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Preface

The subject of this Thesis is the problem of forward and inverse modelling of the physical

phenomenon of electromagnetic induction on a global planetary scale and studies of the elec-

tric conductivity of the deep Earth. I was attracted to this topic during my doctoral studies at

the Charles University, where I have developed the initial version of the forward solver based

on the application of the spherical harmonic-finite element method in the time domain. My

research in the last 20 years has been dedicated to this phenomenon, driven by the ever in-

creasing capabilities of recent computers on the one side, and by the availability of low-orbit

satellite measurements of the geomagnetic field on the other side.

My initial experience with interpretation of satellite geomagnetic data came from the Ger-

man CHAMP (CHAllenging Minisatellite Payload) mission (2000–2010). Since 2008 I have

been involved in the preparation of the Swarm multi-satellite mission of the European Space

Agency. During the development phase, the original time-domain three-dimensional (3-D) in-

version method has been introduced. Following the Swarm launch in 2013, the first attempts

to invert the satellite data in terms of 3-D mantle conductivity structure have pointed out that

a proper separation of the external fields and their induced counterparts, a necessary step prior

the solution of the inverse problem, represents a significant challenge. As of 2019, almost six

years into the mission life, it seems that the 3-D inversion of satellite data is finally within

sight.

As Swarm measurements have been accumulated and processing methods improved, I

have turned my interest to the problem of motionally induced electric currents in the Earth’s

oceans, both by tidally and atmospherically driven ocean flows. While the magnetic signa-

tures of the tidal flows have been successfully detected in the satellite data, the magnetic fields

induced by the global ocean circulation, and thus closely related to the Earth’s climate devel-
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Kuvshinov, Zdeněk Martinec, Ctirad Matyska, Nils Olsen, Ondřej Souček, Libor Šachl, and
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1 Introduction

The electric conductivity is an important geophysical parameter connected to the thermal,

chemical, and mineralogical state of the Earth’s mantle. A traditional technique to study

the distribution of electric conductivity in deep regions of the Earth is the electromagnetic

induction (EMI) method. Two basic components are needed for the reconstruction of the con-

ductivity model from observed variations of geomagnetic or geoelectric field. The forward

modelling uniquely predicts, within the limits of the spatio-temporal resolution, the observ-

able properties for a given conductivity model and a model of external or internal sources.

This prediction is based on the numerical solution of the quasi-stationary Maxwell equations,

or the electromagnetic induction equation derived directly from them. The inverse modelling

then attempts to construct a conductivity model that explains the observed data within pre-

scribed error limit. The solution of such a problem is inherently non-unique and additional

constraints are applied to the conductivity model, based on some a-priori known geophysical

informations, or as mathematical regularization of the models.

The EMI process on the global scale is driven by three main sources of energy. The

charged particles trapped in the Earth’s magnetosphere create a system of electric currents.

The ring current consisting of mostly hydrogen ions circulating clockwise at distances of 3–8

Earth radii in the equatorial plane, is the most prominent energy source, capable of inducing

electric currents even in the lower mantle. The main challenge in the area of global inversion of

satellite data driven by the magnetospheric currents is the separation of the primary, inducing

components, and the secondary, induced fields. These can be described by the time series of

external and internal spherical harmonic coefficients. Such time series are one of the products

of the Swarm mission. Since the rather critical assessment of the early versions of this product

by Martinec et al. (2018), the situation has improved significantly, and a preliminary result of
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the inversion of the most recent dataset will be presented at the end of this thesis.

The geomagnetic solar daily variations, the Sq signals, are used in electromagnetic induc-

tion studies to estimate the electric conductivity of the Earth’s upper mantle. Traditionally,

Sq induction studies employ the observatory magnetic data from a few quiet days, separate

them into external (due to the ionospheric Sq current system) and internal (due to induced

counterpart in the Earth) parts, and interpret the latter part in terms of the upper mantle elec-

tric conductivity. So far, global-scale 1-D conductivity models (e.g. Campbell and Anderssen,

1983; Campbell and Schiffmacher, 1988; Winch, 1984; Schmucker, 1999b) and regional 3-D

models (e.g. Kuvshinov and Koch, 2015) have been determined from ground observatory data,

the latter making use of a temporary station array.

A series of recent studies (Schnepf et al., 2015; Grayver et al., 2016, 2017; Velímský

et al., 2018) has demonstrated the sensitivity of satellite-derived tidally-induced signals to

mantle electric conductivity in the uppermost mantle. So far, only 1-D mantle profiles have

been constrained with this approach, and a bias towards sub-oceanic mantle is obvious from

the spatial distribution of the source signals.

The problem of forward EMI modelling on the global scale can be formulated either in

the time domain, or in the frequency domain. The choice between the two approaches should

be based on the characteristics of both sources and data. The daily geomagnetic variations

in the ionosphere and the tidal signals in the oceans dominate at discrete frequencies related

to the Earth rotation and orbital motions (Schmucker, 1999a; Einšpigel and Martinec, 2017).

On the other hand, the time variations of the magnetospheric ring current are of transient na-

ture (Martinec et al., 2018), and the large-scale atmospherically driven ocean circulation also

covers physical phenomena with continuous spectrum in the range of days to years (Wunsch,

1981).

Various methods have been used to discretize and solve the forward problem with 3-D con-

ductivity variations, as described in the comprehensive benchmark by Kelbert et al. (2014).

The finite-difference methods (Uyeshima and Schultz, 2000; Kelbert et al., 2008, 2009) in the

frequency domain typically apply staggered grids for the magnetic and electric fields. The

computational domain involves the conductive Earth and the insulating atmosphere. The sec-

ondary field formulation can be exploited, as it allows the reduction of the computational
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domain and increase of numerical solver accuracy. The finite-difference scheme yields a sym-

metric sparse system matrix with good numerical properties except in the vicinity of poles,

where the grid singularities require special care. Local grid refinement is difficult to imple-

ment in the structured grids. A special class of unstructured finite differences was used by

Weiss (2010).

The finite-element methods (Everett and Schultz, 1996; Yoshimura and Oshiman, 2002;

Ribaudo et al., 2012; Grayver et al., 2019) can profit from the flexibility of the unstructured

grids to describe complicated spatial geometries. The computational domain also comprises

the insulating atmosphere. The system matrix is usually sparse and Hermitian, with a more

complicated sparsity structure depending on the grid.

The contracting-integral-equation method (Pankratov et al., 1995; Singer, 1995; Kuvshi-

nov, 2008) transforms the pre-Maxwell equations into a set of integral equations solved by

Krylov-type iterative process. The Green functions are precalculated for a 1-D medium, and

if chosen correctly, a fast iterative process with guranteed convergence can be achieved. The

system matrix is dense, but its dimensions are limited to the area where lateral conductivity

variations are present. However, the storage of the Green functions can have large memory

requirements for calculations with high spatial resolution.

The spherical-harmonic approach has been presented for the first time by Martinec (1999)

in the frequency domain, and later independently developed in the time domain by Hamano

(2002) and Velímský and Martinec (2005). A detailed description of the recent developments,

and discussion of its properties, is presented in this Thesis.

The methods of 3-D inverse modelling of global EMI have been so far exclusively based

on the application of deterministic approaches to minimize a data misfit over a space of reg-

ularized conductivity models (Kelbert et al., 2008, 2009; Kuvshinov and Semenov, 2012; Se-

menov and Kuvshinov, 2012; Püthe and Kuvshinov, 2013; Velímský, 2013; Sun et al., 2015).

The Bayesian approach as suggested by Pankratov and Kuvshinov (2016) is still computation-

ally prohibitive due to the extreme number of forward calculations to be carried out to obtain

sufficient sampling of probability density functions in large-dimensional spaces. However,

the fast calculations of Hessians (Pankratov and Kuvshinov, 2015; Maksimov and Velímský,

2017) enable to perform a-posteriori error and sensitivity analysis even for the problems solved
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by the deterministic approaches. A comprehensive overview of recent advances in the area of

global EMI forward and inverse modelling is given by Kuvshinov (2015).

This thesis consists of two main parts. Chapters 2 and 3 are respectively dedicated to

the recent developments of the forward and inverse EMI problems in spherical domain. The

spherical harmonic-finite element approach implemented both in the time and frequency do-

mains represents a flexible tool to deal with both external and interior sources. The question

of scaling on shared- and distributed-memory parallel architectures is also discussed. The

second part of the thesis introduces the applications of this methodology to selected problems.
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2 Forward modelling

2.1 The electromagnetic induction equation in a spherical Earth

The electromagnetic fields inside the Earth or other solid celestial objects, and in their near-

space environments, are governed by the conventional non-relativistic Maxwell equations,

curlH “ j `
BD

Bt
, (2.1)

curlE “ ´
BB

Bt
, (2.2)

divB “ 0, (2.3)

divD “ ρf , (2.4)

where Hpr; tq, Bpr; tq, Epr; tq, Dpr; tq, jpr; tq, and ρfpr; tq denote respectively the mag-

netic field intensity, magnetic flux density, electric field, electric displacement, free current

density, and the free charge density. As shown by Tyler and Mysak (1995), the equations

(2.1–2.3) are valid for geophysical applications even in the coordinate frame anchored to a

rotating planetary body. We will use the spherical coordinates r “ pr, ϑ, φq, where r, ϑ, and

φ stand for radius, colatitude and longitude. We will represent the Earth by a spherical domain

G with outer boundary BG at r “ a, and the outer normal er.

The Earth materials are both electrically and magnetically linear, homogeneous, and isotropic,

and thus described by the scalar constant electric permittivity ε, and magnetic permeability µ,

D “ εE, (2.5)

B “ µH . (2.6)

In the area of global EMI, we are usually not interested in phenomena on the sub-second

time scales. With relative permittivities of the Earth materials below 100, the displacement
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currents can be neglected, and the Ampère law takes the pre-Maxwell form,

curlH “ j. (2.7)

The magnetic permeability is assumed to take the value of the vacuum, µ “ µ0.

