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Introduction
This paper is dedicated to the modelling and the numerical analysis of nonlin-
ear flows in porous media, which is mostly used in hydrology, oil industry or
environmental protection. While Darcy’s law is commonly used in modelling of
the flow in porous media, it is important to remember that it is derived under
very specific assumptions, or by somewhat restricting simplification of the general
conservation laws. This has been observed to be problematic in situations with
high values of velocity or equivalently, the situations, where the Reynolds number
exceeds a certain characteristic value.

These problems led to multiple generalizations of Darcy’s law that were in-
tended to capture the nonlinear nature of the flow shown in the experiments. The
class of the generalizations studied in this paper are called Forhheimer equations,
which in addition to simple Darcy’s law µ

k
u = −∇p contain polynomial depen-

dencies on the velocity field. These equations can be written as g(|u|)u = −∇p,
where g is a polynomial with positive coefficients and positive exponents of the
given degree. Under some additional assumptions on the domain and the studied
fluid these can be rewritten as the equation

ut − ∇ · (K(∇u)∇u) = f,

with the appropriate boundary and initial conditions, where K is a nonlinear
function with attributes dependent on the polynomial g. Using the properties
of K derived in the paper, this leads to a nonstationary quasilinear convection-
diffusion problem, which generally degenerates for pressure values approaching
infinity, making the analysis somewhat complicated and demands the use of non-
standard techniques. This problem will be shown to be similar to the perturbed
p-laplace problem with p ∈ (1, 2).

In the numerical analysis of this equation we chose the discontinuous Galerkin
approach, which is similar to standard finite elements methods, but does not
prescribe continuous test functions on the edges of the triangulation. One of
the advantages of this approach is that we are able to locally adapt the mesh
and the polynomial degree of approximation, without impacting the rest of the
computational domain. More precisely, the local Discontinuous Galerkin method
was chosen, in which the equation is first rewritten as three equations of the
first order and numerical fluxes are used to control the the jumps of the discrete
solution on the boundaries of the triangulation. This is different to the use of
additional terms that preserve the consistency of the discretization as in interior
penalty discontinuous Galerkin methods. The main results of this paper consists
of a priori stability estimates for the case with simplified boundary conditions and
for the stationary case, and the a priori error estimates that show the convergence
rate in the special norm || · ||F,DG.

The paper is organised as follows. In chapter 1 we present the derivation of the
studied equation from the generalized Darcy’s law and show some properties of the
nonlinear function K. In Chapter 2 we define Sobolev-Orlicz spaces, and derive
some useful properties of N-functions, which can be linked to the nonlinear nature
of the problem and are used in the further analysis. Chapter 3 consists of the
proper formulation of the studied equations, discretization of the computational
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domain and the introduction of the discontinuous spaces used in the local DG
formulation. In chapter 4 we present additional results, which are needed in the
local DG formulation and further numerical analysis of the problem. Chapter 5
consists of the local DG discretization and the primal formulation of the problem.
In chapter 6 we present the a priori estimates for the numerical solution under the
special conditions on the boundary, or in the stationary case. Finally in chapter
7 we show the a priori error estimates in both stationary and time dependent
case. The paper closes with the numerical experiments in chapter 8.
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1. Derivation of the model

1.1 Notation
First we establish some simplifying notation. Throughout the paper we will use
in most estimates generic constants usually denoted c or C, meaning they can
change from line to line, but never depend on important quantities, such as h
the parameter of the mesh or the unknown functions uh or u. We will also use
the symbol for equivalence ∼, meaning f ∼ g, iff there exist constants c1 and
c2, such that c1g ≤ f ≤ c2g. It will be useful to simplify the notation for the
normed integral over a domain Ω as ⟨f⟩Ω = −

∫︁
Ω fdx = 1

|Ω|
∫︁

Ω fdx, where |Ω| is the
Lebesgue measure of Ω with appropriate dimension.

1.2 Generalization of the Darcy’s law
In the first chapter we start with the physical motivation behind the analysed
problem and the derivation of the most important equation studied in the thesis.
We mostly follow the derivation in [1] and [2] for slightly compressible fluid,
isothermal conditions and homogeneous domain.

It is common to describe the viscous fluid laminar flows in porous media by
Darcy’s law. This model can be derived in several ways, including homogeniza-
tion, or simplification of the general balance equations governing the flow. Either
way, several simplifying assumptions have to be made in order to derive Darcy’s
law. While it is easier to work with during computations, it proves insufficient
to describe situations involving higher velocities and therefore large Reynolds
numbers.

One of the ways to deal with this problem is the use of Forchheimer’s mod-
els, which include nonlinear dependencies between the velocity and the pressure
gradient to describe different phenomena like friction between the fluid and the
solid in the porous media. The Darcy’s law in the general setting can be written
as

αv = −Π∇p, α = µ

k
, (1.1)

where v is the velocity field, p is the pressure distribution, µ is the dynamic
viscosity of the fluid, k is the permeability of the medium, which can be a function
of the spacial variables and Π is a dimensionless normalized positive definite
symmetric permeability tensor.

There are three different Forchheimer’s laws commonly used to generalize this
equation.

• Forchheimer two term law

αv + β
√︂

(Bv, v)v = −Π∇p, β = ρFΦ
l1/2 , (1.2)

where ρ is the density of the fluid, F is the Forchheimer’s coefficient, Φ is
the porosity and B is a positive definite tensor, with bounded entries, which
can depend on the spatial variable.
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• The Forchheimer power law

av + cn
√︂

(Bv, v)n−1v = −Π∇p, (1.3)
where n is a number from interval [1, 2] and the functions a and c, which
are positive and bounded can be found empirically, or they can be taken as
c = (n− 1)β1/2 and a = α.

• The Forchheimer three term law

av + b
√︂

(Bv, v)v + c(Bv, v)v = −Π∇p, (1.4)
where a, b and c are empirical constants.

We can write these equations in the more general form, as follows

g(x, |v|B)v = −Π∇p. (1.5)

Using B the same as before, g(x, s) > 0 for s ≥ 0 and |v|B =
√︂

(Bv, v). If
we further assume that the porous media is homogeneous and isotropic and the
function g(s) is independent of the spatial variable, meaning that

Π(x) = I, B(x) = I, g(x, |v|B) = g(|v|), (1.6)
we arrive at

g(|v|)v = ∇p. (1.7)
By taking the norm of both sides and defining G(s) := g(s)s we get

g(|v|) |v| = |∇p| , G(|v|) = |∇p| . (1.8)
In order for this problem to be solvable for |v|, we need G to be invertible. To

guarantee this we place the following conditions on g(s).

Definition 1.1. The function g(s) satisfies G-Conditions if

• g ∈ C([0,∞)) ∪ C1((0,∞)),

• g(0) > 0 and g′(s) ≥ 0 for all s ≥ 0.

For the function G we have G(0) = 0 and if g(s) satisfies the G-Conditions,
which also means that it is growing on [0,∞), we also have G′(s) = g′(s)s+g(s) ≥
g(0) > 0. This implies that G is a one to one mapping of the interval [0,∞) to
itself. Therefore G is invertible on this interval and we can write

|v| = G−1(|∇p|). (1.9)
To check if these conditions on the function g(s) are reasonable within our

framework, we can verify if they are compatible with Forchheimer’s laws. Under
conditions (1.6) the three Forchheimer’s laws reduce to
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• Forchheimer two term law

av + b |v| v = −∇p. (1.10)

• The Forchheimer power law

av + d |v|n−1 v = −∇p. (1.11)

• The Forchheimer three term law

av + b |v| v + c |v|2 v = −∇p, (1.12)

where a, b, c and d are positive constants. We can write the generalized form of
these equations as follows.

k∑︂
i=0

ai |v|αi v = a0 |v|α0 v + a1 |v|α1 v + . . .+ ak |v|αk v = −∇p, (1.13)

for k ≥ 0, positive coefficients ai, i = 0, . . . , k and exponents satisfying
0 < α0 < α1 < . . . < αk . In this situation g(s) is a polynomial with positive
coefficients and positive exponents

g(s) =
k∑︂
i=0

ais
αi . (1.14)

These types of functions are called g-Forchheimer polynomials of degree αk
and they trivially satisfy the G-Conditions.

Now we can plug (1.9) into (1.7) and get

v = ∇p
g(G−1(|∇p|)) = −K(|∇p|)∇p, (1.15)

where K : [0,∞) → [0,∞) is defined by

K(ξ) := 1
g(G−1(ξ)) . (1.16)

We will further assume that we are working with slightly compressible fluid,
which means it has small, but non zero constant compressibility 1

κ
of magnitude

between 10−5 to 10−6. Gas free oil, or water can serve as examples for slightly
compressible fluids. Now we want to use the state equation for slightly compress-
ible fluid, and the continuity equation. In isothermal condition it holds ρ = ρ(p)
and the state equations for the fluid reads

1
ρ

dρ

dp
= 1
κ
, (1.17)

where 1
κ

is the compressibility of the fluid and under the previous assumptions
1
κ

= konst > 0. If we solve this equation for ρ, we get

ρ = ρoexp(
p− p0

κ
), (1.18)
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with ρ0 and p0 being the reference density and reference pressure respectively.
The continuity equation

dρ

dt
= −∇ · (ρv) (1.19)

can be rewritten assuming ρ = ρ(p) as

dρ

dp

dp

dt
= −ρ∇ · v − dρ

dp
v · ∇p. (1.20)

Here we can substitute for ρ from the state equation (1.17)

dρ

dp

dp

dt
= −κdρ

dp
∇ · v − dρ

dp
v · ∇p,

dp

dt
= −κ∇ · v − v · ∇p.

Since for most slightly compressible fluids in porous media flows the constant
κ is large, i.e of the magnitude between 105 and 106, the last term in this equation
is often dropped and the following reduced equation is studied

dp

dt
= −κ∇ · v. (1.21)

We can substitute for v from the equation (1.15) to obtain

dp

dt
= κ∇ · (K(|∇p|)∇p). (1.22)

In order to get rid of the constant κ in this equation, we can transition into
dimensionless variables.

We can take 1
κ
, Q and |Ω| as the reference values for the compressibility, the

total production of the fluid, and the volume of the domain. Therefore the ref-
erence length is L = |Ω|1/d, where d = 2, 3 is the dimension and reference time is
T = |Ω|

Q
. The dimensionless pressure, velocity and time are defined as

p∗ = p

κ
, v∗ = Ld−1

Q
v, t∗ = Q

|Ω|
t. (1.23)

Further the dimensionless non linear function A∗ can be defined as

A∗(ξ∗) = κLd−2K(ξ)
Q

=
κLd−2K( κ

L
ξ∗)

Q
. (1.24)

The equation (1.15) can be rewritten as

Q

Ld−1v
∗ = −K(|∇∗(κ/Lp∗)|)∇∗(κ/Lp∗), (1.25)

v∗ = −Ld−2K(|∇∗(κ/Lp∗)|)
Q

∇∗p∗ = −A∗(|∇∗p∗|)∇∗p∗. (1.26)

Similarly the equation (1.22) can be rewritten as

Q

Ld
κ
dp∗

dt∗
= ∇∗ · κ

L
K(|∇∗(κ/Lp∗)|)∇∗p∗, (1.27)
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dp∗

dt∗
= ∇∗ · κL

d−2K(|∇∗(κ/Lp∗)|)
Q

∇∗p∗ = ∇∗ · (A∗(|∇∗p∗|)∇∗p∗). (1.28)

Finally if we drop the ∗ in the notation we get the equations (1.15), (1.22) in
the form without the constant κ

v = −K(|∇p|)∇p, (1.29)
dp

dt
= ∇ · (K(|∇p|)∇p). (1.30)

If we denote the unknown function as u and the right hand side as f , we arrive
at the final equation

ut − ∇ · (K(|∇u|)∇u) = f, (1.31)
which will be the subject of the analysis in the further chapters, assuming appro-
priate initial and boundary conditions.

u|δΩD×(0,T ) = uD,

K(|∇u|)∇u · n|δΩN×(0,T ) = gN ,

u(x, 0) = u0(x) x ∈ Ω.

On the boundary of the domain Ω × (0, T ), we chose a combination of the
Dirichlet and Neumann boundary conditions.

As we can see, we end up with the nonlinear convection-diffusion problem,
where the nonlinearity stems from the function K, for which we can derive some
additional properties based on the physical model.

1.3 Properties of the non linear function K

Since K is a nonlinear function, we will need to acquire some estimates on K(ξ)
and the derivative K ′(ξ), for ξ ≥ 0, based on the definition K(ξ) := 1

g(G−1(ξ))
and the properties of the polynomial g. We derive some of the properties of the
nonlinear function K, which can be found in [1] and [2] with the similar proofs.

Lemma 1.1. Let the function g(s) satisfy the G-Conditions. Then the function
K is well defined, belongs to C1([0,∞)) and is decreasing. Moreover if we use
the notation s = G−1(ξ) for ξ ≥ 0 (which will be used in the further results as
well) we have

K ′(ξ) = −K(ξ) g′(s)
ξg′(x) + g2(s) ≤ 0. (1.32)

Proof. Since g(s) satisfies the G-Conditions, G−1 is well defined and therefore
also K is well defined. Straightforward calculation using the chain rule gives us
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K(ξ) = 1
g(G−1(ξ)) ,

K ′(ξ) = − 1
g2(s)g

′(s) 1
G′(s) = − 1

g(G−1(ξ)
g′(s)
g(s)

1
g′(s)s+ g(s)

= −K(ξ) g′(s)
ξg′(s) + g2(s) ≤ 0.

Since ξ ≥ 0, g′(s) ≥ (0) and K(ξ) ≥ 0, the last inequality holds and K is
decreasing.

In order to acquire certain monotone properties for K that will be useful in the
stability and error estimates down the road, we introduce an additional condition
on g(s).

Definition 1.2. The function g(s) as defined previously satisfies the Lambda-
Condition, if there exists λ > 0 such that for all s > 0

g(s) ≥ λsg′(s). (1.33)

Note that g-Forchheimer polynomials of degree αk satisfy this condition with
λ = 1

αk
.

Lemma 1.2. Let g(s) satisfy the G-Condition and Lambda-Condition, then

− 1
λ+ 1

K(ξ)
ξ

≤ K ′(ξ) ≤ 0. (1.34)

Proof. If g′(s) = 0, then K ′(ξ) = 0 and the inequality holds. Otherwise we can
use the result from the previous lemma and the Lambda-Condition

K ′(ξ) = −K(ξ) g′(s)
ξg′(s) + g2(s) ≥ −K(ξ) g′(s)

ξg′(s) + g(s)λsg′(s)

= −K(ξ) g′(s)
ξg′(s) + ξλg′(s) = − 1

λ+ 1
K(ξ)
ξ

.

Lemma 1.3. Let the function g(s) be a g-Forchheimer polynomial, then K sat-
isfies the inequalities

C0

(1 + ξ)α ≤ K(ξ) ≤ C1

(1 + ξ)α , ξ ≥ 0, (1.35)

for α = αk
αk+1 ∈ [0, 1) and C0, C1 being positive constants.

Proof. For x ≥ 0, bi ≥ 0, i = 0, . . . k and 0 ≤ β0 < . . . < βk,we can use the
general inequalities

k∑︂
i=0

bix
βi = b0x

β0 + b1x
β1 + . . .+ bkx

βk ≤ C2(1 + x)βk ,

k∑︂
i=0

bix
βi = b0x

β0 + b1x
β1 + . . .+ bkx

βk ≥ C3(1 + x)βk .
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This implies

ξ + 1 = g(s)s+ 1 = 1 + a0s+ . . .+ aks
αk+1 ∼ (1 + s)αk+1

=⇒ (1 + s) ∼ (ξ + 1)
1

αk+1 ,

g(s) = a0 + . . .+ aks
αk ∼ (1 + s)αk ,

K(ξ) = 1
g(s) ∼ 1

(1 + s)αk ∼ 1
(1 + ξ)

αk
αk+1

.

Let us denote p := 2 − α. Then p ∈ (1, 2) and based on lemma 1.3 we have
for P ∈ Rd

K(|P |)P ∼ (1 + |P |)p−2P. (1.36)
We can write the weak formulation of the problem (1.31) for v ∈ W 1,p

0 (Ω) and
t ∈ (0, T ) ∫︂

Ω
utvdx+

∫︂
Ω
K(|∇u|)∇u · ∇vdx =

∫︂
Ω
fvdx. (1.37)

u|δΩD×(0,T ) = uD,

K(|∇u|)∇u · n|δΩN×(0,T ) = gN ,

u(x, 0) = u0(x) x ∈ Ω.

Assuming that f ∈ C([0, T ];L2(Ω)), u0 ∈ W 1,2(Ω) ∩ W 1,p(Ω), according to
the results in [2] and [9], there exists a weak solution u ∈ L2

loc(0,∞;W 2,2(Ω)) to
this problem, which satisfies ut ∈ L2

loc(0,∞;W 1,2(Ω)) and u|δΩD×(0,T ) = uD.

1.4 Arising challenges
The later chapters of the thesis are dedicated to the numerical analysis of the
local discontinuous Galerkin method for the solution of (1.31). More precisely we
will be concerned with the stability and error estimates of the method.

If we managed to get c1|∇u| ≤ K(|∇u|)∇u ≤ c2|∇u|, the stability estimates
would resemble the case of the linear equation. The upper estimate follows from
lemma 1.3, but the lower estimate does not hold. The best estimate we can
use is K(|∇u|)∇u ∼ (1 + |∇u|)p−2∇u, which resembles the perturbed p-Laplace
problem, with the main difference being that we will have to use the properties
of K to estimate the derivative.

In the error analysis of the chosen numerical method, we will also need to
estimate for P,Q ∈ Rd the terms (K(|P |)P −K(|Q|)Q) · (P −Q) and |K(|P |)P −
K(|Q|)Q|. Ideally we would look for the estimates of the type

(K(|P |)P −K(|Q|)Q) · (P −Q) ≥ C1|P −Q|2, (1.38)

|K(|P |)P −K(|Q|)Q| ≤ C2|P −Q|. (1.39)
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This with the Cauchy-Schwarz inequality would imply (K(|P |)P −K(|Q|)Q) ·
(P −Q) ∼ |P −Q|2 and |K(|P |)P −K(|Q|)Q| ∼ |P −Q|, which would allow us
to work with basic Hilbert-Sobolev spaces, again resembling the case of the linear
equation.

The second estimate holds as proven in [4, Lemma 2.4], which we will not
show here, since we will need stronger result later. The best estimate of the first
term we can get is in the following lemma, using similar steps as in [2, Lemma
III.6].

Lemma 1.4. Let g(s) satisfy the G-Conditions and the Lambda-Conditions, then
for P,Q ∈ Rd

(K(|P |)P −K(|Q|)Q) · (P −Q) ≥ K(max{|P |, |Q|})|P −Q|2 λ

1 + λ
. (1.40)

Proof. Let us first consider that the zero vector does not belong to the line seg-
ment connecting P and Q. Define γ(t) = (tP + (1 − t)Q) ,for t ∈ [0, 1]. We also
define h(t) = (K(|γ(t)|)γ(t)) · (P −Q), for t ∈ [0, 1]. Then using the Mean Value
Theorem, we have t0 ∈ [0, 1] and P0 = γ(t0) ̸= 0, such that

(K(|P |)P −K(|Q|)Q) · (P −Q) = h(1) − h(0) = h′(t0)
= (∇(K(|P0|)P0)(P −Q)) · (P −Q)

Here in the compound derivative we can use the result from lemma 1.1, where
s = G−1(|P0|).

