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Introduction
The theory of Sobolev spaces is widely used in the modern theory of partial
differential equations, where the solution is very often described as an element of
such spaces. For a solution of the Dirichlet problem under some conditions on
the boundary of domain the spaces W 1,p and W 1,p

0 are of crucial importance. The
space W 1,p

0 is classically defined as a closure of smooth functions with a compact
support in W 1,p.

This definition is somewhat theoretical. There are efforts to describe such
space in another way, which is possibly more practical for purposes of modeling
of such functions. It is proved in [2, Theorem V.3.4] that for certain regular
domains Ω ⊂ RNand p ∈ (1, ∞) the following equivalence holds:

u ∈ W 1,p
0 (Ω) if and only if u

d
∈ Lp(Ω) and ∇u ∈ Lp(Ω),

where the function d(x) is defined as a distance of an element x from the boundary
of the domain Ω.

This result was improved several times. In [6] it was shown that taking weak
Lebesgue spaces in the condition for the function u

d
suffices to get the same

conclusion. Namely, for p ∈ (1, ∞),

u ∈ W 1,p
0 (Ω) if and only if u

d
∈ Lp,∞(Ω) and ∇u ∈ Lp(Ω).

In [3], the assumption was further relaxed. The space Lp,∞ was replaced with
a bigger space, namely L1, in other words,

u ∈ W 1,p
0 (Ω) if and only if u

d
∈ L1(Ω) and ∇u ∈ Lp(Ω).

This result was extended in [4] to Sobolev spaces of higher order. More precisely,
u ∈ W k,p

0 (Ω) if and only if u
dk ∈ L1(Ω) and |Dku| ∈ Lp(Ω), where Dku denotes

the vector of all weak derivatives of order k.
The goal of this thesis is to prove the same conclusion under even weaker

condition for the space of function u
d
. Namely, let Ω ⊂ RN be a domain with

Lipschitz boundary. Then, for p ∈ (1, ∞) and q ∈ [1, ∞),

u ∈ W 1,p
0 (Ω) if and only if u

d
∈ L1,q(Ω) and ∇u ∈ Lp(Ω).

We would like to point out that this condition on u
d

can not be weakened to
u
d

∈ L1,∞. We will give a counterexample.
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1. Preliminaries
The purpose of this chapter is to give a survey of concepts and results from real
and functional analysis, which are in the close relationship with the topic of this
thesis and are used in the proofs. Also we present some notation. Almost all this
background material can be found in various monographs and articles that will
be cited.

1.1 Basic background results from real analysis
and measure theory

Before we turn to function spaces, we need to mention some fundamental results
from the measure theory and the theory on continuous functions.

Notation 1.1. We denote the n-dimensional Lebesgue measure as λN , N ∈ N.
For one-dimensional Lebesgue measure we also write |·|.

Let (R, µ) be a σ-finite measure space. Let us denote by M (R, µ) the set of all
µ-measurable functions from R to [−∞, ∞], by M0(R, µ) the set of all functions
from M (R, µ) that are finite µ-almost everywhere (we briefly write µ-a.e.) and by
M+(R, µ) we denote the subset of M0(R, µ) consisting of nonnegative functions.

We shall write A ≈ B if there exist positive constants c1 and c2 independent
of appropriate quantities involved in A and B such that c1A ≤ B ≤ c2A.

Theorem 1.2. ([7, Lemma 5.7.1]) Let E be a λN -measurable subset of RN and
f : E → RN be a Lipschitz function with a constant of Lipschitz continuity K
(i.e. |f(x) − f(y)| ≤ K |x − y| for each x, y ∈ E). Then λN(f(E)) ≤ KNλ(E).

Theorem 1.3. ([8, 30.3 Rademacher’s Theorem]) Let f be a Lipschitz function
on an open set G ⊂ RN . Then f is differentiable λN -almost everywhere in G.

Theorem 1.4. ([8, Corollary 23.5]) Let f be an absolutely continuous function
on [a, b] ⊂ R (we write f ∈ AC[a, b] or shortly f ∈ AC). Then df

dt
exists almost

everywhere in [a, b], df
dt

∈ L1([a, b]) and

f(b) − f(a) =
∫ b

a

d

dt
f(t) dt. (1.1)

Definition 1.5 (weak derivative). ([13]) Let Ω ⊂ RN be open set and let α =
(α1, . . . , αN) ⊂ (N ∪ {0})N be a multiindex. Let u, vα ∈ L1

loc(Ω). We say that vα

is a weak derivative of u with respect to α if for every test function ϕ ∈ C∞
0 (Ω)

we have ∫
Ω

u(x)Dαϕ(x) dx = (−1)|α|
∫

Ω
vα(x)ϕ(x) dx,

where |α| = ∑N
i=1 αi.

Theorem 1.6 (partition of unity). ([13]) Let Ω ⊂ RN be a bounded set and let
{Gi}k

i=1 be a system of open sets in RN such that Ω ⊂ ⋃k
i=1 Gi. Then there exist

non-negative functions φi ∈ C∞
0 (Gi), i = 1, . . . , k, such that

∥φi∥C(Ω) ≤ 1 and
k∑

i=1
φi(x) = 1 for each x ∈ Ω.
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Definition 1.7 (continuous embedding). ([12, Definition 1.15.5]) Let X, Y be
two quasinormed linear spaces and let X ⊂ Y . We define the identity operator
Id from X into Y as the operator which maps every element u ∈ X onto itself:
Id(u) = u, regarded as an element of Y . We say that the space X is continuously
embedded into the space Y if the identity operator is continuous, that is, if there
exists a constant c > 0 such that

∥u∥Y ≤ c ∥u∥X for every u ∈ X.

We denote this fact as X ↪→ Y .

Let us recall one useful inequality.

Lemma 1.8. Let p ∈ [1, ∞). Then for each a, b ∈ R we have

|a + b|p ≤ 2p−1(|a|p + |b|p).

1.2 Lebesgue and Lorentz spaces
In this section we shall define several fundamental spaces, present some of their
basic properties and specify certain relations between them.

Definition 1.9 (Lebesgue spaces). ([1, Chapter 1]) Let 1 ≤ p ≤ ∞. The collec-
tion Lp(R) = Lp(R, µ) of all functions f ∈ M (R, µ) such that ∥f∥Lp(R) < ∞,
where

∥f∥Lp(R) =
{

(
∫
R |f |pdµ)

1
p , 1 ≤ p < ∞,

ess supR |f |, p = ∞,

is called the Lebesgue space.

As pointed out in [1], Lebesgue spaces are a pivotal example of the so-called
Banach function spaces.

Definition 1.10. ([1, Definition 1.1]) We say that a function ϱ : M+(R, µ) →
[0, ∞] is a Banach function norm if, for all f , g and {fn}∞

n=1 in M+(R, µ), for
every λ ≥ 0 and for all µ-measurable subsets E of R, the following five properties
are satisfied:

(P1) ϱ(f) = 0 ⇔ f = 0 µ-a.e.; ϱ(λf) = λϱ(f); ϱ(f + g) ≤ ϱ(f) + ϱ(g);
(P2) 0 ≤ g ≤ f µ-a.e. in R ⇒ ϱ(g) ≤ ϱ(f);
(P3) 0 ≤ fn ↗ f µ-a.e. in R ⇒ ϱ(fn) ↗ ϱ(f);
(P4) µ(E) < ∞ ⇒ ϱ(χE) < ∞;
(P5) µ(E) < ∞ ⇒

∫
E f dµ ≤ CEϱ(f) for some constant CE ∈ (0, ∞) possibly

depending on E and ϱ but independent of f .

Definition 1.11. Let ϱ be a Banach function norm. We then say that the set
X = X(ϱ) of those functions in M (R, µ) for which ϱ(|f |) < ∞ is a Banach
function space. For each f ∈ X we then define

∥f∥X = ϱ(|f |).
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Let us denote the Hölder conjugate exponent p′ to exponent p ∈ [1, ∞] by

p′ =

⎧⎪⎨⎪⎩
∞, p = 1,

p
p−1 , p ∈ (1, ∞),
1, p = ∞.

Theorem 1.12 (Hölder inequality). ([12, Theorem 3.1.6 and Remark 3.10.5])
Let 1 ≤ p ≤ ∞, f ∈ Lp(R) and g ∈ Lp′(R). Then fg ∈ L1(R) and

∥fg∥L1(R) ≤ ∥f∥Lp(R) ∥g∥Lp′ (R) .

The following theorem is an easy consequence of the Hölder inequality.

Theorem 1.13. Let R be a set having finite measure and let 1 ≤ p2 < p1 ≤ ∞.
Then

Lp1(R) ↪→ Lp2(R)

with a constant of the embedding equal to µ(R)
1

p2
− 1

p1 .

Theorem 1.14 (Hardy inequality). ([7, Theorem 6.8.7]) Let a, b ∈ R, a < b,
u ∈ Lp(a, b) and let p ∈ (1, ∞). Then∫ b

a

( 1
t − a

∫ t

a
|u(s)| ds

)p

dt ≤
(

p

p − 1

)p ∫ b

a
|u(x)|p dx,

∫ b

a

(
1

b − t

∫ b

t
|u(s)| ds

)p

dt ≤
(

p

p − 1

)p ∫ b

a
|u(x)|p dx.

Now we turn to Lorentz spaces, which have a crucial importance for the
main theorem of this thesis. We start with the definition of the nonincreasing
rearrangement.

Definition 1.15. ([12, Definition 7.1.6]) Let f ∈ M0(R, µ). Then the function
f ∗ : [0, ∞) → [0, ∞) defined by

f ∗(t) = inf{λ > 0: µ({x ∈ R : |f(x)| > λ}) ≤ t}, t ∈ [0, ∞),

is called a nonincreasing rearrangement of f .

Let us recall some properties of nonincreasing rearrangement.

