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Abstract: Flow cytometry is a method for measuring chemical characteristics of

single cells in a solution, with applications in biological and clinical research. Re-

cent advances in the technology of flow cytometers make it exceedingly easy to

produce larger datasets that describe more interesting phenomena, which creates

new challenges for data processing and analysis software. This thesis describes

and implements a proof-of-concept software that simplifies the data processing

by implementing an interactive analysis pipeline editor designed to efficiently

handle huge datasets. The functionality of the software is demonstrated by im-

plementing a recent data analysis algorithm, and by comparing the resource ef-

ficiency to a typical R analysis tool. Future use of the software by biologists and

medics is facilitated by providing a simple interface for including new algorithms,

thus arbitrarily extending the functionality.
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Introduction

Cytometry is a general term, used in biological research, standing for many dif-

ferent methods that measure the properties of single cells. Branches of cytome-

try are differentiated by the types of devices used for such measurements (flow-

cytometry [25], mass cytometry [31], imaging cytometry [9], or single-cell RNA

sequencing [14]). Flow-cytometry has a wide range of applications in many bio-

logical and medical fields, such as diagnosing and monitoring of leukemia, cross-

matching organs for transplantation, or development of vaccines.

Data obtained from a flow or mass cytometer contain an entry for each cell,

each with several measured numerical parameters of the cell. The parameters

usually correspond to physical or chemical properties of the cell (size, trans-

parency, presence of chemicals on the surface). Technically, the parameters can

be interpreted as dimensions, and the single cell measurements can be inter-

preted as points in a multidimensional feature space.

The most common method of processing data is to manually group cells

into clusters — discrete populations based on similar properties. This method is

called gating; it is based on sequential visual inspection and marking of the cells

in simple 2-dimensional projections of the feature space. The whole process is

extremely time-consuming, especially if there are many parameters (i.e. conse-

quently, many possible projections to use for viewing and categorizing the cells),

or if the software that provides the gating interface is not sufficiently interactive.

The recent development in flow-cytometry methods and technologies brings

increasing amount of data. Software problems associated with the analysis of

large datasets include the following challenges:

• Larger datasets are often downsampled to (indirectly) improve software

performance, which discards many fine details in the data.

• Current software is usually able to process only lower millions of cells that

fit into the main memory of the computer.

• Manual analysis of higher-dimensional datasets (40-dimensional datasets

are common) is laborous because of the quadratic number of 2D projections
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to examine during the gating. Often, not all combinations of parameters

are analyzed and some clusters may be overlooked.

• There are many automated algorithms (e.g. unsupervised clustering) that

facilitate the analysis, but their use from various programming or scripting

environments (Python, R) is hardly suitable for biological or medical user

audience.

The thesis addresses these problems by providing software with:

1. a highly interactive and fast responsive graphical user interface,

2. efficient visualizations of the two-dimensional plots that can be extended

to any visualization that may work on current GPUs,

3. ability to process sufficiently large datasets without downsampling pro-

vided by effient memory management,

4. simple possibility for expansion by including new algorithms, using a well-

defined programming interface for ‘Tools’

The resulting software offers a workflow for flow-cytometry data analysis.

The aim of the thesis is not to provide a product applicable for biology, but only

a proof-of-concept that demonstrates that the proposed principles work as in-

tended, and can be easily extended for biological applications. The result there-

fore provides a simple GUI that allows the user to manipulate the cytometry data,

and construct the FlowSOM algorithm [33] that is currently used for clustering

many realistic datasets. The visualization is provided by the colored scatterplots

usual in cytometry.

The most significant improvement is the ability to process large data: The

software can handle many gigabytes of the data at once, thanks to the memory

management facilities of current operating systems. That allow the users to ob-

tain a complete picture of untruncated datasets. All computation in the program

is done asynchronously, which allows the user to edit the workflow without wait-

ing for the computations to finish. Finally, the possibility to include custom tools

using the simple programming interface provides sufficient expansion space to

support future applications in many areas of cytometry.

Layout of the thesis The first chapter of the thesis gives an overview of what

cytometry is, how the datasets are obtained, and what algorithms are currently

used for processing flow-cytometry data. The second chapter explains the design

and implementation of the software. The last chapter demostrates the results

of the software implementation, and its functionality by processing an example

dataset.
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Chapter 1

Background

In this chapter, we provide an overview of the origin of the cytometry data. We

describe what cytometry is, how the samples are measured and analyzed, and

what are the usual problems with their analysis.

1.1 Cytometry

In biological research, cytometry is a general term standing for many different

methods that measure the properties of single cells. Characteristics of cells may

be, for instance, count of the cells, its size, shape, structure, DNA content, or

existence of proteins. Cytometry methods have a wide range of applications in

biological fields, such as oncology [8, 5, 27], marine biology [24, 20], cell biol-

ogy [7, 6], clinical applications [32, 17], and biomedicine [10].

In cytometry, there are various types of devices which can produce such mea-

surements. Two currently used kinds of cytometers are flow and mass cytome-

ters. Flow cytometers are subdivided into normal [25] and spectral [23] flow

cytometers. In mass cytometry, there exists a mass cytometer called CyTOF [4].

An expansion of mass cytometry is Imaging mass cytometry [3].

Multidimensional data In cytometry, characteristics of cells (parameters) are

in the form of multidimensional data. Each parameter stands for one dimension

in multidimensional data space (see figure 1.1 for the detailed description of the

representation of flow cytometry data). This approach allows observing relation-

ships between each parameter thanks to various visualization techniques.
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1
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3

4

Surface proteins

1

2

3

4

Surface proteins
with markers

flow cytometer

cell/marker

1 0.5 0.5 0

2 0.66 0 0.34

3 0 0.25 0.75

4 1 0 0

Data matrix

Figure 1.1: Overview of the method of obtaining the flow cytometry
data. Cells (in this figure, the grey circles numbered 1–4) have various spe-

cific molecules on the surface (in this figure, three types of surface proteins are

present). The surface proteins are marked by chemicals that can bind only to cer-

tain specific cell molecules, and have a specific distinguishing “color” (i.e., they

emit specific light spectra upon excitation). The chemicals are excited by laser,

and the amount of the emitted light in different parts of the spectrum is mea-

sured and stored in the data matrix. Cells can be distinguished by combinations

of the substances (each bonding to the different cell molecule). Measurements

in the example table are idealized, neglecting physical properties of the process

(such as measurement noise and spectral overlaps).
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Figure 1.2: Simplified architecture of a traditional flow cytometer. The

marked cells (in the figure are called “Sample”) (marking process is described

in figure 1.1) are aligned by hydrodynamic forces (in the figure are called “Liq-

uid”) so they can be analyzed one by one by a laser beam. This laser beam excites

the markers on each cell, and afterward, the markers emit light. The emitted light

is divided into the parts of the visible light spectrum (usually 5–10 colors). The

division of the light is done by “Band-pass optical splitter”, which is formed by

an optics system — mirrors and filters which reflect or let through only specific

frequencies of the light. The parts of the spectrum are measured by separated

“Photon detectors” (each detector for one part of the spectrum). Each detector

returns one column of the result multidimensional data matrix.

