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Abstract 

Childhood acute leukemias are genetically complex disorders, with recurrent or 

random aberrations found in most patients. Their proper functional characterization is crucial 

for understanding the role they play in the process of leukemogenesis. We aimed to identify 

and characterize the genetic background of two leukemic entities. 

The transient myeloproliferative disorder (TMD) is a preleukemic condition that occurs 

in 10% of newborns with Down syndrome. Trisomy 21 together with in-utero gained 

mutations in the GATA1 gene are essential in TMD and represent an ideal “multi-hit” model 

to study leukemogenesis. We investigated an alternative pathogenic mechanism enabling 

TMD development in a confirmed absence of trisomy 21. Novel deletions in the GATA1 and 

JAK1 genes were described as potential drivers of this TMD. The deletion D65_C228 in GATA1 

results in the expression of an aberrant isoform, which is predicted to lose transactivation 

potential and, more importantly, to partially lose the ability of recognizing physiological DNA 

binding sites, possibly triggering TMD alone. Our thorough characterization of JAK1 F636del 

questions its role in TMD development. Analysis of JAK/STAT signaling suggested decrease of 

kinase activity upon F636 loss. Cells harboring the aberrant JAK1 did not obtain cytokine-

independent growth when assessed in the Ba/F3 assay. Moreover, JAK1 F636del had no 

impact on cell proliferation and maturation when studied in a “prenatal” environment 

represented by fetal hematopoietic stem and progenitor cells expressing mutated GATA1. 

Combined, we described the molecular events in the first case of trisomy 21-independent 

GATA1-mutated TMD. 

The ETV6-ABL1 fusion gene represents a rare recurrent event in acute lymphoblastic 

leukemia (ALL). We characterized a single chromosomal rearrangement leading to the 

formation of ETV6-ABL1 together with two novel fusion genes: ABL1-AIF1L and AIF1L-ETV6. 

The production of three in-frame fusion genes from a single rearrangement is a rare event. 

Moreover, we report, to the best of our knowledge, the first disruption of the AIF1L gene in 

leukemias. Chimeric protein analysis in HEK293T cells showed that AIF1L-ETV6 is expressed 

and localized in the nucleus, where it may bind to DNA via its ETV6 domain. We demonstrated 

the prenatal origin of the observed rearrangement by detecting the patient-specific ETV6-

ABL1 fusion gene breakpoint sequence in the patient’s Guthrie card by PCR, therefore 
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confirming that all three fusion genes are insufficient to cause overt leukemia. Additional 

“second” hit mutations were required, in this case probably represented by deletions in the 

IKZF1 and/or CDKN2A/B genes. 

Our findings regarding trisomy 21-independent TMD shed new light on the 

pathogenesis of this intensely investigated leukemia-like condition. Furthermore, our 

thorough characterization of a unique chromosomal rearrangement resulting in the prenatal 

production of multiple in-frame fusion genes expands our knowledge regarding ETV6-ABL1-

positive ALL. 
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Abstrakt 

Dětské akutní leukémie jsou geneticky komplexní poruchy hematopoézy. U většiny 

pacientů se vyskytují rekurentní či náhodné aberace, jejichž pečlivá funkční charakterizace je 

zásadní pro pochopení role, kterou hrají v procesu leukemogeneze. Naším cílem byla 

identifikace a charakterizace genetického pozadí dvou leukemických entit.  