Properties 1.16. ([1, Proposition 2.1.7]) Let f, g ∈ M0(R, µ). Then f ∗ is
a nonnegative, nonincreasing, right-continuous function on [0, ∞) such that

if |g| ≤ |f | µ-a.e. on R, then g∗(t) ≤ f ∗(t), t ∈ [0, µ(R)),
(af)∗ = |a| f ∗,

(|f |α)∗ = (f ∗)α, α > 0.

Definition 1.17 (Lorentz spaces). ([12, Definition 8.1.1]) Let 1 ≤ p, q ≤ ∞.
The collection Lp,q(R) = Lp,q(R, µ) of all functions f ∈ M0(R, µ) such that
∥f∥Lp,q(R) < ∞, where

∥f∥Lp,q(R) =

⎧⎨⎩
(∫∞

0 [t
1
p f ∗(t)]q dt

t

) 1
q

, 1 ≤ q < ∞,

sup0<t<∞ t
1
p f ∗(t), q = ∞,

is called the Lorentz space.
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Remark 1.18. The functional ∥·∥Lp,q(R) is not always a norm on M (R, µ), but
it is at least a quasinorm (i.e. the triangle inequality is satisfied with a multiplica-
tive constant, more precisely, for each u, v ∈ Lp,q(R) we have ∥u + v∥Lp,q(R) ≤
c(∥u∥Lp,q(R) + ∥v∥Lp,q(R)) for some positive constant c). However, in cases

(p = q = 1) or (1 < p < ∞ and 1 ≤ q ≤ ∞) or (p = q = ∞),

the functional ∥·∥Lp,q(R) is equivalent to a norm of a Banach function space and,
consequently, it has fine properties of Banach function spaces. In cases

(1 ≤ q ≤ p < ∞) or (p = q = ∞)

the functional ∥·∥Lp,q(R) is a norm.

Recall that there does not exist any norm equivalent to ∥·∥L1,q , q > 1.
We will use in our text also the following equivalent description of Lorentz

(quasi)norm.

Remark 1.19. (Lorentz norm via distribution) ([9, Proposition 3.6]) The func-
tional ∥·∥Lp,q(R) can be equivalently rewritten as

∥f∥Lp,q(R) = p
1
q

λ1− 1
q µ({x ∈ R : |f(x)| > λ})

1
p


Lq(0,∞)

.

At the end of this section we will present the relations between Lebesgue and
Lorentz spaces.

Theorem 1.20. ([1, Proposition 4.2]) Suppose that p, q, r ∈ [1, ∞] and

1 ≤ q ≤ r ≤ ∞.

Then
Lp,q(R) ↪→ Lp,r(R)

with a constant of embedding equal to
(

p
q

) 1
q

− 1
r .

Embeddings between Lp,q(R) spaces, where p is varying, are similar to embed-
dings between Lp(R) spaces and they do not depend on the second parametr q.
Thus, let R be a set of finite measure and

1 ≤ p2 < p1 ≤ ∞ and 1 ≤ q, s ≤ ∞.

Then
Lp1,q(R) ↪→ Lp2,s(R).

Let us point out that each of the spaces L1,q with q > 1 is essentially larger
than L1, hence the main result of this thesis considerably improves the known
ones.
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1.3 Sobolev spaces
Another class of spaces of crucial importance in the topic of this thesis is that of
the Sobolev spaces. Let us focus on its definition and properties, which we will
use in this thesis.

Definition 1.21 (Sobolev spaces). ([7, 5.4.1]) Let Ω ⊂ RN be an open set, let
m be a nonnegative integer and 1 ≤ p ≤ ∞. Set

W m,p(Ω) := {u ∈ Lp(Ω) : Dαu ∈ Lp(Ω) for 0 ≤ |α| ≤ m},

where we denote by α = (α1, . . . , αN) a multiindex and by Dαu a weak derivative
of u with respect to α. The set W m,p(Ω) is called the Sobolev space. We define
the functional ∥·∥W m,p(Ω) as follows:

∥u∥W m,p(Ω) =

⎧⎨⎩
(∑

0≤|α|≤m ∥Dαu∥p
Lp(Ω)

) 1
p , 1 ≤ p < ∞,

max0≤|α|≤m ∥Dαu∥L∞(Ω) , p = ∞,

for every function u for which the right-hand side is defined.
We define the set W m,p

0 (Ω) as the closure of C∞
0 (Ω) in the space W m,p(Ω).

Remark 1.22. The sets W m,p(Ω) and W m,p
0 (Ω) equipped with the functional

∥·∥W m,p(Ω) are normed linear (and moreover Banach) spaces.

Theorem 1.23 (Beppo-Levi). ([10, Theorem 5.3]) Let us denote Q = (a1, b1) ×
· · · × (aN , bN) a bounded N-dimensional interval, Qi = Q ∩ {xi = 0} and πi the
orthogonal projection of Q on Qi. Let u ∈ W 1,1(Q). Then there exists u, which
equals to u almost everywhere, with the following properties:

(BL1) For each i ∈ {1, ..., N} and λN−1-almost every y ∈ Qi, the function
uy : t → u(y + tei) is absolutely continuous on (ai, bi)

(BL2) For each i ∈ {1, ..., N}, the function gi : x → u′
πi(x)(xi) is a weak derivative

of u with respect to the i-th variable.

Definition 1.24. We say that Ω ⊂ RN is a domain if it is open, bounded and
connected.

Now, let us introduce a Lipschitz domain, similarly to [7].

Definition 1.25 (Lipschitz domain). Let Ω ∈ RN be a domain. We say that
Ω is a domain with Lipschitz boundary, eventually a Lipschitz domain, if there
exist α, β ∈ (0, ∞) and M ∈ N systems of Cartesian coordinates and Lipschitz
functions ar, r = 1, . . . , M , such that

• for r-th system we denote x = (xr1 , . . . , xrN
) := (x′

r, xrN
) and

∆r =
{
x′

r ∈ RN−1, |xri
| < α, i = 1, . . . , N − 1

}
,

• ar : ∆r −→ R and if we denote by Rr a rotational and translational mapping
from r-th system of Cartesian coordinates to global system of Cartesian
coordinates, then for each x ∈ ∂Ω there exists r ∈ {1, . . . , M} and x′

r such
that x = Rr(x′

r, ar(x′
r)),

7



• if we define

V +
r :=

{
(x′

r, xrN
) ∈ RN : x′

r ∈ ∆r, ar(x′
r) < xrN

< ar(x′
r) + β

}
,

V −
r :=

{
(x′

r, xrN
) ∈ RN : x′

r ∈ ∆r, ar(x′
r) − β < xrN

< ar(x′
r)
}

,

Λr :=
{
(x′

r, xrN
) ∈ RN : x′

r ∈ ∆r, ar(x′
r) = xrN

}
,

Vr := V +
r ∪ V −

r ∪ Λr,

then Rr(V +
r ) ⊂ Ω, Rr(V −

r ) ⊂ RN \ Ω and Rr(Λr) ⊂ ∂Ω.

Remark 1.26. From the definition of the Lipschitz domain we have

∂Ω =
M⋃

r=1
Rr(Λr) ⊂

M⋃
r=1

Rr(Vr).

Hence {Rr(Vr)}M
r=1 is an open covering of ∂Ω.

Note that, in the case N = 1, an open and bounded interval can be considered
as a Lipschitz domain.

Theorem 1.27. ([11, Section 1.1.11]) Let Ω be a Lipschitz domain and p ∈
[1, ∞). Then W 1,p(Ω) coincides with the set

{u ∈ L1
loc(Ω) : Dαu ∈ Lp(Ω) for |α| = 1}.

Theorem 1.28. ([7, Section 6.4]) Let Ω ⊂ Rn be a Lipschitz domain and p ∈
[1, ∞). We define the continuous linear operator T : C∞(Ω) → C(∂Ω) by

Tu := u|∂Ω.

The operator T is called the trace operator. There exists the unique extension of
the operator T such that

T : W 1,p(Ω) → Lq(∂Ω)
is continuous for each

q ∈

⎧⎪⎪⎨⎪⎪⎩
[
1, np−p

n−p

]
if p < n,

[1, ∞) if p = n,
[1, ∞] if p > n.

Recall that the set C∞(Ω) is dense in W 1,p(Ω), p ∈ [1, ∞), if Ω is a Lipschitz
domain.

Lemma 1.29. Let u ∈ W 1,p(Ω), p ∈ [1, ∞), and let {un}∞
n=1 be a sequence of

Lipschitz functions on Ω such that un → u in W 1,p(Ω). Then Tun → Tu in
Lp(∂Ω).

Proof. Let vn ∈ C∞(Ω), vn → u in W 1,p(Ω). Clearly, ∥un − vn∥W 1,p(Ω) → 0.
The operator T : W 1,p(Ω) → Lp(∂Ω) is linear and continuous, and so ∥Tun −
Tvn∥Lp(∂Ω) → 0. Consequently,

∥Tun − Tu∥Lp(∂Ω) ≤ ∥Tun − Tvn∥Lp(∂Ω) + ∥Tvn − Tu∥Lp(∂Ω) → 0,

which finishes the proof.
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Theorem 1.30. ([7, Theorem 6.6.4]) Let Ω ⊂ RN be a Lipschitz domain. Then

W 1,p
0 (Ω) = {u ∈ W 1,p(Ω), Tu = 0 a.e. in ∂Ω}.

Theorem 1.31 (Poincaré-Friedrichs inequality). ([13]) Let Ω ⊂ RN be a Lipschitz
domain and p ∈ [1, ∞). Let Γ ⊂ ∂Ω of positive (N − 1)-dimensional measure.
Then there exist positive constants c1 and c2 such that for every u ∈ W 1,p(Ω) we
have

c1 ∥u∥W 1,p(Ω) ≤
(

∥∇u∥p
Lp(Ω) +

∫
Γ

|Tu|p dS
) 1

p

≤ c2 ∥u∥W 1,p(Ω) .