1.1.1 Flow cytometry

Flow cytometry [25] detects and measures characteristics of a single cell in pop-

ulations of cells by a flow cytometer (see figure 1.2 for the detailed visualization

of the simplified architecture of flow cytometer).

Cells are analyzed one by one by a laser beam. When the laser beam hits the

cell, it emits light. The emitted light is divided by an optics system into different

parts of the visible light spectrum. The parts of the spectrum are measured, and

results are stored in a multidimensional data matrix. The detailed description of

the process is in the figure 1.2.

Recent flow cytometers can measure up to 20 single-cell characteristics for

millions of individual cells per sample. Characteristics of the cells measured by

the flow cytometer can be examined for quantity of proteins, types of white blood

cells, DNA and RNA content, or intracellular pH.
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Figure 1.3: Simplified architecture of a spectral flow cytometer. The marked

cells emit light under the laser beam as in the flow cytometer (described in

the section 1.1.1). The difference is in the measuring of the emitted light. In

a normal flow cytometer, only discrete parts of the spectra are measured, while

in a spectral flow cytometer, the emitted light is analyzed by the whole visible

spectrum. The whole visible spectrum is obtained by a polychromatic dispersion

element (the white triangle in the figure). The spectrum is detected and measured

by “Detector array”, which produces the result data.

1.1.2 Spectral flow cytometry
Spectral flow cytometer [23] (for the detailed description of the architecture

see figure 1.3) is based on similar foundations as a standard flow cytometer (de-

scribed in the section 1.1.1). The difference is in the processing of the light emit-

ted from the observed cell. While the standard flow cytometer uses a system of

optical filters and mirrors, the spectral flow cytometer utilizes a polychromatic

dispersion element. This element spreads the emitted light into an detector array

that allows us to analyze each cell by the full spectrum of the emitted light.

1.1.3 Mass cytometry
Mass cytometry [31] measures characteristics of a single cell by a device called

CyTOF (Cytometry by Time-Of-Flight) [4] (for the detailed description of the

architecture see figure 1.4).

Mass cytometry can obtain more single-cell parameters than from flow cy-

tometry. Flow cytometry has the number of parameters limited by the visible

light spectrum. Emitted light spectra often overlap, which makes it hard to dis-

tinguish one from another.

Mass cytometry has limited applications because the examined sample is
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Figure 1.4: Overview of the function of a mass cytometer. (Source of plasma

may differ.) The functionality principle is similar to the flow cytometer (described

in the section 1.1.1), but the process is modified for heavy metal ion markers.

The cells are burned to ions (electrically charged atoms) by argon plasma. These

ions fly through a magnetic field, which aligns the ions and groups them into a

distinct stream for each ion mass. The grouped ions fly into a “Detector”, which

measures the number of ions in each group and produces columns of the result

matrix data.

always destroyed during the measurement. Also, the measurement process is

longer than in flow cytometry. And finally, chemicals used for marking cells are

nowadays more expensive than in flow cytometry.

1.2 Analysis and interpretation of cytometry
data

The motivation of analyzing cytometry data is, for example, the detection of

leukemia. The amount of normal and plasma B cells is counted. If the ratio of

the normal cells and plasma B cells is too high, there is a high probability that

the patient has some form of leukemia. To count the cells, they must be first

classified. The classification of cells is a problematic part of the analysis. Various

techniques exist (manual or automatic), which facilitate the analysis process and

give a good insight into cell populations.

Recent advances in the development of cytometry technologies provide a

constantly increasing amount of measured single-cell characteristics. Therefore,

multidimensional cytometry data are larger because they contain more cells and

more dimensions (characteristics). This fact makes the manual analysis of data
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Figure 1.5: Example of manual gating process — marking similar populations in

different subdimensions. (Image originally authored by Saeys, Van Gassen, and

Lambrecht [28])

(manual gating) more complicated because more characteristics have to be in-

spected sequentially in two-dimensional space. Hence, the reliable and accurate

automatic analyzing algorithms are created and used (e.g., clustering or dimen-

sionality reduction).

A critical part of cytometry data analysis is the visualization of measured

data. The interpretation of results of automatic analysis algorithms is often hard

for biologists, and thus, many visualization algorithms are needed. There are

many approaches from two-dimensional plots to trees of cell clusters.

1.2.1 Manual analysis by gating
Manual analysis by gating (i.e., manual gating) is a method where cells have to

be separated into clusters manually. Current manual gating approach utilizes

mainly projections of the measured data into two dimensions, where the cells

naturally form distinguishable clusters. These can be picked out manually by

drawing a ‘gate’ that classifies them into two subsets. Then, the clusters are

visualized by visualization methods. The ‘gate’ is drawn by shapes consisting

of lines that specify the desired area (a manual gating process is described in

the figure 1.5).

Two main problems associated with manual gating are:

• Variance of drawing ‘gate’ around cluster is quite big.

• Combinations of two dimensions is

(︁
n
2

)︁
. Therefore the analysis of more
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dimensional datasets (e.g., forty-dimensional) is very time-consuming.

Hence, not all combinations of subdimensions are analyzed and some

clusters can be overlooked.

Recently, automatic gating algorithms are preferred thanks to their signifi-

cantly higher reproducibility. Also, data-driven approach detects populations of

cells that might be overlooked or discarded by a human. Manual gating analy-

sis is extremely time-consuming on a large amount of data, whereas automatic

gating algorithms are more efficient and, therefore, frequently used.

1.2.2 Clustering
Clustering is a data analysis method that analyzes similarities of given objects

(in this case, characteristics of cells) and categorizes them into different groups

called clusters. Clusters often correspond to cell subpopulations.

Clustering has been used as an automated alternative to manual gating (de-

scribed in the section 1.2.1). This method is more objective than manual gating

and considers all cells in the dataset; hence no cells are overlooked or discarded.

Real results of the clustering method may often differ from expected biologically

relevant interpretation, and human intervention is needed. An example of inter-

active software is idendro
1
. The method of automated clustering combined with

human intervention is called semi-supervised clustering.

Clustering method solves problems of manual gating (mentioned in the sec-

tion 1.2.1):

• The problem of choosing correct and unbiased ‘gate’ is not relevant here

because the clusters are not classified manually.

• Datasets with many dimensions are not a problem anymore because the

classification of clusters is done in the original multidimensional space.

Therefore, the dimensions do not have to be analyzed by two-dimensional

subdimensions.

An example clustering algorithm is FlowSOM [33]. For clustering, FlowSOM

uses a combination of self-organizing maps [13] (SOM) and a hierarchical clus-

tering [12]. Cells are first processed by SOM that outputs dataset categorized into

groups. These groups are sent as input for hierarchical clustering, which joins

the groups into clusters (this process is called metaclustering [2]). The hierar-

chical clustering is much faster on those groups because the number of groups is

lower than the number of objects in the whole dataset. Moreover, clusters can be

suitably visualized, for example, by a minimal spanning tree built on aggregated

1https://github.com/tsieger/idendro
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clusters from SOM (a similar approach is used in SPADE algorithm [34]). The

main advantage of the FlowSOM algorithm is that it is an effective algorithm

thanks to the pre-processing of the dataset by SOM, and at the same time, results

highly correspond to professional manual gating analysis.