= K(|P0|)|P −Q|2 −K(|P0|)
g′(s)
|P0|

∑︁
i,j P0iP0,j(Pj −Qj)(Pi −Qi)

|P0|g′(s) + g2(s)

= K(|P0|)|P −Q|2 −K(|P0|)
g′(s)
|P0|

|P0 · (P −Q)|2
|P0|g′(s) + g2(s)

Applying the Cauchy-Schwarz inequality to |P0 · (P −Q)|2 and the Lambda-
Condition we arrive at

≥ K(|P0|)|P −Q|2(1 − |P0|g′(s)
|P0|g′(s) + g2(s))

≥ K(|P0|)|P −Q|2 λ

1 + λ
≥ K(max{|P |, |Q|})|P −Q|2 λ

1 + λ
,

since K is decreasing.
In case that origin lies on the line segment connecting P and Q, replace Q by

Qϵ ̸= 0, such that this is not the case and Qϵ → 0 for ϵ → 0. Then we can apply
the result on P and Qϵ and let ϵ → 0.

The proven estimate is weaker, than what we would like to have and also does
not allow us to estimate |K(|P |)P −K(|Q|)Q| from the bottom. This will make
the error analysis significantly more complicated than the linear case, forcing us
to work in different function spaces, which are generally not Hilbert spaces.

In order to achieve estimates of a similar form as mentioned here, we will have
to introduce some additional theory, mainly the theory of N-functions and Orlicz
spaces.
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2. Soboloev-Orlicz spaces and
N-functions
As explained at the end of chapter one, we are not able to achieve the estimates,
we would want

c1|P | ≤ K(|P |)P ≤ c2|P |,
(K(|P |)P −K(|Q|)Q) · (P −Q) ≥ C1|P −Q|2,

|K(|P |)P −K(|Q|)Q| ≤ C2|P −Q|,
for P,Q ∈ Rd.

In this chapter we will try to derive similar estimates, using the theory of
N-functions, where instead of constants c1, c2, C1, C2, the estimators will depend
on a nonlinear N-function φ, which will be defined later. The estimates we aim
for will look like

K(|P |)P ∼ φ′(|P |) P
|P |

,

(K(|P |)P −K(|Q|)Q) · (P −Q) ≥ cφ′
|P |(|P −Q|)|P −Q|,

|K(|P |)P −K(|Q|)Q| ≤ cφ′
|P |(|P −Q|),

for P,Q ∈ Rd.
To achieve this we will need to use the theory Sobolev-Orlicz spaces and

shifted N-functions. We start by introducing a collection of needed preliminary
results based on the works [7], [10], [11] and mainly [13].

2.1 Introduction to Soboloev-Orlicz spaces
Definition 2.1. A function ψ : R≥0 → R≥0 is called an N − function if it is
convex, continuous, positive on R>0, ψ(0) = 0 and

limt→0
ψ(t)
t

= 0, limt→∞
ψ(t)
t

= ∞. (2.1)

The definition of ψ implies existence of ψ′ the right derivative of ψ, which is
continuous, nondecreasing, positive on R>0 and

ψ′(0) = 0, limt→∞ψ
′(t) = ∞. (2.2)

This allows us to represent ψ as

ψ(t) =
∫︂ t

0
ψ′(s)ds. (2.3)

We can also define the right inverse of ψ′ as (ψ′)−1 : R≥0 → R≥0 satisfying

(ψ′)−1 = sup{s ∈ R≥0|ψ′(s) ≤ t}. (2.4)
Assuming ψ′ is strictly monotone, (ψ′)−1 is reduced to the normal inverse

function. The N-functions, in which we will be interested throughout this paper
will have this property, so we can use the normal inverse function from now on.
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Definition 2.2. For an N-function ψ we define the associated Orlicz space Lψ(Ω)
and the Orlicz-Sobolev space W 1,ψ(Ω), where f ∈ Lψ(Ω), if

∫︁
Ω ψ(|f |)dx < ∞ and

f ∈ W 1,ψ(Ω) if f,∇f ∈ Lψ(Ω).
Lψ(Ω) is equipped with the norm ∥f∥ψ = inf{λ > 0;

∫︁
Ω ψ(f

λ
)dx ≤ 1}, and

W 1,ψ(Ω) is equipped with the norm ∥f∥ψ + ∥∇f∥ψ.

Basic theory of Sobolev-Orlicz spaces implies that Lψ(Ω) and W 1,ψ(Ω) are
Banach spaces.

Definition 2.3. For the N-function ψ we define the complementary function ψ∗

as
ψ∗(t) =

∫︂ t

0
(ψ′)−1(s)ds. (2.5)

The complementary function can be equivalently defined by

ψ∗(t) = sup{st− ψ(s)|s ∈ R≥0}. (2.6)

Definition 2.4. The N − function ψ satisfies ∆2 − condition if ψ(2t) ≤ Cψ(t)
for all t ≥ 0, where C is a constant. The ∆2−constant is the smallest C satisfying
this property.

Note that since ψ is increasing, if it satisfies ∆2 − condition, then

ψ(t) ∼ ψ(2t).
From the representation (2.3) and the fact that ψ′ is nondecreasing we have

ψ(t) ≤ tψ′(t), ψ(2t) ≥
∫︂ 2t

t
ψ′(s)ds ≥ tψ(t). (2.7)

This together with ψ satisfying the ∆2 − condition implies

ψ(t) ∼ tψ′(t). (2.8)
From which we can automatically deduce that if ψ satisfies the ∆2−condition,

then ψ′ also satisfies the ∆2 − condition and vice-versa. We also get the equiva-
lence

(ψ′)−1(ψ(t)
t

) ∼ t. (2.9)

Using the first definition of ψ∗ we have

ψ∗(ψ(t)
t

) =
∫︂ ψ(t)

t

0
(ψ′)−1(s)ds ≤ ψ(t)

t
(ψ′)−1(ψ(t)

t
) ≤ ψ(t).

Similarly we can get

ψ(t) ≤ ψ∗(2ψ(t)
t

).

Putting this together we have for ψ∗ satisfying the ∆2 − condition

ψ(t) ∼ ψ∗(ψ(t)
t

). (2.10)
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Also if ψ∗ satisfies the ∆2 − condition we have

ψ∗(ψ′(t)) ∼ ψ′(t)(ψ∗)′(ψ′(t)) = ψ′(t)t ∼ ψ(t). (2.11)
From the second definition of ψ∗ we automatically get the following Young-

type inequality, which can be extended, assuming ψ and ψ∗ satisfy the ∆2 −
condition.

Lemma 2.1. let ψ be and N-function and ψ∗ be its conjugate, then for all s, t ≥ 0

ts ≤ ψ(t) + ψ∗(s). (2.12)
If further ψ and ψ∗ satisfy the ∆2 − condition, then for ϵ ∈ (0, 1)

ts ≤ ϵψ(t) + cϵψ
∗(s). (2.13)

This inequality is very useful in the numerical analysis and will be heavily used
throughout the paper. We will also need to introduce the shifted N-functions,
explaining the notation φ′

|P | in the introduction to this chapter.

Definition 2.5. For the N-function ψ we define the set of shifted N-functions
{ψa}a≥0 by

ψa =
∫︂ t

0
ψ′
a(s)ds, ψ′

a(t) = ψ′(a+ t) t

a+ t
. (2.14)

From definition, it is obvious that ψa is also an N-function. Furthermore if ψ
satisfies the ∆2 − condition, then also ψa satisfies the ∆2 − condition

ψ′
a(2t) = ψ′(a+ 2t)2t

a+ 2t ≤ ψ′(2a+ 2t)2t
a+ t

≤ cψ′
a(t). (2.15)

Lemma 2.2. Let ψ be an N-function satisfying the ∆2 − condition, then for all
P,Q ∈ Rd

ψ′
|P |(|P −Q|) ∼ ψ′

|Q|(|P −Q|), (2.16)

ψ|P |(|P −Q|) ∼ ψ|Q|(|P −Q|). (2.17)

Proof. For P = Q the assertion is trivial. We can assume that |P −Q| > 0. Since
(|Q| + |P −Q|) ∼ (|P | + |P −Q|),

ψ′
|P |(|P −Q|) = ψ′(|P | + |P −Q|) |P −Q

|P | − |P −Q|

∼ ψ′(|Q| + |P −Q|) |P −Q

|P | − |P −Q|
= ψ′

|Q|(|P −Q|).

Lemma 2.3. Let ψ be an N-function and M ∈ N. Then for all t ≥ a(2M − 1)−1

1
2M ψ

′(t) ≤ ψ′
a(t) ≤ ψ′(2M t). (2.18)
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Proof.

ψ′
a(t) = ψ′(a+ t)

a+ t
t ≤ ψ′(2M t)

t
t = ψ′(2M t),

ψ′
a(t) = ψ′(a+ t)

a+ t
t ≥ ψ′(t)

2M t t = 1
2M ψ

′(t).

Lemma 2.4. Let ψ be an N-function and M ∈ N. Then for all 0 ≤ t ≤ a(2M −
1)−1, it holds

1
2M

ψ′(a)
a

t ≤ ψ′
a(t) ≤ ψ′(2Ma)

a
t. (2.19)

Proof.

ψ′
a(t) = ψ′(a+ t)

a+ t
t ≤ ψ′(2Ma)

a
t,

ψ′
a(t) = ψ′(a+ t)

a+ t
t ≥ ψ′(a)

2Ma t.

Lemma 2.5. Let ψ and ψ∗ be N-fucntions satisfying the ∆2 − condition. Then
for all a, t ≥ 0 it holds

(ψ∗)′
ψ′(a)(ψ′

a(t)) ≤ ct (2.20)

Proof. For t = 0 or a = 0 the inequality is trivial. First let t ≥ a > 0. Then
ψ′
a(t) ≤ ψ′(2t).

(ψ∗)′
ψ′(a)(ψ′

a(t)) ≤ (ψ∗)′
ψ′(a)(ψ′(2t)) ≤ (ψ∗)′(2ψ′(2t)) ≤ ct.

Where we used lemma 2.3 with M = 1 twice. For 0 < t ≤ a
∆2(ψ′) we have

ψ′
a(t) ≤ ψ′(2a)t

a
. Therefore

(ψ∗)′
ψ′(a)(ψ′

a(t)) ≤ (ψ∗)′
ψ′(a)(

ψ′(2a)t
a

) ≤ (ψ∗)′(2ψ′(a))
ψ′(a) ψ′(a) t

a
≤ ct.

Where we use lemma 2.4 with M = 1. Finally for a
∆2(ψ′) ≤ t ≤ a, it holds

ψ′
a(t) ≤ ψ′

a(a) and therefore

(ψ∗)′
ψ′(a)(ψ′

a(t)) ≤ (ψ∗)′
ψ′(a)(ψ′

a(a)) ≤ ca ≤ ct.

Lemma 2.6. Let ψ and ψ∗ be N-functions satisfying the ∆2 − condition. Then
for all a, t ≥ 0 it holds

(ψ∗)′
ψ′(a)(ψ′

a(t)) ≥ ct. (2.21)

Proof. For t ≥ a, ψ′(t) ≥ ψ′(a) and we have

(ψ∗)′
ψ′(a)(ψ′

a(t)) ≥ (ψ∗)′
ψ′(a)(

1
2ψ

′(t)) ≥ c(ψ∗)′
ψ′(a)(ψ′(t))

≥ c(ψ∗)′(ψ′(t)) = ct.
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Where we used lemma 2.3 with M = 1 twice. For t ≤ a, ψ′(a)t
a

≤ ψ′(a) and
we have

(ψ∗)′
ψ′(a)(ψ′

a(t)) ≥ (ψ∗)′
ψ′(a)(

ψ′(a)t
2a ) ≥ c(ψ∗)′

ψ′(a)(
ψ′(a)t
a

)

≥ c
(ψ∗)′(ψ′(a))

2ψ′(a)
ψ′(a)t
a

= ct.

Where we used lemma 2.4 with M = 1 twice.

Lemma 2.7. Let ψ and ψ∗ be N-functions satisfying the ∆2 − condition. Then
for all a, t ≥ 0 it holds

((ψa)∗)′(t) ∼ (ψ∗)′
ψ′(a)(t). (2.22)

Proof. First we deal with the inequality ≤. Taking ((ψa)∗)′(t) instead of t in the
lemma 2.6 we have

((ψa)∗)′(t) ≤ c(ψ∗)′
ψ′(a)(ψ′

a(((ψa)∗)′(t))) = c(ψ∗)′
ψ′(a)(t).

Now for the inequality ≥, we take ((ψa)∗)′(t) instead of t in lemma 2.5.

(ψ∗)′(t) ≤ (ψ∗)′
ψ′(a)(ψ′

a(((ψa)∗)′(t)) ≤ c((ψa)∗)′(t).

Lemma 2.8. Let ψ be an N-function satisfying the ∆2 − condition, then for all
P,Q ∈ Rd and t ≥ 0

ψ′
|P |(t) ≤ cψ′

|Q|(t) + ψ′
|P |(|P −Q|). (2.23)

Proof. If |P −Q| ≥ t, then

ψ′
|P |(t) ≤ ψ′

|P |(|P −Q|).

In the other case |P −Q| ≤ t, the following inequalities hold. 0 ≤ 1
2(|Q|+ t) ≤

|P | + t ≤ 2(|Q| + t) and therefore

ψ′
|P |(t) = ψ′(|P | + t)

|P | + t
t ≤ ψ′(2(|Q| + t))

1
2 |P | + t

t ≤ c
ψ′(|Q| + t)

|P | + t
t = cψ′

|Q|(t).

Lemma 2.9. Let ψ be an N-functions such that ψ and ψ∗ satisfy the ∆2 −
condition, then for δ ∈ (0, 1), P,Q ∈ Rd and t ≥ 0 we have

ψ|P | ≤ cδψ|Q|(t) + δψ|Q|(|P −Q|). (2.24)

Proof. Using the previous lemma, we have

ψ|P |(t) ≤ ψ′
|P |(t)t ≤ cψ′

|Q|(t)t+ cψ′
|Q|(|P −Q|)t = I1 + I2.

Afterwards we use the Young-type inequality 2.1
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I1 ≤ c(ψ|Q|)∗(ψ′
|Q|(t)) + ψ|Q|(t) ≤ cψ|Q|(t),

I2 ≤ (ψ|Q|)∗(δcψ′
|Q|(|P −Q|)) + cψ|Q|(t) ≤ δψ|Q|(|P −Q|) + cδψ|Q|(t).

In order to derive further results, we will demand an additional property from
our N-functions.

Definition 2.6. An N-function ψ satisfies the continuity-condition, if for all
s, t ≥ 0, there exits a constant C, such that the following inequality holds.

|ψ′(s+ t) − ψ′(t)| ≤ Cψ′
t(s). (2.25)

Lemma 2.10. Let ψ be an N-functions such that ψ and ψ∗ satisfy the ∆2 −
condition and ψ satisfies the continuity-condition, then for P,Q ∈ Rd and t ≥ 0
the following inequality holds

((ψ|P |)∗)′(t) ≤ c(((ψ|Q|)∗)′(t) + ||P | − |Q||). (2.26)

Proof. First note that the result of lemma 2.8 holds for the ||P | − |Q|| in place
of |P − Q| in the last term on the right hand side of the inequality. This can
be derived by using P = |P |R, Q = |Q|R, with |R| = 1 in the said lemma.
In the following set of inequalities we use in order, lemma 2.7, lemma 2.8, the
continuity-condition for ψ and lemma 2.7 again.

((ψ|P |)∗)′(t) ≤ c(ψ∗)′
ψ′(|P |)(t)

≤ c((ψ∗)′
ψ′(|Q|)(t)) + (ψ∗)′

ψ′(|P |)(|ψ′(|P |) − ψ′(|Q|)|)
≤ c((ψ∗)′

ψ′(|Q|)(t)) + (ψ∗)′
ψ′(|P |)(Cψ′

|P |(||P | − |Q||))
≤ c(((ψ|Q|)∗)′(t) + ((ψ|P |)∗)′(ψ′

|P |(||P | − |Q||)))
= c(((ψ|Q|)∗)′(t) + ||P | − |Q||) ≤ c(((ψ|Q|)∗)′(t) + |P −Q|).

Lemma 2.11. Under the assumptions of lemma 2.10, for δ ∈ (0, 1), P,Q ∈ Rd

and t ≥ 0 we have

(ψ|P |)∗ ≤ cδ(ψ|Q|)∗(t) + δψ|P |(|P −Q|). (2.27)

Proof. The proof of this lemma follows the same steps as the proof of lemma 2.9,
but lemma 2.10 is used instead of lemma 2.8 in the first step.

2.2 Relation between K and its associated N-
function

First, for the simplicity of the notation, we denote for P ∈ Rd

A(P ) = K(|P |)P, (2.28)
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since this is the nonlinear function at the core of our equations.
Taking note of lemma 1.3 and setting p = 2 − α ∈ (1, 2) we define the N-

function associated with A, for t ≥ 0 as

φ(t) =
∫︂ t

0
(1 + s)p−2sds,

φ′(t) = (1 + t)p−2t.
(2.29)

Using lemma 1.3 we can express the relation between A and φ in the following
equivalence

A(∇u) ∼ φ′(|∇u|) ∇u
|∇u|

. (2.30)

Let us check, if φ is a well defined N-function that satisfies all the requirements
defined in the first section. Function φ is clearly an N-function with a strictly
increasing derivative, which implies existence of (φ′)−1 as a conventional inverse
of φ′. Note that with this definition Lφ(Ω) is isomorphic to Lp(Ω) and W 1,φ(Ω)
is isomorphic to W 1,p(Ω), with the constant depending only on p. φ also satisfies
the previously defined continuity-condition, defined in (2.6). For t, s ≥ 0, it holds

|φ′(s+ t) − φ′(t)| = |(1 + t+ s)p−2(t+ s) − (1 + t)p−2t|
≤ |(1 + t+ s)p−2(t+ s) − (1 + t+ s)p−2t|

= |(1 + t+ s)p−2s| = φ′(s+ t)
s+ t

s = φ′
t(s).

(2.31)

Since φ′′(t) = (p − 2)(1 + t)p−3t + (1 + t)p−2 and min{1, p − 1}(1 + t)p−2 ≤
φ′′(t) ≤ max{1, p− 1}(1 + t)p−2, φ also satisfies

φ′′(t)t ∼ φ′(t). (2.32)
The ∆2 − condition for φ(t) is also satisfied with ∆2(φ) ≤ c2max{2,p}. The

conjugate function φ∗ satisfies for q such that 1
p

+ 1
q

= 1

φ∗(t) ∼ (1 + t)q−2t2, (2.33)
and therefore ∆2(φ∗) ≤ c2max{2,q}.

Concerning the shifted versions of φ and φ∗ we have for a ≥ 0

φa(t) ∼ (1 + a+ t)p−2t2,

(φa)∗(t) ∼ ((1 + a)p−1 + t)q−2t2.
(2.34)

Therefore we have ∆2(φa) ≤ c2max{2,p} and ∆2((φa)∗) ≤ c2max{2,q}, for all
a ≥ 0. Note that these constants are independent of a.

Lemma 2.12. Let the function g(s) be a g-Forchheimer polynomial, then A sat-
isfies the inequality

(A(P ) − A(Q)) · (P −Q) ≥ cφ′
|P |(|P −Q|)|P −Q|. (2.35)

Proof. Using the definition of shifted N-function

φ′
|P |(|P −Q|)|P −Q| = φ′(|P | + |P −Q|) |P −Q|2

|P | + |P −Q|
= (1 + |P | + |P −Q|)p−2|P −Q|2.
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Also since K is decreasing and |P −Q| ≥ |Q| − |P | we have

K(max{|P |, |Q|}) ≥ K(|P | + |P −Q|) ≥ c(1 + |P | + |P −Q|)p−2,

where we used lemma 1.3. Combining this with the result of lemma 1.4 we
reach

(K(|P |)P −K(|Q|)Q) · (P −Q) ≥ cφ′
|P |(|P −Q|)|P −Q|.