The Ohm’s law, relating the electric current density to the electric field by a linear de-

pendence, is usally assumed in the heterogeneous, isotropic form for a conductive continuum

moving with velocity vpr; tq,

j “ σ pE ` v ˆ Bq . (2.8)

The electric conductivity σpr; tq can generally vary both in space and time. In the Earth’s

solid crust and mantle, the motional induction has negligible effect, and we can safely as-

sume v “ 0. The time variations of the electric conductivity are also neglected there. As

the distribution of electric conductivity is governed by the Earth’s temperature and chemical

and mineralogical composition, the radial dependence usually dominates the lateral variations.

The important class of spherically symmetric (1-D) conductivity models σprq has been tradi-

tionally employed both in forward and inverse modelling, either as a direct constraint, or as a

tool to provide preconditioning and obtain faster convergence rates in full three-dimensional

scenarios.

In the uppermost parts of the Earth, the lateral contrasts between the ionic conductivity of

the salts dissolved in the seawater, and semi-conductive silicates are comparable to the radial

variations. Moreover, the time variations of ocean conductivity should be taken into account

due to the seasonal variations of temperature and salinity (Irrgang et al., 2016). As the Earth’s

main magnetic field BMpr; tq dominates the induced fields by several orders of magnitude,

the magnetic contribution to the Lorentz force in equation (2.8) usually takes the form

Eimp
“ v ˆ BM, (2.9)

j imp
“ σEimp, (2.10)

j “ σ
`

E ` Eimp
˘

“ σE ` j imp, (2.11)

where Eimp
pr; tq and j imp

pr; tq denote the imposed electric field (the Lorentz force per unit

charge), or corresponding imposed electric current, respectively.
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Combining the equations (2.2) and (2.6–2.8) yields a single equation for the magnetic field

vector, the EMI equation,

curl

ˆ

1

σ
curlB

˙

` µ0
BB

Bt
“ µ0curlE

imp. (2.12)

Equivalently, the EMI equation can be transformed to the frequency domain, assuming

time-invariant electric conductivity σprq, and harmonic-type dependence of the vectors

Bpr; tq “ Re
!

B̃ expp´iωµ0tq
)

, (2.13)

Eimp
pr; tq “ Re

!

Ẽ
imp

expp´iωµ0tq
)

. (2.14)

Then we can write

curl

ˆ

1

σ
curl B̃

˙

´ iωµ0B̃ “ µ0curl Ẽ
imp
. (2.15)

To complete the formulation, the initial and boundary conditions must be specified.

For the initial condition Bpr; 0q in the time-domain, it is sufficient to assume that

divBpr; 0q “ 0. (2.16)

Applying the div operator to the EMI equation (2.12) then assures that

B

Bt
divBpr; tq “ 0, (2.17)

and hence the Gauss law (2.3) is satisfied for t ě 0.

The choice of the boundary conditions applied at the Earth’s surface r “ a is more compli-

cated. The Earth’s atmosphere is a very effective insulator, with electric conductivities ranging

from 10´14 to 10´9 S{m (Seran et al., 2017). Therefore, it can be approximated by a perfect

insulator, where the magnetic field is fully described by a scalar magnetic potential Upr; tq,

satisfying the Laplace equation,

∆U “ 0, (2.18)

B “ ´gradU, (2.19)

for r ě a and any t ě 0.
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The general boundary conditions stemming from the integral form of the Maxwell equa-

tions are

rer ˆ Bs
`

´
“ µ0jS at BG, (2.20)

rer ¨ Bs
`

´
“ 0 at BG, (2.21)

rer ˆ Es
`

´
“ 0 at BG, (2.22)

where r˝s
`

´
denotes the discontinuity across the interface, and jSpr; tq is the surface current

density. Here we assume that jS “ 0. However, note that the thin-sheet currents can be

effectively employed in a two-dimensional formulation in some specific applications involving

induction in the oceans (Kuvshinov et al., 2007; Sun and Egbert, 2012, among many others).

In order to proceed with the application of the boundary conditions, we need to apply the

Helmholtz decomposition, including the toroidal-poloidal splitting, to both the magnetic and

electric fields. An arbitrary vector field fprq, sufficiently smooth, and decaying in the case of

unbounded domain, can be decomposed into the irrotational (scaloidal) and divergence-free

(solenoidal) components, the latter consisting of the toroidal and poloidal parts, (Arfken and

Weber, 2005; Backus, 1986),

fprq “ fSprq ` fTprq ` fPprq, (2.23)

fSprq “ gradΞprq, (2.24)

fTprq “ curl rrΨprqs , (2.25)

fPprq “ curl curl rrΦprqs . (2.26)

The individual components are described by respective scalar functions Ξprq, Ψprq, and Φprq,
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and satisfy the following properties,

curlfS “ 0, (2.27)

div fT “ 0, (2.28)

div fP “ 0, (2.29)

er ¨ fT “ 0, (2.30)

er ¨ curlfP “ 0, (2.31)

divH fT “ 0, (2.32)

fS “ er
BΞ

Br
` gradH Ξ, (2.33)

fP “ ´r∆HΦ ` gradH

ˆ

r
BΦ

Br
` Φ

˙

. (2.34)

In the last formulas, we have separated the radial and lateral parts of the scaloidal and poloidal

fields by splitting the gradient and Laplacian operators,

grad “ er
B

Br
` gradH “ er

B

Br
`

1

r
gradΩ , (2.35)

∆ “
B2

Br2
`

2

r

B

Br
` ∆H . (2.36)

Note also, that both the curl and erˆ operators convert a toroidal field into poloidal and vice

versa. Now we can demonstrate that an arbitrary toroidal field is orthogonal to any poloidal

or scaloidal components on an arbitrary spherical surface, such as BG,

ż

BG

fT ¨ fPdS “

ż

BG

fT ¨ gradH

ˆ

r
BΦ

Br
` Φ

˙

dS “

“

ż

BG

divH

„

fT

ˆ

r
BΦ

Br
` Φ

˙ȷ

dS “ 0, (2.37)

ż

BG

fT ¨ fSdS “

ż

BG

fT ¨ gradH ΞdS “

“

ż

BG

divH pfTΞq dS “ 0. (2.38)

The last step follows from the application of the two-dimensional Gauss theorem on a closed

surface BG (Berger and Hornig, 2018).
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Since the toroidal field is zero in the insulator (Backus, 1986), the boundary conditions

(2.20–2.21) can be written as

er ˆ BT “ 0 at BG, (2.39)

er ˆ BP “ ´er ˆ gradU at BG, (2.40)

er ¨ BP “ ´er ¨ gradU at BG. (2.41)

Let us discuss the configuration of the boundary conditions necessary to obtain a unique

solution of the time-domain EMI equation (2.12). Note that analogous derivations can be also

carried out in the frequency domain. We will assume that two smooth solutions, B1pr; tq and

B2pr; tq, exist for the same internal forcing Eimp
pr; tq, and both satisfy the same divergence-

free initial condition Bpr; 0q. Then the difference δBpr; tq “ B2pr; tq ´ B1pr; tq satisfies

the homogeneous EMI equation

curl

ˆ

1

σ
curl δB

˙

` µ0
BδB

Bt
“ 0. (2.42)

Now we respectively multiply equation (2.42) by δB and integrate over G, apply the Green’s

curl -identity, and integrate over time from 0 to t,
ż

G

µ0δB ¨
BδB

Bt
dV `

ż

G

δB ¨ curl

ˆ

1

σ
curl δB

˙

dV “ 0,

µ0

2

B

Bt

ż

G

δB2dV `

ż

G

1

σ
pcurl δBq

2 dV “

ż

BG

1

σ
per ˆ δBq ¨ curl δBdS,

µ0

2

ż

G

δBptq2dV `

t
ż

0

ż

G

pcurl δBpτqq
2

σpτq
dV dτ “

t
ż

0

ż

BG

per ˆ δBpτqq ¨
curl δBpτq

σpτq
dSdτ.

(2.43)

The integrands on the left-hand side of the last expression are non-negative. Therefore, any

combination of boundary conditions that yields zero integral on the right-hand side of equation

(2.43) will enforce δB “ 0 at all positions and times, and thus guarantee the uniqueness of

the solution.

Using respectively the toroidal-poloidal and the scaloidal-toroidal-poloidal decomposition

of the magnetic and electric field, the surface integral on the right-hand side of equation (2.43)
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can be written with the help of the Ampère law (2.7), the orthogonality relations (2.37–2.38),

and the poloidal-toroidal conversion property of the erˆ operator as
t

ż

0

ż

BG

per ˆ δBq ¨
curl δB

σ
dSdτ “

µ0

t
ż

0

ż

BG

per ˆ δBq ¨ δE dSdτ “

µ0

t
ż

0

ż

BG

rper ˆ δBTq ¨ pδES ` δEPq ` per ˆ δBPq ¨ δETs dSdτ, (2.44)

where δE stands for the difference of electric fields corresponding to solutions B1 and B2.

Now we immediately see, that if both solutions B1 and B2 satisfy the boundary conditions

(2.39) and (2.40), the difference δB satisfies their homogeneous form, zeroing out the surface

integral (2.44), and via equation (2.43) implying that B1pr; tq “ B2pr; tq for any r and t.

The vertical magnetic field at the surface is predicted by the EMI equation, and the bound-

ary condition (2.41) applies to the scalar potential solution of the Laplace equation (2.18) in

the atmosphere. The combination of boundary conditions (2.39) and (2.40) is the Dirichlet

boundary condition.