1.2.3 Dimensionality reduction
Dimensionality reduction is a data analysis method that embeds original mul-

tidimensional data into low-dimensional space (for the purpose of visualization

data for people, a two-dimensional space is the only choice). The new coordi-

nate system captures all cells and their mutual relations. The relations are sim-

plified because not all details from high-dimensional space can be preserved in

the lower dimensional projection. On the other hand, in clustering (described

in the previous section 1.2.2), all cells are grouped into clusters in the original

high-dimensional space and all relations are preserved.

Similarly to clustering, this method might also reveal hidden populations of

cells and gives better insight to the dataset, but as in clustering, fully automatic

dimensionality reduction may be inaccurate and human intervention is needed.

Since dimensionality reduction methods visualize each cell, their drawing

is much more time consuming on large datasets than in clustering, where only

clusters are visualized.

Examples of dimensionality reduction algorithms are PCA [26] (which

is primitive but less accurate), t-SNE [19], UMAP [21], EmbedSOM [15], or

PHATE [22].

t-SNE t-SNE (T-distributed Stochastic Neighbor Embedding) [19] is a machine

learning algorithm that embeds multidimensional data into low-dimensional

space (in this case, two-dimensional space) and preserves cell similarities. It is

a nonlinear dimensionality reduction technique that for each multiparameter

cell embeds a point in two-dimensional space. Similar cells are close to each

other and form clusters. Thus this technique is efficient only on a few tens of

thousands of cells, while the FlowSOM algorithm allows processing efficiently

millions of cells.

EmbedSOM EmbedSOM [15] is a nonlinear dimensionality reduction algo-

rithm that uses the results of built SOM as a basis for further analysis. The

main feature of EmbedSOM is the performance of embedding points into two-

dimensional space, which is linear with the number of data points. However,

the number of dimensions of datasets slows down the computation. Hence this

technique is suitable for physically limited dimensions of flow and mass cytom-
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etry data with many measured cells, while the t-SNE algorithm is suited to high-

dimensional data with the low number of measured cells.

1.2.4 Visualizations of the cytometry data
Visualizations are one of the most important parts of the data analysis because

only the raw dataset obtained from measurements is not readable for people.

It can also be the bottleneck of the pipeline processing, so the right technique

must be considered and chosen for each case individually. Therefore, many new

and more efficient methods have been developed as an alternative to traditional

two-dimensional scatter plots. Many of those new techniques use either dimen-

sionality reduction (described in the 1.2.3) algorithms or clustering (described in

the 1.2.2).

Scatter plot A traditional way of cytometry data visualization is a two-

dimensional scatter plot that embeds each cell into the two-dimensional space.

The purpose of scatterplots is to show cells in clusters by meaningful selection of

axes. The meaningful axes can be two dimensions chosen from multidimensional

space (a visualized correlation between two parameters is in the figure 1.7) or re-

sults of the dimensionality reduction algorithms (for example, the results of the

EmbedSOM [15] (visualized embedded cells are in the figure 1.6) or t-SNE [19]

algorithms).

Heatmap Heatmap is a visualization technique that uses a matrix of values

from the dataset. Each value of the matrix has a color based on the level of

observed characteristics (for the heatmap visualization see figure 1.8).

Dendrogram A dendrogram is a visualization technique with a tree structure

that shows the hierarchical structure of clusters obtained from the clustering al-

gorithm. Dendrogram visualization is usually used with heatmaps or scatterplots

(for the usage of the dendrogram see figure 1.9).

Minimal spanning tree Minimal spanning tree (MST) is used for visualiz-

ing the results of the various clustering algorithms (e.g., FlowSOM [33] (for an

example of the MST see figure 1.10)) visualizing clusters of the cells).

1.3 Current cytometry data analysis problems
Recently available software is not prepared for the advanced development of

technologies obtaining cytometry data. The development brings the increasing

13



Figure 1.6: Scatter plot of the results of EmbedSOM and FlowSOM algo-
rithms. All characteristics (dimensions) of cells are visualized together in two-

dimensional space. The cells are colored by FlowSOM clustering algorithm. The

dataset is the same as in the figure 1.5, where the characteristics often overlap.

Thanks to the EmbedSOM, the cells do not overlap and, additionaly, they are

grouped in correct clusters. Source: https://gitlab.com/exaexa/ShinySOM/
-/blob/master/TUTORIAL.md
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Figure 1.7: Corellations between two cell parameters visualized as colored clus-

ters (clusters obtained from the “label” column — manual clustering).
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Figure 1.8: Heatmap showing the measured parameters (parameters names are

in the bottom part of the picture) for each cell (one cell in each row). (Screenshot

taken from the ShinySOM software [16])
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Figure 1.9: The dendrogram (on the left) shows the hierarchy of the clusters,

and the scatterplot (on the right) visualizes the results of the EmbedSOM, both

being built over the same built SOM. The colored clusters serves to highlight

specific clusters in the dendrogram and the corresponding cell populations in

the scatterplot. (Screenshot taken from the ShinySOM software [16])

Figure 1.10: MST (minimal spanning tree) of the resulting clusters from the Flow-

SOM algorithm. Each node in the tree is a pie chart indicating the percentage

representation of the cell types falling in the cluster. (Image originally authored

by Saeys, Van Gassen, and Lambrecht [28])
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number of parameters of cells, associated processing, or new visualization tech-

niques, which may be useful but are not supported. Some software provides

such features, but the user needs to know programming principles or at least

scripting, which is not applicable in clinical usage. Current software is not pre-

pared for processing more than millions of cells, which is a problem with their

growing amount. Also, outside extensions of software by new algorithms are not

provided.

Storage The most significant problem with the increasing size of the data files

is that they do not fit into the main memory. Hence, working with them re-

quires more sophisticated approaches such as file mapped into the memory [11]

or cache efficient algorithms [30]. Otherwise, accessing files directly from the

hard drive is extremely slow and insufficient for the requirements of flow cy-

tometry analysis software.

Computation speed The whole computational process is getting more diffi-

cult and time-consuming with expanding datasets. The meta results of the algo-

rithms may not fit into the memory, and therefore direct disk access is needed.

One of the possible solutions is the pipelining method with temporary files stored

on a hard drive while mapped into the memory. The computational process is

divided into several steps, where each step is dependant on the result of the pre-

vious step. A similar approach of pipelining is also employed in ‘make’ command

on Unix-like operating systems, which sequentially compiles the given program.

Visualization flexibility The performance of the visualization process is de-

creased with the increasing size of the datasets (more demanding visualization

requests — more cells sent to the rendering system for visualization). Hence a

performant rendering system providing features such as optimized shaders and

effective matrix operations must be used.
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Chapter 2

Flow cytometry workflow tool

As a solution to problems in question 1.3, we present a new flow cytometry tool

that is capable of handling several millions of cells sufficiently while offering a

user-friendly interface. This chapter focuses on the design and implementation

of the software.