1.4 The trace lemma
In this section we would like to introduce a certain lemma which will be used
later in the proofs. It is probably known, however we present its proof, for the
sake of completeness.

Lemma 1.32. Let us denote QN = (0, 1)N , N ∈ N. Let u ∈ W 1,p(QN). Then
there exists M ⊂ QN−1 such that

λN−1(QN−1 \ M) = 0 and Tu(x′, 0) = lim
t→0+

u(x′, t) for each x′ ∈ M.

We will need the following auxiliary lemma.

Lemma 1.33. Assume p ∈ [1, ∞). Then the inequality

a + a1−p ≥ (p − 1)1/p

holds for each a > 0.

Proof. The assertion for the case p = 1 holds trivially. Let p > 1. Set f(a) =
a + a1−p. Then f ′(a) = 1 + (1 − p)a−p and f ′(a) = 0 if and only if a = (p − 1)1/p.
It can be easily verified that it is a point of global minimum. Thus

f(a) ≥ (p − 1)1/p + (p − 1)(1−p)/p ≥ (p − 1)1/p

for each a > 0, which completes the proof.

Lemma 1.34. Let u ∈ AC(0, 1). Then there exists limt→0+ u(t).

Proof. Let us assume the contrary. Thus there exist {tn} and {tn} approaching
zero such that u(tn) → c ∈ R and u(tn) → d ∈ R, c ̸= d. Let us take ε = |c−d|

2 .
Fix δ > 0 arbitrary. We find n0 ∈ N such that for each n, m > n0 we have
|u(tn) − c| ≤ ε

2 , |u(tm) − d| ≤ ε
2 and |tn − tm| < δ. By the triangle inequality we

have

|c − d| = |c − u(tn) + u(tn) − u(tm) + u(tm) − d|
≤ |c − u(tn)| + |u(tn) − u(tm)| + |u(tm) − d| ,

thus
ε ≤ |u(tn) − u(tm)| ,

which contradicts the absolute continuity of u.
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Lemma 1.35. Let u ∈ AC(0, 1), δ > 0 and | limt→0+ u(t)| ≥ δ. Then∫ 1

0
(|u(t)|p + |u′(t)|p)dt ≥ (δ/2)p min(1, (p − 1)1/p).

Proof. We can assume that limt→0+ u(t) ≥ δ, otherwise we take −u. Set

a = inf{t ∈ (0, 1); u(t) ≤ δ

2}.

Clearly, a > 0. If the set from the definition of a is empty, then we have∫ 1

0
(|u(t)|p + |u′(t)|p)dt ≥

∫ 1

0
|u(t)|pdt ≥ (δ/2)p,

and the assertion follows.
If a < 1 then, by the Hölder inequality and the properties of AC functions,

we have

a1−p

⏐⏐⏐⏐ lim
t→0+

u(t) − u(a)
⏐⏐⏐⏐p ≤ a1−p

(∫ a

0
|u′(s)|ds

)p

≤
∫ a

0
|u′(s)|pds,

which gives, together with Lemma 1.33,∫ 1

0
(|u(t)|p + |u′(t)|p)dt ≥

∫ a

0
(|u(t)|p + |u′(t)|p)dt

≥ a(δ/2)p + a1−p

⏐⏐⏐⏐ lim
t→0+

u(t) − u(a)
⏐⏐⏐⏐p ≥ a(δ/2)p + a1−p(δ/2)p

= (δ/2)p(a + a1−p) ≥ (δ/2)p(p − 1)1/p,

establishing the claim.

Proof of Lemma 1.32. Let u ∈ W 1,p(QN). By Theorem 1.23, there exists a set
M ⊂ QN−1 for which t ↦→ u(x′, t) is AC on (0, 1), x′ ∈ M , and λ(QN−1 \ M) = 0.
Denote

f(x′) = lim
t→0+

u(x′, t),

which exists for each x′ ∈ M due to Lemma 1.34. Assume that our assertion does
not hold. Then there exist α > 0 and A ⊂ M with λN−1(A) > 0 such that

|Tu(x′, 0) − f(x′)| ≥ α, x′ ∈ A.

Let un ∈ C∞(QN) be such that un → u in W 1,p(QN). Then Tun → Tu in
Lp(QN−1). Find n0 ∈ N such that for each n > n0 we have

∥un − u∥p
W 1,p(QN ) <

λN−1(A)
2

(
α

4

)p

min(1, (p − 1)1/p) (1.2)

and ∫
QN−1

|Tun(x′, 0) − Tu(x′, 0)|pdx′ ≤ αpλN−1(A)
2p+1 .

10



Fix m > n0. Set

B =
{

x ∈ QN−1; |Tum(x′, 0) − Tu(x′, 0)| ≥ α

2

}
.

Then

αpλN−1(A)
2p+1 ≥

∫
B

|Tum(x′, 0) − Tu(x′, 0)|pdx′ ≥ λN−1(B)
(

α

2

)p

and thus

λN−1(A)
2 ≥ λN−1(B), and λN−1(QN−1 \ B) ≥ 1 − λN−1(A)

2 .

So,

λN−1((QN−1 \ B) ∩ A) ≥ λN−1(A)
2 .

Moreover, for x′ ∈ (QN−1 \ B) ∩ A we have

α ≤ |Tu(x′, 0) − f(x′)| ≤ |Tu(x′, 0) − Tum(x′, 0)| + |Tum(x′, 0) − f(x′)|

≤ α

2 + |Tum(x′, 0) − f(x′)|

and

|Tum(x′, 0) − f(x′)| = |um(x′, 0) − f(x′)| = | lim
t→0+

(um(x′, t) − u(x′, t))|,

thus
α

2 ≤ | lim
t→0+

(um(x′, t) − u(x′, t))|.

Applying Lemma 1.35 to the function um − u, we obtain

∥um − u∥p
W 1,p(QN )

≥
∫

(QN−1\B)∩A

( ∫ 1

0
(|um(x′, t) − u(x′, t)|p + |u′

m(x′, t) − u′(x′, t)|p) dt
)

dx′

≥ λN−1((QN−1 \ B) ∩ A)
(

α

4

)p

min(1, (p − 1)1/p)

≥ λN−1(A)
2

(
α

4

)p

min(1, (p − 1)1/p)

which is a contradiction with (1.2).
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2. Formulation of the problem
In this chapter we show the background of our problem of characterization of
functions with zero traces from Sobolev spaces using the distance function from
the boundary. We will present a summary of known results, definitions of appro-
priate function spaces and the formulation of the main result.

2.1 Survey of known results
We start with the distance function.

Definition 2.1 (distance function from the boundary). Let Ω ⊂ RN be a non-
empty open and bounded set. We define the function d : Ω −→ (0, ∞) as d(x) =
dist(x, ∂Ω).

Now we turn to some historical facts in the research of a characterization of
functions vanishing at the boundary using the distance function. The first result
on this topic can be found in the book [2] by D. E. Edmunds and W. D. Evans
published in 1987. It is based on results of D. J. Harris, C. Kenig, J. Kadlec and
A. Kufner [5].

Theorem 2.2. [2, Theorem V.3.4 and Remark V.3.5] Let Ω be a nonempty open
subset of RN such that Ω ̸= RN . Let p ∈ [1, ∞) and m ∈ N. Then if u ∈ W m,p(Ω)
and u

dm ∈ Lp(Ω), it follows that u ∈ W m,p
0 (Ω).

If moreover p ∈ (1, ∞) and Ω is bounded with suitably regular boundary
(e.g. Lipschitz), then u ∈ W m,p

0 (Ω) implies u
dm ∈ Lp(Ω).

Ten years later, the paper [6] of J. Kinnunen and O. Martio was published, in
which the condition for u ∈ W 1,p

0 was weakened.

Theorem 2.3. [6, Theorem 3.13] Let Ω be an open set and suppose that u ∈
W 1,p(Ω), p ∈ (1, ∞). Then u

d
∈ Lp,∞(Ω) implies u ∈ W 1,p

0 (Ω).

Note that for a suitably regular domain Ω we have also, by embeddings of
Lorentz spaces and the second part of Theorem 2.2, that u ∈ W 1,p

0 (Ω) implies
u
d

∈ Lp,∞(Ω).
However, even this result was later improved. In 2017, the paper [3] by

A. Nekvinda and D. E. Edmunds was published, where the assumption was fur-
ther relaxed. Here some condition for regularity of domain in both inclusions is
needed. A Lipschitz domain is an example of domain with such regularity.

Theorem 2.4. [3, Theorem 5.5] Let Ω ⊂ RN be bounded and regular, p ∈ (1, ∞).
Then u ∈ W 1,p

0 (Ω) if and only if ∇u ∈ Lp(Ω) and u
d

∈ L1(Ω).

Note that the original result in [3] was formulated for variable exponent p.
This result was one year later extended by the same authors to Sobolev spaces
of higher order. As a consequence of [4, Theorem 6.1] we obtain the following
theorem.

Theorem 2.5. Let Ω ⊂ RN be bounded and regular, p ∈ (1, ∞). Then u ∈
W m,p

0 (Ω) if and only if Dαu ∈ Lp(Ω), |α| = m, and u
dm ∈ L1(Ω).
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2.2 The main result
We will show that the above-mentioned results can be further improved. Our
goal is to prove that we can impose a yet weaker condition on u

d
which will still

preserve the property u ∈ W 1,p
0 (Ω). Namely, we will show that in fact it is enough

to require that u
d

∈ L1,q, q ∈ [1, ∞). We recall that L1,q is an essentially larger
space than L1.

Definition 2.6. Let Ω ⊂ RN be an open and bounded set, let u ∈ M0(Ω, λN) be
a function and p, q ∈ [1, ∞]. Let us denote ũ = u

d
. The function u is an element

of the set Wd(L1,q, Lp)(Ω) if it satisfies

∥ũ∥L1,q(Ω) + ∥∇u∥Lp(Ω) < ∞.