What about other combinations of boundary conditions that will guarantee a unique solu-

tion? If we combine the zero surface toroidal magnetic field constraint (2.39) with prescribed

toroidal electric field, i.e., δET “ 0, the integral (2.44) is zero again, and the uniqueness of

the EMI equation solution is guaranteed. Since

ET “

ˆ

curlB

µ0σ

˙

T

, (2.45)

this is the case of mixed boundary condition. A Neumann-type condition is applied to the

poloidal magnetic field solution, while a homogeneous Dirichlet-type condition (2.39) is still

applied to the toroidal magnetic field. Note that the radial component of the Faraday law (2.2)

reads as

er ¨ curlET “ ´er ¨
BBP

Bt
, (2.46)

implying for the toroidal electric scalar function

∆HΨE “
1

a
er ¨

BBP

Bt
. (2.47)
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Thus, ΨE , and consequently ET can be obtained on BG from the time-derivative of the radial

magnetic field (2.41). The horizontal poloidal magnetic field (2.40) is predicted by the EMI

equation.

Another type of boundary condition, called external, is based on the separation of the po-

tential field in the insulating atmosphere into the external part, with sources in the ionosphere

and magnetosphere, and the internal part, corresponding to the magnetic fields induced in the

Earth. The external component is prescribed, the internal component is predicted by the EMI

equation. The toroidal magnetic field is still zero on the surface. In order to demonstrate that

this approach also guarantees a unique solution, we have to introduce the spherical harmonic

apparatus first.

2.2 Spherical harmonic approach

The spherical harmonic functions represent a powerful tool to parameterize the solutions of

partial differential equations in spherical coordinates. Following Varshalovich et al. (1989),

we define the fully normalized, complex, scalar spherical harmonic functions of degree j and

order m, |m| ď j, as

ỸjmpΩq “

d

2j ` 1

4π

pj ´ mq!

pj ` mq!
Pm
j pcosϑq eimφ, (2.48)

where Pm
j pcosϑq are the associated Legendre polynomials,

Pm
j pcosϑq “ p´ sinϑq

m dm

pd cosϑqm
Pjpcosϑq. (2.49)

This basis is practical for the frequency-domain formulation of the EMI equation (2.15). In

the case of time-domain formulation (2.12), only real-valued fields are used, and therefore, a

real basis is preferred,

YjmpΩq “

$

’

’

’

&

’

’

’

%

?
2 p´1qmReỸjmpΩq m ą 0,

ỸjmpΩq m “ 0,
?
2 p´1qmImỸj|m|pΩq m ă 0,

(2.50)

where the sine-type harmonics are assigned to negative degrees and the cosine-type harmonics

correspond to positive degrees. Both the complex- and real-valued spherical harmonics form
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respectively the complete orthonormal bases of complex and real scalar functions on the sur-

face of a unit sphere. The extension to vector functions is possible in several different ways.

One possible approach is the use of the radial unit vector er and the angular gradient operator

gradΩ to separate respectively the vertical poloidal-scaloidal, the toroidal, and the horizontal

poloidal-scaloidal components of vector field, namely,

S
p´1q

jm pΩq “ YjmpΩqer, (2.51)

S
p0q

jmpΩq “ er ˆ gradΩ YjmpΩq, (2.52)

S
p`1q

jm pΩq “ gradΩ YjmpΩq. (2.53)

The real-valued definition can be easily extended to complex vectors by replacing YjmpΩq

with ỸjmpΩq. The vector spherical harmonic functions are orthogonal on a unit sphere, with

the norm

Njλ “ δλ,´1 ` jpj ` 1qpδλ,0 ` δλ,`1q, (2.54)

and satisfy useful differential identities summarized for example in Maksimov and Velímský

(2017, Appendix A).

The principal advantage of spherical harmonic formulation is the existence of an analytical

solution of the Laplace equation for a scalar magnetic potential in the atmosphere (2.18) in

the form of the infinite series,

Upr; tq “ a
8
ÿ

j“1

j
ÿ

m“´j

„

G
peq

jmptq
´r

a

¯j

` G
piq
jmptq

´a

r

¯j`1
ȷ

YjmpΩq, (2.55)

for r ě a. The coefficients Gpeq

jmptq and Gpiq
jmptq describe respectively the external and internal

field with respect to the radius a. By expressing the magnetic field Bpr; tq in the vector

spherical harmonic basis

Bpr; tq “

8
ÿ

j“1

j
ÿ

m“´j

1
ÿ

λ“´1

B
pλq

jmpr; tqS
pλq

jmpΩq, (2.56)

for r ď a, the boundary conditions (2.39–2.41) can be written as

B
p0q

jmpa; tq “ 0, (2.57)

B
p`1q

jm pa; tq “ ´

”

G
peq

jmptq ` G
piq
jmptq

ı

, (2.58)

B
p´1q

jm pa; tq “ ´

”

j G
peq

jmptq ´ pj ` 1qG
piq
jmptq

ı

. (2.59)
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Let us now demonstrate the uniqueness of the EMI equation solution under the external field

boundary condition, obtained by eliminating Gpiq
jmptq from equations (2.58–2.59),

B
p0q

jmpa; tq “ 0, (2.60)

B
p´1q

jm pa; tq ` pj ` 1qB
p`1q

jm pa; tq “ ´p2j ` 1qG
peq

jmptq. (2.61)

By prescribing the zero toroidal field, and the same set of external field coefficients Gpeq

jmptq

for the solutions B1 and B2, we can substitute δBp0q

jmpa; tq “ 0 and δGpeq

jmptq “ 0 into the

surface integral on the right-hand side of the equation (2.43). Taking into account the spherical

harmonic representation of equation (2.46),

´
jpj ` 1q

a
δE

p0q

jmpa; tq “ ´
B

Bt
δB

p´1q

jm pa; tq, (2.62)

we can therefore write

t
ż

0

ż

BG

per ˆ δBq ¨ δEdSdτ “ µ0a
2

ÿ

jm

jpj ` 1q

t
ż

0

”

δB
p`1q

jm δE
p0q

jm ´ δB
p0q

jmδE
p`1q

jm

ı

dτ

“ µ0a
3

ÿ

jm

t
ż

0

„

´

δG
peq

jm ` δG
piq
jm

¯

B

Bt

´

jδG
peq

jm ´ pj ` 1qδG
piq
jm

¯

ȷ

dτ

“ ´
µ0a

3

2

ÿ

jm

pj ` 1q

t
ż

0

B

Bt

´

δG
piq
jm

¯2

dτ

“ ´
µ0a

3

2

ÿ

jm

pj ` 1q

´

δG
piq
jmptq

¯2

ď 0. (2.63)

Setting δGpiq
jmptq “ 0 @j ă 8, |m| ď j is the only way to make the result compatible with the

non-negative left-hand side of the equation (2.43), and hence δBpr; tq “ 0 everywhere and

everytime. An analogous derivation can be carried out in the frequency domain.

2.3 Assembly of the linear problem

A straightforward approach to transform the time-domain or the frequency-domain EMI equa-

tion (2.12, 2.15) into a linear algebraic problem is the use of the Galerkin method. Firstly,

the integral formulations of the problems are introduced, following Křížek and Neittaanmäki
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(1996). Note that the integral formulation is used only for the spatial coordinates in the case of

time-domain problems. The differential formulation in the time variable imposes more strict

regularity requirements on the solution than the integral formulation. Using the definitions of

functional spaces from Table 2.1, we can write for the cases of the Dirichlet, mixed, and the

external boundary condition, respectively:

Time-domain EMI with the Dirichlet boundary condition

Let µ0 ą 0 be the magnetic permeability, ρpr, ϑ, φ; tq P C0
`

I;L`
8pG,Rq

˘

the elec-

tric resistivity, and Eimp
pr, ϑ, φ; tq P C0

`

I;L2pG,R3q
˘

the imposed electric field. Let

B0prq P V0T be the initial condition at t0 “ 0, and B0
pr; tq P C1

`

I;V0T
˘

the Dirichlet

boundary condition er ˆ B0
pa, ϑ, φ; tq extended from r “ a to the entire domain G. Find

Bpr; tq P C1
`

I;V0T
˘

such that B ´ B0
P C1

`

I;V0
˘

, Bpr; 0q “ B0prq, and
ż

G

ˆ

µ0 δB ¨
BB

Bt
` ρ curl δB ¨ curlB

˙

dV “

ż

G

µ0 curl δB ¨ EimpdV, (2.64)

@ δBprq P V0 and @t P I .

Time-domain EMI with mixed boundary condition

Let µ0 ą 0 be the magnetic permeability, ρpr, ϑ, φ; tq P C0
`

I;L`
8pG,Rq

˘

the elec-

tric resistivity, and Eimp
pr, ϑ, φ; tq P C0

`

I;L2pG,R3q
˘

the imposed electric field. Let

B0prq P V0T be the initial condition at t0 “ 0, and E0
T pϑ, φ; tq P C0

´

I;H
1
2 pBG;R3q

¯

the toroidal electric field at the surface, including the contribution from ´Eimp. Find

Bpr; tq P C1
`

I;V0T
˘

such that Bpr; 0q “ B0prq, and
ż

G

ˆ

µ0 δB ¨
BB

Bt
` ρ curl δB ¨ curlB

˙

dV “

ż

G

µ0 curl δB ¨ EimpdV `

ż

BG

µ0 per ˆ δBq ¨ E0
T dS, (2.65)

@ δBprq P V0T and @t P I .
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Time-domain EMI with external boundary condition

Let µ0 ą 0 be the magnetic permeability, ρpr, ϑ, φ; tq P C0
`

I;L`
8pG,Rq

˘

the elec-

tric resistivity, and Eimp
pr, ϑ, φ; tq P C0

`

I;L2pG,R3q
˘

the imposed electric field. Let

B0prq P V0T be the initial condition, at t0 “ 0, and G
peq

jmptq P C1
`

I;R
˘

a set

of external field coefficients for j “ 1, 2, . . . ,8 and m “ ´j, . . . , 0, . . . ,`j. Find

Bpr; tq P C1
`

I;V0T
˘

such that
ż

G

ˆ

µ0 δB ¨
BB

Bt
` ρ curl δB ¨ curlB

˙

dV “

ż

G

µ0 curl δB ¨ EimpdV, (2.66)

@ δBprq P V0 and @t P I , and
ż

BG

„

1

j
S

p`1q

jm ` S
p´1q

jm

ȷ

¨ Bpr; tq dS “ ´p2j ` 1qa2G
peq

jmptq, (2.67)

@ j “ 1, 2, . . . ,8 and m “ ´j, . . . , 0, . . . ,`j and @t P I .

