mori and Burghardt, 2001; Schieffelin and Queiroz, 

2017). Snakes at higher temperatures generally seem to be more aggressive (Burger, 1998a; 

Schieffelin and Queiroz, 2017) but also choose to flee from a predator rather than use crypsis. 

Higher temperatures allow snakes to move faster, which is most likely the reason why snakes 

preferred dynamic responses when exposed to higher temperatures (Brodie and Russell, 

1999; Mori and Burghardt, 2001). Incubation temperature plays a role in antipredatory 

behaviour as well. Hatchlings incubated at higher temperatures respond faster and more 

defensively than snakes incubated at low temperatures (Burger, 1998a; 1998b). Size of an 

individual also affects antipredatory behaviour. Increased temperatures can increase growth 

in snakes (Pincheira-Donoso and Meiri, 2013) and larger snake species tend to be more 

aggressive towards predators. Crypsis is, on the other hand, more effective for smaller 

individuals because they are harder to detect. Crypsis also requires less energy, but snakes 

might need to use a risky behaviour such as biting when detected in order to protect 

themselves (Delaney, 2019). Larger individuals of Haldea striatula were for instance found to 

have more scarring than smaller individuals, which indicates that increased body size increases 

a risk of predation (Taylor and Cox, 2019). 

In conclusion, elevated temperatures associated with climate change might cause snakes 

to be more aggressive towards predators and use more dynamic responses to predation in 

general. Therefore, increased temperatures might increase survival, because they allow 

snakes to escape faster and use a wider range of antipredatory responses. However, increased 

body size caused by increased temperatures might cause snakes to be more at risk by 

predation and decrease chances of survival. 

 

4.2 Predatory behaviour 

The frequency and speed at which snakes hunt for food is most likely dependent on 

ambient temperature. Increased temperatures might affect locomotion and the ways snakes 

hunt and therefore alter their chances of survival.  

Snakes usually tend to hunt more at higher temperatures (e.g. Santos et al., 2007; Capula 

et al., 2016). However, a study of Crotalus oreganus in California (Putman and Clark, 2017) 

came to a different result. Individuals of this species spent less time hunting with increasing 
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temperatures. Studied individuals preferred to hunt at lower temperatures (16 - 31 ˚C) and 

usually retreated to shelter before their body temperature reached 31 ˚C. These findings 

indicate that elevated temperatures associated with climate change might limit the time this 

species spends on hunting. Putman and Clark (2017) also imply that increased temperatures 

might force the species to hunt during the night rather than during the day or earlier or later 

in the season when daily temperatures drop.  

Ambient temperatures affect predatory behaviour in both amphibious and terrestrial 

snake species. Higher temperatures increase swimming speed in amphibious snakes but 

decrease apnoea (suspension of breathing) time. Therefore, active foraging might be 

advantageous in warmer waters, but decrease in apnoea time might decrease capture success 

rate due to the higher frequency of swimming to the surface to take a breath (Aubret et al., 

2015). Some snakes might additionally hunt more frequently in arboreal environments with 

increased temperatures (Cox et al., 2013; Gerald et al., 2008), because increased 

temperatures cause snakes to fall less frequently (Gerald et al., 2008).  

Prey diversity might also be affected by temperature alterations. Snakes are gape-limited 

predators and increased body size induced by climate change might allow them to prey on a 

wider spectrum of prey. The findings of Santos et al. (2007) imply that larger individuals of 

Vipera latastei fed on larger and different species of prey (mammals and birds) than smaller 

individuals (centipedes and lizards). Additionally, Capula et al. (2016) found out that higher 

annual temperatures increase prey diversity of Hierophis viridiflavus. This might be caused by 

increased foraging activity, which allows snakes to encounter a wider spectrum of potential 

prey species. Higher temperatures also caused snakes to feed more, which agrees with the 

findings of other studies, such as those of Santos et al. (2007). However, Capula et al. (2016) 

also found links between rainfall and hunting. During heavy rainfall the number of fed snakes 

decreased. 

 Higher temperatures seem to be in favour of most species; however, it is obvious that 

some species such as Crotalus oreganus might need to alter their hunting methods to survive 

under future climatic conditions. For many species, climate change might bring benefits in the 

form of more frequent feedings or a wider variety of prey. 
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 4.3 Activity 

 Activity period and locomotion is dependent on ambient temperatures in snakes (e.g. 

Moreno-Rueda et al., 2009). Generally, the activity period of snakes increases with increasing 

temperatures (e.g. Moreno-Rueda and Pleguezuelos, 2007; Capula et al., 2014). Snakes from 

temperate regions might especially benefit from climate warming by extending their activity 

period (Moreno-Rueda et al., 2009). 