2.1 Design goals
The primary objective is to solve all three problems described in the previous sec-

tion 1.3.

Efficient utilization of available RAM Cytometry datasets can be large files

that do not fit into the main memory while reading/writing the usual way.

Therefore, even computers with sufficient performance to process such

large files can not process them. We solved this problem by storing all

large data on a hard drive and using memory-mapping of the operating

system [11] for efficient usage of the RAM while loading/storing data on

disk.

This approach has three advantages:

1. Practically all modern operating systems support memory-mapping.

2. Mmapped memory actually does not need RAM (operating system

can swap RAM to the disk at any time), and hence the application

will not run out of memory.

3. The application and most of the algorithms access the mmapped data

on the disk the same as data stored in the main memory.

Asynchronous computation A single-threaded application becomes unre-

sponsive during the computation required for processing large datasets.
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Hence, running complex computations on a different thread in the back-

ground keeps the application still able to perform other tasks such as

interaction with a user interface.

Hardware-accelerated support for visualisations The algorithms produce

lots of data for visualization, so an efficient rendering system is required.

We use OpenGL that is suitable for this purpose because it has hardware

support for matrix operations and shaders.

Simple and extensible GUI The GUI should be easily programmable, so the

future extensions of the tool are simple. Dear ImGui is easily connectable

to the OpenGL that is used for visualizations in the application. Dear ImGui

is an immediate-mode GUI. The immediate-mode style of the GUI was de-

signed to facilitate the connection of the user interface software to any ren-

dering system. Its connection to OpenGL (or any other rendering pipeline)

is fairly easy because the whole state of the UI is stored in a separate global

context that is reachable within the whole application. Surprisingly, no rig-

orous description of the advantages and disadvantages of the immediate-

mode GUI exists (for more details, see discussion
1
).

2.2 Workflow tool architecture

2.2.1 Main abstractions

Abstractions are necessary and help logically divide the executive parts of the

program. We simplify the software design problem by several systematic con-

structions from which the whole workflow is built.

The software is designed as a workflow in a form of DAG (directed acyclic

graph) (the example diagram is in the figure 2.1).

Definition 1 (Workflow graph). Workflow graph is a directed acyclic multigraph;
vertices are replaced by independent single-purpose computational tools, tools have
vectors of inputs and outputs; edges are defined as (out, in), out is an output of tool
and in is an input of tool.

Tools are also means of communication between the user and the computa-

tional part via the user interface. Each type of tool has assigned its functional

purpose, and their mutual connection leads to the desired results.

1https://github.com/ocornut/imgui/wiki#About-the-IMGUI-paradigm
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Figure 2.1: Workflow in the form of DAG.

2.2.2 Main modules and interfaces
The workflow logic is divided into three executive modules, each with separated

functionality. Three ideas of the modules are: user interaction with the program,

data flow control, and computational part. Also, these modules must communi-

cate with each other and exchange information through defined interfaces (the

diagram of the modules and interfaces is in the figure 2.2).

User interaction module The user interaction module must provide commu-

nication between the user and computer via some tool to manage data flow

and set algorithm parameters. The interface must provide its inputs and

outputs, check if algorithm parameters were changed, and the computa-

tional algorithm operating on inputs and outputs of the module.

Data flow module The data flow module must be able to connect tools and take

care of the data flow between them. This module must be able to notify

if something in the workflow graph has changed and, if so, get current

workflow graph, inform tools that their outputs were recomputed or that

input has changed, and provide all tools which need recomputation.

Computing module The computing module must execute algorithms on the

given data and store results in the data cache. The module must notify

about the recently recomputed tool and update computational states.

2.3 Class structure overview

2.3.1 Tool
Tool implements a generic interface for a module that communicates with the

user (the description of the user interaction module is in the section 2.2.2). It is
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Figure 2.2: Software interface diagram, where the functions are called every

frame (normal line) or only if requested (dashed line).

an abstract class that is a base class for all newly created tools. Tool forces its

child classes to override its virtual methods and therefore meet the criteria of

the interface. The instances of Tool acquire the necessary parameters needed

as input into algorithms. Also, each child class must have a fixed size of inputs

and outputs. For types of implemented child classes see section 2.7.

2.3.2 Glue

Glue (Global Linkage User Environment) implements the requirements of the

data flow module (the description of the data flow module is in the section 2.2.2).

In the whole program, there is only one instance of this class. It connects tools

into logical sequences that create a workflow graph, and takes care of the flow

of data between them. Moreover, it displays the current computational state of

the algorithms by coloring corresponding connection lines between tools with

colors of the respective computational state.

2.3.3 Worker

Worker implements the computing module (the description of the computing

module is in the section 2.2.2). There is also only one instance of this class in the

program. The instance communicates with the instance of Glue and computes

requested tools algorithms. Worker contains one thread executed exclusively

on computational algorithms and runs in the background. The main task of the

Worker is to execute algorithms on the computational thread. Other tasks are:

obtain tools that need to recompute their outputs and updating states of the com-

putations of the tools and sending them to the Glue.

22



2.3.4 Data and work description formats

Parameters and Data use polymorphism for the abstraction of the output data

of the tools and input algorithm parameters. The polymorphism provides an easy

addition of new child classes.

Parameters The algorithms executed by the instance of Worker need input

arguments for working correctly. The unique pointer pointing to Parameters
is one of the arguments. Parameters contains information selected by the user

in Tool through the user interface. Each Tool has its own Parameters child

class with specified attributes.

Data The data cache in the Worker serves as the middle layer between algo-

rithms — the computed outputs are stored here, and inputs are taken from here.

The Data holds the elements of the cache. For each new data type, the new Data
child class must be created with the specified metadata. For types of implemented

child classes, see section 2.6.

2.4 Implementation

2.4.1 GUI

The goal is to have a window with GUI widgets that can fastly draw complex vi-

sualizations with OpenGL
2
. For handling input and output events and creating

windows, there are two equal options — GLFW
3

and SDL
4

— for this applica-

tion, SDL is used. Magnum Engine
5
, with its abstraction over OpenGL calls, is

suitable for connection to SDL. Also, the Ogre engine
6

could be used since it also

provides an abstraction over OpenGL. But Magnum Engine has more transparent

documentation and more comfortable usage. Dear ImGui
7

is a C++ library that

offers easy, clear, and portable implementation of the desired widgets. Because

the Dear ImGui outputs vertex buffers that can be rendered by any rendering

engine, it is connected to Magnum engine.

2https://www.opengl.org/
3https://www.glfw.org/
4https://www.libsdl.org/
5https://magnum.graphics/
6https://www.ogre3d.org/
7https://github.com/ocornut/imgui
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2.4.2 Update cycle
Magnum Engine contains the main loop of the application. drawEvent func-

tion, defined in Cytometry, is called every frame. In Cytometry, choosing and

instantiating new Tool is handled. Additionally, update methods of Glue and

Worker are called from the drawEvent method.