We define the functional ∥·∥Wd(L1,q ,Lp)(Ω) as

∥u∥Wd(L1,q ,Lp)(Ω) = ∥ũ∥L1,q(Ω) + ∥∇u∥Lp(Ω) .

Convention 2.7. We will often write Wd(L1,q, Lp) instead of Wd(L1,q, Lp)(Ω) if
no confusion can arise.

Theorem 2.8. Let Ω ∈ RN be open and bounded. The structure Wd(L1,q, Lp) is
a linear space and the functional ∥·∥Wd(L1,q ,Lp) is a quasinorm on Wd(L1,q, Lp).

Proof. Let us take u, v ∈ M0(Ω, λN). We have

∥u + v∥Wd(L1,q ,Lp) =
u + v

d


L1,q(Ω)

+ ∥∇(u + v)∥Lp(Ω)

≤ C

(u

d


L1,q(Ω)

+
v

d


L1,q(Ω)

)
+ ∥∇u∥Lp(Ω) + ∥∇v∥Lp(Ω)

≤ C
(
∥u∥Wd(L1,q ,Lp) + ∥v∥Wd(L1,q ,Lp)

)
,

where C ≥ 1 is the constant of quasi-subadditivity of quasinorm ∥·∥L1,q(Ω). Ad-
ditionally, for some c ∈ R, we have

∥cu∥Wd(L1,q ,Lp) =
cu

d


L1,q(Ω)

+ ∥∇(cu)∥Lp(Ω)

= |c|
u

d


L1,q(Ω)

+ |c| ∥∇u∥Lp(Ω)

= |c| ∥u∥Wd(L1,q ,Lp) .

Finally, by properties of ∥·∥L1,q(Ω) and ∥·∥Lp(Ω), we have ∥u∥Wd(L1,q ,Lp) ≥ 0 and
∥u∥Wd(L1,q ,Lp) = 0 if and only if u = 0 almost everywhere. This completes the
proof.

Theorem 2.9 (main theorem). Let Ω ⊂ RN , N ∈ N, be a Lipschitz domain,
p ∈ (1, ∞) and q ∈ [1, ∞). Then

W 1,p
0 (Ω) = Wd(L1,q, Lp)(Ω)

and the norm ∥·∥W 1,p is equivalent to the quasinorm ∥·∥Wd(L1,q ,Lp).
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In other words, the function u ∈ M0(Ω, µ) satisfiesu

d


L1,q(Ω)

< ∞ and ∥∇u∥Lp(Ω) < ∞

if and only if
u ∈ W 1,p

0 (Ω).

Moreover, there exist C1, C2 ∈ (0, ∞) such that

C1 ∥u∥W 1,p(Ω) ≤
u

d


L1,q(Ω)

+ ∥∇u∥Lp(Ω) ≤ C2 ∥u∥W 1,p(Ω) .

The proof of this theorem is given in following chapters.
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3. Auxiliary result on a cube
In the proof of the main theorem for a Lipschitz domain we will use a classical
method used for a proof of embeddings between Sobolev spaces or for investigation
of weak solutions of PDE’s. The method is based on the partition of unity and on
characterization of each small part of the boundary of domain. A crucial moment
is to know the result for each such part. This is the core of the proof and it is
given in this chapter.

3.1 Definition of used objects
From now on, let us denote QN = (0, 1)N .

Definition 3.1 (distance function from a part of the boundary). We define
a function dN : QN −→ (0, ∞) by dN(x) = dist(x, {y ∈ RN , yN = 0}) = xN .

Definition 3.2. Let u ∈ M0(QN , λN) be a function. Let us denote ũ = u
dN

in
this chapter. The function u is an element of the set T q,p if it satisfies

∥ũ∥L1,q(QN ) + ∥∇u∥Lp(QN ) < ∞.

We define the functional ∥·∥T q,p as

∥u∥T q,p = ∥ũ∥L1,q(QN ) + ∥∇u∥Lp(QN ) .

Properties 3.3. The structure T q,p is a linear space and the functional ∥·∥T q,p

is a quasinorm of T q,p.

Proof. The proof is analogous to that of Theorem 2.8.

3.2 Proof of a local statement
Let us moreover denote Q0 = {0} and λ0 the Dirac measure δ0. With such
notation the next two proofs will work even in the case N = 1.

Lemma 3.4. Let u ∈ W 1,p(QN) and p ≥ 1. Let us denote P = [0, 1]N−1 ×
{xN = 0}. Suppose that for every ε > 0 and every δ > 0 there exists the set
M ⊂ P such that λN−1(M) > 1 − δ and

∫
M |Tu(x)|p dλN−1(x) < ε. Then

Tu(x) = 0 λN−1-a.e. in P .

Proof. Let us assume that there exist A ⊂ P, λN−1(A) > 0, and a > 0 such that
|Tu(x)| > a for each x ∈ A for a contradiction. Let us take ε > 0 and δ > 0 such
that

ε <
1
4apλN−1(A) and δ <

1
2λN−1(A).

We take M from the assumption. Then we have λN−1(M) > 1−δ > 1− 1
2λN−1(A).

Since λN−1(A)+λN−1(M) = λN−1(A∩M)+λN−1(A∪M) and λN−1(A∪M) ≤
1, we get

λN−1(A)
2 < λN−1(A ∩ M).
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Therefore

ε >
∫

M
|Tu(x)|p dλN−1(x) ≥

∫
A∩M

|Tu(x)|p dλN−1(x) ≥ apλN−1(A ∪ M)

>
1
2apλN−1(A) > 2ε,

which is a contradiction.

Theorem 3.5. Let p, q ∈ [1, ∞), N ∈ N. Let u be a function from T q,p. Then u
is an element of the Sobolev space W 1,p(QN) with zero trace on the set{

x ∈ [0, 1]N , xN = 0
}

⊂ ∂QN ,

i.e. Tu(x) = 0 almost everywhere on this set.

Proof. By assumptions we have ∥∇u∥Lp(QN ) < ∞, thus by Theorem 1.27 we get
u ∈ W 1,p(QN).

We now turn to the proof of the second part. Let us take arbitrary ε > 0 and
δ ∈ (0, 1). Then, using properties of real numbers, we take k ∈ N, k ≥ 3, such
that 1

k−1 < δ ≤ 1
k−2 . Let us denote

Ik,n =
[(1

k

)n+1
,
(1

k

)n
]

.

Note that λ1(Ik,n) =
(

1
k

)n
k−1

k
. Then

∞∑
n=0

∫
Ik,n

tq−1ũ∗(t)q dt =
∫ 1

0
tq−1ũ∗(t)q dt < ∞

by the assumptions. Denoting

aq
k,n =

∫
Ik,n

tq−1ũ∗(t)q dt

we have ∑∞
n=0 aq

k,n < ∞, which immediately implies limn→∞ ak,n = 0.
We claim that there exist constants ck,n ∈

[(
1

k−1

)q−1
,
(

k
k−1

)q−1
]

such that

aq
k,n = ck,n|Ik,n|q−1

∫
Ik,n

ũ∗(t)q dt.

Indeed,

aq
k,n =

∫ ( 1
k

)n

( 1
k

)n+1
tq−1ũ∗(t)q dt

≤
( 1

kn

)q−1 ∫
Ik,n

ũ∗(t)q dt = |Ik,n|q−1
(

k

k − 1

)q−1 ∫
Ik,n

ũ∗(t)q dt

and

aq
k,n ≥

( 1
kn+1

)q−1 ∫
Ik,n

ũ∗(t)q dt = |Ik,n|q−1
( 1

k − 1

)q−1 ∫
Ik,n

ũ∗(t)q dt.
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Let us denote
Pk,n =

aq
k,n

ck,n|Ik,n|q
= 1

|Ik,n|

∫
Ik,n

(|ũ|q)∗(t) dt,

where we use (ũ∗)q = (|ũ|q)∗, and define

Mk,n = {x ∈ QN−1 × Ik,n, |ũ(x)|q ≤ Pk,n+1} .

Assume for the time being that

λN({x ∈ QN−1 × Ik,n : |ũ(x)|q > Pk,n+1}) >
1

k − 1 |Ik,n| = 1
kn+1 . (3.1)

Since {x ∈ QN−1 × Ik,n : |ũ(x)|q > Pk,n+1 + ω} ↗ {x ∈ QN−1 × Ik,n : |ũ(x)|q >
Pk,n+1} for ω → 0+, there exists ω0 > 0 such that

λN({x ∈ QN−1 × Ik,n : |ũ(x)|q > Pk,n+1 + ω0}) >
1

kn+1 . (3.2)

Then, for ν ∈ (0, |Ik,n+1|),

inf
{

ξ > 0: λN({x ∈ QN : |ũ(x)|q > ξ}) ≤ 1
kn+1 − ν

}
= (|ũ|q)∗

( 1
kn+1 − ν

)
≥ (|ũ|qχQN−1×Ik,n

)∗
( 1

kn+1 − ν
)

= inf
{

ξ > 0: λN({x ∈ QN−1 × Ik,n : |ũ(x)|q > ξ}) ≤ 1
kn+1 − ν

}
:= D.

If D < Pk,n+1 + ω0, then there exists ξ0 such that D ≤ ξ0 < Pk,n+1 + ω0 with

λN({x ∈ QN−1 × Ik,n : |ũ(x)|q > Pk,n+1 + ω0})

≤ λN({x ∈ QN−1 × Ik,n : |ũ(x)|q > ξ0}) ≤ 1
kn+1 − ν,

which contradicts (3.2). Thus D ≥ Pk,n+1 + ω0. Then for each ν ∈ (0, |Ik,n+1|)
we have proved

(|ũ|q)∗
((1

k

)n+1
− ν

)
≥ Pk,n+1 + ω0 > Pk,n+1.