Transientní myeloproliferativní porucha (TMD) je preleukémie, která postihuje 10% 

novorozenců s Downovým syndromem. Trisomie 21 chromozomu a in-utero získané mutace 

v genu GATA1 jsou kauzální pro vznik TMD a společně představují ideální “více-zásahový“ 

model leukemogeneze. Zaměřili jsme se na zkoumání alternativního mechanismu vzniku TMD 

bez účasti trisomie 21. U jedinečného případu TMD jsme jako potenciálně spouštěcí aberace 

popsali nové delece v genech GATA1 a JAK1. Delece D65_C228 v GATA1 způsobuje tvorbu 

poškozené izoformy, u níž se předpokládá ztráta transaktivační schopnosti a rovněž částečná 

ztráta vazby ke specifickým vazebným místům v DNA, což může stačit ke spuštění TMD. Námi 

provedená podrobná charakterizace delece F636 v JAK1 zpochybňuje význam této aberace 

pro patogenezi TMD. Analýza signalizace JAK/STAT odhalila pokles kinázové aktivity po ztrátě 

F636. Růst buněk Ba/F3, které vytvářejí poškozený JAK1, je závislý na cytokinech, podobně 

jako je tomu u buněk produkujících JAK1 divokého typu. Dále jsme prokázali, že delece F636 

v JAK1 neměla žádný dopad na růst a dozrávání buněk v “prenatálním“ prostředí, 

reprezentovaném fetálními hematopoietickými kmenovými a progenitorovými buňkami 

vytvářejícími mutovaný GATA1. V předkládané práci popisujeme molekulární děje v prvním 

známém případu TMD s mutovaným genem GATA1 a zároveň nezávislém na trisomii 21 

chromozomu. 

Fúzní gen ETV6-ABL1 je vzácný, avšak opakovaně se vyskytující genetický jev při akutní 

lymfoblastické leukémii (ALL). Popsali jsme chromosomální přestavbu vedoucí ke vzniku ETV6-

ABL1 a dvou dalších dosud nepopsaných fúzních genů ABL1-AIF1L a AIF1L-ETV6. Vznik tří 

fúzních genů, se zachovaným čtecím rámcem, z jediné přestavby je v hematologii ojedinělý 

jev. Dále zde popisujeme první známé poškození genu AIF1L u leukémií. Analýza chimérické 

bílkoviny v  buňkách HEK293T ukázala, že AIF1L-ETV6 je tvořen a umístěn v jádře, kde se 

pomocí své ETV6 domény může vázat na DNA. Pomocí metody PCR se nám v 

pacientově Guthrieho kartě podařilo prokázat specifickou zlomovou sekvence fúzního genu 
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ETV6-ABL1 a tedy prenatální původ studované chromozomální přestavby.  Díky tomu jsme 

následně potvrdili, že ETV6-ABL1 není dostatečný ke spuštění diagnostikovatelné leukémie a 

musí následovat další druhotné aberace, kterými jsou v tomto případě pravděpodobně delece 

v genech IKZF1 a/nebo CDKN2A/B.  

Naše výsledky zabývající se TMD bez trisomie 21 chromozomu přinášejí nové 

informace ohledně patogeneze tohoto intenzivně studovaného onemocnění připomínajícího 

leukémii. Podrobná charakterizace jedinečné chromozomální přestavby, která vyústila v 

prenatální vznik několika in-frame fúzních genů, prohlubuje naše znalosti o ETV6-ABL1-

pozitivních ALL. 
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My role in the described projects 

I have been responsible for the description and functional characterization of novel 

mutations and fusion genes identified in both of the here described projects. I have actively 

participated in the planning and in the design of all experiments. Importantly, I have 

implemented all of the in vitro experiments in both cell lines (HEK293T, K562, TF1, NIH3T3, 

Ba/F3) and in isolated hematopoietic stem cells (adult peripheral blood, murine bone marrow, 

murine fetal liver) both at the home institute and abroad. I carried out the Western blot assays 

and all of the experiments regarding fusion gene breakpoint identification together with the 

subsequent backtracking analysis. Moreover, I wrote and successfully obtained both local 

(Charles University Grant Agency: 86218) and international (European Hematology 

Association Research Mobility Grant, European Cooperation In Science And Technology Grant) 

funding grants for the experiments conducted during my Ph.D. study. 
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Structure of the thesis 

This thesis consists of the following sections: review of literature, aims, methods, 

results, discussion, conclusions, list of publications and presentations, list of abbreviations, 

references and the publications that I have contributed to during my Ph.D. study. Two full-text 

published first-author publications, together with one first-author manuscript under 

consideration and one co-author manuscript in revision are attached. 