Glue update The main part of the Glue tasks (handling all connections of

the tools and their drawing) is happening in the update method (the flowchart

of the update method is in the figure 2.4a and the algorithm is described in

the algorithm 1). Main ideas are divided into three parts:

• Draw tools Glue draws tool window and its inputs and outputs (obtained

from the tool). The specific content of each tool type (where parameters

are updated) is drawn by Tool (line 10).

• Connect tools If two tools were connected (output with input, on line 5),

then the new edge is added to the workflow graph. Similarly, an edge is

removed from the graph when the user disconnects the input. Workflow

graph edges are visualized by drawing lines between each input/output

tool pair (line 14), colored by the computational state color.

• Remove tools If the user removes a tool (line 12), all edges in the work-

flow graph connected with this tool are removed. Therefore tools, where

outputs of the removed tool were their inputs, must be recomputed.

Worker update The principal task of the Worker is to compute outputs of

the tools. Acquiring computational tasks and their execution is regulated by

update method (the flowchart of the update method is in the figure 2.4b and

the algorithm is described in the algorithm 2). Main parts are divided into two

parts:

• Handle finished work If the worker thread running in the background

has finished its work (checked on line 3), computed outputs are stored in

the data cache and distributed to the corresponding tools (mediate through

Glue ) (line 5). If the worker thread is not finished yet, Worker waits until

the thread has recomputed its work.

• Launch new work If the worker thread does not have assigned any work,

the work is retrieved from the Glue (line 12) and executed sequentially

(line 17). Also, the input data are sent to the second of the recently con-

nected tools (output/input tool pair) (line 9) because the Glue does not

have access to the data cache of the Worker.
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Algorithm 1 Glue update cycle with sections described in the figure 2.3

1: function update

2: for all active tools do
3: draw tool window

4: draw tool input buttons

5: check if tools were connected

6: if exists warning message then
7: draw warning message

8: end if
9: draw collapsing header

10: update tool settings

11: draw tool output buttons

12: remove all closed tools

13: end for
14: draw connection lines

15: end function

Figure 2.3: An example tool with described sections mentioned in the algorithm 1
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The computational states of the currently processed tools are sent to the Glue
every frame (line 20).

Algorithm 2 Worker update cycle

1: function update

2: if thread is active then
3: if thread is finished then
4: recomputed tool← finished state

5: notify glue about recomputed tool

6: end if
7: else
8: if new connected tools pair then
9: send input data to the connected tool

10: end if
11: if workflow graph has changed then
12: get tools for recomputation

13: recomputation tools← waiting states

14: end if
15: if exists tool for recomputation then
16: recomputing tool← working state

17: start tool recomputation in worker thread

18: end if
19: end if
20: glue← states of tools

21: end function

2.4.3 Data flow
The Worker is the owner of the temporary pipeline results (outputs of the tools)

and stores them in the data cache (the diagram of the data cache usage is in

the figure 2.5). The Glue only controls the flow of the data, but does not know

anything about the actual data. The Tool has only insight into the actual data

to take what it needs to change the parameters.

The Worker continuously updates the data cache:

• deletes data of the removed tools,

• adds new data obtained from computational functions and

• updates existing data through computational functions.
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2.4.4 Visualization

Data visualization is in the form of two-dimensional plots called scatterplots (the

description of the scatterplot is in the section 1.2.4). The scatterplot visualizes

the correlation between the two selected columns. Two-dimensional coordinates

are obtained from the matrix. The coordinates are stored into the texture as

RGB color values. This texture is subsequently sent to the OpenGL shader and

rendered. By filling texture in advance, the performance is increased, because

drawing pre-computed texture is much faster, then drawing each point alone

through the shaders.

Three types of coloring are available: color based on expression matrix, la-

bels, and density.

Expression coloring The expression coloring adds new information into the

two-dimensional plot — relation with the third column (the third characteristic

of the cell). The relation adds the third dimension, interpreted as the level of

the relevance of the third parameter. The more the cell meets the criteria of the

parameter, the closer to the screen the cell is (the depth is visualized by color)

(an example of cells colored by expression is in the figure 2.6, used color palette

is derived from the color palette RdYlBu from RColorBrewer).

The color of the cells visualized in the scatterplot is based on the third column

of the matrix. The value in the same row as the current drawn cell is used for

indexing the expression color palette, and the corresponding color is returned.

Labels coloring The label column categorizes cells into clusters (each cell has

assigned cluster number). The cluster numbers index the cluster color palette

and return the corresponding color (an example of cells colored by labels is in

the figure 3.3).
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Figure 2.6: The scatterplot of the cells embedded into the two-dimensional
space (by EmbedSOM algorithm). The color of the cells is based on the pa-

rameter CD4 of the expression matrix. The orange cells are the cells with CD4

parameter (memory cells).

Figure 2.7: The scatter plot of the results of EmbedSOM and FlowSOM
algorithms. All characteristics (dimensions) of cells are visualized together in

two-dimensional space. The cells are colored by FlowSOM clustering algorithm.
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Figure 2.8: The scatterplot of the cells showing a correlation between the
CD45 and CD45RA markers. The color of the cells is based on the density.

Dark blue means sparse density and red color indicates the dense cells.

Density coloring The density coloring visualizes the density of the cells em-

bedded into the same two-dimensional coordinate. The density color is based on

the density color palette at the given coordinate (an example of cells colored by

density is in the figure 2.8).

2.5 External storage formats

2.5.1 FCS format

FCS (Flow Cytometry Standard) file standard [29] is a file specification describing

the structure of the flow cytometry data. FCS is the uniting file format widely

used in the world. In the application, it is assumed that all input cytometry data

files are in this file format because, in parsing, its main structure is used to create

new FloatMtxData instance utilized in the workflow. The software has its own

FCS file parser implemented in FCSParser.cpp.
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2.5.2 Workflow description format

Workflow descriptions are serialized into JSON (JavaScript Object Notation).

JSON is a standardized
8

text file format used for interchanging data. Its struc-

ture consists of the collections of key/value pairs and ordered lists of values.

This structure provides an abstraction over the programming languages because

each language have different representation of lists or such collections (for in-

stance array/vector or dict/map). There are various C++ JSON libraries, where

the verified library (JSON for Modern C++
9
) is used in the application.

2.6 Data class types

2.6.1 MappedData

The resource management of the temporary files in the pipelining process must

be handled. Therefore, the lifetime of the files is bound to the shared pointer

pointing to Data stored in the Worker data cache. Storing a file in the Data is

provided by a MappedData child class containing the TmpFile attribute (the di-

agram of classes is in the figure 2.9). The TmpFile attribute creates a temporary

file during its construction and removes the file on its destruction, and therefore

RAII principle is fulfilled.

The MappedData contains RAII struct View, which manages the lifetime of

the mapped file into the memory. The file is mapped/unmapped during the con-

struction/destruction of the instance of the View. In fact, one mapped file may

be accessed from more View instances. Hence the number of the references to

the mapped file is counted. The file is unmapped from memory only if the last

instance is destroyed.