Frequency-domain EMI with the Dirichlet boundary condition

Let ω ą 0 be the angular frequency, µ0 ą 0 the magnetic permeability, ρpr, ϑ, φq P

L`
8pG,Rq the electric resistivity, and Ẽ

imp
pr, ϑ, φq P L2pG,C3q the imposed electric field.

Let B̃0prq P Ṽ0T be the Dirichlet boundary condition er ˆ B̃0pa, ϑ, φq extended from

r “ a to the entire domain G. Find B̃prq P Ṽ0T such that B̃ ´ B̃0 P Ṽ0, and
ż

G

´

´iωµ0 δB̃
˚

¨ B ` ρ curl δB̃˚
¨ curlB

¯

dV “

ż

G

µ0 curl δB̃
˚

¨ Ẽ
imp

dV, (2.68)

@ δB̃prq P Ṽ0.

Frequency-domain EMI with mixed boundary condition

Let ω ą 0 be the angular frequency, µ0 ą 0 the magnetic permeability, ρpr, ϑ, φq P

L`
8pG,Rq the electric resistivity, and Ẽ

imp
pr, ϑ, φq P L2pG,C3q the imposed electric field.
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Let Ẽ0
T pϑ, φ; tq P H̃

1
2 pBG;C3q be the toroidal electric field at the surface, including the

contribution from ´Eimp. Find B̃prq P Ṽ0T such that
ż

G

´

´iωµ0 δB̃
˚

¨ B ` ρ curl δB̃˚
¨ curlB

¯

dV “ (2.69)

ż

G

µ0 curl δB̃
˚

¨ Ẽ
imp

dV `

ż

BG

µ0

´

er ˆ δB̃˚
¯

¨ E0
T dS, (2.70)

@ δBprq P Ṽ0T .

Frequency-domain EMI with external boundary condition

Let ω ą 0 be the angular frequency, µ0 ą 0 the magnetic permeability, ρpr, ϑ, φq P

L`
8pG,Rq the electric resistivity, and Ẽ

imp
pr, ϑ, φq P L2pG,C3q the imposed electric

field. Let G̃peq

jm P C be a set of external field coefficients for j “ 1, 2, . . . ,8 and

m “ ´j, . . . , 0, . . . ,`j. Find B̃prq P Ṽ0T such that
ż

G

´

´iωµ0 δB̃
˚

¨ B ` ρ curl δB̃˚
¨ curlB

¯

dV “

ż

G

µ0 curl δB̃
˚

¨ Ẽ
imp

dV, (2.71)

@ δBprq P Ṽ0, and
ż

BG

„

1

j
S̃

p`1q

jm
˚

` S̃
p´1q

jm
˚

ȷ

¨ B̃ dS “ ´p2j ` 1qa2G̃
peq

jm, (2.72)

@ j “ 1, 2, . . . ,8 and m “ ´j, . . . , 0, . . . ,`j.
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Table 2.1: Definitions of functional spaces used throughout the text.

CnpG;Rkq real scalar (for k “ 1) and vector (for k “ 3) functions continuous

up to the n-th derivative on the domain G

L2pG;Rkq real scalar (for k “ 1) and vector (for k “ 3) functions, square-

integrable in G. The spaces are equipped with scalar products

pf, gqL2 “
ş

G

f g dV and pf , gqL2 “
ş

G

f ¨g dV which generate the

corresponding norms ||f ||L2 “ pf, fq
1
2
L2

and ||f ||L2 “ pf ,fq
1
2
L2

L`
8pG,Rq real scalar positive functions bounded in G

Hcurl real vector functions f P L2pG;R3q such that curlf P

L2pG;R3q. The space is equipped with a scalar product

pf , gqHcurl
“

ş

G

pf ¨ g ` curlf ¨ curl gq dV and a corresponding

norm ||f ||Hcurl
“ pf, fq

1
2
Hcurl

Hcurl,0 real vector functions f P Hcurl such that er ˆ f “ 0 on BG

Hcurl,0T real vector functions f P Hcurl such that er ˆ fT “ 0 on BG,

where fT is the toroidal part of f

Hdiv real vector functions f P L2pG;R3q such that div f P L2pG;Rq

H0
div real vector functions f P Hdiv such that div f “ 0 in G

H
1
2 pBG;R3q real vector functions fprq P L2pBG;R3q such that

|fprq ´ fpr1q| { |r ´ r1|
2

P L2pBG ˆ BG;Rq

V real vector functions f P Hcurl X H0
div

V0 real vector functions from f P Hcurl,0 X H0
div

V0T real vector functions f P Hcurl,0T X H0
div

Cn
`

I;S
˘

space of all mappings from the closed time interval I “ă t0, t1 ą

to a functional space S, continuous up to the n-th derivative with

respect to time. Various spaces of scalar or vector functions can

take place of S, such as CnpG;Rkq, L2pG;Rkq, Hcurl

CnpG;Ckq complex scalar (for k “ 1) and vector (for k “ 3) functions con-

tinuous up to the n-th derivative on the domain G
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L2pG;Ckq complex scalar (for k “ 1) and vector (for k “ 3) functions,

square-integrable in G. The spaces are equipped with scalar

products pf, gqL2 “
ş

G

f˚ g dV and pf , gqL2 “
ş

G

f˚ ¨ g dV

which generate the corresponding norms ||f ||L2 “ pf, fq
1
2
L2

and

||f ||L2 “ pf ,fq
1
2
L2

H̃curl complex vector functions f P L2pG;C3q such that curlf P

L2pG;C3q. The space is equipped with a scalar product

pf , gqHcurl
“

ş

G

pf˚ ¨ g ` curlf˚ ¨ curl gq dV and a correspond-

ing norm ||f ||Hcurl
“ pf, fq

1
2
Hcurl

H̃curl,0 complex vector functions f P H̃curl such that er ˆ f “ 0 on BG

H̃curl,0T complex vector functions f P H̃curl such that er ˆfT “ 0 on BG,

where fT is the toroidal part of f

H̃div complex vector functions f P L2pG;C3q such that div f P

L2pG;Cq

H̃0
div complex vector functions f P Hdiv such that div f “ 0 in G

H̃
1
2 pBG;C3q complex vector functions fprq P L2pBG;C3q such that

|fprq ´ fpr1q| { |r ´ r1|
2

P L2pBG ˆ BG;Rq

Ṽ complex vector functions f P H̃curl X H̃0
div

Ṽ0 complex vector functions from f P H̃curl,0 X H̃0
div

Ṽ0T complex vector functions f P H̃curl,0T X H̃0
div

The discretization of the weak formulations of the EMI equation is then based on the ex-

pansion of magnetic field into the real or complex vector spherical harmonic basis given by

equation (2.56), which is complemented by the one-dimensional finite element parameteriza-

tion,

B
pλq

jmpr; tq “

kmax`1
ÿ

k“0

B
pλ,kq

jm ptqψkprq, (2.73)
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where

ψkprq “

$

’

’

’

&

’

’

’

%

r´rk´1

rk´rk´1
for rk´1 ď r ď rk,

rk`1´r

rk`1´rk
for rk ď r ď rk`1,

0 for r ă rk´1 or r ą rk`1,

(2.74)

are the piecewise linear finite elements, and p0 “ r1 ă r2 ă . . . rkmax ă rkmax`1 “ aq is an

arbitrary discretization of radial coordinate. It is further assumed that the electric resistivity ρ

can be represented by piecewise constant functions along radial coordinate,

ρpr, ϑ, φ; tq “ 1{σpr, ϑ, φ; tq “

kmax
ÿ

k“1

ρkpϑ, φ; tqξkprq, (2.75)

where

ξkprq “

$

&

%

1 for rk ď r ď rk`1,

0 for r ă rk´1 or r ą rk`1.
(2.76)

The combined 3-D basis functions ψkprqS
pλq

jmpΩq for k “ 1, . . . , kmax `1, j “ 1, . . . , jmax,

m “ ´j, . . . , j, and λ “ ´1, 0, 1 define a discrete approximation of the space Hcurl (or

H̃curl, using S̃
pλq

jmpΩq). The resolution is governed by two parameters, the number of ra-

dial layers kmax, and the truncation degree of the spherical harmonic expansion jmax. The

discretizations of spaces Hcurl,0T and Hcurl,0 are obtained by leaving out the basis functions

ψkmax`1prqS
p0q

jmpΩq and ψkmax`1prqS
p0,`1q

jm pΩq from the parameterization, respectively. How-

ever, applying the divergence operator to the basis functions demonstrates that only the toroidal

part, ψkprqS
p0q

jmpΩq is divergence-free, i.e. fromH0
div. For the poloidal-scaloidal part, this con-

dition can be enforced, and the scaloidal component suppressed in the weak formulations

(2.64–2.66) by means of the Lagrange multipliers, adding a penalty term
ż

G

Λpr; tqdiv δBprq dV `

ż

G

δΛprqdivBpr; tq dV, (2.77)

to the left-hand side, and finding Λpr; tq P C0
`

I;L2pG,Rq
˘

together with Bpr; tq for all

test functions δΛprq P L2pG,Rq. The solution and test function spaces V , V0, and V0T are

then replaced respectively by Hcurl, Hcurl,0, and Hcurl,0T . An analogous approach is used in

the frequency domain (2.68–2.72) with Λ̃pr; tq P L2pG,Cq, δΛ̃prq P L2pG,Cq, and complex
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conjugation of the test functions in the penalty term. The Lagrange multipliers are expanded

into scalar spherical harmonics, and piecewise constant radial functions as

Λprq “

kmax
ÿ

k“1

jmax
ÿ

j“1

j
ÿ

m“´j

Λk
jm ξkprqYjmpΩq. (2.78)

Similarly, the imposed electric field Eimp
pr; tq is expanded as

Eimp
pr; tq “

kmax
ÿ

k“1

jmax
ÿ

j“1

j
ÿ

m“´j

`1
ÿ

λ“´1

E
pimp,λ,kq

jm ptq ξkprqS
pλq

jmpΩq. (2.79)

The coefficients Bpλ,kq

jm ptq and Λk
jmptq are then ordered into into a real vector xptq with

dimension N “ jmaxpjmax ` 2q p4kmax ` 3q, as

xptq “

$

&

%

⟨
„

´

B
pλ,kq

jm ptq
¯j,´j

m“0,1,´1,...