 

 

Structure of the review of literature 

  The opening section of the review of literature intends to comprehensively summarize 

important knowledge regarding childhood acute leukemia. An introduction to both pediatric 

acute myeloid leukemia (AML) and acute lymphoblastic leukemia (ALL) is presented. Emphasis 

is given to recurrent genetic alterations in pediatric AML and B-cell precursor ALL. 

 The transient myeloproliferative disorder is together with a subtype of myeloid 

leukemia present exclusively in children with Down syndrome. An introduction to these two 

entities, together with relevant information regarding the GATA and JAK genes families, which 

are involved in their development, is presented. Moreover, the role of trisomy 21 in the 

leukemogenic process is introduced in detail.  
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Review of literature 

1. Childhood acute leukemia 

Acute leukemia is caused by a series of events that prevent normal maturation of a 

hematopoietic precursor cell into their progeny. These mutational events on the other hand 

allow the precursors to uncontrollably proliferate, which finally results in observable clinical 

symptoms. 

Leukemia is the most common type of cancer in children and teenagers and accounts 

for 30% of all pediatric cancers (Linabery and Ross, 2008; Siegel et al., 2018; Smith et al., 2010; 

Steliarova-Foucher et al., 2017). Its treatment has become a success story of modern 

medicine. Virtually an untreatable disease in the 1950s, it is now curable in around 85% of 

cases (Siegel et al., 2018). This has been attributed to the development of chemotherapeutic 

agents, proper dosing, precise diagnostics and last but not least to correct supportive care. 

Despite of these positive developments it still remains the principal cause of death from 

cancer before 20 years of age (Smith et al., 2010). Heterogeneity presents the main challenge 

in the assessment of childhood acute leukemias. Leukemia subtypes differ not only in 

morphology and clinical presentation, but also in response to treatment and prognosis. This 

is mainly due to a broad spectrum of primary and secondary genetic aberrations (Hunger and 

Mullighan, 2015b; Iacobucci and Mullighan, 2017). Acute leukemias can be divided into two 

main subgroups by lineage origin. Acute lymphoblastic leukemia (ALL) and acute myeloid 

leukemia (AML), with ALL being five times more abundant than AML in pediatric patients 

(Hunger and Mullighan, 2015a). The incidence of acute leukemias gradually switches during 

aging, with AML taking lead and finally dominating in older adults (Fig. 1) (Dores et al., 2012; 

Hein et al., 2020). 

The etiology of leukemias remains largely unknown. The generally accepted theory 

suggests that leukemias originate from a combination of exposition to various risk factors, 

genetic predisposition and chance. A minority of cases have been linked to chemicals like for 

example benzene (Savitz and Andrews, 1997) and to exposure to radiation (Greaves, 2006; 

Preston et al., 1994). The main genetic factor associated with increased risk of leukemia is 

Down syndrome, followed by rare entities generally predisposing to various types of cancer, 

namely Ataxia telangiectasia, Fanconi anemia and Li Fraumeni (Stieglitz and Loh, 2013). 



15 
 

Moreover germline variants are believed to be involved in the etiology of about 5% of 

childhood leukemias (Zhang et al., 2015).  

 

Figure 2: Age-specific incidence rates of AML and ALL (adapted from Hein et al., 2020) 

 

1.1. Genetic aberrations in leukemia 

Sequential accumulation of both genetic and epigenetic aberrations represent the 

main hallmark of cancer. These alterations can be either inherited (germline, constitutional) 

or acquired (somatic). During the process of leukemogenic transformation, cells may acquire 

a wide spectrum of mutations, including small insertions and deletions (indels), single 

nucleotide substitutions (point mutations), as well as a wide array of structural variations, like 

for example chromosomal translocations (Fig. 2) or more complex rearrangements. These 

changes of the genetic material of a cancer cell lead to gene expression profile alterations, 

subsequently affecting cell differentiation, growth and regulation of apoptosis (Bailey et al., 

2018; Dawson and Kouzarides, 2012; Mitelman et al., 2007; Stratton et al., 2009). The advent 

of next generation sequencing technologies has allowed detailed investigation of these 

genetic events. 