2.6.2 FloatMtxData

FloatMtxData contains raw binary data of the 4-byte float numbers converted

into endianity of used architecture. The raw binary data contain the two-

dimensional matrix with named columns. Because the FloatMtxData works

with temporary files, it inherits from the class MappedData that provides the

required interface (the inheritance class diagram is in the figure 2.9 and the

MappedData is described in the section 2.6.1).

8https://www.ecma-international.org/publications/files/ECMA-ST/
ECMA-404.pdf

9https://github.com/nlohmann/json
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Figure 2.9: Class inheritance diagram of Data.

2.6.3 IntVectorData
IntVectorData contains raw binary data that constains one-dimensional vector

(one-column matrix). This vector holds unsigned integer numbers. Because the

IntVectorData stores the vector in the temporary file on the disk, it inherits

from the class MappedData (the inheritance class diagram is in the figure 2.9 and

the MappedData is described in the section 2.6.1).

2.7 Tool class types
Data input tools Data input tools have zero inputs and at least one output (the

table of the input tools is in the table 2.1).

Matrix manipulation tools Matrix manipulation tools have at least one input

and at least one output (the table of the matrix manipulations tools is in

the table 2.2).

Computational tools Computational tools have at least one input and at least

one output (the table of the computational tools is in the table 2.3). Each

tool in this category transforms input data to new output data.

Visualization tools Visualization tools have at least one input and zero outputs

(the table of the visualization tools is in the table 2.4).
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Tool name Input
types

Output
types

Description

OpenFile — FloatMtx Loads one chosen FCS file

from memory and creates a

matrix.

LoadAggregate — FloatMtx Loads more FCS file and ag-

gregate them into one matrix.

Table 2.1: Overview of all implemented data input tools.

Tool name Input
types

Output
types

Description

Rename FloatMtx FloatMtx Renames columns of the in-

put matrix and outputs re-

named matrix.

SelectColumns FloatMtx FloatMtx Selects columns from input

matrix and creates matrix

with chosen columns.

SeparateLabel FloatMtx IntVector
FloatMtx

Separates “label” column

from input matrix.

Table 2.2: Overview of all implemented matrix manipulation tools.

• Scatterplot The Scatterplot visualizes the two chosen columns

of the input matrix and plots them to a 2D graph, where the type of

the coloring can be chosen. Coloring by the cluster assigns a color to

the cells by the number of the cluster it belongs to (obtained from the

IntVectorData input). Coloring by expression colors cells by the

one chosen column from the second input FloatMtx matrix. Density

coloring visualizes the amount of the cells in one pixel.

Statistics tools Statistics tools have at least one input, but output is not defined

(the table of the statistics tools is in the table 2.5).
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Tool name Input types Output
types

Description

Aggl
Clustering

FloatMtx IntVector Agglomerates input clusters

into output chosen number

of clusters.

Aggregate
Clusters

IntVector
IntVector

IntVector Maps input cell clusters into

agglomerated clusters.

EmbedSom FloatMtx
FloatMtx
FloatMtx

FloatMtx Embeds given data into two-

dimensional space.

Mapping FloatMtx
FloatMtx

IntVector Assigns cluster to each cell.

Som FloatMtx FloatMtx
FloatMtx

Builds SOM on input data.

Table 2.3: Overview of all implemented computational tools.

Tool name Input types Output
types

Description

Scatterplot FloatMtx
FloatMtx
IntVector

— Visualizes 2D plot wiht two

chosen parameters and with

chosen coloring.

Table 2.4: Overview of all implemented visualization tools.

Tool name Input types Output
types

Description

CellCount IntVector — Counts cells in each clus-

ter and colors them by the

palette used in Scatterplot
cluster coloring.

Table 2.5: Overview of all implemented statistics tools.
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Chapter 3

Results and discussion

The result of this thesis is the software for flow-cytometry data analysis called

by the name convention as Flower. In this chapter, we demonstrate that Flower

is more efficient than other software, and furthermore, it can perform easier cy-

tometry analysis tasks.

The software implements the mentioned design goals (the design goals are

described in the section 2.1). Thanks to the OpenGL used for rendering, the

software is prepared for the advanced visualization techniques. Additionally, the

software can be extended by the tools, thanks to the provided API (the tutorial

for addition of a new tool is in the appendix C). Also, the FlowSOM algorithm

with a two-level clustering is implemented (the FlowSOM agorithm is described

in the section 1.2.2 and the workflow of the FlowSOM is in the figure 3.4). The

following sections describe the RAM usage and the basic functionality of the

software.

3.1 Reduced RAM usage
The efficient utilization of the available RAM brings the possibility of processing

large datasets without the limitation of the available main memory. The signifi-

cant improvement is visible on the 5.5GB dataset (dowloaded from Flow repos-

itory
1

and selected only FCS files with Unstim suffix (authored by Aghaeepour

et al. [1])) (the plot of the memory usage is in the figure 3.1). The 9MB dataset

is downloaded from Flow repository
2

and selected only Levine_13dim.fcs file

(authored by Levine et al. [18]).

The task was to aggregate the dataset into the one FloatMtxData matrix

and visualize the two chosen columns. This task was not possible (tested with

1https://flowrepository.org/id/FR-FCM-ZY3Q
2https://flowrepository.org/id/FR-FCM-ZZPH
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Figure 3.1: Memory usage while processing datasets. “Flower” (result of this

thesis) is compared with R. The memory usage was measured in three different

situations, depending on the loaded dataset: None is the state of the applica-

tion immediately after start with no dataset loaded. Levine13 is the state when

loading a small ‘Levine 13’ 9MB dataset. Pregnancy is the state after loading an

aggregated dataset ‘Pregnancy’ of total size 5.5GB. Notably, on the last dataset

R consumed the specified amount of memory and exited with an error of being

unable to allocate additional memory.

8GB RAM) by the R program because the process needed too much of the main

memory. Even though the memory was swapped, the memory eventually ran

out of space, since the memory swapping was limited, and the process exited

with an error.

On the other hand, the task was possible in the Flower program. The memory

did not run out of space thanks to the mapping files into the memory. The dataset

was aggregated into the matrix and visualized in less than 5 minutes (tested with

the same 8GB RAM).

3.2 Basic functionality
There are two ways of adding a new tool: directly select a tool or import the JSON

file. The tool can be selected directly from the add tool menu (Tools menu item

in the top left corner), where all implemented tools are listed. The JSON file de-
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Listing 1 JSON file format of the imported/exported workflow.

{
"connections": [

{
"from": toolID,
"output": outputID,
"to": toolID,
"input": inputID

},
...

],
"tools": {

"toolID": {
"name": "toolName",
"position": [

x coord,
y coord

],
"tool": "toolName in register",
"data": {

specific data of the tool, may be null
}

},
...

}
}

scribes the state of the workflow — instantiated tools, their selected parameters,

and connections between them (the workflow format of JSON file is described

in the listing 1). The workflow can also be exported in the same format as the

imported file.

