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Consultant of the doctoral thesis: doc. Mgr. Michal Kulich, PhD.

Study programme: Probability and Statistics,
Econometrics and Financial
Mathematics

Prague 2021





I declare that I carried out this doctoral thesis independently, and only with
the cited sources, literature and other professional sources. It has not been used
to obtain another or the same degree.
I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Sb., the Copyright Act, as amended, in particular the fact that
the Charles University has the right to conclude a license agreement on the use
of this work as a school work pursuant to Section 60 subsection 1 of the Copy-
right Act.

In . . . . . . . . . . . . . date . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Author’s signature

i



ii



I would like to express my gratitude to my supervisor Patŕıcia Martinková who
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Abstract: This thesis focuses on topic of Differential Item Functioning (DIF),
a phenomenon that can arise in various contexts of educational, psychological, or
health-related multi-item measurements. We discuss several statistical methods
and models to detect DIF among dichotomous, ordinal, and nominal items.

In the first part, generalized logistic regression models for DIF detection among di-
chotomous items are introduced, which account for possibility of guessing and/or
inattention. Techniques for estimation of item parameters are presented, includ-
ing a newly proposed algorithm based on a parametric link function. Two simula-
tion studies are presented. The first compares the generalized logistic regression
models to other widely used DIF detection methods. The second illustrates dif-
ferences between the techniques to estimate item parameters. Implementation of
the models into the R software and its difNLR package is illustrated.

In the second part, generalized logistic regression models for DIF detection among
polytomous items are discussed. Cumulative logit, adjacent category logit, and
nominal models are introduced together with the maximum likelihood method to
estimate item parameters and with examples of implementation in the difNLR
package.

The third part deals with a nonparametric comparison of regression curves for
DIF detection based on kernel smoothing. We discuss several settings and we
newly propose an estimate of an optimal weight function for a test statistic to
identify DIF. Nonparametric approaches are compared to the logistic regression
method in a simulation study.
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Introduction
This thesis deals with the topic of Differential Item Functioning (DIF). DIF is
a well-known phenomenon that can arise in various contexts including educa-
tional measurement, admission tests, mental health inventories, and other types
of behavioral assessments (Osterlind & Everson, 2009; Penfield & Camilli, 2006).
An item is said to function differently (or, in short, to be a DIF item) when two
respondents with the same underlying latent trait but from various social groups
or with distinct characteristics have different probability of endorsing or correctly
answering an item in multi-item measurement. Latent trait can be knowledge,
ability, or health-related outcome such as depression or quality of life, and it is
often estimated by total test score. The group membership can be characterized
for example by gender, race, or socio-economic status.

Consider dichotomous response Yi to a particular item i on the test, where
Yi = 1 means correct answer or endorsement and Yi = 0 indicates incorrect an-
swer or opposition. Let θ be an underlying latent trait intended to be measured
by the test. Further, suppose that we are concerned with comparing the condi-
tional probability of Yi for two different respondent groups, described by variable
G, where G = 0 stands for a reference group (usually majority) and G = 1 is
a focal group (often minority or potentially disadvantaged group).

In case that the conditional probability of the response Yi is dependent only
on the underlying latent trait θ and independent on the grouping variable G, i.e.,

P(Yi = 1|θ,G = 0) = P(Yi = 1|θ,G = 1), ∀θ ∈ Θ,

where Θ is the continuum of the latent trait θ, we conclude there is no DIF in
item i (Figure 1A).

Generally, two types of DIF are distinguished in the literature (see for example
Penfield & Camilli, 2006). Uniform DIF captures a situation in which the item
of interest provides a constant relative advantage for the same group, regardless
of the level of the latent trait θ ∈ Θ. In other words, for all levels of the latent
ability θ, the ratio of odds of answering given item correctly for the focal group
to the odds of answering this item correctly for the reference group is a constant:

P(Yi = 1|θ,G = 1)/P(Yi = 0|θ,G = 1)
P(Yi = 1|θ,G = 0)/P(Yi = 0|θ,G = 0) = ζi ∈ R, ∀θ ∈ Θ,

see also Figure 1B. Nonuniform DIF then describes a situation when the condi-
tional dependency between the item response and a group membership changes
across the continuum of θ. This may even result in a situation when respondents
form one group are advantaged by the item for some of the levels of the latent trait
(for instance θ ∈ Θ1) while they are disadvantaged for other levels (θ ∈ Θ\Θ1),
i.e.,

P(Yi = 1|θ,G = 0) ≥ P(Yi = 1|θ,G = 1), ∀θ ∈ Θ1,

and
P(Yi = 1|θ,G = 0) < P(Yi = 1|θ,G = 1), ∀θ ∈ Θ\Θ1,

which is also called crossing nonuniform DIF (Figure 1C).
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(A) No DIF. (B) Uniform DIF. (C) Nonuniform DIF.

Figure 1: Definition of DIF.

While DIF typically refers to the differences in probabilities of correctly an-
swering or endorsing an item with respect to group membership, the covariates
of interest may, however, be more complex including combination of categorical
and continuous variables with a hierarchical or more complex structure.

DIF analysis provides useful guidance in detecting potentially biased items
which can be a possible threat to the fairness and validity in the measurement.
DIF analysis should therefore be a routine part of validation process of educa-
tional, psychological, or health-related multi-item tests. Sometimes, fairness is
incorrectly examined by comparing total test scores or item scores separately.
Martinková et al. (2017) provided powerful simulated as well as real-data exam-
ples showing that between-group differences in total score do not necessarily result
into DIF while DIF may be present even when the distribution of total scores is
identical in the two groups. Using the Homeostasis Concept Inventory (HCI)
dataset (McFarland et al., 2017), there is a significant difference in the total test
scores between the two groups of respondents (Figure 2A, left), however there is
no DIF item (Figure 2A, right). On the other hand, considering the Graduation
Management Admission Test (GMAT) dataset which was simulated with the ex-
act match of the distribution of the total test scores (Figure 2B, left), two items
were identified as functioning differently (Figure 2B, right) and being potentially
unfair.

(A) HCI dataset. (B) GMAT dataset.

Figure 2: DIF vs. between-group differences in distribution of total scores.

Besides uncovering potential unfairness, DIF may also point to misconceptions
held by groups. Moreover, when generalizing the concept of DIF to longitudinal
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setting, the DIF in change can provide proofs of the instructional or treatment
sensitivity, even in cases when the differences in gains are not detected in overall
score (Martinková, Hladká, & Potužńıková, 2020).

The concept of DIF can be easily extended to account for ordinal responses.
Moreover, it can be generalized to nominal responses in a way that it captures
differences not only in the probabilities of correct answers between two groups
(Figure 3A) but also in other answer options (also called distractors, Figure
3B). In such a case, the group differences are called Differential Distractor Func-
tioning (DDF). Formally, DDF then refers to a situation when two respondents
from different social groups, but with the same level of the underlying latent trait,
have different probabilities of selection of answer options in the given test item.
The DDF may even refer to situation when there is no difference in probability
of correct answer (or in endorsing the item), therefore no DIF in dichotomized
item present, but there is a difference in the probability of selecting some specific
distractors (Figure 3C).

(A) Binary evaluation of
an item.

(B) Options on a multiple-
choice item.

(C) DDF but no DIF.

Figure 3: Illustration of DDF.

State of the art of DIF detection
Many statistical methods were developed to identify DIF items, using either Item
Response Theory (IRT) models or score-based techniques (here also referenced as
non-IRT) while both branches are still being studied intensively (Berger & Tutz,
2016; Cho, Suh, & Lee, 2016; Penfield, Gattamorta, & Childs, 2009). In this part
we introduce a number of often used DIF detection approaches with emphasis
on those used in the simulation studies presented in this thesis (see Sections 1.5,
1.6, 3.2, and 4.2). Recent and more detailed reviews of DIF detection methods
can be found for example in Magis, Béland, Tuerlinckx, and De Boeck (2010),
Osterlind and Everson (2009), or Penfield and Camilli (2006).

IRT methods for DIF detection
IRT covers class of nonlinear mixed effect models in which latent trait (ability)
is often estimated as respondents’ random effect and the item parameters are
usually treated as fixed effects. Furthermore, respondents’ abilities as well as
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parameters of all items are estimated simultaneously and not by separate models
for each item of the test (Bock & Moustaki, 2006).

The underlying nonlinear mixed effect model framework (Rijmen, Tuerlinckx,
De Boeck, & Kuppens, 2003) and the concept of latent variable may be a bit more
complex to understand and harder to implement without specialized software, es-
pecially when higher number of item parameters is considered. Moreover, the IRT
models are generally known to be computationally demanding and a large sample
size is often required (Kim & Oshima, 2013).

The most widely used unidimensional models for dichotomous responses are
(generalized) logistic models with one to four item parameters. We further denote
them as 1-4 Parameter Logistic (PL) IRT models. The 4PL IRT model (Barton
& Lord, 1981) is given by the equation

P(Ypi = 1|θp) = ci + (di − ci)
eai(θp−bi)

1 + eai(θp−bi)
, (1)

where θp ∈ R is an ability of person p and parameters ai, bi ∈ R, and ci, di ∈
[0, 1] represent discrimination, difficulty, probability of guessing, and a parameter
related to the probability of inattention in item i. Rasch and 1-3PL models
are special cases of the 4PL model (1), where some of the parameters are fixed
to a certain value. For example, 2PL IRT model is a 4PL IRT model with ci = 0
and di = 1, while Rasch model additionally constraints ai = 1. For estimation
of item parameters and respondents’ abilities, the marginal maximum likelihood
method (Bock & Aitkin, 1981) is typically used.

Although potential applications of IRT models are much broader, they are
also widely used in the DIF detection. To account for group-based differences in
the item responses and to test for DIF in the IRT framework, two IRT models are
often fitted, each for one group, and then the estimated parameters are re-scaled
(Candell & Drasgow, 1988; Lautenschiager & Park, 1988).

The mostly used DIF detection procedures within the IRT framework include
for example Lord’s test (Lord, 1980), likelihood ratio test (Thissen, Steinberg, &
Wainer, 1988), or Raju’s test based on area between Item Characteristic Curve
(ICC)s (Raju, 1988, 1990).

Lord’s test. Lord’s test (Lord, 1980) is one of the most popular methods for
testing DIF within the IRT models. Lord’s approach uses test statistic of Wald’s
type with the null hypothesis assuming equal item parameters in both groups.
Related test statistic Wi for item i and 4PL IRT model (1) has the following
form:

Wi = (γi0 − γi1)′ (ΣΣi0 +ΣΣi1)−1 (γi0 − γi1), (2)

where γi0 = (ai0, bi0, ci0, di0) are parameters for the reference group for item i,
γi1 = (ai1, bi1, ci1, di1) parameters for the focal group, and ΣΣi0 and ΣΣi1 the cor-
responding covariance matrices (Lord, 1980, p. 223). The test statistic Wi has
an asymptotic chi-square distribution with 4 degrees of freedom when considering
4PL IRT model (1).

Raju’s area. Raju’s test estimates area between the ICCs for the two groups
to detect DIF (Raju, 1988, 1990). This method is applicable for models in which
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the asymptotes of the underlying IRT models have the same value for both groups.
This holds for example for the Rasch and the 1-2PL IRT models, however, it is
also applicable for the 3PL and 4PL models in which the asymptotes are fixed to
the same value or are estimated simultaneously for both groups (see, for example,
Magis et al., 2010).

Consider the 4PL IRT model (1) for both the groups with the same values
of the asymptotes (i.e., ci0 = ci1 = ci and di0 = di1 = di), where index 0 refers
to the reference group and index 1 to the focal group. Then the Signed Area
(SA) and Unsigned Area (UA) between the two ICCs for the item i are given by

SAi = (di − ci)(bi1 − bi0),

UAi = (di − ci)
⃓⃓⃓⃓
⃓2(ai1 − ai0)
Dai1ai0

log
(︄

1 + exp
(︄
Dai1ai0(bi1 − bi0)

ai1 − ai0

)︄)︄
− (bi1 − bi0)

⃓⃓⃓⃓
⃓ ,
(3)

where D = 1.7 is a scaling constant, see Raju (1988) for details. While the SA is
easy to compute, it is a function of parameters bi0, bi1, ci, and di only, therefore, it
can be misleading when parameters ai0 and ai1 differ (see, for example, Osterlind
& Everson, 2009). Thus, the SA is more suitable when uniform DIF is expected,
while the UA may be more appropriate in case when the ICCs cross.

It can be shown that the estimated SA for item i, i.e., area based on esti-
mated item parameters, divided by its standard deviation asymptotically follows
standard normal distribution, while the test statistic based on estimated UA for
item i has asymptotically half-normal distribution (Raju, 1990).

Non-IRT methods for DIF detection
Non-IRT approaches have been studied and used in the DIF detection for decades.
These are typically straightforward methods which are easy to explain to audi-
ences and easy to apply in standard statistical software, or even by hand. Non-
IRT techniques include for example Angoff’s delta plot (Angoff & Ford, 1973, see
also Magis & Facon, 2012), well known Mantel-Haenszel test (Mantel & Haen-
szel, 1959, see also P. W. Holland, 1985 and P. W. Holland & Thayer, 1988),
the Simultaneous Item Bias Test (SIBTEST) method (Shealy & Stout, 1993), or
the logistic regression model for DIF detection (Swaminathan & Rogers, 1990).

Angoff’s delta plot. Angoff’s delta plot (Angoff & Ford, 1973) compares non-
linear transformations of the empirical probabilities (also called the delta scores)
per item in the two groups. The delta scores are plotted for each item for the two
groups in a scatter-plot called diagonal plot or delta plot. An item is under suspi-
cion of DIF if the delta point considerably departs from the main axis of ellipsoid
created by delta scores. The detection threshold is either fixed or based on a bi-
variate normal approximation (Magis & Facon, 2012).

The Mantel-Haenszel test. The Mantel-Haenszel test (Mantel & Haen-
szel, 1959) is one of the most popular and used methods in the DIF framework
(P. W. Holland & Thayer, 1988) despite the fact that it is only able to detect
a uniform DIF (see, e.g., Swaminathan & Rogers, 1990). It tests an association
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between the item responses and the group membership variable conditionally
on the level of the total test score. In more detail, assuming I dichotomously
scored items of the test, for each level of the total test score k = 0, . . . , I for given
item i, a 2 x 2 contingency table is produced (Table 1).

Table 1: Contingency table for item i and for the total test score of k.

Yi = 1 Yi = 0
Reference group (0) ni01k ni00k

Focal group (1) ni11k ni10k

These contingency tables summarize responses on item i by the respondents
with the total test score equal to k. Terms ni01k and ni11k correspond to a number
of respondents from the reference and the focal group who answered correctly,
while terms ni00k and ni10k indicate the numbers of those from the reference and
the focal group who answered incorrectly.

The Mantel-Haenszel test statistic then combines all levels of the total score
k = 0, . . . , I for given item i and takes the following form:

MHi =

[︂⃓⃓⃓∑︁I
k=0

(︂
ni01k − (ni01k+ni00k)(ni01k+ni11k)

nik

)︂⃓⃓⃓
− 0.5

]︂2
∑︁I

k=0
(ni01k+ni00k)(ni11k+ni10k)(ni01k+ni11k)(ni00k+ni10k)

n2
ik

(nik−1)

. (4)

where nik = ni01k+ni00k+ni11k+ni10k. Under the null hypothesis of no conditional
association between the item responses and group membership given the level
of the total score, i.e., no DIF, the MHi statistic (4) has an asymptotic chi-
square distribution with one degree of freedom for the large sample sizes (see,
e.g., Agresti, 2010, p. 232, and P. W. Holland & Thayer, 1988).

SIBTEST. In the case that the target ability distributions are the same
for both the groups, Shealy and Stout (1993) proposed a test statistic to identify
DIF in item i in the following form

Ωi = ω̂i

σ̂(ω̂i)
, (5)

where ω̂i is given by

ω̂i =
I∑︂

k=0
pk

(︂
Ȳ i0k − Ȳ i1k

)︂
. (6)

The term pk is a proportion of respondents from the focal group who gained
total test score equal to k = 0, . . . , I, while Ȳ i0k and Ȳ i1k are the mean item
responses of the respondents with the total test score k from the reference and
the focal group, respectively. The term σ̂(ω̂i) is the estimated standard error
of the estimate ω̂i (for equations see Shealy & Stout, 1993). Under the null
hypothesis ωi = 0, i.e., no DIF in item i, the test statistic Ωi has an asymptotic
standard normal distribution for large sample sizes.

However, the assumption of equal ability distributions across groups is an un-
realistic condition for most applications. Thus, terms Ȳ i0k and Ȳ i1k in the (6)
are replaced by their regression-based estimates Ȳ ∗

i0k and Ȳ
∗
i1k (Shealy & Stout,

1993).
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Logistic regression method. Finally, the natural way how to model prob-
ability of the correct answer and how to test for group-based differences in item
responses is a method based on logistic regression (Swaminathan & Rogers, 1990).
This method fits a logistic model for the probability of answering the tested item
correctly with the observed ability and group membership variable as regressors.
It also includes their mutual interaction:

P(Ypi = 1|Xp, Gp) = eβi0+βi1Xp+βi2Gp+βi3Xp:Gp

1 + eβi0+βi1Xp+βi2Gp+βi3Xp:Gp
, (7)

where Xp is an observed ability of person p and Gp is a variable describing respon-
dents group membership (Gp = 0 for the reference group and Gp = 1 for focal
group, usually seen as the disadvantaged one). Item parameters βi0, βi1, βi2, and
βi3 are intercept, slope, group membership effect, and interaction between the
observed ability and group variable respectively.

The logistic regression model (7) can be used to detect a uniform DIF by test-
ing the effect of group membership, i.e., βi2 = 0 vs. βi2 ̸= 0 while constraining
βi3 = 0. A nonuniform DIF effect can be detected by testing the effect of the in-
teraction of the observed ability Xp and the group membership variable Gp, i.e.,
βi3 = 0 vs. βi3 ̸= 0. Finally, it is possible to detect any DIF by testing for non-
zero effects of both parameters βi2 and βi3 connected with group membership
simultaneously. Item parameters βi0, βi1, βi2, and βi3 are typically estimated us-
ing iteratively re-weighted least squares. Evaluation of significance of their effects
and thus DIF detection can be performed using classical statistical test procedures
such as likelihood ratio test or Wald’s test.

Structure of the thesis and the main results
The main topic of this thesis is detection of DIF and DDF among binary, ordinal,
and nominal items. We first deal with extensions of the logistic regression method
(Swaminathan & Rogers, 1990) for binary items with possible guessing and/or
inattention in Chapter 1. We focus on specification of the newly proposed statis-
tical models, their interpretation, estimation, and implementation within the free
statistical software R (R Core Team, 2020). We propose innovations to estima-
tion methods and compare existing and newly proposed methods in simulation
studies. In Chapter 2, the same concepts are extended for polytomous items.
Chapter 3 proposes a new detection method based on nonparametric approach.
Finally, Chapter 4 is devoted to further topics in DIF and DDF detection, namely
the item purification, corrections for multiple comparisons, and DIF effect sizes.
The contribution of each chapter is in more detail presented below.

Chapter 1 describes generalized logistic regression (also called nonlinear) mod-
els for DIF detection among binary items. This class of models allows for pos-
sibility of guessing and/or inattention when responding and also for detection
of between-group differences in these item characteristics. Section 1.1 comprises
model specification and discusses different parameterizations of the model to-
gether with their interpretation and mutual relationship. Section 1.2 reviews
estimation techniques including the nonlinear least squares, the maximum like-
lihood method, and the Expectation-Maximization (EM) algorithm. It also of-
fers a newly proposed method based on the parametric link function as will be
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summarized in Hladká, Brabec, and Martinková (2021). Section 1.4 describes
the implementation of the generalized logistic models among dichotomous items
into the R software and its package difNLR (Hladká & Martinková, 2020). Fi-
nally, Sections 1.5 and 1.6 present two simulation studies: The first simulation
study evaluates the properties of the DIF detection method based on the non-
linear models (Drabinová & Martinková, 2017) and the second one compares
various estimation techniques with the focus on group-specific models discussed
in Section 1.2.

Chapter 2 reviews the group-specific generalized logistic regression models
for DIF and DDF detection among polytomous items. Section 2.1 offers two
models for DIF detection for ordinal items, namely the cumulative logit model
and the adjacent category logit model. Section 2.2 describes nominal model for
DDF detection. Besides the model specification, Chapter 2 comprises techniques
to estimate item parameters and also presents implementation into the difNLR R
package using simulated data examples (Hladká & Martinková, 2020).

Chapter 3 describes nonparametric comparison of ICCs for the DIF detection
as will be summarized in Hladká and Martinková (2021). This new approach
builds on work by Srihera and Stute (2010) which focuses on general comparison
of regression functions. Section 3.1 deals with two challenges: kernel smoothing
estimation of characteristic curves and fine-tuning of a test statistic allowing their
comparison and thus DIF detection. While asymptotic normality was proven by
Srihera and Stute (2010) for the test statistic using optimal weights maximizing
power of the test proposed by these authors, the optimal weights are available
only in case of known item characteristic functions. In this thesis, an estimate
of optimal weights is proposed and resulting test statistic is evaluated in the con-
text of DIF detection problem. Section 3.2 offers a simulation study evaluating
properties of the proposed DIF detection procedure.

Chapter 4 discusses further issues in the DIF detection. Typically, DIF de-
tection is performed item by item, which may cause two issues. First, potentially
unfair items are included in calculation of the matching criterion which may be
thus biased. Second, the type I error rate may be increased due to multiple test-
ing. Section 4.1.1 discusses so called item purification dealing with the first issue
and Section 4.1.2 studies correction methods for multiple comparison corrections
in DIF detection which can tackle the second issue. Section 4.2 summarizes com-
plex simulation study by Hladká, Martinková, and Magis (2021) which jointly
evaluates properties of both approaches and moreover offers and studies their
mixtures in various settings of DIF detection.

Publications by the author related to the thesis
The thesis comprises, summarizes, and partially extends the following papers:

Drabinová, A., & Martinková, P. (2017) Detection of differential item func-
tioning with nonlinear regression: A non-IRT approach accounting for guessing.
Journal of Educational Measurement, 54 (4), 498–517, doi: 10.1111/jedm12158

The paper introduced nonlinear regression for DIF detection. The model pro-
posed there is a restricted version of the four parameter nonlinear regression
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model discussed in this thesis. It allows for possibility of guessing the correct
answer without necessary knowledge, possibly varying between the two groups.
The paper also included simulation study evaluating the properties of the pro-
posed model and comparing it to other commonly used methods for DIF detec-
tion, which is presented in this thesis in its original form. It also offered practical
illustrations on real data from admission test in Biology to medical faculty in
the Czech Republic. An early version of this paper received Travel Award and
was presented at International Meeting of the Psychometric Society (IMPS, 2016,
Asheville, NC, USA).

Hladká, A., & Martinková, P. (2020) difNLR: Generalized logistic regression
model for DIF and DDF detection. The R Journal, 12 (1), 300–323. doi:
10.32614/RJ-2020-014

The second paper described R package difNLR which offers implementation of gen-
eralized logistic models for DIF and DDF detection discussed in this thesis includ-
ing four parameter nonlinear regression model, which allows also for possibility
of inattention when answering. The paper offered practical guide to fit models
in R, from data generation to visualisation of the results. It also included real
data example which illustrated complex use of the proposed models.

Hladká, A., Brabec, M., & Martinková, P. (2021) Estimation in generalized
logistic regression model. In preparation for submission.

This paper will built on Section 1.2 and will summarize several approaches to
estimate parameters in the four parameter nonlinear regression model including
the newly proposed two-step estimation procedure based on a generalized logistic
model using parametric link function. Estimation methods will be compared in
a simulation study.

Hladká, A., & Martinková, P. (2021) Nonparametric comparison of regression
curves for DIF detection. In preparation for submission.

The fourth paper will build on Chapter 3 offering nonparametric approach based
on comparison of regression curves for DIF detection. Several choices of weight
functions will be discussed and an estimate of optimal weights together with
the use of the wild bootstrap will be proposed.

Hladká, A., Martinková, P., & Magis, D. (2021) Issues and practice in detection
of differential item functioning: Applying item purification, correction for mul-
tiple comparisons, or combination of both? In preparation for re-submission.

The last core paper builds on Chapter 4 and offers extensive simulation study to
examine various approaches to deal with the maintaining the level of type I error
and to improve DIF detection under diverse conditions. Specifically, performance
of item purification and corrections for multiple comparison are jointly evaluated
and their combinations is also studied.
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Topics covered in this thesis further relate to the following works:

Martinková, P., & Drabinová, A. (2018) ShinyItemAnalysis for teaching psy-
chometrics and to enforce routine analysis of educational tests. The R Journal,
10 (2), 503–515, doi: 10.32614/RJ-2018-074

This paper describes an R package and an online application ShinyItemAnalysis
which offers methods for complex psychometric analysis of the educational and
psychological tests. Software provides wide range of psychometric methods for
testing reliability, validity and detailed analysis of functioning of single test items.
It also makes available models for DIF detection included and described in this
thesis.
Martinková, P., Hladká, A., & Potužńıková, E. (2020) Is academic tracking
related to gains in learning competence? Using propensity score matching and
differential item change functioning analysis for better understanding of track-
ing implications. Learning and Instruction, 66, 101286,
doi: 10.1016/j.learninstruc.2019101286

The paper includes detailed psychometric analysis of test of learning competences
and its items with the focus on differences in gains between the basic school track
and the selective academic track. The concept of DIF is extended to longitudinal
setting and DIF analysis is combined with the propensity score matching tech-
nique. DIF analysis uses generalized logistic regression model described in this
thesis.
Martinková, P., Drabinová, A., Liaw, Y. L., Sanders, E. A., McFarland, J. L.,
& Price, R. M. (2017) Checking equity: Why DIF analysis should be a rou-
tine part of developing conceptual assessments. CBE–Life Sciences Education
16 (2), rm2, doi: 10.1187/cbe.16-10-0307

This methodological paper presents number of DIF detection approaches. It also
provides a simulated as well as a real data example showing importance of DIF
analysis and its added value over traditional methods for detection of between-
group differences in development and validation of educational tests.

Martinková, P., & Hladká, A. (2021) Computational aspects of psychometric
methods in education, psychology, and health: With examples in R. CRC Press.
(In preparation)

This book will cover key psychometric topics, from Classical Test Theory (CTT)
to IRT including DIF detection, with focus on computational aspects of statisti-
cal methods. Book will also include examples of implementation in the statistical
software R on real data from educational, psychological, and health-related mea-
surements.

Notation
The mathematical and special symbols together with abbreviations used through-
out the thesis are summarized in Glossaries on page 140. Note that index i is
related to an item of the interest while index p to the person or respondent.
Within the thesis, italic is used to emphasize new or important concepts.
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1. Generalized logistic regression
models for binary items
In this chapter we review the generalized logistic regression model (also called
the nonlinear model) for DIF detection among dichotomous items as was proposed
and published in papers by Drabinová and Martinková (2017) and Hladká and
Martinková (2020).

In Section 1.1 we introduce a class of nonlinear models which account for
possibility of guessing and/or inattention when responding. Then, in Section 1.2,
we focus on estimation procedures to estimate item parameters in the nonlinear
models. We review the method of nonlinear least squares and the maximum
likelihood method to estimate item parameters, both discussed in Drabinová and
Martinková (2017) and Hladká and Martinková (2020). Newly, we deal with these
methods in more detail including asymptotic properties of the item parameter
estimates and estimates of their asymptotic variance. We further present two
new estimation approaches for the nonlinear models for DIF detection – the EM
algorithm and a newly proposed algorithm based on parametric link function.

Section 1.3 is devoted to DIF detection when using the nonlinear models. Fur-
ther, in Section 1.4 we show implementation of the methods in the freely available
statistical software R (R Core Team, 2020) and its package difNLR (Hladká &
Martinková, 2020). Finally, in Sections 1.5 and 1.6, we offer two simulation stud-
ies. The first one explores properties of the proposed DIF detection procedure
based on the nonlinear model as was published in Drabinová and Martinková
(2017). The second simulation study newly compares estimation techniques dis-
cussed in Section 1.2.

1.1 Model specification
The nonlinear regression models for DIF detection among binary items are ex-
tensions of the logistic regression method (7) proposed by Swaminathan and
Rogers (1990). These extensions may account for the possibility that an item can
be correctly answered without possessing the necessary knowledge, i.e., a lower
asymptote of the ICC can be larger than zero. Similarly, these models can take
into consideration the possibility that an item is incorrectly answered by a person
with high ability due to, for example, inattention or lack of time, i.e., an upper
asymptote of the ICC can be lower than one.

The probability of a correct answer on item i by person p is then given by

P(Ypi = 1|Xp, Gp) = ciGp + (diGp − ciGp) eaiGp (Xp−biGp )

1 + eaiGp (Xp−biGp ) , (1.1)

where Xp is a matching criterion, a variable describing knowledge or ability of per-
son p, and Gp stands for respondent’s membership to a social group (Gp = 0
for the reference group andGp = 1 for the focal group). Parameters aiGp , biGp ∈ R,
and ciGp , diGp ∈ [0, 1] represent discrimination, difficulty, probability of guessing,
and a parameter related to the probability of inattention in item i, while they
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can differ for the reference and the focal group. Thus, there are eight parameters
for each item in total.

The parametrization of the terms aiGp , biGp , ciGp , and diGp in model (1.1) can
take the form of sum of baseline parameters and a difference in these parameters
between the two groups, that is, for example, aiGp = ai +aiDIFGp. In other words,
ai0 = ai for the reference group and ai1 = ai + aiDIF for the focal group. The sec-
ond possibility is to define the terms aiGp , biGp , ciGp , and diGp as the sums of two
mutually exclusive group-based parameters, e.g., aiGp = ai0 (1 −Gp) + ai1Gp.
Then parameters ai and ai0 are the same and they refer to the item properties
of the reference group, while parameter aiDIF gives a difference in related param-
eters between the focal and the reference group, i.e., aiDIF = ai1 − ai0. In what
follows, we stick with the first option which describes the group-based differences
in the parameters and we set γi = {ai, aiDIF, bi, biDIF, ci, ciDIF, di, diDIF} to be a
set of parameters of the model (1.1) for item i.

1.1.1 Interpretation of the parameters
Guessing parameter ci (sometimes also called pseudo-guessing parameter) can
be interpreted as a probability of guessing correct answer of the item i without
necessary knowledge or ability when respondent comes from the reference group.
In other words, it is the probability of correct answer when the ability level Xp

goes to −∞, i.e.,

ci = lim
x→−∞

P(Ypi = 1|Xp = x,Gp = 0),

and describes thus a left asymptote of the ICC (in case that ai > 0 the lower
one, see Figure 1.1). While the parameter ci may take values from the whole
interval [0, 1], in multiple-choice answers it would typically be around 1 divided
by a number of choices in given item, i.e., for 4 choices it would be around 0.25,
but it may also depend on attractiveness of the distractors.

Inattention parameter di is related to the probability of answering the item
i incorrectly by a respondent from the reference group even in case when they
have the full knowledge of the construct being measured, i.e., when the ability
level goes to ∞:

di = lim
x→∞

P(Ypi = 1|Xp = x,Gp = 0),

and gives thus a right asymptote of the ICC (in case that ai > 0 the upper
one, see Figure 1.1). Term 1 − di then can be interpreted as the probability
of inattention for the respondent from the reference group. Unlike the case of
parameter ci, it is not entirely obvious what the typical values of parameter di

should be. The parameter di is rather related to the situations when respondent
did not have enough time, was inattentive, or did not want to admit condition,
such as crying in health-related or attitude measurements, because they consider
it socially or culturally unacceptable.

Difficulty parameter bi corresponds to a value of the matching criterion Xp

which is necessary to answer item i correctly with a probability of di+ci

2 , that is
a midpoint between the two asymptotes of the ICC for the reference group (see
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Figure 1.1):

P(Ypi = 1|Xp = bi, Gp = 0) = ci + (di − ci)
eai(bi−bi)

1 + eai(bi−bi)

= ci + (di − ci)
e0

1 + e0

= di + ci

2 .

For example, in case of the logistic regression model (7), i.e., setting ci = 0 and
di = 1 in (1.1), parameter bi corresponds to the ability level at which respondents
from the reference group have the probability of 0.5 to answer given item correctly.

Finally, the discrimination parameter ai is related to the slope of the ICC
(1.1) in inflection point bi (see Figure 1.1). This can be seen when looking at
the first derivative with respect to a variable related to the matching criterion:

P′(Ypi = 1|Xp, Gp = 0) = ∂ P(Ypi = 1|Xp, Gp)
∂Xp

= (di − ci)
eai(Xp−bi)

(1 + eai(Xp−bi))2 ,

and for the inflection point Xp = bi we get

P′(Ypi = 1|Xp = bi, Gp = 0) = (di − ci)
ai

4 .

Figure 1.1: Interpretation of the parameters of the nonlinear model.

As mentioned above, parameters aiDIF, biDIF, ciDIF, and diDIF describe differ-
ences between the focal and the reference group in the discrimination, difficulty,
guessing, and inattention, respectively. Parameters ciDIF and diDIF are related to
the probabilities of guessing and inattention and need to be bounded by 0 and
1, thus, it is necessary to set ciDIF ∈ [−ci, 1 − ci] and diDIF ∈ [−di, 1 − di] while
ci ∈ [0, 1] and di ∈ [0, 1].

1.1.2 Alternative parametrization
Current parametrization is convenient as it describes psychometric properties
of the items. Moreover, it is similar to the one used in IRT models and makes
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thus parameter estimates directly comparable. We further reference it as the IRT
parametrization. However, for computational purposes and to allow for multiple
regressors, it is sometimes more suitable to use the classical intercept-slope para-
metrization as for the logistic regression method (7). The nonlinear model (1.1)
then takes the following form:

P(Ypi = 1|Xp, Gp) = ciGp + (diGp − ciGp) eβi0+βi1Xp+βi2Gp+βi3Xp:Gp

1 + eβi0+βi1Xp+βi2Gp+βi3Xp:Gp
. (1.2)

Parameters ciGp and diGp can be defined analogously as for the IRT parametriza-
tion described above and their interpretation remains the same. Interpretation
of parameters βi0, βi1, βi2, and βi3 is the same as for the logistic regression
model (7): Intercept βi0 is related to the baseline probability of answering item i
correctly, that is a probability when Xp = 0; parameter βi1 is related to the change
in the odds ratio of the correct answer in item i when Xp increases by one point;
βi2 indicates a difference between the reference and the focal group in the inter-
cept, and βi3 indicates a difference between the two groups in the slope.

Mutual relationship between the parameters of (1.1) and the parameters
of (1.2) is then given as follows:

βi0 = −aibi, βi1 = ai, βi2 = −aibiDIF − aiDIFbi − aiDIFbiDIF, βi3 = aiDIF.

Standard errors of the estimates can be obtained using a delta method which
allows to obtain an approximate distribution for a function of an asymptotically
normal estimator (see, for example, Doob, 1935) whatever parametrization is
used. In what follows we use the IRT parametrization.

1.1.3 Matching criterion
We use a term the matching criterion for the observed ability Xp used in analysis
of DIF. Using the total test score Xp as the matching criterion may lead to
contradictions for the nonlinear model (1.1), especially when respondents gained
zero points or maximum score of the test. In such cases, the probability of correct
answer on each item should be 0 and 1 respectively, but the model will predict
otherwise:

P(Ypi = 1|Xp = 0, Gp = 0) = ci + (di − ci)
1

1 + eaibi
> ci ≥ 0,

P(Ypi = 1|Xp = I,Gp = 0) = ci + (di − ci)
eai(I−bi)

1 + eai(I−bi)
< di ≤ 1.

Similarly for the focal group we get P(Ypi = 1|Xp = 0, Gp = 1) > ci + ciDIF ≥ 0
and P(Ypi = 1|Xp = I,Gp = 1) < di + diDIF ≤ 1. This is also an issue for
the logistic regression model (7).

In what follows, we further often use the standardized total test score, also
called Z-score, as an estimate of the respondents’ ability, that is

Xp =
∑︁I

i=1 Ypi − Ȳ√︃
1

p−1
∑︁I

i=1

(︂
Ypi − Ȳ

)︂2
,
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where Ȳ = 1
p

∑︁n
p=1

∑︁I
i=1 Ypi. However, even though not directly apparent, even

this choice of the matching criterion is not fully appropriate and the problem
persists for the lowest and the highest values of the Z-score.

One possibility how to deal with this issue, is to apply a continuous transfor-
mation of the total test score to the real numbers R. For example, the average
item score is calculated for each respondent and then a logit function is applied:

Xp = log
(︄ 1

I

∑︁I
i=1 Ypi

1 − 1
I

∑︁I
i=1 Ypi

)︄
.

Thus Xp = −∞ if and only if no item was correctly answered and Xp = ∞ if and
only if all items were correctly answered.

Another possibility is to use a jackknife estimate of the total test score or its
standardization. The matching criterion is then calculated based on all items ex-
cept the one which is currently examined. In other words, the matching criterion
for the given item i is computed as follows:

Xpi =
I∑︂

j=1, j ̸=i

Ypj.

The class of models determined by equation (1.1) contains a wide range
of scenarios for DIF detection, for more details see Section 1.3. For instance,
with ci = ciDIF = diDIF = 0 and diGp = 1 one can obtain the classical lo-
gistic regression model (7) for the detection of uniform and non-uniform DIF
(Swaminathan & Rogers, 1990, see Figure 1.2A). Assuming di = 1 and diDIF = 0,
we get a nonlinear model for the DIF detection allowing for differential guess-
ing in the groups (Drabinová & Martinková, 2017, see Figure 1.2B). However,
the nonlinear model (1.1) can also be used to detect differences between the two
groups in any of the four parameters ai, bi, ci, and di as shown in Figure 1.2C.

(A) 2PL model. (B) 3PL model. (C) 4PL model.

Figure 1.2: Examples of the nonlinear regression models.

In contrast to the 4PL IRT model (1), the nonlinear model (1.1) assumes
that the underlying latent trait is estimated by the test-score based matching
criterion, typically standardized total test score or its suitable transformation,
and thus the described method belongs to a class of non-IRT approaches. As
such, the nonlinear model (1.1) can be seen as a proxy to the 4PL IRT model (1)
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for DIF detection. While estimation of the asymptote parameters is notoriously
challenging in the IRT models, it was shown that the generalized logistic models
require a smaller sample size to be fitted while they keep pleasant properties
in terms of power and rejection rates (Drabinová & Martinková, 2017, see also
Section 1.5).

1.2 Estimation of parameters
In this part we provide a review of approaches to estimate item parameters
γi = {ai, aiDIF, bi, biDIF, ci, ciDIF, di, diDIF} in the model (1.1) including the nonlin-
ear least squares and the maximum likelihood method, as described in Drabinová
and Martinková (2017) and Hladká and Martinková (2020). However, the meth-
ods are presented here in more detail, notably we also study asymptotic properties
of the parameter estimates. We further propose using the EM algorithm to esti-
mate item parameters and we newly propose an algorithm based on parametric
link function as will be summarized in Hladká, Brabec, and Martinková (2021).
The properties of the estimation techniques are compared in a simulation study
described in Section 1.6.