The main subtypes of both AML and ALL involve a broad spectrum of genetic 

alterations, including deletions and point mutations, however, they are mainly characterized 
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by chromosomal changes such as translocations or hyperdiploidy (Look, 1997; Raimondi et al., 

1999). Chromosomal translocations (Fig. 2) involve gene recombination or juxtaposition, 

which can result in dysregulation of oncogene expression by an association with a 

constitutively active regulatory element, like for example MYC with the T-cell receptor (TCR) 

or immunoglobulin heavy chain (IGH) enhancer (Rabbitts, 1994). However, in leukemia, 

usually an in-frame fusion or chimeric gene is created, resulting in the production of a hybrid 

protein. This altered protein frequently results in aberrant kinase activity or transcriptional 

regulation (Look, 1997; Rowley, 1998). A striking feature of leukemic chromosomal 

translocations is their association with biologically distinct leukemic subtypes. In general, 

chromosomal translocations in leukemia tend to be balanced or reciprocal and stable. These 

chromosomal changes usually reflect a stable early occurring single “hit” (Rabbitts, 1994). This 

distinguishes them from other pediatric malignancies, like for example epithelial carcinomas, 

commonly harboring unbalanced translocations and numerous deletions (Lengauer, 2001). 

The principal types of structural chromosomal aberrations are shown in Figure 2. 

For a given chromosomal translocation, the genomic regions in which recombination 

occurs are either clustered or specific and localized. When clustered, they are known as 

breakpoint cluster regions (BCR) which occur in introns and vary in size, therefore each patient 

harbors a unique breakpoint in the DNA of a particular leukemic clone (Reiter et al., 2003; Xiao 

et al., 2001). In lymphoid cancers DNA breaks may occur by aberrant processing of DNA by 

RAG (recombination activating gene) proteins which coordinate V(D)J recombination (Kuppers 

and Dalla-Favera, 2001). V(D)J recombination is frequently involved in translocations found in 

pediatric T-cell precursor ALL, which repeatedly involve the TCR loci (Brown et al., 1990). The 

more abundant B-cell precursor ALL (BCP-ALL) however only rarely involves V(D)J 

recombination. In this case, the more common chromosomal translocations harbor dispersed 

breakpoints, similarly to those found in myeloid leukemias (Reichel et al., 1998; Reiter et al., 

2003; van der Reijden et al., 1999; Wiemels et al., 2000; Xiao et al., 2001). Another mechanism 

involved in translocation and DNA breakpoint formation has been linked with the dysfunction 

of topoisomerase II, which plays a crucial role during DNA replication (Felix, 1998; Pedersen-

Bjergaard and Rowley, 1994; Rowley and Olney, 2002). Treatment-related leukemias have 

been associated with topoisomerase II dysfunction due to the use of topoisomerase II–

targeting drugs (Cowell and Austin, 2012; Felix et al., 2006; Rowley and Olney, 2002).  
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Interestingly, similar chromosomal translocations as found in therapy-related leukemias are 

commonly seen in de novo infant acute leukemias, like for example those resulting in KMT2A 

fusions (De Braekeleer et al., 2005; Eguchi et al., 2003; Felix and Lange, 1999; Slater et al., 

2002). The possibility of a prenatal origin of a leukemia associated chromosomal translocation 

originating already in utero was first indirectly suggested by a case of monozygotic twins 

harboring an identical leukemia genotype (Clarkson and Boyse, 1971; Greaves et al., 2003). 