Although increased daily activity has its benefits, it also has its downsides. Not only does 

increased activity elevate metabolic rates (Dupoué et al., 2017), but also causes more snakes 

to be killed on the road (Capula et al., 2014). The findings of Capula et al. (2014) indicate that 

the number of individuals of Hierophis viridiflavus killed on the road was negatively influenced 

by temperature during summer (less killed snakes), but positively influenced in spring and 

winter (more killed snakes, Fig. 4). This indicates a delayed hibernation and early emergence 

from hibernation caused by increased temperatures. However, higher temperatures and dry 

air can also cause snakes to urinate more during hibernation and force them to search for 

water due to dehydration (Lutterschmidt et al., 2006). Snakes might avoid dehydration during 

hibernation by submerging in water (Costanzo, 1989).  

Figure 4 Mean number of individuals of Hierophis viridiflavus killed on the road. Source - Capula et al. (2014) 
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Semi-arboreal snakes will most likely benefit from increased temperatures, as they 

tend to fall less from branches and move faster at higher temperatures. This will allow them 

to climb and bask in vegetation more frequently (Gerald et al., 2008). Nevertheless, increased 

daily activity as a response to elevated temperatures does not apply to all snakes. Some 

aquatic snakes, such as Nerodia cyclopion, are most active during the cooler months in order 

to gain heat and are mostly aquatic and nocturnal during the hottest months to escape the 

heat (Mushinsky et al., 1980). These findings indicate that species like Nerodia cyclopion might 

become less active during the cooler months in the future under elevated temperatures. 

 

4.4 Reproductive behaviour 

 The number of studies dealing with the links between temperature and reproductive 

behaviour of snakes is very low. It is therefore impossible to deduce a general conclusion. 

However, it has been observed that reproductive behaviour of some species is indeed 

temperature-dependent (Hawley, 1975; Lutterschmidt and Mason, 2009). It has been proved 

that elevated hibernation temperatures delay onset of mating behaviour in males of 

Thamnophis sirtalis parietalis (Lutterschmidt and Mason, 2009). Ambient temperatures after 

hibernation also affect sexual activity in Thamnophis sirtalis parietalis. Generally, the higher 

the temperature, the higher the number of sexually active snakes. Additionally, mating 

behaviour was more influenced by temperature than other types of behaviour such as  

antipredatory behaviour (Hawley, 1975). In intertropical regions with a dry season, females 

reproduce during the rainy season and a longer rainy season means a longer mating season 

(Girons, 1982), which might indicate that decreased precipitation might shorten mating 

periods of some species.  

 

5. Comparison with other ectothermic vertebrates (excluding fish) 

 In this chapter, I am comparing the impacts of climate change on snakes with impacts 

on other ectothermic vertebrates. I would like to find out whether snakes evince any effects 

that are not found in other ectotherms and whether they are more vulnerable to changing 

climatic conditions than other taxa. Generally, thermoregulation and above-ground activity of 

ectothermic vertebrates is dependent on shade (Kearney et al., 2009). This might be especially 
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troubling in regions where vegetation cover is insufficient, such as north Africa, or conversely 

in regions where there is way too much vegetation cover, such as Europe (Fig. 5). 

 

Figure 5 A - Global shade requirements of a small terrestrial ectotherm thermoregulating between core body 
temperature of 20 and 40 ˚C, targeting a temperature of 33 ˚C; B- mean annual vegetation cover available, 
represented by the normalized difference vegetation index (NDVI). Source - Kearney et al. (2009) 

 

5.1 Reptiles 

Lizards. Snakes are generally less threatened than lizards (Böhm et al., 2013), however, 

effects of climate change on snakes are very similar to those on lizards. Species of the northern 

hemisphere such as Zootoca vivipara are, similarly to snakes, expected to shift ranges 

northwards under future climatic scenarios. By the end of the century, this species is also 

predicted to move into higher elevations (Feldmeier et al., 2020). There is insufficient data on 

fossorial snake species, but a study of two North American fossorial lizards (Lara-res et al., 

2021) shows that fossorial species might be at a high risk under future climatic conditions. 
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Both fossorial species in this study are predicted to lose suitable habitat and mobility 

limitations restrict them from seeking new suitable areas in the future. This study also implies, 

that Anniella geronimensis might be threatened by raising sea level due to its low elevation 

habitat. Although there is not enough data on fossorial snake species, we could expect 

fossorial snakes to be in a similar situation since climate change affects snakes and lizards 

similarly. Growth rates were proved to increase in the lizard Tropidurus torquatus. However, 

increased growth rates were also proved to reduce the number of reproductive years in this 

lizard, which I was not able to prove in snakes. This tropical lizard is also predicted to reduce 

its activity (Piantoni et al., 2019). Conversely, an Australian crepuscular lizard is predicted to 

increase its activity and extend its active season (summer) (Moore et al., 2018).  