Lemma 2.13. Let Ψ be and N-function such that Ψ and Ψ∗ satisfy ∆2-condition,
then for P,Q ∈ Rd

ψ′(|P | + |Q|)
|P | + |Q|

∼
∫︂ 1

0

ψ′(tP + (1 − t)Q)
tP + (1 − t)Q dt. (2.36)

Proof. In order to avoid having to introduce additional theory, which does not
relate to any other part of the paper, we refer this proof to [13, Lemma 6.6].

Lemma 2.14. Let A be the previously defined nonlinear function and φ its as-
sociated N-function, then

|A(P ) − A(Q)| ≤ cφ′
|P |(|P −Q|). (2.37)

Proof. First we calculate the following compound derivative, using similar steps
as in lemma 1.2. Assuming |P | ≠ 0,

∂

∂Pj
(K(|P |)Pi) = K(|P |)(δi,j − g′(s)

|P |
PiPj

|P |g′(s) + g2(s))

≥ K(|P |)(δi,j − g′(s)
|P |

PiPj
|P |g′(s) + g(s)λsg′(s))

≥ K(|P |)(δi,j − 1
|P |

PiPj
|P | + λ|P |

) ≥ −cK(|P |).

Taking the norm⃓⃓⃓⃓
⃓ ∂∂Pi (K(|P |)Pj)

⃓⃓⃓⃓
⃓ ≤ cK(|P |) ≤ c(1 + |P |)p−2 = c

φ′(|P |)
|P |

,

and using the following equality we have

K(|P |)Pj −K(|Q|)Qj =
∫︂ 1

0

∂(K(|tP + (1 − t)Q|)|tPj + (1 − t)Qj|)
∂t

dt

=
d∑︂
i=1

∫︂ 1

0

∂(K(|tP + (1 − t)Q|)|tPj + (1 − t)Qj|)
∂Pi

(Pi −Qi)dt.

Finally using the estimate for the derivative, lemma 2.13, the inequality
1
2(|P | + |Q|) ≤ |P | + |P − Q| ≤ 2(|P | + |Q|) and the definition of φ′

|P |, we
arrive at
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|K(|P |)P −K(|Q|)Q| ≤ c
∫︂ 1

0

φ′(|tP + (1 − t)Q|)
|tP + (1 − t)Q|

dt|P −Q|

≤ c
φ′(|P | + |Q|)

|P | + |Q|
|P −Q| ≤ c

φ′(|P | + |P −Q|)
|P | + |P −Q|

|P −Q| = cφ′
|P |(|P −Q|).

Note that most of the proofs presented here followed the steps in [13], which
treats the similar problem with A(P ) directly equal to φ′(P ) P

|P | , but in this par-
ticular lemma [13, Lemma 6.7], we had to estimate the derivative differently and
use the properties of K from the first chapter.

Using together lemma 2.12 and lemma 2.14 and Cauchy-Schwarz inequality
we get an important result for P,Q ∈ Rd

|A(P ) − A(Q)| ∼ φ′
|P |(|P −Q|),

(A(P ) − A(Q)) · (P −Q) ∼ φ′
|P |(|P −Q|)|P −Q|.

(2.38)

We finally achieved the estimates outlined in the beginning of this section.
Lastly we introduce the pair of nonlinear functions F and F ∗, which will serve us
in expressing the error of the studied DG method in the proper norm. We define
for P ∈ Rd functions F and F ∗ related to A as follows

F (P ) = (1 + |P |)p−2/2P,

F ∗(P ) = (1 + |P |)q−2/2P.
(2.39)

The function F has an associated N-function ϕ, where

ϕ(t) =
∫︂ t

0
ϕ′(s)ds, ϕ′(t) =

√︂
φ′(t)t. (2.40)

More precisely ϕ′(t) = (1 + t) p−2
2 t, and ϕ satisfies all the same important

conditions as φ. It also holds for P ∈ Rd

F (P ) = ϕ′(|P |) P
|P |

. (2.41)

In order to show the proper relation between F and A we will need similar results
as lemmas 2.12 and 2.14 for the function F .

Lemma 2.15. Let P,Q ∈ Rd and F (P ) = ϕ′(|P |) P
|P | . Then

(F (P ) − F (Q)) · (P −Q) ≥ cϕ′
|P |(|P −Q|)|P −Q|

|F (P ) − F (Q)| ≤ cϕ′
|P |(|P −Q|).

(2.42)

Proof. To prove the second inequality we use similar steps as in the proof of
lemma 2.14. Assuming |P | ≠ 0

∂Fj(P )
∂Pl

= ϕ′(|P |)
|P |

δjl − ϕ′(|P |)
|P |3

PjPl + ϕ′′(|P |)PjPl
|P |2

.

Taking the norm and using ϕ′′(t)t ∼ ϕ′(t), we have
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⃓⃓⃓⃓
⃓∂Fj(P )
∂Pl

⃓⃓⃓⃓
⃓ ≤ 2ϕ

′(|P |)
|P |

+ ϕ′′(|P |) ≤ c
ϕ′(|P |)

|P |
.

Using the equality

Fj(P ) − Fj(Q) =
d∑︂
l=1

∫︂ 1

0

∂(Fj(tP + (1 − t)Q))
∂Pl

(Pl −Ql)dt,

we derive similarly as in the proof of lemma 2.14, with the use of derivative
estimate, lemma 2.13 and the fact |P | + |Q| ∼ |P | + |P −Q| the following

|F (P ) − F (Q)| ≤ c
∫︂ 1

0

ϕ′(|tP + (1 − t)Q)|
|tP + (1 − t)Q|

|P −Q|dt

≤ c
ϕ′(|P | + |Q|

|P | + |Q|
|P −Q| ≤ cϕ′

|P |(|P −Q|).

For the first inequality we need the following estimate for the derivative, as-
suming P ̸= 0,

d∑︂
j,l=1

∂Fj(P )
∂Pl

QlQj = ϕ′(|P |)
|P |

(|Q|2 − |PQ|2

|Q|2
) + ϕ′′(|Q|) |PQ|2

|Q|2

≥ ϕ′(|P |)
|P |

(|Q|2 − |PQ|2

|Q|2
) + c

ϕ′(|P |)
|P |

|PQ|2

|Q|2
= c

ϕ′(|P |)
|P |

|Q|2.

Therefore we can use the equality

(F (P ) − F (Q)) · (P −Q) =
d∑︂

j,l=1

∫︂ 1

0

∂Fj(|tP + (1 − t)Q|)
|tP + (1 − t)Q|

(Pl −Ql)(Pj −Qj)dt.

Using this, estimate for the derivative with P = (tP + (1 − t)Q) and Q =
(P −Q), and lemma 2.13 we have

(F (P ) − F (Q)) · (P −Q) ≥ c
∫︂ 1

0

ϕ′(|tP + (1 − t)Q|)
|tP + (1 − t)Q|

|P −Q|2dt

≥ c
ϕ′(|P | + |Q|)

|P | + |Q|
|P −Q|2 ≥ cϕ′

|P |(|P −Q|)|P −Q|.

Lemma 2.16. Let P,Q ∈ Rd and F (P ) = ϕ′(|P |) P
|P | . Then

(A(P ) − A(Q)) · (P −Q) ∼ |F (P ) − F (Q)|2. (2.43)

Proof. Using the result of lemma 2.15 and Cauchy-Schwarz inequality we get

|F (P )−F (Q)|2 ∼ ϕ′
|P |(|P−Q|) = φ′

|P |(|P−Q|)|P−Q| ∼ (A(P )−A(Q))·(P−Q),

where in the equality we used the definition of ϕ and in the second equivalence
we used (2.38).
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To sum up all the important relations between A, F and φ we recall (2.38),
use (2.8) and lemma 2.16. Thus we get for all P,Q ∈ Rd

|A(P ) − A(Q)| ∼ φ′
|P |(|P −Q|), (2.44)

(A(P ) − A(Q)) · (P −Q) ∼ φ′
|P |(|P −Q|)|P −Q|,

∼ φ|P |(|P −Q|) ∼ |F (P ) − F (Q)|2.
(2.45)

conjugate function φ∗ and F ∗ also satisfy the assumptions of lemma 2.16, and
therefore

|F ∗(P ) − F ∗(Q)|2 ∼ (φ∗)|P |(|P −Q|). (2.46)
Choosing P = 0 we also get for all Q ∈ Rd

A(Q) ·Q ∼ |F (Q)|2 ∼ φ(|Q|), (2.47)

|A(Q)| ∼ φ′(|Q|). (2.48)
From lemma 2.9 and (2.45) it follows that

φ|P |(t) ≤ c(φ|Q|(t) + φ|Q|(|P −Q|)) ≤ c(φ|Q|(t) + |F (P ) − F (Q)|2). (2.49)

We can apply this to φ∗ and get

(φ|P |)∗(t) ≤ c((φ|Q|)∗(t) + |F ∗(P ) − F ∗(Q)|2). (2.50)
Another useful equivalence can be derived from (2.46) with P = 0, (2.48)

together with (2.11) and (2.45) with P = 0

|F ∗(A(Q))|2 ∼ φ∗(|A(Q)|) ∼ φ(|Q|) ∼ |F (Q)|2. (2.51)
From the definition of shifted N-functions it holds that if a ∼ b, then φa(t) ∼

φb(t). Further lemma 2.7 implies that ((ψa)∗)(t) ∼ (ψ∗)ψ′(a)(t). Combining these
two relations we can get

(φ∗)|A(P )|(t) ∼ (φ∗)φ′|P |(t) ∼ (φ|P |)∗(t). (2.52)
Using this for t = |A(P ) −A(Q)| together with (2.44) and (2.11) we arrive at

(φ∗)|A(P )|(|A(P ) − A(Q)|) ∼ φ|P |(|P −Q|). (2.53)
Finally using (2.45)

|F ∗(A(Q)) − F ∗(A(P ))|2 ∼ |F (Q) − F (P )|2. (2.54)
We finish this section with one more technical lemma, which will allow us to

manipulate the normed integrals over a domain in the error estimates. Note that
we will be using both notations for the normed integral introduced at the start
of chapter 1. The following lemma can be found in [12, Lemma A.2].
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Lemma 2.17. For K ∈ Th and P : Ω → Rd it holds

−
∫︂
K

|F (P ) − ⟨F (P )⟩K |2dx ∼ −
∫︂
K

|F (P ) − F (⟨P ⟩K |2dx

∼ −
∫︂
K

|F ∗(A(P )) − F ∗(⟨A(P )⟩K)|2dx.
(2.55)

Proof. In the first equivalence, the inequality ≤ follows from

−
∫︂
K

|F (P ) − ⟨F (P )⟩K |2dx = infQ∈Rd−
∫︂
K

|F (P ) −Q|2dx.

Let us denote PF the function that satisfies F (PF ) = ⟨F (P )⟩K . Thanks to (2.45)
we have

−
∫︂
K

|F (P ) − F (⟨P ⟩K |2dx ∼ −
∫︂
K

(A(P ) − A(⟨P ⟩K) · (P − ⟨P ⟩K)dx.

Since ⟨P ⟩K is constant on K and −
∫︁
K(P − ⟨P ⟩K)dx = 0, we can replace it by

PF , which is also constant,

∼ −
∫︂
K

(A(P ) − A(PF )) · (P − ⟨P ⟩K)dx.

Using Young inequality with φ|P |, (2.44) together with (2.11) and finally (2.45)

≤ cϵ−
∫︂
K
φ|P |)∗(|(A(P ) − A(PF ))|)dx+ ϵ−

∫︂
K
φ|P |(|(P − ⟨P ⟩K)|)dx

∼ cϵ−
∫︂
K
φ|P |(|P − PF |)dx+ ϵ−

∫︂
K
φ|P |(|(P − ⟨P ⟩K)|)dx

∼ cϵ−
∫︂
K

|F (P ) − ⟨F (P )⟩K |2dx+ ϵ−
∫︂
K

|F (P ) − F (⟨P ⟩K)|2dx.

This implies the inequality ≥.
For the second equivalence we use the fact that first one holds for F = F ∗

and P = A(P ) and (2.51)

−
∫︂
K

|F ∗(A(P )) − ⟨F ∗(A(P ))⟩K |2dx ∼ −
∫︂
K

|F ∗(A(P )) − F ∗(⟨A(P )⟩K)|2dx

∼ −
∫︂
K

|F (P ) − ⟨F (P )⟩K |2dx.
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3. Discretization of the domain
and discrete function spaces
Let Ω ⊂ Rd be our domain, where d = 2, 3 is the dimension. We assume that
Ω is bounded, open and polygonal (in case d = 2) or polyhedral (in case d = 3)
with the Lipschitz-continuous boundary δΩ = δΩD ∪ δΩN and δΩD ∩ δΩN = ∅.
For T > 0 we define QT = Ω × (0, T ). We are studying the following equation,
which follows from (1.29), with u : QT → R as the solution.

ut − ∇ · (K(|∇u|)∇u) = f x ∈ QT , (3.1)
u|δΩD×(0,T ) = uD,

(K(|∇u|)∇u) · n|δΩN×(0,T ) = gN ,

u(x, 0) = u0(x) x ∈ Ω,

for given data f : QT → R, uD : δΩD × (0, T ) → R, gN : δΩN × (0, T ) → R
and u0 : Ω → R. Here n is the outer normal to δΩ and K is a nonlinear function
that represents the model.

The goal of this paper lies in the selection of the suitable numerical discon-
tinuous Galrekin (DG) method for the solution of this problem and its numerical
analysis. DG methods are similar to the classic Finite element methods, with the
main difference being that we do not require the conforming properties, mean-
ing that our test functions do not need to be continuous on the edges of the
triangulation.

3.1 Discretization of the domain
Let h > 0 and Th be a partition of the closure of Ω into finite number of closed
simplexes K with mutually disjoint interiors. We call Th a triangulation of Ω.
For each K ∈ Th we denote hK = diam(K) and h = maxK∈Th . For simplicity we
will assume that h ≤ 1. By ρK we denote the radius of the largest d-dimensional
ball inscribed into K and by |K| we denote the d-dimensional Lebesgue measure
of K. In order to avoid the elements K having certain undesired shapes, like
drastically unproportional lengths of the sides, we require the following property

hK
ρK

≤ CR, K ∈ Th, (3.2)

where CR is a positive constant. This is one of the constants that many of the
future estimates will depend on, but will not be included explicitly. For a simplex
K in Th denote SK the neighbourhood of K, meaning the union of all simplices
touching K. We will assume that in our triangulation each SK has a connected
interior. By Fh we denote the set of all (d− 1)-dimensional faces of all elements
K ∈ Th (edges in case d = 2 and faces in case d = 3). For an edge Γ ∈ Fh we
denote SΓ = K∪K ′, if Γ = δK∩δK ′, or SΓ = K, if Γ is an edge on the boundary
of Ω. Further we divide Fh into F I

h , representing the interior faces of Fh and FD
h ,

FN
h , representing the faces belonging to the Dirichlet and the Neumann part of
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the boundary respectively. Sometimes simplified notation will be used, combining
the subscripts, for example FDN

h = FD
h ∪ FN

h . Also, we will use the simplified
notation for integrals over a set of edges, for example ∑︁

Γ∈F I
h

∫︁
Γ . . . ds :=

∫︁
F I
h
. . . ds.

We will also need for each Γ ∈ Fh the unit normal vector nΓ. For Γ ∈ FDN
h ,nΓ

is the outer normal to δΩ. For Γ ∈ F I
h , the orientation of nΓ is arbitrary, but

fixed for each face.
It is useful to require one more condition on the triangulation Fh, h > 0. We

introduce the quantity hΓ > 0, which represents a ”one dimensional” size of the
face Γ. We require that hΓ satisfy the following equivalence condition with hK ,
for each K ∈ Th and its face Γ

hK ∼ hΓ. (3.3)
The properties of the mesh Th imply that for each K ∈ Th and its face Γ, it

holds

|K| ∼ hΓ|Γ|, (3.4)
where |Γ| is d− 1 dimensional Lebesgue measure of Γ.

3.2 Function spaces
In numerical analysis of this problem we will use so called broken Sobolev spaces.
Over a triangulation Th we define for q ≥ 0, the broken Sobolev space as

W l,q
DG(Ω) := {v; v ∈ L2(Ω), v|K ∈ W l,q(K); ∀K ∈ Th},

with the seminorm |v|W l,q
DG(Ω) = (∑︁

K∈Th |v|l,qW (K)) 1
2 , where |v|l,qW (K) is the

standard Sobolev seminorm on W l,q(K) , K ∈ Th . We can analogically define
the vector valued broken Sobolev space W l,q

DG(Ω,Rd).
Let k ∈ N denote the degree of the polynomial approximation, then we denote

Pk(K) and Pk(K,Rd) the spaces of scalar and vector polynomial functions on K,
of degree ≤ k, K ∈ Th. Now we can define the finite dimensional subspaces of
W 1,q(Ω, Th) and W 1,q(Ω, Th,Rd) by

V k
h = V k

h (Ω) := {v; v ∈ L2(Ω), v|K ∈ Pk(K); ∀K ∈ Th}, (3.5)

Xk
h = Xk

h(Ω) := {v; v ∈ L2(Ω,Rd),v|K ∈ Pk(K,Rd); ∀K ∈ Th}. (3.6)

We will also work with the broken Sobolev-Orlicz space

W 1,ψ
DG = W 1,ψ

DG(Ω) := {v; v ∈ L2(Ω,Rd),v|K ∈ W 1,ψ(K); ∀K ∈ Th}. (3.7)

Sometimes we will use the same notation for scalar valued functions in the
analogous space. Note that both W 1,ψ(Ω) and V k

h (Ω) are subspaces of W 1,ψ
DG(Ω).

Since our test functions from V k
h or Xk

h are not continuous , we will need to
define jumps and averages of these functions on the edges of the triangulation.
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In case Γ ∈ F I
h there always exist two elements K+ and K− ∈ Th such that

Γ ⊂ K+ ∩K− and K− lies in the direction of nΓ. For Γ ∈ FDN
h there exists K+,

such that Γ ⊂ K+ ∩ δΩ.
Now we can define jumps and averages on the edges of the triangulation, for

v ∈ V k
h . For each Γ ∈ F I

h denote v|+Γ as the trace v|K+ and v|−Γ as the trace v|K− .
The mean value of v on Γ ∈ F I

h is defined as

{v}Γ = (v|+Γ + v|−Γ )/2,
and the jump of v on Γ ∈ F I

h is defined as

[v]Γ = v|+Γ − v|−Γ .

Note that [v] depends on the orientation of nΓ, but [v]nΓ does not. In case
Γ ∈ FDN

h the definition of v|+Γ is the same and we set {v}Γ = [v]Γ = v|K+ . When
there is no doubt about to which edge Γ ∈ Fh symbols nΓ, {v}Γ and [v]Γ belong,
for example if they are arguments of

∫︁
Γ . . . ds, the subscript Γ is omitted.