Therefore the function (|ũ|q)∗ is strictly greater then Pk,n+1 inside of the interval
Ik,n+1 and

Pk,n+1 = 1
|Ik,n+1|

∫
Ik,n+1

(|ũ|q)∗(t) dt >
|Ik,n+1|
|Ik,n+1|

Pk,n+1 = Pk,n+1,

which is contradiction. Hence inequality (3.1) does not hold. This proves

λN(Mk,n) = |Ik,n| − λN({x ∈ QN−1 × Ik,n : |ũ(x)|q > Pk,n+1})

≥ |Ik,n| − 1
k − 1 |Ik,n| = k − 2

k − 1 |Ik,n|.

From the Fubini theorem we deduce that there exists tk,n ∈ Ik,n such that

λN−1({x ∈ QN , xN = tk,n} ∩ Mk,n) ≥ k − 2
k − 1 > 1 − δ. (3.3)
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Moreover, by the definition of Mk,n, we get, for x ∈ Mk,n,

|u(x)|
dN(x) ≤

ak,(n+1)

c
1
q

k,(n+1)|Ik,(n+1)|
≤

ak,(n+1)(
1

k−1

) q−1
q |Ik,(n+1)|

and, since dN(x) = xN ∈
[(

1
k

)n+1
,
(

1
k

)n
]
, we obtain, denoting ck = k2

(k−1)
1
q
,

|u(x)| ≤ ckak,(n+1). (3.4)

Thanks to u ∈ W 1,p(QN), we have by the Beppo-Levi theorem that u is absolutely
continuous on almost every line parallel to one of the axes and classical derivatives
of such AC function coincide with weak derivatives. Let (x′, 0) ∈ QN−1×{xN = 0}
be such that u(x′,0) : t −→ u((x′, 0) + teN) is absolutely continuous on t ∈ (0, 1).
Due to Lemma 1.32, we can extend it continuously for almost every x′ ∈ QN−1
with the value Tu((x′, 0)) for t = 0. Consequently we can use the Newton-Leibniz
formula (1.1)

u((x′, tk,n)) − Tu((x′, 0)) =
∫ tk,n

0

∂

∂xN

u((x′, ζ)) dζ (3.5)

for almost every x′ ∈ QN−1. Therefore

|Tu((x′, 0))| ≤
∫ tk,n

0

⏐⏐⏐⏐⏐ ∂

∂xN

u((x′, ζ))
⏐⏐⏐⏐⏐ dζ + |u((x′, tk,n))|.

Raising this to p and using the Hölder inequality, we get

|Tu((x′, 0))|p ≤ 2p−1
((∫ tk,n

0

⏐⏐⏐⏐⏐ ∂

∂xN

u((x′, ζ))
⏐⏐⏐⏐⏐ dζ

)p

+ |u((x′, tk,n))|p
)

≤ 2p−1
(

(tk,n)p−1
∫ tk,n

0

⏐⏐⏐⏐⏐ ∂

∂xN

u((x′, ζ))
⏐⏐⏐⏐⏐
p

dζ + |u((x′, tk,n))|p
)

. (3.6)

Denote P = [0, 1]N−1 × {xN = 0} and let ΠP : QN −→ P be the orthogonal
projection. Let B ⊂ QN . Then we denote π(B) ⊂ (0, 1)N−1 such that π(B) ×
{xN = 0} = ΠP (B).

Let us integrate (3.6) over the set π({x ∈ QN , xN = tk,n} ∩ Mk,n) (we write
just π for brevity). More precisely, we integrate over that subset of π on which
(3.5) holds. We recall that this set has the same measure as π. Thus

∫
π

|Tu((x′, 0))|p dx′ ≤ 2p−1(tk,n)p−1
∫

π

∫ tk,n

0

⏐⏐⏐⏐⏐ ∂

∂xN

u((x′, ζ))
⏐⏐⏐⏐⏐
p

dζ dx′

+ 2p−1
∫

π
|u((x′, tk,n))|p dx′.

By an elementary computation,
∫

π

∫ tk,n

0

⏐⏐⏐⏐⏐ ∂

∂xN

u((x′, ζ))
⏐⏐⏐⏐⏐
p

dζ dx′ ≤
∫

(0,1)N−1

∫ tk,n

0

⏐⏐⏐⏐⏐ ∂

∂xN

u((x′, ζ))
⏐⏐⏐⏐⏐
p

dζ dx′
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and ∫
(0,1)N−1

∫ tk,n

0

⏐⏐⏐⏐⏐ ∂

∂xN

u((x′, ζ))
⏐⏐⏐⏐⏐
p

dζ dx′

≤
∫

QN

|∇u(x)|p dx = ∥∇u∥p
Lp(QN ) < ∞. (3.7)

By (3.4), we have∫
π({x∈QN ,xN =tk,n}∩Mk,n)

|u((x′, tk,n))|p dx′ ≤ ap
k,(n+1)c

p
k.

Thus,∫
ΠP ({x∈QN ,xN =tk,n}∩Mk,n)

|Tu(x)|p dλN−1(x)

≤ 2p−1(tk,n)p−1
∫

(0,1)N−1

∫ tk,n

0

⏐⏐⏐⏐⏐ ∂

∂xN

u((x′, ζ))
⏐⏐⏐⏐⏐
p

dζ dx′ + 2p−1ap
k,(n+1)c

p
k.

Since limn→∞ tk,n = 0, using (3.7), the continuity of the Lebesgue integral and
the fact that limn→∞ ak,(n+1) = 0, we get that to our ε > 0 there exists an n0 ∈ N
such that ∫

ΠP ({x∈QN ,xN =tk,n0 }∩Mk,n0 )
|Tu(x)|p dλN−1(x) < ε

and, by (3.3),

λN−1(ΠP ({x ∈ QN , xN = tk,n0} ∩ Mk,n0)) = λN−1({x ∈ QN , xN = tk,n0} ∩ Mk,n0)
> 1 − δ.

Finally, applying Lemma 3.4 to ε, δ and sets ΠP ({x ∈ QN , xN = tk,n0} ∩ Mk,n0),
we complete the proof.

We note that natural analogues of vast majority of the steps in the proof
make good sense also in the case N = 1. In the exceptional circumstances when
this is not the case, it turns out that they are either not needed and thus can be
skipped, or they may be slightly modified.

The proof is almost complete for the case N = 1. It suffices to apply the
method presented in [14, Chapter 6] using reflection and smoothing to the former
embedding, and applying the Hardy inequality to the latter one. It is also possible
to easily modify the method which is presented below for higher dimensions to
the dimension one.
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4. Main result for a domain
having a Lipschitz boundary
In this chapter we extend our result from a cube to a Lipschitz domain. We
can assume N ≥ 2. First we prove an embedding between spaces W 1,p

0 (Ω) and
Wd(L1,q, Lp)(Ω), which is new and fundamental for this thesis. We apply the
results proved in the previous chapter. To this end we need to describe the
boundary using Lipschitz functions and to transform parts of the domain by
a bilipschitz mapping. We prove some results about such mapping. This chapter
includes also the reverse embedding of spaces, which completes the proof.

4.1 Lipschitz domain and bilipschitz mapping
First let us mention a quite interesting theorem, which appeared in the course of
the proof of our statement. For the proof it is not strictly necessary, but it is of
independent interest.

Let us denote by d∂Ω : Ω −→ (0, ∞) the distance function from the boundary
of the domain Ω.

Theorem 4.1. Let q ∈ [1, ∞], G and Ω be domains in RN and B : RN → RN be
a bilipschitz mapping such that B(G) = Ω. Then, for u ∈ M0(Ω, λN), we have

u(x)
d∂Ω(x) ∈ L1,q(Ω) if and only if u(B(y))

d∂G(y) ∈ L1,q(G) and there exist positive constants
C1 and C2 depending on B such that

C1

 u(x)
d∂Ω(x)


L1,q(Ω)

≤
u(B(y))

d∂G(y)


L1,q(G)

≤ C2

 u(x)
d∂Ω(x)


L1,q(Ω)

.

Proof. We assume that B is bilipschitz, therefore it suffices to show just one
implication. Let us suppose that u(x)

d∂Ω(x) ∈ L1,q(Ω) and let L be a constant of B,
i.e. |B(y1) − B(y2)| ≤ L|y1 − y2| for every y1, y2 ∈ G and |B−1(x1) − B−1(x2)| ≤
L|x1 − x2| for every x1, x2 ∈ Ω.

Choose x ∈ Ω arbitrarily and find y ∈ G such that B(y) = x. Further we
define a function d̃∂Ω : Ω → (0, ∞) such that

d̃∂Ω(x) = inf
ỹ∈∂G,|y−ỹ|=d∂G(y)

|x − B(ỹ)| .

Note that for each ỹ ∈ ∂G we have Bỹ ∈ ∂Ω since B is bilipschitz. Thus we have

d̃∂Ω(x) = inf
ỹ∈∂G,|y−ỹ|=d∂G(y)

|B(y) − B(ỹ)| ≤ Ld∂G(y),

which implies
u(B(y))
d∂G(y) ≤ L

u(B(y))
d̃∂Ω(B(y))

.

Using the properties of the nonincreasing rearrangement, we get(
u(B(y))
d∂G(y)

)∗

≤ L

(
u(B(y))

d̃∂Ω(B(y))

)∗

,
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and, consequently, by the property of the norm ∥·∥Lq(Ω),u(B(y))
d∂G(y)


L1,q(G)

≤ L

 u(B(y))
d̃∂Ω(B(y))


L1,q(G)

. (4.1)

Further, we obtain trivially d̃∂Ω(x) ≥ d∂Ω(x) and therefore, similarly to (4.1), u(x)
d̃∂Ω(x)


L1,q(Ω)

≤
 u(x)

d∂Ω(x)


L1,q(Ω)

. (4.2)

Let us denote

m̃ξ :=
{

x ∈ Ω,

⏐⏐⏐⏐⏐ u(x)
d̃∂Ω(x)

⏐⏐⏐⏐⏐ > ξ

}
,

mξ :=
{

y ∈ G,

⏐⏐⏐⏐⏐ u(B(y))
d̃∂Ω(B(y))

⏐⏐⏐⏐⏐ > ξ

}
.

