Title: U in metastable systems: structure, magnetism, and superconductivity

Author: Volodymyr Buturlim

Department / Institute: Department of Condensed Matter Physics, Faculty of

Mathematics and Physics, Charles University

Supervisor of the doctoral thesis: Doc. RNDr. Ladislav Havela, CSc., Department of

Condensed Matter Physics, Faculty of Mathematics and Physics, Charles University,

Prague, The Czech Republic

Abstract: This thesis presents studies of U-Nb and U-Ti alloys and hydrides

synthesized via different technological paths. Investigation of the microstructure of the

alloys with different concentrations of Ti (Nb) allowed to find the optimum setting for

stabilization of the metastable bcc U allotrope. Ultra-fast cooling accompanied by

alloying leads to retention of materials with high degree of atomic disorder apparent

from the studies of their transport properties. The alloys exhibit a weakly paramagnetic

ground state and low-temperature superconductivity, the critical temperature of which

has only moderate variations with Ti (Nb) concentrations and which has very high

upper critical fields.

Interaction with hydrogen allows to stabilize two distinctive forms of hydride:

β-UH₃ and UTi₂H_x. β-UH₃ alloyed by Ti (Nb) orders ferromagnetically with transition

temperatures exceeding 170 K, weakly influenced by the concentration of the

transition elements. Development of the density of electronic states at the Fermi level

was monitored by the studies of heat capacity. The results were interpreted in the

context of variations of U-U spacing.

UTi₂H_x represents a cubic Laves phase AB₂, which is, however, in this case

not form without hydrogen. This hydride can accommodate different concentrations

of hydrogen. Investigation of magnetic properties reveals the possibility of

stabilization of magnetic UTi₂H₆ and non-magnetic UTi₂H₅. Transport and

thermodynamic properties of UTi₂H₅ characterize this material as a spin fluctuator

poised at the verge of magnetic ordering.

Keywords: Uranium, Superconductivity, Hydride, Strong Correlations