In the vectorial case v ∈ Xk
h , v|+Γ , v|−Γ ,the mean value and the jump are

defined analogically. For example {v}Γ := (v|+Γ +(v|−Γ )/2 and [v]Γ := (v|+Γ −(v|−Γ ,
Γ ∈ F I

h .
Before we proceed with the discretization of the main equation, we will need to

define the generalization of the distributional gradient for discontinuous functions
and two projections onto the finite dimensional spaces V k

h . In the next next
chapter we will also derive some useful results concerning these definitions.
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4. Auxiliary results

4.1 The global distributional gradient general-
ization

First we would like to generalize the global distributional gradient to the DG
setting, using similar construction as in [10, Appendix 2]. For g ∈ W 1,ψ

DG(Ω) the
local distributional gradient will be denoted ∇hg, meaning that for each K ∈ Th,
∇h(g) only depends on values of g on K. Since functions from W 1,ψ

DG(Ω) are not
continuous across Ω, the global distributional gradient will contain the terms with
their jumps on the inner edges of the triangulation. In further analysis, it will be
beneficial for us if it also included the jumps on the edges from FD

h .
In order to achieve this, we will need the following construction. Let Ω′ be an

extension of the domain Ω, such that Ω is a strict subset of Ω′ and δΩ\δΩ′ = FD
h ,

δΩ∩δΩ′ = FN
h . Also denote T ′

h the extended triangulation of Th to Ω′ having the
same properties as Th. All notation associated with T ′

h will be differentiated by
the addition of ′, for example simplex K ′ ∈ T ′

h or S ′
K being the neighbourhood of

K ′ in T ′
h. We define the space of functions from W 1,ψ

DG(Ω) extended by 0 to Ω′ by

W 1,ψ
DG,D(Ω) = {g ∈ W 1,ψ

DG(Ω); g|Ω′\Ω = 0}. (4.1)
Using the definitions of the jumps on the boundaries of elements K in the

triangulation Th we have for g ∈ W 1,ψ
DG,D and x ∈ C∞

0 (Ω,Rd)
∑︂
K∈Th

∫︂
δK
gxndx =

∫︂
FID
h

[g]xnds. (4.2)

Therefore the global distributional gradient on Ω′, for g ∈ W 1,ψ
DG,D(Ω) satisfies

for x ∈ C∞,Rd
0 (Ω′)

(∇g,x)D′(Ω′),D(Ω′) =
∫︂

Ω′
∇hgxdx−

∫︂
FID
h

[g]xnds. (4.3)

This motivates for g ∈ W 1,ψ
DG(Ω) the definition of ∇g, extended as a functional

for discontinuous functions xh ∈ Xk
h(Ω) by

(∇g,xh)D′(Ω′),D(Ω′) =
∫︂

Ω′
∇hgxhdx−

∫︂
FID
h

[g]{xh}nds. (4.4)

This functional is continuous and therefore we can use Reisz theorem and
define its representation for all xh ∈ Xk

h(Ω) by∫︂
Ω′

∇h
DGgxhdx =

∫︂
Ω′

∇hgxhdx−
∫︂

FID
h

[g]{xh}nds. (4.5)

In the same way we can represent for Γ ∈ F ID
h only the second term on the

right hand side as ∫︂
Ω′
RΓ
hgxhdx =

∫︂
Γ
[g]{xh}nds, (4.6)
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and denoting Rh = ∑︁
Γ∈FID

h
RΓ
h we have∫︂

Ω′
Rhgxhdx =

∫︂
FID
h

[g]{xh}nds. (4.7)

In some literature the functionals Rh are called jump functionals. With this
definition we can write

∇h
DGg = ∇hg −Rhg. (4.8)

Note that the same holds for gh ∈ V k
h (Ω) ⊂ W 1,ψ

DG(Ω). For Γ ∈ F ID
h and

g ∈ W 1,ψ
DG,D we have by equivalence of norms on the finite dimensional Xk

h(SΓ)

⃦⃦⃦
RΓ
hg

⃦⃦⃦
L∞(SΓ)

≤ c−
∫︂
SΓ

|RΓ
hg|dx = csupxh∈Xk

h
(SΓ);∥xh∥∞≤1

1
|SΓ|

(RΓ
hg,xh)

≤ 1
hΓ|Γ|

∫︂
Γ

|[g]n|ds ∥xh∥∞ ≤ c−
∫︂

Γ
h−1

Γ |[g]n|ds,
(4.9)

where we also used |SΓ| ∼ hΓ|Γ|. Therefore we also have the pointwise inequality

|RΓ
hg| ≤ c−

∫︂
Γ
h−1

Γ |[g]n|ds. (4.10)

From convexity of an N-function ψ, by Jensen’s inequality we get

ψ(|RΓ
hg|) ≤ c−

∫︂
Γ
ψ(h−1

Γ |[g]n|)ds. (4.11)

Integrating this on SΓ, we get∫︂
SΓ
ψ(|RΓ

hg|)dx ≤ chΓ

∫︂
Γ
ψ(h−1

Γ |[g]n|)ds. (4.12)

And finally if we sum this through all Γ ∈ F ID
h , we arrive at∫︂

Ω
ψ(|Rhg|)dx ≤ ch

∫︂
FID
h

ψ(h−1|[g]n|)ds. (4.13)

4.2 The local L2 projection
We will also need to introduce the local L2 projection Π : L1(Ω) → V k

h (Ω) and
derive some estimates for the interaction between Π and N-functions. Most of
the presented estimates are the chosen results from [10, Appendix 1] and [12].

Definition 4.1. We define the local L2 projection Π : L1(Ω) → V k
h (Ω) by∫︂

Ω
Πgzhdx =

∫︂
Ω
gzhdx ∀zh ∈ V k

h (Ω). (4.14)

The same projection can be analogously defined for L1(Ω,Rd) functions as Π :
L1(Ω,Rd) → xk

h(Ω).
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From the nature of the test functions zh, there also holds a local version∫︂
K

Πgzhdx =
∫︂
K
gzhdx ∀zh ∈ Pk(K). (4.15)

Since Π is a local L2 − projection, for g ∈ L2(K) it holds

−
∫︂
K

|Πg|2dx ≤ −
∫︂
K

|g|2dx, (4.16)

where we used the notation −
∫︁
M gdx = 1

|M |
∫︁
gdx. Since Pk(K) is finite dimensional

it follow by the equivalence of norms that for g ∈ L1(Ω)

∥Πg∥L∞(K) ≤ c−
∫︂
K

|Πg|dx ≤ csupzh∈Pk(K);∥zh∥∞≤1−
∫︂
K

|Πgzh|dx ≤ c−
∫︂
K

|g|dx. (4.17)

Since N-functions are convex, we have by Jensen’s inequality that for an N-
function ψ, it holds

−
∫︂
K
ψ(|Πg|)dx ≤ cψ(∥Πg∥L∞(K)) ≤ cψ(−

∫︂
K

|g|dx) ≤ c−
∫︂
K
ψ(|g|)dx. (4.18)

In order to get further estimates concerning the projection Π, we will need
the following lemma, called the inverse theorem for polynomials.

Lemma 4.1. Let K ∈ Th and p ∈ Pk(K). Then

|p|H1(K) ≤ ch−1
K ∥p∥L2(K) . (4.19)

Proof. Let K ′ be a reference simplex with hK′ = 1 and G : K ′ → K be an affine
mapping of K ′ onto K.For x′ ∈ K ′ denote p′(x′) = p(x), where x = G(x′). Then
by substitution theorem it holds that

|p|H1(K) ≤ ch
d/2−1
K |p′|H1(K′),

∥p′∥L2(K′) ≤ ch
d/2
K ∥p∥L2(K) .

Then by the equivalence of norms on finite dimensional space

|p|H1(K) ≤ ch
d/2−1
K |p′|H1(K′) ≤ ch

d/2−1
K ∥p′∥L2(K′) ≤ ch−1

K ∥p∥L2(K) . (4.20)

Note that by equivalence of norms the same holds for the L1 norm of ∇p and
p.

In order to derive most of the important estimates for the projection Π that
will be used in the derivation of the stability of the numerical solution to the
problem (3.1), we will need the following construction. Let 0 ≤ j ≤ l ≤ k + 1.
For all p ∈ Pk(K) it holds that Πp = p. Thus

−
∫︂
K
ψ(hjK |∇j

h(g − Πg)|)dx = −
∫︂
K
ψ(hjK |∇j

h(g − p+ p− Πg)|)dx

≤ c(−
∫︂
K
ψ(hjK |∇j

h(g − p)|)dx+ −
∫︂
K
ψ(hjK |∇j

hΠ(g − p)|)dx).
(4.21)
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For the second term on the right hand side, we use in order the equivalence of
L∞ and L1 norms for p , the inverse inequality for polynomials (4.1), the Jensen’s
inequality and (4.18).

−
∫︂
K
ψ(hjK |∇j

hΠ(g − p)|)dx ≤ −
∫︂
K
ψ(chjK |−

∫︂
K

|∇j
hΠ(g − p)dx|)dx

≤ −
∫︂
K
ψ(c−

∫︂
K

|Π(g − p)|)dx ≤ c−
∫︂
K
ψ(|Π(g − p)|)dx ≤ c−

∫︂
K
ψ(|g − p|)dx.

(4.22)

Substituting this back into previous estimate, we have

−
∫︂
K
ψ(hjK |∇j

h(g − Πg)|)dx = −
∫︂
K
ψ(hjK |∇j

h(g − p+ pΠg)|)dx

≤ c(−
∫︂
K
ψ(hjK |∇j

h(g − p)|)dx+ −
∫︂
K
ψ(|g − p|)dx).

(4.23)

We will further need the following lemma

Lemma 4.2. Let 0 ≤ j ≤ l ≤ k + 1, K ∈ Th and g ∈ W 1,ψ(Ω), then there exists
a polynomial q ∈ Pl−1(Ω), such that

l∑︂
i=0

−
∫︂
K
ψ(hiK |∇i(g − q)|)dx ≤ c−

∫︂
K
ψ(hlK |∇lg|)dx. (4.24)

Proof. The proof to this lemma can be found in [17, Corollary 3.3]. The polyno-
mial, for which the assertion of the lemma holds is the averaged Taylor polynomial
of g.

Since p ∈ Pk(K) was arbitrary, we can choose the polynomial from lemma 4.2
in (4.23) and get for all K ∈ Th and g ∈ W 1,ψ(K)

−
∫︂
K
ψ(hjK |∇j

h(g − Πg)|)dx ≤ c−
∫︂
K
ψ(hlK |∇l

hg|)dx. (4.25)

Now we sum through all K ∈ Th and using the cases j = 0, l = 0 and j = 0,
l = 1 and finally j = 1, l = 1 we get the following set of estimates∫︂

Ω
ψ(|g − Πg|) ≤ c

∫︂
Ω
ψ(|g|), (4.26)

∫︂
Ω
ψ(|g − Πg|) ≤ c

∫︂
Ω
ψ(h|∇hg|), (4.27)

∫︂
Ω
ψ(|∇h(g − Πg)|) ≤ c

∫︂
Ω
ψ(|∇hg|). (4.28)

Also using triangle inequality we get∫︂
Ω
ψ(|Πg|) ≤ c

∫︂
Ω
ψ(|g|), (4.29)

∫︂
Ω
ψ(|∇h(Πg)|) ≤ c

∫︂
Ω
ψ(|∇hg|). (4.30)

Lemma 4.3. Let Γ be a face of K ∈ Th, then for all g ∈ W 1,Ψ(K) it holds

−
∫︂

Γ
ψ(|g|)ds ≤ c(−

∫︂
K
ψ(|g|)dx+ −

∫︂
K
ψ(hΓ|∇g|)dx). (4.31)
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Proof. From the theory of Sobolev-Orlitz spaces we have the embedding
W 1,ψ(K) ↪→ Lψ(Γ) and therefore∫︂

Γ
ψ(|g|)ds ≤ c(

∫︂
K
ψ(|g|)dx+

∫︂
K
ψ(|∇g|)dx.

By multiplying both sides by 1
|Γ| ∼ hΓ

|K| we get the original assertion.

Due to the equivalence of norms on the finite dimensional space, if g ∈ Pk(K),
the previous lemma implies

−
∫︂

Γ
ψ(|g|)ds ≤ c−

∫︂
K
ψ(|g|)dx. (4.32)

For the final set of results, let g ∈ W 1,psi(K) and Γ be a face of K ∈ Th, then
by lemma 4.3 and (4.25) for j = 0, 1 and l = 1

hΓ

∫︂
Γ
ψ(h−1

Γ |g − Πg|)ds ≤ c(hΓ

∫︂
K
ψ(h−1

Γ |g − Πg|)dx+ hΓ

∫︂
K
ψ(∇h|g − Πg|)dx)

≤ c
∫︂
K
ψ(|∇hg|).

(4.33)
Summing this through all K ∈ Th we have

h
∫︂

FID
h

ψ(h−1[|g − Πg]n|)ds ≤ c
∫︂

Ω
ψ(|∇hg|). (4.34)

For the sake of simplification of the notation, let us denote for g ∈ W 1,ψ(Ω)

Mψ,h(g) :=
∫︂

Ω
ψ(|∇hg|) + h

∫︂
FID
h

ψ(h−1[|g]n|)ds. (4.35)

Using estimate (4.28) we get the final estimate for the projection Π

Mψ,h(g−Πg) =
∫︂

Ω
ψ(|∇h(g−Πg)|)+h

∫︂
FID
h

ψ(h−1[|g−Πg]n|)ds ≤ c
∫︂

Ω
ψ(|∇hg|).

(4.36)

4.3 Scott-Zhang interpolation
The second functional, we need to introduce is a generalized Scott-Zhang inter-
polation and its interactions with the N-functions, based on the results in [10,
Appendix 3], [18] and [19].

In order to define an analogy for a classic Scott-Zhang interpolation in DG
setting we will need to denote the following discontinuous function spaces

V k,1
h (Ω) := V k

h (Ω) ∩W 1,1(Ω),
V k,1
h (Ω′) := V k

h (Ω′) ∩W 1,1(Ω′).
(4.37)

Len N ′ be the set of all nodes in the triangulation T ′
h and {ϕa}a∈N ′ be the

Lagrange basis of V k,1
h (Ω′), for example in each a ∈ N ′, ϕa is locally a polynomial

of degree k, ϕa(a) = 1 and ϕa is zero in all the nodes in the same simplex K as
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the node a. Number of these nodes is equal to the degrees of freedom allowed by
the given degree of the polynomial approximation. This is one of the advantages
of the discontinuous approach allowing the test functions to be supported only
on exactly one simplex of the triangulation.

With a ∈ N ′ we associate either a simplex K = Ka, if a ∈ intK or a face
Γ = Γa, if a ∈ Γ. We will not differentiate the notation and denote both as σa.

Let us denote {ϕa,i}i the local basis of [ϕb|σa|b ∈ N ′], such that ϕa,1 = ϕa|σa is
the base function that is nonzero in a. Let {βa,i}i be the dual basis to ϕa,ii with
respect to scalar product (f, g)σa =

∫︁
σa
fgdx. Therefore (ϕa,i, βa,j) = δi,j. Now

we can finally define the Scott-Zhang interpolation ΠSZ for a smooth function
g ∈ W 1,1(Ω′) by

ΠSZg =
∑︂
a∈N ′

(g, βa,1)σaϕa. (4.38)

Let us now extend this definition to discontinuous functions on Ω. If σa is a
face, we arbitrarily choose exactly one of the two simplices, of which it is a part
of and denote it Ka. Whenever, there is not clear, which trace of g should we
work with on a face σa, we take the trace g|Ka , more precisely

ΠSZg =
∑︂
a∈N ′

(g|Ka , βa,1)σaϕa. (4.39)

By this extended definition, the functional ΠSZ : W 1,1
DG(Ω′) → V k,1

h (Ω′) is a
linear mapping and a projection. For K outside S ′

Kb
, ϕb|K = 0 and therefore

(ΠSZg)|K only depends on values of g on S ′
K .

In order to ensure that functions extended by zero outside Ω, stay that way
after being projected by ΠSZ , we require that, if σa is a face and σa ∈ FD

h

then Ka assigned to σa is a simplex outside Ω. This requirement implies that
ΠSZ : W 1,1

DG,D(Ω) → V k
h (Ω′) ∩W 1,1

D (Ω′).
It is useful to note the standard result for Scott-Zhang interpolation

∥ϕa,i∥∞ ≤ 1, ∥βa,i∥∞ ≤ c

|σa|
. (4.40)

Lemma 4.4. Let g ∈ W 1,ψ(Ω), ψ be an N-function, K ∈ Th and 0 ≤ j ≤ l ≤
k + 1, then

−
∫︂
K
ψ(hjK |∇j

h(g − ΠSZg)|)dx ≤ c−
∫︂
SK
ψ(hlK |∇lg|)dx. (4.41)

Proof. for p ∈ Pk(K) the interpolation ΠSZ also satisfies ΠSZ(p) = p and therefore
we can use the similar steps as in derivation of the result for Π in (4.25).

Using the lemma 4.3 for |g − ΠSZg| we have

hΓ

∫︂
Γ
ψ(h−1

Γ |g−ΠSZg|)ds ≤ c(
∫︂
K
ψ(h−1

Γ |g−ΠSZg|)dx+
∫︂
K
ψ(|∇h(g−ΠSZg)|)dx).

(4.42)
and using lemma (4.4) for j = 0, 1 and l = 1, 2, the last term can be estimated

by
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≤ c
∫︂
SK
ψ(|∇g|)dx,

≤ c
∫︂
SK
ψ(h|∇2g|)dx.

Putting these together and summing through all K ∈ Th we have the following
estimates for g ∈ W 1,ψ(Ω) and g ∈ W 2,ψ(Ω) respectively

h
∫︂

FID
h

ψ(h−1|[g − ΠSZg]n|)ds+
∫︂

Ω
ψ(h−1|g − ΠSZg|)dx

+
∫︂

Ω
ψ(|∇hΠSZg|)dx ≤ c

∫︂
Ω
ψ(|∇g|)dx,

(4.43)

h
∫︂

FID
h

ψ(h−1|[g − ΠSZg]n|)ds+
∫︂

Ω
ψ(h−1|g − ΠSZg|)dx

+
∫︂

Ω
ψ(|∇h(g − ΠSZg)|)dx ≤ c

∫︂
Ω
ψ(|h∇2g|)dx,

(4.44)

where in the first estimate we used the triangle inequality on the last term on the
left hand side.

Lemma 4.5. Let Γ ∈ F I
h , such that SΓ = K1 ∪K2. Then for all g ∈ W 1,1

DG(SΓ)

|⟨g⟩K1 − ⟨g⟩K2| ≤ c−
∫︂
SΓ
hΓ|∇hg|dx+ c−

∫︂
SΓ

|[g]n|ds. (4.45)

Proof. We only need to use classic Poincaré-Friedrichs’s inequality on W 1,1(SΓ)
in the third inequality of the following set of estimates

|⟨g⟩K1 − ⟨g⟩K2| = |⟨g⟩K1 − ⟨g|K1⟩K1 + ⟨g|K1⟩K1 − ⟨g|K2⟩K2 + ⟨g|K2⟩K2 − ⟨g⟩K2 |
≤ |⟨g⟩K1 − ⟨g|K1⟩K1| + ⟨[g]n⟩Γ + |⟨g|K2⟩K2 − ⟨g⟩K2|

≤ −
∫︂
K1

|g − ⟨g|K1⟩K1 |dx+ −
∫︂
K2

|g − ⟨g|K2⟩K2 |dx+ −
∫︂

Γ
|[g]n|ds

≤ c ≤ −
∫︂
K1
hγ|∇hg|dx+ −

∫︂
K2
hγ|∇hg|dx+ −

∫︂
Γ

|[g]n|ds.

In the further estimates we will need to use the Poincaré inequality in Lp

spaces.

Lemma 4.6. Let M be a Lipschitz domain and g ∈ W 1,p, for 1 ≤ p ≤ ∞, then
there exists a constant c, depending on M and p, such that

∥g − ⟨g⟩K∥pLp(M) ≤ c diam(M) ∥∇g∥pLp(M) . (4.46)

Lemma 4.7. Let K ∈ Th and g ∈ W 1,1
DG(Ω′) and denote Fh(S ′

K) the interior faces
in S ′

K, then

∥∇ΠSZg∥L∞(K) ≤ ch−1
K ∥ΠSZg − ⟨g⟩K∥L∞(K) ≤ ch−1

K −
∫︂
K

|ΠSZg − ⟨g⟩K |dx,

∥ΠSZg − ⟨g⟩K∥L∞(K) ≤ c−
∫︂
S′
K

hKdx+ c
∑︂

Γ∈Fh(S′
K)

−
∫︂

Γ
|[g]n|ds.

(4.47)
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Proof. For the first row of estimates we use the fact that ∇⟨g⟩K = 0 and the
inverse inequality for polynomials, i.e lemma (4.1).