1.2.1 Nonlinear least squares
The first method described here is the nonlinear least squares (see, for example,
Ritz & Streibig, 2008; Seber & Wild, 1989; van der Vaart, 2000), that is, a min-
imization of the Residual Sum of Squares (RSS) of item i with respect to item
parameters γi. By setting

πpi = P(Ypi = 1|Xp, Gp) (1.3)

in the model (1.1), we get the RSS of the item i in the following form:

RSSi(γi) =
n∑︂

p=1
(Ypi − πpi)2 , (1.4)

where n denotes the number of respondents, Ypi is the response of respondent p
to the item i, Xp is their matching criterion, and Gp is their group membership
variable. The nonlinear least squares estimator is then given by

γ̂i =
{︂ˆ︁ai, ˆ︁aiDIF, ˆ︁bi, ˆ︁biDIF, ˆ︁ci, ˆ︁ciDIF, ˆ︁di, ˆ︁diDIF

}︂
= arg min

γi

RSSi(γi)

and thus can be then seen as an M-estimator. As the criterion function RSSi(γi)
(1.4) is continuously differentiable with respect to parameters γi, the minimizer
can be obtained when gradient is zero, i.e., ∇γi

RSSi(γi) = 0. So the minimiza-
tion process involves a calculation of the first partial derivatives with respect to
parameters γi and finding a solution of relevant nonlinear estimating equations:

∇γi
RSSi(γi) =

n∑︂
p=1

∂ (Ypi − πpi)2

∂γi

=
n∑︂

p=1
ψi(Ypi, Xp, Gp;γi) = 0,
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where

ψi(Ypi, Xp, Gp;γi) = (ψi1(Ypi, Xp, Gp;γi), . . . , ψi8(Ypi, Xp, Gp;γi))

=
(︄

−2(Ypi − πpi)
∂πpi

∂γi1
, . . . ,−2(Ypi − πpi)

∂πpi

∂γi8

)︄
,

see also van der Vaart (2000, Example 5.27).
Let’s first substitute

ϕpi = e(ai+aiDIFGp)(Xp−bi−biDIFGp)

1 + e(ai+aiDIFGp)(Xp−bi−biDIFGp) .

The term ϕpi describes a logistic regression curve, that is a probability of correct
answer when respondents were not guessing and were not inattentive. The partial
derivatives of the RSSi(γi) with respect to the k-th parameter, where k = 1, . . . , 8,
are then

∂RSSi(γi)
∂γik

=
n∑︂

p=1
ψik(Ypi, Xp, Gp;γi) = −2

n∑︂
p=1

(Ypi − πpi)
∂πpi

∂γik

, (1.5)

where
∂πpi

∂ai

= (di + diDIFGp − ci − ciDIFGp)∂ϕpi

∂ai

, (1.6)

∂πpi

∂aiDIF
= (di + diDIFGp − ci − ciDIFGp) ∂ϕpi

∂aiDIF
, (1.7)

∂πpi

∂bi

= (di + diDIFGp − ci − ciDIFGp)∂ϕpi

∂bi

, (1.8)

∂πpi

∂biDIF
= (di + diDIFGp − ci − ciDIFGp) ∂ϕpi

∂biDIF
, (1.9)

∂πpi

∂ci

= 1 − ϕpi, (1.10)

∂πpi

∂ciDIF
= (1 − ϕpi)Gp, (1.11)

∂πpi

∂di

= ϕpi, (1.12)

∂πpi

∂diDIF
= ϕpiGp, (1.13)

with
∂ϕpi

∂ai

= ϕpi (1 − ϕpi) (Xp − bi − biDIFGp) ,

∂ϕpi

∂aiDIF
= ϕpi (1 − ϕpi) (Xp − bi − biDIFGp)Gp,

∂ϕpi

∂bi

= − ϕpi (1 − ϕpi) (ai + aiDIFGp) ,

∂ϕpi

∂biDIF
= − ϕpi (1 − ϕpi) (ai + aiDIFGp)Gp.

(1.14)

In our case, the nonlinear least squares minimization problem includes a system
of the eight nonlinear estimating equations with the eight unknown parameters:
∂RSSi

∂γik
= 0, k = 1, . . . , 8, given by (1.5).
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Asymptotic properties. Asymptotic properties, such as consistency and
asymptotic distribution, of the nonlinear least squares estimator can be shown
under the classical set of regularity conditions (see, for example, van der Vaart,
2000, Theorems 5.41 and 5.42). We reformulate these conditions for our situation:

[R0] A vector of true parameters γiX satisfies

E (ψi(Ypi, Xp, Gp;γiX)) = E
(︄

−2(Ypi − πpi)
∂πpi

∂γiX

)︄
= 0.

[R1] The true parameter γiX is an interior point of the parameter space.

[R2] The function ψi(y, x, g;γi) is twice continuously differentiable with respect
to γi for every (y, x, g).

[R3] For each γ∗
i in a neighborhood of γiX there exists an integrable function

ψ̈(y, x, g) such that ⃓⃓⃓⃓
⃓∂2ψik(y, x, g;γi)

∂γij∂γil

⃓⃓⃓⃓
⃓ ≤ ψ̈(y, x, g),

for each k, j, l = 1, . . . , 8.

[R4] The matrix

lΓi(γi) = E
(︄
∂ψi(Ypi, Xp, Gp;γi)

∂γ⊤
i

)︄

= 2 E
⎛⎝∂πpi

∂γi

(︄
∂πpi

∂γi

)︄⊤

− (Ypi − πpi)
∂2πpi

∂γi∂γ
⊤
i

⎞⎠
= 2 E

⎛⎝∂πpi

∂γi

(︄
∂πpi

∂γi

)︄⊤
⎞⎠

is finite and regular in a neighbourhood of γiX .

[R5] The variance matrix

ΣΣi(γi) = E
(︂
ψi(Ypi, Xp, Gp;γi)ψ⊤

i (Ypi, Xp, Gp;γi)
)︂

= 4 E
⎛⎝(Ypi − πpi)2 ∂πpi

∂γi

(︄
∂πpi

∂γi

)︄⊤
⎞⎠

= 4 E
⎛⎝πpi (1 − πpi)

∂πpi

∂γi

(︄
∂πpi

∂γi

)︄⊤
⎞⎠

is finite for γi = γiX .

Specifically, the Theorem 5.42 (van der Vaart, 2000, p. 68) implies that under
the conditions [R0]–[R5], the probability that the estimating equations ∂RSSi

∂γik
= 0,

k = 1, . . . , 8 have at least one root tending to 1, as n → ∞, and there exists a se-
quence γ̂i (depending on n) such that γ̂i

P−→
n→∞

γiX , and, moreover, the sequence
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γ̂i can be chosen to be a local maximum for each n. Theorem 5.41 (van der Vaart,
2000, p. 68) shows that every consistent estimator γ̂i has asymptotically normal
distribution, that is:

√
n (γ̂i − γiX) D−→

n→∞
N
(︂
0, lΓ−1

i (γiX)ΣΣi(γiX)lΓ−1
i (γiX)

)︂
,

It is easy to see that the conditions [R0] and [R2] hold. To satisfy the condition
[R1], we need to bound parameters ci, ciDIF, di, and diDIF to the open intervals,
i.e., ci, di ∈ (0, 1), ciDIF ∈ (−ci, 1 − ci), and diDIF ∈ (−di, 1 − di). In case that
parameters of the asymptotes are on the boundary of parameter space, i.e., ci = 0,
di = 1, and ciDIF = diDIF = 0, the logistic regression model (7) may be used
instead. Model (1.1) with some of the parameters fixed, e.g., di = 1 and diDIF = 0,
may be also considered analogously. Note that the asymptotic properties derived
here will hold also for such submodels, however, we are limited in that it is not
possible to test whether the full model or its submodel fit the data better.

Regarding the condition [R3], in our case, the polynomial of x of the fourth
degree can be taken as an integrable dominating function (see Appendix A.1).

Considering that Xp is the standardized total score, we can assume that
the range of Xp is bounded. Moreover, Gp ∈ {0, 1} and thus partial deriva-
tives ∂πpi

∂γi
, k = 1, . . . , 8, are all bounded. Thus matrices lΓi(γi) and ΣΣi(γi) are

both finite and the condition [R5] holds. Finally, in case that rows/columns
of the matrix lΓi(γi) are linearly independent, the matrix has a full rank and
therefore it is regular, satisfying condition [R4]. Singularity of the matrix may
occur, for instance, when Gp = 0,∀p (or Gp = 1,∀p).

We have shown that all assumptions [R1]–[R5] hold under the mild additional
conditions, and thus γ̂i has pleasant properties such as consistency and asymp-
totic normality.

Estimate of asymptotic variance. The natural estimate of the asymptotic
variance of γ̂i is a sandwich estimator given by

1
n
ˆ︁lΓ−1

in (γ̂i) ˆ︁ΣΣin(γ̂i)ˆ︁lΓ−1
in (γ̂i), (1.15)

where

ˆ︁lΓin(γ̂i) = 1
n

n∑︂
p=1

(︄
∂ψi(Ypi, Xp, Gp; γ̂i)

∂γ⊤
i

)︄
,

ˆ︁ΣΣin(γi) = 1
n

n∑︂
p=1

(︂
ψi(Ypi, Xp, Gp; γ̂i)ψ⊤

i (Ypi, Xp, Gp; γ̂i)
)︂
.

Components of the matrix ∇2RSSi(γi) = ˆ︁lΓin(γi) are given by:

∂2RSSi(γi)
∂γik∂γij

= − 2
n∑︂

p=1

{︄
(Ypi − πpi)

∂2πpi

∂γik∂γij

− ∂πpi

∂γik

∂πpi

∂γij

}︄
,

∂2RSSi(γi)
∂γ2

ik

= − 2
n∑︂

p=1

⎧⎨⎩(Ypi − πpi)
∂2πpi

∂γ2
ik

−
(︄
∂πpi

∂γik

)︄2
⎫⎬⎭ ,
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for k = 1, . . . , 8, j = 1, . . . , 8, and k ̸= j, where

∂2πpi

∂a2
i

= (di + diDIFGp − ci − ciDIFGp)∂
2ϕpi

∂a2
i

,

∂2πpi

∂ai∂aiDIF
= (di + diDIFGp − ci − ciDIFGp) ∂2ϕpi

∂ai∂aiDIF
,

∂2πpi

∂ai∂bi

= (di + diDIFGp − ci − ciDIFGp) ∂
2ϕpi

∂ai∂bi

,

∂2πpi

∂ai∂biDIF
= (di + diDIFGp − ci − ciDIFGp) ∂2ϕpi

∂ai∂biDIF
,

∂2πpi

∂ai∂ci

= − ∂2ϕpi

∂a2
i

,

∂2πpi

∂ai∂ciDIF
= − ∂2ϕpi

∂a2
i

Gp,

∂2πpi

∂ai∂di

= ∂2ϕpi

∂a2
i

,

∂2πpi

∂ai∂diDIF
= ∂2ϕpi

∂a2
i

Gp,

∂2πpi

∂a2
iDIF

= (di + diDIFGp − ci − ciDIFGp) ∂
2ϕpi

∂a2
iDIF

,

∂2πpi

∂aiDIF∂bi

= (di + diDIFGp − ci − ciDIFGp) ∂2ϕpi

∂aiDIF∂bi

,

∂2πpi

∂aiDIF∂biDIF
= (di + diDIFGp − ci − ciDIFGp) ∂2ϕpi

∂aiDIF∂biDIF
,

∂2πpi

∂aiDIF∂ci

= − ∂2ϕpi

∂a2
iDIF

,

∂2πpi

∂aiDIF∂ciDIF
= − ∂2ϕpi

∂a2
iDIF

Gp,

∂2πpi

∂aiDIF∂di

= ∂2ϕpi

∂a2
iDIF

,

∂2πpi

∂aiDIF∂diDIF
= ∂2ϕpi

∂a2
iDIF

Gp, (1.16)

∂2πpi

∂b2
i

= (di + diDIFGp − ci − ciDIFGp)∂
2ϕpi

∂b2
i

,

∂2πpi

∂bi∂biDIF
= (di + diDIFGp − ci − ciDIFGp) ∂2ϕpi

∂bi∂biDIF
,

∂2πpi

∂bi∂ci

= − ∂2ϕpi

∂b2
i

,

∂2πpi

∂bi∂ciDIF
= − ∂2ϕpi

∂b2
i

Gp,

∂2πpi

∂bi∂di

= ∂2ϕpi

∂b2
i

,

∂2πpi

∂bi∂diDIF
= ∂2ϕpi

∂b2
i

Gp,
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∂2πpi

∂b2
iDIF

= (di + diDIFGp − ci − ciDIFGp) ∂
2ϕpi

∂b2
iDIF

,

∂2πpi

∂biDIF∂ci

= − ∂2ϕpi

∂b2
iDIF

,

∂2πpi

∂biDIF∂ciDIF
= − ∂2ϕpi

∂b2
iDIF

Gp,

∂2πpi

∂biDIF∂di

= ∂2ϕpi

∂b2
iDIF

,

∂2πpi

∂biDIF∂diDIF
= ∂2ϕpi

∂b2
iDIF

Gp,

∂2πpi

∂c2
i

= ∂2πpi

∂ci∂ciDIF
= ∂2πpi

∂ci∂di

= ∂2πpi

∂ci∂diDIF
= 0,

∂2πpi

∂c2
iDIF

= ∂2πpi

∂ciDIF∂di

= ∂2πpi

∂ciDIF∂diDIF
= 0,

∂2πpi

∂d2
i

= ∂2πpi

∂di∂diDIF
= ∂2πpi

∂d2
iDIF

= 0,

with

∂2ϕpi

∂a2
i

= ϕpi (1 − ϕpi) (1 − 2ϕpi) (Xpi − bi − biDIFGp)2 ,

∂2ϕpi

∂a2
iDIF

= ∂2ϕpi

∂ai∂aiDIF
= ϕpi (1 − ϕpi) (1 − 2ϕpi) (Xpi − bi − biDIFGp)2 Gp,

∂2ϕpi

∂ai∂bi

= − ϕpi (1 − ϕpi) (1 − 2ϕpi) (ai + aiDIFGp) (Xpi − bi − biDIFGp) ,

∂2ϕpi

∂ai∂biDIF
= − ϕpi (1 − ϕpi) (1 − 2ϕpi) (ai + aiDIFGp) (Xpi − bi − biDIFGp)Gp,

∂2ϕpi

∂b2
i

= − ϕpi (1 − ϕpi) (1 − 2ϕpi) (ai + aiDIFGp)2 ,

∂2ϕpi

∂bi∂biDIF
= ∂2ϕpi

∂b2
iDIF

= −ϕpi (1 − ϕpi) (1 − 2ϕpi) (ai + aiDIFGp)2 Gp.

In practice, all parameters are estimated simultaneously using suitable numer-
ical approaches, such as ”nl2sol” algorithm from the Port library (Dennis, Gay,
& Welsch, 1981; Gay, n.d.) which accounts for bounds of the estimated parame-
ters, i.e., keeps asymptotes into the interval of (0, 1). The nonlinear least squares
estimation, described in this section, is implemented in the difNLR package (see
Section 1.4.1).

It should be noted, that the nonlinear least squares method as presented here
does not account for heteroscedasticity of binary data. In case of binary data,
the Pearson’s residuals might be more appropriate to use. This choice takes
the original squares of residuals and divides them by the variance πpi(1 − πpi).
The RSS of item i (1.4) would take the following form:

RSSi(γi) =
n∑︂

p=1

(Ypi − πpi)2

πpi (1 − πpi)
.
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1.2.2 Maximum likelihood
The second option to estimate item parameters in the model (1.1) is the maximum
likelihood method. Using the notation from the previous section, the likelihood
function for the item i has the following form:

Li(γi) =
n∏︂

p=1
π

Ypi

pi (1 − πpi)1−Ypi .

The log-likelihood function for the item i is then given by

li(γi) =
n∑︂

p=1
{Ypi log(πpi) + (1 − Ypi) log(1 − πpi)} , (1.17)

that is a log-likelihood for binary data. The parameter estimates are obtained
by a maximization of the log-likelihood function (1.17) and we can therefore
proceed similarly as for the logistic regression model, however, the nonlinear
model (1.1) is no longer generalized linear model with the canonical link function.
Maximization involves calculation of the score statistics, that is the first partial
derivatives of the log-likelihood function with respect to the parameters of vector
γi. The general form of the partial derivatives by the parameter k = 1, . . . , 8 is
then

∂li(γi)
∂γik

=
n∑︂

i=1

∂πpi

∂γik

Ypi − πpi

πpi (1 − πpi)
, (1.18)

with ∂πpi

∂γik
given by (1.6)–(1.13).

To find the critical points of the log-likelihood function (1.17), the first par-
tial derivatives (1.18) are set to zero and these likelihood equations are to be
solved. However, the solution γ̂i of a system of the nonlinear equations cannot
be derived algebraically and it has to be numerically estimated using a suitable
iterative process. For example, modification of the quasi-Newton method allow-
ing for box constraints (Byrd, Lu, Nocedal, & Zhu, 1995) can be used in which
each parameter may be given a lower and/or upper bound.

Elements of the observed information matrix

Iin(γi|X,G) = 1
n

n∑︂
p=1

Ii(γi|Xp, Gp) = − 1
n

∂2li(γi)
∂γi∂γ

⊤
i

,

that is the matrix of the second partial derivatives of the log-likelihood function
(1.17), are given by

∂2li(γi)
∂γ2

ik

=
n∑︂

p=1

Ypi − πpi

πpi (1 − πpi)

⎡⎣∂2πpi

∂γ2
ik

−
(︄
∂πpi

∂γik

)︄2
Ypi − πpi

πpi (1 − πpi)

⎤⎦ ,
∂2li(γi)
∂γikγij

=
n∑︂

p=1

Ypi − πpi

πpi (1 − πpi)

[︄
∂2πpi

∂γik∂γij

− ∂πpi

∂γik

∂πpi

∂γij

Ypi − πpi

πpi (1 − πpi)

]︄
,

for k, j = 1, . . . , 8, k ̸= j, and the second partial derivatives ∂2πpi

∂γ2
ik

and ∂2πpi

∂γik∂γij

given by the terms (1.16).
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The Fisher information matrix then has the form of

Ii(γi) = E Ii(γi|Xp, Gp) = E
(︄

1
πpi (1 − πpi)

∂πpi

∂γik

∂πpi

∂γij

)︄8

k,j=1
, (1.19)

where the first partial derivatives ∂πpi

∂γik
, k = 1, . . . , 8, are given by (1.6)–(1.13),

which is in fact a quadratic form and thus it is positive definite.

Asymptotic properties. Asymptotic properties of the maximum likelihood
estimator can be shown under the set of the following regularity conditions:

[R0∗] The support set S = {y ∈ R : f(y|x, g,γi) > 0} does not depend on the pa-
rameter γi.

[R1∗] The true parameter γiX is an interior point of the parameter space.

[R2∗] The density f(y|x, g,γi) = y log (π(x, g;γi)) + (1 − y) log (1 − π(x, g;γi)) is
twice continuously differentiable with respect to γi for each (y, x, g).

[R3∗] The Fisher information matrix Ii(γi) is finite, regular, and positive definite
in a neighborhood of γiX .

[R4∗] The order of differentiation and integration with respect to γi can be inter-
changed for terms f(y|x, g,γi) and ∂f(y|x,g,γi)

∂γi
.

It is easy to see that the conditions [R0∗] and [R2∗] hold. In our case, the reg-
ularity condition for the maximum likelihood estimator [R1∗] is the same as con-
dition [R1] for the nonlinear least squares and we thus need to bound parameters
of asymptotes to open intervals as was discussed in the previous Section 1.2.1.

Regarding the condition [R3∗], we have already shown that the Fisher informa-
tion matrix (1.19) is positive definite. Again, considering Xp to be the standard-
ized total score, we can assume that its range is bounded. Together with the fact
that Gp ∈ {0, 1}, it is easy to see that partial derivatives ∂πpi

∂γik
, k = 1, . . . , 8, are all

bounded and thus the Fisher information matrix is finite. Similarly as in Section
1.2.1, in case that rows/columns of the Fisher information matrix Ii(γi) are lin-
early independent, the matrix has a full rank and therefore it is regular, satisfying
the condition [R3∗]. Singularity of the matrix may occur in similar cases as for
the matrix lΓi(γi) described in Section 1.2.1.

Finally, regarding the condition [R4∗], the order of differentiation and inte-
gration can be interchanged by dominated convergence theorem, as far as both
∂f(y|x,g,γi)

∂γi
and ∂2f(y|x,g,γi)

∂γi∂γ
⊤
i

are dominated by an integrable function. In our case
a polynomial of x of the fourth degree can be taken as an integrable dominating
function (see Appendix A.2).

From Hogg, McKean, and Craig (2018) it follows that when the regularity
conditions [R0∗]–[R4∗] hold, then there exists n0 and a sequence ˆ︁γin(n > n0) of
solutions to the likelihood equations such that

ˆ︁γin
P−→

n→∞
γiX ,

where γiX is a vector of true parameters. As the log-likelihood function (1.17)
is not strictly concave, described approach does not guarantee finding a unique
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solution of the corresponding likelihood equations. In other words, there may
be multiple solutions, each of them being a local maximum. However, there is
one solution among them, which provides a consistent sequence of estimators,
while other solutions may not even be close to γiX and may not converge to it.
Therefore, in practice, the crucial part of estimating procedures is to find suitable
starting values, preferably easily calculated but consistent estimate of parameters,
see also Section 1.6.1. Further, for such consistent sequence of solutions to the
likelihood equations it can be shown that

√
n (ˆ︁γin − γiX) D−→

n→∞
N (0, I−1

i (γiX)).

Estimate of asymptotic variance. Estimate of the asymptotic variance of
the item parameters γ̂i is an inverse of the observed information matrix, i.e., an
inverse of the Hessian matrix:

I−1
in (γ̂i|X,G) =

(︄
− 1
n

∂2li(γ̂i)
∂γi∂γ

⊤
i

)︄−1

. (1.20)

The maximum likelihood estimation, covered in this section, is implemented
in the difNLR package which is described in Section 1.4.1.

1.2.3 EM algorithm
The third approach to estimate parameters in the model (1.1) is to use the EM al-
gorithm. The EM algorithm is another approach to get approximation of the max-
imum likelihood estimates of item parameters, as was described in Section 1.2.2.

The problem can be reformulated in the context of the latent variables (Dinse,
2011). In our setting, we consider four mutually exclusive latent variables (Zpi1,
Zpi2, Zpi3, Zpi4), where variable Zpij = 1 indicates that respondent p belongs to
the category j = 1, . . . , 4 for an item i, while Zpij = 0 indicates he/she does not
belong to this category.

The categories 1 and 2 denote whether a respondent who correctly answered
item i (i.e., Ypi = 1) guessed correct answer while their knowledge or ability
was insufficient (Zpi1 = 1) or had a sufficient knowledge or ability to do so and
did not guessed (Zpi2 = 1). The categories 3 and 4, on the other hand, point
to whether the respondent who did not answer correctly item i (i.e., Ypi = 0)
did not have sufficient knowledge or ability (Zpi3 = 1) or incorrectly answered
due to another reason such as inattention (Zpi4 = 1). The observed indicator
Ypi and its complement 1 − Ypi can be then rewritten as Ypi = Zpi1 + Zpi2 and
1 − Ypi = Zpi3 + Zpi4 (see Figure 1.3).

Let ci+ciDIFGp be the probability that respondent p from the groupGp guessed
item i correctly without necessary knowledge (category 1) and let di +diDIFGp be
the probability that respondent p from the group Gp was not inattentive in that
item (categories 1–3). Then di + diDIFGp − ci − ciDIFGp gives the probability that
respondent p from the group Gp did not guess and was not inattentive (categories
2 and 3). For these two categories, ϕpi and 1 − ϕpi are the probabilities to
answer given item correctly (category 2) and incorrectly (category 3), respectively,
depending on the regressors Xp and Gp. Finally, the probability of respondent p
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Observed answer
Ypi ∈ {0, 1}

Guessing

Category 1
Zpi1 = 1

Category 2
Zpi2 = 1

Inattention

Category 3
Zpi3 = 1

Category 4
Zpi4 = 1

Correct
Ypi = 1

Incorrect
Ypi = 0

Yes No No Yes

Figure 1.3: Latent variables for the EM algorithm.

from the group Gp to be inattentive in item i is 1− (di +diDIFGp − ci − ciDIFGp)−
ci − ciDIFGp = 1 − di − diDIFGp (category 4). In summary, the expected values
of the latent variables are then given by terms

E(Zpi1|Xp, Gp) = ci + ciDIFGp,

E(Zpi2|Xp, Gp) = (di + diDIFGp − ci − ciDIFGp)ϕpi,

E(Zpi3|Xp, Gp) = (di + diDIFGp − ci − ciDIFGp)(1 − ϕpi),
E(Zpi4|Xp, Gp) = 1 − di − diDIFGp.

(1.21)

Note that E(Zpij|Xp, Gp) = P(Zpij = 1|Xp, Gp), j = 1, . . . , 4, as the latent vari-
ables Zpij are dichotomous. The probability of correct answer can be then ex-
pressed as

P(Ypi = 1|Xp, Gp) = P(Zpi1 + Zpi2 = 1|Xp, Gp)
= P(Zpi1 = 1|Xp, Gp) + P(Zpi2 = 1|Xp, Gp)
= ci + ciDIFGp + (di + diDIFGp − ci − ciDIFGp)ϕpi,

which under the logistic model

ϕpi = e(ai+aiDIFGp)(Xp−bi−biDIFGp)

1 + e(ai+aiDIFGp)(Xp−bi−biDIFGp)

results into the model (1.1). In other words, Zpi = (Zpi1, Zpi2, Zpi3, Zpi4) has
a multinomial distribution with one trial and corresponding probabilities given
by (1.21).

The log-likelihood function for the item i takes the following form:

lEM
i (γi) =

n∑︂
p=1

{Zpi1 log (P(Zpi1 = 1|Xp, Gp)) + Zpi2 log (P(Zpi2 = 1|Xp, Gp))

+ Zpi3 log (P(Zpi3 = 1|Xp, Gp)) + Zpi4 log (P(Zpi4 = 1|Xp, Gp))}

=
n∑︂

p=1
{Zpi1 log (ci + ciDIFGp) + Zpi2 log ((di + diDIFGp − ci − ciDIFGp)ϕpi)

+ Zpi3 log ((di + diDIFGp − ci − ciDIFGp)(1 − ϕpi))
+ Zpi4 log (1 − di − diDIFGp)}

=
n∑︂

p=1
{Zpi2 log (ϕpi) + Zpi3 log (1 − ϕpi)} (1.22)

27



+
n∑︂

p=1
{Zpi1 log (ci + ciDIFGp) + Zpi4 log (1 − di − diDIFGp)

+ (Zpi2 + Zpi3) log (di + diDIFGp − ci − ciDIFGp)}
(1.23)

= lEM
i1 + lEM

i2 ,

where lEM
i1 and lEM

i2 are given by terms (1.22) and (1.23), respectively.
The log-likelihood function lEM

i1 (1.22) includes only parameters ai, aiDIF,
bi, and biDIF, while the log-likelihood function lEM

i2 (1.23) incorporates only pa-
rameters related to the asymptotes of the ICCs and does not include regres-
sor Xp. The first log-likelihood function (1.22) actually has a form of the log-
likelihood function for the logistic regression. However, in contrast to logistic
regression, here it does not necessary hold that Zpi2 + Zpi3 = 1 as the correct
answer could be guessed or respondent could be inattentive which would re-
sult in Zpi2 + Zpi3 = 0. The second log-likelihood function (1.23) takes a form
of the log-likelihood for multinomial data with one trial and with the group-based
probabilities ci + ciDIFGp, di + diDIFGp − ci − ciDIFGp, and 1 − di − diDIFGp.

E-step. At the E-step, conditionally on the item responses Ypi and the cur-
rent parameter estimate γ̂i = (ˆ︁ai, ˆ︁aiDIF, ˆ︁bi, ˆ︁biDIF, ˆ︁ci, ˆ︁ciDIF, ˆ︁di, ˆ︁diDIF), the estimates
of the latent variables are calculated as their expected values using the Bayes’s
theorem and (1.21):

ˆ︁Zpi1 = E(Zpi1|Ypi, Xp, Gp, γ̂i)
= P(Zpi1 = 1|Ypi, Xp, Gp, γ̂i)

= P(Zpi1 = 1 & Ypi = y|Xp, Gp, γ̂i)
P(Ypi = y|Xp, Gp, γ̂i)

=

⎧⎪⎨⎪⎩
ˆ︁ci+ˆ︁ciDIFGpˆ︁ci+ˆ︁ciDIFGp+(ˆ︁di+ˆ︁diDIFGp−ˆ︁ci−ˆ︁ciDIFGp)ˆ︁ϕpi

, y = 1
0

1−ˆ︁ci−ˆ︁ciDIFGp−(ˆ︁di+ˆ︁diDIFGp−ˆ︁ci−ˆ︁ciDIFGp)ˆ︁ϕpi
, y = 0

= Ypi (ˆ︁ci + ˆ︁ciDIFGp)ˆ︁ci + ˆ︁ciDIFGp + ( ˆ︁di + ˆ︁diDIFGp − ˆ︁ci − ˆ︁ciDIFGp) ˆ︁ϕpi

,

ˆ︁Zpi2 = Ypi − ˆ︁Zpi1,

and

ˆ︁Zpi4 = E(Zpi4|Ypi, Xp, Gp, γ̂i)
= P(Zpi4 = 1|Ypi, Xp, Gp, γ̂i)

= P(Zpi4 = 1 & Ypi = y|Xp, Gp, γ̂i)
P(Ypi = y|Xp, Gp, γ̂i)

=

⎧⎪⎨⎪⎩
0ˆ︁ci+ˆ︁ciDIFGp+(ˆ︁di+ˆ︁diDIFGp−ˆ︁ci−ˆ︁ciDIFGp)ˆ︁ϕpi

, y = 1
1−di−diDIFGp

1−ˆ︁ci−ˆ︁ciDIFGp−(ˆ︁di+ˆ︁diDIFGp−ˆ︁ci−ˆ︁ciDIFGp)ˆ︁ϕpi
, y = 0

=
(1 − Ypi)

(︂
1 − ˆ︁di − ˆ︁diDIFGp

)︂
1 − ˆ︁ci − ˆ︁ciDIFGp − ( ˆ︁di + ˆ︁diDIFGp − ˆ︁ci − ˆ︁ciDIFGp) ˆ︁ϕpi

,

ˆ︁Zpi3 = 1 − Ypi − ˆ︁Zpi4.
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M-step. At the M-step, conditionally on the current estimates of the la-
tent variables ˆ︁Zpi2 and ˆ︁Zpi3, the estimates of parameters γi1 = {γik}4

k=1 =
{ai, aiDIF, bi, biDIF} maximize the log-likelihood function lEM

i1 (1.22). As noted,
(1.22) has the form as the log-likelihood for the logistic regression, therefore, we
proceed analogously. This again involves a calculation of its partial derivatives
with respect to the item parameters:

∂lEM
i1

∂γi1k

=
n∑︂

p=1

∂ϕpi

∂γi1k

(︄ ˆ︁Zpi2

ϕpi

−
ˆ︁Zpi3

1 − ϕpi

)︄
,

for k = 1, . . . , 4, where partial derivatives of ∂ϕpi

∂γi1k
are given by (1.14). How-

ever, the corresponding likelihood equations ∂lEM
i1

∂γik

!= 0 have no closed form and
estimates need to be calculated using appropriate numerical methods. Consider-
ing the fact that the log-likelihood function lEM

i1 (1.22) takes a form of the log-
likelihood for the logistic regression model, iteratively re-weighted least squares
may be used in practice.

The estimates ˆ︁ci, ˆ︁ciDIF, ˆ︁di, and ˆ︁diDIF are given by a maximization of the log-
likelihood function lEM

i2 (1.23) conditionally on current estimates of the latent
variables ˆ︁Zpi1, ˆ︁Zpi2, ˆ︁Zpi3, and ˆ︁Zpi4. As mentioned, (1.23) has the form of the log-
likelihood for the multinomial data, thus, we proceed analogously. This again
involves a calculation of its partial derivatives with respect to the item parameters:

∂lEM
i2
∂ci

=
n∑︂

p=1

(︄ ˆ︁Zpi1

ci + ciDIFGp

−
ˆ︁Zpi2 + ˆ︁Zpi3

di + diDIFGp − ci − ciDIFGp

)︄
,

∂lEM
i2

∂ciDIF
=

n∑︂
p=1

(︄ ˆ︁Zpi1

ci + ciDIFGp

−
ˆ︁Zpi2 + ˆ︁Zpi3

di + diDIFGp − ci − ciDIFGp

)︄
Gp,

∂lEM
i2
∂di

=
n∑︂

p=1

(︄ ˆ︁Zpi2 + ˆ︁Zpi3

di + diDIFGp − ci − ciDIFGp

−
ˆ︁Zpi4

1 − di − diDIFGp

)︄
,

∂lEM
i2

∂diDIF
=

n∑︂
p=1

(︄ ˆ︁Zpi2 + ˆ︁Zpi3

di + diDIFGp − ci − ciDIFGp

−
ˆ︁Zpi4

1 − di − diDIFGp

)︄
Gp.

As in the previous case, the corresponding equations ∂lEM
i2

∂γik

!= 0, k = 5, . . . , 8, do
not have a closed form and suitable numerical techniques need to be applied, such
as the quasi-Newton method allowing for the box constraints (Byrd et al., 1995)
to account for upper and lower bounds of the asymptote parameters ci, ciDIF, di,
and diDIF.

Estimate of asymptotic variance. As was noted, the EM algorithm is de-
signed to gain maximum likelihood estimates of the item parameters. Therefore,
the asymptotic properties of the estimates are analogous to those derived in Sec-
tion 1.2.2, and also the estimate of the asymptotic covariance matrix is the same,
i.e., the inverse of the Hessian matrix (1.20).

In summary, introducing the latent variables Zpi1, Zpi2, Zpi3, and Zpi4 leads
to simplification of the estimation as we work with the likelihoods of the logistic
regression and multinomial regression models. The proposed EM algorithm is

29



therefore easy to implement in the R software and can take advantage of its
existing functions, see Section 1.4.3. The empirical evidence of the convergence
of the parameter estimates based on the EM algorithm is given in Section 1.6.

1.2.4 Parametric link function
In our setting, the nonlinear regression model (1.1) can be viewed as a generalized
linear model with a known parametric link function

g(µpi; ci, ciDIF, di, diDIF) = log
⎛⎝ µpi−ci−ciDIFGp

di+diDIFGp−ci−ciDIFGp

1 − µpi−ci−ciDIFGp

di+diDIFGp−ci−ciDIFGp

⎞⎠
= log

(︄
µpi − ci − ciDIFGp

di + diDIFGp − µpi

)︄
,

(1.24)

where the parameters ci, ciDIF, di, and diDIF are unknown. The mean function is
then determined by µpi = πpi as given by (1.3) and (1.1) with a linear predictor

(ai + aiDIFGp) (Xp − bi − biDIFGp) .

The topic of the parametric link functions has been extensively discussed in lit-
erature in the last decades by many authors including Basu and Rathouz (2005),
Flach (2014), and Scallan, Gilchrist, and Green (1984). For example, Pregibon
(1980) in his work proposed the maximum likelihood estimation of the link pa-
rameters using a weighted least squares algorithm. McCullagh and Nelder (1989)
adapted this approach and presented an algorithm in which several models with
the fixed link functions were fitted. Further, Kaiser (1997) proposed a modi-
fied scoring algorithm to perform simultaneous maximum likelihood estimation
of all parameters. Scallan et al. (1984) proposed an iterative two-stage algorithm
building on work by Richards (1961).

In this part we propose a new two-stage algorithm to estimate parameters γi =
{ai, aiDIF, bi, biDIF, ci, ciDIF, di, diDIF} in the model (1.1). Let γi1 = {γik}4

k=1 =
{ai, aiDIF, bi, biDIF}, γi2 = {γik}8

k=5 = {ci, ciDIF, di, diDIF} be the sets of the first
four and the last four parameters. Further, let ˆ︁γi1 and ˆ︁γi2 be their estimates.
This algorithm is designed to gain the maximum likelihood estimates of the item
parameters, as was also the case of the EM algorithm described in Section 1.2.3.

We use the same notation of the logistic regression curve in case that respon-
dents were not guessing or were not inattentive as before:

ϕpi = e(ai+aiDIFGp)(Xp−bi−biDIFGp)

1 + e(ai+aiDIFGp)(Xp−bi−biDIFGp)

with ˆ︁ϕpi being its estimator. To simplify the formulae in this section, we further
set

ciGp = ci + ciDIFGp,

diGp = di + diDIFGp.

Note that the sets of terms ciGp and diGp consist only of two parameters each,
which further depend on the group membership variable Gp. In other words,

ci0 = ci, ci1 = ci + ciDIF,

di0 = di, di1 = di + diDIF.
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First step. At the first step, conditionally on current estimates ˆ︁ci, ˆ︁ciDIF, ˆ︁di,
and ˆ︁diDIF of the parametric link function (1.24), the estimates of parameters ai,
aiDIF, bi, and biDIF maximize the following log-likelihood function:

lPL
i1 (γi1|ˆ︁γi2) =

n∑︂
p=1

{︃
Ypi log(ˆ︁ciGp + ( ˆ︁diGp − ˆ︁ciGp)ϕpi)

+ (1 − Ypi) log(1 − ˆ︁ciGp − ( ˆ︁diGp − ˆ︁ciGp)ϕpi)
}︃
.

(1.25)

The log-likelihood function lPL
i1 (1.25) has a similar form to the log-likelihood

function (1.17) using the maximum likelihood method, however, parameters γi2
are here replaced by their current estimates ˆ︁γi2. The next steps are then analo-
gous to those in the Section 1.2.2. The scores of the log-likelihood function lPL

i1
(1.25) have the following form:

∂lPL
i1

∂γi1k

=
n∑︂

p=1

(︂ ˆ︁diGp − ˆ︁ciGp

)︂ [︂
Ypi − ˆ︁ciGp − ( ˆ︁diGp − ˆ︁ciGp)ϕpi

]︂
[︂ˆ︁ciGp + ( ˆ︁diGp − ˆ︁ciGp)ϕpi

]︂ [︂
1 − ˆ︁ciGp − ( ˆ︁diGp − ˆ︁ciGp)ϕpi

]︂ ∂ϕpi

∂γi1k

,

for k = 1, . . . , 4, where ∂ϕpi

∂γik
are given by (1.14).

Nevertheless, even in this case, the solution of the equations ∂lPL
i1

∂γi1k
= 0, k =

1, . . . , 4 does not have a closed form and appropriate numerical approaches, such
as iteratively re-weighted least squares, need to be applied.

Second step. At the second step, estimates ˆ︁ci, ˆ︁ciDIF, ˆ︁di, and ˆ︁diDIF of the para-
metric link function (1.24) are calculated conditionally on the current estimates
of the parameters ˆ︁γi1 =

{︂ˆ︁ai, ˆ︁aiDIF, ˆ︁bi, ˆ︁biDIF
}︂

as the arguments of the maxima
of the following log-likelihood function

lPL
i2 (γi2|ˆ︁γi1) =

n∑︂
p=1

{︃
Ypi log(ciGp + (diGp − ciGp) ˆ︁ϕpi)

+ (1 − Ypi) log(1 − ciGp − (diGp − ciGp) ˆ︁ϕpi)
}︃
.