International studies of concordant twin leukemia cases helped to investigate this hypothesis 

by studying genomic breakpoints of translocations for KMT2A fusions (Ford et al., 1993; Gill 

Super et al., 1994; Megonigal et al., 1998). Moreover, archived neonatal blood spots, also 

known as Guthrie cards, invented by Robert Guthrie in 1963 in order to screen newborns for 

phenylketonuria, provided valuable material to study non-twinned leukemia patients (Guthrie 

and Susi, 1963; Wiemels et al., 1999). Gale and colleagues gave the first evidence of the 

presence of leukemia fusion genes in archived neonatal blood spots (Gale et al., 1997). 

Subsequently prenatal origin was shown for the ETV6-RUNX1 translocation (Hjalgrim et al., 

2002; McHale et al., 2003; Wiemels et al., 1999). Not only fusion genes, but also point 

mutations specific for leukemias were detected in Guthrie cards. Importantly, mutations in 

the GATA1 gene in Down syndrome acute megakaryoblastic leukemia (DS-AMKL), in transient 

myeloproliferative disease (TMD) patients (Ahmed et al., 2004) and in the NOTCH1 gene 

present in T-ALL patients (Eguchi-Ishimae et al., 2008). The backtracking studies revealed that 

preleukemic cells harboring early genetic aberrations can persist in the patient’s bone marrow 

for years before acquiring additional necessary hits for leukemic transformation. Most 

pediatric leukemias therefore very probably originate prenatally through various 

chromosomal translocations (Bateman et al., 2010; Cazzaniga et al., 2011; Greaves, 1999; 

Greaves et al., 2003; Hong et al., 2008; Maia et al., 2004; Wiemels et al., 1999). Importantly, 

various studies indicate that a single chromosomal translocation, representing the so-called 

“first hit” which initiates a preleukemic state where the hematopoietic precursor is provided 

with possible proliferative or function advantage, is usually insufficient to cause overt 

leukemia and additional genetic alterations are required (Fig. 3) (Gonzalez-Herrero et al., 

2018; Higuchi et al., 2002; Hong et al., 2008; Ma et al., 2013; Yuan et al., 2001). Twin studies 

confirmed that these additional alterations, including single nucleotide variants (SNV) and 

copy number aberrations (CAN), most likely occur postnatally (Bateman et al., 2010; Cazzaniga 

et al., 2011). Similarly, the vast majority of ongoing V(D)J rearrangements occurring in IGH are 
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subclonal and differ in twin pairs (Alpar et al., 2015). Common cooperating oncogenic lesions, 

which reprogram the cell into an autonomously proliferating blast with blocked differentiation 

and clonal expansion potential, are in ALL represented by alterations in the CDKN2A, CDKN2B, 

PAX5, RAG1, RAG2, IKZF1 genes (Iacobucci and Mullighan, 2017; Mullighan et al., 2007) and in 

AML by alterations in the JAK2, FLT3, KIT, NRAS, KRAS, DNMT3A genes (Beghini et al., 2000; 

Krauth et al., 2014; Schnittger et al., 2002; Shin et al., 2016). 

 

Figure 2: Principal types of structural chromosomal aberrations.  

 

 

Figure 3: Multi-step model of leukemogenesis. Genetic alterations leading to B lymphoblastic 

leukemia development are depicted (adapted from Inaba et al., 2013) 
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1.2. Acute myeloid leukemia 

Acute myeloid leukemia accounts for 15-20% of childhood leukemias. The highest 

incidence of AML in pediatric patients is within the first year of life (Fig. 1) (Dores et al., 2012). 

Although major improvements in the survival rates for pediatric AML patients have been 

achieved in the past decade, with a 5-year overall survival of around 70% (Creutzig et al., 

2012), they are still considerably lower than for children with ALL (Siegel et al., 2018; Ward et 

al., 2014).  