ȷjmax

j“1

⟩
λ“0,´1,`1

,
”

`

Λk
jmptq

˘j,´j

m“0,1,´1,...

ıjmax

j“1

,

.

-

kmax

k“1

,

⟨
„

´

B
pλ,kmax`1q

jm ptq
¯j,´j

m“0,1,´1,...

ȷjmax

j“1

⟩
λ“0,´1,`1

.

(2.80)

We use such ordering in which the spherical harmonic orderm represents the innermost index,

advancing alternatively the cosine and sine-type terms. The blocks of coefficients describing

the toroidal field (λ “ 0) are followed by the blocks of poloidal field coefficients and the

Lagrange multipliers. The outermost index k corresponds to the radial coordinate.

The Galerkin discretization of the problems (2.64–2.66) then has the form of a linear

system of N ordinary differential equations,

Aptq ¨ xptq ` M ¨
Bxptq

Bt
“ bptq, (2.81)

with an initial condition xpt0q.

Let us investigate the structure of the individual vectors and matrices. The matrix M

consists of integrals of the products of basis functions, which simplify due to the orthogonality

of spherical harmonics and limited support of the radial piecewise linear elements,

µ0

ż

G

”

ψkprqS
pλq

jmpΩq

ı

¨

”

ψk1prqS
pλ1q

j1m1pΩq

ı

dV “ µ0δjj1δmm1δλλ1NjλIkk1 , (2.82)
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where

Ikk1 “

$

’

’

&

’

’

%

maxprk`1,rk1`1,rkmax`1q
ş

minprk,r
1
kq

ψkprqψk1prqr2 dr for |k ´ k1| ď 1,

0 otherwise.

(2.83)

Here, the non-dashed indices determine matrix rows, while the dashed indices correspond

to matrix columns. There are no terms in rows and columns corresponding to the Lagrange

multipliers, and their test functions. Hence, the M matrix follows a block-tridiagonal structure

with individual blocks being diagonal matrices,

M “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

n n

n n n

n n n

¨
¨
¨

¨
¨
¨

¨
¨
¨

n n n

n n

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

. (2.84)

The elements of matrix Aptq involve the volume integrals
ż

G

ρpr; tq curl
”

ψkprqS
pλq

jmpΩq

ı

¨ curl
”

ψk1prqS
pλ1q

j1m1pΩq

ı

dV, (2.85)

ż

G

ξkprqYjmpΩq div
”

ψk1prqS
pλ1q

j1m1pΩq

ı

dV, (2.86)

corresponding respectively to the terms stemming from the original weak formulations (2.64–

2.66), and the addition of the divergence-free constraint (2.77). Again, the local support of

the finite elements in radial coordinate implies the block-tridiagonal structure of the matrix.

However, the detailed arrangement of individual blocks is more complicated. For 1-D layers,

where resistivity is independent on lateral coordinates, ρkpϑ, φ; tq “ ρkptq, the EMI equation

is decoupled in spherical harmonic degree and order. This yields a single diagonal term for

the toroidal harmonics λ “ 0, and two sub- and super-diagonal terms for the poloidal field

λ “ ˘1 and the Lagrange multipliers. In the layers with laterally varying resistivity, the blocks

are densely populated. An example below shows a typical arrangement used for a single 3-D

layer above a 1-D model of mantle and core, where b and f denote respectively the sparse
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and dense blocks,

A “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

b b

b b b

b b b

¨
¨
¨

¨
¨
¨

¨
¨
¨

b b b

b f f

f f

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

. (2.87)

The right-hand side vector bptq is assembled from the integrals of the type

µ0

ż

G

kmax
ÿ

k1“1

jmax
ÿ

j1“1

j1
ÿ

m1“´j1

`1
ÿ

λ1“´1

E
pimp,λ,k1q

j1m1 ptq curl
”

ψkprqS
pλq

jmpΩq

ı

¨

”

ξk1S
pλ1q

j1m1

ı

dV “

µ0

ż

G

k
ÿ

k1“maxp1,k´1q

`1
ÿ

λ1“´1

E
pimp,λ1,k1q

jm ptq curl
”

ψkprqS
pλq

jmpΩq

ı

¨

”

ξk1S
pλ1q

jm

ı

dV, (2.88)

where the orthogonality of spherical harmonics and local support of the radial finite elements

has been used again.

The boundary conditions are implemented in the structure of matrices A, M, and vector

b as follows. In the case of the Dirichlet boundary condition, the horizontal test functions in

the uppermost radial node, ψkmax`1prqS
p0q

jmpΩq and ψkmax`1prqS
p`1q

jm pΩq, are not used (hence

approximating the Hcurl,0 space), the matrix A has 1 on the respective diagonals. The vector

b has 0 and the value of Bp`1q

jm pa; tq at the respective row positions, thus making sure that

B ´ B0
P Hcurl,0. In the case of mixed boundary condition, only the toroidal test function

ψkmax`1prqS
p0q

jmpΩq is removed from the system, and the additional surface integral

µ0

ż

BG

er ˆ

”

ψkmax`1paqS
p1q

jmpΩq

ı

¨
ÿ

j1m1

E
p0q

j1m1ptqS
p0q

j1m1pΩq dS “

µ0a
2jpj ` 1qE

p0q

jmptq (2.89)

is added to the corresponding position in the b vector. Finally, the external boundary condi-

tions are implemented in a similar way to the Dirichlet case, however the boundary condition

B
p´1,kmax`1q

jm ptq ` pj ` 1qB
p`1,kmax`1q

jm ptq “ ´p2j ` 1qG
peq

jmptq, (2.90)
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is directly implemented into the structure of matrix A and vector b.

Let us note that in the case of Dirichlet and mixed boundary conditions matrices A and

M are symmetric. For the external boundary condition, the symmetry of individual diagonal

blocks of matrix A, and the antisymmetry of the blocks above and below the diagonal is

preserved with the exception of the last block-row and block-column corresponding to the

boundary layer.

In the frequency-domain cases (2.68–2.72), the Galerkin method yields a system of com-

plex linear equations
´

Ã ´ iωµ0M̃
¯

¨ x̃ “ b̃ (2.91)

with complex Hermitian matrices Ã (except for the external boundary condition) and M̃, and

complex vectors x̃ and b̃ assembled in a similar way as in the time-domain case.

2.4 Time discretization and linear problem solution

A back-of-the-envelope estimate of the time step necessary in the application of an explicit

time-integration scheme to equation (2.81) yields

∆t ă µ0minpσqminp∆rq2 « 10´6 H{m 10´4 S{m
`

103m
˘2

“ 10´4 s, (2.92)

which makes the explicit approach prohibitive for most applications. The semi-implicit scheme

introduced by Velímský and Martinec (2005) uses splitting of the A matrix,

A “ A1D ` A3D, (2.93)

where the first matrix is assembled using a 1-D background conductivity model, and the sec-

ond term is based on the lateral deviations from that model. The matrix A1D consists only of

sparse blocks, which are further separated by spherical harmonic degree and order j, m (Mar-

tinec, 1998; Velímský and Martinec, 2005), and the factorization can be reduced to a series

of tridiagonal and banded-matrix problems for the toroidal and poloidal components, respec-

tively. Therefore, it was treated implicitly in the time-integration scheme, while the effect of

lateral conductivity/resistivity variations through matrix A3D multiplication was carried ex-

plicitly from the previous time step. Hoewever, for strongly laterally heterogeneous models,
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as demonstrated in the benchmarks by Kelbert et al. (2014), the accuracy of this approach was

lacking.

The recent versions of the time-domain, spherical harmonic finite element solver use the

Crank-Nicolson integration scheme. The time discretization of equation (2.81) is written as,

Ai`1 ¨ xi`1 ` Ai ¨ xi

2
` M ¨

xi`1 ´ xi

∆t
“

bi`1 ` bi

2
, (2.94)

and after rearranging,

p2M ` ∆tAi`1q ¨ xi`1 “ p2M ´ ∆tAiq ¨ xi ` ∆t pbi`1 ` biq , (2.95)

where xi, bi, and Ai are related to time levels ti “ t0 ` i∆t with constant time step.