Again, the parameters ai, aiDIF, bi, and biDIF are replaced by their estimatesˆ︁ai, ˆ︁aiDIF, ˆ︁bi, and ˆ︁biDIF in (1.10)–(1.13) and ϕpi is replaced by ˆ︁ϕpi. The scores then
take the following form:

∂lPL
i2
∂ci

=
n∑︂

p=1

[︂
Ypi − ciGp − (diGp − ciGp) ˆ︁ϕpi)

]︂ (︂
1 − ˆ︁ϕpi

)︂
[︂
ciGp + (diGp − ciGp) ˆ︁ϕpi)

]︂ [︂
1 − ciGp − (diGp − ciGp) ˆ︁ϕpi)

]︂ ,
∂lPL

i2
∂ciDIF

=
n∑︂

p=1

[︂
Ypi − ciGp − (diGp − ciGp) ˆ︁ϕpi)

]︂ (︂
1 − ˆ︁ϕpi

)︂
Gp[︂

ciGp + (diGp − ciGp) ˆ︁ϕpi)
]︂ [︂

1 − ciGp − (diGp − ciGp) ˆ︁ϕpi)
]︂ ,

∂lPL
i2
∂di

=
n∑︂

p=1

[︂
Ypi − ciGp − (diGp − ciGp) ˆ︁ϕpi)

]︂ ˆ︁ϕpi[︂
ciGp + (diGp − ciGp) ˆ︁ϕpi)

]︂ [︂
1 − ciGp − (diGp − ciGp) ˆ︁ϕpi)

]︂ ,
∂lPL

i2
∂diDIF

=
n∑︂

p=1

[︂
Ypi − ciGp − (diGp − ciGp) ˆ︁ϕpi)

]︂ ˆ︁ϕpiGp[︂
ciGp + (diGp − ciGp) ˆ︁ϕpi)

]︂ [︂
1 − ciGp − (diGp − ciGp) ˆ︁ϕpi)

]︂ .
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As before, the solution of the equations ∂lPL
i2

∂γi2k
= 0, k = 1, . . . , 4, does not have

a closed form and numerical algorithms, e.g., iteratively re-weighted least squares,
need to be applied.

Estimate of asymptotic variance. Given the fact that the newly proposed
algorithm is designed to gain the maximum likelihood estimates of the item pa-
rameters, the estimate of the asymptotic covariance matrix is again the inverse
of the Hessian matrix (1.20), closer described in Section 1.2.2.

In summary, the division into the two sets of parameters makes the algorithm
based on parametric link function easy to implement in the R software and can
take advantage of its existing functions. As the algorithm is designed to gain
the maximum likelihood estimates, their asymptotic properties are the same as
was described in Section 1.2.2. The implementation of the proposed estimation
method based on parametric link function into the R software is described in
Section 1.4.4. The empirical evidence of the convergence of the estimates given
by the newly proposed algorithm is offered in Section 1.6.

1.3 DIF detection
The nonlinear model (1.1) can be utilized to detect DIF in a simple way by
comparing the two nested models for item i, where in the submodel Mi0 some
parameters are set the same for both groups, while in the model Mi1 parameters
are freely estimated for both groups.

It should be noted that the following tests are not intended to test, for exam-
ple, whether the 4PL nonlinear model (1.1) is superior over the 3PL or the 2PL
models, as the values 0 and 1 of the asymptote parameters are on the boundary
of the parametric space, as was discussed in Sections 1.2.1 and 1.2.2. However,
it is, for example, possible to test whether the lower asymptotes are the same for
the two groups while fixing the upper asymptotes on value of 1, i.e., assuming
the 3PL model.

F-test. The F-test statistic measures the distance between the larger model
Mi1 with dfi1 being a number of parameters and its submodel Mi0 with dfi0 being
a number of parameters for item i as the difference between the RSS (1.4) of
the model Mi1 relative to the RSS of the submodel Mi0. The formula is the same
as for the linear models:

Fi =
RSSi0−RSSi1

dfi0−dfi1
RSSi1
n−dfi1

,

where n is a number of respondents. However, in the nonlinear models the F -
distribution under the submodel Mi0 holds only approximately (Ritz & Streibig,
2008):

Fi
app.∼ F(dfi1 − dfi0, n− dfi1). (1.26)

While it has not been shown that the distribution of the test statistic Fi holds
for binary data as in our case, simulations showed its reasonable behaviour (see
Section 1.5).
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Likelihood-ratio test. The likelihood-ratio test measures the difference be-
tween the log-likelihood li1 of the larger model Mi1 and the log-likelihood li0 of
its submodel Mi0 for the item i:

LRi = −2 (li0 − li1) .

The LRi statistic has an asymptotic χ2-distribution under the submodel Mi0:

LRi
D−→

n→∞
χ2(dfi1 − dfi0). (1.27)

Wald test. Another option is to use the Wald test with the null hypothesis
Hi0 : (aiDIF, biDIF, ciDIF, diDIF) ⊇ γ∗

i = 0 vs. alternative hypothesis Hi1 : γ∗
i ̸= 0.

The test statistic is then given by

Wi = γ̂∗
i
ˆ︁V−1

in γ̂
∗⊤
i ,

where the matrix ˆ︁Vin is an estimate of the covariance matrix under the larger
model restricted to parameters γ∗

i and γ̂∗
i are estimates of the item parameters

γ∗
i under the larger model. If Hi0 holds, then the Wi statistic has an asymptotic

χ2 distribution:

Wi
D−→

n→∞
χ2(dfi1 − dfi0). (1.28)

1.4 Implementation
In this part, we discuss an implementation of different estimation methods con-
sidered in Section 1.2 into the statistical software R (R Core Team, 2020). First,
we introduce an R package – difNLR (Hladká & Martinková, 2020). This pack-
age offers an estimation using the nonlinear least squares described in Section
1.2.1 and the maximum likelihood method showed in Section 1.2.2. It provides
DIF detection based on the F-test (1.26), the likelihood-ratio test (1.27), and
the Wald test (1.28) including several features, from data generation to a graph-
ical representation of the results. We also present an interactive implementation
of the method within the ShinyItemAnalysis package and an online application
(Martinková & Drabinová, 2018) which offers some functionalities of the difNLR
package in Section 1.4.2. Then, we show an implementation of the EM algorithm
covered by Section 1.2.3 and also the algorithm based on parametric link function
described in Section 1.2.4.

1.4.1 The difNLR package
In this part, we discuss an implementation of the nonlinear model (1.1) for DIF de-
tection into the difNLR package. This section has been adapted from Hladká and
Martinková (2020) and it also comprises some new functionalities implemented
in the newest version of the package – version 1.3.7. The newest development ver-
sion can be downloaded from the GitHub repository using the devtools package
(Wickham, Hester, & Chang, 2020) and the following commands:

devtools::install_github("adelahladka/difNLR")
library(difNLR)
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The nonlinear model (1.1) can be fitted via the difNLR() function which
offers a wide range of functionalities for DIF detection among dichotomous data.
The full syntax of the difNLR() function is

difNLR(
Data, group, focal.name, model, constraints, type = "all",
method = "nls", match = "zscore", anchor = NULL, purify = FALSE,
nrIter = 10, test = "LR", alpha = 0.05, p.adjust.method = "none",
start, initboot = TRUE, nrBo = 20

)

Description of the arguments of the function can be found in Table A.1. To
detect DIF using the difNLR() function, the user always needs to provide four
pieces of information: 1. the binary data set, 2. the group membership vector,
3. the indication of the focal group, and 4. the model.

Data. Data is a matrix or a data.frame with rows representing dichoto-
mously scored respondents’ answers (1 correct, 0 incorrect) and columns which
correspond to the items. In addition, Data may contain the vector of a group
membership variable. If so, the group is a column identifier of the Data. Oth-
erwise, the group must be a dichotomous vector of the same length as the num-
ber of rows (respondents) in Data. The name of the focal group is specified
in the focal.name argument.

Data generation. To run a simulation study or to create an illustrative
example, the difNLR package contains a data generator genNLR(), which can be
used to generate dichotomous, ordinal, or nominal data. The type of items to
be generated can be specified via the itemtype argument: itemtype = "dich"
for dichotomous items, "ordinal" for ordinal items, and "nominal" for nominal
items.

For the generation of the dichotomous items, discrimination and difficulty
parameters need to be specified within the a and b arguments in the form of ma-
trices with the two columns. The first column stands for the reference group
and the second one for the focal group. Each row of matrices corresponds to
one item. Additionally, one can provide guessing and inattention parameters via
the arguments c and d in the same way as for the discriminations and difficulties.
By default, values of the guessing parameters are set to 0 in both groups, and
the values of the inattention parameters to 1 in both groups.

Distribution of the underlying latent trait is considered to be Gaussian. The
user can specify its mean and standard deviation via arguments mu and sigma
respectively. By default, mean is 0 and standard deviation is 1 and they are
the same for both groups.

Furthermore, the user needs to provide a sample size (N) and the ratio of re-
spondents in the reference and focal group (ratio). The latent trait for both
groups is then generated and together with the item parameters it is used to gen-
erate item data. Output of the genNLR() function is a data.frame with items
represented by columns and responses to them represented by rows. The last
column is a group indicator, where 0 stands for a focal group and 1 indicates
a reference group.
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To illustrate generation of the dichotomously scored items and to exemplify
basic DIF detection with the difNLR() function, we create an example dataset.
We choose discrimination a, difficulty b, guessing c, and inattention d parameters
for 15 items. Parameters are then set the same for both groups.

# discrimination
a <- matrix(rep(c(1.00, 1.12, 1.45, 1.25, 1.32, 1.38, 1.44, 0.89, 1.15,

1.30, 1.29, 1.46, 1.16, 1.26, 0.98), 2),
ncol = 2)

# difficulty
b <- matrix(rep(c(1.34, 0.06, 1.62, 0.24, -1.45, -0.10, 1.76, 1.96,

-1.53, -0.44, -1.67, 1.91, 1.62, 1.79, -0.21), 2),
ncol = 2)

# guessing
c <- matrix(rep(c(0.00, 0.00, 0.00, 0.00, 0.00, 0.17, 0.18, 0.05, 0.10,

0.11, 0.15, 0.20, 0.21, 0.23, 0.24), 2),
ncol = 2)

# inattention
d <- matrix(rep(c(1.00, 1.00, 1.00, 0.92, 0.87, 1.00, 1.00, 0.88, 0.93,

0.94, 0.81, 0.98, 0.87, 0.96, 0.85), 2),
ncol = 2)

For items 5, 8, 11, and 15 we introduce DIF caused by various sources: In item 5,
DIF is caused by a difference in difficulty; in item 8 by discrimination; in item 11,
the reference and focal groups differ in inattention, and in item 15 in guessing.

b[5, 2] <- b[5, 2] + 1
a[8, 2] <- a[8, 2] + 1
d[11, 2] <- 1
c[15, 2] <- 0

We generate dichotomous data with 500 observations in the reference group and
500 in the focal group. We assume that the underlying latent trait comes from
a standard normal distribution for both groups (default setting). The output
is a data.frame where the first 15 columns are dichotomously scored answers
of 1,000 respondents and the last column is a group membership variable.

set.seed(42)
df <- genNLR(N = 1000, a = a, b = b, c = c, d = d)
head(df[, c(1:5, 16)])

Item1 Item2 Item3 Item4 Item5 group
1 0 1 1 1 1 0
2 0 1 1 0 1 0
3 0 1 0 0 1 0
4 1 1 1 0 1 0
5 1 1 0 1 1 0
6 0 1 0 0 1 0

DataDIF <- df[, 1:15]
groupDIF <- df[, 16]
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Model. The last necessary input of the difNLR() function is a specification
of the model to be estimated. This can be made by the model argument. There
are several predefined models, all of them based on the 4PL non-IRT model stated
in equation (1.1) (see Table 1.1).

Table 1.1: Predefined models for the model argument in the difNLR() function.

Model annotation Description
"4PL" 4PL model
"4PLcdg", "4PLc" 4PL model with an inattention parameter set equal

for the two groups
"4PLcgd", "4PLd" 4PL model with a guessing parameter set equal for the two

groups
"4PLcgdg" 4PL model with a guessing and an inattention parameters

set equal for the two groups
"3PLd" 3PL model with an inattention parameter and c = 0
"3PLc", "3PL" 3PL model with a guessing parameter and d = 1
"3PLdg" 3PL model with an inattention parameter set equal

for the two groups
"3PLcg" 3PL model with a guessing parameter set equal for the two

groups
"2PL" Logistic regression model, i.e., c = 0 and d = 1
"1PL" 1PL model with a discrimination parameter set equal

for the two groups
"Rasch" 1PL model with a discrimination parameter fixed on value

1 for the two groups

We are now able to perform the basic DIF detection with the 4PL model
for all the items on a generated example dataset DataDIF.

(fit1 <- difNLR(DataDIF, groupDIF, focal.name = 1, model = "4PL"))
Detection of all types of differential item functioning
using generalized logistic regression model

Generalized logistic regression likelihood ratio chi-square statistics
based on 4PL model

Parameters were estimated with nonlinear least squares

Item purification was not applied
No p-value adjustment for multiple comparisons

Chisq-value P-value
Item1 6.2044 0.1844
Item2 0.2802 0.9911
Item3 2.7038 0.6086
Item4 5.8271 0.2124
Item5 48.0052 0.0000 ***
Item6 7.2060 0.1254
Item7 3.2390 0.5187
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Item8 16.8991 0.0020 **
Item9 2.1595 0.7064
Item10 4.6866 0.3210
Item11 69.5328 0.0000 ***
Item12 8.1931 0.0848 .
Item13 2.5850 0.6295
Item14 2.9478 0.5666
Item15 20.6589 0.0004 ***

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Detection thresholds: 9.4877 (significance level: 0.05)

Items detected as DIF items:
Item5
Item8
Item11
Item15

The output returns values of the test statistics (likelihood ratio test is used as
a default option, see below) for DIF detection, corresponding p-values, and set
of items which are detected as functioning differently. All items (5, 8, 11, and
15) are correctly identified.

The difNLR() function offers two techniques to estimate item parameters of
the generalized logistic regression model (1.1). With a default option method
= "nls", the nonlinear least square estimation, as described in Section 1.2.1, is
applied using a nls() function from the stats package (R Core Team, 2020).
With an option method = "likelihood", the maximum likelihood method, as
described in Section 1.2.2, is used via an optim() function again from the stats
package. Moreover, the user can specify what test of a submodel should be used
to test for DIF. Options for testing are either a likelihood-ratio test (1.27) (test
= "LR", default), Wald test (1.28) (test = "W"), or an F-test (1.26) (test =
"F").

Estimates of the item parameters can be viewed with the coef() method.
Method coef() returns a list of parameters, which can be simplified to a matrix
by setting simplify = TRUE. Each row then corresponds to one item and columns
indicate parameters of the estimated model.

round(coef(fit1, simplify = TRUE), 3)
a b c d aDif bDif cDif dDif

Item1 1.484 1.294 0.049 1.000 0.000 0.000 0.000 0.000
Item2 1.176 0.153 0.000 1.000 0.000 0.000 0.000 0.000
Item3 1.281 1.766 0.001 1.000 0.000 0.000 0.000 0.000
Item4 1.450 0.421 0.000 1.000 0.000 0.000 0.000 0.000
Item5 1.965 -1.147 0.000 0.868 -0.408 0.769 0.023 -0.006
Item6 1.458 -0.527 0.000 0.954 0.000 0.000 0.000 0.000
Item7 0.888 1.392 0.000 1.000 0.000 0.000 0.000 0.000
Item8 1.162 1.407 0.000 0.866 -0.117 0.974 0.007 0.134
Item9 1.482 -1.337 0.000 0.928 0.000 0.000 0.000 0.000
Item10 1.375 -0.570 0.007 0.967 0.000 0.000 0.000 0.000

37



Item11 1.071 -1.027 0.000 0.969 1.173 -0.499 0.000 0.011
Item12 1.051 1.560 0.080 1.000 0.000 0.000 0.000 0.000
Item13 1.009 1.348 0.084 1.000 0.000 0.000 0.000 0.000
Item14 1.093 1.659 0.141 1.000 0.000 0.000 0.000 0.000
Item15 0.875 -0.565 0.000 0.945 0.205 0.348 0.000 -0.142

The user can also print standard errors of the estimates using an option SE =
TRUE. With the nonlinear least squares estimation (method = "nls"), two types
of standard errors are available. The first and default option is standard errors
returned by the nls() function, i.e.,

ˆ︁Vin = ˆ︁σ2
(︂
[∇RSSi(γ̂i)]

⊤ [∇RSSi(γ̂i)]
)︂−1

,

ˆ︁σ2 = 1
n− 8

n∑︂
p=1

(︂
Ypi − ˆ︁Ypi

)︂2
.

For example, estimated difference in difficulty between the reference and the focal
groups in item 5 is 0.769 with standard error of 0.483.

round(coef(fit1, SE = TRUE)[[5]], 3)
a b c d aDif bDif cDif dDif

estimate 1.965 -1.147 0.000 0.868 -0.408 0.769 0.023 -0.006
SE 0.844 0.404 0.307 0.044 1.045 0.483 0.345 0.093

The second option is the sandwich estimator (1.15) available via an argument
sandwich = TRUE in the difNLR() function.

fit1_sandwich <- difNLR(DataDIF, groupDIF, focal.name = 1,
model = "4PL", type = "all", sandwich = TRUE)

round(coef(fit1_sandwich, SE = TRUE)[[5]], 3)
a b c d aDif bDif cDif dDif

estimate 1.965 -1.147 0.000 0.868 -0.408 0.769 0.023 -0.006
SE 1.146 0.300 0.231 0.058 1.267 0.426 0.273 0.083

The difNLR() function provides a visual representation of the ICCs using
the ggplot2 package (Wickham, 2016) and its graphical environment. Curves
are always based on the results of a DIF detection procedure – when an item
displays DIF, two curves are plotted, one for the reference and one for the focal
group. Curves are accompanied by points representing empirical probabilities,
i.e., proportions of correct answers with respect to the level of matching criterion
and the group membership variable. Size of the points is determined by a number
of respondents at this ability level. The ICCs may simply be rendered with
the method plot() and by specifying items to be plotted. We show here the ICCs
for the DIF items only (Figure 1.4).

plot(fit1, item = fit1$DIFitems)

Besides predefined models (Table 1.1), all parameters of the model can be fur-
ther constrained using the argument constraints specifying which parameters
should be set equally for the two groups. For example, choice "ac" in the 4PL
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Figure 1.4: The ICC of the DIF items by the difNLR R package with an ability
being estimated by the standardized total score.

model means that the discrimination parameter a and the pseudo-guessing pa-
rameter c are set equally for the two groups while the remaining parameters (b
and d) are not. In addition, both arguments model and constraints are item-
specific, meaning that a single value for all items can be introduced as well as
a vector specifying the setting for each item. While the model specification can
be challenging, this offers a wide range of models for DIF detection which goes
hand in hand with the complexity of the offered method.

Furthermore, via type argument one can specify which type of DIF to test.
Default option type = "all" allows one to test the difference in any parameter
which is not constrained to be the same for both groups. Uniform DIF (differ-
ence in difficulty b only) can be tested by setting type = "udif", while nonuni-
form DIF (difference in discrimination a, difficulty b being freely estimated for
the two groups) by setting type = "nudif". With the argument type = "both",
the differences in both parameters (a and b) are tested. Moreover, to identify DIF
in more detail, one can determine in which parameter the difference should be
tested. The argument type is also item-specific.

# item-specific model
model <- c("1PL", rep("2PL", 2), rep("3PL", 2),

rep("3PLd", 2), rep("4PL", 8))
fit2 <- difNLR(DataDIF, groupDIF, focal.name = 1, model = model,

type = "all")
fit2$DIFitems
[1] 5 8 11 15

# item-specific type
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type <- rep("all", 15)
type[5] <- "b"; type[8] <- "a"; type[11] <- "c"; type[15] <- "d"
fit3 <- difNLR(DataDIF, groupDIF, focal.name = 1, model = model,

type = type)
fit3$DIFitems
[1] 5

# item-specific constraints
constraints <- rep(NA, 15)
constraints[5] <- "ac"; constraints[8] <- "bcd";
constraints[11] <- "abd"; constraints[15] <- "abc"
fit4 <- difNLR(DataDIF, groupDIF, focal.name = 1, model = model,

constraints = constraints, type = type)
fit4$DIFitems
[1] 5 8 11 15

In fit2 we allowed different models for items. In fit3, when items were
intended to function differently, we tested only the difference in those parameters
which were selected to be a source of DIF when we generated data, while using
the same item-specific models as for fit2. Finally, in items which were intended
to function differently we constrained all other parameters to be the same for both
groups in fit4. As expected, models fit2 and fit4 correctly identified all DIF
items, while fit3 detected only item 5.

Fit of the selected models can be examined using so called information criteria,
specifically Akaike’s Information Criterion (AIC) (Akaike, 1974) and Schwarz’s
Bayesian Information Criterion (BIC) (Schwarz, 1978). Information criteria for
the best fitting model resulting from the DIF detection can be computed using
methods AIC() and BIC(). We plot both criteria for all items using the ggplot2
package and its function ggplot() (Wickham, 2016), see Figure 1.5.

df <- data.frame(AIC = c(AIC(fit2), AIC(fit3), AIC(fit4)),
BIC = c(BIC(fit2), BIC(fit3), BIC(fit4)),
Model = paste0("fit", rep(2:4, each = 15)),
Item = as.factor(rep(1:15, 3)))

ggplot(df, aes(x = Item, y = AIC, col = Model, shape = Model)) +
geom_point(size = 3) +
scale_color_manual(values = c("#cc79a7", "#ffbe33", "#4aaee8")) +
scale_shape_manual(values = c(15, 16, 17))

ggplot(df, aes(x = Item, y = BIC, col = Model, shape = Model)) +
geom_point(size = 3) +
scale_color_manual(values = c("#cc79a7", "#ffbe33", "#4aaee8")) +
scale_shape_manual(values = c(15, 16, 17))

While there is, not surprisingly, no difference between both information crite-
ria of the three models for non-DIF items, a distinction may be observed in DIF
items. AIC suggests that the model fit3 fits best to items 8 and 11 and the model
fit4 to items 5 and 15, while BIC indicates that for item 8 the model fit4 is
the most suitable. However the differences are small (Figure 1.5). Fit measures
can also be displayed for specific items.
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(A) AIC. (B) BIC.

Figure 1.5: Information criteria for item models.

logLik(fit3, item = 8)
’log Lik.’ -312.7227 (df=7)
logLik(fit4, item = 8)
’log Lik.’ -316.4998 (df=5)

Fitted values and residuals can be calculated with the methods fitted() and
residuals(), again for all items or for those specified via the item argument.
This also holds for predicted values and the method predict(). Predictions
for any new respondents can be obtained by the group and match arguments
representing the group membership and the value of the matching criterion (e.g.,
standardized total score) of the new respondent. For example, with fit1 in item
5, new respondents with an average performance (match = 0) have approximately
a 22% lower probability of a correct answer if they come from the focal rather
than the reference group.

predict(fit1, item = 5, group = c(0, 1), match = 0)
item match group prob

1 Item5 0 0 0.7851739
2 Item5 0 1 0.5624883

This can also be observed when comparing the ICCs for the reference and the focal
group in item 5 (see upper left Figure 1.4).

Further features

The difNLR covers user-friendly features that are common in standard DIF soft-
ware – various matching criteria, anchor items, item purification, and p-value
adjustments.

Matching criterion. By default, the underlying latent trait is estimated
as a standardized total score in the difNLR() function. However, this estimate
can be changed using the match argument. Besides default option "zscore"
(standardized total score), it can also be the total test score (match = "score")
or any numeric vector of the same length as the number of respondents. It is
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hence possible to use, for instance, latent trait estimates provided by some IRT
models, or to use a pre-test score instead of the total score of the current test to
be examined.

Anchor items and item purification. Including DIF items into the calcu-
lation of the matching criterion can lead to a potential bias and misidentification
of DIF and non-DIF items (see also Chapter 4). With an argument anchor, one
can specify which items are supposed to be used for the calculation of the match-
ing criterion.

In the following examples, for illustration purposes, we take only items 1–6 of
the DataDIF dataset and we apply some features with the 4PL model. The match-
ing criterion is now calculated as a total test score based on items 1–6.

We start with not specifying the anchor items. This indicates that any item
can be considered as DIF one.

fit8a <- difNLR(DataDIF[, 1:6], groupDIF, focal.name = 1,
match = "score", model = "4PL", type = "all")

fit8a$DIFitems
[1] 5 6

Initial fit fit8a detected items 5 a 6 as functioning differently. Now we can set
all items excluding these two as the anchors.

fit8b <- difNLR(DataDIF[, 1:6], groupDIF, focal.name = 1,
match = "score", model = "4PL", type = "all",
anchor = 1:4)

fit8b$DIFitems
[1] 5

With a test score based only on DIF-free items 1–4 (i.e., excluding potentially
unfair items 5 and 6 detected in previous run from calculation of the total score),
we detected only item 5 as functioning differently. We could again fit the model
excluding only item 5 from the calculation of the matching criterion.

The process of including and omitting DIF and potentially unfair items could
be demanding and time consuming. However, this process can be applied itera-
tively and automatically. This procedure is called item purification (Lord, 1980;
Marco, 1977, see also Section 4.1.1) and it has been shown that it can improve
DIF detection. Item purification can be accessed with a purify argument. This
can only be done when the matching criterion is either the total score or Z-score.
The maximal number of iterations is determined by the nrIter argument, where
the default value is 10.

fit9 <- difNLR(DataDIF[, 1:6], groupDIF, focal.name = 1,
match = "score", model = "4PL", type = "all",
purify = TRUE)

Item purification was run with 2 iterations plus one initial step. The process
of including and excluding items into the calculation of the matching criterion
can be found in the difPur element of the output.
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fit9$difPur
Item1 Item2 Item3 Item4 Item5 Item6

Step0 0 0 0 0 1 1
Step1 0 0 0 0 1 0
Step2 0 0 0 0 1 0

In the initial step, items 5 and 6 were identified as DIF as it was shown
with fit8a. The matching criterion was then calculated as the sum of the correct
answers in items 1–4 as demonstrated by fit8b. In the next step, only item 5
was identified as DIF and the matching criterion was based on items 1–4 and 6.
The result of the DIF detection procedure was the same in the next step and
the item purification process thus ended.

Multiple comparison corrections. As the DIF detection procedure is done
item by item, corrections for multiple comparisons may be considered (Kim &
Oshima, 2013, see also Section 4.1.2). For example, applying Holm’s adjustment
(Holm, 1979) results in item 5 being detected as DIF.

fit10 <- difNLR(DataDIF[, 1:6], groupDIF, focal.name = 1,
match = "score", model = "4PL", type = "all",
p.adjust.method = "holm")

fit10$DIFitems
[1] 5

And of course, item purification and multiple comparison corrections can be com-
bined in a way that the p-value adjustment is applied for a final run of the item
purification.

fit11 <- difNLR(DataDIF[, 1:6], groupDIF, focal.name = 1,
match = "score", model = "4PL", type = "all",
p.adjust.method = "holm", purify = TRUE)

fit11$DIFitems
[1] 5

While all three approaches correctly identify item 5 as a DIF item, the significance
level varies:

round(fit9$pval, 3)
[1] 0.144 0.974 0.244 0.507 0.000 0.126
round(fit10$adj.pval, 3)
[1] 1.000 1.000 1.000 0.747 0.000 0.137
round(fit11$adj.pval, 3)
[1] 0.629 1.000 0.733 1.000 0.000 0.629

Troubleshooting

In this part, we focus on several issues which can be encountered when fit-
ting the generalized logistic regression models and using the features offered in
the difNLR package.
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Convergence issues. First, there is no guarantee that the estimation process
in the difNLR() function will always end successfully. For instance, in the case
of a small sample size, convergence issues may appear.

The easiest way to fix such issues is to specify different starting values. Vari-
ous starting values can be applied via a start argument as a list with the named
numeric vectors as its elements. Each element needs to include values for the pa-
rameters a, b, c, and d of the reference group and the differences between the ref-
erence and focal groups denoted by aDif, bDif, cDif, and dDif. However, there
is no need to determine initial values manually. In the instance of convergence
issues, the initial values are by default automatically re-calculated based on boot-
strapped samples and applied only to models that failed to converge. This is also
performed when starting values were initially introduced via a start argument.
This feature can be turned off by setting initboot = FALSE. In such a case, no es-
timates are obtained for items that failed to converge. To demonstrate described
situations, we now use a sample of our original simulated data set.

# sampled data
set.seed(42)
sam <- sample(1:1000, 420)
# using re-calculation of starting values
fit12a <- difNLR(DataDIF[sam, ], groupDIF[sam], focal.name = 1,

model = "4PL", type = "all")
Starting values were calculated based on bootstraped samples.

# turn off option of re-calculating starting values
fit12b <- difNLR(DataDIF[sam, ], groupDIF[sam], focal.name = 1,

model = "4PL", type = "all", initboot = FALSE)
Warning message:
Convergence failure in item 3
Convergence failure in item 14

With an option initboot = TRUE in fit12a, starting values were re-calculated
and no convergence issue occurred. When setting initboot = FALSE in fit12b
we observed convergence failures in items 3 and 14.

The re-calculation process is by default performed up to twenty times, but
the number of runs can be increased via the nrBo argument.

Another option is to apply the maximum likelihood method (see Section 1.2.2)
instead of the nonlinear least squares (Section 1.2.1) to estimate item parameters.

fit13 <- difNLR(DataDIF[sam, ], groupDIF[sam], focal.name = 1,
model = "4PL", type = "all", method = "likelihood")

There is no convergence issue in fit13 using the maximum likelihood estimation
in contrast to fit12b and the nonlinear least squares option.

Item purification. Issues may also occur when applying an item purification.
Although this is rare in practice, there is no guarantee that the process will end
successfully. This can be observed, for instance, when we use the DataDIF dataset
with the first 12 items only.
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fit14 <- difNLR(DataDIF[, 1:12], groupDIF, focal.name = 1,
model = "4PL", type = "all", purify = TRUE)

Warning message:
Item purification process not converged after 10 iterations.
Results are based on the last iteration of the item purification.

The maximum number of item purification iterations can be increased using
the nrIter argument. However, in our example this would not necessarily lead
to success as the process was not able to decide whether or not to include item 1
in the calculation of the matching criterion.

fit14$difPur
I1 I2 I3 I4 I5 I6 I7 I8 I9 I10 I11 I12

Step0 0 0 0 0 1 0 0 1 0 0 1 0
Step1 1 0 0 0 1 0 0 1 0 0 1 0
Step2 0 0 0 0 1 0 0 1 0 0 1 0
Step3 1 0 0 0 1 0 0 1 0 0 1 0
Step4 0 0 0 0 1 0 0 1 0 0 1 0
Step5 1 0 0 0 1 0 0 1 0 0 1 0
Step6 0 0 0 0 1 0 0 1 0 0 1 0
Step7 1 0 0 0 1 0 0 1 0 0 1 0
Step8 0 0 0 0 1 0 0 1 0 0 1 0
Step9 1 0 0 0 1 0 0 1 0 0 1 0
Step10 0 0 0 0 1 0 0 1 0 0 1 0

In this context, we advise considering such items as DIF to be on the safe
side. As a general rule, any suspicious item should be reviewed by content ex-
perts. Not every DIF item is necessarily unfair, however even in such a case,
understanding the reasons behind DIF may inform educators and help provide
the best assessment and learning experience to all individuals involved.

In summary, the difNLR package provides two estimation methods for gen-
eralized logistic model (1.1) (see Sections 1.2.1 and 1.2.2), three test statistics
(see Section 1.3), and number of features such as item purification or corrections
for multiple comparisons (see Chapter 4).

1.4.2 The ShinyItemAnalysis package and application
Some functionalities of the difNLR package are exploited by another R package
and interactive online application – ShinyItemAnalysis (Martinková & Dra-
binová, 2018). This includes various options of the model selection, matching
criteria, parameters to be tested, and also further features such as multiple com-
parison corrections or item purification. Application provides summary table
with the likelihood ratio test statistics and corresponding p-values while the plot
of the ICCs may be displayed for each item (Figure 1.6).

The ShinyItemAnalysis further offers, besides fairness analysis, wide range
of psychometric methods including traditional item analysis, regression models,
and IRT models. Software also provides possibility to upload user’s data and

45

https://CRAN.R-project.org/package=difNLR
https://CRAN.R-project.org/package=ShinyItemAnalysis
https://CRAN.R-project.org/package=difNLR
https://CRAN.R-project.org/package=ShinyItemAnalysis
https://CRAN.R-project.org/package=ShinyItemAnalysis


generate reports. Moreover, it offers equations of the models, parameter esti-
mates with their interpretation, and selected R code and therefore it can serve as
a springboard for more detailed analysis within the difNLR package.

Generalized logistic regression
Generalized logistic regression models are extensions of logistic regression method which account for possibility of guessing by allowing for nonzero lower asymptote - pseudo-
guessing  (Drabinova & Martinkova, 2017) or upper asymptote lower than one - inattention . Similarly to logistic regression, its extensions also provide detection of uniform and
non-uniform DIF by letting the difficulty parameter  (uniform) and the discrimination parameter  (non-uniform) differ for groups and by testing for difference in their values.
Moreover, these extensions allow for testing differences in pseudo-guessing and inattention parameters and they can be seen as proxies of 3PL and 4PL IRT models for DIF
detection.

Method specification
Here you can specify the assumed model. In 3PL and 4PL models, the abbreviations  or  mean that parameters  or  are assumed to be the same for both groups, otherwise
they are allowed to differ. With type you can specify the type of DIF to be tested by choosing the parameters in which difference between groups should be tested. You can also
select correction method for multiple comparison or item purification.

Finally, you may change the DIF matching variable. While matching on standardized total score is typical, upload of other DIF matching variable is possible in section Data. Using
a pre-test (standardized) total score allows for testing differential item functioning in change (DIF-C) to provide proofs of instructional sensitivity (Martinkova et al., 2020), also see
Learning To Learn 9 toy dataset. For selected item you can display plot of its characteristic curves and table of its estimated parameters with standard errors.

Plot with estimated DIF generalized logistic curve
Points represent proportion of correct answer (empirical probabilities) with respect to the DIF matching variable. Their size is determined by count of respondents who achieved
given level of DIF matching variable with respect to the group membership.
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Figure 1.6: Generalized logistic model for DIF detection (1.1) implemented
in the interactive ShinyItemAnalysis application.

1.4.3 EM algorithm
In this part we show an implementation of the EM algorithm described in Sec-
tion 1.2.3 to the statistical software R (R Core Team, 2020). For the illustrative
purposes we generate responses to one binary item with the parameters β0 = 0,
β1 = 1, β2 = −1, β3 = 0.5, c = 0.2, cDIF = 0.1, d = 1, and dDIF = −0.1 based on
group membership variable g and observed ability x which has standard normal
distribution.

set.seed(42)
x <- rnorm(1000)
g <- rep(c(0, 1), each = 500)
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p <- 0.2 + 0.1 * g + (1 - 0.1 * g - 0.2 - 0.1 * g) /
(1 + exp(0 - x + 1 * g - 0.5 * x * g))

y <- rbinom(1000, 1, p)

To run E-step of the EM algorithm, we first need to set initial values of
the item parameters. Here we used classical intercept-slope parametrization for
the calculation purposes. For illustration, we set fixed initial values to be close
to true parameters:

b0_new <- 0.1
b1_new <- 0.85
b2_new <- -1.1
b3_new <- 0.6
c_new <- 0.15
cDif_new <- 0.15
d_new <- 0.95
dDif_new <- -0.05

The implementation of the E-step via function expectation() is a straight-
forward application of the formulae for estimates of the latent variables ˆ︁Zpi1, ˆ︁Zpi2,ˆ︁Zpi3, and ˆ︁Zpi4:

# Expectation step
# Calculates estimates of latent variables Z1, Z2, Z3, and Z4
# Arguments:
# y = outcome (binary vector)
# x = observed ability (numeric vector)
# g = group membership variable (binary vector)
# b0, b1, b2, b3 = parameters of logistic curve without asymptotes
# c, cDif = group specific lower asymptotes of logistic curve
# d, dDif = group specific upper asymptotes of logistic curve
expectation <- function(y, x, g,

b0, b1, b2, b3,
c, cDif, d, dDif) {

expit <- function(x) {
return(exp(x)/(1 + exp(x)))

}
phi <- as.vector(expit(c(b0, b1, b2, b3)

%*% t(cbind(1, x, g, x * g))))

z1 <- y * (c + cDif * g) /
(c + cDif * g + (d + dDif * g - c - cDif * g) * phi)

z2 <- y - z1
z4 <- (1 - y) * (1 - d - dDif * g) /

(1 - c - cDif * g - (d + dDif * g - c - cDif * g) * phi)
z3 <- 1 - y - z4

return(list(z1 = z1, z2 = z2, z3 = z3, z4 = z4))
}

The expectation() function returns list of estimates of four latent variables
based on current estimates of the item parameters.
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Z <- expectation(y, x, g, b0, b1, b2, b3, c, cDif, d, dDif)
lapply(Z, summary)
$z1

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.0000 0.0000 0.1933 0.2266 0.3824 0.9945

$z2
Min. 1st Qu. Median Mean 3rd Qu. Max.

0.0000 0.0000 0.1785 0.3094 0.6560 0.8325

$z3
Min. 1st Qu. Median Mean 3rd Qu. Max.

0.0000 0.0000 0.0000 0.3905 0.8470 0.9364

$z4
Min. 1st Qu. Median Mean 3rd Qu. Max.

0.00000 0.00000 0.00000 0.07346 0.14896 0.87161

Now we are ready to proceed with the M-step to estimate the item parame-
ters. As was noted earlier, the corresponding log-likelihood function (1.22) (with
ϕpi defined using the intercept-slope parametrization) has a form of the logistic
regression, which makes parameters βi0, βi1, βi2, and βi3 easy to estimate using
a standard R function glm() with a quasi-binomial family (to account for the fact
that Zpi2 + Zpi3 ≤ 1):

(fit1 <- glm(cbind(Z$z2, Z$z3) ˜ x + g + x:g,
family = binomial()))

Coefficients:
(Intercept) x g x:g

0.1619 0.9193 -1.1614 0.5749

Degrees of Freedom: 999 Total (i.e. Null); 996 Residual
Null Deviance: 960.9
Residual Deviance: 778.9 AIC: 855.4

As the second part of the log-likelihood function (1.23) has a form of the multi-
nomial regression, specialized package to fit such model may be applied. Here we
use the function multinom() from the nnet package (Venables & Ripley, 2002).

library(nnet)
(fit2 <- multinom(cbind(Z$z2 + Z$z3, z$z1, z$z4) ˜ g))
Coefficients:

(Intercept) g
2 -1.653768 0.9611856
3 -2.830450 1.0360393

Residual Deviance: 1507.611
AIC: 1515.611
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To calculate estimated probabilities of the Zpij, j = 1, . . . , 4, and therefore asymp-
tote parameters, one can extract fitted values from the model. It should be
noted that the latent variable Zpi4 accounts for the probability of answer to be
not missed due inattention, therefore, related parameter is subtracted from 1.
The estimates of the asymptote parameters are then ci = 0.153, ciDIF = 0.147,
di = 0.953, and diDIF = −0.053.