AML is a very heterogeneous disease, both from a clinical, molecular and 

pathophysiological view point. Various myeloid hematopoietic progenitors, encompassing the 

erythroid, granulocyte, monocyte and megakaryocyte lineages can be affected giving rise to a 

myriad of presentations. Originally myeloid malignancies have been divided and characterized 

by the French-American-Berlin (FAB) classification mainly by morphology and 

immunophenotyping (Bennett et al., 1976). However, with gradual emergence of genetic 

approaches, which enabled a more complex characterization of the blast population on 

molecular level, and their incorporation into routine diagnostics required a revision of the 

classification, which was introduced by the World Health Organization (WHO) in 2002 

(Vardiman et al., 2002) and was then revised in 2008 (Tefferi and Vardiman, 2008; Vardiman 

et al., 2009). Mainly, due to numerous advances associated with next-generation sequencing 

methods and gene expression analysis, an even more precise classification of AML and related 

neoplasms was presented in 2016 (Arber et al., 2016). 

Leukemic blast infiltration into numerous tissues and organs results in a plethora of 

clinical symptoms in AML. The alteration of bone marrow microenvironment leads to anemia, 

thrombocytopenia and neutropenia. Extramedullary lesions include the spleen (resulting in 

hepatosplenomegaly), skin, lymph nodes and the central nervous system (CNS).  

Morphology, immunophenotyping, fluorescent in-situ hybridization (FISH), 

karyotyping and molecular genetic analysis of the bone marrow, eventually of the peripheral 

blood, are the basic diagnostic requirements in pediatric AML. Moreover, CNS involvement is 

investigated at diagnosis by examining the cerebrospinal fluid (Creutzig et al., 2012). 
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Assessing proper treatment intensity in AML patients follows risk stratification, which 

is based on the underlying leukemia biology, molecular genetics and response to therapy. 

Intensive induction therapy is initiated shortly after diagnosis of AML.  

1.2.1. Genetic aberrations in AML 

A number of aberrantly expressed genes and gene mutations have been described in 

childhood AML (Fig. 4). These genetic events are generally divided into two classes (Renneville 

et al., 2008). Type I class includes mutations that present the progenitor cell with a 

proliferative advantage without fully transforming it into a leukemic cell, like for example 

mutation in the JAK2, FLT3, KIT, CBL genes and mutations in the RAS-RAF-ERK signal 

transduction pathway, NRAS, KRAS and PTPN11 (Zuna and Zaliova, 2015). On the other hand 

genetic mutations of the type II class mostly affect the differentiation potential and 

subsequently apoptosis of the leukemic cell. Fusion genes, like for example PML-RARA, 

RUNX1-RUNX1T1 and CBFB-MYH11, that result from chromosomal translocations, are the 

main representatives of the second class aberrations (Dash and Gilliland, 2001; Kelly and 

Gilliland, 2002; Renneville et al., 2008). With respect to the two-hit theory, AML results from 

a cooperation of at least two mutations from the above described classes (Kelly and Gilliland, 

2002). The acquisition of genetic aberration in AML occurs in a stepwise manner. Both the 

order and the type of the acquired mutations affects the hematopoietic stem cell (HSC). It 

makes it either more likely or less likely to evolve into full-blown leukemia (Grove and 

Vassiliou, 2014). 

Alterations that are associated with a favourable prognosis in pediatric AML include 

the fusion genes RUNX1-RUNX1T1, CBFB-MYH11, PML-RARA and mutations in genes NPM1 

and CEBPA (Harrison et al., 2010; Rubnitz and Inaba, 2012; Rubnitz et al., 2010; von Neuhoff 

et al., 2010). 

Monosomy 7, monosomy 5 and del(5q) have been associated with poor prognosis  

(Hasle et al., 2007). Fortunately, these chromosomal abnormalities present only 2-4% of AML 

cases. On the other hand, activating mutations in the form of internal tandem duplications of 

the FLT3 gene (FLT3/ITD mutations) represent approximately 10% of AML cases and are 

associated with poor prognosis when exhibiting a high ratio of mutant to normal alleles (Levis 

and Small, 2003; Meshinchi et al., 2006; Staffas et al., 2011).  
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The most common recurrent karyotypic abnormalities in pediatric AML are discussed 

below. The list is not exhaustive. 