Turtles. Turtles seem to react a bit differently to climatic changes compared to snakes. 

Sea turtles, like Chelonia mydas, are (contrary to snakes) most likely directly more influenced 

by food availability than ambient temperatures. This means that if temperatures increase and 

food availability does not change, neither will growth, reproduction and egg quality (Stubbs 

et al., 2020). However, if temperatures exceed thermal limits, turtles can move into cooler 

waters, as found in Macrochelys temminckii (Fitzgerald and Nelson, 2011). This behaviour was 

also found in a sea snake, which indicates that other sea snake species might be able to escape 

heat by moving into cooler waters as well. Even though some turtles have the ability to escape 

heat by moving, some turtles will probably lose suitable habitat, nevertheless. Glyptemis 

insculpta, a North American species, is predicted to lose habitat in the southern part of its 

range and the southern populations will most likely need to shift northwards into more 

suitable habitats (Mothes et al., 2020). This pattern is similar to the patterns seen in snakes. 

 Crocodiles. Snakes generally seem to be more vulnerable to climate change than 

crocodiles. Rodgers and Franklin (2021) imply that aerobically fuelled activities of Crocodylus 

porosus will likely not be restricted by climate, however, growth and antipredatory behaviour 

might be if thermoregulation is not used. Similarly to snakes, crocodiles kept at higher 

temperatures eat more and have an increased metabolic rate. However, crocodiles kept 

constantly at the temperature of 25 ˚C became shorter (Kanui et al., 1991), which was not 

found in snakes. Cooper-preston (1989) also found out that higher temperature shortens the 

incubation period and causes deformities in embryos with high mortality rates. Deformities 
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and elevated mortality linked to high temperatures were found in snakes as well (e.g. Idrisova 

and Khairutdinov, 2018). 

 

5.2 Amphibians 

 Generally, aquatic habitats provide greater opportunity for ectotherms to 

behaviourally thermoregulate than terrestrial habitats (Rodgers and Franklin, 2021). However, 

Böhm et al. (2013) state, that amphibians (42% threatened) are generally more threatened 

than reptiles (20% threatened). This implies that further pressure from climatic conditions 

might cause even more amphibians to become endangered. Increased temperatures will most 

likely restrict activity of amphibians (Lertzman-lepofsky et al., 2020; Rohr et al., 2013), 

especially during critical periods for migration and breeding (Lertzman-lepofsky et al., 2020). 

Furthermore, decreased water levels in breeding ponds cause reproductive failure and severe 

reduction of population size (Araújo et al., 2006). Increasing temperatures and reduction in 

precipitation might therefore drive many amphibian species to extinction. Snake species are 

not dependent on water to breed successfully, which makes them less vulnerable to climate 

change compared to amphibians. According to Araújo et al. (2006), amphibians are also less 

likely to disperse than other ectotherms. However, Tiberti et al. (2021) found out that two 

amphibian species (Bufo bufo and Triturus carnifex) have shifted ranges into higher elevations 

over the past 15 years in association with climate change. Feldmeier et al. (2020) came to 

similar results when projecting future response of Salamandra atra to climate change. This 

species is predicted to shift into higher elevations, but also northwards under future climatic 

conditions. This indicates that colonization by amphibians is indeed possible when colonizable 

habitats are available. 

 In comparison to other ectothermic vertebrates, responses of snakes to climate 

change are the closest to those of lizards. Both taxa seem to be affected and respond in similar 

ways. This indicates that we might be able to predict effects of climate change on some snake 

species that are data deficient (especially fossorial snake species - Böhm et al., 2013) by 

looking into effects on fossorial lizards species. It is important to note, that some reptile 

species have temperature-dependent sex determination (TSD), which was not found in 
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snakes. This implies that those species might be more vulnerable to increased temperature 

than others.  

  Overall, snakes do not evince any traits that cannot be found in other ectothermic 

vertebrates. After comparing snakes to other ectotherms, we can tell that snakes are amongst 

the more vulnerable, but not the most vulnerable of ectotherms. Amphibians and their high 

dependency on water most likely makes them the most vulnerable to climate change of the 

ectothermic taxa. However, snakes are usually hard to sample and sample sizes are therefore 

low, which might cause biases when comparing snakes to species that are easier to sample 

(Böhm et al., 2013).  

 

 6. Conclusion 

 Snake species are indeed under a threat by changing climatic conditions. 12% of snakes 

are currently threatened with extinction (Böhm et al., 2013) and climate change will most 

likely cause more snake species to become endangered or, as an ultimate consequence, drive 

species to extinction.  