∥∇ΠSZg∥L∞(K) = ∥∇(ΠSZg − ⟨g⟩K)∥L∞(K)

≤ ch−1
K ∥ΠSZg − ⟨g⟩K∥L∞(K) ≤ ch−1

K −
∫︂
K

|ΠSZg − ⟨g⟩K |dx.

For the second row it follows from (4.40)

∥ΠSZg − ⟨g⟩K∥L∞(K) = ∥ΠSZ(g − ⟨g⟩K)∥L∞(K) ≤ c
∑︂

α∈N ′;Kα⊂S′
K

⟨|g|Kα − ⟨g⟩K |)⟩σα .

Using lemma 4.3, if σα is a face, or trivial estimate otherwise

⟨|g|Kα − ⟨g⟩K |)⟩σα ≤ c−
∫︂
Kα

|g|Kα − ⟨g⟩K |dx+ c−
∫︂
Kα
hKα|∇hg|dx.

Now due to the fact that interior of S ′
K is connected we use lemma 4.5 for

each pair of a sequence of neighbouring simplices connecting K and Kα.

−
∫︂
Kα

|g|Kα − ⟨g⟩K |dx ≤ −
∫︂
Kα

|g − ⟨g⟩K |dx+ c
∑︂

Γ∈Fh(S′
K)

(−
∫︂

Γ
|[g]n|ds+ −

∫︂
SΓ
hΓ|∇hg|dx).

Finally using Poincaré lemma 4.6 we arrive at

≤ c
∑︂

Γ∈Fh(S′
K)

−
∫︂

Γ
|[g]n|ds+ −

∫︂
S′
K

hK |∇hg|dx.

Putting everything together we get the second inequality.

Using the fact that |K| ∼ hΓ|Γ| and Jensen’s inequality, the lemma 4.7 implies∫︂
K
ψ(|∇ΠSZg|)dx+

∫︂
K
ψ(h−1

K |ΠSZg − ⟨g⟩K |)dx

≤ c
∫︂
S′
K

ψ(|∇hg|)dx+ c
∑︂

Γ∈Fh(S′
K)
hΓ

∫︂
Γ
ψ(h−1

Γ |[g]n|)ds.
(4.48)

In further estimates we will need the following Poincaré inequality extended
to N-functions.

Lemma 4.8. Let ψ and ψ∗ be N-functions satisfying ∆2 − condition and g ∈
W 1,ψ(K) for K ∈ Th, then

−
∫︂
K
ψ(|g − ⟨g⟩K |)dx ≤ c−

∫︂
K
ψ(hK |∇g|). (4.49)

Proof. The proof to this lemma can be found in [18, Theorem 7].

Using (4.48) and lemma 4.8 we have∫︂
K
ψ(h−1

K |g − ΠSZg|)dx

≤ c
∫︂
K
ψ(h−1

K |ΠSZg − ⟨g⟩K |)dx+ c
∫︂
K
ψ(h−1

K |g − ⟨g⟩K |)dx

≤ c
∫︂
S′
K

ψ(|∇hg|)dx+ c
∑︂

Γ∈Fh(S′
K)
hΓ

∫︂
Γ
ψ(h−1

Γ |[g]n|)ds.

(4.50)
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Summation of (4.48) and (4.50) over K ∈ T ′
h implies

∫︂
Ω′
ψ(h−1|g − ΠSZg|)dx+

∫︂
Ω′
ψ(|∇ΠSZg|)dx

≤ c
∫︂

Ω′
ψ(|∇hg|)dx+

∑︂
Γ∈F I

h
(Ω′)

hΓ

∫︂
Γ
ψ(h−1

Γ |[g]n|)ds = cMψ,h,Ω′(g).
(4.51)

Since g ∈ W 1,ψ
DG,D(Ω) is extended by zero outside Ω the same estimate holds

on Ω

∫︂
Ω
ψ(h−1|g − ΠSZg|)dx+

∫︂
Ω
ψ(|∇ΠSZg|)dx

≤ c
∫︂

Ω
ψ(|∇hg|)dx+

∑︂
Γ∈F I

h
(Ω′)

hΓ

∫︂
Γ
ψ(h−1

Γ |[g]n|)ds = cMψ,h,Ω(g).
(4.52)

Lemma 4.9. Let Ω be a domain with Lipschitz boundary and g ∈ W 1,1
0 (Ω), then

|g(x)| ≤ c
∫︂

Ω

|∇g(y)|
|x− y|d−1dy. (4.53)

a.e in Ω.

Proof. function g extended by zero to Ω′ satisfies the assumptions of the repre-
sentation lemma in [19, Lemma 8.2.1b], proof of which we refer to the original
work.

Lemma 4.10. Let ψ be an N-function satisfying ∆2 −condition and the function
g ∈ W 1,ψ

DG,D(Ω), then it holds∫︂
Ω
ψ(|g|)dx ≤ c

∫︂
Ω
ψ(|diam(Ω)∇g|)dx. (4.54)

Proof. Let c0 be a constant, such that
∫︁

Ω diam(Ω)−1|x − y|d−1dy ≤ c0. Function
g is extended by 0 on Ω′ and g ∈ W 1,ψ(Ω′). Using lemma (4.9), and Jensen
inequality with respect to measure χΩc

−1
0 diam(Ω)−1|x− y|d−1 we have∫︂

Ω
ψ(|g|)dx ≤

∫︂
Ω
cψ(

∫︂
Ω

|∇g(y)|
|x− y|d−1dy)dx

≤ c
∫︂

Ω

∫︂
Ω
ψ(diam(Ω))|∇g(y)|)diam(Ω)−1|x− y|d−1dx

≤ c
∫︂

Ω
ψ(|diam(Ω)∇g|)dx.

Lemma 4.11. Let ψ be an N-function satisfying ∆2−condition, then there exists
an N-function ρ and θ ∈ (0, 1), such that ψ(ρ−1(t)) ∼ t1/θ.

Proof. In order to avoid having to introduce additional theory of Orlicz spaces,
we refer this proof from [20, Lemma 1.2.2, Lemma 1.2.3]
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Lemma 4.12. Let ψ, ψ∗ be N-functions satisfying ∆2 − condition, then if we
denote R = diam(Ω), for all g ∈ W 1,ψ

DG,D(Ω) it holds∫︂
FN
h

ψ(|g|) ≤ cR−1
∫︂

Ω
ψ(|R∇g|). (4.55)

Proof. Using lemma (4.9) and Jensen inequality applied to ρ and measure
χΩc

−1
0 diam(Ω)−1|x− y|d−1.∫︂

FN
h

ψ(|g|) ≤
∫︂
FN
h

cψ(
∫︂

Ω

|∇g(y)|
|x− y|d−1dy)dx

≤ c
∫︂
FN
h

ψ(ρ−1(
∫︂

Ω
ρ(R|∇g(y)|)R−1|x− y|1−ddy))ds(x)

≤ c
∫︂
FN
h

∫︂
Ω
ρ(R|∇g(y)|)R−1|x− y|1−ddyds(x) = c

∫︂
FN
h

I1ds(x).

For α > 0 we multiply the inside of the integral I1 by 1 = |x − y|α|x − y|−α.
Further we use Hölder inequality with p = 1

θ
, q = 1

1−θ and measure |x− y|d−1dy.

I1 ≤ R−1/θ
∫︂

Ω
ρ1/θ(R|∇g(y)|)|x− y|α/θ+1−ddy(

∫︂
Ω

|x− y|−α/(1−θ)+1−ddy)1−θ/θdx.

Since we did not specify α previously, let −α/(1 − θ) + 1 − d > 1 − d. Then

I1 ≤ R−1/θ
∫︂

Ω
ρ1/θ(R|∇g(y)|)|x− y|α/θ+1−ddy(R−α/(1−θ)+1−d)1−θ/θ.

Therefore∫︂
FN
h

ψ(|g|) ≤ cR−1−α/θ
∫︂
FN
h

∫︂
Ω
ψ(R|∇g(y)|)|x− y|α/θ+1−ddyds(x)

≤ cR−1−α/θ
∫︂

Ω
ψ(R|∇g(y)|)

∫︂
FN
h

|x− y|α/θ+1−dds(x)dy

≤ cR−1
∫︂

Ω
ψ(|R∇g|)dy,

since FN
h is d− 1 dimensional and∫︂

FN
h

|x− y|α/θ+1−dds(x) ≤ cRα/θ.

Lemma 4.13. Let ψ, ψ∗ be N-functions satisfying ∆2 − condition , the for all
g ∈ W 1,ψ

DG,D(Ω) ∫︂
Ω
ψ(|g|)dx ≤ cMψ,h(diam(Ω)g). (4.56)

Proof. For g ∈ W 1,ψ
DG,D(Ω), the projection ΠSZg ∈ W 1,ψ

DG(Ω). From this, lemma
4.10 and (4.52), with hK ≤ diam(Ω) follows

∫︂
Ω
ψ(|g|)dx ≤ c

∫︂
Ω
ψ(|g − ΠSZg|)dx+ c

∫︂
Ω
ψ(|ΠSZg|)dx

≤ c
∫︂

Ω
ψ(|g − ΠSZg|)dx+ c

∫︂
Ω
ψ(|diam(Ω)ΠSZg|)dx ≤ cMψ,h(diam(Ω)g).
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For Γ face of K, using similar steps as in 4.12 we can get the estimate

−
∫︂

Γ
ψ(|g − ⟨g⟩K |)dx ≤ c−

∫︂
K
ψ(hK |∇g|)dx. (4.57)

Lemma 4.14. Let ψ, ψ∗ be N-functions satisfying ∆2 − condition , the for all
g ∈ W 1,ψ

DG,D(Ω) ∫︂
FN
h

ψ(|g|)ds ≤ c diam(Ω)−1Mψ,h(diam(Ω)g). (4.58)

Proof.∫︂
FN
h

ψ(|g|)ds ≤ c
∫︂
FN
h

ψ(|g − ΠSZg|)ds+ c
∫︂
FN
h

ψ(|ΠSZg|)ds = I1 + I2.

For the estimate of I1 we use (4.57), lemma 4.3 and (4.48)

I1 =
∑︂

Γ∈FN
h

∫︂
Γ
ψ(|g − ΠSZg|)ds ≤ c

∑︂
Γ∈FN

h

∫︂
Γ
ψ(|g − ⟨g⟩K |) + ψ(|⟨g⟩K − ΠSZg|)ds

≤ c
∑︂

K;δK∈FN
h

h−1
K

∫︂
K
ψ(hK |∇hg|) + h−1

K

∫︂
K
ψ(|⟨g⟩K − ΠSZg|) + ψ(hK |∇ΠSZg|)dx

≤ c
∑︂
K∈Th

h−1
K

∫︂
SK
ψ(hK |∇hg|)dx+ c

∑︂
K;δK∈FN

h

∫︂
Γ
ψ(|[g]n|)ds

≤ c diam(Ω)−1Mψ,h(diam(Ω)g).

From lemma 4.12 and (4.52) we have

I2 ≤ c diam(Ω)−1Mψ,h(diam(Ω)g).
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5. Discontinuous Galerkin
formulations
There were a couple of discontinuous Galerkin methods considered for the dis-
cretization of the problem, mainly interior penalty discontinuous Galerkin (IPDG)
and local discontinuous Galerkin (LDG) method. In the end we chose the LDG
method, described for the general case in [8], due to the easier error analysis. For
the discretization itself, we follow the approach outlined in [10] and [11].

5.1 Local DG formulation
Using the definition A(P ) := K(|P |)P , for P ∈ Rd to simplify the notation, the
main set of equations 3.1 we derived in chapter one can be rewritten as

ut − ∇ · A(∇u) = f x ∈ QT , (5.1)
u|δΩD×(0,T ) = uD,

A(∇u) · n|δΩN×(0,T ) = gN ,

u(x, 0) = u0(x) x ∈ Ω.

K is the nonlinear function defined in the first chapter motivated by the
physical model and has all the properties we derived there.

For the problem data, we will assume that uD ∈ W 1− 1
p
,p(FD

h ), f ∈ Lp(Ω)
and gN ∈ Lq(FN

h ), where 1
p

+ 1
q

= 1. Under these assumptions, by the theory of
monotone operators there exists a weak solution u ∈ W 1,φ(Ω), u−uD ∈ W 1,φ

D (Ω)
satisfying for all z ∈ W 1,φ

D (Ω)∫︂
Ω
A(∇u) · ∇zdx =

∫︂
Ω
fzdx+

∫︂
FN
h

gNzds. (5.2)

The local DG formulation has some similarities to classic Interior Penalty
methods. First we rewrite the original equation (5.1) , into three equations of the
first order. Then the equations are multiplied by the appropriate test functions
and integration by parts is used. Instead of adding the interior penalty terms like
in a IP method, the jumps on the edges of the triangulation are controlled by the
appropriate choice of the numerical fluxes. These are the chosen approximations
of the discrete solution on the edges of the triangulation.

Equation (5.1) can be rewritten as a system of first order equations for un-
knowns u, l,a .
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l = ∇u,
a = A(l), (5.3)
ut − ∇ · a = f,

u|FD
h

×(0,T ) = uD,

a · n|FN
h

×(0,T ) = gN ,

u(x, 0) = u0(x) x ∈ Ω.

Multiplying these equations by xh,yh ∈ Xk
h , zh ∈ V k

h respectively, integrating
over K ∈ Th and using integration by parts we have

∫︂
K

l · xhdx = −
∫︂
K
u∇ · xhdx+

∫︂
δK
uxh · nds,∫︂

K
a · yhdx =

∫︂
K
A(l) · yhdx,∫︂

K
utzhdx+

∫︂
K

a · ∇zhdx =
∫︂
K
fzhdx+

∫︂
δK
zha · nds.

By replacing u, l,a by their discrete versions uh ∈ Vh; lh,ah ∈ Xh in the
volume integrals and by replacing u and a by ûh := û(uh) and âh := â(uh,ah)
in the surface integrals we get

∫︂
K

lh · xhdx = −
∫︂
K
uh∇ · xhdx+

∫︂
δK
ûhxh · nds, (5.4)∫︂

K
ah · yhdx =

∫︂
K
A(lh) · yhdx,∫︂

K
uhtzhdx+

∫︂
K

ah · ∇zhdx =
∫︂
K
fzhdx+

∫︂
δK
zhâh · nds.

Our definitions of the numerical fluxes are

û(uh) :=

⎧⎪⎪⎨⎪⎪⎩
{uh} , Γ ∈ F I

h ,

u∗
D , Γ ∈ FD

h ,

uh , Γ ∈ FN
h ,

â(uh,ah) :=

⎧⎪⎪⎨⎪⎪⎩
{ah} − σA(h−1[uh]n) , Γ ∈ F I

h ,

ah − σA(h−1(u− u∗
D)n) , Γ ∈ FD

h ,

gNn , Γ ∈ FN
h .

Here σ > 0 is a constant and u∗
D ∈ W 1,φ(Ω) is an approximation of uD. It

will be defined either as u or ΠSZu. The choice of u∗
D will be important for the

error estimates. The parameter σ has the role of fine tuning the method during
the implementation.

Definition 5.1. The numerical fluxes ûhand and âh are
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• consistent, if ûh(v) = v|Γ and âh(v,∇v) = ∇v|Γ for Γ ∈ Fh and v a smooth
function satisfying the given boundary conditions.

• conservative, if ûh(·) and âh(·, ·) are single valued on Γ ∈ Fh.

We can easily see that our choice for ûh and âh is by definition both consistent
and conservative, since jumps [·] of smooth functions vanish and both jumps and
averages are single valued on the edges of the triangulation.

In order to obtain the formulation for the whole domain Ω, we want to
sum trough all K ∈ Th. First we need to rewrite the surface terms similar to∑︁
K∈Th

∫︁
δK vx · nds, v ∈ W 1,φ

DG(Ω),x ∈ W 1,φ∗

DG (Ω,Rd). For Γ ∈ F I
h and K+ and

K− from Th such that the edge Γ ⊂ K+ ∩K− we have

∫︂
Γ
(v|+Γ x|+Γ · n+ds+

∫︂
Γ
v|−Γ x|−Γ · n−ds =

∫︂
Γ
(v|+Γ x|+Γ − v|−Γ x|−Γ ) · nds

=
∫︂

Γ
(1/2(v|+Γ x|+Γ − v|+Γ x|−Γ + v|−Γ x|+Γ − v|−Γ x|−Γ )

+ 1/2(v|+Γ x|+Γ + v|+Γ x|−Γ − v|−Γ x|+Γ − v|−Γ x|−Γ )) · nds

=
∫︂

Γ
1/2(v|+Γ + v|−Γ )(x|+Γ − x|−Γ ) · nds+

∫︂
Γ
(v|+Γ − v|−Γ )1/2(x|+Γ + x|−Γ ) · nds

=
∫︂

Γ
{v}[x] · n + [v]n{x} · nds. (5.5)

Therefore, due to definition of jumps and averages on the boundary of the
domain we can write

∑︂
K∈Th

∫︂
δK
vx · nds =

∫︂
FI
h

{v}[x] · nds+
∫︂

FI
h

[v]{x} · nds+
∫︂

FDN
h

vx · nds

=
∫︂

FI
h

{v}[x] · nds+
∫︂

FID
h

[v]{x} · nds+
∫︂

FN
h

vx · nds. (5.6)

Now we can sum (5.4) through all K ∈ Th and use the definitions of the fluxes

∫︂
Ω

lh · xhdx = −
∫︂

Ω
uh∇h · xhdx+

∫︂
FI
h

{uh}[xh] · nds+
∫︂

FD
h

u∗
Dxh · nds

+
∫︂

FN
h

uhxh · nds,∫︂
Ω

ah · yh =
∫︂

Ω
A(lh) · yhdx,∫︂

Ω
uhtzhdx+

∫︂
Ω

ah · ∇zhdx =
∫︂

Ω
fzhdx+

∫︂
FI
h

{ah} · [zh]nds+
∫︂

FD
h

ah · zhnds

+
∫︂

FN
h

gNzhds− σ
∫︂

FI
h

A(h−1[uh]n) · [zh]nds− σ
∫︂

FD
h

A(h−1(u− u∗
D)n)zh · nds.

The equation (5.6) also implies the following version of integration by parts
for our discontinuous functions
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∫︂
Ω

∇huhxhdx = −
∫︂

Ω
uh∇h · xhdx+

∫︂
FI
h

{uh}[xh] · nds+
∫︂

FI
h

[uh]{xh} · nds

−
∫︂

FDN
h

uhxh · nds. (5.7)

We can use this in the first equation to obtain the local DG formulation of
our problem

∫︂
Ω

lh · xhdx =
∫︂

Ω
∇huh · xhdx+

∫︂
FI
h

[uh]n · {xh}ds−
∫︂

FD
h

(uh − u∗
D)xh · nds,∫︂

Ω
ah · yhdx =

∫︂
Ω
A(lh) · yhdx, (5.8)∫︂

Ω
uhtzhdx+

∫︂
Ω

ah · ∇zhdx =
∫︂

Ω
fzhdx+

∫︂
FI
h

{ah} · [zh]nds+
∫︂

FD
h

ah · zhnds

+
∫︂

FN
h

gNzhds− σ
∫︂

FI
h

A(h−1[uh]n) · [zh]nds− σ
∫︂

FD
h

A(h−1(uh − u∗
D)n)zh · nds.

5.2 The primal formulation
It will also be useful to have a discrete formulation in a single equation, called
the primal formulation.