Then, by 1.2,

λN(mξ) = λN(B−1(m̃ξ)) ≤ LNλN(m̃ξ). (4.3)

Altogether, we get,u(B(y))
d∂G(y)


L1,q(G)

(4.1)
≤ L

 u(B(y))
d̃∂Ω(B(y))


L1,q(G)

= L
(∫ ∞

0
λN (mξ)q ξq−1 dξ

) 1
q

(4.3)
≤ LN+1

(∫ ∞

0
λN (m̃ξ)q ξq−1 dξ

) 1
q

= LN+1
 u(x)

d̃∂Ω(x)


L1,q(Ω)

(4.2)
≤ LN+1

 u(x)
d∂Ω(x)


L1,q(Ω)

< ∞,

where we use the equivalent description of the Lorentz norm by level sets (Re-
mark 1.19). We obtain u(B(y))

d∂G(y) ∈ L1,q(G) and the required inequality. The proof
is complete.

Now we define the operator of linearisation of the boundary. We use the
notation from Definition 1.25. Moreover, we define new variables (y′, yN) ∈
(0, 1)N−1 × (−1, 1) and the function Br : (0, 1)N−1 × (−1, 1) −→ Vr such that

x′
r = 2α

(
y′ −

(1
2

)′)
,

xrN
= ar

(
2α

(
y′ −

(1
2

)′))
+ βyN , (4.4)

where we denote by (N −1)-vector (1
2)′ = (1

2 , . . . , 1
2). This mapping is a bijection,

thus we have the inverse function B−1
r : Vr −→ (0, 1)N−1 × (−1, 1) such that

y′ = x′
r

2α
+
(1

2

)′
,

yN = xrN

β
− ar(x′

r)
β

.

Note that we have a bijection Br : (0, 1)N −→ V +
r .

Let us prove that Br is bilipschitz and preserves Sobolev spaces.
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Theorem 4.2. Let ar be a Lipschitz function on ∆r and let the mappings Br

and B−1
r be defined as above. Then Br and B−1

r are Lipschitz functions as well,
consequently Br is a bilipschitz mapping.

Moreover, there exist positive constants C1 and C2, depending just on ar, α, β
and the dimension, such that, for every u ∈ W 1,p(V +

r ), p ∈ [1, ∞), one has
U := u ◦ Br ∈ W 1,p(QN) and

C1 ∥u∥ W 1,p(V +
r ) ≤ ∥U∥ W 1,p(QN) ≤ C2 ∥u∥ W 1,p(V +

r ). (4.5)

Proof. Let us focus on the Lipschitz continuity. We assume that K is the constant
of the Lipschitz continuity of function ar. Let y1, y2 ∈ (0, 1)N−1 × (−1, 1). Then
⏐⏐⏐Br(y1) − Br(y2)

⏐⏐⏐ =
⏐⏐⏐⏐⏐
(

2α((y1)′ − (1
2)′) − 2α((y2)′ − (1

2)′)
ar(2α((y1)′ − (1

2)′)) + βy1
N − ar(2α((y2)′ − (1

2)′)) − βy2
N

)⏐⏐⏐⏐⏐
=
⏐⏐⏐⏐⏐
(

2α((y1)′ − (y2)′)
ar(2α((y1)′ − (1

2)′)) − ar(2α((y2)′ − (1
2)′)) + β(y1

N − y2
N)

)⏐⏐⏐⏐⏐
≤
⏐⏐⏐⏐⏐
(

2α((y1)′ − (y2)′)
β(y1

N − y2
N)

)⏐⏐⏐⏐⏐+ K
⏐⏐⏐2α((y1)′ − (y2)′)

⏐⏐⏐
≤ (max {2α, β} + 2Kα)

⏐⏐⏐y1 − y2
⏐⏐⏐ .

Analogously, let x1, x2 ∈ Vr. Then

⏐⏐⏐B−1
r (x1) − B−1

r (x2)
⏐⏐⏐ =

⏐⏐⏐⏐⏐⏐
⎛⎝ 1

2α
(x1)′ + (1

2)′ − 1
2α

(x2)′ − (1
2)′

x1
N

β
− ar((x1)′)

β
− x2

N

β
+ ar((x2)′)

β

⎞⎠⏐⏐⏐⏐⏐⏐
=
⏐⏐⏐⏐⏐
( 1

2α
((x1)′ − (x2)′)

1
β
(x1

N − x2
N) − 1

β
(ar((x1)′) − ar((x2)′))

)⏐⏐⏐⏐⏐
≤
⏐⏐⏐⏐⏐
( 1

2α
((x1)′ − (x2)′)
1
β
(x1

N − x2
N)

)⏐⏐⏐⏐⏐+ 1
β

⏐⏐⏐⏐⏐
(

0
ar((x1)′) − ar((x2)′)

)⏐⏐⏐⏐⏐
≤
(

max
{

1
2α

,
1
β

}
+ 1

β
K

) ⏐⏐⏐x1 − x2
⏐⏐⏐ ,

which completes the proof of the fact that Br is bilipschitz.
Let us turn to embeddings of Sobolev spaces. We proceed similarly to [13].

By the Rademacher theorem we have that ar is differentiable almost everywhere
on ∆r. Let us denote by

(ar)i(x′) := ∂ar(x′)
∂xi

.

We have |(ar)i(x′)| ≤ K. Let us denote

Gij(y) = ∂(Br)i(y)
∂yj

=

⎧⎪⎨⎪⎩
2αδij, i = 1, . . . , N − 1,
2α(ar)j(2α(y′ − 1

2)), i = N, j = 1, . . . , N − 1,
β, i = j = N

and

G−1
ij (x) = ∂(B−1

r )i(x)
∂xj

=

⎧⎪⎨⎪⎩
1

2α
δij, i = 1, . . . , N − 1,

− 1
β
(ar)j(x′), i = N, j = 1, . . . , N − 1,

1
β
, i = j = N
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the derivatives of Br and B−1
r , respectively, which also exist almost everywhere

on QN , respectively on V +
r . Thus we have the Jacobians

JB(y) = det(Gij(y)) = 2N−1αN−1β,

JB−1(x) = det(G−1
ij (x)) = 21−Nα1−Nβ−1.

Now, due to the fact that Br is bilipschitz and u is measurable, U is also mea-
surable and we use the Change of Variable Theorem ([8, 34.18]). We obtain

∥U∥p
Lp(QN ) =

∫
QN

|U(y)|p dy =
∫

QN

|u(Br(y))|p dy =
∫

V +
r

|u(x)|p JB−1
r

(x) dx

= 21−Nα1−Nβ−1 ∥u∥p

Lp(V +
r ) .

Thanks to the chain rule for weak derivatives (see for example [13]) we have

∂U

∂yi

(y) =
N∑

j=1

∂u

∂xj

(Br(y))Gji(y)

almost everywhere in QN . We use the Change of Variable Theorem again and we
get ∂U

∂yi


p

Lp(QN )
=
∫

QN

⏐⏐⏐⏐⏐∂U

∂yi

(y)
⏐⏐⏐⏐⏐
p

dy =
∫

QN

⏐⏐⏐⏐⏐⏐
N∑

j=1

∂u

∂xj

(Br(y))Gji(y)

⏐⏐⏐⏐⏐⏐
p

dy

≤ Np−1
N∑

j=1

∫
QN

⏐⏐⏐⏐⏐ ∂u

∂xj

(Br(y))
⏐⏐⏐⏐⏐
p

|Gji(y)|p dy

≤ Np−1
N∑

j=1
∥Gji(y)∥p

∞

∫
QN

⏐⏐⏐⏐⏐ ∂u

∂xj

(Br(y))
⏐⏐⏐⏐⏐
p

dy

= Np−1
N∑

j=1
∥Gji(y)∥p

∞

∫
V +

r

⏐⏐⏐⏐⏐ ∂u

∂xj

(x)
⏐⏐⏐⏐⏐
p

JB−1
r

(x) dx

= Np−121−Nα1−Nβ−1
N∑

j=1
∥Gji(y)∥p

∞

∫
V +

r

⏐⏐⏐⏐⏐ ∂u

∂xj

(x)
⏐⏐⏐⏐⏐
p

dx

= Cp(α, β, N, ar) ∥u∥p

W 1,p(V +
r ) .

Altogether we obtain

∥U∥W 1,p(QN ) =
⎛⎝∥U∥p

Lp(QN ) +
N∑

i=1

∂U

∂yi


p

Lp(QN )

⎞⎠ 1
p

≤ C2 ∥u∥W 1,p(V +
r ) , (4.6)

which yields the second inequality in (4.5). The first inequality comes analogously.

We will now present a particular version of a known general trace theorem
specified for the use of bilipschitz functions.

Lemma 4.3. Let Br be the bilipschitz function defined above. Then (Tu) ◦ Br =
T (u ◦ Br) λN−1-almost everywhere in the set P = QN−1 × {0}.
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Proof. Let u ∈ W 1,p(V +
r ) and {un}∞

n=1 ⊂ C∞(V +
r ) be a sequence such that un → u

in W 1,p(V +
r ). Using inequality (4.6) for the function un − u we get

∥un ◦ Br − u ◦ Br∥W 1,p(QN ) ≤ C2 ∥un − u∥W 1,p(V +
r ) → 0

and similarly

∥u ◦ Br∥W 1,p(QN ) ≤ C2 ∥u∥W 1,p(V +
r ) < ∞.

Using this and Lemma 1.29 for Lipschitz functions {un ◦ Br}∞
n=1 and u ◦ Br, we

get
T (un ◦ Br) → T (u ◦ Br) in Lp(P ).