 Distribution of snake species will greatly change by the end of the 21st century. Both 

temperature and precipitation are important drivers of snake species range shifts. To escape 

the raising temperatures associated with climate change, many species will have to move into 

more suitable areas to survive. The pattern of poleward range shifts as well as the pattern of 

shifts into higher elevations were proved to be true. Species from temperate regions, such as 

North America and Europe, will most likely gain the most and lose the least of their current 

range under future climatic conditions compared to species from other climate zones. This is 

because the areas that are currently too cold will become suitable under future climatic 

conditions and snakes will be able to move into those areas.  

Conversely, species from hot regions will lose a lot, in some cases even all, of their 

current suitable habitat. This applies for example to snakes in Australia, Africa, and South 

America. Asian snake species have not been thoroughly studied, but it seems like they are 

mostly going to gain suitable habitat under future climatic conditions. In regions like Africa 

and South America, shifts in distribution of snake species will put more people at risk of 
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snakebite. Areas where snakes are not found today might become suitable habitats for snakes 

in the future, which could be a problem as people in those areas are not used to or adequately 

prepared for snakebites. 

 There is not enough data to make a general conclusion about distribution of sea 

snakes, but based on the findings of Dunson and Ehlert (1971), I assume that other sea snake 

species will be able to thermoregulate by diving into cooler waters as well. 

 Climate change will greatly impact health of snakes, especially in oviparous species. 

Females of viviparous and ovoviviparous species are to a certain level able to control the 

temperature of their offspring by thermoregulating behaviourally. Although eggs of oviparous 

species depend on the nest temperature, females might be able to abate the impacts of high 

temperatures by choosing cooler nest-sites with higher moisture. High temperatures cause a 

decrease in incubation period length and elevated mortality of embryos. The embryos that 

survive are often born smaller and with malformations that greatly decrease life quality and 

fitness. When it comes to growth after hatching, results of studies vary. I think it is safe to say 

that temperature and precipitation does affect growth in some species. Those species whose 

growth is affected by temperature and precipitation tend to grow faster under higher 

temperatures and decreased precipitation. To summarize it, climate change will most likely 

have a very negative impact on health of snake species if they do not somehow manage to 

adapt in time. 

 Increased temperatures have generally a very positive impact on snake behaviour and 

activity. Antipredatory behaviour of snakes significantly changes from static to more dynamic 

when exposed to higher temperatures. This means that snakes might be able to escape 

predators more successfully under future climate change. However, if growth rates of snakes 

increase under future climatic conditions, it might cause snakes to be more at risk of 

predation, because larger individuals were proved to be more predated. 

 Snakes also tend to spend more time hunting at higher temperatures; however, some 

species prefer to hunt at lower temperatures. Those species (such as Crotalus oreganus) will 

most likely need to alter their predatory strategies under future climatic conditions, like hunt 

during the day or later or sooner during the season. For amphibian snake species, elevated 

temperatures mean faster swimming but also decreased apnoea time, which causes more 
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frequent swimming to the surface to take a breath. This could lead to less successful hunting, 

because the prey is more likely to notice the snake. However, prey variability and feeding 

frequency will most likely increase in association with elevated levels of foraging activity under 

future climatic conditions. 

At higher temperatures, snakes generally spend more time being active. Increased 

activity in association with higher temperatures also mean delayed hibernation and early 

emergency from it. This however also means more roadkills during spring and winter. 

Reproductive behaviour is affected by climatic variables in some species, however, 

there is not enough data to make any general conclusion. Temperature can delay onset of 

reproductive behaviour, the number of sexually active individuals, and in regions with dry 

seasons, reduced precipitation can shorten the mating period.  

Compared to other ectothermic vertebrates, snakes are affected similarly to lizards by 

climate change. We might be able to estimate effects of climate change on data-deficient 

snake species by what we know about lizards. Snakes (and reptiles in general) are less 

vulnerable to climate change than amphibians, whose breeding and many other activities are 

strictly water dependent. Finally, I did not find any effect of climate change on snakes that 

cannot be found in other ectotherms.  

 Even though snakes are not the most vulnerable of ectotherms, steps towards their 

conservation should be made. Snakes will benefit from climate change in the form of increased 

activity and some species will also gain new suitable habitat. However, many snake species 

are not able to disperse on their own and many protected areas are not efficient or will 

become inefficient under future climatic conditions. According to Cabrelli et al. (2014), only 

highly endangered species have benefited from practical conservation programmes, which is 

alarming and a change needs to be made. Many snake species will lose suitable habitat and 

experience health issues. There is also a very low data availability on fossorial and sea snake 

species, which should be brought to attention. Conservation of snakes has been overlooked 

compared to more charismatic taxa such as mammals or even sea turtles. This needs to change 

or we will lose many snake species to extinction under future climate. I believe that we also 

need to educate the general public on the importance of snakes in ecosystems in order to stop 

them from killing snakes and help us conserve them. 
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