The choice of the optimal linear solver of system (2.94) or (2.95) depends on time and

memory constraints, and suitability for parallelization. The individual dense blocks in the Ai

matrix have dimension D “ 4 jmax pjmax ` 2q, and making use of the symmetry properties,

the total memory needed to store them scales as pK3D ` 1qD p3D ` 2q{2, where K3D is the

number of layers with lateral conductivity variations. The memory requirements of the sparse

blocks of Ai and M are negligible. If the available memory capacity is sufficient (e.g., for

jmax “ 80, and K3D “ 10, this represents about 85 GB in double precission arithmetics), and

if the matrix A is invariable in time, a direct solver making effective use of the matrix struc-

ture can be employed. The Thomas algorithm (Press et al., 1992) designed for the solution

of tridiagonal problems can be extended to the block-tridiagonal case. The forward sweep is

carried out only once, and it requires the factorization of block submatrices, making use of

the sparsity for 1-D layers as needed. The computing time therefore scales as pK3D ` 1qD3,

and, since the factorization is performed in place, no additional memory except for pivoting

indices is needed. However, the factorization of individual blocks has to be carried out se-

quentially, row-by-row, and therefore the parallelization can be implemented only within the

individual block calculations, typically using the shared-memory parallelized subroutines of

the LAPACK library. The backward sweep then involves a series of pK3D ` 1q solutions of

block systems with pre-factorized matrices, which are carried out at each time step.

When the matrix Ai changes due to the temporal conductivity variations, or when the re-

quired resolution prevents the storage of the dense blocks, a matrix-free iterative solver must
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be employed. In the recent implementation, the preconditioned BiCGStab(l) algorithm (Slei-

jpen and Fokkema, 1993) is used. It requires calculation of the product of matrix ∆tAi ` 2M

with arbitrary vectors and also a fast inversion of the preconditioner. Looking back at the

matrix elements (2.85), the product with an arbitrary vector can be effectively calculated by

expressing the spherical harmonic sums on a discrete spatial grid, multiplying by resistivity

values on the same grid, and then integrating back into the spherical harmonic domain. Both

the forward and inverse spherical harmonic transforms are based on the FFT algorithm in lon-

gitude, and Gauss-Legendre quadrature is implemented in colatitude. Details of this technique

are described by Martinec (1998) and Velímský and Martinec (2005). The matrix elements

are not stored, although it is useful to pre-calculate the values of the associated Legendre

polynomials and radial finite-element integrals to speed up the process. The calculation of

one product of Ai with a vector scales in time as pK3D ` 1q j3max log2 jmax. Parallelization of

the matrix-vector product subroutine across shared or distributed memory architecture can be

used in the loop over the model layers. The preconditioner is then realized through the use of

matrix A1D, a simplified version of A assembled for a 1-D resistivity model.

The parallelization process can be taken one step further if the number of computational

nodes available significantly exceeds the number of model layers. In that case, equations

(2.94) for some finite range of time index i (ideally divisible by the number of nodes) are

regarded as one combined linear system, solved by the BiCGStab(l) algorithm. Distributed

memory systems set up with a linear communication topology are well suited for this task as

each node needs to exchange information only with its left and right neighbors.
For the solution of the frequency-domain complex linear system (2.91), the iterative solver

with matrix-free calculations of the matrix-vector product is a natural choice. The precondi-
tioner is again based on the 1-D conductivity model. Table 2.2 summarizes the different
versions of the forward solver in recent publications.

Table 2.2: Overview of the recent applications of the forward spherical-harmonic solver.

target domain maximum resolution solver reference

jmax K3D

mantle time 16 180 semi-implicit Velímský et al. (2012)

mantle
time

40 151
semi-implicit

Kelbert et al. (2014)
frequency iterative
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mantle time 5 15 direct Velímský (2013)

mantle time 20 70 direct Maksimov and Velímský (2017)

M2 ocean tides frequency 480 102 iterative Velímský et al. (2018)

ocean circulation time 60 11 direct Velímský et al. (2019)

ocean circulation
time/ 80/

5
direct

Šachl et al. (2019)
stationary 480 iterative

ocean circulation time 240 50 iterative Schnepf et al. (2019)

35



36



3 Inverse modelling

3.1 Global EM induction inverse problem

The primary goal of the inverse EM induction modelling on the global scale is to recover the

distribution of electric conductivity in the deep Earth interior from observations of the mag-

netic (and to a limited extent also electric) fields at the surface, or in the space. Consequently,

the electric conductivity is then used to constrain the thermal, mineralogical, and chemical

state of the Earth, jointly with other geophysical methods. The formulation of the inverse

problem has several prerequisities (Tarantola, 2005). First, a parameter space (manifold) has

to be established. Avoiding the peculiarities of the functional inverse problem, we will further

consider a finite-dimensional manifold M, which contains all admissible conductivity mod-

els under a selected discretization. Second, the information on measurements of observable

variables and their errors has to be provided on the finite-dimensional manifold D. Third, a

forward problem relating the model parameters with the data has to be defined. A probabilistic

description of these independent pieces of information then allows us to find a solution of the

inverse problem by conjunction of the individual probabilities. This general approach is asso-

ciated with the problem of sampling of probability density functions and is applicable when

the dimension of the model manifold is small, and the solution of the forward problem can be

obtained quickly. Both these conditions are satisfied for the global EM induction modelling

with a 1-D spherically symmetric electric conductivity. In the case of more complex models,

the deterministic approach is employed. It is based on a minimization of a misfit functional

on M that measures the distance of data prediction from their observed values and combines

them with additional regularization constraints on the model parameters. Effective calcula-

tions of the gradient of the misfit in the model space are provided by means of the adjoint
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problem solution. The individual building blocks of our inversion scheme are described in the

following section.

3.2 Model parameters

Since the electric conductivity and resistivity are complementary positive-valued parameters

— Jeffreys’ parameters in the terminology introduced by Tarantola (2005) — a natural choice

is to discretize the (decimal) logarithm

log
σprq

σ0
“ ´ log

ρprq

ρ0
, (3.1)

where σ0 “ 1{ρ0 are arbitrary background electric conductivity and resistivity values used

here to preserve correct dimensionality. The time variations of electric conductivity are ne-

glected here, as they are relevant only as seasonal changes in the oceans, and constrained by

direct observations (Tyler et al., 2017).

In the case of 1-D conductivity models, a natural choice is to assign constant conductivities

to individual layers. Recalling the definition of the piecewise constant functions ξkprq from

equation (2.76), we can write

log
σprq

σ0
“

kmax
ÿ

k“1

mkξkprq, (3.2)

and arrange the parameters mk into the vector

m “ pmkq
kmax

k“1 . (3.3)

The radial discretization of the inverse problem does not have to coincide with the discretiza-

tion of the forward problem, and our codebase indeed admits a single parameter mk to span the

conductivity across multiple layers of the forward solver. However, for the sake of simplicity,

it will not be explicitly considered here.

When lateral conductivity variations are present, several choices are possible. One way,

as used in Velímský (2013), among others, is to expand the conductivity logarithm into the

spherical harmonic basis in each layer,

log
σprq

σ0
“

kmax
ÿ

k“1

jσmax
ÿ

j“0

j
ÿ

m“´j

mjm,kYjmpΩqξkprq. (3.4)
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The lateral resolution of the conductivity model is then governed by the truncation degree jσmax

which should be chosen well below the truncation of the forward solver jmax. The coefficients

mjm,k are then included into the model vector m with dimension M “ dimM, in analogy

with the assembly of vector x in equation (2.80).

A grid parameterization of conductivity is also possible, and it has been used by Maksimov

and Velímský (2017) to demonstrate the calculation of scattered fields. In this case, piecewise-

constant basis functions are used for lateral dimensions,

log
σprq

σ0
“

kmax
ÿ

k“1

Nϑ
ÿ

l“1

Nφ
ÿ

m“1

mlm,kξlpϑqξmpφqξkprq, (3.5)

with corresponding discretizations of colatitude and longitude intervals. Equations (3.2), (3.4),

and (3.5) can be summarized as

σ “ σpr;mq, (3.6)

ρ “ ρpr;mq. (3.7)

The space of admissible conductivity models can be constrained by providing additional a-

priori information independent of electromagnetic field measurements. Several regularization

functionals are implemented in our codebase, constraining the L2 norm of the first or second

spatial derivatives in the logarithmic space,

R2
pmq “

1

V

ż

G

$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

ˇ

ˇ

ˇ
grad

´

log σpr;mq

σ0

¯ˇ

ˇ

ˇ

2

ˇ

ˇ

ˇ
∆

´

log σpr;mq

σ0

¯ˇ

ˇ

ˇ

2

ˇ

ˇ

ˇ
grad Ω

´

log σpr;mq

σ0

¯ˇ

ˇ

ˇ

2

ˇ

ˇ

ˇ
∆Ω

´

log σpr;mq

σ0

¯
ˇ

ˇ

ˇ

2

,

/

/

/

/

/

/

/

.

/

/

/

/

/

/

/

-

dV. (3.8)

In some cases, e.g. when an a-priori 1-D model is well constrained, it can be useful to constrain

only the lateral conductivity variations using the angular parts of the gradient or Laplacian

operators. Note that the derivatives DmR
2pmq in the model space, where

Dmp‚q “

ˆ

B

Bm1

,
B

Bm1

, . . . ,
B

BmM

˙T

p‚q , (3.9)

is the M -dimensional gradient operator, can be obtained analytically.
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3.3 External and internal sources

The energy driving the EMI process in the Earth’s interior can be provided both by external

and internal sources, described respectively by the coefficients Gpeq

jmptq and Epimp,λ,kq

jm ptq in the

spherical harmonic representation. Although the EMI problem is linear with respect to the

source terms, they can be eliminated from the equations only in the simplest case (external

loading by a dipole in frequency domain). This is in contrast with the magnetotelluric prob-

lem, where local responses are usually used with the assumption of planar source. In the

global inverse problem formulation we are thus left with three choices.

First, we can carry out a multivariate analysis of data to obtain the global or local/global

response functions, and use multiple runs for individual spatio-temporal modes in the forward

modelling (Püthe and Kuvshinov, 2014; Püthe et al., 2015).