# extracting probabilities per groups
par_asympt <- as.data.frame(unique(cbind(g, fitted(fit2))))
# calculating upper asymptotes for the two groups
par_asympt$V4 <- 1 - par_asympt$V4
# differences in parameters between focal and reference group
par_asympt[3, ] <- par_asympt[par_asympt$g == 1, ] -

par_asympt[par_asympt$g == 0, ]
par_asympt[c(1, 3), c(1, 3, 4)]

g V3 V4
1 0 0.1530237 0.95282282
3 1 0.1471744 -0.05256752

The E-step and M-step are repeated till the convergence criterion is met or
till the maximum number of iteration is reached. The iterations converge when⃓⃓⃓

devEM
i(j) − devEM

i(j−1)

⃓⃓⃓
⃓⃓⃓
devEM

i(j)

⃓⃓⃓
+ 0.1

< ϵ,

where devEM
i(j) is a deviance of the model for item i in the j-th iteration and ϵ is

a positive convergence tolerance.
In our illustrative example we set ϵ = 10−6. After 287 iterations, we received

convergence with the final estimates

# final parameter estimates
b0 b1 b2 b3 c cDif d dDif

-0.17602 0.98603 -0.87166 0.85062 0.21989 0.096286 0.99945 -0.14934

which are close to the true parameters considering limited sample size. Standard
errors of the final parameter estimates can be calculated using the inverse of
the Hessian matrix implemented within the covariance.matrix() function:

# Covariance matrix
# Calculates estimate of covariance matrix
# Arguments:
# y = outcome (binary vector)
# x = observed ability (numeric vector)
# g = group membership variable (binary vector)
# par = vector of parameters of the nonlinear model:
# b0, b1, b2, b3, c, cDif, d, dDif
covariance.matrix <- function(x, y, g, par) {

# formula for log-likelihood
f <- "y * log(c + cDif * g + (d + dDif * g - c - cDif * g) /
(1 + exp(- (b0 + b1 * x + b2 * g + b3 * x * g)))) +
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(1 - y) * log(1 - (c + cDif * g + (d + dDif * g - c - cDif * g) /
(1 + exp(- (b0 + b1 * x + b2 * g + b3 * x * g)))))"
# calculating Hessian
hess <- hessian(

f = f,
var = c("b0", "b1", "b2", "b3", "c", "cDif", "d", "dDif")

)
# Hessian as a function of data and parameters
hess.fun <- eval(

parse(text = paste0(
"function(",
paste(c("y", "x", "g",

"b0", "b1", "b2", "b3", "c", "cDif", "d", "dDif"),
collapse = ", "), ") {

return(list(", paste(as.list(hess),
collapse = ", "), "))}"

))
)
# evaluating Hessian function and creating matrix
n <- length(x)
return(solve(-n * matrix(

sapply(
do.call(

hess.fun,
append(list(y = y, x = x, g = g), par)

),
mean

),
ncol = 8, nrow = 8

)))
}

For the final estimates we get:

# standard errors of the estimates
sqrt(diag(covariance.matrix(x, y, g, par[nrow(par), ])))
[1] 0.79370 0.44492 1.00681 0.91258 0.20527 0.21341 0.16233 0.19429

The full R script for the EM algorithm can be found in Appendix A.3.

1.4.4 Parametric link function
In this part we show an implementation of the algorithm based on parametric
link function described in Section 1.2.4 to the statistical software R (R Core
Team, 2020). The crucial part of the implementation covers specification of
the parametric link function:

# specification of parametric logit link
plogit <- function(c, cDif, d, dDif, g) {

cp <- c + cDif * g
dp <- d + dDif * g
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logitint <- function(p, cp, dp){
log(ifelse((p - cp)/(dp - p) <= 0, 0.00001, (p - cp) / (dp - p)))

}

# link function
linkfun <- function(mu) logitint(mu, cp, dp)

# the inverse of the link function
linkinv <- function(eta)

cp + (dp - cp) * exp(eta) / (1 + exp(eta))

# derivative of the inverse-link function with respect
# to the linear predictor
mu.eta <- function(eta)

(dp - cp) * exp(eta) / (1 + exp(eta))ˆ2

# TRUE if eta is in the domain of linkinv
valideta <- function(eta) TRUE

name <- "plogit"
structure(list(linkfun = linkfun,

linkinv = linkinv,
valideta = valideta,
mu.eta = mu.eta,
name = name),

class = "link-glm")
}

Then, we need to specify a function to compute the log-likelihood which is
supposed to be maximized to estimate parameters of the asymptotes:

# likelihood for asymptote parameters, when parameters of the logistic
# curve are fixed
param.likel.cd <- function(theta){

param.expit <- function(x, g, c0, c1, d0, d1){
c0 * (1 - g) + c1 * g +

(d0 * (1 - g) + d1 * g - c0 * (1 - g) - c1 * g) /
(1 + exp(-x))

}
n <- nrow(X)
c0 <- theta[1]
c1 <- theta[2]
# c1 <- c0 + cDif
d0 <- theta[3]
d1 <- theta[4]
# d1 <- d0 + dDif

h <- param.expit(X %*% c(b0_new, b1_new, b2_new, b3_new),
g, c0, c1, d0, d1)

l <- -(1 / n) * sum((y * log(h)) + ((1 - y) * log(1 - h)))

51



return(l)
}

For illustration, we use the same data as in previous section and we use also
the same initial values:
set.seed(42)

x <- rnorm(1000)
g <- rep(c(0, 1), each = 500)
p <- 0.2 + 0.1 * g + (1 - 0.1 * g - 0.2 - 0.1 * g) /

(1 + exp(0 - x + 1 * g - 0.5 * x* g))
y <- rbinom(1000, 1, p)

b0_new <- 0.1
b1_new <- 0.85
b2_new <- -1.1
b3_new <- 0.6
c_new <- 0.15
cDif_new <- 0.15
d_new <- 0.95
dDif_new <- -0.05

We are now ready to proceed with the first step of the algorithm – fitting gener-
alized linear model with the parametric link function plogit():

(fit_glm <- glm(y ˜ x + g + x:g,
family = binomial(

link = plogit(c_new, cDif_new, d_new, dDif_new, g)
),
start = c(b0_new, b1_new, b2_new, b3_new)))

Coefficients:
(Intercept) x g x:g

0.1746 0.9379 -1.2016 0.6259

Degrees of Freedom: 999 Total (i.e. Null); 996 Residual
Null Deviance: 1381
Residual Deviance: 1276 AIC: 1284

b0_old <- b0_new
b1_old <- b1_new
b2_old <- b2_new
b3_old <- b3_new

b0_new <- coef(fit_glm)[1]
b1_new <- coef(fit_glm)[2]
b2_new <- coef(fit_glm)[3]
b3_new <- coef(fit_glm)[4]

Using the new estimated parameters of the logistic regression curve being
fixed, we proceed with the second step by fitting model to estimate asymptote
parameters:
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# bound for asymptotes
c0_max <- max(min(fitted(fit_glm)[g == 0], na.rm = TRUE), 0)
c1_max <- max(min(fitted(fit_glm)[g == 1], na.rm = TRUE), 0)
d0_min <- min(max(fitted(fit_glm)[g == 0], na.rm = TRUE), 1)
d1_min <- min(max(fitted(fit_glm)[g == 1], na.rm = TRUE), 1)

(fit_cd <- optim(fn = param.likel.cd,
par = setNames(

c((c_new + c0_max) / 2,
(c_new + cDif_new + c1_max) / 2,
(d0_min + d_new) / 2,
(d_new + dDif_new + d1_min) / 2),

c("c0", "c1", "d0", "d1")),
method = "L-BFGS-B",
lower = c(0, 0, d0_min, d1_min),
upper = c(c0_max, c1_max, 1, 1)))

$par
c0 c1 d0 d1

0.1329 0.3011 0.9738 0.8930

Similarly as in Section 1.4.3, the two steps are repeated till the convergence
criterion is met or till the maximum number of iterations is reached. In our
illustrative example we again set ϵ = 10−6. The standard errors of the final
parameter estimates can be again calculated using the covariance.matrix()
function. After 51 iterations, we received convergence with the final estimates

# final parameter estimates
b0 b1 b2 b3 c cDif d dDif

-0.15238 0.97252 -0.89734 0.86781 0.21307 0.10343 1.00000 -0.15020
# standard errors of the estimates
sqrt(diag(covariance.matrix(x, y, g, par[nrow(par), ])))
[1] 0.78199 0.43279 0.99895 0.91238 0.20541 0.21339 0.16474 0.19620

The full R script for the algorithm based on parametric link function can be found
in Appendix A.4.

1.5 Simulation study – properties of the method
In this part we include a simulation study evaluating properties of DIF detection
procedure based on the restricted form of the nonlinear model (1.1). This sec-
tion was adapted from Drabinová and Martinková (2017). Note that while we
described the theoretical properties for the 4PL non-IRT model in previous sec-
tions, this early simulation study was limited to the case of inattention parameter
fixed at value of 1 (i.e., diGp = 1), that is

P(Ypi = 1|Xp, Gp) = ciGp + (1 − ciGp) eaiGp (Xp−biGp )

1 + eaiGp (Xp−biGp ) , (1.29)

also termed here as the 3PL non-IRT model.
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In the simulation study, we compared DIF detection method based on the re-
stricted model (1.29) to other commonly used DIF detection approaches such
as the logistic regression model (7) (Swaminathan & Rogers, 1990), the Mantel-
Haenszel test (4) (Mantel & Haenszel, 1959), and the Lord’s test (2) (Lord, 1980)
based on the 3PL IRT model:

P(Ypi = 1|θp) = ci + (1 − ci)
eai(θp−bi)

1 + eai(θp−bi)
. (1.30)

The simulation study evaluated convergence behavior, power rate (i.e., the pro-
portion of true positives), and rejection rate (i.e., the proportion of false positives;
type I error).

1.5.1 Study design
In this part we describe design of the simulation study including data generation,
DIF detection procedures, and evaluation of the results.

Data and DIF generation

The dichotomously scored data are generated with the 3PL IRT model (1.30)
as follows: examinees’ knowledge θp is assumed to follow the standard normal
distribution, i.e., θp ∼ N (0, 1). All parameters are set to be the same for both
reference and focal group unless the item is a DIF item, in which case the item
parameters of the focal group are manipulated (see below). To reflect realis-
tic values of item parameters and to be in line with previous simulation stud-
ies (Swaminathan & Rogers, 1990; Narayanan & Swaminathan, 1996; Jodoin &
Gierl, 2001; Güler & Penfield, 2009; Kim & Oshima, 2013), the simulation study
is based on item parameters according to 20-item data set from the 1985 problem
solving of the GMAT (Kingston, Leary, & Wightman, 1985, p. 47). Probabilities
of correct answers are calculated based on true values of items and examinees
parameters and dichotomous responses are then generated from Bernoulli distri-
bution with these calculated probabilities.

Out of 20 items, one, or three first items are manipulated to perform DIF
caused by difference in difficulty parameter biGp (here referenced as uniform DIF),
or in discrimination parameter aiGp (here referenced as non-uniform DIF), or
in guessing parameter ciGp . The thresholds for DIF effect size of DIF items,
represented by the Area Measure (AM) between the two ICCs (defined as UA
in (3)), respectively by the Weighted Area Measure (WAM) in case of varying
pseudo-guessing parameter when the AM is weighted by density of normal distri-
bution (Siebert, 2013), are determined by values 0.4 (low), 0.6 (moderate), and 0.8
(large) (respectively 0.09, 0.12 and 0.14 for the WAM) following Swaminathan and
Rogers (1990), Narayanan and Swaminathan (1996), and Siebert (2013). When
one DIF item is considered, the large size of DIF is chosen. Mixture of DIF sizes
is considered for the larger proportion of DIF items.

When uniform DIF is considered, the discrimination parameters for the focal
and the reference group are kept the same and fixed at value 1. The differences
in difficulty between the reference and the focal group are set to 0.5 (low), 0.75
(moderate), and 1 (large) (see Table 1.2, DIF source b).
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When simulating non-uniform DIF, the difficulty parameters for both groups
are kept the same and fixed at value 0 and the discrimination parameters are
chosen according to Narayanan and Swaminathan (1996, p. 264) (see Table 1.2,
DIF source a).

For DIF caused by varying guessing among groups, the discrimination is fixed
at value 1 and the difficulty at value 0 for both groups. Guessing parameter is
manipulated for both groups to achieve desired DIF size level (see Table 1.2, DIF
source c). The parameters of remaining (19 or 17) non-DIF items are selected
from the problem solving 1985 of the GMAT as reported in Kingston et al. (1985,
p. 47). To evaluate rejection rates of procedures also simulations without DIF
items are considered.

Table 1.2: Item parameters used to generate DIF items.

DIF
source Item

DIF effect size Reference group Focal group
AM WAM a b c a b c

b 1 0.8 0.16 1.00 0 0.20 1.00 1.00 0.20

b
1 0.4 0.08 1.00 0 0.20 1.00 0.50 0.20
2 0.6 0.12 1.00 0 0.20 1.00 0.75 0.20
3 0.8 0.16 1.00 0 0.20 1.00 1.00 0.20

a 1 0.8 0.12 0.56 0 0.20 1.79 0 0.20

a
1 0.4 0.09 0.90 0 0.20 2.01 0 0.20
2 0.6 0.12 0.70 0 0.20 1.97 0 0.20
3 0.8 0.12 0.56 0 0.20 1.79 0 0.20

c 1 − 0.14 1.00 0 0.10 1.00 0 0.38

c
1 − 0.09 1.00 0 0.10 1.00 0 0.28
2 − 0.12 1.00 0 0.10 1.00 0 0.34
3 − 0.14 1.00 0 0.10 1.00 0 0.38

Note. AM = area measure between curves, WAM = weighted area measure between
curves. The area between two curves with different c among groups would be infinite.

The above described scenarios are investigated on various levels of the total
sample size. Larger sample sizes are determined to yield satisfactory convergence
levels especially for the IRT models (Kim & Oshima, 2013; Siebert, 2013). Specif-
ically, five levels of sample size are considered; three with the same proportion
in groups: 1,000 (500 per group), 2,000 (1,000 per group) and 4,000 (2,000 per
group), and two with the proportion of 1/2: 1,500 (500 reference, 1,000 focal) and
3,000 (1,000 reference, 2,000 focal) as inspired by Narayanan and Swaminathan
(1996) and Jodoin and Gierl (2001).

DIF identification

Four distinct methods for DIF detection are selected: The restricted model (1.29),
the logistic regression procedure (7) (Swaminathan & Rogers, 1990), the Mantel-
Haenszel test (4) (Mantel & Haenszel, 1959), and the Lord’s test (2) (Lord, 1980)
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based on the 3PL IRT model (1.30). As suggested by (Kim & Oshima, 2013),
Benjamini-Hochberg multiple comparison correction is applied to all methods.

Evaluation of the results

Due to numerical estimation procedures in the nonlinear model (1.29) and in
the IRT-based methods, convergence issues can be observed. It should be noted
that large proportions of convergence failures may have significant impact on
power and rejection rates. For items that fail to converge no results are obtained
and no conclusion about DIF detection can be drawn. To make simulations
comparable for all procedures, runs with the convergence issues are excluded and
the proportion of these events is scored. Convergence failure rate is calculated as
a ratio of items with the convergence issues and total number of generated items
(that is total number of generated data sets times number of items). Rejection
and power rate analyses are based only on 1,000 simulation iterations without
convergence issues. All tests are performed at α = 0.05 significance level.

Implementation

For all analyses, software R (version 3.3.2) is used (R Core Team, 2020). The non-
linear model (1.29) is fitted using the difNLR R package (Hladká & Martinková,
2020, see also Section 1.4). To specify suitable initial values, we consider approach
based on linear approximation. Mean values of the standardized total score of
the first and the third tertiles are spaced by line p̃(x) = kx+q, where x stands for
the standardized total score (For discussion about starting values see also Section
1.6). Guessing parameter c stands for asymptotic minimum p(−∞) but taking
into account a linear approximation p̃, this value would be −∞ (considering only
positive values of parameter k). Initial value of the guessing parameter is set as
p̃(−4) considering this value to be sufficient. Only non-negative values are taken
into consideration and negative values are set to zero. The guessing parame-
ter influences the difficulty and discrimination parameters. For cases with zero
probability of guessing, difficulty parameter b is defined as p(b) = 1

2 . When con-
sidering positive guessing c ∈ (0, 1), condition p(b) = 1+c

2 holds instead. Hence
initial value of b based on linear approximation p̃ is set to b =

1+c
2 −q

k
. With

zero probability of guessing, discrimination parameter a is defined as p′(b) = a
4 ,

the slope in inflection point b divided by 4. With the positive guessing c ∈ (0, 1),
formula p′(b) = a(1−c)

4 is applied. Therefore, by using linear approximation, initial
estimation of a is set to a = 4k

1−c
. To test for DIF presence, the F-test (1.26) is

used.
The logistic regression procedure is implemented via function glm() from

the stats package (R Core Team, 2020). To detect DIF, likelihood ratio test is
performed (Agresti, 2010). The difR R package (Magis et al., 2010) is used to
perform the Mantel-Haenszel test via the difMH() function and Lord’s statistics
for the 3PL IRT model are calculated using the difLord() function.

For uniform and non-uniform DIF, the 3PL IRT and the nonlinear regression
model with the same guessing for both groups are considered: For the IRT ap-
proach, the 3PL IRT model for all data is fitted with the function itemParEst()
and vector of common guessing parameters is estimated. Then, the 3PL IRT
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models for both groups are fitted with the fixed estimated guessing parameter
and the difLord() function is applied. In case of the same guessing, the non-
linear model (1.29) is fitted using restriction diGp = 1 and further compared to
model with no group effect. In case of DIF caused by varying pseudo-guessing
parameter models allowing different guessing are considered for the IRT as well
as for the nonlinear model procedure.

1.5.2 Results
Convergence issues

Due to numerical estimation procedures in the nonlinear model (1.29) and in
the Lord’s test, convergence issues occur. Considering only DIF with the same
guessing parameters for groups, the number of generated data sets rapidly de-
creases with increasing sample size and becomes stable. The average number
of generated data sets for sample size of 1,000 is 1,391 (range 1, 327 − 1, 460),
for sample size of 1,500 it is 1,089 (1, 036 − 1, 133), for sample size of 2,000 it is
1,064 (1, 045 − 1, 095), for sample size of 3,000 it is 1,081 (1, 055 − 1, 100) and
for sample size of 4,000 it is 1,085 (1, 059 − 1, 121). The trend is similar in case
of DIF caused by varying pseudo-guessing parameters among groups, however
the average number is 32,153 (22, 646 − 60, 316) which is several times higher
than in previous scenarios. This is primarily due to high number of convergence
issues in fitting 3PL IRT model with various guessing (Table 1.4).

Considering common guessing parameters, both for uniform and non-uniform
scenario, the Lord’s test results in a large proportion of convergence problem-
atic items, however, with increasing number of examinees proportion of conver-
gence failures declines rapidly (see Table 1.3). Similar tendency can be observed
in the procedure using the nonlinear model, however the proportion of con-
vergence failures is less than 1% (0.08–0.68%) for all scenarios in contrast to
the Lord’s test where the proportion reaches up over 10% (0.39–10.35%).

Considering DIF caused by different guessing among groups, method based
on the nonlinear model performs slightly larger proportion of the convergence
issues than in previous scenarios, however, it still remains under 1% (0.40–0.95%).
This is not the case of the IRT model where the convergence failure rate greatly
increases and remains on high level, above 19% (19.02–49.61%), even for the large
sample sizes (Table 1.4).

Rejection rates

For almost all scenarios, the rejection rates (i.e., false positives) of the nonlinear
model based DIF detection method and also for the Mantel-Haenszel test and
the logistic regression procedure maintain below the 5% nominal level. The nom-
inal value is exceeded only when 3 uniform DIF items and larger sample sizes
(> 2,000) are considered (Part C of Table 1.3) and in case of 3 DIF items caused
by varying guessing and sample size of 4,000 (Part G of Table 1.4).

High rejection rates exceeding nominal level of 5% are apparent in the Lord’s
test in all studied scenarios with small sample sizes (< 2,000). Nevertheless with
the increasing sample size the rejection rates stabilize and reach the nominal
value considering uniform and non-uniform DIF (Table 1.3). Similarly as for
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non-IRT methods, rejection rates are mildly exceeded for larger sample sizes
in case of three uniform DIF items (Part C of Table 1.3). Supposing DIF caused
by varying guessing the Lord’s detection procedure is not able to control rejection
rate disregarding sample size or proportion of DIF items (Table 1.4).

The situation is similar in the case where no DIF item is present in data set.
All non-IRT procedures including the nonlinear model are able to control type
I error. The nominal value of 5% is exceeded only by the Lord’s test in case
of sample sizes smaller than 3,000 (Part A of Table 1.3).

Power rates

When uniform DIF is considered, all three non-IRT procedures (the nonlinear
model, the Mantel-Haenszel test, and the logistic regression) yield satisfactory
high power rate (over 80%) in almost all scenarios. Although the power analysis
shows superiority of the Mantel-Haenszel test, the differences between non-IRT
methods are negligible, especially for smaller proportion of DIF items. While
the Lord’s test yields lower power in almost all uniform DIF scenarios, it gains
satisfactory power on low rejection rate for sample sizes larger than 2,000 and
also for sample size of 2,000 when one uniform DIF item was present (Parts B
and C of Table 1.3).

For non-uniform DIF and sample size less than 2,000, no method achieves
satisfactory power rates regardless of DIF items proportion (Parts D and E of Ta-
ble 1.3). However, with the increasing sample size power rates increase rapidly.
The logistic regression procedure outperforms other methods in terms of power
at low rejection rate in almost all scenarios with power rates ranging from 36.13%
to 100%. When one non-uniform DIF item is considered, the nonlinear model
outmatches the Lord’s test. For larger proportion of DIF items, the power rates
of the nonlinear model and the Lord’s test are comparable.

Supposing DIF caused by different guessing among groups, all non-IRT pro-
cedures including the nonlinear model gain satisfactory power in almost all sce-
narios. The only exception are the cases of small sample size (< 2,000) and large
proportion of DIF items, where power rates are below value of 80% (Part G of Ta-
ble 1.4). Otherwise the differences between non-IRT methods are inconsequential,
as they are all close to 100% (see Table 1.4).

The strong increasing trend of power rates with the increasing sample size is
pattern in almost all DIF procedures regardless of proportion of reference and
focal group. The only exception is the Mantel-Haenszel test which is not able
to detect non-uniform DIF not even in large sample sizes or in presence of three
DIF items (see Parts D and E of Table 1.3).
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Table 1.3: Rejection rates (RR), power rates (PR) and proportion of convergence failures (CF) for the DIF detection procedures.

Sample size = 1,000 Sample size = 1,500 Sample size = 2,000 Sample size = 3,000 Sample size = 4,000
(500 per group) (1,000 foc., 500 ref.) (1,000 per group) (2,000 foc., 1,000 ref.) (2,000 per group)

RR PR CF RR PR CF RR PR CF RR PR CF RR PR CF
A. None DIF item

MH 0.19 0.00 0.24 0.00 0.18 0.00 0.27 0.00 0.24 0.00
LR 0.24 0.00 0.24 0.00 0.23 0.00 0.29 0.00 0.25 0.00
NLR 0.38 0.52 0.40 0.19 0.32 0.16 0.40 0.11 0.34 0.08
LORD 10.93∗ 5.77 8.89∗ 1.28 5.10∗ 0.51 3.44 0.79 2.17 0.66

B. One uniform DIF item
MH 0.66 97.10◦ 0.00 0.62 99.90◦ 0.00 0.88 100.00◦ 0.00 0.95 100.00◦ 0.00 1.21 100.00◦ 0.00
LR 0.64 96.00 0.00 0.66 99.50 0.00 0.87 100.00◦ 0.00 0.74 100.00◦ 0.00 0.96 100.00◦ 0.00
NLR 0.82 96.50 0.68 0.87 99.50 0.22 1.08 100.00◦ 0.20 1.03 100.00◦ 0.14 1.34 100.00◦ 0.12
LORD 9.99∗ 77.10 10.35 9.56∗ 95.20 1.11 4.11 99.80 0.80 4.19 100.00 0.60 2.93 100.00 0.65

C. Three uniform DIF items
MH 1.76 63.80◦ 0.00 2.61 73.27◦ 0.00 4.24 86.07◦ 0.00 5.79∗ 91.83 0.00 10.24∗ 97.77 0.00
LR 1.53 58.50 0.00 2.06 69.37 0.00 3.15 82.40 0.00 4.34 89.07◦ 0.00 7.52∗ 96.40 0.00
NLR 1.95 60.13 0.56 2.78 69.87 0.29 3.99 83.13 0.20 5.11∗ 89.30 0.08 9.00∗ 96.60 0.10
LORD 11.03∗ 47.50 8.29 10.89∗ 66.77 0.91 5.23∗ 75.70 0.97 6.08∗ 86.73 0.40 6.51∗ 93.70 0.43

D. One non-uniform DIF item
MH 0.24 0.40 0.00 0.20 0.33 0.00 0.23 0.20 0.00 0.30 0.20 0.00 0.21 0.20 0.00
LR 0.47 46.40◦ 0.00 0.54 69.50◦ 0.00 0.58 88.50◦ 0.00 0.58 96.70◦ 0.00 0.56 100.00◦ 0.00
NLR 0.60 36.70 0.62 0.72 60.33 0.27 0.72 81.50 0.24 0.72 93.40 0.20 0.71 99.50 0.24
LORD 10.63∗ 35.00 10.27 9.36∗ 55.36 1.21 3.58 72.50 0.70 4.01 94.70 0.49 2.51 99.70 0.81

E. Three non-uniform DIF items
MH 0.18 0.13 0.00 0.21 0.30 0.00 0.20 0.17 0.00 0.28 0.27 0.00 0.34 0.33 0.00
LR 0.69 36.63◦ 0.00 1.03 55.70◦ 0.00 1.38 78.23◦ 0.00 1.91 89.60◦ 0.00 2.64 97.83◦ 0.00
NLR 0.78 28.20 0.56 1.11 47.13 0.27 1.66 69.17 0.38 2.24 84.93 0.13 2.94 96.30 0.14
LORD 9.77∗ 35.80 5.69 10.49∗ 59.47 0.55 3.92 77.83 0.59 4.87 91.70 0.50 3.04 98.50 0.39

Note. MH = Mantel-Haenszel test, LR = logistic regression, NLR = nonlinear model, LORD = Lord’s test. An asterisk ∗ indicates that
the rejection rate exceeds nominal value of 5% and thus corresponding power is meaningless. A circle ◦ indicates the highest power at rejection
rate lower than nominal value of 5%.
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Table 1.4: Rejection rates (RR), power rates (PR) and proportion of convergence failures (CF) for the DIF detection procedures.

Sample size = 1,000 Sample size = 1,500 Sample size = 2,000 Sample size = 3,000 Sample size = 4,000
(500 per group) (1,000 foc., 500 ref.) (1,000 per group) (2,000 foc., 1,000 ref.) (2,000 per group)

RR PR CF RR PR CF RR PR CF RR PR CF RR PR CF
F. One DIF item with varying guessing

MH 0.56 93.40◦ 0.00 0.58 98.80◦ 0.00 0.78 99.80 0.00 0.81 100.00◦ 0.00 1.12 100.00◦ 0.00
LR 0.63 91.60 0.00 0.67 98.40 0.00 0.75 99.90◦ 0.00 0.75 100.00◦ 0.00 1.03 100.00◦ 0.00
NLR 0.45 89.50 0.91 0.55 98.00 0.70 0.56 99.90◦ 0.63 0.62 100.00◦ 0.44 0.71 100.00◦ 0.40
LORD 35.63∗ 77.70 49.61 34.91∗ 89.00 39.91 34.21∗ 90.60 23.40 36.09∗ 94.80 20.66 37.26∗ 96.40 19.05

G. Three DIF items with varying guessing
MH 1.96 66.60◦ 0.00 2.62 79.97◦ 0.00 4.08 91.13◦ 0.00 5.76∗ 96.87 0.00 9.25∗ 99.43 0.00
LR 1.76 61.70 0.00 2.52 75.50 0.00 3.37 88.63 0.00 4.79 95.23◦ 0.00 7.67∗ 99.10 0.00
NLR 1.32 57.83 0.95 1.81 72.83 0.75 2.78 86.87 0.69 3.48 94.63 0.48 5.52∗ 98.73 0.48
LORD 33.24∗ 71.03 49.38 33.84∗ 80.13 36.68 33.24∗ 84.10 23.29 33.15∗ 89.47 20.69 34.71∗ 91.53 19.02

Note. MH = Mantel-Haenszel test, LR = logistic regression, NLR = nonlinear model, LORD = Lord’s test. An asterisk ∗ indicates that
the rejection rate exceeds nominal value of 5% and thus corresponding power is meaningless. A circle ◦ indicates the highest power at rejection
rate lower than nominal value of 5%.60



1.5.3 Discussion and conclusion
In this section we presented results by Drabinová and Martinková (2017) who
examined properties of the nonlinear model (1.29). The model is a restricted
version of the model (1.1) with inattention parameter being the same for both
groups and fixed at the value of 1, i.e., diGp = 1. Model (1.29) is also a natural
generalization of the logistic regression method (Swaminathan & Rogers, 1990)
by allowing nonzero probability of guessing and by allowing different guessing
for groups. In this simulation study, we showed pleasant properties of the non-
linear model (1.29) including low rate of convergence failures and in most cases
sufficient power and low rejection rate. Thus as the only non-IRT method that ac-
counts for guessing, the nonlinear model not only fills logical gap in DIF detection
methodology but it also seems to be an useful alternative to other methods.

Obvious advantage of the nonlinear model method over IRT-model-based ap-
proaches is a pleasant behavior even in small sample sizes (1,000). Despite our
assumption that sample size of 500 in each group would be sufficient for item cal-
ibration (Kim & Oshima, 2013; Siebert, 2013), Lord’s test shows large proportion
of convergence failures (Table 1.3). In this simulation study we report the con-
vergence failures rate as a proportion of items that fail to converge. It should
be noted that proposed nonlinear model performs the DIF detection procedure
item by item. Thus the convergence issue in one item does not prevent the DIF
testing in other items. In contrast, in the Lord’s method the DIF test statistics is
calculated for all items simultaneously and convergence issue in one item would
cause its calculation to fail. A possible solution would be to fit the IRT model
while excluding convergence problematic items. Besides that this approach takes
an extra effort, it may also cause bias in estimated knowledge and hence possibly
wrong conclusion in DIF detection. Summarizing, in practical implementation
less time and effort is needed to fit models and to test for DIF with procedure
based on the nonlinear model (1.29) than with the Lord’s test.

Poor control of rejection rates for the Lord’s test when considering multiple
DIF items is consistent with the finding of Battauz (2019) and Wang and Yeh
(2003). As expected, strong and consistent increasing trend in power rates with
the increasing sample size is obvious in almost all DIF detection procedures and
all studied scenarios. For sample size of 4,000 power of all other procedures is
almost 100%. With the increasing sample size, the differences between methods
decreases and IRT models become easy to fit. IRT-based approaches then bring
more precise model and added value in terms of estimates of latent trait while
the nonlinear model and the logistic regression model are only proxies to the 3PL
and 2PL IRT models.

Looking closer at non-IRT approaches, although the Mantel-Haenszel test
yields excellent results in uniform DIF detection, its poor performance for non-
uniform DIF detection (i.e., power rate close to zero) makes it a limited tool
in a study field, which is in line with findings by Swaminathan and Rogers (1990).
For these reasons, it seems that nonlinear model, together with the logistic re-
gression procedure, can be seen as useful alternatives to IRT methods, especially
in smaller sample sizes (< 2,000), where the nonlinear model and the logistic
regression procedures outperform other methods in terms of power.

Moreover, in uniform DIF detection, the nonlinear model achieves slightly
better results than the logistic regression approach. This may suggest that
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the nonlinear method profits from more precise model by introducing guessing
parameter c into the logistic regression procedure. In non-uniform DIF detec-
tion, the logistic regression procedure is superior to other methods, but achieved
power rates remain on low level. One explanation may be that we consider
only non-uniform DIF items with the same difficulty parameter for both groups.
Moreover, for all methods, Benjamini-Hochberg multiple comparison correction
is applied. Negative effect of using such procedures can be decrease of power, as
noted by Kim and Oshima (2013), which may be the case in non-uniform DIF
detection in small sample sizes. For further discussion, see Chapter 4. In case
of DIF caused by varying pseudo-guessing parameters among groups, the DIF
detection procedures gain satisfactory power in almost all scenarios even though
the Mantel-Haenszel test and logistic regression method are not able to capture
the fact that probability of guessing varies by group. In that case, both methods
seem to project the difference of probabilities of guessing into difference of difficul-
ties which is understandable since we assumed only difference in pseudo-guessing
parameters (and not in discrimination).

Proposed nonlinear model (1.29) procedure fills a logical gap in DIF detection
methodology. While in IRT-based DIF detection methods the third parameter
is often taken into account, the logistic regression accounts only for the two
parameters. The nonlinear model extends the logistic regression procedure in this
way and to our best knowledge it is the only non-IRT method for DIF detection
with the third, guessing parameter. Moreover it is the only non-IRT procedure
which can test for difference in the pseudo-guessing parameters among groups
and hence explore nature of DIF in more detail.

Proposed nonlinear model (1.29) method models the probability of correct
answer with respect to (standardized) total score, which can be seen as inade-
quate estimate of knowledge. The main difference between the 3PL IRT-based
methods and the nonlinear model approach is that in the IRT-based procedures
the knowledge of examinees is modeled as an unobserved latent variable with stan-
dard normal distribution. Although the nonlinear model method can be viewed
as less precise, our simulation study shows that for the task of DIF detection this
proxy is ample: The nonlinear model procedure has low rejection rate, sufficient
power and less convergence issues than the IRT approach, especially for smaller
samples. Its good properties as well as easier implementation and interpretation
predetermines the nonlinear model method to be a handy tool in identification
of DIF.

As noted in Introduction, the common way of applying 3PL IRT model in DIF
detection, when considering the same probability of guessing for both groups, is
to fit the model on all data and estimate the common guessing parameter. Fixed
estimate of guessing parameter is then applied into two separate models for fo-
cal and reference group (Magis et al., 2010). Further, the estimated parameters
are re-scaled (Candell & Drasgow, 1988; Lautenschiager & Park, 1988) and then
Lord’s statistic is calculated. It should be noted that this approach can lead
to biased standard errors and consequently to biased estimates (Battauz, 2019).
Simultaneous estimation of parameters for both groups including guessing pa-
rameter is offered, e.g., in the mirt R package (Chalmers, 2012), however fitting
without convergence issues in small sample sizes seems to be nearly impossible.
Our procedures uses the simultaneous parameter estimation and as non-IRT ap-
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proach does not encounter as many convergence issues.
We believe that also the currently proposed nonlinear procedure may benefit

from further improvements. Better specification of initial values could lead to
smaller proportion of convergence issues (see also Section 1.6). Also other esti-
mating procedures can be implemented to provide more accurate estimates, such
as weighted non-linear least squares or Bayesian methods.

As we showed at the beginning of this chapter, model can be extended by al-
lowing upper asymptote to be smaller than one and thus introduce an non-IRT
alternative to four-parameter IRT model (Barton & Lord, 1981). Besides, more
than two groups can be taken into account (Magis, Râıche, Béland, & Gérard,
2011). The nonlinear DIF detection method can be also refined by implementing
iterative purification similarly as for logistic regression (Zumbo, 1999) or IRT-
based methods (Candell & Drasgow, 1988; Wang & Yeh, 2003, see also Chapter
4).

The current simulation study is limited to the investigated conditions as test
length, nature and proportion of DIF items, and especially sample size. It should
be noted that only large sample sizes are considered, which is not a necessarily
realistic condition. Another restriction is that we consider only average difficulty
items in designs of non-uniform DIF and DIF caused by varying guessing, where
difficulty is the same for both groups. In the latter design we also considered
the same value of discrimination for both groups.

Despite its limitations, this study demonstrates pleasant properties of the non-
linear model. Sufficient power rate and low rejection rate even in small sample
sizes predetermine the nonlinear model to be an attractive and user friendly al-
ternative to other procedures used in DIF detection. As the only one non-IRT
approach, the nonlinear model allows for incorporation of guessing parameter into
the model while it keeps the simplicity of the logistic regression procedure.

1.6 Simulation study – estimation procedures
The second study focused on comparison of various procedures to estimate param-
eters in the nonlinear model (1.1) which were described in Sections 1.2.1–1.2.4,
including the nonlinear least squares, the maximum likelihood method, the EM
algorithm, and the newly proposed algorithm based on parametric link function.

1.6.1 Starting values
The crucial part of the estimation is the specification of starting values for item
parameters as it may have a great impact on the speed of the estimation pro-
cess and also on its precision. Starting values which are far from the true item
parameters may lead to the situation that algorithm yields only local extreme
or even that algorithm does not converge. Therefore, we propose two different
approaches to specify starting values described below – first based on CTT and
the second based on a grid search. Both approaches are designed to compute
starting values when standardized total score is used as the matching criterion.
Both procedures may be used even in case when grouping variable Gp is present
in data. In such a case, the initial values are computed separately for both groups
and the differences in item parameters between the two groups are calculated.
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Starting values based on CTT

The first approach is based on CTT which uses empirical probabilities to es-
timate item characteristics. This method is an updated and improved version
of the algorithm which was described in Section 1.5 and which is currently used
by the startNLR() function of the difNLR package. This newly proposed ap-
proach accounts for the variability of the matching criterion.

To explore average probabilities of the weakest and the strongest respondents,
we first split respondents into the three groups based on tertiles of the match-
ing criterion Xp. We then estimate the asymptotes: The estimate of the lower
asymptote ci for item i is calculated as the mean empirical probability of correct
answer to item i of those n(1) respondents who have their matching criterion Xp

lower than the average matching criterion of respondents from the group 1 (spec-
ified by the first tertile) X̄(1) minus the sample standard deviation of Xp divided
by 2, i.e.,

X̄(1) = 3
n

n
3∑︂

p=1
X(p), n(1) =

n∑︂
p=1

1[Xp<X(1)− SD(X)
2 ]

SD(X) =
⌜⃓⃓⎷ 1
n− 1

n∑︂
p=1

(︂
Xp − X̄

)︂2
,

ˆ︁ci = 1
n(1)

n∑︂
p=1

Ypi1[Xp<X(1)− SD(X)
2 ].

Analogously, the estimate of the upper asymptote di for item i is calculated as
the mean empirical probability of correct answer to item i of those n(3) who
have their matching criterion Xp larger than the average matching criterion of
respondents from the group 3 (specified by the third tertile) X̄(3) plus sample
standard deviation of Xp divided by 2, i.e.,

X̄(3) = 3
n

n∑︂
p= 2n

3 +1

X(p), n(3) =
n∑︂

p=1
1[Xp>X(3)+ SD(X)

2 ]

ˆ︁di = 1
n(3)

n∑︂
p=1

Ypi1[Xp>X(3)+ SD(X)
2 ].

The slope of the ICC bi1 for item i is estimated as a difference between mean
empirical probabilities of correct answer to item i of the groups 3 and 1 multiplied
by 4. Multiplication by 4 comes from the derivative of the logistic function in its
inflection point (see Section 1.1.1).

The intercept bi0 is estimated as follows: The center point between the two
asymptotes for item i is calculated Ẏ i = ˆ︁ci+ˆ︁di

2 and then we look for the level of the
matching criterion Xp, which would correspond to this empirical probability Ẏ i.
In more detail, we proceed as follows: First, the empirical probability Ẏ i is calcu-
lated. Second, we round the matching criterion to the one decimal place and we
calculate relevant empirical probabilities of correct answer to item i. Third, we
compute absolute distances between these empirical probabilities and the value
Ẏ i, while weighting them with division of proportions of the rounded matching
criterion Xp, i.e., we get larger values for the empirical values which are more
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distant from Ẏ i and for those which are calculated based on less observations.
Fourth, weighted distances are smoothed by accounting for the neighbor values
with the weight of 0.1. Fifth, we compute the values of the matching criterion
which give the minimal weighted and smoothed distance of empirical probabilities.
Sixth, we take minimum, respectively maximum, to which we add, respectively
subtract, sample standard deviation of the matching criterion divided by two.
Finally, we take an average value of the matching criterion which is in rage spec-
ified by these values. The ˆ︁bi0 is then specified as minus this value multiplied by
the estimate ˆ︁bi1.