KMT2A-rearranged AML 

KMT2A gene (previously known as the MLL gene) fusions resulting from chromosome 

11q23 rearrangements are common in pediatric AML, comprising 10 to 20% of cases overall. 

They are especially prevalent in infants (Balgobind et al., 2009; Creutzig et al., 2012; Forestier 

et al., 2003; Masetti et al., 2015). The KMT2A gene is fused to more than 20 gene partners, 

however the MLLT3 gene (AF9 gene) located on chromosome 22 is the most common 

translocation partner (Meyer et al., 2006; Shih et al., 2006). Acute myeloid leukemia with the 

KMT2A-MLLT3 fusion gene is considered as a distinct subtype of AML by the WHO 

classification and is associated with an intermediate prognosis. However, other translocation 

partners of KMT2A in children demonstrated a wide variability in survival (Coenen et al., 2011). 

t(8;21)/RUNX1-RUNX1T1 AML 

The t(8;21)(q22;q22) chromosomal translocation is found in 8-13% of pediatric AML 

cases and results in the production of the fusion gene RUNX1-RUNX1T1 (Forestier et al., 2003; 

Rubnitz et al., 2002). Secondary cooperating mutations in NRAS, KRAS or KIT are frequently 

present in AML patients harboring this particular translocation (Goemans et al., 2005; Krauth 

et al., 2014). Interestingly the RUNX1-RUNX1T1 fusion gene was one of the first to be used for 

the monitoring of minimal residual disease (MRD) (Yin et al., 2012). The RUNX1-RUNX1T1 

chimeric protein causes a disruption of the normal function of the transcription factor complex 

CBF which regulates normal hematopoiesis (Downing, 1999; Licht, 2001).  

inv(16)/t(16;16)/CBFB-MYH11 AML 

The inversion inv(16)(p13.1;q22) or translocation t(16;16)(p13.1;q22) of chromosome 

16 is present in 5-10% of childhood AML cases (Creutzig et al., 2012). Both of these cytogenetic 

abnormalities give rise to a fusion of the CBFB gene with the MYH11 gene on chromosome 16 

(Sinha et al., 2015; Speck and Gilliland, 2002). The CBFB-MYH11 chimeric fusion protein 

deregulates transcriptional activity effecting cell differentiation, regulation of apoptosis and 

proliferation, similarly to RUNX1-RUNX1T1 (Shigesada et al., 2004; Steffen et al., 2005). This 

subtype of pediatric AML usually presents with a myelomonocytic morphology. Frequent 
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eosinophils are present in the bone marrow and have characteristic abnormal immature 

basophilic granules (Larson et al., 1986). 

t(15;17)/PML-RARA AML 

The PML-RARA fusion gene results from the translocation t(15;17)(q22;q12) and is 

associated with acute promyelocytic leukemia (APL) in which it represents the most common 

genetic aberration (Warrell, 1993). The fusion gene is present in 6-10% of all pediatric AML 

patients (Creutzig et al., 2012). The RARA gene encodes the retinoic acid receptor alfa protein 

which serves as a nuclear receptor. It is fused to the PML gene, which encodes for a myeloid 

transcription factor. The chimeric fusion protein results in a permanent repression of genomic 

expression finally leading to dysregulation of cell differentiation, self-renewal and apoptosis 

(Steffen et al., 2005). The repressive function of PML-RARA can be inhibited by high doses of 

the all-trans retinoid acid (ATRA), representing the first successful targeted molecular therapy 

applied in the treatment of leukemia which changed the prognosis of APL from dismal to 

excellent (Huang et al., 1988; Wang and Chen, 2008). 