3.2.1 Workflow editing

The first example workflow displays the usage of the two basic tools — open file

and visualize (an example workflow snapshot is in the figure 3.2). The visual-

ization tool has one extra input — clusters — used for the coloring by cluster.

Therefore the “label” column (i.e., cluster numbers) must be extracted from the

FCS file and sent as separated input.

The second example extends the basic workflow with computational tools

(an example workflow snapshot is in the figure 3.3 and corresponding workflow

diagram 3.4). The computational tools embed all characteristics of the cells into

two-dimensional space, instead of plotting only two chosen characteristics as
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Figure 3.2: The example workflow snapshot of the Levine_13dim.fcs
dataset stored in the levine_basic.json file. The OpenFile tool (on

the left) opens the given FCS file and converts it into FloatMtxData. The

SeparateLabel tool (in the middle) extracts the “label” column from given

FloatMtxData if the column exists. The Scatterplot tool (on the right) vi-

sualizes two selected columns from the input FloatMtxData and colors them

by input IntVectorData clusters.

in the first example. The clusters are computed from the input FCS file. The

visualization tool do not use the “label” column because the “label” column is

not usually present.

3.2.2 Example: identifying a cell cluster
The available tools can be used for the identification of various properties and

types of cells. For demonstration, we show how to identify a cluster of acti-

vated helper T cells based solely on exploring the quickly available visualiza-

tions. The example workflow is available in file levine_embed_expr.json file,

and demonstrates the embedding of the levine_13dim.fcs dataset into the

two-dimensional space. The user can select various matrix columns (markers)

to display, and successively identify the correct cell subsets by finding a cell pop-

ulation that matches all required properties. The process is shown in figure 3.5.
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Figure 3.3: The example of the workflow snapshot of the
Levine_13dim.fcs dataset stored in the levine_embed.json file. Input

cells are embedded into two-dimensional space from the original multidimen-

sional space (each dimension is one characteristic of the cell). The cluster colors

are obtained from the clustering algorithm FlowSOM (FlowSOM algorithm is

described in the section 1.2.2). Cells are embedded into the two-dimensional

space by the dimensionality reduction algorithm EmbedSOM (EmbedSOM

algorithm is described in the section 1.2.3). For statistics, the tool CellCount
is used. It shows number of cells in each cluster with the same color as used in

scatterplot. A more detailed description of the used tools is in the figure 3.4.
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Figure 3.4: A workflow diagram of the visualization by FlowSOM and Em-
bedSOM algorithms. The Data box (on the left) can be any of the Data input

tools (list of the input tools is in the section 2.7) combined with the Matrix manip-

ulation tools (section 2.7). The Scatterplot box (on the top right) is a Visualization

tool (section 2.7). All other boxes are the Computational tools (section 2.7). The

input data (FCS files) are processed by the Computational tools and visualized

by the Visualization tool.
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For further analysis, the count of the cells in a cell cluster (population) can be

obtained from the tool CellCount (the usage is shown in the figure 3.3).
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Figure 3.5: Process of identifying the cluster of activated helper T cells
from the embedding. In the embedding of the levine_13dim.fcs dataset, the

target cell population can be visually identified by the presence of the relevant

surface markers, as an intersection of cell groups where markers CD45 (lym-

phocyte marker), CD3 (T cell marker), CD4 (helper T cell marker) and CD45RA

(one of the cell activation markers) are present. In Flower, this is achieved by

the visualization tool, where the user can easily select the markers and select the

population of interest e.g. in the clusters from FlowSOM. In this example, cell

populations are visualized by expression coloring (described in section 2.4.4).
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Conclusion

In this thesis, we implemented a proof-of-concept software called ‘Flower’ that

solves all goals (stated in the section 2.1) with results as follows:

1. Mapping files into the memory enables the processing of large datasets

without run out of memory. The memory usage does not increase rapidly,

even with gigabytes of data.

2. OpenGL provides efficient hardware-accelerated visualizations of colored

two-dimensional plots.

3. The separate thread for executing algorithms in the background makes

GUI responsive even during long computations. However, there are cases

when the computational thread must be finished before the new task is

executed (e.g., importing new workflow or closing the application).

4. The FlowSOM algorithm is implemented in the software, and hence the ba-

sic functionality and usefulness are already provided. The new tool classes

can be easily added to the workflow, and hence the software is prepared

for future extensions.

Future work Because our results have confirmed the expectations on the soft-

ware, it resulted in a solid basis for future expansions that will make the software

accessible and useful for researchers and clinicians. In the future, we want to ex-

pand Flower by new tools and new visualization techniques. Logical separation

of the computational part from the GUI gives the posssibility of moving com-

putations into remote computers. This would allow transparent usage of huge

compute clusters even for parallel operations (for example, Galaxy
3

uses this

approach but not so interactively).

3https://www.immportgalaxy.org/user/login?use_panels=True&redirect=%2F
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Appendix A

How to build Flower software

A.1 Prerequisites
The same prerequisites for Linux and Windows are Cmake

1
(version ≥ 3.17.0)

and C++ compiler complying with C++17 standard. The make command is a

prerequisite for Linux. For Windows, the build tutorial works with Visual studio

2019 (but any other building software can be chosen).

A.2 Installation of external dependencies
The only external dependency is SDL2 library

2
.

A.2.1 Linux
Install libsdl2-dev (on Debian-based systems) or SDL2-devel (on Red Hat-

based systems), or similar (depending on the Linux distribution).

A.2.2 Windows
Recommended installation of the SDL2 library is through Vcpkg 3

package man-

ager (it installs libraries inside the Vcpkg directory and not into the system).

1. Install Vcpkg following the instructions
3

(if not installed already).

2. Run Powershell as Administrator.

1https://cmake.org/
2https://www.libsdl.org/
3https://github.com/microsoft/vcpkg
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3. Change directory to the directory of installed Vcpkg.

cd vcpkg

4. Install SDL2 package.

.\vcpkg install sdl2:x64-windows

A.3 Build instructions

A.3.1 Linux

1. Change to the project directory.

cd Flower

2. Clone all external libraries.

git clone https://github.com/mosra/corrade.git
git clone https://github.com/mosra/magnum.git
git clone https://github.com/mosra/magnum-integration.git
git clone https://github.com/ocornut/imgui.git

3. Create build subdirectory and change to build directory.

mkdir build
cd build

4. Run Cmake.

cmake ..

5. Make files are ready, build the application.

make

6. The application is in the ./bin/.

cd bin
./cytometry

7. The application is ready, follow the How to use instructions in appendix B.
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A.3.2 Windows
1. Change to the project directory.

cd Flower

2. Clone all external libraries.

git clone https://github.com/mosra/corrade.git
git clone https://github.com/mosra/magnum.git
git clone https://github.com/mosra/magnum-integration.git
git clone https://github.com/ocornut/imgui.git

3. Create builld subdirectory and change to build directory.

mkdir build
cd build

4. Run Cmake, with specified Visual Studio version, architecture and with

path to the vcpkg.cmake file in the directory of installed Vcpkg.

cmake .. -G "Visual Studio 16 2019" -A x64
-DCMAKE_TOOLCHAIN_FILE=
"[vcpkg root]\scripts\buildsystems\vcpkg.cmake"

5. Open “Flower\build\Cytometry.sln” and set “cytometry” as Startup Project

in the Visual Studio.