The second option is to provide the source terms by an initial data analysis or from other

sources, and use them in the forward and inverse modelling as fixed, error-free parameters.

This approach is usually taken for the internal excitation in the oceans, where we rely on the

accuracy of the ocean flows obtained by data-assimilative methods, and the main magnetic

field models (cf. Grayver et al., 2016, 2017; Velímský et al., 2018). However, it can be also

applied to the external sources, as is the case of the original Swarm Level 2 time-domain

processing chain with the 3-D inversion (Velímský, 2013) following an external/internal field

separation (Sabaka et al., 2013).

Finally, the description of the source terms can be incorporated into the model space M.

The choice of source model parameters and their relation to the source coefficients Gpeq

jmpt;mq

can be arbitrary. As sketched in Velímský (2013) and later implemented into our codebase,

the simplest implementation is offered by a 1:1 approach: all external field coefficient at all

time levels are ordered and included in m. Obviously, the increase of the model space dimen-

sion M is enormous and must be compensated in the data. Additional a-priori information

can be used to reduce the dimensionality. For example, assuming the external field as a re-

sult of multiple circular current loops (Sun et al., 2015), only few parameters defining the

position and orientation of such loops, and their respective current amplitudes are needed.

Ideally, the Gpeq

jmpt;mq mapping should be accompanied by fast calculations of the derivatives
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DmG
peq

jmpt;mq.

3.4 Data and misfit

So far, our formulation of the inverse problem is limited to the observations of magnetic field

at the Earth’s surface or in the space. Extension to other observable parameters, such as sub-

marine cable voltages, is possible, but will require substantial modifications of the definition

of the misfit function and the formulation of the adjoint problem. There are several ways to

define the misfit functional. Let us assume a finite number D of vector measurements of the

magnetic field Bobs
pri, tiq at positions ri and times ti, arranged into a vector dobs. Then we

can define the data misfit as

χ2
pmq “

1

2

`

d ´ dobs
˘T

¨ C´1
D ¨

`

d ´ dobs
˘

“
1

2

D
ÿ

i“1

D
ÿ

j“1

“

Bpri, ti;mq ´ Bobs
pri, tiq

‰

¨ wD,ij ¨
“

Bprj, tj;mq ´ Bobs
prj, tjq

‰

“
1

2

ż

R3

ż

R3

t1
ż

t0

t1
ż

t0

“

Bpr, t;mq ´ Bobs
pr, tq

‰

¨ WDpr, r1; t, t1q¨

“

Bpr1, t1;mq ´ Bobs
pr1, t1q

‰

dV dV 1dtdt1, (3.10)

where CD is the data covariance matrix, wD,ij are the individual 3 ˆ 3 blocks of its inverse,

and

WDpr, r1; t, t1q “

D
ÿ

i“1

D
ÿ

j“1

wD,ijδpr ´ riqδpr
1
´ rjqδpt ´ tiqδpt ´ tjq, (3.11)

allows the transition from the discrete observations to the formalism of continuous variables.

The misfit definition introduced above assumes that the uncertainty information contained

in the covariance matrix is related to point observations. If such information is instead avail-

able in the spherical harmonic domain, following a previous spherical harmonic analysis, one
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could define the misfit as

χ2
pmq “

jmax
ÿ

j“1

j
ÿ

m“´j

jmax
ÿ

j1“1

j1
ÿ

m1“´j1

a

p2j ` 1q p2j1 ` 1q

8πpt1 ´ t0q

t1
ż

t0

¨

˝

?
j

”

G
peq

jmpm, tq ´ G
pe,obsq
jm ptq

ı

?
j ` 1

”

G
piq
jmpm, tq ´ G

pi,obsq
jm ptq

ı

˛

‚

T

¨

C´1
jmj1m1ptq ¨

¨

˝

?
j1

”

G
peq

j1m1pm, tq ´ G
pe,obsq
j1m1 ptq

ı

?
j1 ` 1

”

G
piq
j1m1pm, tq ´ G

pi,obsq
j1m1 ptq

ı

˛

‚dt, (3.12)

where Cjmj1m1ptq are the 2ˆ2 blocks of the covariance matrix relating the external and internal

field coefficients for each degree and order at the same time level. This approach was used in

Velímský (2013) for the special case of diagonal covariance matrix. If the covariance matrices

CD and C´1
jmj1m1ptq are both identity matrices scaled by the same constant variance, and all

observations are taken at r “ a, the definitions (3.10) and (3.12) are equivalent.

The evaluation of the misfit gradient is based on the adjoint approach with detailed de-

scription presented in Maksimov and Velímský (2017). The derivations presented there are

limited to the misfit definition (3.12) for the spherical harmonic basis with a diagonal covari-

ance matrix and fixed, error-free source, Gpeq

jmptq “ G
pe,obsq
jm ptq. Here, we introduce a more

general formula with a full covariance matrix. Having obtained the complete solution of the

forward problem for a given vector of model parameters m, we first calculate the adjoint

source coefficients in the adjoint time t̂ “ t1 ´ t as

Ĝ
peq

j1m1pt̂q “ ´

jmax
ÿ

j“1

j
ÿ

m“´j

?
2j ` 1

?
2j1 ` 1

1

t1 ´ t0

t1
ż

maxpt0,t1´t̂q

¨

˝

?
j

”

G
peq

jmpm, τq ´ G
pe,obsq
jm pτq

ı

?
j ` 1

”

G
piq
jmpm, τq ´ G

pi,obsq
jm pτq

ı

˛

‚

T

¨

C´1
jmj1m1ptq ¨

¨

˝

0
?
j1 ` 1

˛

‚dτ. (3.13)

The adjoint source is then used to drive the solution B̂pr; tq of the adjoint problem. It is iden-

tical to the forward problem with the external boundary condition (2.66) with time t replaced
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by the adjoint time t̂. The gradient misfit is then calculated as

Dmχ
2
pmq “

1

4πa3µ0

ż

G

t1
ż

t0

Dmρpm; rq curl B̂ ¨ curlB dV dt

`
ÿ

jm

ÿ

j1m1

a

p2j ` 1q p2j1 ` 1q

4πpt1 ´ t0q

t1
ż

t0

¨

˝

?
j

”

G
peq

jmpm, tq ´ G
pe,obsq
jm ptq

ı

?
j ` 1

”

G
piq
jmpm, tq ´ G

pi,obsq
jm ptq

ı

˛

‚

T

¨

C´1
jmj1m1ptq ¨

¨

˝

?
j1DmG

peq

j1m1pm; tq

0

˛

‚dt. (3.14)

The first term in equation (3.14) depends on Dmρpm; rq, which are the derivatives of the elec-

tric resistivity with respect to the model vector m. Therefore, it conveys the relative sensitivity

of the misfit to the changes of the model parameters defining the resistivity. The second term

in equation (3.14) includes the explicit derivations of the external field with respect to the

model parameters, DmG
peq

jmpm; tq.

For the sake of completeness, the gradient formulas corresponding to the misfit (3.10)

defined in the spatial domain are presented here. The adjoint source is obtained by integrating

the formula

BĜ
peq

jm

Bt̂
pt̂q “ ´

4π

2j ` 1

D
ÿ

i“1

D
ÿ

i1“1

“

Bpri, ti;mq ´ Bobs
pri, tiq

‰

¨ wD,ii1 ¨

”

pj ` 1qS
p´1q

jm pΩi1q ´ S
p`1q

jm pΩi1q

ı

ˆ

a

ri1

˙j`2

δpt ´ ti1q. (3.15)

Again, driving the forward problem by the adjoint source, B̂pr; tq is calculated, and we obtain

Dmχ
2
pmq “

1

4πa3µ0

ż

G

t1
ż

t0

Dmρpm; rq curl B̂ ¨ curlB dV dt

´
ÿ

jm

t1
ż

0

#

2j ` 1

4π

BĜ
piq
jm

Bt̂
´

D
ÿ

i“1

D
ÿ

i1“1

“

Bpri, ti;mq ´ Bobs
pri, tiq

‰

¨ wD,ii1 ¨

”

jS
p´1q

jm pΩi1q ` S
p`1q

jm pΩi1q

ı ´ri1

a

¯j´1

δpt ´ ti1q

*

DmG
peq

jmpti1qdt. (3.16)

Again, the first term corresponds to the sensitivity to the resistivity variations, while the sec-

ond term is related to the external field model. Similar derivations can be carried out in the

frequency domain with time integration and time derivative replaced by the summation over

discrete frequencies, and multiplication by ´iωµ0, respectively.
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3.5 Solution of the inverse problem

With the solution of the forward problem at hand, and the ability to obtain the respective

gradients of the data misfit and regularization functional, we proceed to a solution of the

regularized inverse problem:

For a given regularization parameter λ ą 0, find m̃pλq that minimizes the functional

F pm;λq “ χ2
pmq ` λR2

pmq (3.17)

on the manifold M. From a set of parameters λ, select λ̃ such that the parametric curve

rχ2 pm̃pλqq , R2 pm̃pλqqs has the maximum inflection in λ̃. The corresponding m̃pλ̃q is the

solution of the inverse problem.

The selection of optimal regularization parameter λ̃ is called the L-curve analysis (Hansen,

1992), and it is carried out visually in practice. A series of minimizations is run for decreasing

values of λ, using regular sampling in a logarithmic scale. The L-curve is plotted, a rough

position of the maximum inflection point is estimated, then λ is finely resampled in its vicinity,

and additional regularized models are obtained. A further refinement is possible, but seldom

needed. While the runs for individual values of λ are independent, and thus offer an additional

level of parallelization, the minimization process for each λ is accelerated by starting from the

last model obtained for a larger regularization value. A leapfrogging strategy represents a

good compromise, where multiple inversion chains with sequentially decreasing λ are run in

parallel, providing a sufficient sampling of the L-curve.