The full syntax of the startCTT() function which computes starting values
based on CTT described here can be found in Appendix A.5.

Starting values using grid search

Another approach which we consider here is based on grid search. We start
with the starting values computed based on CTT as described above. Then we
create a 4 dimensional grid which covers values of item parameter estimates in
the neighbourhood of those specified by CTT method. For each combination of
parameters, the value of the log-likelihood function is calculated. The final item
estimate of set of parameters is then the one which corresponds to the maximum
value of the computed log-likelihoods values.

The full syntax of the startGRID() function can be found in Appendix A.6.

Comparison of approaches

In this part we directly compare both approaches to calculate starting values
in terms of precision in small simulation study accounting only for one group.
We evaluate their performance in sense of bias, i.e., the mean/median difference
between the starting values and the true values of parameters, in Mean Squared
Error (MSE), i.e., mean/median square difference between the starting values and
the true parameters, and in sense of whether their use leads to convergence issues
or not when applying four different estimation procedures – the nonlinear least
squares, the maximum likelihood, the EM algorithm, and the algorithm based on
parametric link function.

To generate data, we used the following parameters: The intercept b0 = 0 and
the slope b1 = 2. We considered several values for the asymptote parameters: c ∈
{0, 0.1, 0.2, 0.3} and d ∈ {0.7, 0.8, 0.9, 1}. The matching criterion was generated
from standard normal distribution. Binary responses were then generated from
the Bernoulli distribution with the calculated probabilities based on the nonlinear
model (1.2). Sample size was set to 500. Each scenario was replicated 1,000 times.

Results. Mean and median biases of both approaches were similar and close
to zero for all four parameters. Approach based on CTT yielded slightly more
precise starting values of parameters c, d, and b1 in terms of MSE, while grid
search provided more precise estimate of intercept parameter b0 (Table 1.5).

The percentage of crashed estimation procedures was similar in both ap-
proaches to calculating starting values. Slightly lower rate was observed for
the nonlinear least squares, the maximum likelihood method, and the algorithm
based on parametric link function when approach based on grid search was used,
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Table 1.5: Mean and median bias and MSE over all parameters choices and over
all methods for the two different approaches to calculate starting values – based
on CTT and based on grid search.

Method/parameter Bias MSE
Mean Median Mean Median

CTT
c 0.016 0.006 0.004 0.001
d −0.011 0.000 0.004 0.001
b0 −0.007 −0.008 0.310 0.136
b1 0.043 0.060 0.243 0.138

grid
c −0.008 0.000 0.005 0.001
d 0.007 0.000 0.005 0.001
b0 0.014 0.015 0.176 0.065
b1 0.140 0.093 0.403 0.155

while the EM algorithm benefited more from the method based on CTT (Ta-
ble 1.6). In total, when using the approach based on CTT, 0.297% of all estimat-
ing procedures crashed while for the grid search it was 0.250%.

Table 1.6: Percentage of crashed estimating procedures with respect to method
used to calculate starting values – based on CTT and based on grid search.

Method Crashed [%]
CTT

Nonlinear least squares 0.562
Maximum likelihood 0.188
EM algorithm 0.375
Parametric link function 0.062

grid
Nonlinear least squares 0.500
Maximum likelihood 0.062
EM algorithm 0.438
Parametric link function 0.000

To conclude, differences between the two approaches to calculate starting val-
ues were small in all four parameters c, d, b0, and b1 and also in all four estimation
methods. Since the initial run of the grid search is based on the CTT approach
and then it goes through four dimensional grid, it is clear that this method is
more computationally demanding. As it did not provide notably improved start-
ing values, we will further use approach based on CTT.
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1.6.2 Comparison of the estimation methods
To compare the four estimation procedures and to illustrate differences between
them in terms of precision, convergence status, and time consumption, small
simulation study is performed in this section.

Design of simulation study

Generation of the data. To generate data, we used the same parameters
as in illustrating implementation of the EM algorithm (see Section 1.4.3) and
of the algorithm based on parametric link function (see Section 1.4.4): b0 = 0,
b1 = 1, b2 = −1, b3 = 0.5, c = 0.2, cDIF = 0.1, d = 1, dDIF = −0.1. The matching
criterion was again generated from the standard normal distribution. Binary re-
sponses were generated from the Bernoulli distribution with the calculated prob-
abilities based on the nonlinear model (1.2), true parameters, and the matching
criterion variable. Sample size was set to 1,000 and 10,000, i.e., 500 and 5,000
per each group respectively. Each scenario was replicated 1,000 times.

Estimation methods and implementation. Four estimation methods
were considered: The nonlinear least squares with the sandwich estimator of
the asymptotic covariance matrix (1.15) using the nls() function and "port"
algorithm, the maximum likelihood estimation with the optim() function with
the "L-BFGS-B" algorithm, the EM algorithm as was shown in Section 1.4.3,
and the algorithm based on parametric link function as was described in Section
1.4.4. The maximum number of iterations was set to 2,000 for all methods and
convergence criterion was set to 10−6 where possible. For each simulation run,
the starting values were calculated using the startCTT() function and applied
for all four methods.

Simulation evaluation. To compare estimation methods, we first computed
mean and median number of iteration runs together with the convergence status
of the methods, i.e., percentage of converged simulation runs, of those which
crashed, and those which reached the maximum number of iterations without
convergence. We then calculated mean and median parameter estimates together
with the mean bias, i.e., mean difference between estimates and true values.
We also included model-based standard errors, i.e., mean of the standard errors
of the parameter estimates, and empirical standard deviations, i.e., standard
deviations of the parameter estimates. Finally, we measured time necessary to
complete the estimation process.

Results

Convergence status. All four methods had low percentage of iterations that
crashed (caused error when fitting). The highest rate was observed for the non-
linear least squares and sample size of 1,000, where it was 3.1%, followed by
the algorithm based on parametric link function with 1.9%. Both the maximum
likelihood method and the EM algorithm had no crashed simulation runs which
was also the case for the algorithm based on parametric link and sample size of
10,000 (Table 1.7). While the nonlinear least squares and the maximum likelihood
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estimation did not reach the maximum number of iterations in any simulation
runs, it was not the case for the EM algorithm where 21.8% and 31.3% of all
simulation runs ended after reaching this limit without convergence for sample
sizes of 1,000 and 10,000 respectively. Method based on parametric link function
reached the maximum limit of 2,000 iterations only in 0.2% of simulation runs
when smaller sample size was considered (Table 1.7).

Table 1.7: Convergence status and number of iterations for the four estimation
methods.

Method Convergence status [%] Number of iterations∗

Converged Crashed DNF Mean Median
n = 1, 000

NLS 96.90 3.10 0.00 13.00 / 13.00 11.00 / 11.00
MLE 100.00 0.00 0.00 88.64 / 88.64 80.00 / 80.00
EM 78.20 0.00 21.80 1065.15 / 804.54 972.00 / 737.00
PLF 97.90 1.90 0.20 59.87 / 55.91 32.00 / 32.00

n = 10, 000
NLS 99.80 0.20 0.00 6.34 / 6.34 6.00 / 6.00
MLE 100.00 0.00 0.00 77.38 / 77.38 77.00 / 77.00
EM 68.70 0.00 31.30 1430.20 / 1170.60 1449.00 / 1148.00
PLF 100.00 0.00 0.00 24.42 / 24.42 23.00 / 23.00

Note. ∗ the first value calculated from all simulation runs, the second value calculated
from converged simulation runs only, DNF = did not finish, NLS = nonlinear least
squares, MLE = maximum likelihood estimation, EM = expectation-maximization al-
gorithm, PLF = algorithm based on parametric link function.

Number of iterations. Methods also differed in a number of iterations until
the estimation process ended. The EM algorithm yielded the largest mean and
median number of iterations which was overestimated by simulation runs which
did not finish. However, both the mean and median number of iterations remained
on a very high level even in case when only successfully converged simulation runs
were taken into account and when sample size increased. The least number of
iterations till convergence was needed for the nonlinear least squares followed by
the algorithm based on parametric method (Table 1.7).

Parameter estimates. Estimation methods seemed to be sensitive to spec-
ification of the starting values and although the estimation process converged,
the estimates were far from the true parameters, especially for the smaller sam-
ple size of 1,000. These extreme estimates have great impact especially on mean
values, bias, model-based standard errors, and empirical standard deviations (Ta-
ble A.4). This was especially the case for the maximum likelihood method and
for the EM algorithm. Therefore, estimates below the 1st and above the 99th

percentiles of each parameter were removed from simulations for sample size of
1,000 and evaluating statistics were based on remaining values only.
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For sample size of 1,000, the algorithm based on parametric link function
yielded the best precision in terms of the mean bias for all four parameters b0,
b1, b2, and b3, followed by the EM algorithm and maximum likelihood method
(left part of Table 1.8). The only difference can be seen in parameter b3, where
the second most precise estimation was performed by the nonlinear least squares.
The model-based standard errors were closest to the empirical standard deviations
when the algorithm based on parametric link function was used in parameters
b0, b2, and b3. For the parameter b1 it was by the nonlinear least squares and
the maximum likelihood method.

For the smaller sample size, the mean and median estimates were close to
the true values of parameters c, cDIF, d, and dDIF for all four estimation meth-
ods and the differences between methods were small (right part of Table 1.8).
The most precise estimates of parameters c and cDIF were obtained with the non-
linear least squares. The least biased estimate of parameter d was provided by
the maximum likelihood while for parameter dDIF it was by the EM algorithm.
The model-based standard errors were closest to the empirical standard devia-
tions when the nonlinear least squares were applied for all four parameters.

For the larger sample size of 10,000, all parameter estimates were less bi-
ased and the model-based standard errors were closer to the empirical standard
deviations. Differences between estimation methods were small (Table 1.9).

Time consumption. The mean and median time to finish estimating proce-
dure varied among methods. The nonlinear least square approach was the fastest
method with the mean/median time of 0.103/0.095 seconds (range 0.001–0.477)
for smaller sample size and 0.447/0.440 seconds (range 0.010–1.054) for larger
sample size, followed by the maximum likelihood method with the times of
0.318/0.293 seconds (0.132–1.419) and 2.134/2.116 seconds (1.150–3.528). For
the algorithm based on parametric link function the time consumption was higher
but remained on user-friendly level of 1.711/0.878 seconds (0.004–142.472) for
smaller sample size and of 5.387/4.861 seconds (2.128–28.804) for larger sam-
ple size. On the other hand, the EM algorithm was very slow with the average
time of 19.518/18.749 seconds (0.170–52.818) for sample size of 1,000 and even
260.489/262.128 seconds (15.452–440.295) for sample size of 10,000, which was
closely connected to the number of iterations necessary till the estimation ended.

1.6.3 Summary
In this part we performed two small simulation studies. The first was intended
to compare two approaches to calculate starting values for the estimation pro-
cedures. This included approach based on CTT and approach which includes
grid search to evaluate the best estimate. Due to time consumption of the grid
search and not significantly improved starting values we decided to further use
the approach based on CTT.

The second simulation study was performed to illustrate differences between
the four estimation methods in the nonlinear model (1.1): The nonlinear least
squares, the maximum likelihood method, the EM algorithm, and the newly pro-
posed algorithm based on parametric link function. It seems that estimation
procedures are sensitive to specification of starting values especially for smaller
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Table 1.8: Mean and median parameter estimates with the bias, model based
standard error, and empirical standard deviation for n = 1, 000.

NLS MLE EM PLF NLS MLE EM PLF
b0 c

Count 946 975 977 972 Count 960 987 989 973
Mean 0.063 0.013 0.010 0.008 Mean 0.216 0.218 0.223 0.221
Median 0.101 0.036 0.034 0.026 Median 0.237 0.239 0.244 0.247
Bias 0.063 0.013 0.010 0.008 Bias 0.016 0.018 0.023 0.021
MBSE 0.632 0.621 0.611 0.612 MBSE 0.181 0.206 0.191 0.198
ESD 0.509 0.515 0.508 0.516 ESD 0.138 0.137 0.131 0.132

b1 cDIF
Count 936 977 985 972 Count 951 972 982 965
Mean 1.447 1.411 1.408 1.392 Mean 0.073 0.071 0.069 0.065
Median 1.258 1.238 1.255 1.245 Median 0.066 0.065 0.065 0.056
Bias 0.447 0.411 0.408 0.392 Bias −0.027 −0.029 −0.031 −0.035
MBSE 0.862 0.799 0.784 0.780 MBSE 0.217 0.239 0.223 0.232
ESD 0.710 0.647 0.609 0.557 ESD 0.163 0.161 0.156 0.157

b2 d
Count 954 970 972 974 Count 955 990 990 975
Mean −1.378 −1.342 −1.340 −1.197 Mean 0.942 0.951 0.949 0.950
Median −1.218 −1.202 −1.194 −1.146 Median 0.965 0.994 0.979 0.983
Bias −0.378 −0.342 −0.340 −0.197 Bias −0.058 −0.049 −0.051 −0.050
MBSE 1.322 1.221 1.184 1.116 MBSE 0.114 0.147 0.141 0.145
ESD 1.441 1.378 1.456 1.143 ESD 0.064 0.062 0.060 0.060

b3 dDIF
Count 948 971 974 977 Count 947 975 979 969
Mean 0.790 0.804 0.818 0.589 Mean −0.043 −0.045 −0.047 −0.042
Median 0.451 0.451 0.447 0.424 Median −0.020 −0.005 −0.024 −0.012
Bias 0.290 0.304 0.318 0.089 Bias 0.057 0.055 0.053 0.058
MBSE 2.026 1.765 1.713 1.663 MBSE 0.208 0.255 0.241 0.255
ESD 2.363 2.330 2.421 1.909 ESD 0.112 0.111 0.109 0.108

Note. NLS = nonlinear least squares, MLE = maximum likelihood estimation, EM =
expectation-maximization algorithm, PLF = method based on parametric link function,
Count = number of parameter estimates excluding 1st and 99th percentile and crashed
simulation runs, MBSE = model based standard error, ESD = empirical standard
deviation.

sample sizes. While the estimation process converged, sometimes the final es-
timates were far from the true parameters, which was especially the case for
the maximum likelihood method and the EM algorithm. With the increasing
sample size, these issues disappeared and the differences between the methods
were negligible.

The second simulation study suggested that all four methods similarly pre-
cisely estimated asymptote parameters for the both group, while the nonlinear
least squares performed slightly better than other methods when smaller sample
size was considered. On the other hand, the algorithm based on parametric link
function seemed to slightly outperform other methods when estimating parame-
ters b0, b1, b2, and b3 for smaller sample size.

It should be noted that the second simulation study was performed rather
to illustrate estimating procedures than to offer their complex comparison. To
compare estimating methods in more detail, simulation study including several
sets of parameters and more levels of sample size should be designed.
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Table 1.9: Mean and median parameter estimates with the bias, model based
standard error, and empirical standard deviation for n = 10, 000.

NLS MLE EM PLF NLS MLE EM PLF
b0 c

Count 998 1000 1000 1000 Count 998 1000 1000 1000
Mean 0.023 0.007 0.006 −0.007 Mean 0.206 0.209 0.212 0.218
Median 0.023 0.005 0.005 −0.009 Median 0.210 0.212 0.215 0.219
Bias 0.023 0.007 0.006 −0.007 Bias 0.006 0.009 0.012 0.018
MBSE 0.164 0.161 0.161 0.161 MBSE 0.064 0.064 0.062 0.061
ESD 0.160 0.159 0.158 0.147 ESD 0.056 0.054 0.052 0.048

b1 cDIF
Count 998 1000 1000 1000 Count 998 1000 1000 1000
Mean 1.066 1.068 1.079 1.090 Mean 0.092 0.089 0.086 0.080
Median 1.042 1.052 1.065 1.070 Median 0.090 0.086 0.084 0.079
Bias 0.066 0.068 0.079 0.090 Bias −0.008 −0.011 −0.014 −0.020
MBSE 0.193 0.191 0.191 0.194 MBSE 0.070 0.070 0.068 0.067
ESD 0.151 0.139 0.136 0.138 ESD 0.061 0.060 0.057 0.054

b2 d
Count 998 1000 1000 1000 Count 998 1000 1000 1000
Mean −1.040 −1.025 −1.024 −0.999 Mean 0.982 0.985 0.982 0.981
Median −1.039 −1.015 −1.016 −0.993 Median 1.000 1.000 0.991 0.995
Bias −0.040 −0.025 −0.024 0.001 Bias −0.018 −0.015 −0.018 −0.019
MBSE 0.256 0.252 0.252 0.253 MBSE 0.046 0.047 0.046 0.046
ESD 0.249 0.250 0.249 0.244 ESD 0.025 0.023 0.022 0.025

b3 dDIF
Count 998 1000 1000 1000 Count 998 1000 1000 1000
Mean 0.474 0.465 0.459 0.454 Mean −0.078 −0.079 −0.078 −0.080
Median 0.452 0.448 0.439 0.444 Median −0.083 −0.085 −0.081 −0.084
Bias −0.026 −0.035 −0.041 −0.046 Bias 0.022 0.021 0.022 0.020
MBSE 0.349 0.339 0.338 0.343 MBSE 0.072 0.073 0.071 0.071
ESD 0.311 0.304 0.293 0.287 ESD 0.057 0.057 0.053 0.054

Note. NLS = nonlinear least squares, MLE = maximum likelihood estimation, EM =
expectation-maximization algorithm, PLF = method based on parametric link function,
Count = number of parameter estimates excluding crashed simulation runs, MBSE =
model based standard error, ESD = empirical standard deviation.
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2. Generalized logistic regression
models for polytomous items
The logistic regression procedure which estimates the probability of the correct
answer can be extended to estimate the probability of partial credit scores or
option choices. This chapter is adapted from Hladká and Martinková (2020)
and we review generalized logistic regression models for DIF and DDF detection
among polytomous items. In Section 2.1, we introduce group-specific cumulative
logit and adjacent category logit models for DIF detection among ordinal data.
In Section 2.2, we introduce group-specific multinomial model for DDF detection
among nominal data. In both sections, besides the model specification, we newly
describe in more detail the maximum likelihood method for estimation of item
parameters and related DIF and DDF detection procedures. Finally, we show
implementation of the models within the R software (R Core Team, 2020) and
the difNLR package as was described in Hladká and Martinková (2020).

2.1 Group-specific models for ordinal items
When the responses are ordinal, the item response patterns can be described
by the cumulative logit model (see, e.g., Agresti, 2010, Section 7.2) or by the ad-
jacent category logit model (see, e.g., Agresti, 2010, Section 7.4). Both models
can be naturally used for DIF detection by introducing a group membership
variable Gp and its interaction with the matching criterion Xp.

2.1.1 Cumulative logit model
Probably the most popular logit model which reflects an ordinal nature of data
is the cumulative logit model (Agresti, 2010, Section 7.2). This model can be
used to describe functioning of the items based on observed respondent’s ability,
group membership variable, and their mutual interaction.

In contrast to Chapter 1, here we start with the classical intercept-slope pa-
rametrization, as it is more convenient here. Considering Ki +1 ordered outcome
categories for the item i, i.e., Ypi ∈ {0, 1, . . . , Ki}, the probability of gaining at
least k = 1, . . . , Ki points on item i by respondent p is given by the logit model
for DIF detection as

P(Ypi ≥ k|Xp, Gp) = eβi0k+βi1Xp+βi2Gp+βi3Xp:Gp

1 + eβi0k+βi1Xp+βi2Gp+βi3Xp:Gp
, (2.1)

for k = 1, . . . , Ki. TheKi parameters βi0k are k category-specific intercepts within
item i, ordered by the category index k, i.e., βi01 < βi02 < · · · < βi0Ki

. The slope
parameter βi1 is connected to the effect of the observed ability Xp on probability
of gaining at least k = 1, . . . , Ki points in item i and it is assumed to be the same
for all categories k = 1, . . . , Ki. The parameter βi2 is related to the effect of group
membership. Finally, the parameter βi3 is associated with the effect of interaction
between the matching criterion Xp and the group membership variable Gp. In
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total, we end up with Ki + 3 parameters to estimate in item i. Note that

P(Ypi ≥ 0|Xp, Gp) = 1, ∀i, ∀p,

which means that no parameters are estimated for category k = 0.
The category probability, i.e., the probability of gaining exactly k points

in item i, is then calculated as a difference between cumulative probabilities of
the two adjacent categories:

P(Ypi = k|Xp, Gp) = P(Ypi ≥ k|Xp, Gp) − P(Ypi ≥ k + 1|Xp, Gp),

for categories k = 0, . . . , Ki − 1, while

P(Ypi = Ki|Xp, Gp) = P(Ypi ≥ Ki|Xp, Gp).

Parametrization. Analogously as for the nonlinear model (1.1), the group-
specific cumulative logit model (2.1) can be defined using the IRT notation with
the difficulty and discrimination parameters:

P(Ypi ≥ k|Xp, Gp) = eaiGp (Xp−bikGp )

1 + eaiGp (Xp−bikGp ) . (2.2)

The 2Ki parameters bikGp = bik + bikDIFGp, where Gp ∈ {0, 1} and k = 1, . . . , Ki,
indicate the level of the matching criterion Xp for which the respondents from
group Gp have probability of 0.5 to gain at least k points in item i. The parameter
bikDIF can be interpreted as the difference in difficulty of item i between the focal
and the reference group for category k = 1, . . . , Ki. The parameter bik can be seen
as category-k-specific difficulty of item i for the reference group. The two discrim-
ination parameters aiGp = ai + aiDIFGp describe the slope of the logistic curve of
the cumulative probabilities for the two groups, however, they are assumed to be
the same for all categories k = 1, . . . , Ki. In total, the group-specific cumulative
logit model using the IRT parametrization includes 2Ki +2 parameters for item i,
while only Ki + 3 are freely estimated as described below.

Similarly as for the nonlinear model (1.1), the respondent’s p ability Xp can be
described by their standardized total test score or other observed ability variable.
Therefore, the cumulative logit model (2.2) can be seen as a proxy to a graded
response IRT model (Samejima, 1969) or more precisely, its group-specific exten-
sion.

Mutual relationship between the parameters using the intercept-slope notation
(2.1) and the parameters using the IRT notation (2.2) is then given as follows:

βi0k = − aibik,

βi1 = ai,

βi2 = − aiDIFbik − aibikDIF − aiDIFbikDIF,

βi3 = aiDIF.

(2.3)

In other words, for the IRT parametrization we have

bik = − βi0k

βi1
,
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bikDIF = βi1βi2 − βi0kβi3

βi1 (βi1 + βi3)
,

therefore both sets bik and bikDIF depend on category k as they include category-
specific intercept βi0k, which results in more parameters in the IRT notation
than in the classical intercept-slope parametrization. In what follows, we work
with the classical intercept-slope parametrization as it is used in estimation and
implementation. To provide item parameters in the IRT notation, the Ki + 3
parameters are estimated using the classical intercept-slope parametrization and
the delta method (Doob, 1935) is applied to calculate new parameter values and
their standard errors.

Estimation and asymptotic properties

The natural way how to estimate item parameters is to use the maximum like-
lihood method. For item i and respondent p, let (Ypi0, . . . , YpiKi

) be the binary
indicators of the response patterns defined as Ypik = 1 when respondent p gained
k points in item i and Ypik = 0 otherwise. The likelihood function is then

Li =
n∏︂

p=1

Ki∏︂
k=0

P(Ypi = k|Xp, Gp)Ypik

=
n∏︂

p=1

Ki−1∏︂
k=0

[P(Ypi ≥ k|Xp, Gp) − P(Ypi ≥ k + 1|Xp, Gp)]Ypik ,

where P(Ypi ≥ k|Xp, Gp) is given by (2.1). The log-likelihood function takes
the following form:

li =
n∑︂

p=1

Ki−1∑︂
k=0

Ypik log (P(Ypi ≥ k|Xp, Gp) − P(Ypi ≥ k + 1|Xp, Gp))

=
n∑︂

p=1

Ki−1∑︂
k=0

Ypik log
(︄

eβi0k+βi1Xp+βi2Gp+βi3Xp:Gp

1 + eβi0k+βi1Xp+βi2Gp+βi3Xp:Gp

− eβi0(k+1)+βi1Xp+βi2Gp+βi3Xp:Gp

1 + eβi0(k+1)+βi1Xp+βi2Gp+βi3Xp:Gp

)︄
,

which can be shown to be a concave function (Pratt, 1981).
Parameter estimates are then obtained as a solution of estimating equations

∂li
∂γij

= 0, j = 1, . . . , Ki + 3, where γi = (βi01, . . . , βi0Ki
, βi1, βi2, βi3) is the set of

Ki +3 parameters. It is easy to see that the solution does not have a closed form.
Therefore, numerical approaches, such as iteratively re-weighted least squares or
Fisher scoring algorithm (Bliss, 1935), need to be applied.

Maximum likelihood estimators of the item parameters have pleasant proper-
ties such as consistency and asymptotic normality. Estimated asymptotic covari-
ance matrix is given by the inverse of the Hessian matrix.

2.1.2 Adjacent category logit model
Another option how to model ordinal group-specific item responses and to test
for DIF is the adjacent category logit model (see, e.g., Agresti, 2010, Section
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7.4). This model focuses on moving from category k − 1 to category k and
models their log odds by a linear predictor. In other words, for Ki + 1 outcome
ordinal categories we have

log P(Ypi = k|Xp, Gp)
P(Ypi = k − 1|Xp, Gp) = βi0k + βi1Xp + βi2Gp + βi3Xp : Gp,

where k = 1, . . . , Ki and category-specific intercepts are ordered by the category
index k, i.e., βi01 < βi02 < · · · < βi0Ki

. Using recursive formula, it can be shown
that the category probability takes the following form:

P(Ypi = k|Xp, Gp) = e
∑︁k

l=0(βi0l+βi1Xp+βi2Gp+βi3Xp:Gp)∑︁Ki
j=0 e

∑︁j

l=0(βi0l+βi1Xp+βi2Gp+βi3Xp:Gp)
, (2.4)

where k = 0, . . . , Ki and the terms for k = 0 are set to zero, i.e., βi00 + βi1Xp +
βi2Gp + βi3Xp : Gp = 0, and hence

P(Ypi = 0|Xp, Gp) = 1∑︁Ki
j=0 e

∑︁j

l=0(βi0l+βi1Xp+βi2Gp+βi3Xp:Gp)
.

The Ki parameters βi0k are the intercepts for category k = 1, . . . , Ki within
item i. The slope parameter βi1 is then connected with the effect of the matching
criterion Xp on probability of gaining k points in item i and it is assumed to be
the same for all categories k = 1, . . . , Ki. The parameter βi2 is associated with
the effect of group membership. Finally, the parameter βi3 is related to the effect
of interaction between the matching criterion Xp and the group membership
variable Gp. In summary, we have Ki + 3 parameters in total to estimate for
item i.

Parametrization. Similarly as for the nonlinear model (1.1) and the group-
specific cumulative logit model detection (2.2), the adjacent category logit model
for DIF detection (2.4) can be defined using the IRT notation:

P(Ypi = k|Xp, Gp) = e
∑︁k

l=0 aiGp(Xp−bilGp)∑︁Ki
j=0 e

∑︁j

l=0 aiGp(Xp−bilGp) , (2.5)

for k = 1, . . . , Ki. The 2Ki parameters bikGp = bik + bikDIFGp, Gp ∈ {0, 1}, in-
dicate the level of the matching criterion (or other observed ability) for which
the respondents from group Gp have the same probability to gain k − 1 and k
points. In other words, bikGp are group-specific locations of the response prob-
ability intersections which can be interpreted as levels of the matching criterion
required to transition from category k− 1 to category k. The two discrimination
parameters aiGp = ai + aiDIFGp denote group-specific item slopes which are as-
sumed to be the same for all categories k = 1, . . . , Ki. In total, the group-specific
adjacent category logit model using the IRT notation includes 2Ki +2 parameters
for item i. Analogously as for the cumulative logit model, the classical intercept-
slope notation is used for estimation and implementation and Ki + 3 parameters
are freely estimated. Mutual relationship between the parameters using the clas-
sical intercept-slope notation (2.4) and those using the notation based on IRT
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(2.5) is the same as for the cumulative logit model as stated in (2.3). Therefore,
parameters from the IRT notation are calculated using (2.3) and the standard
errors are obtained using the delta method (Doob, 1935).

Similarly as for the previous models, the matching criterion Xp can be de-
scribed by respondent’s standardized total test score or other observed ability
variable. Therefore, the adjacent category logit model (2.5) can be seen as
a proxy to the generalized partial credit IRT model (Muraki, 1992), extended
to the group-specific version for DIF detection.

Estimation and asymptotic properties

Let again (Ypi0, . . . , YpiKi
) be binary indicators of the responses to item i by

respondent p, with Ypik = 1 when respondent p gained k points in item i and
Ypik = 0 otherwise. The likelihood function is

Li =
n∏︂

p=1

Ki∏︂
k=0

P(Ypi = k|Xp, Gp)Ypik ,

where P(Ypi = k|Xp, Gp) is given by (2.4). The log-likelihood function then takes
the following form:

li =
n∑︂

p=1

Ki∑︂
k=0

Ypik log (P(Ypi = k|Xp, Gp))

=
n∑︂

p=1

Ki∑︂
k=0

Ypik log
⎛⎝ e

∑︁k

l=0(βi0l+βi1Xp+βi2Gp+βi3Xp:Gp)∑︁Ki
j=0 e

∑︁j

l=0(βi0l+βi1Xp+βi2Gp+βi3Xp:Gp)

⎞⎠
=

n∑︂
p=1

Ki∑︂
k=0

Ypik

[︄
k∑︂

l=0
(βi0l + βi1Xp + βi2Gp + βi3Xp : Gp)

− log
⎛⎝ Ki∑︂

j=0
e
∑︁j

l=0(βi0l+βi1Xp+βi2Gp+βi3Xp:Gp)

⎞⎠⎤⎦
=

n∑︂
p=1

Ki∑︂
k=0

[︄
Ypikk (βi1Xp + βi2Gp + βi3Xp : Gp) + Ypik

k∑︂
l=1

βi0l

− log
⎛⎝ Ki∑︂

j=0
e
∑︁j

l=0(βi0l+βi1Xp+βi2Gp+βi3Xp:Gp)

⎞⎠⎤⎦
=

n∑︂
p=1

(βi1Xp + βi2Gp + βi3Xp : Gp)
Ki∑︂

k=0
Ypikk −

n∑︂
p=1

Ki∑︂
k=0

Ypik

k∑︂
l=0

βi0l

−
n∑︂

p=1

Ki∑︂
k=0

log
⎛⎝ Ki∑︂

j=0
e
∑︁j

l=0(βi0l+βi1Xp+βi2Gp+βi3Xp:Gp)

⎞⎠ .
Analogously as in Section 2.1.1, parameter estimates are obtained as a so-

lution of estimating equations ∂li
∂γij

= 0, for j = 1, . . . , Ki + 3, where γi =
(βi01, . . . , βi0Ki

, βi1, βi2, βi3) is set of Ki + 3 parameters of item i. Again, the so-
lution does not have a closed form and numerical approaches, such as iteratively
re-weighted least squares or Fisher scoring algorithm, need to be applied.
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As was noted before, also in this case, the maximum likelihood estimators of
the item parameters have pleasant properties including consistency and asymp-
totic normality. Asymptotic covariance matrix and standard errors can be esti-
mated using the inverse of the Hessian matrix.

2.1.3 DIF detection

The natural way of testing for DIF using ordinal regression models discussed in
this section is to use the likelihood ratio test. Analogously as described in Section
1.3, the likelihood-ratio test measures difference in the log-likelihood li1 of model
Mi1 and the log-likelihood li0 of its submodel Mi0 for the item i. The submodel
Mi0 sets some group-specific parameters, i.e., βi2 and/or βi3, to zeros, while these
parameters are freely estimated in the larger model Mi1 . The corresponding test
statistic has the following form:

LRi = −2 (li0 − li1) .

The LRi statistic asymptotically has χ2-distribution under the submodel Mi0:

LRi
D−→

n→∞
χ2(dfi1 − dfi0), (2.6)

where dfi1 and dfi0 are numbers of parameters in the larger model Mi1 and its
submodel Mi0.

2.1.4 Implementation

Group-specific logit models for DIF detection among ordinal responses (2.2) and
(2.5) are implemented in the difNLR R package via function difORD(). The full
syntax of the difORD() function is

difORD(
Data, group, focal.name, model = "adjacent", type = "both",
match = "zscore", anchor = NULL, purify = FALSE, nrIter = 10,
p.adjust.method = "none", parametrization = "irt", alpha = 0.05

)

Description of the arguments of the function can be found in Table A.2 and we
describe some of them here in more detail. To detect DIF among ordinal data
using the difORD() function, the user needs to provide four pieces of information:
1. the ordinal data set, 2. the group membership vector, 3. the indication
of the focal group, and 4. the model to be fitted.

Data. Data takes a similar format as used for the difNLR() function (see
Section 1.4), however, rows represent ordinaly scored respondents’ answers in-
stead of dichotomous, such as Likert scale 1–5, represented by numerical values.
Specification of the group and focal.name arguments remains the same.
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Data generation. Data generator genNLR() is able to generate ordinal data
using the adjacent category logit model (2.5) by setting itemtype = "ordinal".
For polytomous items (ordinal or nominal), sets of parameters a and b have
the form of matrices as it was the case for dichotomous data but each column
now represents parameters of partial scores (or distractors). For example, to
generate an item with 4 partial scores (i.e., 0–3), the user needs to provide 3
sets of discrimination and difficulty parameters. As was noted in models spec-
ifications, the parameters for minimal partial scores (i.e., 0; or correct answer
in the case of nominal data) do not need to be specified because their probabili-
ties are calculated as a complement to the sums of the partial scores probabilities.

To illustrate usage of the difORD() function, we created an example ordinal
dataset with 5 items, each scored with a range of 0–4. We first generated dis-
crimination parameters a and difficulties b from a uniform distribution for partial
scores k = 1, . . . , 4 for each item. In an adjacent category logit model (2.5),
parameter bik corresponds to an ability level for which the response categories k
and k−1 intersect in item i. For this reason and to create well-functioning items,
parameters bik are sorted so that bik < bi(k+1). The parameters are set the same
for both the reference and the focal group.

set.seed(42)
# discrimination
a <- matrix(rep(runif(5, 0.25, 1), 8), ncol = 8)
# difficulty
b <- t(sapply(1:5, function(i) rep(sort(runif(4, -1, 1)), 2)))

For the first two items we introduce uniform and non-uniform DIF respectively.

b[1, 5:8] <- b[1, 5:8] + 0.1
a[2, 5:8] <- a[2, 5:8] - 0.2

Using parameters a and b of the adjacent category logit model, we generate ordi-
nal data with a total sample size of 1,000 (500 observations per group). The first
5 columns of dataset DataORD represent ordinaly scored items, while the last
column represents a group membership variable.

DataORD <- genNLR(N = 1000, itemtype = "ordinal", a = a, b = b)
summary(DataORD)
Item1 Item2 Item3 Item4 Item5 group
0:488 0:376 0:417 0:530 0:556 Min. :0.0
1:229 1:237 1:331 1:226 1:253 1st Qu.:0.0
2:150 2:195 2:170 2:129 2:123 Median :0.5
3: 93 3:114 3: 71 3: 83 3: 47 Mean :0.5
4: 40 4: 78 4: 11 4: 32 4: 21 3rd Qu.:1.0

Max. :1.0

Model. The last input of the difORD() function which needs to be specified is
model. It offers two possibilities. With an option model = "cumulative" the cu-
mulative logit model (2.2) is fitted, while with an option model = "adjacent"
(default) DIF detection is performed using the adjacent category logit model
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(2.5). The parameters for both models are estimated via vglm() function from
the VGAM package (Yee, 2010) using the maximum likelihood estimation with
the iteratively re-weighted least squares algorithm.

DIF detection with the cumulative logit model

In this part we exemplify usage of the difORD() function to fit the group-specific
cumulative logit model among ordinal data and to test for DIF. The group ar-
gument is introduced here by specifying the name of the group membership vari-
able in the DataORD dataset, i.e., group = "group". Knowledge is estimated as
a standardized total score, i.e., standardized sum of all item scores.

(fit5 <- difORD(DataORD, group = "group", focal.name = 1,
model = "cumulative"))

Detection of both types of Differential Item
Functioning for ordinal data using cumulative logit
regression model

Likelihood-ratio Chi-square statistics

Item purification was not applied
No p-value adjustment for multiple comparisons

Chisq-value P-value
Item1 7.4263 0.0244 *
Item2 13.4267 0.0012 **
Item3 0.6805 0.7116
Item4 5.6662 0.0588 .
Item5 2.7916 0.2476

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Items detected as DIF items:
Item1
Item2

Output provides test statistics for the likelihood ratio test (2.6), corresponding p-
values, and the set of items which were detected as functioning differently. Items
1 and 2 are correctly identified as DIF items.

Similarly as was shown for the difNLR() function, the ICCs can be imaged
with the plot() method. Besides the ICCs, the method plot() for the cumu-
lative logit model also offers the plot of item cumulative probabilities. This
can be achieved using plot.type = "cumulative", while with plot.type =
"category" the ICCs are shown. The plot of cumulative probabilities shows
only 4 partial scores and does not show the cumulative probability of P(Ypi ≥ 0)
since it is always equal to 1. Note that category probability of the highest score
corresponds to its cumulative probability (Figure 2.1).

plot(fit5, item = "Item1", plot.type = "cumulative")
plot(fit5, item = "Item1", plot.type = "category")

80

https://CRAN.R-project.org/package=VGAM


Figure 2.1: Cumulative probabilities and the ICCs of item 1 under the cumulative
logit model.

DIF detection with adjacent logit model

We illustrate here the fitting of the adjacent category logit model for DIF de-
tection using the difORD() function. The group argument is now introduced
by specifying the identifier of a group membership variable in Data (i.e., group
= 6).

(fit6 <- difORD(DataORD, group = 6, focal.name = 1,
model = "adjacent"))

Detection of both types of Differential Item
Functioning for ordinal data using adjacent category
logit model

Likelihood-ratio Chi-square statistics

Item purification was not applied
No p-value adjustment for multiple comparisons

Chisq-value P-value
Item1 8.9024 0.0117 *
Item2 12.9198 0.0016 **
Item3 1.0313 0.5971
Item4 4.3545 0.1134
Item5 2.3809 0.3041

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Items detected as DIF items:
Item1
Item2

Output again provides test statistics for the likelihood ratio test, corresponding p-
values, and the set of items which were detected as functioning differently. Items
1 and 2 are correctly identified as DIF items. The ICCs can again be rendered
using the plot() method (Figure 2.2).

plot(fit6, item = fit6$DIFitems)
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Figure 2.2: The ICCs of DIF items with the adjacent category logit model.

Common features

The difORD() function offers the possibility to specify parametrization of the
item parameters using an argument parametrization. By default, the IRT
parametrization as stated in (2.2) and (2.5) is utilized using parametrization
= "irt", but the classical intercept-slope parametrization (parametrization =
"classic") as stated in (2.1) and (2.4) may be applied, i.e., βi0k + βi1Xp +
βi2Gp + βi3Xp : Gp instead of aiGp(Xp − bikGp). The DIF detection is the same
as with the IRT parametrization, the only difference can be found in parameter
estimates and estimates of their standard errors:

fit6a <- difORD(DataORD, group = 6, focal.name = 1, model = "adjacent",
parametrization = "classic")

# coefficients with IRT parametrization
round(coef(fit6, SE = TRUE)[[1]], 3)

b1 b2 b3 b4 a
estimate 0.013 0.603 1.500 2.500 1.776
SE 0.064 0.073 0.094 0.141 0.114

bDIF1 bDIF2 bDIF3 bDIF4 aDIF
estimate -0.042 -0.121 -0.240 -0.374 0.273
SE 0.058 0.055 0.081 0.130 0.115
# coefficients with classic intercept-slope parametrization
round(coef(fit6a, SE = TRUE)[[1]], 3)
(Interc):1 (Interc):2 (Interc):3 (Interc):4 x group x:group
estimate -0.023 -1.070 -2.664 -4.441
SE 0.114 0.141 0.212 0.316

x group x:group
estimate 1.776 0.082 0.273
SE 0.114 0.109 0.115

Note that estimated discrimination for the reference group (parameter a) corre-
sponds to the effect of the matching criterion x, and in both cases their value is
1.776 for item 1. The same holds for the difference in discrimination and the effect
of interaction between the matching criterion and the group membership variable.