Since un are smooth it makes sense to write un(x) for x ∈ Λr and (un ◦ Br)(y) for
y ∈ P . It is easy to see (T (un ◦ Br))(y) = ((Tun) ◦ Br)(y), y ∈ P . But

(Tun) ◦ Br = T (un ◦ Br) → T (u ◦ Br) in Lp(P ).

Thus, T (u ◦ Br) = (Tu) ◦ Br almost everywhere in the set P .

4.2 Proof of the main new implication
Theorem 4.4. Let Ω ⊂ RN be a Lipschitz domain and p, q ∈ [1, ∞). Then

Wd(L1,q, Lp)(Ω) ⊂ W 1,p
0 (Ω)

and there exists a positive constant C such that for each u ∈ Wd(L1,q, Lp) we have

∥u∥W 1,p ≤ C ∥u∥Wd(L1,q ,Lp) .

Proof. First let us assume that u ∈ W 1,p
0 (Ω). Then, by the Poincaré inequality

(Theorem 1.31),
∥u∥W 1,p(Ω) = ∥u∥W 1,p

0 (Ω) ≈ ∥∇u∥Lp(Ω) .

Therefore,

∥u∥Wd(L1,q ,Lp)(Ω) = ∥g∥L1,q(Ω) + ∥∇u∥Lp(Ω) ≥ ∥∇u∥Lp(Ω) ≥ C ∥u∥W 1,p(Ω) .

Thus, it remains to prove

Wd(L1,q, Lp)(Ω) ⊂ W 1,p
0 (Ω).

Let u ∈ Wd(L1,q, Lp)(Ω). Then ∇u ∈ Lp(Ω) and thus, by Theorem 1.27, u ∈
W 1,p(Ω). We take an open covering {Ωr}M+1

r=1 of Ω such that Ωr = Vr, r =
1, . . . , M, from the definition of a Lipschitz domain and dist(ΩM+1,RN \ Ω) > 0.
Note that we can take Ωr such that for each x ∈ Ωr, r = 1, . . . , M, inequalities
c1d(x) ≤ dist(x, ∂Ω ∩ Ωr) ≤ c2d(x) hold with some positive constants c1, c2. We
find the partition of unity {φr}M+1

r=1 such that φr ∈ C∞
0 (Ωr) and for each x ∈ Ω

we have ∑M+1
r=1 φr(x) = 1.

Let us denote ur = φr · u in Ω, r = 1, . . . , M + 1. Then supp ur ⊂ Ωr and for
each x ∈ Ω we have

u(x) = u(x)
M+1∑
r=1

φr(x) =
M+1∑
r=1

ur(x).
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We show that ur ∈ Wd(L1,q, Lp)(Ω). We have u
d

∈ L1,q(Ω) and⏐⏐⏐⏐⏐φr(x) · u(x)
d(x)

⏐⏐⏐⏐⏐ ≤
⏐⏐⏐⏐⏐u(x)
d(x)

⏐⏐⏐⏐⏐ ,
thus, by properties of non-increasing rearrangement and norm ∥·∥Lq(Ω),

ur

d
∈ L1,q(Ω). (4.7)

We also have ∇u ∈ Lp(Ω). By the properties of the weak gradient and bounded-
ness of norms ∥φr∥C1(Ω) and ∥u∥W 1,p(Ω), it follows that∫

Ω
|∇(φr · u)(x)|p dx ≤ 2p−1

(∫
Ω

|∇u(x) · φr(x)|p dx +
∫

Ω
|u(x) · ∇φr(x)|p dx

)
≤ 2p−1 ∥φr∥p

C1(Ω)

(∫
Ω

|u(x)|p dx +
∫

Ω
|∇u(x)|p dx

)
< ∞

and therefore ∇ur ∈ Lp(Ω) (and consequently ur ∈ W 1,p(Ω)). Altogether ur ∈
Wd(L1,q, Lp)(Ω), r = 1, . . . , M + 1.

Now, we fix r ∈ {1, . . . , M}. We apply the operator Rr of rotation and
translation from the definition of Lipschitz boundary of Ω such that ur ◦ Rr.
Since this modification does not change any essential properties of the function
ur, we shall, with a slight abuse of notation, denote the new function, namely
ur ◦ Rr, by ur again. Now we work in local coordinates.

Let us denote vr(y) = ur(Br(y)), y ∈ QN , where Br : QN −→ V +
r is an opera-

tor of linearisation of the boundary defined in (4.4). From Theorem 4.2 and the
fact that ur ∈ W 1,p(Ω), we get vr = ur ◦ Br ∈ W 1,p(QN) and, consequently,

∇vr ∈ Lp(QN). (4.8)

We claim that vr

dN
∈ L1,q(QN). Denote d̃(x) = dist(x, x2), where x = (x′

r, xrN
) ∈

V +
r and x2 = (x′

r, a(x′
r)) ∈ ∂Ω, which is unique for x. Thus

d̃(x) = |xrN
− (x2)rN

| = |xrN
− a(x′

r)| . (4.9)

Note that for x = Br(y) is such x2 an image in mapping Br of y2 ∈ QN−1 × {0}
that

dN(y) = |y − y2| = |yN − (y2)N | . (4.10)

Let us focus on relations between d and d̃. We have

d(x) ≤ d̃(x)

thus
ur(x)
d̃(x)

≤ ur(x)
d(x)

and therefore, by properties of nonincreasing rearrangement and
the norm ∥·∥Lq(Ω), ur(x)

d̃(x)


L1,q(Ω)

≤
ur(x)

d(x)


L1,q(Ω)

. (4.11)
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We now turn to the reverse estimate. Due to the Lipschitz continuity of ar, the
angle between vectors x1 − x (where x1 ∈ ∂Ω ∩ Vr such that d(x) = |x − x1|)
and x2 − x is bounded with the upper bound depending on the constant K of
Lipschitz continuity of ar and using basic geometric thoughts and sine theorem
we get that

d̃(x)
d(x) ≤ 1

cos(arctg K)

for each x ∈ V +
r . Consequently,

d ≈ d̃. (4.12)
Now let us focus on relations with dN . Thanks to (4.10), the definition of operator
Br and (4.9),

dN(y) = |yN − (y2)N | =
⏐⏐⏐⏐⏐xrN

β
− ar(x′

r)
β

− (x2)rN

β
+ ar(x′

r)
β

⏐⏐⏐⏐⏐ = d̃(x)
β

. (4.13)

Now let us denote

m̃ξ :=
{

x ∈ V +
r ,

⏐⏐⏐⏐⏐ur(x)
d̃(x)

⏐⏐⏐⏐⏐ > ξ

}
,

mξ :=
{

y ∈ QN ,

⏐⏐⏐⏐⏐ur(Br(y))
d̃(Br(y))

⏐⏐⏐⏐⏐ > ξ

}
.

Then, by 1.2,

λN(mξ) = λN(B−1
r (m̃ξ)) ≤ (LipB−1

r
)NλN(m̃ξ). (4.14)

Altogether, we get vr(y)
dN(y)


L1,q(QN )

(4.13)= β

ur(Br(y))
d̃(Br(y))


L1,q(QN )

= β
(∫ ∞

0
λN (mξ)q ξq−1 dξ

) 1
q

(4.14)
≤ β(LipB−

r 1)N
(∫ ∞

0
λN (m̃ξ)q ξq−1 dξ

) 1
q

= β(LipB−
r 1)N

ur(x)
d̃(x)


L1,q(V +

r )
= β(LipB−

r 1)N

ur(x)
d̃(x)


L1,q(Ω)

(4.11)
≤ β(LipB−

r 1)N

ur(x)
d(x)


L1,q(Ω)

< ∞, (4.15)

where we used properties of Lorentz norm and (4.7). Consequently,
vr

dN
∈ L1,q(QN) and, adding (4.8), vr ∈ T q,p.
By Theorem 3.5, vr is an element of W 1,p(QN) with zero trace on the set{

y ∈ [0, 1]N , yN = 0
}
, it means that Tvr(y) = 0 almost everywhere in the set

QN−1 × {yN = 0} = P.

We apply the mapping Br again. We have

Br(QN−1 × {yN = 0}) = Λr
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and, by Lemma 4.3, Tur(x) = Tur(Br(y)) = Tvr(y) for almost every y ∈ P .
Thus

λN−1({x′ ∈ ∆r, |Tur(x′, ar(x′))| > 0})
= λN−1({x′ ∈ ∆r, (x′, ar(x′)) ∈ Br({y ∈ P, |Tvr(y)| > 0})})
≤ (LipBr)N−1λN−1({y ∈ P, |Tvr(y)| > 0}) = 0,

and therefore the function ur, which is the element of W 1,p(Ω), has a zero trace
on the set Λr ⊂ ∂Ω.

Finally, due to ∑M+1
r=1 φr(x) = 1 for x ∈ ∂Ω and T is a linear operator, we

have for each x ∈ ∂Ω
M+1∑
r=1

Tur(x) = T (
M+1∑
r=1

ur(x)) = T (
M+1∑
r=1

u(x)φr(x)) = Tu(x).

Thus, and due to ∂Ω = ⋃M
r=1 Λr and supp Tur ⊂ Λr,

λN−1({x ∈ ∂Ω, |Tu(x)| > 0}) ≤
M∑

r=1
λN−1({x ∈ Λr, |Tur(x)| > 0}) = 0,

and the function u has zero trace on ∂Ω. By Theorem 1.30, u ∈ W 1,p
0 (Ω). This

completes the proof.

4.3 Proof of the reverse implication
The reverse implication is far easier it can be derived from embeddings between
Lorentz spaces and known results. However, for the sake of completeness, we
shall present here an elementary proof based on the Hardy inequality.