Recall that for g ∈ Vh and xh ∈ Xh we have by the definition of ∇h
DGg and

Rhg ∫︂
Ω

∇h
DGg · xhdx =

∫︂
Ω

∇hg · xhdx−
∫︂

FID
h

[g]n · {xn}ds, (5.9)

∫︂
Ω

Rhg · xhdx =
∫︂

FID
h

[g]n · {xn}ds. (5.10)

We can use this to eliminate the unknowns lh and ah in our equations

∫︂
Ω

lh · xhdx =
∫︂

Ω
(∇h

DGuh + Rhu
∗
D) · xhdx,∫︂

Ω
ah · yhdx =

∫︂
Ω
A(lh) · yhdx,∫︂

Ω
uhtzhdx+

∫︂
Ω

ah · ∇h
DGzhdx =

∫︂
Ω
fzhdx+

∫︂
FN
h

gNzhds

− σ
∫︂

FI
h

A(h−1[uh]n) · [zh]nds− σ
∫︂

FD
h

A(h−1(u− u∗
D)n)zh · nds.

This implies that

lh = ∇h
DGuh + Rhu

∗
D, (5.11)

ah = ΠA(lh). (5.12)

We can plug this into the third equation and obtain the primal formulation
of the problem
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∫︂
Ω
uhtzhdx+

∫︂
Ω
A(∇h

DGuh + Rhu
∗
D) · ∇h

DGzhdx =
∫︂

Ω
fzhdx+

∫︂
FN
h

gNzhds

− σ
∫︂

FI
h

A(h−1[uh]n) · [zh]nds− σ
∫︂

FD
h

A(h−1(uh − u∗
D)n) · zhnds. (5.13)

By standard methods, it can be proven that the solution uh exists. This also
implies the existence of lh and ah.
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6. A priori stability estimates
Due to the complicated nature of our problem we are only going to present the
a priori estimates in two simpler cases. In the first case we consider only trivial
boundary conditions and in the second case we assume the time independent
problem.

6.1 Estimate assuming u∗
D = 0 and ΓN = ∅

In this case, we follow the approach from [11], considering that the main nonlinear
function at the core of the equations here is a slightly more complicated and the
estimate requires the theory from Chapter 2.

If we choose zh = uh,xh = ah,yh = lh for our test function in (5.8), we get

∫︂
Ω

lh · ahdx =
∫︂

Ω
∇huh · ahdx+

∫︂
FI
h

[uh]n · {ah}ds−
∫︂

FD
h

(uh − u∗
D)ah · nds,∫︂

Ω
ah · lhdx =

∫︂
Ω
A(lh) · lhdx,∫︂

Ω
uhtuhdx+

∫︂
Ω

ah · ∇uhdx =
∫︂

Ω
fuhdx+

∫︂
FI
h

{ah} · [uh]nds+
∫︂

FD
h

ah · uhnds

+
∫︂

FN
h

gNuhds− σ
∫︂

FI
h

A(h−1[uh]n) · [uh]nds− σ
∫︂

FD
h

A(h−1(uh − u∗
D)n)uh · nds.

If we assume that u∗
D = 0 and FN

h = ∅ the equations simplify to

∫︂
Ω

lh · ahdx =
∫︂

Ω
∇huh · ahdx+

∫︂
FI
h

[uh]n · {ah}ds−
∫︂

FD
h

uhah · nds,∫︂
Ω

ah · lhdx =
∫︂

Ω
A(lh) · lhdx,∫︂

Ω
uhtuhdx+

∫︂
Ω

ah · ∇uhdx =
∫︂

Ω
fuhdx+

∫︂
FI
h

{ah} · [uh]nds+
∫︂

FD
h

ah · uhnds

− σ
∫︂

FI
h

A(h−1[uh]n) · [uh]nds− σ
∫︂

FD
h

A(h−1uhn)uh · nds.

Now it its possible to eliminate the unknowns lh and ah.Combining these
equation, we arrive at

∫︂
Ω
uhtuhdx+

∫︂
Ω
A(lh) · lhdx+ σ

∫︂
FID
h

A(h−1[uh]n) · [uh]nds =
∫︂

Ω
fuhdx. (6.1)

Now we use the result concerning the relation between A and φ (2.47) in the
following relations

A(lh) · lh ∼ φ(|lh|), (6.2)

σA(h−1[uh]n) · [uh]n ∼ σhφ(|h−1[uh]n|), (6.3)
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We also use the Cauchy-Schwartz inequality on right hand side and the fact
that

uhtuh = 1
2
δ

δt
u2
h. (6.4)

Putting all of these together we get

1
2
δ

δt

⃦⃦⃦
u2
h

⃦⃦⃦2

L2(Ω)
+

∫︂
Ω
φ(|l|h)dx+ σh

∫︂
Ω
φ(h−1[uh]n)dx ≤ 1

2 ∥f∥2
L2(Ω) + 1

2 ∥uh∥2
L2(Ω) .

(6.5)
By integrating from 0 to t > 0 and multiplying by 2 we get

∥uh(t)∥2
L2(Ω) + 2

∫︂ t

0
(
∫︂

Ω
(φ(|l|h (τ))dx+ σh

∫︂
Ω
φ(h−1[uh(τ)]n)dx)dτ (6.6)

≤ ∥uh(0)∥2
L2(Ω) +

∫︂ t

0
(∥f(τ)∥2

L2(Ω) + ∥uh(τ)∥2
L2(Ω))dτ.

Here we will need the following version of the Gronwall inequality

Lemma 6.1. Let y : [0, T ] → R be a nonnegative, measurable function, r :
[0, T ] → R a nonnegative integrable function and q, z ≥ 0 .If the following in-
equality holds for t ∈ [0, T ]

y(t) + q ≤ z +
∫︂ t

0
r(s)y(s)ds, (6.7)

then also

y(t) + q ≤ z exp
(︃ ∫︂ t

0
r(s)dsdτ

)︃
. (6.8)

Applying this to (6.6) we get the final estimate

Theorem 6.1. Let (uh, lh,ah) ∈ Vh × Xh × Xh be a solution to (5.8) for some
σ > 0, while u∗

D = u or u∗
D = ΠSZu. Then this solution satisfies

∥uh(t)∥2
L2(Ω) + 2

∫︂ t

0
(
∫︂

Ω
(φ(|l|h (τ))dx+ σh

∫︂
Ω
φ(h−1[uh(τ)]n)dx)dτ

≤ et
(︃

∥uh(0)∥2
L2(Ω) +

∫︂ t

0
∥f(τ)∥2

L2(Ω) dτ
)︃
.

6.2 Estimate assuming time independent prob-
lem

Stability estimate in the stationary case is based on [10, Theorem 3.2]. We start
with the primal formulation

∫︂
Ω
A(∇h

DGuh + Rhu
∗
D) · ∇h

DGzhdx =
∫︂

Ω
fzhdx+

∫︂
FN
h

gNzhds

− σ
∫︂

FI
h

A(h−1[uh]n) · [zh]nds− σ
∫︂

FD
h

A(h−1(uh − u∗
D)n) · zhnds. (6.9)
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In this case we choose the trial function differently as zh = uh − Πu. It will
also be useful to split the first term using the following.

∇h
DG(uh − Πu) = ∇h

DGuh − ∇h
DGΠu = ∇h

DGuh +Rhu
∗
D −Rhu

∗
D − ∇hΠu+RhΠu.

(6.10)
By substituting for zh and rearranging the terms we get

∫︂
Ω
A(∇h

DGuh +Rhu
∗
D) · (∇h

DGuh +Rhu
∗
D) − σ

∫︂
FI
h

A(h−1[uh]n) · [uh]nds (6.11)

− σ
∫︂

FD
h

A(h−1(uh − u∗
D)n) · (uh − u∗

D)nds

=
∫︂

Ω
A(∇h

DGuh +Rhu
∗
D) · (∇hΠu) +

∫︂
Ω
A(∇h

DGuh +Rhu
∗
D) · (Rh(u∗

D − Πu))

+
∫︂

Ω
f(uh − Πu)dx+

∫︂
FN
h

gN(uh − Πu)dx+ σ
∫︂

FI
h

A(h−1[uh]n) · [Πu]nds

− σ
∫︂

FD
h

A(h−1(uh − u∗
D)n) · (u∗

D − Πu)nds =: I1 + I2 + I3 + I4 + I5 + I6.

First we treat the left hand side. Using (5.11) and the fact that

A(lh) · lh ∼ φ(|lh|), (6.12)

A(∇h
DGuh +Rhu

∗
D) · (∇h

DGuh +Rhu
∗
D) ∼ φ(|∇h

DGuh +Rhu
∗
D|), (6.13)

A(h−1[uh]n) · [uh]n ∼ hφ(|h−1[uh]n|), (6.14)

A(h−1(uh − u∗
D)n) · (uh − u∗

D)n ∼ hφ(|h−1(uh − u∗
D)n|). (6.15)

due to (2.47) we can see that the left hand side is equivalent to

∫︂
Ω
φ(|lh|) + φ(|∇h

DGuh +Rhu
∗
D|)dx+ σh

∫︂
FI
h

φ(|h−1[uh]n|)ds

+ σh
∫︂

FD
h

φ(|h−1(uh − u∗
D)n|)ds

=
∫︂

Ω
φ(|lh|) + φ(|∇h

DGuh +Rhu
∗
D|)dx+ σh

∫︂
FID
h

φ(|h−1[uh − u∗
D]n|)ds,

since [u∗
D]n = 0 on Γ ∈ F I

h .
It is possible to estimate few other terms on the left hand side with a clever

use of the previously derived results.

• Using (2.11), (2.48), (4.29) and (5.12) in this order for each of the following
inequalities

∫︂
Ω
φ(|lh|) ∼

∫︂
Ω
φ∗(φ′(|lh|)) ∼

∫︂
Ω
φ∗(A(|lh|))

≥ c
∫︂

Ω
φ∗(ΠA(|lh|)) =

∫︂
Ω
φ∗(ah).
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• From (5.11) we have

lh = ∇h
DGuh + Rhu

∗
D = ∇huh − Rh(uh − u∗

D). (6.16)

This implies

∫︂
Ω
φ(|∇huh|) ≤ c

∫︂
Ω
φ(|lh|) + φ(|Rh(uh − u∗

D)|)dx

≤ c
∫︂

Ω
φ(|lh|)dx+ ch

∫︂
FID
h

φ(|h−1[uh − u∗
D]n|),

where in the last inequality (4.13) was used.

• Using the fact that
∫︁

Ω φ(|∇huh|) is already controlled, another term can be
estimated with the use of the following lemma.

Lemma 6.2. For u∗
D = u or u∗

D = ΠSZu we have

h
∫︂

FID
h

φ(|h−1[uh − u∗
D]|)ds ≤ c

∫︂
Ω
φ(|∇u|)dx. (6.17)

Proof. If u∗
D = u then the left hand side is 0. In the other case the assertion

follows from the estimate of the first term in (4.43).

Mφ,h(uh − u) =
∫︂

Ω
φ(|∇h(uh − u)|)dx+ h

∫︂
FID
h

φ(|h−1[uh − u]n|)ds

=
∫︂

Ω
φ(|∇huh − ∇u|)dx+ h

∫︂
FID
h

φ(|h−1[uh − u∗
D + u∗

D − u]n|)ds

≤ c
∫︂

Ω
φ(|∇huh|) + φ(|∇u|)dx

+ ch
∫︂

FID
h

φ(|h−1[uh − u∗
D]|) + φ(|h−1[u∗

D − u]n|)ds

≤ c
∫︂

Ω
φ(|∇huh|) + φ(|∇u|)dx+ ch

∫︂
FID
h

φ(|h−1[uh − u∗
D]|)ds.

Here 6.2 was used in the last inequality.

Mφ,h(uh − u) − c
∫︂

Ω
φ(|∇u|)dx

≤ c
∫︂

Ω
φ(|∇huh|)dx+ ch

∫︂
FID
h

φ(|h−1[uh − u∗
D]|)ds.

(6.18)

• Finally we can estimate one last term, using lemma 4.13

Mφ,h(uh − u) ≥ cMφ,h(diam(Ω)(uh − u)) ≥ c
∫︂

Ω
φ(|uh − u|)dx. (6.19)
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Putting everything together, the left hand side is greater or equal to

c(
∫︂

Ω
φ(|lh|)dx+ φ(|∇h

DGuh +Rhu
∗
D|)dx

+σh
∫︂

FID
h

φ(|h−1[uh − u∗
D]n|)ds+

∫︂
Ω
φ∗(ah)ds

+min{1, σ}(
∫︂

Ω
φ(|∇huh|)dx+Mφ,h(uh − u)

−
∫︂

Ω
φ(|∇u|)dx+

∫︂
Ω
φ(|uh − u|)dx)).

(6.20)

To deal with the right hand side of (6.11), we estimate the terms I1 . . . I6 one
by one using the modified Young’s inequality, i.e. lemma 2.1 to split the integrals
and move the terms multiplied by ϵ to the left hand side.

• For the first integral we have

|I1| ≤ ϵ
∫︂

Ω
φ∗(|A(∇h

DGuh +Rhu
∗
D)|) + cϵ

∫︂
Ω
φ(|∇hΠu|)

≤ ϵ
∫︂

Ω
φ∗(φ′(|∇h

DGuh +Rhu
∗
D)|)) + cϵ

∫︂
Ω
φ(|∇hΠu|)

≤ ϵ
∫︂

Ω
φ(|∇h

DGuh +Rhu
∗
D)|) + cϵ

∫︂
Ω
φ(|∇hΠu|),

using (2.48) in the first inequality and (2.11) and (4.30) in the second.

• After the same two steps, we have

|I2| ≤ ϵ
∫︂

Ω
φ(|∇h

DGuh +Rhu
∗
D|)dx+ cϵ

∫︂
Ω
φ(|Rh(u∗

D − Πu)|)dx

≤ ϵ
∫︂

Ω
φ(|∇h

DGuh +Rhu
∗
D|)dx+ cϵh

∫︂
FID
h

φ(|h−1[u∗
D − Πu]n|)ds

≤ ϵ
∫︂

Ω
φ(|∇h

DGuh +Rhu
∗
D|)dx

+ cϵh
∫︂

FID
h

φ(|h−1[u∗
D − u]n|) + φ(|h−1[u− Πu]n|)ds

≤ ϵ
∫︂

Ω
φ(|∇h

DGuh +Rhu
∗
D|)dx+ cϵ

∫︂
Ω
φ(|∇u|),

using additionally (4.13) in the second inequality and 4.3, (4.34) in the
fourth.

•

|I3| ≤ ϵ
∫︂

Ω
φ(|uh − u|) + φ(|u− Πu|)dx+ cϵ

∫︂
Ω
φ∗(|f |)dx

≤ ϵ
∫︂

Ω
φ(|uh − u|)dx+ c

∫︂
Ω
φ(|h∇u|)dx+ cϵ

∫︂
Ω
φ∗(|f |)dx

≤ ϵ
∫︂

Ω
φ(|uh − u|)dx+ c

∫︂
Ω
φ(|∇u|)dx+ cϵ

∫︂
Ω
φ∗(|f |)dx,

using (4.27) in the second inequality.
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•

|I4| ≤ cϵ

∫︂
FN
h

φ∗(|gN |)dx+ ϵ
∫︂

FN
h

φ(|uh − Πu|)dx

≤ cϵ

∫︂
FN
h

φ∗(|gN |)dx+ ϵ
∫︂

FN
h

φ(|uh − u|) + φ(|u− Πu|)dx

≤ cϵ

∫︂
FN
h

φ∗(|gN |)dx+ ϵ(Mφ,h(uh − u) +Mφ,h(u− Πu))

≤ cϵ

∫︂
FN
h

φ∗(|gN |)dx+ ϵMφ,h(uh − u) + ϵ
∫︂

Ω
φ(|∇u|)dx,

using lemma 4.14 in the third inequality and (4.36) in the fourth.

• It is possible to combine the estimate of I5 and I6 using that [u∗
D]n = 0.

|I5 + I6| = σh|
∫︂

FID
h

A(h−1[uh − u∗
D]n)h−1[u∗

D − Πu]nds|

≤ ϵαh
∫︂

FID
h

φ(|h−1[uh − u∗
D]|)ds+ cϵαh

∫︂
FID
h

φ(|u∗
D − Πu|)ds

≤ ϵαh
∫︂

FID
h

φ(|h−1[uh − u∗
D]|)ds

+ cϵαh
∫︂

FID
h

φ(|u∗
D − u|)ds+ cϵαh

∫︂
FID
h

φ(|u− Πu|)ds

≤ ϵαh
∫︂

FID
h

φ(|h−1[uh − u∗
D]|)ds+ cϵα

∫︂
Ω
φ(|∇u|)dx,

using (2.48) and Young inequality in the first estimate, (2.11) in the second
and (4.34) in the last inequality similarly to I2 estimate.

By choosing ϵ sufficiently small we can put all the terms multiplied by ϵ to
the left hand side and obtain the final result

Theorem 6.2. Let uh ∈ V k
h , lh ∈ Xk

h ,ah ∈ Xk
h be the DG solution of (6.9) and

u∗
D = u or u∗

D = ΠSZu. Then for σ > 0 we have the a priori estimate

∫︂
Ω
φ(|lh|) + φ(|∇h

DGuh +Rhu
∗
D|)dx

+ σh
∫︂

FID
h

φ(|h−1[uh − u∗
D]n|)ds+

∫︂
Ω
φ∗(ah)ds

+min{1, σ}(
∫︂

Ω
φ(|∇huh|)dx+Mφ,h(uh − u) +

∫︂
Ω
φ(|uh − u|)dx)

≤ c(
∫︂

Ω
φ∗(|f |)dx+

∫︂
FN
h

φ∗(|gN |)dx+
∫︂

Ω
φ(|∇u|)dx).
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7. A priori error estimates
In this chapter we derive the a priori error estimates for our LDG method, inspired
by the works [9] and [10].

7.1 Time independent problem
Let us start for simplicity with the stationary case, following similar steps as in
[10]. First we want to derive an equation similar to the LDG formulation for the
exact solution. We begin with the original equations

l = ∇u,
a = A(l),

−∇ · a = f.

(7.1)

Using the standard procedure we multiply the third equation by zh,∈ V k
h ,

integrate over Ω and use integration by parts combined with (5.6) and the fact
that [a] = 0.

∫︂
Ω

−∇ · azhdx =
∫︂

Ω
fzhdx,∫︂

Ω
a · ∇hzhdx−

∫︂
FID
h

{a} · [zh]nds−
∫︂

FN
h

a · zhnds =
∫︂

Ω
fzhdx,∫︂

Ω
a · ∇hzhdx−

∫︂
FID
h

{a} · [zh]nds−
∫︂

FN
h

gNzhds =
∫︂

Ω
fzhdx.

It is beneficial to rewrite this in terms of ∇h
DG. Using the properties of the

projection Π, we have

∫︂
Ω

a · ∇hzhdx =
∫︂

Ω
Πa · ∇hzhdx

=
∫︂

Ω
Πa · ∇h

DGzhdx+
∫︂

Ω
Πa ·Rhzhdx

=
∫︂

Ω
Πa · ∇h

DGzhdx+
∫︂

FID
h

{Πa} · [zh]nds.

Using this together with the first and second equation multiplied by appropri-
ate test functions we arrive at the following formulation of the original problem,
satisfied by the exact solution (u, l,a), for all xh,yh ∈ Xk

h , zh ∈ V k
h .

∫︂
Ω

l · xhdx =
∫︂

Ω
∇u · xhdx,∫︂

Ω
a · yhdx =

∫︂
Ω
A(l) · yhdx, (7.2)∫︂

Ω
a · ∇h

DGzhdx =
∫︂

Ω
fzhdx+

∫︂
FN
h

gNzhds+
∫︂

FID
h

({a} − {Πa}) · [zh]nds.

We can use this together with the primal formulation (6.9), which reads
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∫︂
Ω
A(∇h

DGuh + Rhu
∗
D) · ∇h

DGzhdx =
∫︂

Ω
fzhdx+

∫︂
FN
h

gNzhds

− σ
∫︂

FI
h

A(h−1[uh]n) · [zh]nds− σ
∫︂

FD
h

A(h−1(uh − u∗
D)n) · zhnds. (7.3)

In order to obtain the error equation, we subtract the third equation of (7.2)
from the primal formulation.