Similarly to the difNLR() function presented in Section 1.4.1, the difORD()
function also offers fit measures provided by AIC(), BIC(), and logLik() S3
methods. Function difORD() further provides item purification via an argument
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purify = TRUE or corrections for multiple comparisons of user’s choice specified
via the argument p.adjust.method (see also Chapter 4).

2.2 Group-specific model for nominal items
When responses are nominal (e.g., multiple choice), DDF detection can be per-
formed with the multinomial model, which is a baseline category logit model
(see, e.g., Agresti, 2010, Section 7.1). Considering that k = 0, . . . , Ki possible
option choices are offered, with k = 0 being the correct answer and other ones
distractors, the multinomial model pairs each response category with a baseline
category (for example, with the correct answer in case of multiple-choice items):

log P(Ypi = k|Xp, Gp)
P(Ypi = 0|Xp, Gp) = βi0k + βi1kXp + βi2kGp + βi3kXp : Gp,

where k = 1, . . . , Ki. The Ki parameters βi0k are the intercepts for category
k within item i. The Ki parameters βi1k are the slopes for category k withing
item i. The Ki parameters βi2k are associated with the effect of group membership
on probability of selecting option k, while the Ki parameters βi3k are related to
the effect of category-specific interaction between this group membership variable
and the matching criterion Xp. In contrast to ordinal models, all parameters
are category-specific. Therefore, the group-specific multinomial model for DDF
detection includes 4Ki item parameters in total.

Using recursive formula, it can be shown that the probability of choosing
distractor k is given by

P(Ypi = k|Xp, Gp) = eβi0k+βi1kXp+βi2kGp+βi3kXp:Gp∑︁Ki
l=0 e

βi0l+βi1lXp+βi2lGp+βi3lXp:Gp
, (2.7)

while for the correct answer k = 0 the parameters are set to zero, i.e., βi00 +
βi10Xp + βi20Gp + βi30Xp : Gp = 0, and thus

P(Ypi = 0|Xp, Gp) = 1∑︁Ki
l=0 e

βi0l+βi1lXp+βi2lGp+βi3lXp:Gp
.

Parametrization. Similarly as before, reparametrization using the IRT no-
tation can be applied:

P(Ypi = k|Xp, Gp) = eaikGp (Xp−bikGp )∑︁Ki
l=0 e

ailGp (Xp−bilGp ) , (2.8)

for k = 1, . . . , Ki. The 2Ki parameters bikGp = bik + bikDIFGp, Gp ∈ {0, 1},
are group-specific locations of the response probability curves intersections with
the response probability curve of the baseline category, i.e., the probability curve
of the correct answer. The 2Ki parameters aikGp = aik+aikDIFGp, Gp ∈ {0, 1}, are
group-specific slopes of the category probabilities. Mutual relationship between
parameters using the classical intercept-slope notation (2.7) and the notation
based on IRT (2.8) is similar as for the group-specific ordinal models for DIF
detection in (2.3), however, now all the parameters are category-specific. As
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before, we will further stick with the classical intercept-slope parametrization as
it is more convenient for estimation and implementation, noting that parameters
using the IRT notation together with standard errors can be again obtained with
the delta method (Doob, 1935).

2.2.1 Estimation and asymptotic properties
For item i and respondent p, let (Ypi0, . . . , YpiK) be binary indicators of the re-
sponses defined as Ypik = 1 when respondent p selected option k as an answer
in item i and Ypik = 0 otherwise. The corresponding likelihood function has
the following form

Li =
n∏︂

p=1

Ki∏︂
k=0

{P(Ypi = k|Xp, Gp)}Ypik ,

where P(Ypi = k|Xp, Gp) is given by (2.7). The corresponding log-likelihood
function is then given as:

li =
n∑︂

p=1

Ki∑︂
k=0

Ypik log (P(Ypi = k|Xp, Gp))

=
n∑︂

p=1

Ki∑︂
k=0

Ypik log
(︄

eβi0k+βi1kXp+βi2kGp+βi3kXp:Gp∑︁Ki
l=0 e

βi0l+βi1lXp+βi2lGp+βi3lXp:Gp

)︄

=
n∑︂

p=1

Ki∑︂
k=0

Ypik (βi0k + βi1kXp + βi2kGp + βi3kXp : Gp)

−
n∑︂

p=1

Ki∑︂
k=0

Ypik log
⎛⎝Ki∑︂

l=0
eβi0l+βi1lXp+βi2lGp+βi3lXp:Gp

⎞⎠ .
The log-likelihood function li is concave and the solution of the related estimating
equations gives maximum likelihood estimates of the item parameters (Agresti,
2010, Section 7.1.4). As the solution of the estimating equations does not have
a closed form, numerical approaches, such as the Newton-Raphson method or
neural networks (Venables & Ripley, 2002), need to be applied.

As noted in previous sections, the maximum likelihood estimators of the item
parameters are consistent and have asymptotically normal distribution. To esti-
mate the asymptotic covariance matrix, the inverse of the corresponding Hessian
matrix may be used.

2.2.2 DDF detection
The natural way how to test for DDF, i.e., group differences in item parameters,
is to perform the likelihood ratio test as was described in Section 2.1.3.

2.2.3 Implementation
The group-specific multinomial model for DDF detection (2.8) is provided in
the difNLR package by function ddfMLR(). The full syntax of the ddfMLR()
function is as follows:
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ddfMLR(
Data, group, focal.name, key, type = "both", match = "zscore",
anchor = NULL, purify = FALSE, nrIter = 10,
p.adjust.method = "none", parametrization = "irt", alpha = 0.05

)

Description of all arguments of the ddfMLR() function can be found in Table A.3.
To detect DDF among nominal data using the ddfMLR() function, the user needs
to provide four pieces of information: 1. the unscored data set, 2. the key of cor-
rect answers, 3. the group membership vector, and 4. the indication of the focal
group. The parameters are estimated via multinom() function from the nnet
package (Venables & Ripley, 2002).

Data. The format of Data argument is similar to previously described func-
tions. However, rows here represent respondents’ unscored answers (for exam-
ple, in ABCD format or as numerical values without ordering). The group and
focal.name arguments are specified as in difNLR() or difORD() functions.

Data generation. Data generator genNLR() can be used to generate nominal
data using a multinomial model (2.8) by setting itemtype = "nominal". Spec-
ification of arguments a and b is the same as for ordinal items, however, these
now represent parameters for distractors (incorrect answers).

To create an illustrative example dataset of nominal data, we first generate
discrimination a and difficulty b parameters from a uniform distribution for dis-
tractors of 10 items. The parameters are set equal for the reference and the focal
group. For the first 5 items, we consider only two distractors (i.e., three item
choices in total). For the last 5 items, we consider three distractors (i.e., four
item choices in total).

set.seed(42)
# discrimination
a <- matrix(rep(runif(30, -2, -0.5), 2), ncol = 6)
a[1:5, c(3, 6)] <- NA
# difficulty
b <- matrix(rep(runif(30, -3, 1), 2), ncol = 6)
b[1:5, c(3, 6)] <- NA

For item 1, we introduce DDF by difference in discrimination and for item 6
by difference in difficulty.

a[1, 4] <- a[1, 1] - 1; a[1, 5] <- a[1, 2] + 1
b[6, 4] <- b[6, 1] - 1; b[6, 5] <- b[6, 2] - 1.5

Finally, we generate nominal data with 500 observations in each group, i.e., 1,000
in total. The first 10 columns of the generated DataDDF dataset represent the un-
scored answers of respondents and the last column describes a group membership
variable.
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DataDDF <- genNLR(N = 1000, itemtype = "nominal", a = a, b = b)
head(DataDDF)

Item1 Item2 Item3 Item4 Item5 Item6 Item7 Item8 Item9 Item10 group
1 B B C A C B B D B B 0
2 C A B A C C B B C C 0
3 B C C B C C B C B D 0
4 B A C A C B A B B B 0
5 B B C B C B A C A B 0
6 B A A A A B B A A A 0

The correct answers in the generated dataset are denoted by A for each item;
the key is hence a vector of As with a length of 10.

We now have all the necessary inputs to fit the multinomial model (2.8) us-
ing the ddfMLR() function. The group argument is introduced here by speci-
fying the name of group membership variable in Data (i.e., group = ”group”).
For the generated data, the total score is calculated as a number of correct an-
swers (i.e., number of As on a given row) and the matching criterion is then its
standardized value (Z-score).

(fit7 <- ddfMLR(DataDDF, group = "group", focal.name = 1,
key = rep("A", 10)))

Detection of both types of Differential Distractor
Functioning using multinomial log-linear regression model

Likelihood-ratio chi-square statistics

Item purification was not applied
No p-value adjustment for multiple comparisons

Chisq-value P-value
Item1 29.5508 0.0000 ***
Item2 1.1136 0.8921
Item3 1.0362 0.9043
Item4 4.1345 0.3881
Item5 7.4608 0.1134
Item6 47.0701 0.0000 ***
Item7 1.3285 0.9701
Item8 2.3629 0.8835
Item9 10.4472 0.1070
Item10 3.5602 0.7359

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Items detected as DDF items:
Item1
Item6

The output again summarizes the statistics of the likelihood ratio test of a sub-
model, corresponding p-values, and the set of items identified as DDF. As ex-
pected, items 1 and 6 are detected as DDF. Their ICCs can be displayed with
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a plot() method while the name of the reference and focal group can be modified
via group.names argument (Figure 2.3). This option is also available for func-
tions difNLR() and difORD() and their plotting methods.

plot(fit7, item = fit7$DDFitems, group.names = c("Group 1", "Group 2"))

Figure 2.3: The ICCs of DDF items with the multinomial model.

Similarly as for the difNLR() and difORD() functions, item fit measures
are offered via AIC(), BIC(), and logLik() S3 methods. Parameter estimates
can be obtained using the method coef(). Parametrization can be set using
the parametrization argument in the ddfMLR() function while the options are
the same as for the difORD() function from Section 2.1.4. The ddfMLR() function
also offers item purification and corrections for multiple comparisons.
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3. Nonparametric comparison
of regression curves
DIF and its detection is closely connected to a general problem of describing
relationship between respondents’ answers Yi = (Y1i, . . . , Yni) to item i and re-
spondents’ observed abilityX = (X1, . . . , Xn). This relationship can be generally
described by the regression function mi for item i such as

Yi = mi(X) + ϵi,

where E(ϵi|X) = 0. In this chapter, we focus on binary outcomes Yi, in which
case this relationship can be reformulated as

E(Yi|X) = P(Yi|X) = mi(X).

Chapters 1 and 2 considered parametric model for the probability of correct
answer or partial score. However, any parametric approach runs the risk of sim-
plifying the true underlying model and omitting important information. It may
be the case, that the underlying model is too complicated and/or no parametric
model can be assumed. In such cases, the nonparametric smoothing methods
may be a flexible tool in analyzing unknown regression function mi(x) (Härdle,
1990).

In context of multi-item measurements, Mokken (1971, Chapter 4) proposed
two nonparametric IRT models for binary items: The monotone homogeneity
model and the double-monotonicity model. Ramsay (1991) suggested a kernel
smoothing method to estimate the ICCs using Nardaraya-Watson weights and
estimates of ability based on rank approach.

Several methods incorporate kernel smoothing into DIF detection procedure
including for example kernel smoothed SIBTEST (Douglas, Stout, & DiBello,
1996) or TestGraf, a graphical DIF method with kernel smoothing for estimating
the conditional probability of correct answers related to proficiency estimates
(Bolt & Gierl, 2006; Ramsay, 2000).

In this chapter, we present a new approach for DIF detection using the kernel
smoothing estimates of the ICCs and their comparison, as proposed in Hladká and
Martinková (2021). While many authors deal with the topic of nonparametric
comparison of the regression curves including Dette and Neumeyer (2001); Hall
and Hart (1990); Neumeyer and Dette (2003), here we offer and study a method
which is based on general statistic proposed by Srihera and Stute (2010). We
adapted and expanded their approach to estimate the ICCs and to identify DIF.

3.1 Method specification
Building on the method suggested by Srihera and Stute (2010), we propose a ker-
nel smoothing estimation of the ICCs of item i for the reference and focal group
based on nearest neighbors and test statistic to detect DIF. Let P0 and P1 be
the sets of respondents from the reference and focal group of size n0 and n1, re-
spectively, where n0+n1 is a total sample size. Let further Ypi be a binary response
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on item i by respondent p and Xp his/her observed ability such as standardized
total test score or other matching criterion. Further, let F̂ i0(x) and F̂ i1(x) be
empirical distribution functions of the ability variable Xp for the reference and
focal group, i.e.:

F̂ 0(x) = 1
n0

∑︂
p∈P0

1Xp≤x, and F̂ 1(x) = 1
n1

∑︂
p∈P1

1Xp≤x.

The nearest neighbor estimate of the ICCs of item i for the reference and focal
group then takes the following form:

m̂i0(x) =
∑︂

p∈P0

YpiWpi0(x), with weights Wpi0(x) =
K
(︃

F̂ 0(Xp)−F̂ 0(x)
h

)︃
∑︁

k∈P0
K
(︃

F̂ 0(Xk)−F̂ 0(x)
h

)︃ ,

m̂i1(x) =
∑︂

p∈P1

YpiWpi1(x), with weights Wpi1(x) =
K
(︃

F̂ 1(Xp)−F̂ 1(x)
h

)︃
∑︁

k∈P1
K
(︃

F̂ 1(Xk)−F̂ 1(x)
h

)︃ ,
(3.1)

where K(u) is a kernel function which satisfies assumptions standard in literature
(Srihera & Stute, 2010, p. 2042):

(i) K is symmetric and non-negative for u ∈ R; K is non-decreasing for u < 0,

(ii)
∫︁
K(u) du = 1,

(iii) K has compact support and is twice continuously differentiable.

Several types of kernel functions may be used, for example, Epanechnikov K(u) =
3
4(1 − u2), |u| ≤ 1 (Epanechnikov, 1969) or uniform K(u) = 1

2 , |u| ≤ 1. A band-
width parameter h needs to meet the assumptions of nh3 → ∞ and nh4 → 0 (see
Srihera & Stute, 2010, p. 2042). Therefore, h should take the value of n−ζ , where
ζ ∈

(︂
1
4 ,

1
3

)︂
and n has the order of n0 and n1.

The main advantage of the kernel smoothing estimations of the ICCs is that it
does not assume underlying parametric model, thus it can be used even in situa-
tions when the ICCs are more complicated. For simple illustration, let’s consider
the ICCs with several inflection points (Figure 3.1A). Then, the estimate based
on nearest neighbour method (3.1) using generated dichotomous data for the two
groups (Figure 3.1B) better corresponds to the shape of the true curves than
the estimate based on simple logistic regression method (7) (Figure 3.1C).

3.1.1 Test statistic
It is a common phenomenon that ability distributions for the reference and the fo-
cal group have a different support. Srihera and Stute (2010, p. 2040) suggested
a way to deal with this issue by averaging all values of the matching crite-
rion Xp and comparing the ICCs on this new support. Let X̄p0p1 = Xp0 +Xp1

2
for p0 ∈ P0, p1 ∈ P1 be the mean value of the observed ability of respondent p0
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(A) Underlying ICCs. (B) Nearest neighbours. (C) Logistic regression.

Figure 3.1: Example of the nearest neighbour and logistic regression estimates of
the ICCs. Curves are accompanied by points representing empirical probabilities.

from the reference group and of respondent p1 from the focal group. The test
statistic then takes the following form:

T̂ i = 1
n0n1

∑︂
p0∈P0

∑︂
p1∈P1

Wi

(︂
X̄p0p1

)︂ [︂
m̂i0

(︂
X̄p0p1

)︂
− m̂i1

(︂
X̄p0p1

)︂]︂
, (3.2)

where Wi is a twice continuously differentiable weight function of item i (see
Srihera & Stute, 2010).

Asymptotic properties

The asymptotic variance of the test statistic. The asymptotic variance
of the test statistic (3.2) under the null hypothesis, i.e., when there is no difference
between the two regression curves mi0 and mi1, is given by

σ2
i = (1 − λ)ρ2

i0 + λρ2
i1, (3.3)

where

ρ2
i0 =

∫︂
σi0(x)W 2

i (x) e(x)
f0(x)E(dx) < ∞, σi0(x) = mi0(x)(1 −mi0(x)),

ρ2
i1 =

∫︂
σi1(x)W 2

i (x) e(x)
f1(x)E(dx) < ∞, σi1(x) = mi1(x)(1 −mi1(x)),

and f0(x), f1(x), and e(x) are twice continuously differentiable densities of the ob-
served ability for the reference and focal group and for their averaged values, while
E(x) is their cumulative distribution function. Finally, λ ∈ (0, 1) is determined
by n0

n0+n1
→ λ and n1

n0+n1
→ 1 − λ (see Srihera & Stute, 2010).

Further, Srihera and Stute (2010, p. 2044) proposed an estimate of the asymp-
totic variance of the test statistic (3.2) of the following form:

σ̂2
i = 1

n0 + n1

∑︂
p0∈P0

(Yp0i − m̂i0(Xp0))2

⎡⎣∑︂
k∈P0

∑︂
l∈P1

Wi

(︂
X̄kl

)︂
Wp0i

(︂
X̄kl

)︂⎤⎦2

+ 1
n0 + n1

∑︂
p1∈P1

(Yp1i − m̂i1(Xp1))2

⎡⎣∑︂
k∈P0

∑︂
l∈P1

Wi

(︂
X̄kl

)︂
Wp1i

(︂
X̄kl

)︂⎤⎦2

.

(3.4)
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The σ̂2
i is actually the sum of weighted estimates of the conditional variances

var(Yp0i|Xp) and var(Yp1i|Xp). In case of binary data, it might be more suitable
to replace the terms (Yp0i − m̂i0(Xp0))2 and (Yp1i − m̂i1(Xp1))2 by

σ̂i0(Xp0) = m̂i0(Xp0) (1 − m̂i0(Xp0)) ,
σ̂i1(Xp1) = m̂i1(Xp1) (1 − m̂i1(Xp1)) ,

respectively. Therefore, for the case of binary data, we propose a new estimate
of the asymptotic variance of the test statistic in the following form:

σ̂2
i = 1

n0 + n1

∑︂
p0∈P0

σ̂i0(Xp0)
⎡⎣∑︂

k∈P0

∑︂
l∈P1

Wi

(︂
X̄kl

)︂
Wp0i

(︂
X̄kl

)︂⎤⎦2

+ 1
n0 + n1

∑︂
p1∈P1

σ̂i1(Xp1)
⎡⎣∑︂

k∈P0

∑︂
l∈P1

Wi

(︂
X̄kl

)︂
Wp1i

(︂
X̄kl

)︂⎤⎦2

.

(3.5)

To evaluate which estimate of the asymptotic variance, i.e., either (3.4) or
(3.5), is more appropriate to use, a short simulation study was performed. Both
estimates yielded similar results (not shown) which were comparable to the em-
pirical variance of the test statistic. We decided to use (3.5) further as it takes
into account binary nature of the data.

Asymptotic distribution. It can be shown, under the conditions specified
above and when the null hypothesis holds, that the test statistic (3.2) normalized
by σ̂i asymptotically follows a standard normal distribution (for details see Srihera
& Stute, 2010, Theorems 1 and 2), i.e.:

√
NT̂ i

σ̂i

D−→
N→∞

N (0, 1),

where N = n0n1
n0+n1

.

Support of the test statistic. The new support, defined by all combinations
of the matching criterion from the two groups, is a set of size equal to n0 · n1
which may slow down data manipulation in the statistical software and method
then may become time challenging and memory demanding, especially for larger
sample sizes. We thus propose and use another technique to calculate common
support of the test statistic which is also based on averaged points. This method
proceeds as follows: First, the common support is calculated as in original ap-
proach. Then, the empirical weights of unique values of averaged points are
calculated. Finally, the new support is created by generating a fixed-sized ran-
dom sample from unique values of the common support using these weights. This
new approach provides the support of the test statistic covering ability distribu-
tion of both groups while it keeps the data manipulation effective. In case of
using reduced support, it should be noted, that the original size of the product,
i.e., n0 · n1, needs to be replaced by the size of the newly defined support set.
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3.1.2 Weight function
The choice of the weight function Wi is crucial as it may have a great impact
on power of the test (Srihera & Stute, 2010). In this work, we consider several
options of the weight function.

Fixed weights

First, we take non-informative fixed weights, that is

Wi(x) = 1 ∀x. (3.6)

Optimal weights

Second, we consider optimal weight function Wi(x) which maximizes the local
power of the test statistic (3.2), as proposed by Srihera and Stute (2010). We
adapt their approach for our case of binary data and for comparison of the ICCs.

Under the local alternative hypotheses, i.e., mi0 = mi1 + csi

N
, c ̸= 0, where si

is a difference function, the following holds:
√
NT̂ i

σ̂i

D−→
N→∞

N
(︃
µi

σi

, 1
)︃
,

where µi = −
∫︁
Wi(x) (mi0(x) −mi1(x))E(dx) and σ2

i is a variance of the test
statistic (3.3) (Srihera & Stute, 2010, Theorem 2). The asymptotic power is then
given by

P
(︄⃓⃓⃓⃓
⃓
√
NT̂ i

σ̂i

⃓⃓⃓⃓
⃓ ≥ q1− α

2

)︄
≃ 1 − ϕ

(︃
µi

σi

+ q1− α
2

)︃
+ ϕ

(︃
µi

σi

− q1− α
2

)︃
, (3.7)

which is an increasing function of
⃓⃓⃓

µi

σi

⃓⃓⃓
. Thus, the weight function which maximizes

the asymptotic power (3.7) is the one which maximizes the term
⃓⃓⃓

µi

σi

⃓⃓⃓
. This is

equivalent to maximizing the term µ2
i

σ2
i
. Srihera and Stute (2010) further showed

the form of Wi(x) for which the term µ2
i

σ2
i

is maximized.

For our case of binary data, the term µ2
i

σ2
i

has form

µ2
i

σ2
i

= [
∫︁
Wi(x)si(x)E(dx)]2∫︁ [︂

(1 − λ)σi0(x) e(x)
f0(x) + λσi1(x) e(x)

f1(x)

]︂
W 2

i (x)E(dx)

and it is maximized for

Wi(x) = si(x)
(1 − λ)σi0(x) e(x)

f0(x) + λσi1(x) e(x)
f1(x)

.

Differences between the ICCs cannot be satisfactorily described by a generic
function such as a polynomial. Therefore, in our case, it is possible to use si(x) =
mi0(x)−mi1(x), i.e., the true difference between the two ICCs, which results into
the optimal weights in form of

Wi(x) = mi0(x) −mi1(x)
(1 − λ)σi0(x) e(x)

f0(x) + λσi1(x) e(x)
f1(x)

. (3.8)
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However, the optimal weights (3.8) cannot be directly used in practice, unless
we know the true difference between the ICCs. Figure 3.2 depicts selected ICCs
displaying DIF caused by different parameters and corresponding optimal weights.
Note that weight functions do not necessary need to be non-negative, which is
also not assumed by Srihera and Stute (2010). Negative values of the weights
allow to detect differences between the ICCs even in case when the curves cross.

Figure 3.2: Examples of the ICCs and corresponding optimal weight functions
(3.8) for DIF caused by various parameters a, b, c, and d in 4PL IRT model, and
for logistic curves with several inflection points using normally distributed latent
trait for both groups.

Estimates of optimal weights

Third, going beyond work of Srihera and Stute (2010), we propose and study
estimates of the optimal weights (3.8). Srihera and Stute (2010) in their work
considered only fixed weights (3.6) and optimal weight functions (3.8) for specific
examples. However, typically, the true difference function si(x) and the true ICCs
mi0(x) and mi1(x) or densities e(x), f0(x), and f1(x) are not known and need to
be estimated.

As a natural estimate of the optimal weights (3.8) we consider Ŵ i(x) which
incorporates estimates of the densities and estimates of ICCs (3.1) and difference
function:

Ŵ i(x) = m̂i0(x) − m̂i1(x)
(1 − λ̂)σ̂i0(x) ê(x)

f̂0(x) + λ̂σ̂i1(x) ê(x)
f̂1(x)

. (3.9)

Contrary to the cases of the fixed weights (3.6) or the optimal weights (3.8),
when using the estimated weights Ŵ i(x), it can be easily seen that the asymp-
totic normality is no longer met as the resulting test statistic for the item i has
the following form:

T̂ i = 1
n0n1

∑︂
p0∈P0

∑︂
p1∈P1

[︂
m̂i0

(︂
X̄p0p1

)︂
− m̂i1

(︂
X̄p0p1

)︂]︂2
(1 − λ̂)σ̂i0(X̄p0p1) ê(X̄p0p1 )

f̂0(X̄p0p1 ) + λ̂σ̂i1(X̄p0p1) ê(X̄p0p1 )
f̂1(X̄p0p1 )

. (3.10)

The test statistic (3.10) using the estimate of optimal weights (3.9) results
into the form with (m̂i0(x) − m̂i1(x))2 in the numerator. This changes original
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interpretation of the test statistic, which was the average (weighted) difference of
the ICCs, to the average (weighted) square differences of the ICCs. Similarly as
for the optimal weights (3.8), this allows to detect differences between the ICCs
even in case when the curves cross. If the weight function was assumed to be
non-negative, which is common but not assumed in Srihera and Stute (2010), this
would not be possible as the differences between the curves may sum up to zero.

Wild bootstrap. To evaluate the properties of the test statistic using the es-
timate of optimal weights (3.10), the wild bootstrap technique is considered (Wu,
1986; Mammen, 1993). This method is suitable when data exhibits heteroskedas-
ticity (see, for example, Hardle & Mammen, 1993), which is in line with nature
of binary responses discussed here. Wild bootstrap can be described as follows
(see also Figure 3.3):

(1) First, at the initial step, estimates of the ICCs are calculated using (3.1).
Then, the estimate of optimal weights (3.9) is computed and DIF detection
procedure is evaluated using the test statistic (3.10) (left part of Figure 3.3).

(2) Further, under the null hypothesis (i.e., no DIF), one ICC for both groups
is estimated and corresponding fitted values

{︂
ŷpi

}︂n

p=1
and residuals {êpi}n

p=1
are calculated. This is done in two sub-steps.

(2a) For each b ∈ {1, . . . , B}, B being a number of bootstrap samples, a ran-
dom variable vpib is generated. Here we consider two options: First,
we use Mammen’s two-point distribution (Mammen, 1993) which is
the most common choice:

vpib =

⎧⎨⎩−
√

5−1
2 with probability

√
5+1

2
√

5 ,√
5+1
2 with probability

√
5−1

2
√

5 .

The bootstrap samples y∗
pib are then created by combining fitted values

and residuals multiplied by the random variables vpib:
y∗

pib = ŷpi + vpibêpi.

Second, we generate y∗
pib directly from Bernoulli distribution using ŷpi,

i.e.,
y∗

pib ∼ Bernoulli(ŷpi),
to account for binary nature of the data.

(2b) For each bootstrap sample, the DIF detection procedure is applied as
for the original sample at the initial step, resulting in a set of test
statistics

{︂
T̂ ib

}︂B

b=1
.

(3) Finally, in the last step, the set of test statistics
{︂
T̂ ib

}︂B

b=1
is compared to

the test statistic of original sample and conclusion on DIF is made based
on two sided p-value:

p-value = 1
B

B∑︂
b=1

1T̂ i<T̂ ib
,

and predefined level of significance (see also the right part of Figure 3.3).
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(ŷpi)n

p=1 fitted values
(êpi)n

p=1 residuals

(1) Initial step:

y∗
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Figure 3.3: Wild bootstrap scheme.
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To compare the two approaches to generate bootstrap samples, i.e., the one
based on Mammen’s two-point distribution and the one based on Bernoulli dis-
tribution, a short simulation study was performed (results not shown). Both ap-
proaches yielded similar results in terms of power and rejection rate. As the later
approach corresponds to the binary nature of the data, we decided to use it in
this work.

3.2 Design of the simulation study
To gain insight into the properties of the nonparametric DIF detection method
(3.2) and to compare various options for weight functions, a Monte Carlo simu-
lation study was performed and its design is described in this section.

3.2.1 Data and DIF generation
Dichotomous item responses for the reference and the focal group were generated
under a true 4PL IRT model (1) and also by logistic curve with several inflection
points:

P(Ypi = 1|θp) = ci + (di − ci)
e−ai(θp−bi−eiθ

2
p−fiθ

3
p−giθ

5
p)

1 + e−ai(θp−bi−eiθ2
p−fiθ3

p−giθ5
p) ,

(3.11)

where ai, bi, ci, di, ei, fi, and gi are item parameters. Ability levels θp in both
groups were assumed to follow standard normal distribution.

Responses on non-DIF items were generated with the true 4PL IRT model (1)
and its parameters were drawn from normal distributions: Discrimination ai ∼
N (1.1, 0.3), difficulty bi ∼ N (0, 1.1), guessing ci ∼ N (0.2, 0.05), and inattention
di ∼ N (0.8, 0.05), and set to be the same for the reference and focal group.

To generate diferentially functioning items, six different sources of DIF were
considered. First, a true 4PL IRT model (1) was used in four scenarios to incor-
porate DIF caused by difference in particular parameter (i.e., either ai, bi, ci, or
di). Second, two different settings were considered for generating DIF caused by
logistic curve with several inflection points (3.11). In the first setting, parameters
were selected so that the ICCs intersected exactly once, while in the second setting
they intersected twice. The difference in parameters, either when using model (1)
or (3.11), was chosen to approximately match the WAM between the two ICCs
(Siebert, 2013, see also Section 1.5) of value 0.196 to obtain DIF of large mag-
nitude. The ICCs and corresponding optimal weight functions of DIF items are
illustrated in Figure 3.2 and their parameters can be found in Table 3.1.

Standardized total test score was used as the matching criterion, which is not
a continuous random variable as was assumed by Srihera and Stute (2010). We
weakened this assumption in the simulation study as the standardized total score
is the most common and the simplest estimate of the underlying ability.

Besides the source of DIF, sample sizes were manipulated to generate data.
The total sample sizes of 50, 100, 200, 300, and 400 were selected, while groups
were equally sized. The test length of 20 items was considered of which only one
item functioned differently, i.e., 5% of the total number of items.
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Table 3.1: Item parameters used to generate DIF items with models (1) and
(3.11).

DIF
source

Reference group Focal group
a b c d e f g a b c d e f g

a 0.42 0.00 0.00 1.00 0.00 0.00 0.00 2.00 0.00 0.00 1.00 0.00 0.00 0.00
b 1.00 0.00 0.00 1.00 0.00 0.00 0.00 1.00 1.00 0.00 1.00 0.00 0.00 0.00
c 1.00 0.00 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.39 1.00 0.00 0.00 0.00
d 1.00 0.00 0.00 0.61 0.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00 0.00
mix1 1.90 0.28 0.07 1.00 1.00 −0.70 0.00 0.35 −1.75 0.03 0.98 1.60 −0.90 0.00
mix2 4.20 0.00 0.10 1.00 0.85 0.00 −0.50 0.18 −1.50 0.00 1.00 1.00 −0.90 −0.50

3.2.2 DIF detection
Five methods were used for DIF detection: Four variations of the nonparametric
method and logistic regression for DIF detection with the likelihood ratio test
(7) (Swaminathan & Rogers, 1990). The following four different weight functions
were used in the nonparametric method: Fixed weight function (3.6), optimal
weight function (3.8), estimate of optimal weight function (3.9) without bootstrap
(i.e., assuming asymptotically normal distribution of the test statistic (3.2)), and
estimate of optimal weight function using bootstrap (Figure 3.3). Optimal weight
function was applied only for DIF items, while its value was set to zero for non-
DIF items, hence no non-DIF items could have been detected as functioning
differently for the two groups. Thus, reported rejection rates are zeros in this
case. Estimate of optimal weight function using bootstrap was applied with
a number of bootstrap samples of B = 500.

To estimate the ICCs for nonparametric method, we used Epanechnikov kernel
with three different bandwidth parameters h = n−ζ

0 , where ζ ∈
{︂
0.26, 7

24 , 0.32
}︂
,

to cover interval of its possible values meeting the assumptions by Srihera and
Stute (2010), see also page 90. All tests were performed at 0.05 significance level.

3.2.3 Evaluation of the results
The five different approaches (4 different settings for nonparametric approach and
the logistic regression method) were compared in terms of power (i.e., the propor-
tion of true positives) and rejection rate (i.e., the proportion of false positives).
Further, we checked accuracy of the estimate of the optimal weights by comput-
ing the MSE, i.e., mean square difference between the optimal weights and their
estimates. Finally, we also evaluated performance of DIF detection methods in
terms of execution time. Each condition was replicated 1,000 times.

3.2.4 Implementation
Estimation of the ICCs, calculation of the test statistics, and the whole simu-
lation study was performed in the statistical software R (R Core Team, 2020)
and its packages. Empirical density functions were calculated using the ecdf()
function from the stats package (R Core Team, 2020). Weights of kernel
functions and kernel estimates were calculated by the locCteWeightsC() and
locWeightsEval() functions from the locpol package (Cabrera, 2018). Esti-

98

https://CRAN.R-project.org/package=locpol


mates of densities of standardized total scores and common support of the test
statistic were evaluated by the bkde() function from the KernSmooth package
(Wand, 2019). The logistic regression method with the likelihood ratio test was
performed using the difLogistic() function from the difR (Magis et al., 2010).
Finally, graphical representation of the results was made using the ggplot2 pack-
age (Wickham, 2016).

3.3 Results

3.3.1 Rejection rates and power

Estimate of the optimal weights (3.1) without the wild bootstrap was the most
powerful approach in all scenarios (mean power rate 0.724), however, this was ac-
companied by rejection rates considerably exceeding the significance level of 0.05
(mean rejection rate 0.272). Therefore, results of this approach were removed
from further analysis and are not shown.

All other approaches were able to control for type I error for all parameters
ζ and for all sources of DIF (Figure 3.4). Slight excesses of the significance level
were present for the nonparametric approach with fixed weights and the logistic
regression method, especially when total sample sizes of 50 a 100 were considered.

All methods gained slightly lower power for small sample sizes, however, with
the increasing sample size they were able to yield sufficient power and the differ-
ences between the approaches were diminishing.

The nonparametric approach with fixed weights (3.6) gained power rates close
to those obtained by the optimal weight function (3.8) for almost all scenarios,
however, the main drawback of this approach was the inability to detect DIF
caused by difference in parameter a (the first row of Figure 3.5).

Power rates of the approach using the wild bootstrap technique were slightly
lower than those obtained by the fixed weights in most scenarios, however, this
approach had much greater power in case of the crossing DIF caused by parameter
a (the first row of Figure 3.5) and somewhat also in the second case of the ICCs
with several inflection points (row mix2 of Figure 3.5).

As expected, the greatest potential of the nonparametric approaches was vis-
ible in the second case of the ICCs with several inflection points (row mix2 of
Figure 3.5) where the nonparametric approach using optimal weights was superior
for all sample sizes. However, the nonparametric methods slightly outperformed
the logistic regression also when DIF was caused by parameters b or c and in
the first case of the ICCs with several inflection points (rows c, d, and mix1 of
Figure 3.5) for optimal and fixed weights especially for smaller sample sizes.

Difference between the nonparametric methods using different bandwidth pa-
rameters h were small. With the lower value of ζ, i.e., larger bandwidth parameter
h = n−ζ

0 , optimal weight functions and their estimates using the wild bootstrap
yielded slightly larger mean power while for the fixed weights the largest mean
power was gained with ζ = 7

24 . Differences in mean rejection rates were negligible.
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Figure 3.4: Rejection rates by nonparametric approach with the various weight
functions and by the logistic regression method with respect to the sample size
and the ζ parameter of the bandwidth for different sources of DIF. The horizontal
line shows significance level of 0.05.

3.3.2 Estimates of optimal weights

With ζ = 0.292 and ζ = 0.320, MSE of the optimal weights when parameter c
was causing DIF had value larger than 106. These scenarios were removed from
further analysis and are not shown here.

Estimation of the optimal weight was the most precise when parameters b,
c, and d were sources of DIF, while it was the least precise when mixture of
parameters was causing the DIF (Figure 3.6), especially for the second case of
the ICCs with several inflection points (row mix2 of Figure 3.6). The smallest
overall MSE of 0.242 was gained for ζ = 0.320 (the smallest bandwidth parameter
h) and the largest overall MSE of 0.270 for ζ = 0.260 (the largest h).

All three choices of ζ parameter overall gained more accurate estimates for
the large sample sizes than for the smaller ones. While there were no large
differences between bandwidth parameters when parameters b, c, or d were sources
of DIF, this was not the case when the ICCs crossed. In such a case, ζ =
0.320 (the smallest bandwidth parameters) gained the greatest accuracy while
for ζ = 0.260 the largest values of the MSE were observed for all levels of sample
size. Moreover, the precision of the estimates was not strictly decreasing with
the increasing sample size (rows a and mix1 of Figure 3.6).
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Figure 3.5: Power rates by nonparametric approach with the various weight func-
tions and by the logistic regression method with respect to the sample size and
the ζ parameter of the bandwidth for different sources of DIF. The horizontal
line shows sufficient power of 0.80.

3.3.3 Execution time
Mean time to perform the DIF detection remained on a user-friendly rate for all
the methods except for the estimate of the optimal weights with the wild boot-
strap. Execution time of this method seemed to be exponential with the increas-
ing sample size (Table 3.2).

3.4 Summary
In this chapter we dealt with the nonparametric comparison of regression curves
for DIF detection among binary items. We adapted general approach for testing
differences between the regression curves proposed by Srihera and Stute (2010)
to test differences between the ICCs for binary data and to test for DIF. Specifi-
cally, we proposed an alternative estimate of the asymptotic variance of the test
statistic to account for binary nature of data. Further, we focused on topic of
weight functions which may have great impact on power of the test. We derived
form of the optimal weights for binary data in sense of maximizing local power of
the test and we newly proposed their estimates, considering the fact that the op-
timal weights are not available in real situations such as in case of DIF detection.
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Figure 3.6: MSE of the estimates of optimal weights with respect to the parameter
ζ, source of DIF, and sample size.

Unlike in the case of the optimal weights assumed by Srihera and Stute (2010),
the underlying test statistic does not have asymptotically normal distribution
any longer and, moreover, asymptotic distribution is not known. Therefore, we
proposed using the wild bootstrap to evaluate properties of the asymptotic dis-
tribution of the test statistic and to test for DIF.

We further performed simulation study to assess properties of the nonparamet-
ric approach in terms of power and rejection rates using different weight func-
tions in comparison to the logistic regression method. All methods performed
good control of type I error. The nonparametric approach using the optimal
weights gained power rates close to those by the logistic regression method and
it outperformed it in several scenarios, especially in scenario with the multiple
crossings of the ICCs. Comparing different weight functions in the nonparametric
approach, the fixed weight function performed similarly to method using the op-
timal weights in case that the ICCs did not cross and may be recommended when
it can be assumed that one group is advantaged over the other group for all levels
of the matching criterion. The newly proposed estimate of the optimal weights
using the wild bootstrap outperformed fixed weights in case that underlying ICCs
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Table 3.2: Mean time to perform DIF detection methods in seconds with respect
to the sample size.