6. Build the solution in the Visual studio.

7. Now, the solution is ready! Follow the How to use instructions in ap-

pendix B.
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Appendix B

How to use Flower software

B.1 Technical documentation
The technical documentation is generated by Doxygen 1

. The documentation

is stored in the Flower/src/doc/html/index.html file. It covers only an

overview of the used classes with basic commentaries of the methods and at-

tributes. The main reason why the Doxygen was used is because of the future

development of the tool.

B.2 Data preparation
This software works with FCS files — cytometry datasets. These datasets are

obtained from the Flow repository
2
. All of the result pictures that are used in the

thesis use the Levine_13dim.fcs dataset
3
. Download this dataset for following

example usage. The file can be stored anywhere, because its path is chosen in

the application.

B.3 Functionality
Add a new tool Choose the tool from the top left menu and category (the

descriptive screenshot is in the figure B.1).

“Settings” bar in the tools Each tool has “Settings” sub menu, where the tool

can be renamed, and other actions can be done (unique for each tool type) (the

1https://www.doxygen.nl/index.html
2https://flowrepository.org/
3https://flowrepository.org/experiments/817/download_ziped_files
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Figure B.1: Add a new tool.

Figure B.2: Tool settings.

descriptive screenshot is in the figure B.2). The settings sub menu is opened by

clicking on the “Settings” bar.

Connect tools Tools can be connected by input and output buttons. Input

buttons are in the top of the tool and output buttons are in the bottom of the

tool. The tools can be connected by buttons only if the buttons exist (i.e., if the

tool has no input, it has no input buttons and the same for output). The output

button must be pressed first and then the input button (the descriptive screenshot

is in the figure B.3).

54



Figure B.3: Connection of the tools.

Disconnect tools The tool buttons can be disconnected by clicking the input
button of the connected pair (the descriptive screenshot is in the figure B.4).

Export the workflow The tools, their settings and their connections can be

exported as a JSON file. The “Export” is chosen in the top left menu (under

the Workflow menu item; the descriptive screenshot is in the figure B.1). The

destination file path and file name are chosen (the descriptive screenshot is in

the figure B.5 and figure B.6).

Import the workflow The workflow can be imported as JSON file (under

the Workflow menu item; the descriptive screenshot is in the figure B.7). There

are two workflows prepared in the Flower/src/json/. The example workflows

work with Levine_13dim.fcs dataset. The path to the Levine_13dim.fcs
must be modified in the JSON files (the descriptive screenshot is in the fig-

ure B.8), so that they match the file layout on the used computer.
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Figure B.4: Disconnection of the tools.

Figure B.5: Select directory dialog window. New directory can be created by

“+” button in the red circle (top right). By clicking “ok”, the current directory

will be selected and Write file name dialog will open (the descriptive screenshot

is in the figure B.6)
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Figure B.6: Write file name dialog window. The file name can be changed

in the red box. By clicking “Export”, the workflow will be exported into the

selected file path with written file name. By clicking “Back”, it will return to the

Select directory file dialog (the descriptive screenshot is in the figure B.5).

Figure B.7: Import file dialog works as normal open file dialog. Choose JSON file

and click “ok” or exit by “Cancel”.

Figure B.8: Change the path to the Levine_13dim.fcs in the JSON files.
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Appendix C

Creating new tools

The tutorial explains how to create and add a new tool class (later called

NewToolClass ) into a program. A new .cpp file must be created (NewTool.cpp)

in the src/tools directory. Its name must be added into CMakeLists.txt (tool-

s/NewTool.cpp) in the src directory. The template of the new tool is in the list-

ing 2. The template can be copied to the .cpp file and extended as needed. The

tutorial follows the structure of the template.

Includes

1. The current implementation of the software provides two data types:

FloatMtxData and IntVectorData. They are included if they are needed.

2. The Tool must always be included because it is the base class of the

NewToolClass. Also, the ToolRegistry needs to be always included, so

the tool can be instantiated.

Class declarations

1. The NewToolClass must publicly inherit from the Tool.

2. The NewToolClass constructor must contain definitions of the inputs and

outputs (as described in the listing). The same tool name as used in the

REGISTER_TOOL must be sent to the Tool constructor.

3. All virtual methods of the Tool must be overridden and implemented.

Parameter struct

1. The struct NewToolParams must always be implemented and inherited

from the Parameters. The parameter attributes are the settings obtained

from the on_render function.
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Computational function

1. The computational function is a static function defined before the defini-

tion of the get_recompute function. The computational function may use

more static functions defined in the .cpp file.

2. The new computational function computes outputs from given inputs and

input parameters defined in the struct NewToolParams.

3. The get_recompute function returns a pointer to the previously defined

computational function and the already defined struct NewToolParams.

Registration

1. The tool must be registered by the REGISTER_TOOL macro. The first ar-

gument is the category of the tool.

2. Currently, the supported categories are: “input”, “matrix”, “comp”, “visu-

alize”, and “stat”. Each category represents the functionality of the tool

described in the section 2.7.

3. The second argument is the name of the new tool, also sent as input in the

constructor of the base class Tool.

4. The third argument is the name of the new class (NewToolClass ).

New data type

1. The new data type can be implemented by following the data inheritance

structure in the section 2.6 if the provided data types are not sufficient.

If the new data type works with the temporary file on the disk, the same

pattern can be used as in the classes FloatMtxData or IntVectorData.

2. The new type in DataTypes enum (in common.h) must also be added to-

gether with a new string representation of this type in the types variable

in Tool.h.
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Listing 2 Example NewToolClass.

#include "../ FloatMtxData.h" // optional
#include "../ IntVectorData.h" // optional
#include "../ Tool.h"
#include "../ ToolRegistry.h"

class NewToolClass: public Tool
{
public:
NewToolClass () : Tool("New tool name")
{

// One input
inputs.emplace_back("matrix", DataTypes :: FLOAT_MATRIX );
// One output
outputs.emplace_back("vector", DataTypes :: INT_VECTOR );

}

void on_render () override { /*Some ImGui widgets */ }
void input_changed(const data_vector &) override

{ ask_recompute (); }
recomp_fn_pair get_recompute () override;
void tool_recomputed(Parameters *) override

{ /* New tool was recomputed.*/ }

json to_json () override {return json ();}
void from_json(json&) override {}

};

struct NewToolParams : public Parameters
{};

static bool some_comp_fn(
const data_vector&, data_vector&, Parameters *);

{
// Some computations
// if something went wrong
// return false;
// else
return true;

}

recomp_fn_pair NewToolClass :: get_recompute ()
{

return std:: make_pair(
some_comp_fn , std:: make_unique <NewToolParams >());

}

REGISTER_TOOL("category", "New tool name", NewToolClass)
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