∫︂
Ω
(A(∇h

DGuh +Rhu
∗
D) − A(∇u)) · ∇h

DGzhdx+ σ
∫︂

FI
h

A(h−1[uh]n) · [zh]nds

+ σ
∫︂

FD
h

A(h−1(uh − u∗
D)n) · zhnds

=
∫︂

FID
h

({Πa} − {a}) · [zh]nds.

For wh ∈ V k
h we choose the test functions as zh = uh − wh. We can rewrite

∇h
DGzh as follows

∇h
DGzh = (∇h

DGuh +Rhu
∗
D − ∇u) − (∇h

DGwh +Rhu
∗
D − ∇u). (7.4)

With this we can rewrite the error equation as

∫︂
Ω
(A(∇h

DGuh +Rhu
∗
D) − A(∇u)) · (∇h

DGuh +Rhu
∗
D − ∇u)dx

+ σ
∫︂

FI
h

A(h−1[uh]n) · [uh]nds+ σ
∫︂

FD
h

A(h−1(uh − u∗
D)n) · (uh − u∗

D)nds

=
∫︂

Ω
(A(∇h

DGuh +Rhu
∗
D) − A(∇u)) · (∇h

DGwh +Rhu
∗
D − ∇u)dx

+ σ
∫︂

FI
h

A(h−1[uh]n) · [wh]nds+ σ
∫︂

FD
h

A(h−1(uh − u∗
D)n) · (wh − u∗

D)nds

−
∫︂

FI
h

({Πa} − {a}) · [wh]nds−
∫︂

FD
h

({Πa} − {a}) · [wh − u∗
D]nds

+
∫︂

FI
h

({Πa} − {a}) · [uh]nd+
∫︂

FD
h

({Πa} − {a}) · [uh − u∗
D]nds,

using that [u∗
h] = 0 on ΓD. To estimate the left hand side we use the equivalence

results for the N-function φ (2.45) and (2.47)

∫︂
Ω
(A(∇h

DGuh +Rhu
∗
D) − A(∇u)) · (∇h

DGuh +Rhu
∗
D − ∇u)dx

∼
⃦⃦⃦
F (∇h

DGuh +Rhu
∗
D) − F (∇u)

⃦⃦⃦2

L2(Ω)
,∫︂

FI
h

A(h−1[uh]n) · [uh]nds ∼ h
∫︂

FI
h

φ(|h−1[uh]n|)ds,

σ
∫︂

FD
h

A(h−1(uh − u∗
D)n) · (uh − u∗

D)nds ∼ σh
∫︂

FI
h

φ(|h−1(uh − u∗
D)n|)ds.
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Let us now estimate the right hand side. In order to deal with the first term
we need the Young inequality, i.e. lemma 2.1, for N-functions φ|∇u| and (2.44),
(2.45), (2.11) and (2.45) again.

∫︂
Ω
(A(∇h

DGuh +Rhu
∗
D) − A(∇u)) · (∇h

DGwh +Rhu
∗
D − ∇u)dx

≤ ϵ
∫︂

Ω
φ∗

|∇u|(|A(∇h
DG +Rhu

∗
D) − A(∇u)|)dx

+ cϵ

∫︂
Ω
φ|∇u|(|∇h

DG +Rhu
∗
D − ∇u|)dx

≤ cϵ
∫︂

Ω
φ∗

|∇u|(φ′
|∇u|(|∇h

DG +Rhu
∗
D − ∇u|))dx

+ cϵ
⃦⃦⃦
F (∇h

DGwh +Rhu
∗
D) − F (∇u)

⃦⃦⃦2

L2(Ω)

≤ cϵ
∫︂

Ω
φ|∇u|(|∇h

DG +Rhu
∗
D − ∇u|)dx+ cϵ

⃦⃦⃦
F (∇h

DGwh +Rhu
∗
D) − F (∇u)

⃦⃦⃦2

L2(Ω)

≤ cϵ
⃦⃦⃦
F (∇h

DGuh +Rhu
∗
D) − F (∇u)

⃦⃦⃦2

L2(Ω)

+ cϵ
⃦⃦⃦
F (∇h

DGwh +Rhu
∗
D) − F (∇u)

⃦⃦⃦2

L2(Ω)
.

Using again Young inequality for φ, (2.48) and (2.11) in the estimate of the
next two terms, we obtain

∫︂
FI
h

A(h−1[uh]n) · [wh]nds+
∫︂

FD
h

A(h−1(uh − u∗
D)n) · (wh − u∗

D)nds

≤ ϵ(h
∫︂

FI
h

φ(|h−1[uh]n|)ds+ h
∫︂

FD
h

φ(|h−1(uh − u∗
D)n|)ds)

+ cϵ(h
∫︂

FI
h

φ(|h−1[wh]n|)ds+ h
∫︂

FD
h

φ(|h−1(wh − u∗
D)n|)ds).

The last four terms are dealt with only using Young inequality for φ, but
taking care, which term on the right hand side gets multiplied by ϵ.

∫︂
FI
h

({Πa} − {a}) · [wh]nds = h
∫︂

FI
h

({Πa} − {a}) · h−1[wh]nds

≤ ϵh
∫︂

FI
h

φ∗(|{Πa} − {a}|)ds+ cϵh
∫︂

FI
h

φ(|h−1[wh]n|)ds∫︂
FI
h

({Πa} − {a}) · (wh − u∗
D)nds

≤ ϵh
∫︂

FI
h

φ∗(|{Πa} − {a}|)ds+ cϵh
∫︂

FI
h

φ(|h−1(wh − u∗
D)n|)ds∫︂

FI
h

({Πa} − {a}) · [uh]nds

≤ cϵh
∫︂

FI
h

φ∗(|{Πa} − {a}|)ds+ ϵh
∫︂

FI
h

φ(|h−1[uh]n|)ds∫︂
FI
h

({Πa} − {a}) · (uh − u∗
D)nds

≤ cϵh
∫︂

FI
h

φ∗(|{Πa} − {a}|)ds+ ϵh
∫︂

FI
h

φ(|h−1(uh − u∗
D)n|)ds.
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Putting everything together and transferring the terms on the right hand side
multiplied by ϵ, for ϵ small enough we arrive at the following theorem.

Theorem 7.1. Let u ∈ W 1,φ(Ω), l ∈ Lφ(Ω), a ∈ W 1,φ∗(Ω) be the solution
of the problem (5.3) and uh, lh,ah the DG solution of (6.9), from V k

h , X
k
h , X

k
h

respectively, then for all wh ∈ V k
h it holds

⃦⃦⃦
F (∇h

DGuh +Rhu
∗
D) − F (∇u)

⃦⃦⃦2

L2(Ω)

+ σh
∫︂

FI
h

φ(|h−1[uh]n|)ds+ σh
∫︂

FD
h

φ(|h−1(uh − u∗
D)n|)ds

≤ c(
⃦⃦⃦
F (∇h

DGwh +Rhu
∗
D) − F (∇u)

⃦⃦⃦2

L2(Ω)

+ σh
∫︂

FI
h

φ(|h−1[wh]n|)ds+ σh
∫︂

FD
h

φ(|h−1(wh − u∗
D)n|)ds

+ ch
∫︂

FID
h

φ∗(|{Πa} − {a}|)ds.

• From the derivation of the primal formulation (5.11) we have the following
equality for the first term on the left hand side

⃦⃦⃦
F (∇h

DGuh +Rhu
∗
D) − F (∇u)

⃦⃦⃦2

L2(Ω)
= ∥F (lh) − F (l)∥2

L2(Ω) . (7.5)

• We are also able to include the estimate of the error between a and ah
expressed in the form ∥F ∗(a) − F ∗(ah)∥2

L2(Ω). From (2.46) and (5.12) we
have

∥F ∗(a) − F ∗(ah)∥2
L2(Ω) ≤ c

∑︂
K∈Th

∫︂
K
φ∗

|a|(|a − ah|)dx

= c
∑︂
K∈Th

∫︂
K
φ∗

|a|(|a − Πa + Πa − ah|)dx ≤

c
∑︂
K∈Th

(
∫︂
K
φ∗

|a|(|a − Πa|)dx+
∫︂
K
φ∗

|a|(|Π(a − A(lh))|)dx) = c
∑︂
K∈Th

(I1 + I2).

In the estimate of I1 we use (2.50)

I1 ≤ c
∫︂
K
φ∗

|⟨a⟩K |(|a−Πa|)dx+c
∫︂
K

|F ∗(a)−F ∗(⟨a⟩K)|2dx = I3 +I4. (7.6)

For I4 we use the fact that a = A(l), lemma 2.17 and finally lemma 4.6

I4 =
∫︂
K

|F ∗(A(l)) − F ∗(⟨A(l)⟩K)|

≤ c
∫︂
K

|F (l) − ⟨F (l)⟩K |2dx ≤ ch2
K

∫︂
K

|∇F (l)|2dx.
(7.7)

We will estimate I3 by I4, using the fact that ΠA(⟨l⟩K) = A(⟨l⟩K), (4.18)
and (2.50)
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I3 ≤ c
∫︂
K
φ∗

|⟨a⟩K |(|a − ⟨a⟩K |)dx+ c
∫︂
K
φ∗

|⟨a⟩K |(|Π(a − ⟨a⟩K)|)dx

≤ c
∫︂
K
φ∗

|⟨a⟩K |(|a − ⟨a⟩K |)dx ≤ c
∫︂
K

|F ∗(a) − F ∗(⟨a⟩K)|2dx = cI4.

In the estimate of I2 we use in order (2.50), (4.18) and (2.45)

I2 ≤ c
∫︂
K
φ∗

⟨|a|⟩K (|Π(a − A(lh))|)dx+ c
∫︂
K

|F ∗(a) − F ∗(⟨a⟩K)|2dx

≤ c
∫︂
K
φ∗

⟨|a|⟩K (|a − A(lh)|)dx+ cI4

≤ c
∫︂
K
φ∗

|a|(|a − A(lh)|)dx+ cI4 + +c
∫︂
K

|F ∗(a) − F ∗(⟨a⟩K)|2dx

≤ c
∫︂
K

|F (l) − F (lh)|2dx+ cI4.

Putting these estimates together, we have

∥F ∗(a) − F ∗(ah)∥2
L2(Ω) ≤ c ∥F (l) − F (lh)∥2

L2(Ω) + ch2 ∥∇F (l)∥2
L2(Ω) . (7.8)

• Now we choose wh = ΠSZu. This immediately reduces the right hand side.
∫︂

FI
h

φ(|h−1[ΠSZu]n|)ds = 0. (7.9)

• Estimate of the term h
∫︁

FID
h
φ∗(|{Πa} − {a}|)ds can be done in a following

way. Using the Young inequality and the fact that ΠA(⟨l⟩K) = A(⟨l⟩K),
for Γ ∈ F ID

h the edge of some element K ∈ Th we have

h
∫︂

Γ
φ∗(|Πa − a|)ds = h

∫︂
Γ
φ∗(|ΠA(l) − ΠA(⟨l⟩K) + A(⟨l⟩K) − A(l)|)ds

≤ ch
∫︂

Γ
φ∗(|Π(A(l) − A(⟨l⟩K)|)ds+ ch

∫︂
Γ
φ∗(|A(l) − A(⟨l⟩K)|)ds =

I1 + I2.

For the first integral we use in order (4.32), (4.18), the fact that for a ≥ 0
it holds φ∗(t) ≤ (φ∗)a(t), since q− 2 ≥ 0, (2.46) togeher with (2.54), lemma
2.17 and finally Poincaré inequality, i.e lemma 4.6 gives us

I1 ≤ c
∫︂
K
φ∗(|Π(A(l) − A(⟨l⟩K))|)dx ≤ c

∫︂
K
φ∗(|A(l) − A(⟨l⟩K)|)dx

≤ c
∫︂
K
φ∗

|A(⟨l⟩K)|(|A(l) − A(⟨l⟩K)|)dx ≤ c ∥F (∇u) − F (⟨∇u⟩K)∥2
L2
K

≤ c ∥F (∇u) − ⟨F (∇u)⟩K∥2
L2
K

≤ ch2 ∥∇F (∇u)∥2
L2
K
.
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And for I2 we again use in order φ∗(t) ≤ (φ∗)a(t), (2.54), lemma 4.3 for
ψ(t) = t2, lemma 2.17 and Poincaré lemma 4.6.

I2 ≤ ch
∫︂

Γ
φ∗

|A(⟨l⟩K)|(|A(l) − A(⟨l⟩K)|)ds ≤ ch ∥F (∇u) − F (⟨∇u⟩K)∥2
L2

Γ

≤ c ∥F (∇u) − F (⟨∇u⟩K)∥2
L2(K) + ch2 ∥∇F (∇u)∥2

L2(K)

≤ ch2 ∥∇F (∇u)∥2
L(K) .

Therefore

h
∫︂

FID
h

φ∗(|{Πa} − {a}|)ds ≤ c
∑︂
K∈Th

h
∫︂
δK∩intΩ′

(|Πa − a|)ds

≤ ch2 ∥∇F (∇u)∥2
L2(Ω) .

(7.10)

In the further estimates, we will need the following lemma, based on [17,
Theorem 5.7].

Lemma 7.1. Let k ≥ 1 and the function F be defined as before, i.e F (∇u) ∈
W 1,2(Ω), then

∥F (∇hΠSZu) − F (∇u)∥2
L2(Ω) ≤ ch2 ∥∇F (∇u)∥2

L2(Ω) . (7.11)

Proof. Let K ∈ Th, Q ∈ Rd and r ∈ P 1(SK) be a polynomial, such that ∇hr = Q.
Then ΠSZ(r) = r and Q = ∇hΠSZr.

−
∫︂
K

|F (∇hu) − F (∇hΠSZu)|2dx

≤ c(−
∫︂
K

|F (∇hu) − F (Q)|2dx+ −
∫︂
K

|F (∇hΠSZu) − F (Q)|2dx) = I1 + I2.
(7.12)

Using (2.45), the verzion of (4.43) local to K and (2.45) again

I2 ≤ c−
∫︂
K
φ|Q|(|∇hΠSZu−Q|)dx = c−

∫︂
K
φ|Q|(|∇hΠSZu− ∇hΠSZr|)dx

= c−
∫︂
K
φ|Q|(|∇h(ΠSZu− ΠSZr)|)dx ≤ c−

∫︂
SK
φ|Q|(|∇h(u− r)|)dx

= c−
∫︂
SK
φ|Q|(|∇h(u−Q)|)dx ≤ c−

∫︂
SK

|F (∇hu) − F (Q)|2dx.

(7.13)

I1 is easily estimated by

I1 ≤ c−
∫︂
SK

|F (∇hu) − F (Q)|2dx. (7.14)

F is strictly monotone and therefore there exists P ∈ Rd, such that F (Q) = P .
Since Q was arbitrary, we have

−
∫︂
K

|F (∇hu) − F (∇hΠSZu)|2dx ≤ c infP∈Rd−
∫︂
SK

|F (∇hu) − F (Q)|2dx. (7.15)
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Since W 1,2 is a Hilbert space, the P reaching the infimum is ⟨F (∇hu)⟩K . This
together with Poincaré lemma 4.6 implies

−
∫︂
K

|F (∇hu) − F (∇hΠSZu)|2dx ≤ ch2
K−

∫︂
K

|∇F (∇u)|2dx. (7.16)

Finally summing trough all K ∈ Th we get the original assertion.

The final estimate can have a slightly different form depending on the choice
of u∗

D, which affects the first and the third term on the right hand side of the
Theorem 7.1.

7.2 The estimate with the choice u∗
D = ΠSZu

• It holds that

∇h
DGΠSZu+Rhu

∗
D = ∇hΠSZu+Rh(u∗

D − ΠSZu) = ∇hΠSZu. (7.17)

Therefore with lemma (7.1), it holds

⃦⃦⃦
F (∇h

DGwh +Rhu
∗
D) − F (∇u)

⃦⃦⃦2

L2(Ω)

= ∥F (∇hΠSZuh) − F (∇u)∥2
L2(Ω) ≤ ch2 ∥∇F (∇u)∥2

L2(Ω) .

• Thanks to the choice of u∗
D we also have

∫︂
FD
h

φ(|h−1(wh − u∗
D)n|)ds =

∫︂
FD
h

φ(|h−1(ΠSZu− ΠSZu)n|)ds = 0. (7.18)

Putting all the estimates together, we have the following theorem.

Theorem 7.2. Let u ∈ W 1,φ(Ω), l ∈ Lφ(Ω), a ∈ W 1,φ∗(Ω) be the solution of the
problem (5.3) and uh, lh,ah the DG solution of (6.9) from V k

h , X
k
h , X

k
h respectively.

Then for σ > 0, u∗
D = ΠSZu and F (∇u) ∈ W 1,2(Ω) it holds

∥F (l) − F (lh)∥2
L2(Ω) + ∥F ∗(a) − F ∗(ah)∥2

L2(Ω)

+ σh
∫︂

FI
h

φ(|h−1[uh]n|)ds+ σh
∫︂

FD
h

φ(|h−1(uh − u∗
D)n|)ds

≤ ch2 ∥∇F (∇u)∥2
L2(Ω) .
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7.3 The estimate with the choice u∗
D = u

• Since

∇h
DGΠSZu+Rhu = ∇hΠSZu+Rh(u− ΠSZu), (7.19)

we can estimate the first term on the right hand of Theorem 7.1 in the
following way. First we use (2.45) and triangle inequality

⃦⃦⃦
F (∇h

DGΠSZu+Rhu) − F (∇u)
⃦⃦⃦2

L2(Ω)

≤ c
∫︂

Ω
φ|∇u|(|∇hΠSZu+Rh(u− ΠSZu) − ∇u|)dx

≤ c
∫︂

Ω
φ|∇u|(|∇hΠSZu− ∇u|)dx+ c

∫︂
Ω
φ|∇u|(|Rh(u− ΠSZu)|)dx = I1 + I2.

For I1 we use (2.45) again, together with lemma (7.1)

I1 ≤ ∥F (∇hΠSZu) − F (∇u)∥2
L2(Ω) ≤ ch2 ∥∇F (∇u)∥2

L2(Ω) . (7.20)

Concerning I2 we use in order the definition of Rh, (2.49), (4.12), lemma
2.17 and finally Poincaré lemma 4.6

I2 =
∑︂

Γ∈FD
h

∫︂
SΓ
φ|∇u|(|RΓ

h(u− ΠSZu)|)dx

≤ c
∑︂

Γ∈FD
h

∫︂
SΓ
φ|⟨∇u⟩SΓ |(|RΓ

h(u− ΠSZu)|) + |F (∇u) − F (⟨∇u⟩SΓ)|2dx

≤ c
∑︂

Γ∈FD
h

hΓ

∫︂
Γ
φ|⟨∇u⟩SΓ |(|h−1

Γ (u− ΠSZu)|n)ds

+
∫︂
SΓ

|F (∇u) − F (⟨∇u⟩SΓ)|2dx

≤ c
∑︂

Γ∈FD
h

hΓ

∫︂
Γ
φ|⟨∇u⟩SΓ |(|h−1

Γ (u− ΠSZu)|n)ds+ ch2 ∥∇F (∇u)∥2
L2(Ω) .

Next we use in order the local version of (4.43) on K for g = h−1(u−ΠSZu),
(2.49) and (2.45) together with Poincaré lemma 4.6

∑︂
Γ∈FD

h

hΓ

∫︂
Γ
φ|⟨∇u⟩SΓ |(|h−1

Γ (u− ΠSZu)|)ds

≤
∑︂

Γ∈FD
h

c
∫︂
SΓ
φ|⟨∇u⟩SΓ |(|∇u− ∇ΠSZu|)dx

≤ c
∑︂

Γ∈FD
h

(
∫︂
SΓ
φ|∇u|(|∇u− ∇ΠSZu|)dx+ c

∫︂
SΓ

|F (∇u) − F (⟨∇u⟩SΓ)|2dx)

≤ c
∑︂

Γ∈FD
h

(
∫︂
SΓ

|F (∇u) − F (∇ΠSZu)|2dx+ ch2
Γ

∫︂
SΓ

|∇F (∇u)|2dx)

≤ ch2 ∥∇F (∇u)∥2
L2(Ω) .
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• For this choice of u∗
D the term h

∫︁
FD
h
φ(|h−1(u∗

D−ΠSZu)|)dx doest not vanish.
In order to estimate it, we will need the following lemma.