The individual minimization problems are solved by the standard limited-memory Broyden-

Fletcher-Goldfarb-Shanno (L-BFGS) algorithm (Liu and Nocedal, 1989). The approximation

of the inverse Hessian is built up during the iteration processes. However, the entire matrix

is not stored, but it is represented only by several vectors updated through recursive formulas

from the values of F pm;λq and DmF pm;λq. The latter is obtained with the help of the adjoint

field calculation described above.
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4 Conclusions

4.1 Selected applications

The methods of forward and inverse modelling of the EMI problem introduced in the previous

chapters, were used in several applications. A brief overview is presented here. Full-length

papers are appended at the end of this Thesis.

The paper by Velímský et al. (2006) describes a first attempt to apply the time-domain

inversion to low-orbit satellite data. A selection of 11 storm events observed by the CHAMP

satellite data was processed and inverted in terms of 1-D conductivity profile. The unregular-

ized inverse problem was solved by grid search on a space of three- or four-layered models.

The position of the upper/lower mantle interface was also recovered by the inversion in the

three-layer model. Using just short excerpts of data, the resolution of the inversion in the

lower mantle was poor. A reasonable upper bound of electric conductivity was obtained for

the upper mantle.

The next study based on the CHAMP satellite data (Velímský, 2010) has already used

the regularized 1-D inversion by the L-BFGS method with adjoint misfit calculations. A grid

search method was used to study the data sensitivity in the vicinity of the optimal model.

Seven years of data were used to constrain the conductivity of the lowermost parts of the

Earth’s mantle, and a small increase of conductivity in the D” layer was observed.

Velímský and Finlay (2011) applied the time-domain EMI modelling to study the separa-

tion of external and internal field at annual and longer time scales. The presence of a highly

conductive metallic core can introduce a significant shift in the induced field and should be

taken into account when processing the storm indices, such as the Dst index.

Velímský et al. (2012) returned to the problem of the D” conductivity. Using 3-D for-
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ward modelling based on conductivity models assembled from different structures provided

by mantle convection modelling, we have demonstrated that the interconnection of a highly

conductive material in D” in the equatorial direction is a necessary prerequisite to detect it

by 1-D inversion driven by the ring current. Even large volumes of the conductor can remain

invisible if they are separated by more insulating material.

The methodological description of the 3-D time-domain inversion chain, developed as

a component of the Swarm Level 2 facility (Olsen et al., 2013) is presented by Velímský

(2013). The method is successfully tested on a closed-loop simulation involving assembly

of synthetic signals of various origins (core, ionosphere, magnetosphere, and induced) along

Swarm satellite tracks, subsequent extraction of the magnetospheric inducing and induced

fields, and 3-D inversion to recover the shape and conductivity of a large-scale heterogeneity

in the mid-mantle.

The paper by Maksimov and Velímský (2017) provides the details of the mathematical

formulation of the adjoint problem. It demonstrates its application to calculate the misfit

gradient. Moreover, scattered forward and adjoint solutions are introduced to produce the

matrix of second misfit derivatives — the Hessian in the space of model parameters.

The process of electromagnetic induction by ocean tides is studied in Velímský et al.

(2018). The frequency-domain spherical harmonic formulation is used here in comparison

with a solver based on the contracting integral equation approach. We demonstrate that the

galvanic coupling between the ocean and the upper mantle, related to the toroidal magnetic

field in the oceans, must be taken into account in order to accurately predict the signatures of

M2 tidal flow at satellite altitude.

The study by Velímský et al. (2019) is dedicated to the electromagnetic induction signa-

tures of large-scale ocean flows driven by thermal and mechanical interactions with the Earth’s

atmosphere. We predict a large toroidal magnetic field generated by the Antarctic Circumpolar

Current and study how it can influence the observable poloidal field.
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4.2 Ongoing research and future outlook

The interpretation of Swarm satellite data in terms of mantle 3-D electric conductivity has

been for a long time stalled by the problem of external/internal field separation in the process

called Comprehensive modelling (Sabaka et al., 2013). Only the very recent models of external

and internal field coefficients, obtained with careful selection of data especially in the polar

areas, start to provide meaningful results.

Figure 4.1 shows the preliminary results of a 3-D inversion of the latest processing (ver-

sion 0501) of the Swarm-derived time series of external and internal spherical harmonic coef-

ficients, compared to two previous studies based on the inversion of ground observatory data

(Semenov and Kuvshinov, 2012; Sun et al., 2015). The resolution of our model is limited by

spherical harmonic expansion to degree 3 (in the log-space) in each layer. Some features of

the conductivity models are consistent across the different approaches. For now, it is a matter
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Figure 4.1: Top row: Selected cross-sections of a 3-D mantle conductivity obtained by Swarm

satellite data inversion (Velímský & Knopp, unpublished). Middle row: Results of inversion

of ground observatory data by Semenov and Kuvshinov (2012). Bottom row: Results of

inversion of ground observatory data by Sun et al. (2015). Note that color scales differ between

individual models.
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of speculation, whether the resistive areas in the upper mantle coinciding with the ring of fire

surrounding the Pacific Ocean are blurred signatures of the subducted plates.

Current efforts are concentrated on the co-estimation of the external field model together

with the conductivity distribution, as suggested in Chapter 3. In particular, we aim to reduce

the number of model parameters using the external field model consisting of multiple circular

current loops.

Figure 4.2: Comparison of observed and predicted voltages at submarine cable HAW3

(Makaha, Hawaii to San Luis Obispo, California). Modified from Schnepf et al. (2019).

Another recent application is the comparison of high-resolution predictions of the electric

field generated by seasonal variations of ocean flows with measurements of electric voltages

on submarine cables in the Pacific Ocean (Schnepf et al., 2019). Figure 4.2 shows one example

of such a comparison. The submarine cable voltages observed during magnetic quite times

were smoothed by cubic splines with 90 days knot separation. The high-resolution predictions

of electric field at the seabottom were obtained by time-domain forward modelling of the EMI

equation with seasonally variable conductivity (Tyler et al., 2017), and driven by the ocean

flow model ECCO V4R3 (Forget et al., 2015). The electric field was then integrated along
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the cable to provide the voltage difference between the endpoints. Although driven by the

relatively weak East Pacific Gyre, there is significant correlation between the predicted signal

and observed voltages. It remains an open question, whether such observations could be used

for seasonal monitoring of large ocean currents, such as the Antarctic Circumpolar Current.
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Published in Physics of the Earth and Planetary Interiors in 2012

Volume 202–203, 71–77

doi: 10.1016/j.pepi.2012.02.012

c⃝2012 Elsevier B.V.

67

https://doi.org/10.1016/j.pepi.2012.02.012


68



A.5 Determination of three-dimensional distribution of electrical

conductivity in the Earth’s mantle from Swarm satellite data:

Time-domain approach

Velímský, J.

Published in Earth, Planets and Space in 2013

Volume 65, 1239–1246

doi: 10.5047/eps.2013.08.001

c⃝2013 The Society of Geomagnetism and Earth, Planetary and Space Sciences (SGEPSS);

The Seismological Society of Japan; The Volcanological Society of Japan; The Geodetic

Society of Japan; The Japanese Society for Planetary Sciences; TERRAPUB

69

https://doi.org/10.5047/eps.2013.08.001


70



A.6 Fast calculations of the gradient and the Hessian in the time-

domain global electromagnetic induction inverse problem

Maksimov, M.A. and Velímský, J.

Published in Geophysical Journal International in 2017

Volume 210, 270–283

doi: 10.1093/gji/ggx167

c⃝2017 Maksimov and Velímský. Published by Oxford University Press on behalf of The

Royal Astronomical Society.

71

https://doi.org/10.1093/gji/ggx167


72



A.7 On the modelling of M2 tidal magnetic signatures: Effects of

physical approximations and numerical resolution

Velímský, J., Grayver, A., Kuvshinov, A., and Šachl, L.

Published in Earth, Planets and Space, in 2018

Volume 70, 192

doi: 10.1186/s40623-018-0967-5

c⃝2018 Velímský, Grayver, Kuvshinov and Šachl.

73

https://doi.org/10.1186/s40623-018-0967-5


74



A.8 The Global Toroidal Magnetic Field Generated in the Earth’s

Oceans

Velímský, J., Šachl, L., and Martinec, Z.

Published in Earth and Planetatry Science Letters in 2019

Volume 509, 47–54

doi: 10.1016/j.epsl.2018.12.026

c⃝2019 Elsevier B.V.

75

https://doi.org/10.1016/j.epsl.2018.12.026

	Introduction
	Forward modelling
	The electromagnetic induction equation in a spherical Earth
	Spherical harmonic approach
	Assembly of the linear problem
	Time discretization and linear problem solution

	Inverse modelling
	Global EM induction inverse problem
	Model parameters
	External and internal sources
	Data and misfit
	Solution of the inverse problem

	Conclusions
	Selected applications
	Ongoing research and future outlook

	Appendices
	Electrical conductivity in the Earth’s mantle inferred from CHAMP satellite measurements — I. Data processing and 1-D inversion
	Electrical conductivity in the lower mantle: Constraints from CHAMP satellite data by time-domain EM induction modelling
	Effect of a metallic core on transient geomagnetic induction
	On the detectability of 3-D postperovskite distribution in D'' by electromagnetic induction
	Determination of three-dimensional distribution of electrical conductivity in the Earth’s mantle from Swarm satellite data: Time-domain approach
	Fast calculations of the gradient and the Hessian in the time-domain global electromagnetic induction inverse problem
	On the modelling of M2 tidal magnetic signatures: Effects of physical approximations and numerical resolution
	The Global Toroidal Magnetic Field Generated in the Earth’s Oceans