Method Sample size
50 100 200 300 400

Optimal weights 0.025 0.042 0.098 0.189 0.316
Fixed weights 0.024 0.040 0.098 0.190 0.320
Est. weights w/o bootstrap 0.074 0.091 0.149 0.243 0.370
Est. weights with bootstrap 32.867 41.473 70.648 116.309 180.416
Logistic regression 0.284 0.311 0.333 0.356 0.378

crossed. With the increasing sample size, powers of all methods were increasing
and differences between them diminished.

The power of the nonparametric method with the newly proposed estimate of
optimal weights using the wild bootstrap is closely connected with the precision
of the weights estimate. This is also related to the choice of the bandwidth
parameter h. In case that the ICCs did not cross, all bandwidth choices gained
similar precision which was increasing with the increasing sample size. In case
that the ICCs crossed, the smallest bandwidth parameter gained the greatest
accuracy. However, the precision was not strictly increasing with an increasing
sample size, especially when DIF was caused by parameter a or in the first mixed
scenario.

The simulation study offered here was limited in terms of number of items and
proportion of DIF items. It should be noted that only small or moderate sample
sizes were included to keep simulations on computationally-friendly level, which
excludes the nonparametric model (1.1) as it requires sufficiently large sample
size for both groups. Further, we considered only three levels of bandwidth
parameter. The choice of bandwidth parameter h is connected to precision of
the estimation of optimal weight functions: If the h is too small, we may obtain
an under-smoothed estimate. On the other hand, in the case that the value of h is
large, the estimate may be over-smoothing. However, in our simulation study, no
large differences were observed in terms of power or rejection rates with respect
to the choice of the bandwidth parameter.

In summary, the nonparametric approaches, including the newly proposed
estimate of the optimal weights with the wild bootstrap, were able to control
significance level and, in most cases, dealt with DIF detection as effectively as
the logistic regression method. Moreover, the nonparametric method seems to
have the potential to outperform the logistic method for scenarios with several
inflection points.
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4. Further issues in DIF
detection
This chapter deals with some further issues in DIF detection among dichoto-
mously scored items including item purification and multiple comparisons correc-
tions as presented in Hladká, Martinková, and Magis (2021). It also comprises
topic of so called DIF effect sizes – measures which classify magnitude and im-
portance of DIF being detected.

4.1 Introduction
Most of the DIF detection methods rely on the basic principle of testing for DIF
one item after another, the remaining items being considered as anchor (DIF-
free) items. This process is known to have at least two drawbacks. First, when
DIF items are truly present in the data, gradual DIF testing implies that DIF
items are included in the matching variable (for instance the test score), which
is known to be a source of a potentially serious bias and misidentification of DIF
and non-DIF items (Jodoin & Gierl, 2001; Kopf, Zeileis, & Strobl, 2013, 2015;
Woods, 2009). Second, testing each item after another usually yields inflated
type I error rates (i.e., proportion of falsely detected items) because traditional
methods do not adjust for multiple comparisons, which is actually what happens
with this repeated, item-by-item process.

Each issue was to some extent addressed in the DIF literature in different ways.
To reduce the impact of DIF items on the matching variable, the item purification
process was proposed (Lord, 1980; first suggested by Marco, 1977 and extended
and improved by many authors including Candell & Drasgow, 1988, Clauser,
Mazor, & Hambleton, 1993, and French & Maller, 2007). The item purification
consists of an iterative removal of items flagged as DIF from the set of anchor
items (Candell & Drasgow, 1988). Item purification was shown to improve the re-
sults of most DIF detection methods (Clauser et al., 1993; French & Maller, 2007;
Navas-Ara & Gómez-Benito, 2002; Wang & Su, 2004), with the notable exception
of Angoff’s delta plot method (Magis & Facon, 2013). The other issue, inflated
type I error rates due to multiple comparisons, on the other hand, can be ac-
curately controlled with adequate multiple comparison adjustment procedures.
Corrections for multiple comparisons are easy to implement, non-iterative, and
were also shown to improve the accuracy of DIF identification (i.e., non-inflated
type I errors and larger power; see Kim & Oshima, 2013).

4.1.1 Item purification
DIF analysis is based on the principle of comparing item performance of the test
takers being matched by the ability. Thus, defining an appropriate matching
criterion is mandatory. For non-IRT DIF detection methods such as the Mantel-
Haenszel test (4) (P. W. Holland & Thayer, 1988; Mantel & Haenszel, 1959) or
logistic regression procedure (7) (Swaminathan & Rogers, 1990), the total test
score, i.e., the number of correct responses, is usually used as the matching crite-
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rion. For IRT-based techniques such as Lord’s test (2) (Lord, 1980), the estimate
of latent ability level is used instead.

The danger of computing such matching criterion for the set of adminis-
tered items is that the inclusion of DIF items could seriously impact the results
of the identification process. It is then of primary importance to ensure that an-
chor (i.e., DIF-free) items are available for proper computation of this matching
variable. For non-IRT methods, the matching criterion (observed ability) should
be computed by only using anchor items. For IRT-based methods, linking the two
scales (one for the reference group and one for the focal group) should be based
only on these anchor items.

Because it is often impossible to predict which items will function differently,
Candell and Drasgow (1988) proposed an iterative process that is currently re-
ferred to as item purification. In test-score-based DIF detection methods, it starts
with one run of the DIF detection method per item, all other items being con-
sidered as anchor items. All items flagged as DIF are then removed from the set
of anchor items, and the method is re-run using this reduced anchor set. These
two steps (running DIF analysis and removing flagged items from the anchor set)
are repeated until two successive runs yield the same set of items identified as
DIF (see Figure 4.1).

Total score
calculated based

on all items
DIF detection

Remove DIF
items from
total score

DIF detection

Detected
same DIF
items as

in previous
run?

End
Yes

No

Figure 4.1: Item purification scheme.

To illustrate item purification algorithm, let’s assume an artificial test consist-
ing of 10 items and an arbitrary non-IRT DIF detection method. At the initial
step, total test score was calculated based on all 10 items. Using DIF detec-
tion method and total test score, items 1, 7, and 8 were detected as DIF items.
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In the first step of the item purification, such items were removed from calcu-
lation of the total score and DIF detection procedure was then applied using
this new matching criterion. In the second step, only items 1 and 8 were de-
tected as functioning differently. The set of DIF items did not respond to the set
of the previous iteration and thus the matching criterion was recalculated and
DIF detection procedure was run again. In the third step, items 1, 2, and 8
were detected as DIF. Again, current and previous sets of DIF items were not
the same and the matching criterion needed to be calculated once more. Finally,
in the fourth step, items 1, 2, and 8 were detected as in previous iteration and
the algorithm stopped (Table 4.1). Illustration of practical implementation in R
within the nonlinear model (1.1) and difNLR package can be found in Section
1.4 on page 42.

Table 4.1: Illustration of item purification.

Total score ∑︁10
i=1 Yi

∑︁
i ̸={1,7,8} Yi

∑︁
i ̸={1,8} Yi

∑︁
i ̸={1,2,8} Yi

Item Step 1 Step 2 Step 3 Step 4
1 DIF DIF DIF DIF
2 NON-DIF NON-DIF DIF DIF
3 NON-DIF NON-DIF NON-DIF NON-DIF
4 NON-DIF NON-DIF NON-DIF NON-DIF
5 NON-DIF NON-DIF NON-DIF NON-DIF
6 NON-DIF NON-DIF NON-DIF NON-DIF
7 DIF NON-DIF NON-DIF NON-DIF
8 DIF DIF DIF DIF
9 NON-DIF NON-DIF NON-DIF NON-DIF
10 NON-DIF NON-DIF NON-DIF NON-DIF

Item purification is an approach which is intuitively appealing and simple
to implement. Though item purification can be done efficiently in most cases, it
can sometimes become time consuming (especially for IRT-based methods), and
there is no guarantee that the iterative process will converge (for example, see
troubleshooting in Section 1.4).

4.1.2 Multiple comparison corrections
Conceptually different drawback often present in DIF detection is that each item
is being tested individually, while all other items are considered free of DIF. This
implies that multiple comparisons among all test items arise, which is without
adjustment of the significance level known to lead to inflated type I error rates.
In the DIF framework, Kim and Oshima (2013) proposed adjusting the results
of the item-by-item investigation using methods to control for multiple compar-
isons. Two such adjustment procedures were shown to be superior in the DIF con-
text: Holm’s procedure (Holm, 1979) and Benjamini-Hochberg (BH) procedure
(Benjamini & Hochberg, 1995). These methods can be schematically described as
follows: First, for each tested item i (say from 1 to I), let pi be the corresponding
p-value of the DIF detection method (obtained when all other items are set as

107

https://CRAN.R-project.org/package=difNLR


anchor items), and let p(1), . . . , p(I) be the I values sorted in increasing order.
Then, for a given global significance level α, the index k is defined as

(1) the minimal index that satisfies p(k) >
α

I+1−k
for Holm’s procedure,

(2) the maximal index that satisfies p(k) ≤ k
I
α for BH procedure.

Eventually, items with corresponding ordered p-values p(1) to p(k−1) (for Holm’s
procedure) or to p(k) (for BH procedure) are flagged as DIF, while the remaining
items are flagged as non-DIF.

These methods are illustrated using an artificial example of ten items (Ta-
ble 4.2). Holm’s and BH boundaries were calculated by formulas in (1) and (2),
and then compared with ordered p-values. With Holm’s procedure, index k was
equal to three; thus only the first two listed items (i.e., items 5 and 10) were even-
tually flagged as DIF. This is an important reduction compared to the original
classification (without Holm’s correction) that led to flagging seven out of the ten
items as DIF. With BH procedure, k index equalled to five; therefore the first
five items (according to their classification in increased order of p-values) were
flagged as DIF, compared to the seven items when no adjustment was considered.

Table 4.2: Impact of Holm’s and Benjamini-Hochberg corrections for multiple
comparisons on DIF detection.

Item Order p-value Decision Holm’s
boundary

Holm’s
decision

BH
boundary

BH
decision

5 1 0.0014 DIF 0.0050 DIF 0.0050 DIF
10 2 0.0039 DIF 0.0056 DIF 0.0100 DIF
9 3 0.0111 DIF 0.0062 NON-DIF 0.0150 DIF
8 4 0.0182 DIF 0.0071 NON-DIF 0.0200 DIF
3 5 0.0209 DIF 0.0083 NON-DIF 0.0250 DIF
6 6 0.0306 DIF 0.0100 NON-DIF 0.0300 NON-DIF
2 7 0.0388 DIF 0.0125 NON-DIF 0.0350 NON-DIF
4 8 0.2430 NON-DIF 0.0167 NON-DIF 0.0400 NON-DIF
7 9 0.3623 NON-DIF 0.0250 NON-DIF 0.0450 NON-DIF
1 10 0.7826 NON-DIF 0.0500 NON-DIF 0.0500 NON-DIF

This example highlights how correction methods for multiple comparison
have a straightforward impact on detection of DIF items. Holm’s procedure
(Holm, 1979) is an improvement of Bonferroni’s procedure that is more powerful
(B. S. Holland & Copenhaver, 1988). It is intended to control family-wise er-
ror, that is, the probability of making one or more type I errors. BH procedure
controls a false discovery rate, that is, the expected proportion of type I errors
(Benjamini & Hochberg, 1995). Procedures to control false discovery rate have
greater power at the cost of increased type I error rates (Shaffer, 1995). Kim
and Oshima (2013) discuss these approaches in detail in the DIF context. Again,
illustration of practical implementation in R within the nonlinear model (1.1) and
the difNLR package can be found in Section 1.4 on page 43. Syntax when us-
ing the difR package, which offers several DIF detection methods among binary
data such as the Mantel-Haenszel test (4) or the logistic regression method (7),
is analogous.
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4.1.3 Aims of the study

Though conceptually different and with different purposes, both approaches, item
purification and corrections for multiple comparisons, share the same objective,
that is, the improvement of the classification of items into DIF and non-DIF
groups. While both methods are still being studied intensively (Chen & Hwu,
2018; Fikis & Oshima, 2017; Khalid & Glas, 2014; Kim & Oshima, 2013), surpris-
ingly, and to our best knowledge, performance of these approaches has not yet
been jointly evaluated in a comprehensive study. Moreover, combinations of these
techniques, to our best knowledge, have not yet been explored. This represents
a potential gap in the DIF literature, as both approaches were shown to improve
DIF detection to a certain extent.

In this work we introduce two different settings for applying both meth-
ods, item purification and multiple comparison corrections, together. First, we
consider simple combination of both approaches. Simple combination contains
full item purification process being followed by multiple comparison adjustment
of the final purification results. Second, we propose another mixture of the ap-
proaches, here referenced as combined. Combined approach performs item purifi-
cation followed by correction for multiple comparison in the each iteration of item
purification.

The aim of this work is to perform a simulation which would allow us to im-
prove the knowledge about these techniques and for practical purposes (i.e., in or-
der to formulate tractable recommendations for better DIF practices in real data
analyses). In a complex DIF simulation study, we aim to evaluate properties
of both approaches (purification and adjustments) and their combinations un-
der selected DIF detection methods and under various scenarios for three se-
lected DIF detection methods: The Mantel-Haenszel test (4) (Mantel & Haen-
szel, 1959), the logistic regression method (7) (Swaminathan & Rogers, 1990),
and the SIBTEST (6) (Shealy & Stout, 1993),

4.2 Methods
This part comprises design of the simulation study to assess effects of correc-
tion methods on DIF detection procedures, the summary statistics considered
for output analysis, and practical implementation details.

4.2.1 Data and DIF generation

Six design factors were manipulated to generate the data: (a) sample size, (b) test
length, (c) amount of DIF items, (d) type of DIF, (e) size of DIF effect, and (f)
distribution of ability for focal group. The total sample sizes 250 (125 per group),
500 (250 per group), 1,000 (500 per groups), and 2,000 (1,000 per group) were
selected, while test lengths of 20, 40, and 80 items were considered. Four different
proportions of DIF items (0%, 5%, 15%, and 30%) were considered. Parameters
of DIF items were chosen to incorporate both types of DIF (uniform and non-
uniform) in two different sizes of DIF effect (0.4 and 0.8) quantified by the AM
(Raju, 1988, see also Section 1.5). DIF effect sizes correspond to small and large
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DIF magnitudes and were selected following Swaminathan and Rogers (1990) and
Narayanan and Swaminathan (1996).

The item responses were generated under a true 3PL IRT model (1.30). In all
scenarios, the ability of a reference group was drawn from the standard normal
distribution. For a focal group we considered three options for ability levels. First,
ability levels were the same as for the reference group – drawn from a standard
normal distribution. Second, ability levels for the focal group were drawn from
a normal distribution with a mean equal to 1 but with the same standard devi-
ation as for the reference group. Third, moreover standard deviation for normal
distribution for focal group was manipulated and set to 1.5.

Parameters of non-DIF items were selected from problem solving of GMAT
(Kingston et al., 1985, see Table at p. 47 for all 80 non-DIF items) to reflect
realistic values. When tests of 20 or 40 items were considered, only the set of pa-
rameters of the first 20 or 40 items were used.

The DIF item parameters creation was inspired by Narayanan and Swami-
nathan (1996). The c-parameter was fixed at a value of 0.2 for all DIF items.
The choice of discrimination and difficulty parameter values depends on the type
of DIF effect generated. For a uniform DIF, discrimination parameter a was fixed
for both groups, and difficulty parameter b varied to gain the desired DIF effect
size (either small 0.4, or large 0.8). 12 uniform DIF items were simulated with
a varying values of b parameter – low (b = −1 or b = −0.5 for reference group,
b = 0 for focal group) and high (b = 0 fo reference group, b = 0.5 or b = 1 for fo-
cal group); and varying values of a parameter – low (a = 0.5), medium (a = 1),
and high (a = 1.5). Table 4.3 summarizes all these options and highlights which
non-DIF item(s) were replaced by those parameter values.

For a non-uniform DIF items, difficulty parameter b was fixed for both groups,
and discrimination parameter a varied to gain desired DIF effect size. 12 non-
uniform DIF items were simulated with varying values of common b parameter
– low (b = −1), medium (b = 0), and high (b = 1) and varying values of a
parameter – low (a = 0.43 or a = 0.50 for reference group, a = 0.72 or a = 0.91
for focal group) and high (a = 0.56 or a = 0.90 for reference group and a = 1.79
or a = 2.01 for focal group). These combinations are also listed in Table 4.3.

This simulation design yields 36 settings in absence of DIF (four sample sizes,
three test lengths, and three ability distributions) and 324 settings in presence
of DIF (in addition, three proportions of DIF, two DIF sizes, and two types
of DIF effect), thus 468 design settings in total. For each such setting, 1,000 data
sets were generated. Note that given the fact that some DIF detection methods
may yield convergence issues, no results are then obtained for items that failed
to converge and thus no conclusion about DIF detection could be drawn. To
overcome this problem, simulation runs with convergence issues were excluded,
and simulations were re-run until 1,000 replications without convergence failures
were obtained.

4.2.2 DIF identification
Three methods to detect DIF were selected: the Mantel-Haenszel chi-squared
statistic (4) (P. W. Holland & Thayer, 1988; Mantel & Haenszel, 1959), the lo-
gistic regression procedure (7) (Swaminathan & Rogers, 1990) with the likelihood
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ratio test accounting for both types of DIF (i.e., uniform and non-uniform), and
the SIBTEST (5) (Shealy & Stout, 1993).

Table 4.3: Parameters of DIF items for the reference and the focal group.

Item number Item parameters
DIF proportion 5% 15% Reference Focal
Test length 20 40 20 40 a b a b

Uniform DIF size = 0.4
20 39 18 35 1.00 0.00 1.00 0.50

40 19 36 1.00 −0.50 1.00 0.00
20 37 0.50 0.00 0.50 0.50

38 0.50 −0.50 0.50 0.00
39 1.50 0.00 1.50 0.50
40 1.50 −0.50 1.50 0.00

Uniform DIF size = 0.8
20 39 18 35 1.00 0.00 1.00 1.00

40 19 36 1.00 −1.00 1.00 0.00
20 37 0.50 0.00 0.50 1.00

38 0.50 −1.00 0.50 0.00
39 1.50 0.00 1.50 1.00
40 1.50 −1.00 1.50 0.00

Non-uniform DIF size = 0.4
20 39 18 35 0.90 0.00 2.01 0.00

40 19 36 0.50 0.00 0.72 0.00
20 37 0.90 −1.00 2.01 −1.00

38 0.50 −1.00 0.72 −1.00
39 0.90 1.00 2.01 1.00
40 0.50 1.00 0.72 1.00

Non-uniform DIF size = 0.8
20 39 18 35 0.56 0.00 1.79 0.00

40 19 36 0.43 0.00 0.91 0.00
20 37 0.56 −1.00 1.79 −1.00

38 0.43 −1.00 0.91 −1.00
39 0.56 1.00 1.79 1.00
40 0.43 1.00 0.91 1.00

Note. Item number = number of item to be replaced in table of non-DIF
items (see Kingston et al., 1985, p. 47). Parameter c is 0.2 for all items.

All three DIF detection methods were employed for each generated data set,
together with eight possible procedures to control type I error: (a) item purifi-
cation, (b) Holm’s adjustment method, (c) BH method, (d) simple combination
of purification with Holm’s method, (e) simple combination of purification with
BH method, (f) item purification followed by Holm’s method after each itera-
tion, (g) item purification followed by BH method after each iteration, and (h)
no correction procedure (for bench-marking purposes). Thus, altogether 24 com-
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binations of DIF detection method and type I error controlling procedures were
applied to each data set. In case of using item purification, either alone or in com-
bination with adjustment method, maximal number of iterations was set to 50.
The significance value was set to 5%.

DIF effect size. In DIF analysis, a question of interest is often not only
whether items significantly function differently but also whether detected DIF is
of practical significance (Suh, 2016). Thus, besides testing statistically for a pres-
ence of items which function differently, DIF analysis is often accompanied by
calculation of so called DIF effect sizes and their classification (see, e.g., Jodoin
& Gierl, 2001; Potenza & Dorans, 1995). Classification of DIF effect sizes helps
to assess practical importance and interpretation of DIF being detected, as for
example power and often also type I error are increasing with increasing sample
size (see, e.g. Swaminathan & Rogers, 1990), while no practical importance is
present. DIF effect size is typically classified into three categories: A – negligible,
B – moderate, and C – large.

Thus, besides testing which items are significantly functioning differently, DIF
effect sizes were calculated to evaluate the magnitude of DIF. For the Mantel-
Haenszel test, we used classification based on log-transformation of the common
odds ratio ∆MHi = log(αMHi) as proposed by P. W. Holland and Thayer (1985).
For the logistic regression method, we considered classification based on Nagalk-
erke’s R2 (Nagelkerke, 1991) with bounds proposed by Jodoin and Gierl (2001).
The effect size is classified based on difference ∆R2

i between R2 coefficients of the
two nested models. Finally, for the SIBTEST, we applied classification based on
value of ω̂i (Roussos & Stout, 1996). Bounds for negligible (A), moderate (B),
and large (C) DIF effect sizes are summarized in Table 4.4.

Table 4.4: Bounds for DIF effect size classification.

DIF method Mantel-Haenszel
test

Logistic regression
method SIBTEST

Measure |∆MHi| ∆R2
i |ω̂i|

A – negligible 0.000 0.000 0.000
B – moderate 1.000 0.035 0.059
C – large 1.500 0.070 0.088

4.2.3 Summary statistics and simulation evaluation
Three summary statistics (type I error rate, rejection rate, and power rate) to-
gether with DIF effect sizes were computed across the 1,000 generated data sets
per study design, and separately for each of the 24 combinations of DIF detection
method and controlling procedures. Type I error was estimated as the propor-
tion of falsely detected items when none of the items were considered as DIF.
Rejection rate was calculated as the proportion of falsely detected items among
all non-DIF items (in the cases when DIF items were present in the simulation
scenario). Finally, power rate was calculated as the proportion of correctly de-
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tected DIF items among all truly DIF items. DIF effect sizes were computed
for truly identified DIF items as well as those which were falsely detected.

The results were interpreted with respect to the following research questions:

1. Are the DIF detection methods (the Mantel-Haenszel test, the logistic re-
gression method, or the SIBTEST) able to control for type I error (i.e., type
I error and rejection rates close to the 5% significant level) with sufficient
power (i.e, over 80%) even without any controlling procedure?

2. How do the studied controlling procedures (item purification, Holm’s adjust-
ment, BH adjustment) and their combinations (simple combination of pu-
rification and Holm’s adjustment, simple combination of purification and
BH adjustment, item purification followed by Holm’s method after each
iteration, item purification followed by BH method after each iteration)
compare in different scenarios in terms of power?

3. Which design factors have significant impact on type I error rate, rejection
rates, and power rates?

The first question was investigated by many authors (see, e.g., van de Water,
2014). In the context of this simulation study, the answer to the first question will
help to set the bench-marking values to which other methods will be compared.

To get initial idea, summarizing figures with observed type I error, rejection
rates, and power rates were produced. For simplicity, presented values were
averaged by scenarios with the same level of a given factor. Type I error and
rejection rates were considered as suitable if they were close to the 5% significance
level. Power rates was considered as satisfactory if it achieved a value of at least
80%.

To test for significance of the differences between controlling procedures and
other study factors, beta regression models for type I error, rejection rates, and
power rates were fitted with logit link. All possible double interactions between
factors were included into models. Note that since the beta regression model can-
not handle extreme values (i.e., 0 or 1), such type I error rates, rejection rates,
and power rates values were replaced by values 10−6 higher or lower. To sim-
plify the interpretation of the results with respect to the sample size, 250 was
subtracted from the sample size variable and then it was divided by 100. Inter-
pretation of the parameter effects in the beta regression model is the same as
in logistic regression (e.g., Agresti, 2010). It should be noted that interpretation
of the results was made primarily with focus on controlling procedures and their
possible interactions with other factors (see research questions above). Since, we
were not interested in differences between DIF detection methods (the Mantel-
Haenszel test, the logistic regression method, and the SIBTEST) in this study,
three separate models were fitted, one for each method.

Besides three summary statistics and their analysis using beta regression
model, we also evaluated DIF effect size measures for truly identified DIF items
as well as those which were false positives (non-DIF items which were falsely
detected as functioning differently). Proportions of negligible, moderate, and
large DIF magnitudes among truly and falsely detected DIF items were calcu-
lated separately. We then explored whether classification based on DIF effect size
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measures correspond to true underlying DIF magnitude which was used for gen-
eration of DIF items. In the case of false DIF items, large proportion of negligible
effects would be desirable. In the case of truly DIF items, DIF effect size classi-
fication should correspond to the true underlying DIF effect size which was used
for generating data, i.e., for true small DIF effect size, it can be expected that
classification mostly varies between negligible effect A and moderate effect B,
while for true large DIF effect size, it should vary between moderate effect B and
large effect C.

4.3 Results

4.3.1 Mantel-Haenszel test
Empirical rates. For small sample sizes, all correction methods were able
to control type I error and rejection rates in almost all scenarios. It is a common
phenomenon that with increasing sample size the rejection rates increase which
can be also observed for the Mantel-Haenszel test here. When using item purifi-
cation, proportion of cases when rejection rate exceeded significance level of 0.05
is lower than when using no correction method and, moreover, mean rejection
rate remained near the significance level even for large sample sizes (Figure 4.2,
right panel). Multiple comparison corrections and their combinations with item
purification yielded rejection rates under the significance level in most of the sce-
narios. However, when using only multiple comparison corrections (without item
purification), there was an increase in proportion of scenarios with rejection rates
exceeding 0.15, more often than in scenarios with item purification only. In such
a case, the BH adjustment yielded even larger mean rejection rate than item
purification (Figure 4.2).

Figure 4.2: Empirical type I error and rejection rates α for the Mantel-Haenszel
test. Plot shows proportions of 4 levels of rejection rates within given correction
method and sample size. Values below the bars indicate mean rejection rates.

For small sample sizes, there was only small proportion of scenarios when
power was sufficient and mean power of all correction methods remained on low
level (Figure 4.3, left panel). However, power rates were generally increasing
with the increasing sample size. While multiple comparison adjustments and
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their combinations with item purification gained lower power rates than item pu-
rification alone or when using no correction method, this difference was somehow
softened when sample size was large. Item purification seemed to gain the largest
power, followed by scenario when using no correction method and then by simple
combination of BH correction and item purification (Figure 4.3).

Using item purification alone, mean number of iterations of item purifica-
tion was decreasing with larger sample size and increasing with larger proportion
of DIF items. Mean number of iterations varied from 5.95 to 18.94. Mixtures
of item purification and adjustments for multiple comparison yielded generally
lower mean number of iterations (varied from 0.21 to 2.82 for Holm’s correction
and from 0.39 to 4.33 for BH). While the effect of increasing proportion of DIF
items was similar as for item purification, number of iterations increased with in-
creasing sample size. The lower mean number of iterations when using combined
mixture is not surprising as the mixtures generally identified less items, while this
also included cases when no DIF item was identified in the initial run.

Figure 4.3: Empirical power rates 1 −β for the Mantel-Haenszel test. Plot shows
proportions of 4 levels of power within given correction method and sample size.
Values below the bars indicate mean power.

Beta regression model. Beta regression model confirmed increasing re-
jection and power rates with the increasing sample size. While there was no
significant effect of item purification in power with increasing sample size, this
method significantly improved control of rejection rates compared to scenario
using no correction, the finding suggested also by empirical rates (displayed in
Figure 4.2 and discussed above). Further, item purification improved control of
rejection rates in case of large amount of DIF items and when underlying DIF
magnitude was large. In case of large proportion of DIF items, item purification
also significantly but only slightly increased power rate. Generally, using multi-
ple comparison correction led to substantial decrease in power which significantly
improved with increased sample size. This was also accompanied by significant
decrease of rejection rates, which was somehow softened by increased sample size
when using BH multiple comparison alone. All multiple comparison corrections
and their combinations with item purification yielded lower values in all three
summary statistics (rejection rate, type I error and power) when considering test
consisting of 40 or 80 items (Figure 4.4).
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Figure 4.4: Effects of correction methods (in rows) and their interaction with
other factors (in columns) on type I error, rejection, and power rates by beta
regression model for the Mantel-Haenszel test.

DIF effect size. For the Mantel-Haenszel test and for the smallest exam-
ined sample size of N = 250, all correction methods classified DIF effect size as
large (category C), no matter whether item was truly functioning differently or
only falsely detected and regardless of underlying DIF magnitude. Differences
between corrections could be observed only for larger sample sizes. Item purifica-
tion worked in similar way as when using no correction method, however, falsely
detected items were more often classified to smaller DIF effect size. Classifica-
tion using corrections for multiple comparisons and their combinations with item
purification became appropriate with increasing sample size. Among these cor-
rection methods, BH adjustment and its mixtures corresponded slightly better
to true underlying DIF magnitude, while falsely detected items were more often
classified as negligible (Figure 4.5).

Figure 4.5: DIF effect size classification for the Mantel-Haenszel test among all
truly and falsely detected items.
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4.3.2 Logistic regression method
Empirical rates. When using no correction method or item purification
alone, there was a large proportion of scenarios slightly exceeding significance
level of 0.05, i.e., rejection rates varied mostly between 0.05 and 0.1. In both
cases, proportion of severe overrun of significance level increased for large sample
sizes. Also mean value of type I error and rejection rates exceeded significance
level of 0.05 especially for large sample sizes (Figure 4.6, right panel). While item
purification yielded larger proportion of scenarios with good control of type I error
at the same time, it also gained large proportion of severe overruns resulting in
slightly increased rejection rate compared to the case when using no correction
method. All multiple comparison corrections and their combined mixtures with
item purification were able to control for type I error. However, both simple
combinations showed increased proportions of severe overrun for large sample
size and thus increased mean rejection rates (Figure 4.6).

Figure 4.6: Empirical type I error and rejection rates α for the logistic regression
method. Plot shows proportions of 4 levels of rejection rates within given cor-
rection method and sample size. Values below the bars indicate mean rejection
rates.

None of the correction methods was able to gain sufficient power for small
sample sizes. However, power rates were increasing with the increasing sample
size, while item purification yielded the largest proportion of scenarios with the
sufficient power (i.e., at least 80%), followed by setting with no correction method
and combinations of BH correction and item purification (Figure 4.7).

Mean number of iterations of item purification was increasing with the increas-
ing sample size and with the increasing proportion of DIF items in all methods.
However, item purification alone (and its simple combinations) yielded larger
mean number of iterations (varied from 2.46 to 9.41) than when used in com-
bined setting with multiple comparison corrections (varied from 0.23 to 2.77 for
Holm’s correction and from 0.36 to 5.72 for BH).

Beta regression model. Similarly to the Mantel-Haenszel test, item purifi-
cation in the logistic regression method improved rejection rate control in case
of large DIF effect size and large proportion of DIF items. However, unlike
in the Mantel-Haenszel test, the power of the logistic regression DIF detection
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Figure 4.7: Empirical power rates 1 − β for the logistic regression method. Plot
shows proportions of 4 levels of power within given correction method and sample
size. Values below the bars indicate mean power.

method increased when sample size increased. On the other hand, the power
slightly decreased when DIF was non-uniform and control of rejection rates wors-
ened when latent trait of focal groups was drawn from normal distribution with
different mean and variance. Multiple comparison corrections and their com-
binations with item purification indicated generally lower rejection and power
rates. While there were no crucial differences between the correction methods in
terms of power and their interactions with other factors, their control for rejection
rates differed. Especially, purification followed by multiple comparison correction
in each step, either BH or Holm’s, performed better control when sample size
increased (Figure 4.8).

Figure 4.8: Effects of correction methods (in rows) and their interaction with
other factors (in columns) on type I error, rejection, and power rates by beta
regression model for the logistic regression method.

DIF effect size. Classification of the logistic regression method using ∆R2
i

seemed to reflect true underlying DIF magnitudes only for small sample sizes.
With the increasing sample size, almost all DIF items were classified as of neg-
ligible effect (category A), which is undesired for truly DIF items. Moreover,
the classification did not distinguish between the true DIF magnitudes at all,
whether they were small or large. Purification and especially its combinations
with multiple comparison corrections at least in some cases classified DIF effect
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size into the category B when underlying DIF magnitude was large, however even
this effect became negligible with the increasing sample size. Generally, multiple
comparison corrections and their combinations with item purification overvalued
small DIF magnitude (Figure 4.9).

Figure 4.9: DIF effect size classification for the logistic regression method among
all truly and falsely detected items.

4.3.3 SIBTEST
Empirical rates. All correction methods improved control of type I error
even in case of large sample size, when increased rejection rates were observed
using no correction method. While item purification and BH adjustment itself
slightly overrun a significance level, all four combinations of multiple comparison
corrections and item purification kept rejection rates under the significance level
for almost all scenarios (Figure 4.10).

Figure 4.10: Empirical type I error and rejection rates α for the SIBTEST. Plot
shows proportions of 4 levels of rejection rates within given correction method
and sample size. Values below the bars indicate mean rejection rates.
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Sufficient power was gained only for larger sample sizes regardless of used
correction method. In such a case, item purification performed slightly better
than other procedures, followed by scenario when using no correction method
and then by both combinations of BH multiple comparison correction and item
purification (Figure 4.11).

Figure 4.11: Empirical power rates 1−β for the SIBTEST. Plot shows proportions
of 4 levels of power within given correction method and sample size. Values below
the bars indicate mean power.

Similarly as for the logistic regression method, mean number of iterations
of item purification in the SIBTEST method was increasing with the increasing
sample size and with the increasing proportion of DIF items in all methods.
Item purification alone (and its simple combinations) yielded again larger mean
number of iterations (varied from 8.67 to 25.42) than when used in combined
setting with the multiple comparison corrections (varied between 0.24 and 6.67
for Holm’s correction and between 0.38 and 9.91 for BH).

Beta regression model. Similarly to previous DIF detection methods,
the SIBTEST also showed increasing power with the increasing sample size. How-
ever, it seemed that the SIBTEST struggled when number of items increased,
as the power and rejection rates decreased rapidly. Moreover, it was somehow
more difficult to identify DIF when larger proportion of DIF items was present.
This was slightly better when item purification with the BH multiple comparison
correction (either simple or combined) was applied. Item purification again per-
formed better control of rejection rate in case of large proportion of DIF items,
large DIF effect size, and also increased sample size. Its effect on power was,
however, limited (Figure 4.12).

DIF effect size. Classification of the SIBTEST using |ω̂i| measure was some-
how non-informative for small sample sizes, as almost all DIF items were classified
into the category C regardless of the correction method or the true underlying
DIF magnitude. Differences between the methods were observed only for larger
sample sizes (i.e., n > 500, Figure 4.13, right panels). In that case using no
correction method or item purification yielded similar classification, which with
the increasing sample size corresponded to the underlying DIF effect magnitude.
Item purification seemed to more precisely classify falsely detected items as those

120



Figure 4.12: Effects of correction methods (in rows) and their interaction with
other factors (in columns) on type I error, rejection, and power rates by beta
regression model for the SIBTEST.

with negligible effect. When using multiple comparison corrections and their
combinations with item purification, classification assigned higher category for
falsely detected items and also for those truly detected (Figure 4.13).

Figure 4.13: DIF effect size classification for the SIBTEST among all truly and
falsely detected items.

4.4 Discussion
In the simulation study we investigated the impact of item purification and ad-
justments for multiple comparison and their combination on the properties of DIF
detection procedures, specifically on their type I error, rejection, and power rates.
We considered two combination settings – item purification followed by adjust-
ment in a final run and item purification followed by adjustment after each it-
eration. To evaluate results of the simulation study, we used empirical values
of summary statistics, beta regression model, and also DIF effect sizes.
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In general, the results suggest that all three DIF detection methods when
applied item by item and without any correction for multiple comparisons lead
to rejection rates somehow exceeding the nominal significance level in some sce-
narios, especially with large sample sizes, which has already been noted by many
authors including DeMars (2009), Güler and Penfield (2009), and Herrera and
Gómez (2008). Adjustments reduced both rejection rates and type I error, how-
ever, this reduction was also accompanied by a decrease of the power. Kim and
Oshima (2013) already noted that adjustments caused a decrease in power to
some extent, however in this study we demonstrate how in some scenarios power
rates are no longer sufficient. That means, in general, fewer items are detected
as DIF, and some potentially unfair items may remain undetected.

The effect of purification has been researched earlier by many authors in-
cluding Candell and Drasgow (1988), Navas-Ara and Gómez-Benito (2002), and
Wang and Su (2004). In our study, we confirmed some improvements in DIF
detection when using item purification primarily in the Mantel-Haenszel test and
the SIBTEST method. Generally, we observed improvement of DIF detection
when larger proportion of DIF items was present which was also showed for ex-
ample by French and Maller (2007). However, item purification yielded increased
type I error and rejection rates when applying within logistic regression espe-
cially when large sample size was considered, meaning that more items need to
be assessed by content experts which may give an impression of suspicious test.

Both settings of item purification combined with adjustment for multiple com-
parisons improved control of type I error and rejection rates in almost all scenarios
in the Mantel-Haenszel and the SIBTEST method. Applying BH correction re-
sulted in slightly larger power rates than in case of combinations with Holm’s
adjustment. However, item purification alone performed better in both above
mentioned DIF detection methods. In contrast, the logistic regression benefited
more from combined mixture of item purification and BH adjustment which was
followed by BH applied alone.

Weaker performance for small sample sizes is not surprising as all considered
DIF detection methods are asymptotic. Although the Mantel-Haenszel test gener-
ally works well even for small sample sizes, its inability to detect non-uniform DIF
was already stressed in previous studies (e.g., Swaminathan & Rogers, 1990). This
is also the case for the SIBTEST (see, e.g., Li & Stout, 1996; Chalmers, 2018).
It should be noted that collapsed summary statistics presented here also include
a non-uniform DIF effect and small DIF effect sizes. As mentioned above, these
factors may influence summary statistics significantly (i.e., reduction of power),
which may give an impression that the performance of DIF detection procedures
and correction methods is somewhat lower than reported in literature.

In summary, good control of type I error and rejection rate together with de-
cent power rates and adequate classification of DIF effect size suggest item pu-
rification alone and its simple combination with BH correction to be promising
controlling procedures when applying the Mantel-Haenszel test to identify DIF.
For large sample sizes, DIF detection based on logistic regression model may ben-
efit from using combined item purification with multiple comparison corrections
as they reported decent power with a good control of rejection rates. Finally, de-
tecting DIF using the SIBTEST method may profit from using item purification
as it improved control of type I error while it also gained larger power. While
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our simulation study contained various factors in a complex setting, general con-
clusions and recommendations cannot be made and further studies, preferably
including meta analysis, need to be performed.

Besides empirical summary statistics and beta regression models, DIF effect
sizes were computed to assess magnitude of DIF among truly and falsely detected
items. For small sample sizes, DIF effect sizes were uninformative in the Mantel-
Haenszel test and the SIBTEST. Together with the low power of both methods
in such scenarios, this suggests that if the item was detected as DIF at all, it
was classified into category C – large DIF magnitude. Moreover, classification
became appropriate when using no correction method or item purification alone
with smaller sample sizes than in case of multiple comparison adjustments or
their mixtures with item purification. DIF effect size classification based on ∆R2

i

worked in a different way for the logistic regression. While it was sufficient for
small sample sizes, with increasing sample size it became senseless as all items
were categorized as those with negligible effect.