Lemma 7.2. Under the assumptions of Theorem 7.1 it holds that

φ(|∇2u|) ≤ c ∥∇F (∇u)∥2
L2(Ω) + c

∫︂
Ω
φ(|∇u|)dx

∫︂
Ω
. (7.21)

Proof. First we compute the derivative of F (∇u)

∂Fj(∇u)
∂lP

= p− 2
2 (1 + |∇u|)

p−4
2
∂u

∂xj

∂|∇u|
∂xl

+ (1 + |∇u|)
p−2

2
∂2u

∂xj∂xl
. (7.22)

Therefore

|∇F (∇u)|2 = |A|2 + 2A ·B + |B|2, (7.23)
where

|B|2 = (1 + |∇u|)p−2|∇2u|2

2A ·B = (p− 2)(1 + |∇u|)p−3|∇u||∇2u|2

|A|2 = (p− 2
2 )2(1 + |∇u|)p−4|∇u|2|∇2u|2 ≤ (p− 2

2 )2|B|2.
(7.24)

Putting this together , we have the estimate

|∇F (∇u)|2 ≥ |B|2 (7.25)

now for q ∈ [1, 2], a ≥ 0 and b ≥ 1 we have

aq = (a2bq−2)
q
2 (b

(2−q)q)
2 ) ≤ a2bq−2 + bq, (7.26)

where we used basic Young inequality. Using this for a = |∇2u| and b =
(1 + |∇u|) we have

|∇2u|p ≤ (1 + |∇u|)p−2|∇2u|2 + (1 + |∇u|)p. (7.27)

Finally using that left hand side is ≥ cφ(|∇2u|) and right hand side is
≤ c(|B|2 +

∫︁
Ω φ(|∇u|)dx), we have the original assertion.

Now we can estimate using (4.44), the fact that φ(ht) ≤ chpφ(t) and lemma
(7.2).

h
∫︂

FD
h

φ(|h−1(u− ΠSZu)|)dx ≤ c
∫︂

Ω
φ(|h∇2u|)dx

≤ chp
∫︂

Ω
φ(|∇2u|)dx ≤ chp(∥∇F (∇u)∥2

L2(Ω) +
∫︂

Ω
φ(|∇u|)dx).

Putting all the estimates together we arrive at

57



Theorem 7.3. Let u ∈ W 1,φ(Ω), l ∈ Lφ(Ω), a ∈ W 1,φ∗(Ω) be the solution of
the problem (5.3) and uh, lh,ah the DG solution of (6.9) V k

h , X
k
h , X

k
h respectively.

Then for σ > 0, u∗
D = u and F (∇u) ∈ W 1,2(Ω)

∥F (l) − F (lh)∥2
L2(Ω) + ∥F ∗(a) − F ∗(ah)∥2

L2(Ω)

+ σh
∫︂

FI
h

φ(|h−1[uh]n|)ds+ σh
∫︂

FD
h

φ(|h−1(uh − u∗
D)n|)ds

≤ c(hp ∥∇F (∇u)∥2
L2(Ω) +

∫︂
Ω
φ(|∇u|)dx).

It is important to note that the constants in the estimates of the Theorem
7.2 and the Theorem 7.3 depend only on the characteristics of the domain Ω, the
mesh TH and the function A.

7.4 Time dependent problem
Definition 7.1. For u satisfying the conditions of the Theorem 7.1 we define the
following F − norm as

∥u− uh∥2
F,DG := ∥F (l) − F (lh)∥2

L2(Ω) + ∥F ∗(a) − F ∗(ah)∥2
L2(Ω)

+σh
∫︂

FI
h

φ(|h−1[uh]n|)ds+ σh
∫︂

FD
h

φ(|h−1(uh − u∗
D)n|)ds.

(7.28)

In case of time dependent equation (5.3), we can use the results from the time
independent problem for fixed t ∈ (0, T ) in the error estimates. This will give us
the analogy of the Theorem 7.2 or 7.3 for fixed t ∈ (0, T ), with only difference
being that the terms with the time derivatives uht and ut will be present. Using
this in combination with the procedure for getting the time dependent estimates
inspired by the result from [9], where it is used for a different problem, we can
arrive at the final error estimates.

Following the Theorem 7.2, we have∫︂
Ω
(uht − ut)zhdx+ ∥u− uh∥2

F,DG ≤ ch2 ∥∇F (∇u)∥2
L2(Ω) , (7.29)

where zh = uh − ΠSZu. We substract
∫︁

Ω ∂tΠSZu from both sides.

∫︂
Ω
zhtzhdx+ ∥u− uh∥2

F,DG ≤
∫︂

Ω
∂t(u− ΠSZu)zhdx+ ch2 ∥∇F (∇u)∥2

L2(Ω) . (7.30)

Applying Cauchy-Schwarz inequality on the first term on the right hand side

1
2
∂

∂t
∥zh∥2

L2(Ω) + ∥u− uh∥2
F,DG

≤ 1
2 ∥∂t(u− ΠSZu)∥2

L2(Ω) + 1
2 ∥zh∥2

L2(Ω) + ch2 ∥∇F (∇u)∥2
L2(Ω) .

(7.31)
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Integrating from 0 to t ∈ (0, T ) we have

∥zh(t)∥2
L2(Ω) + 2

∫︂ t

0
∥u(τ) − uh(τ)∥2

F,DG dτ

≤
∫︂ t

0
∥∂t(u(τ) − ΠSZu(τ))∥2

L2(Ω) + ch2 ∥∇F (∇u(τ))∥2
L2(Ω) dτ+∫︂ t

0
∥zh(τ)∥2

L2(Ω) dτ,

(7.32)

since uh(0) = ΠSZu(0). Applying Gronwall inequality, i,e lemma 6.1, we get

∥uh(t) − ΠSZu(t)∥2
L2(Ω) +

∫︂ t

0
∥u(τ) − uh(τ)∥2

F,DG dτ

≤ cet(
∫︂ t

0
∥∂t(u(τ) − ΠSZu(τ))∥2

L2(Ω) + h2 ∥∇F (∇u(τ))∥2
L2(Ω) dτ).

(7.33)

Now we use the triangle inequality for

∥uh(t) − u(t)∥2
L2(Ω) ≤ ∥uh(t) − ΠSZu(t)∥2

L2(Ω) + ∥u(t) − ΠSZu(t)∥2
L2(Ω) . (7.34)

Putting the term independent of uh to the right hand side we arrive at

∥uh(t) − u(t)∥2
L2(Ω) +

∫︂ t

0
∥u(τ) − uh(τ)∥2

F,DG dτ

≤ cet(
∫︂ t

0
∥∂t(u(τ) − ΠSZu(τ))∥2

L2(Ω) + h2 ∥∇F (∇u(τ))∥2
L2(Ω) dτ)

+ ∥u(t) − ΠSZu(t)∥2
L2(Ω) .

(7.35)

Due to the definition of ΠSZ it holds that ∂tΠSZu = ΠSZ∂tu. Further the
proof of lemma 7.1 holds up for F2 being defined the same way as F , with p = 2
and φ2 defined analogically, meaning we get the estimate in L2 norm. Therefore

∥∂t(u(τ) − ΠSZu(τ))∥2
L2(Ω) ≤ ch2

⃦⃦⃦
∇2ut(τ)

⃦⃦⃦2

L2(Ω)
,

∥u(t) − ΠSZu(t)∥2
L2(Ω) ≤ ch2

⃦⃦⃦
∇2u(t)

⃦⃦⃦2

L2(Ω)
.

(7.36)

Combining all this we finally arrive at the following result.

Theorem 7.4. Let u, uh be the solutions to (5.1) and (5.3) respectively that sat-
isfy the assumptions of Theorem 7.1 and u∗

D = ΠSZu. If further u(t) ∈ W 2,2(Ω),
for all t ∈ (0, T ), ut ∈ L2(0, T,W 2,2(Ω)) and F (∇(u)) ∈ L2(0, T,W 1,2(Ω)), then

∥uh(t) − u(t)∥2
L2(Ω) +

∫︂ t

0
∥u(τ) − uh(τ)∥2

F,DG dτ

≤ ch2et(
⃦⃦⃦
∇2u(t)

⃦⃦⃦2

L2(Ω)
+

⃦⃦⃦
∇2ut(τ)

⃦⃦⃦2

L2(0,T,L2(Ω))
+ ∥∇F (∇u(τ))∥2

L2(0,T,L2(Ω))),
(7.37)

for all t ∈ (0, T ).
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Via same steps we can arrive at the analogy of the Theorem 7.4, which follows
from the Theorem 7.3.

Theorem 7.5. Let u, uh be the solutions to (5.1) and (5.3) respectively that
satisfy the assumptions of the Theorem 7.1 and u∗

D = u. If further u(t) ∈ W 2,2(Ω),
for all t ∈ (0, T ), ut ∈ L2(0, T,W 2,2(Ω)), F (∇(u)) ∈ L2(0, T,W 1,2(Ω)) and u ∈
L1(0, T,W 1,φ(Ω)), then

∥uh(t) − u(t)∥2
L2(Ω) +

∫︂ t

0
∥u(τ) − uh(τ)∥2

F,DG dτ

≤ chpet(
⃦⃦⃦
∇2u(t)

⃦⃦⃦2

L2(Ω)
+

⃦⃦⃦
∇2ut(τ)

⃦⃦⃦2

L2(0,T,L2(Ω))
+ ∥∇F (∇u(τ))∥2

L2(0,T,L2(Ω)))

+cet
∫︂ t

0

∫︂
Ω
φ(|∇u(τ)|)dxdτ,

(7.38)
for all t ∈ (0, T ).
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8. Numerical Examples
In the Numerical Examples we use the code package ADGFEM developed in
Charles University Prague for the numerical solution of nonlinear convection-
diffusion equations. Specifically, we use the part of the package modified for the
solution of Forchheimer equations. The implemented method uses space-time
discontinuous Galerkin method with the adaptive step choice, in first degree time
discretization. The solver for the system of nonlinear equations is Newton-like,
using the linearization, instead of calculating the Jacobi matrix. The linear sys-
tems of equations are solved using GMRES with the block ILU(0) preconditioner.
The whole method is described in much broader detail in [21].

Due to the complexity of the implementation, we are forced to use IPDG
method for the numerical experiments instead of local DG method. Discontinuous
Galerkin formulation of both methods end up with the very similar form, differing
only in the minor technical terms and therefore both methods have the same
expected asymptotic convergence rate.

The program works with the IPDG formulation of the original problem

∫︂
Ω

∂uh
∂t

vh +
∑︂
K∈Th

∫︂
K
K(|∇uh|)∇uh · ∇vhdx−

∑︂
Γ∈F ID

h

∫︂
Γ
{K(|∇uh|)∇uh} · n[vh]ds

−σ
∑︂

Γ∈F I
h

∫︂
Γ
{K(h−1

Γ |[uh]|)∇vh} · n[uh]ds

−σ
∑︂

Γ∈FD
h

∫︂
Γ
{K(h−1

Γ |[uh − uD]|)∇vh} · n(uh − uD)ds

+σ
∑︂

Γ∈F I
h

∫︂
Γ
h−1

Γ K(h−1
Γ |[uh]|)[uh][vh]ds

+σ
∑︂

Γ∈FD
h

∫︂
Γ
h−1

Γ K(h−1
Γ |uh − uD|)(uh − uD)vhds

=
∫︂

Ω
fvhdx+

∑︂
Γ∈FN

h

∫︂
Γ
gNvhds.

(8.1)
In the experiments we use one of the simpler versions of the Frochheimer

models

(a0 + a1|v|)v = −∇p, (8.2)
where a0 = µ

k
and a1 = 0.55ρ√

k
. Taking the norm of both sides we have

(a0 + a1|v|)|v| = |∇p|. (8.3)
If we want to get the equation for v, we proceed as follows

a1|v|2 + a0|v| − |∇p| = 0.
This quadratic equation has a positive root
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|v| = 1
2a1

(−a0 +
√︂
a2

0 + 4a1|∇p|).

Substituting this back to 8.2 we have

v = ∇p
a0 + a1

2a1
(−a0 +

√︂
a2

0 + 4a1|∇p|)
= − 2∇p

a0 +
√︂
a2

0 + 4a1|∇p|
. (8.4)

We can use the relation 1.15 from chapter 1 to get the form of K

K(|∇p|) = 2
a0 +

√︂
a2

0 + 4a1|∇p|
, (8.5)

that can be substituted into the final equation based on (1.21)

∂p

∂t
− κ∇ · (K(|∇p|)∇p) = 0. (8.6)

Note that here we did not use the dimensionless variant of the equation and
therefore κ is not eliminated.

The values of the physical parameters of the fluid are

k = 10−12m−2,

κ = 5 · 10−10N−1m2,

µ = 1.310−3Nsm−2,
ρ = 103kgm−3.

The first example is computed on the simple square domain (0, 1) × (0, 1) and
time scale t ∈ (0, 1), with parameter σ = 1. The right hand side f = 0, boundary
and initial conditions are chosen in such a way that there exists a nontrivial exact
solution

u = e−2tx1x2(1 − x1)(1 − x2).
The calculations are done for the polynomial degree of test functions 1, 2 and

3. The numerical error is computed in the norms ||·||L2(Ω) and ||·||H1(Ω). Assuming
the numerical error has the form

||eh|| = ChEOC , (8.7)
where EOC is the experimental order of convergence. Since we have the exact
solution we know eh. Using these two facts we can determine the EOC from the
computations on two subsequently refined meshes. Following figures show the
experimental error ranges, with the values of h on the horizontal axis and the
values of the computed error on the vertical axis.

EOC = log(||eh1||/||eh2||)
log(h1/h2)

. (8.8)
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Figure 8.1: Error estimates in H1 norm, Example 1
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Figure 8.2: Error estimates in L2 norm, Example 1

We can see that the the method behaves as per the theoretical results. In
case of higher degree of polynomial approximation, the numerical results are
even better suggesting that the theoretical results are not generally optimal.

The second example shows the solution of the equation 8.6 on a little more
complicated domain Ω = (−1, 1) × (−1, 1) ∪ (−0.3, 0) × (1, 1.1) that consists of
two subdomains Ω1 and Ω2. Ω2 consists of (−1,−0.1) × (−0.25, 0.25) ∪ (0.1, 1) ×
(−0.25, 0.25) and Ω1 consists of the rest of the domain. This represents the
seepage through a hole in the subsurface of the different permeability, with the
two subdomains being easily visible in the Figures with the solution. Two different
permeabilities are prescribed for Ω1 and Ω2.

k1 = 10−12m−2,

k2 = 10−15m−2.
.

Initial conditions are set to p = 0.1Pa in (−1, 1) × (−1, 1) and p = 1000Pa
in the source (−0.3, 0) × (1, 1.1). Analogously, there is a Dirichlet boundary
condition p = 1000Pa prescribed on the part of the boundary of the source,
meaning part of the boundary, where x2 > 1 and Neumann boundary condition
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∇p · n = 0 on the rest of the boundary. The computations is carried over the
time interval (0, T ), with T = 10s.

The following results are shown for the polynomial approximation of degree
1 and values of time in order t = 1.5 , 3 , 5 , 7.5 and 10s

234.18

312.24

390.3

468.36

1.926e+02

5.049e+02

solution

Figure 8.3: Seepage through the hole in the subsurface, Forchheimer equation,
result at 1.5s
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Figure 8.4: Seepage through the hole in the subsurface, Forchheimer equation,
result at 3s
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Figure 8.5: Seepage through the hole in the subsurface, Forchheimer equation,
result at 5s
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Figure 8.6: Seepage through the hole in the subsurface, Forchheimer equation,
result at 7.5s
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Figure 8.7: Seepage through the hole in the subsurface, Forchheimer equation,
result at 10s
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The figures show that the flow behaves as expected on a relatively complicated
domain. The flow behaves similarly as in the case a1 = 0, which corresponds to
standard Darcy’s law. For the sake of comparison we show the results for the
linear case in the same time intervals.
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Figure 8.8: Seepage through the hole in the subsurface, Darcy equation, result at
1.5s
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Figure 8.9: Seepage through the hole in the subsurface, Darcy equation, result at
3s
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Figure 8.10: Seepage through the hole in the subsurface, Darcy equation, result
at 5s
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Figure 8.11: Seepage through the hole in the subsurface, Darcy equation, result
at 7.5s
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Figure 8.12: Seepage through the hole in the subsurface, Darcy equation, result
at 10s
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Large difference probably cannot be seen due to the fact that the nonlinear
term contributes to the equation on the scale of 1010 as opposed to the linear
term, which contributes on the scale of 1012. If the type of the model was chosen,
in which both contributions are of the same order of magnitude and the velocity
of the flow was higher, an improvement in the nonlinear solution is expected.
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Conclusion
The first goal of the thesis was to study the nonlinear flows in the porous media
and suggest the fitting numerical method for the given problem. The way we
derived the partial differential equation studied in the rest of the thesis is not
unique and therefore the analysis ends up having a broader use in the field. The
final equations are also very similar to the p-Laplace problem with p ∈ (1, 2),
which only differs in replacing the nonlinear function K bounded from both sides
by (1 + |∇u|)p−2, with the exact formula (µ + |∇u|)p−2. More precisely this is
the formula for a perturbed p-laplace problem, with the parameter µ > 0, which
does not make the analysis much different as opposed to the case, where µ = 1.

The case, where p ∈ (1, 2) is much more complicated, than the one with p ≥ 2
and the final results can be easily extended to this case as well. Considering
all these generalizations, the results have a more general application, such as in
aerodynamics, plasticity and glaciology.

In the numerical analysis of the equations, first the interior penalty discon-
tinuous Galerkin method was considered. For IPDG method, it is possible to
derive the general stability estimate, but derivation of any kind of a priori error
estimate has proven difficult. In the end we chose the local DG formulation,
which caused some complications in the stability estimates, but we were able to
derive the a priori error estimates of the method. The derived local DG formu-
lation is written in (5.8), primal formulation is in (5.13) and the main stability
results are summed up in the Theorem 6.1 and the Theorem 6.2. In the end,
we achieved the linear rate of convergence of the error, estimated in the norm
|| · ||F,DG, which also provides an estimate for the jumps of the numerical solution
on the edges of the triangulation and even the estimate for the difference between
the terms K(|∇u|)∇u and Π(K(|∇h

DGuh + Rhu
∗
D|)(∇h

DGuh + Rhu
∗
D)). The main

error estimate results are summed up in Theorems 7.2 and 7.3, for the stationary
case and Theorems 7.4 and 7.5, for the time dependent case. The proven rate
of convergence is optimal for linear ansatz functions. We were not able to get
better estimate for approximation functions of higher polynomial degree, due to
the complex nature of the problem and the fact that the error does not depend
solely on the approximation error between the exact solution u and the projection
ΠSZu.

The use of the local DG method also required us to implement the theory of
Sobolev-Orlicz spaces and N-functions, which had to be introduced in the chapter
2, and some further results concerning the generalized local gradient, the local
L2 projection and Scott-Zhang projection and their interactions with N-functions
in chapter 3. In chapter 8 we have shown numerical experiments for one of the
simpler Forchheimer’s models, verifying the derived results and suggesting they
are not optimal for higher degrees of polynomial approximation.

Both IPDG and local DG methods are very similar, only differing in certain
technical terms that do not prove to be significant in the numerical experiments
and therefore are expected to have similar properties and convergence rates.
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