Theorem 4.5. Let Ω ⊂ RN be a Lipschitz domain and p ∈ (1, ∞), q ∈ [1, ∞).
Then

W 1,p
0 (Ω) ⊂ Wd(L1,q, Lp)(Ω)

and there exists a positive constant, depending on Ω, p and q, such that for each
u ∈ W 1,p

0 (Ω) we have

∥u∥Wd(L1,q ,Lp) ≤ C ∥u∥W 1,p(Ω) .

Proof. We will use the same notation, description of the boundary, partition
of unity and mappings Br as in the proof of Theorem 4.4. Here we assume that
u ∈ W 1,p

0 (Ω), thus ur ∈ W 1,p(Ω) and therefore, due to Lemma 4.2, vr ∈ W 1,p(QN)
and

∥vr∥W 1,p(QN ) ≤ Cr,2 ∥ur∥W 1,p(Ω) ≤ Cr,2 ∥u∥W 1,p(Ω) .

Since u ∈ W 1,p
0 (Ω) and due to Theorem 1.23 and Lemma 1.32 we have for almost

every y′ ∈ QN−1 that t → vr(y′, t) is AC(0,1) and limt→0+ vr(y′, t) = 0. For such
y′ we apply the Hardy inequality to the function

t → ∂vr

∂yN

(y′, t), t ∈ (0, 1).
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This function is in Lp((0, 1)) by the Fubini theorem and due to our assumptions.
Note that p > 1. This gives∫ 1

0

⏐⏐⏐⏐ vr

dN

(y′, t)
⏐⏐⏐⏐p dt =

∫ 1

0

⏐⏐⏐⏐⏐1t
∫ t

0

∂vr

∂yN

(y′, s) ds

⏐⏐⏐⏐⏐
p

dt ≤
∫ 1

0

(
1
t

∫ t

0

⏐⏐⏐⏐⏐ ∂vr

∂yN

(y′, s)
⏐⏐⏐⏐⏐ ds

)p

dt

≤
(

p

p − 1

)p ∫ 1

0

⏐⏐⏐⏐⏐ ∂vr

∂yN

(y′, t)
⏐⏐⏐⏐⏐
p

dt. (4.16)

Thus, and using embeddings of Lebesgue and Lorentz spaces, we get
 vr

dN


L1,q(QN )

≤
 vr

dN


L1(QN )

≤
 vr

dN


Lp(QN )

=
(∫

QN−1

∫ 1

0

⏐⏐⏐⏐ vr

dN

(y′, t)
⏐⏐⏐⏐p dt dy′

) 1
p

(4.16)
≤

(
p

p − 1

)(∫
QN−1

∫ 1

0

⏐⏐⏐⏐⏐ ∂vr

∂yN

(y′, t)
⏐⏐⏐⏐⏐
p

dt dy′
) 1

p

=
(

p

p − 1

)(∫
QN

⏐⏐⏐⏐⏐ ∂vr

∂yN

(y)
⏐⏐⏐⏐⏐
p

dy

) 1
p

≤
(

p

p − 1

)(∫
QN

|vr|p dy +
∫

QN

⏐⏐⏐⏐⏐∂vr

∂y1

⏐⏐⏐⏐⏐
p

dy + · · · +
∫

QN

⏐⏐⏐⏐⏐ ∂vr

∂yN

⏐⏐⏐⏐⏐
p

dy

) 1
p

=
(

p

p − 1

)
∥vr∥W 1,p(QN ) .

Similarly to the preceding proof (see in particular (4.13), (4.12) and (4.15)) we
obtain for each r = 1, . . . , M thatur

d


L1,q(Ω)

≤ Cr,1

 vr

dN


L1,q(QN )

,

where Cr,1 depends on the Lipschitz continuity of Br and ∂Ω. Thus we getur

d


L1,q(Ω)

≤ Cr,1

 vr

dN


L1,q(QN )

≤ Cr,1

(
p

p − 1

)
∥vr∥W 1,p(QN )

≤ Cr,1

(
p

p − 1

)
Cr,2 ∥u∥W 1,p(Ω) = Cr ∥u∥W 1,p(Ω) ,

where we denote Cr = Cr,1
(

p
p−1

)
Cr,2, r = 1, . . . , M. We also have, by embeddings

between Lebesgue and Lorentz spaces,uM+1

d


L1,q(Ω)

≤ 1
dist(ΩM+1,RN \ Ω) ∥uM+1∥L1,q(Ω)

≤ 1
dist(ΩM+1,RN \ Ω)λN(Ω)1− 1

p ∥uM+1∥Lp(Ω)

≤ CM+1 ∥u∥W 1,p(Ω) ,

where CM+1 := λN(Ω)1− 1
p /dist(ΩM+1,RN \ Ω). Altogether we have, denoting

Cquasi the constant of quasi-subadditivity of the quasinorm ∥·∥L1,q(Ω),u

d


L1,q(Ω)

=

∑M+1

r=1 ur

d


L1,q(Ω)

≤ CM
quasi

M+1∑
r=1

ur

d


L1,q(Ω)

≤ C ∥u∥W 1,p(Ω) ,
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where C = CM
quasi

∑M+1
r=1 Cr depends on the shape and measure of Ω and p, q.

Finally,

∥u∥Wd(L1,q ,Lp) =
u

d


L1,q(Ω)

+ ∥∇u∥Lp(Ω) ≤ (C + 1) ∥u∥W 1,p(Ω) ,

which completes the proof.
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5. Conclusion
Our main goal was to prove Theorem 2.9. It can now be achieved thanks to
Theorem 4.4 and Theorem 4.5.

Proof of Theorem 2.9. Let N ∈ N, p ∈ (1, ∞), q ∈ [1, ∞) and Ω ⊂ RN be
a Lipschitz domain. From Theorem 4.4 it follows that

Wd(L1,q, Lp)(Ω) ⊂ W 1,p
0 (Ω)

and there exists a positive constant C1, depending on Ω, p and q, such that for
each u ∈ Wd(L1,q, Lp)(Ω) we have

∥u∥W 1,p(Ω) ≤ C1 ∥u∥Wd(L1,q ,Lp) .

Further we proved that from Theorem 4.5 it follows that

W 1,p
0 (Ω) ⊂ Wd(L1,q, Lp)(Ω),

and there exists a positive constant C2, depending on Ω, p and q, such that for
each u ∈ W 1,p

0 (Ω) we have

∥u∥Wd(L1,q ,Lp) ≤ C2 ∥u∥W 1,p(Ω) .

Composing these inclusions and estimates we obtain

Wd(L1,q, Lp)(Ω) = W 1,p
0 (Ω)

and for each u from this set we have

∥u∥W 1,p(Ω) ≈ ∥u∥Wd(L1,q ,Lp) ,

which establishes our claim.

We shall finish wish some concluding remarks.

Remark 5.1. It is worth noticing that it follows from our results that the quasi-
norm ∥u∥Wd(L1,q ,Lp) is equivalent to a norm.

Remark 5.2. It is conceivable that a result similar to the main theorem of
this thesis could be obtained for more general domains than for those with the
Lipschitz boundary. It is also likely that such extension could be obtained using
ideas similar to those developed in this thesis.

Remark 5.3. Let Ω be a Lipschitz domain, p ∈ (1, ∞), q ∈ [1, ∞]. In [14],
a question was posed about optimality in the sense whether u ∈ W 1,p

0 (a, b) if and
only if u(x)

d(x) ∈ L1,q(a, b) and u′(x) ∈ Lp(a, b), where (a, b) was an open interval.
In [14] we answered this question for some ranges of parameters, however the
question remained partly open.

Our new results answer the question not only for an interval in one dimen-
sion, but also for a general Lipschitz domain in the Euclidean space of arbitrary
dimension. We have the positive answer for each q ∈ [1, ∞) from Theorem 2.9.
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Now we shall point out that the answer is negative when q = ∞. This can be
demonstrated using the following example.

Set Ω = (0, 1)N , N ∈ N, and u(x) = 1 for each x ∈ Ω. The graph of d(x)
is a “pyramid” with vertex in (1

2 , . . . , 1
2), where d(x) attains the value 1

2 . For
example in one dimension we have

d(x) =
{

x, x ∈ (0, 1
2 ],

1 − x, x ∈ (1
2 , 1).

Let us compute the distribution function ξ ↦→ λN({x ∈ Ω; 1
d(x) > ξ}). It is clearly

equal to one for ξ ∈ [0, 2], thus it suffices to compute it for ξ > 2. We obtain

λN({x ∈ Ω; 1
d(x) > ξ}) = λN({x ∈ Ω; d(x) < 1/ξ})

= λN(Ω \ {x ∈ Ω; d(x) ≥ 1/ξ})

= 1 −
(

1 − 2
ξ

)N

,

where (1 − 2
ξ
)N is the volume of a cube, whose distance from the boundary of Ω

is 1
ξ
.
Thus, and by the definition of the Lorentz norm via distribution function (see

Remark 1.19), we get
1

d


L1,∞(Ω)

= sup
ξ>0

ξλN({x ∈ Ω; 1
d(x) > ξ}) = max

{
2, sup

ξ>2
ξ
(
1 − (1 − 2/ξ)N

)}
.

Changing variables 1 − 2
ξ

= s, s ∈ (0, 1), we obtain

sup
ξ>2

ξ
(
1 − (1 − 2/ξ)N

)
= sup

s∈(0,1)

2
1 − s

(1 − sN) = sup
s∈(0,1)

2(1 + s + · · · + sN−1) = 2N,

and, consequently, u
d

in L1,∞(Ω). Moreover, due to ∇u = 0, we have
u ∈ Wd(L1,∞, Lp). Further u ∈ W 1,p(Ω) and therefore, by the Beppo-Levi the-
orem, u is absolutely continuous on almost every line parallel to the any of the
axes in (0, 1)N , so it follows from Lemma 1.32 that Tu = 1 a.e., which contradicts
u ∈ W 1,p

0 (Ω), as follows from Theorem 1.30.
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