There are some limitations of this simulation study which need to be con-
sidered. First, only a limited number of DIF detection methods were used, ex-
cluding, for example differential functioning of items and tests framework (Raju,
van der Linden, & Fleer, 1995) or methods based on IRT models such as Lord’s
or Raju’s tests (Lord, 1980; Raju, 1988, 1990). Simulation study showed that
different correction techniques have different effect on DIF detection methods,
thus conclusions need to be made with respect to only those used in this work.
Further studies are needed to explore effect of correction methods in above men-
tioned and other DIF detection approaches. Second, in our simulation study
we determined the significance of simulation factors via beta regression models,
where only double interactions were considered. However, increasing complexity
of the study design goes in hand with increased complexity of the results. Thus
any further extension to the study design may complicate interpretability and
thus lower the readability of the results.

While some of the simulation settings were inspired by previous studies to al-
low comparing the results, our study is more complex and its design goes beyond
previous studies including Kim and Oshima (2013) by also incorporating non-
uniform DIF, a larger variety of sample sizes, and various distributions of ability
levels for the reference group. Our study covers the current gap in the DIF lit-
erature as it allows for joint evaluation of properties of different correction types
– purification and correction for multiple comparisons. Moreover, we considered
two settings of their combinations, which to our best knowledge, have not yet
been explored in literature. Despite its limitations, this study offers a detailed
assessment of controlling procedures in DIF detection and a deeper insight which
may be helpful to researchers and practitioners when testing for DIF.
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Conclusion
The thesis dealt with the topic of DIF, a phenomenon that can arise in vari-
ous contexts of educational, psychological, or health-related measurements. We
focused on non-IRT statistical models and methods which can be used for DIF
detection.

Chapter 1 introduced generalized logistic regression models for DIF detection
among binary items which allow for possibility of guessing and/or inattention
when answering. We described several methods and algorithms to estimate item
parameters, namely the nonlinear least squares, the maximum likelihood, the EM
algorithm, and the newly proposed algorithm based on parametric link function.
We offered two simulation studies. The first simulation study, already published,
evaluated the properties of the newly proposed procedure based on the nonlinear
models and compared it to the commonly used DIF detection methods (Drabinová
& Martinková, 2017). The second simulation study, which is planned for publi-
cation in Hladká, Brabec, and Martinková (2021), compared presented methods
to estimate item parameters in the nonlinear models. Future work might con-
tain an extension of the second simulation study including an improvement of
the specification of starting values. Finally, we presented the implementation of
these methods within the statistical software R and its package difNLR (Hladká
& Martinková, 2020).

Chapter 2 focused on generalized logistic regression models for DIF and DDF
detection among ordinal and nominal models, namely the cumulative logit model,
the adjacent category logit model, and the multinomial model. Besides provid-
ing detailed model specifications, the maximum likelihood method to estimate
item parameters was described and the implementation of these models into
the difNLR package (Hladká & Martinková, 2020) was presented.

Chapter 3 proposed nonparametric comparison of ICCs for DIF detection. We
built on work by Srihera and Stute (2010) and we adapted and improved their
approach in some scenarios by proposing the estimate of the optimal weights and
by evaluating asymptotic properties of the underlying test statistic using wild
bootstrap. Future work may include theoretical derivation of the asymptotic
distribution when the matching criterion is discrete as was the case in offered
simulation study. Further extension of the simulation study may provide more
convincing examples of situations when the logistic regression is not capable to
detect differences between ICCs while the newly proposed method is, including
simulated as well as real data. These improvements are planned for publication
in Hladká and Martinková (2021).

Chapter 4 discussed further issues in DIF detection including item purification
and multiple comparison corrections. We newly proposed the combination of
both approaches in the two settings – item purification followed by correction
in final step and item purification followed by correction after each iteration.
The presented complex simulation study is planned for publication in Hladká,
Martinková, and Magis (2021).

In summary, parametric models discussed in the thesis can be seen as com-
putationally less demanding proxies to more complex IRT models, while they
account for possibility of guessing and/or inattention, or for polytomous items.
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The newly proposed nonparametric approach, on the other hand, does not require
a parametric form of the mean function and it seems to have a potential to out-
perform parametric approaches when several inflection points are present. In this
thesis, we focused on proper statistical specification, interpretation, estimation
procedures, and asymptotic properties of the newly proposed methods, but we
also discussed further issues in DIF detection. Finally, we offered empirical proofs
of appropriateness of the methods by simulation studies and, importantly, also
their practical implementation in the statistical software. As such, the thesis ex-
tends the existing methods for DIF detection and shows how the newly proposed
methods may be used in practice.
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Abbreviations
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Nomenclature
i Index related to item.

I The number of items in multi-item test.

p Index related to person or respondent.

n The number of respondents.

∂ Partial derivative.
D−→

n→∞
Convergence in distribution.

P−→
n→∞

Convergence in probability.

a
!= b a shall be equal to b.

140



List of publications
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A. Appendices

A.1 Integrable dominating functions
for the nonlinear least squares

To verify the regularity condition [R3] for the nonlinear least squares method
described in Section 1.2.1, we first need to calculate the second partial derivatives
of the ψik(y, x, g;γi). For simplicity, we will now consider only the reference
group, i.e. g = 0. Calculation would be analogous for the focal group g = 1.⃓⃓⃓⃓
⃓∂2ψik(y, x, g = 0;γi)

∂γij∂γil

⃓⃓⃓⃓
⃓ = 2

⃓⃓⃓⃓
⃓∂π(x;γi)

∂γik

∂2π(x;γi)
∂γij∂γil

+ ∂π(x;γi)
∂γij

∂2π(x;γi)
∂γik∂γil

+ ∂π(x;γi)
∂γil

∂2π(x;γi)
∂γik∂γij

− (y − π(x;γi))
∂3π(x;γi)
∂γik∂γij∂γil

⃓⃓⃓⃓
⃓ ,

(A.1)

where

πi(x,γi) = ci + (di − ci)
eai(x−bi)

1 + eai(x−bi)
= ci + (di − ci)ϕ(x; ai, bi).

Using the fact that ϕ(x; ai, bi) ∈ (0, 1), it is easy to see that

ϕ(x; ai, bi)(1 − ϕ(x; ai, bi)) ≤ ϕ(x; ai, bi) < 1

and, moreover,

|x− bi|ϕ(x; ai, bi)(1 − ϕ(x; ai, bi)) ≤ |x− bi| ≤ x2 + A1,

for some A1 ∈ R. Thus all first partial derivatives are dominated by⃓⃓⃓⃓
⃓∂π(x;γi)

∂γik

⃓⃓⃓⃓
⃓ ≤ x2 + A,

where A ∈ R is sufficiently large, k = 1, . . . , 8.
Similarly, for the second partial derivatives (1.16), using in addition the fact

that |1 − 2ϕ(x; ai, bi))| < 1, we have

|x− bi|ϕ(x; ai, bi)(1 − ϕ(x; ai, bi))|1 − 2ϕ(x; ai, bi))| ≤ |x− bi| ≤ x2 +B1,

(x− bi)2ϕ(x; ai, bi)(1 − ϕ(x; ai, bi))|1 − 2ϕ(x; ai, bi))| ≤ (x− bi)2 ≤ x4 +B2,

for some B1, B2 ∈ R, and, therefore,⃓⃓⃓⃓
⃓∂2π(x;γi)
∂γij∂γil

⃓⃓⃓⃓
⃓ ≤ x4 +B,

for B ∈ R sufficiently large, j, l = 1, . . . , 8, and thus⃓⃓⃓⃓
⃓∂π(x;γi)

∂γij

⃓⃓⃓⃓
⃓
⃓⃓⃓⃓
⃓∂2π(x;γi)
∂γij∂γil

⃓⃓⃓⃓
⃓ ≤ (x2 + A)(x4 +B) (A.2)
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are also dominated.
Finally, the third partial derivatives of the π(x,γi) with respect to parameters

ci and di are equal to zeros or contain terms analogous to those in the first and
the second partial derivatives which have been already shown to be bounded.
Thus, all we need to show is that the third partial derivatives with respect to
parameters ai and bi are dominated by some integrable function. We use the fact
that polynomial of ϕ(x; ai, bi) is a bounded function:⃓⃓⃓⃓
⃓∂3π(x;γi)

∂a3
i

⃓⃓⃓⃓
⃓ =

⃓⃓⃓
(di − ci)(x− bi)3

[︂
(1 − ϕ(x; ai, bi)) − 7(1 − ϕ(x; ai, bi))2

+ 12(1 − ϕ(x; ai, bi))3 − 6(1 − ϕ(x; ai, bi))4
]︂⃓⃓⃓

≤ C1x
4 + C2,⃓⃓⃓⃓

⃓∂3π(x;γi)
∂a2

i∂bi

⃓⃓⃓⃓
⃓ =

⃓⃓⃓
(di − ci)ai(x− bi)3ϕ(x; ai, bi)(1 − ϕ(x; ai, bi))[︂
1 − 14(1 − ϕ(x; ai, bi))2 + 36(1 − ϕ(x; ai, bi))3

− 24(1 − ϕ(x; ai, bi))4
]︂

+ (di − ci)(x− bi)2(1 − ϕ(x; ai, bi))[︂
− 3 + 21(1 − ϕ(x; ai, bi)) − 36(1 − ϕ(x; ai, bi))2

+ 18(1 − ϕ(x; ai, bi))3
]︂⃓⃓⃓

≤ C3x
4 + C4,⃓⃓⃓⃓

⃓∂3π(x;γi)
∂ai∂b2

i

⃓⃓⃓⃓
⃓ =

⃓⃓⃓
(di − ci)(x− bi)a2

iϕ(x; ai, bi)(1 − ϕ(x; ai, bi)) (1 − 6ϕ(x; ai, bi)

+ 6ϕ2(x; ai, bi)
)︂

+ 2aiϕ(x; ai, bi)(1 − ϕ(x; ai, bi))(1 − ϕ(x; ai, bi)

+ ϕ2(x; ai, bi))
⃓⃓⃓
≤ C5x

2 + C6,⃓⃓⃓⃓
⃓∂3π(x;γi)

∂b3
i

⃓⃓⃓⃓
⃓ =

⃓⃓⃓
(di − ci)a3

i

[︂
(1 − ϕ(x; ai, bi)) − 7(1 − ϕ(x; ai, bi))2

+ 12(1 − ϕ(x; ai, bi))3 − 6(1 − ϕ(x; ai, bi))4
]︂⃓⃓⃓

≤ C7 ∈ R.

In summary, for the third partial derivatives of π(x,γi) we have⃓⃓⃓⃓
⃓ ∂3π(x;γi)
∂γik∂γij∂γil

⃓⃓⃓⃓
⃓ ≤ Cx4 +D, (A.3)

where C,D ∈ R are sufficiently large, k, j, l = 1, . . . , 8.
In summary, combining (A.2) and (A.3), the triangle inequality for the (A.1)

and the fact that y−π(x;γi) ∈ (0, 1), the second partial derivatives of ψik(y, x, g =
0,γi) are dominated by⃓⃓⃓⃓

⃓∂2ψik(y, x, g = 0;γi)
∂γij∂γil

⃓⃓⃓⃓
⃓ ≤ K1x

6 +K2x
4 +K3x

2 +K4 =: ψ̈(y, x, g),

where K1, K2, K3, K4 ∈ R are sufficiently large, k, j = 1, . . . , 8, and ψ̈(y, x, g) is
an integrable function. This completes the proof that the condition [R3] holds.

A.2 Integrable dominating functions
for the maximum likelihood

To verify that the regularity condition [R4∗] holds for the maximum likelihood
method described in Section 1.2.2, we start with the first partial derivatives
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of f(y|x, g,γi).

⃓⃓⃓⃓
⃓∂f(y|x, g,γi)

∂γi

⃓⃓⃓⃓
⃓ =

⃓⃓⃓⃓
⃓ y − π(x, g;γi)
π(x, g;γi)(1 − π(x, g;γi))

∂π(x, g;γi)
∂γi

⃓⃓⃓⃓
⃓

=

⎧⎪⎨⎪⎩
⃓⃓⃓

1
π(x,g;γi)

∂π(x,g;γi)
∂γi

⃓⃓⃓
, y = 1,⃓⃓⃓

1
1−π(x,g;γi)

∂π(x,g;γi)
∂γi

⃓⃓⃓
, y = 0.

Analogously as in Appendix A.1, for simplicity, we will now consider only
the reference group, i.e. g = 0:

∂π(x, g;γi)
∂ai

= (di − ci)ϕ(x)(1 − ϕ(x))(x− bi),

∂π(x, g;γi)
∂bi

= (di − ci)ϕ(x)(1 − ϕ(x))ai,

∂π(x, g;γi)
∂ci

= 1 − ϕ(x),

∂π(x, g;γi)
∂di

= ϕ(x).

Thus we need to show that ϕ(x)
π(x,g=0;γi)

, 1−ϕ(x)
π(x,g=0;γi)

, ϕ(x)
1−π(x,g=0;γi)

, and 1−ϕ(x)
1−π(x,g=0;γi)

can
be dominated by some integrable functions.

The function

ϕ(x)
π(x, g = 0;γi)

= eai(x−bi)

ci + dieai(x−bi)
> 0

is increasing when ai > 0 with the upper asymptote given by

lim
x→∞

eai(x−bi)

ci + dieai(x−bi)
= 1
di

,

and thus

ϕ(x)
π(x, g = 0;γi)

≤ K1 ∈ R.

Similarly, the function

1 − ϕ(x)
π(x, g = 0;γi)

= 1
ci + dieai(x−bi)

> 0

is decreasing when ai > 0 with the upper asymptote given by

lim
x→−∞

1
ci + dieai(x−bi)

= 1
ci

,

and thus

1 − ϕ(x)
π(x, g = 0;γi)

≤ K2 ∈ R.
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Analogously, it can be shown that ϕ(x)
1−π(x,g=0;γi)

> 0 is an increasing function
with an upper asymptote of 1

1−di
and that 1−ϕ(x)

1−π(x,g=0;γi)
> 0 is an decreasing

function with an upper asymptote of 1
1−ci

.
Further, as ϕ(x) ∈ (0, 1), 1−ϕ(x) ∈ (0, 1), di−ci ∈ (0, 1), and |x−bi| ≤ x2+K3,

for some K3 ∈ R, it is clear to see that⃓⃓⃓⃓
⃓∂f(y|x, g,γi)

∂γik

⃓⃓⃓⃓
⃓ ≤ K∗

1 +K∗
2x

2,

for k = 1, . . . , 8, where K∗
1 , K

∗
2 ∈ R are sufficiently large, which is an integrable

function.

⃓⃓⃓⃓
⃓∂2f(y|x, g,γi)

∂γi∂γ
⊤
i

⃓⃓⃓⃓
⃓ =

⃓⃓⃓⃓
⃓ y − π(x, g;γi)
π(x, g;γi) (1 − π(x, g;γi))

[︄
∂2π(x, g;γi)
∂γi∂γ

⊤
i

− ∂π(x, g;γi)
∂γi

(︄
∂π(x, g;γi)

∂γi

)︄⊤
y − π(x, g;γi)

π(x, g;γi) (1 − π(x, g;γi))

⎤⎦⃓⃓⃓⃓⃓⃓

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

⃓⃓⃓⃓
1

π(x,g;γi)
∂2π(x,g;γi)

∂γi∂γ
⊤
i

− 1
π2(x,g;γi)

∂π(x,g;γi)
∂γi

(︂
∂π(x,g;γi)

∂γi

)︂⊤
⃓⃓⃓⃓
, y = 1⃓⃓⃓⃓

1
(1−π(x,g;γi))2

∂π(x,g;γi)
∂γi

(︂
∂π(x,g;γi)

∂γi

)︂⊤

− 1
1−π(x,g;γi)

∂2π(x,g;γi)
∂γi∂γ

⊤
i

⃓⃓⃓⃓
, y = 0

≤

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

⃓⃓⃓⃓
1

π(x,g;γi)
∂2π(x,g;γi)

∂γi∂γ
⊤
i

⃓⃓⃓⃓
+
⃓⃓⃓⃓

1
π2(x,g;γi)

∂π(x,g;γi)
∂γi

(︂
∂π(x,g;γi)

∂γi

)︂⊤
⃓⃓⃓⃓
, y = 1,⃓⃓⃓⃓

1
1−π(x,g;γi)

∂2π(x,g;γi)
∂γi∂γ

⊤
i

⃓⃓⃓⃓
+
⃓⃓⃓⃓

1
(1−π(x,g;γi))2

∂π(x,g;γi)
∂γi

(︂
∂π(x,g;γi)

∂γi

)︂⊤
⃓⃓⃓⃓
, y = 0.

We have already shown that the elements of vectors
⃓⃓⃓

1
π(x,g;γi)

∂π(x,g;γi)
∂γi

⃓⃓⃓
and⃓⃓⃓

1
1−π(x,g;γi)

∂π(x,g;γi)
∂γi

⃓⃓⃓
are all dominated by an integrable function K∗

1 +K∗
2x

2 for K∗
1 ,

K∗
2 ∈ R sufficiently large. Therefore, also elements of the vectors outer products,

i.e. matrices
⃓⃓⃓⃓

1
π2(x,g;γi)

∂π(x,g;γi)
∂γi

(︂
∂π(x,g;γi)

∂γi

)︂⊤
⃓⃓⃓⃓
and

⃓⃓⃓⃓
1

(1−π(x,g;γi))2
∂π(x,g;γi)

∂γi

(︂
∂π(x,g;γi)

∂γi

)︂⊤
⃓⃓⃓⃓
,

are all dominated by an integrable function (K∗
1 +K∗

2x
2)2.

Further, we have also shown that all terms ϕ(x)
π(x,g=0;γi)

, 1−ϕ(x)
π(x,g=0;γi)

, ϕ(x)
1−π(x,g=0;γi)

,
and 1−ϕ(x)

1−π(x,g=0;γi)
can be bounded by a constant. Moreover, using also the fact

that
⃓⃓⃓

∂2π(x,g;γi)
∂γik∂γil

⃓⃓⃓
≤ x4 + K3, k, l = 1, . . . , 8, already shown in Appendix A.1, it is

clear that also all elements of
⃓⃓⃓⃓

1
π(x,g;γi)

∂2π(x,g;γi)
∂γi∂γ

⊤
i

⃓⃓⃓⃓
and

⃓⃓⃓⃓
1

1−π(x,g;γi)
∂2π(x,g;γi)

∂γi∂γ
⊤
i

⃓⃓⃓⃓
are all

bounded by and integrable function x4 +K∗
3 for K∗

3 ∈ R sufficiently large.
Finally we get ⃓⃓⃓⃓

⃓∂2f(y|x, g,γi)
∂γik∂γil

⃓⃓⃓⃓
⃓ ≤ K4x

4 +K5x
2 +K6,

for k, l = 1, . . . , 8, where K4, K5, K6 ∈ R are sufficiently large which completes
the proof that the condition [R4∗] holds.
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A.3 R script for the EM algorithm

# data generation
set.seed(42)

x <- rnorm(1000)
g <- rep(c(0, 1), each = 500)
p <- 0.2 + 0.1 * g + (1 - 0.1 * g - 0.2 - 0.1 * g) /

(1 + exp(0 - x + 1 * g - 0.5 * x * g))
y <- rbinom(1000, 1, p)

# initial values
b0_new <- 0.1
b1_new <- 0.85
b2_new <- -1.1
b3_new <- 0.6
c_new <- 0.15
cDif_new <- 0.15
d_new <- 0.95
dDif_new <- -0.05

par <- list()
k <- 1
dev_new <- 0

# EM algorithm
repeat({

par[[k]] <- c(
b0_new, b1_new, b2_new, b3_new,
c_new, cDif_new, d_new, dDif_new

)
# checking maximal number of iterations
# actual number of iterations is k - 1,
# the first is for the initial run
if (k == 2001) {

break
}

# E-step
Z <- expectation(

y, x, g,
b0_new, b1_new, b2_new, b3_new,
c_new, cDif_new, d_new, dDif_new

)
# M-step
fit1 <- glm(cbind(Z$z2, Z$z3) ˜ x + g + x:g,

family = binomial(),
start = c(b0_new, b1_new, b2_new, b3_new)

)

b0_old <- b0_new
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b1_old <- b1_new
b2_old <- b2_new
b3_old <- b3_new
b0_new <- coef(fit1)[1]
b1_new <- coef(fit1)[2]
b2_new <- coef(fit1)[3]
b3_new <- coef(fit1)[4]

fit2 <- multinom(cbind(Z$z2 + Z$z3, Z$z1, Z$z4) ˜ g, trace = FALSE)
par_asympt <- as.data.frame(unique(cbind(g, fitted(fit2))))
# calculating upper asymptotes for the two groups
par_asympt$V4 <- 1 - par_asympt$V4
# differences in parameters between focal and reference group
par_asympt[3, ] <- par_asympt[par_asympt$g == 1, ] -

par_asympt[par_asympt$g == 0, ]
pars <- par_asympt[c(1, 3), c(1, 3, 4)]

c_old <- c_new
c_new <- pars[pars$g == 0, "V3"]
cDif_old <- cDif_new
cDif_new <- pars[pars$g == 1, "V3"]
d_old <- d_new
d_new <- pars[pars$g == 0, "V4"]
dDif_old <- dDif_new
dDif_new <- pars[pars$g == 1, "V4"]

# deviance
dev_old <- dev_new
dev_new <- deviance(fit1) + deviance(fit2)

# checking stopping criterion
if (abs(dev_old - dev_new) / (0.1 + dev_new) < 1e-6) {

k <- k + 1
par[[k]] <- c(

b0_new, b1_new, b2_new, b3_new,
c_new, cDif_new, d_new, dDif_new

)
break

}
k <- k + 1

})
par <- as.data.frame(do.call(rbind, par))
colnames(par) <- c("b0", "b1", "b2", "b3", "c", "cDif", "d", "dDif")

# final parameter estimates
par[nrow(par), ]

b0 b1 b2 b3 c cDif d dDif
-0.17602 0.98603 -0.87166 0.85062 0.21989 0.096286 0.99945 -0.14934
# standard errors of the estimates
sqrt(diag(covariance.matrix(x, y, g, par[nrow(par), ])))
0.79370 0.44492 1.00681 0.91258 0.20527 0.21341 0.16233 0.19429
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A.4 R script for the algorithm based on para-
metric link function

# data generation
set.seed(42)

x <- rnorm(1000)
g <- rep(c(0, 1), each = 500)
p <- 0.2 + 0.1 * g + (1 - 0.1 * g - 0.2 - 0.1 * g) /

(1 + exp(0 - x + 1 * g - 0.5 * x* g))
y <- rbinom(1000, 1, p)

# model matrix
X <- cbind(1, x, g, x * g)

# initial values
b0_new <- 0.1
b1_new <- 0.85
b2_new <- -1.1
b3_new <- 0.6
c_new <- 0.15
cDif_new <- 0.15
d_new <- 0.95
dDif_new <- -0.05

k <- 1
par <- list()
ll_new <- 0

# Algorithm based on parametric link function
repeat({

par[[k]] <- c(
b0_new, b1_new, b2_new, b3_new,
c_new, cDif_new, d_new, dDif_new

)
# checking maximal number of iterations
# actual number of iterations is k - 1,
# the first is for the initial run
if (k == 2001) {

break
}

# Step 1: fitting GLM with parametric link function
fit_glm <- glm(y ˜ x + g + x:g,

family = binomial(
link = plogit(c_new, cDif_new, d_new, dDif_new, g)

),
start = c(b0_new, b1_new, b2_new, b3_new)

)

b0_old <- b0_new
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b1_old <- b1_new
b2_old <- b2_new
b3_old <- b3_new

b0_new <- coef(fit_glm)[1]
b1_new <- coef(fit_glm)[2]
b2_new <- coef(fit_glm)[3]
b3_new <- coef(fit_glm)[4]

# bound for asymptotes
c0_max <- max(min(fitted(fit_glm)[g == 0], na.rm = TRUE), 0)
c1_max <- max(min(fitted(fit_glm)[g == 1], na.rm = TRUE), 0)
d0_min <- min(max(fitted(fit_glm)[g == 0], na.rm = TRUE), 1)
d1_min <- min(max(fitted(fit_glm)[g == 1], na.rm = TRUE), 1)

# Step 2: estimating asymptotes parameters
fit_cd <- optim(

fn = param.likel.cd,
par = setNames(

c(
(c_new + c0_max) / 2,
(c_new + cDif_new + c1_max) / 2,
(d0_min + d_new) / 2,
(d_new + dDif_new + d1_min) / 2

),
c("c0", "c1", "d0", "d1")

),
method = "L-BFGS-B",
lower = c(0, 0, d0_min, d1_min),
upper = c(c0_max, c1_max, 1, 1)

)

c_old <- c_new
cDif_old <- cDif_new
d_old <- d_new
dDif_old <- dDif_new

c_new <- fit_cd$par[1]
cDif_new <- fit_cd$par[2] - fit_cd$par[1]
d_new <- fit_cd$par[3]
dDif_new <- fit_cd$par[4] - fit_cd$par[3]

# log-likelihood
ll_old <- ll_new
ll_new <- logLik(fit_glm) - fit_cd$value

par[[k]] <- c(
b0_new, b1_new, b2_new, b3_new,
c_new, cDif_new, d_new, dDif_new

)
# checking stopping criterion
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if (abs(abs(ll_old - ll_new) / (0.1 + ll_new)) < 1e-6) {
break

}
k <- k + 1

})
par <- as.data.frame(do.call(rbind, par))
colnames(par) <- c("b0", "b1", "b2", "b3", "c", "cDif", "d", "dDif")

# final parameter estimates
par[nrow(par), ]

b0 b1 b2 b3 c cDif d dDif
-0.15238 0.97252 -0.89734 0.86781 0.21307 0.10343 1.00000 -0.15020

# standard errors of the estimates
sqrt(diag(covariance.matrix(x, y, g, par[nrow(par), ])))
0.78076 0.43197 0.99690 0.90788 0.20486 0.21298 0.16488 0.19642

A.5 R script for the calculation of starting values
based on CTT

startCTT <- function(x, y, num.groups = 3) {
# split matching criterion x to num.groups
breaks <- unique(quantile(x, (0:num.groups) / num.groups,

na.rm = TRUE
))
groups <- cut(x, breaks, include.lowest = TRUE)
levels(groups) <- LETTERS[1:num.groups]

# c is average y (empirical probability) for those whose matching
# criterion x is smaller than average value of x in the first group
# accounting for the variability of x
c <- mean(y[x < (mean(x[groups == LETTERS[1]],

na.rm = TRUE
) - sd(x) / 2)])
# d is average y (empirical probability) for those whose matching
# criterion x is greater than average value of x in the last group
# accounting for the variability of x
d <- mean(y[x > (mean(x[groups == LETTERS[num.groups]],

na.rm = TRUE
) + sd(x) / 2)])

# ULI index = difference in empirical probabilities in the first and
# the last group
uli <- mean(y[groups == LETTERS[num.groups]], na.rm = TRUE) -

mean(y[groups == LETTERS[1]], na.rm = TRUE)
# slope
b1 <- 4 * uli

# center point between asymptotes, empirical probability Y._i
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dotY <- (d + c) / 2

tmp <- c()
# rounded x and corresponding empirical probabilities
sorted_x <- unique(round(sort(x), 1))
for (i in sorted_x) {

tmp <- c(tmp, mean(y[round(x, 1) == i]))
}

# b0 (resp. difficulty b) is a value of matching criterion x, which
# gives probability of dotY
# looking for the smallest absolute distance of tmp from dotY
tmp <- abs(tmp - dotY)
# weighting absolute distances
w <- prop.table(table(round(x, 1)))
tmp <- tmp / w

# smoothing accounting for neighbors
tmp <- tmp +

0.1 * c(tmp[-1], tmp[length(tmp)]) +
0.1 * c(tmp[1], tmp[-length(tmp)])

# Looking for the smallest distance
min_sorted_x <- sorted_x[which(tmp == min(tmp))]
# creating of neighborhood of the point
min_msm <- min(min_sorted_x) - sd(x) / 2
max_msm <- max(min_sorted_x) + sd(x) / 2

# b0 = -b1 * b, where b is difficulty
b0 <- -b1 * mean(x[x > min_msm & x < max_msm])

results <- as.data.frame(cbind(b0, b1, c, d))
return(results)

}

A.6 R script for the calculation of starting values
based on grid search

startGRID <- function(x, y, num.groups = 3) {
# initial values based on CTT
init_ctt <- startCTT(x, y, num.groups)

X <- cbind(1, x)
# parametric expit
param.expit <- function(x, c, d) {

c + (d - c) / (1 + exp(-x))
}
# log-likelihood calculation
log.likel <- function(theta) {
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n <- nrow(X)
c <- theta[1]
d <- theta[2]
b0 <- theta[3]
b1 <- theta[4]

h <- param.expit(X %*% c(b0, b1), c, d)
l <- sum((y * log(h)) + ((1 - y) * log(1 - h)))
return(l)

}

# creating grid
# values for c, accounting for variance of c
c_seq <- seq(max(0, init_ctt$c - init_ctt$c * (1 - init_ctt$c)),

min(0.5, init_ctt$c + init_ctt$c * (1 - init_ctt$c)),
length.out = 10

)
# values for d, accounting for variance of d
d_seq <- seq(max(0.5, init_ctt$d - init_ctt$d * (1 - init_ctt$d)),

min(1, init_ctt$d + init_ctt$d * (1 - init_ctt$d)),
length.out = 10

)
# values for b0, accounting for variability of x
b0_seq <- seq(init_ctt$b0 - sd(x), init_ctt$b0 + sd(x),

length.out = 10
)
# values for b1, accounting for variability of y
b1_seq <- seq(init_ctt$b1 * sd(y), init_ctt$b1 / sd(y),

length.out = 10
)

grid <- expand.grid(c_seq, d_seq, b0_seq, b1_seq)
colnames(grid) <- c("c", "d", "b0", "b1")
grid$loglik <- apply(grid, 1, log.likel)

# looking for maximum value of log-likelihood and final parameters
maxll <- which(grid$loglik == max(grid$loglik))
results <- unlist(

unique(grid[maxll, c("b0", "b1", "c", "d")])
)
return(results)

}
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A.7 Tables

Table A.1: Arguments of the difNLR() function.

Argument Description
Data data.frame or matrix: dataset which rows represent

scored examinee answers ("1" correct, "0" incorrect) and
columns correspond to the items. In addition, Data can
hold the vector of group membership.

group numeric or character: a dichotomous vector of the same
length as nrow(Data) or a column identifier of Data.

focal.name numeric or character: indicates the level of group which
corresponds to the focal group.

model character: generalized logistic regression model to be
fitted. See Table 1.1.

constraints character: which parameters should be the same for
both groups. Possible values are any combinations of pa-
rameters "a", "b", "c", and "d".

type character: type of DIF to be tested. Possible values are
"all" for detecting difference in any parameter (default),
"udif" for uniform DIF only (i.e., difference in difficulty
parameter "b"), "nudif" for non-uniform DIF only (i.e.,
difference in discrimination parameter "a"), "both" for
uniform and non-uniform DIF (i.e., difference in parame-
ters "a" and "b"), or combination of parameters "a", "b",
"c", and "d". Can be specified as a single value (for all
items) or as an item-specific vector.

method character: method used to estimate parameters. Ei-
ther "nls" for non-linear least squares (default), or
"likelihood" for maximum likelihood method.

match numeric or character: matching criterion to be used as
an estimate of trait. Can be either "zscore" (default,
standardized total score), "score" (total test score), or
vector of the same length as number of observations in
Data.

anchor numeric or character: specification of DIF free items. Ei-
ther NULL (default), or a vector of item names (column
names of Data), or item identifiers (integers specifying the
column number) determining which items are currently
considered as anchor (DIF free) items. Argument is ig-
nored if match is not "zscore" or "score".

purify logical: should the item purification be applied? (de-
fault is FALSE).

nrIter numeric: the maximal number of iterations in the item
purification (default is 10).

test character: test to be performed for DIF detection. Can
be either "LR" for likelihood ratio test of a submodel (de-
fault), "W" for Wald test, or "F" for F-test of a submodel.
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Argument Description
alpha numeric: significance level (default is 0.05).
p.adjust.method character: method for multiple comparison correc-

tion. Possible values are "holm", "hochberg", "hommel",
"bonferroni", "BH", "BY", "fdr", and "none" (default).

start numeric: initial values for estimation of parameters.
If not specified, starting values are calculated with the
startNLR() function. Otherwise, list with as many ele-
ments as a number of items. Each element is a named
numeric vector of length 8 representing initial values for
parameter estimation. Specifically, parameters "a", "b",
"c", and "d" are initial values for discrimination, diffi-
culty, guessing, and inattention for the reference group.
Parameters "aDif", "bDif", "cDif", and "dDif" are then
differences in these parameters between the reference and
focal group.

initboot logical: in case of convergence issues, should be starting
values re-calculated based on bootstraped samples? (de-
fault is TRUE; newly calculated initial values are applied
only to items/models with convergence issues).

nrBo numeric: the maximal number of iterations for calculation
of starting values using bootstraped samples (default is
20).

sandwich logical: should be sandwich estimator used for covari-
ance matrix of parameters when using method = "nls"?
Default is FALSE.
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Table A.2: Arguments of the difORD() function.

Argument Description
Data data.frame or matrix: dataset which rows represent or-

dinaly scored examinee answers and columns correspond
to the items. In addition, Data can hold the vector of
group membership.

group numeric or character: a dichotomous vector of the same
length as nrow(Data) or a column identifier of Data.

focal.name numeric or character: indicates the level of group which
corresponds to the focal group.

model character: logistic regression model for ordinal data (ei-
ther "adjacent" (default) or "cumulative").

type character: type of DIF to be tested. Either "both"
for uniform and non-uniform DIF (i.e., difference in pa-
rameters "a" and "b") (default), or "udif" for uniform
DIF only (i.e., difference in difficulty parameter "b"), or
"nudif" for non-uniform DIF only (i.e., difference in dis-
crimination parameter "a"). Can be specified as a single
value (for all items) or as an item-specific vector.

match numeric or character: matching criterion to be used as
an estimate of trait. Can be either "zscore" (default,
standardized total score), "score" (total test score), or
vector of the same length as number of observations in
Data.

anchor numeric or character: specification of DIF free items.
Either NULL (default), or a vector of item names (column
names of Data), or item identifiers (integers specifying the
column number) determining which items are currently
considered as anchor (DIF free) items. Argument is ig-
nored if match is not "zscore" or "score".

purify logical: should the item purification be applied? (de-
fault is FALSE).

nrIter numeric: the maximal number of iterations in the item
purification (default is 10).

p.adjust.method character: method for multiple comparison correction.
Possible values are "holm", "hochberg", "hommel",
"bonferroni", "BH", "BY", "fdr", and "none" (default).

parametrization character: parametrization of regression coefficients.
Possible options are "irt" for difficulty-discrimination pa-
rametrization (default) and "classic" for intercept-slope
parametrization.

alpha numeric: significance level (default is 0.05).
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Table A.3: Arguments of the ddfMLR() function.

Argument Description
Data data.frame or matrix: dataset which rows represent un-

scored examinee answers (nominal) and columns corre-
spond to the items. In addition, Data can hold the vector
of group membership.

group numeric or character: a dichotomous vector of the same
length as nrow(Data) or a column identifier of Data.

focal.name numeric or character: indicates the level of group which
corresponds to the focal group.

key character: the answer key. Each element corresponds to
the correct answer of one item.

type character: type of DIF to be tested. Either "both"
for uniform and non-uniform DIF (i.e., difference in pa-
rameters "a" and "b") (default), or "udif" for uniform
DIF only (i.e., difference in difficulty parameter "b"), or
"nudif" for non-uniform DIF only (i.e., difference in dis-
crimination parameter "a"). Can be specified as a single
value (for all items) or as an item-specific vector.

match numeric or character: matching criterion to be used as
an estimate of trait. Can be either "zscore" (default,
standardized total score), "score" (total test score), or
vector of the same length as number of observations in
Data.

anchor numeric or character: specification of DIF free items.
Either NULL (default), or a vector of item names (column
names of Data), or item identifiers (integers specifying the
column number) determining which items are currently
considered as anchor (DIF free) items. Argument is ig-
nored if match is not "zscore" or "score".

purify logical: should the item purification be applied? (de-
fault is FALSE).

nrIter numeric: the maximal number of iterations in the item
purification (default is 10).

p.adjust.method character: method for multiple comparison correction.
Possible values are "holm", "hochberg", "hommel",
"bonferroni", "BH", "BY", "fdr", and "none" (default).

parametrization character: parametrization of regression coefficients.
Possible options are "irt" for difficulty-discrimination pa-
rametrization (default) and "classic" for intercept-slope
parametrization.

alpha numeric: significance level (default is 0.05).
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Table A.4: Mean and median parameter estimates with the bias, model based
standard errors, and empirical standard deviations for n = 1, 000.

NLS MLE EM PLF NLS MLE EM PLF
b0 c

Count 969 1000 1000 981 Count 969 1000 1000 981
Mean 0.047 −3.213 0.002 −0.002 Mean 0.218 0.222 0.226 0.223
Median 0.108 0.032 0.033 0.027 Median 0.239 0.245 0.248 0.248
Bias 0.047 −3.213 0.002 −0.002 Bias 0.018 0.022 0.026 0.023
MBSE 0.724 1.569 0.652 0.624 MBSE 0.180 0.205 0.190 0.197
ESD 1.070 98.688 0.841 0.641 ESD 0.140 0.140 0.134 0.133

b1 cDIF
Count 969 1000 1000 981 Count 969 1000 1000 981
Mean 1.636 11.065 1.497 1.422 Mean 0.072 0.071 0.068 0.063
Median 1.257 1.240 1.256 1.243 Median 0.066 0.065 0.065 0.055
Bias 0.636 10.065 0.497 0.422 Bias −0.028 −0.029 −0.032 −0.037
MBSE 1.134 3.525 0.871 0.808 MBSE 0.218 0.244 0.225 0.235
ESD 2.331 291.513 1.312 1.134 ESD 0.171 0.172 0.164 0.164

b2 d
Count 969 1000 1000 981 Count 969 1000 1000 981
Mean −3.440 −47.063 −107.484 −0.696 Mean 0.939 0.949 0.947 0.949
Median −1.216 −1.204 −1.200 −1.133 Median 0.963 0.991 0.978 0.983
Bias −2.440 −46.063 −106.484 0.304 Bias −0.061 −0.051 −0.053 −0.051
MBSE 1.420 30.865 1.288 1.539 MBSE 0.113 0.146 0.140 0.145
ESD 53.023 1823.992 2338.516 10.733 ESD 0.068 0.065 0.063 0.062

b3 dDIF
Count 969 1000 1000 981 Count 969 1000 1000 981
Mean 4.559 228.338 153.963 0.271 Mean −0.041 −0.045 −0.049 −0.042
Median 0.439 0.457 0.454 0.416 Median −0.019 −0.004 −0.024 −0.013
Bias 4.059 227.838 153.463 −0.229 Bias 0.059 0.055 0.051 0.058
MBSE 2.376 60.206 1.933 1.909 MBSE 0.208 0.255 0.240 0.255
ESD 89.025 4183.318 2826.562 6.610 ESD 0.118 0.118 0.115 0.112

Note. NLS = nonlinear least squares, MLE = maximum likelihood estimation, EM =
expectation-maximization algorithm, PLF = method based on parametric link function,
Count = number of parameter estimates excluding crashed simulation runs, MBSE =
model based standard error, ESD = empirical standard deviation.
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