1.2.2. Minimal residual disease monitoring in AML 

 The persistence of leukemic cells after therapy at levels undetectable by morphology 

is termed minimal residual disease (MRD). Its assessment in routine clinical practice has 

become indispensable in both pediatric and adult ALL (Pui et al., 2017; van Dongen et al., 

2015). On the other hand, its applicability in pediatric AML still remains largely problematic. 

Several platforms are currently available for MRD monitoring in AML, including 

multiparametric flow cytometry (MFC), real-time quantitative polymerase chain reaction (RT-

qPCR) and next-generation sequencing (NGS), each suitable for distinct leukemia subtypes 

(Schuurhuis et al., 2018; Voso et al., 2019). RT-qPCR assesses MRD by amplifying genetic 

abnormalities associated with leukemia, mainly RNA transcripts of fusion genes. The currently 

validated molecular targets for MRD monitoring by RT-qPCR, in which it plays a superior role 

over MFC, include the PML-RARA translocation, the core-binding factor (CBF) translocations 

RUNX1-RUNX1T1 and CBFB-MYH11, and mutations in the NPM1 gene (Gabert et al., 2003; 

Inaba et al., 2012; Kronke et al., 2011; Schuurhuis et al., 2018; Yin and Frost, 2003). 
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Figure 4: Recurrent cytogenetic aberrations in childhood AML, t (translocation), inv (inversion) 

(adapted from Creutzig et al., 2012) 

 

1.3. Acute lymphoblastic leukemia 

Treatment of pediatric ALL has advanced tremendously in the last few decades, with 

current event free survival rate of approximately 90% (Hunger et al., 2012). Nevertheless cure 

rates range from as low as 20% to as high as 95% depending on the ALL subgroup. ALL accounts 

for 25% of all childhood cancers, making it the most common pediatric malignancy, with a 

peak incidence between 2 to 5 years, being more prevalent in boys (Fig. 1) (Hunger and 

Mullighan, 2015a; Pui et al., 2004). A number of genetic factors were linked with an increased 

risk of pediatric ALL, most notably DS (Buitenkamp et al., 2014). Moreover, several 

polymorphic variants identified by genome-wide association studies, including IKZF1, GATA3, 

ARID5B, CDKN2A and CEBPE, were associated with increased ALL risk (Papaemmanuil et al., 

2009; Sherborne et al., 2010; Trevino et al., 2009). 

Clinical presentation usually reflects the extent of bone marrow infiltration with 

leukemic blasts and extramedullary involvement. Typical symptoms include 

spleno/hepatosplenomegaly, lymphadenopathy, fever and signs of bleeding. Laboratory 
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findings usually demonstrate anemia, neutropenia and thrombocytopenia, reflecting a 

disorder of hematopoiesis. The presence of leukemia in the CNS usually results from the 

spread of leukemic cells. Fortunately, it is found in only 5% of B-ALL patients at the time of 

diagnosis (Laningham et al., 2007). 

A bone marrow aspirate is ordinarily necessary for establishing definite diagnosis of 

leukemia, by identifying the morphology of lymphoblasts via microscopical analysis together 

with defining cell lineage and developmental stage by flow cytometry (Pui et al., 2008). 

Proper risk stratification of ALL patients has immensely improved the therapy of this 

disease. Risk of relapse is the main factor driving therapy intensity. Treatment usually lasts for 

approximately 2 to 3 years. The first phase of treatment, the induction phase, is initiated right 

after diagnosis and is meant to achieve disease remission and the re-establishment of normal 

hematopoiesis in the bone marrow. Consolidation phase, together with intensification play a 

major role in the eradication of persisting leukemic cells that are below the morphological 

detection levels and in the achievement of long lasting remission.  

The majority (80-85%) of pediatric ALL cases are represented by BCP-ALL. These cases 

originated from an early B-cell progenitor. Approximately 15% of pediatric ALL, originated 

from an early T-cell progenitor and therefore represent T-lymphoblastic leukemia (T-ALL).  

1.3.1 Genetic aberrations in ALL 

Pediatric ALL comprises of multiple subtypes with various chromosomal 

rearrangements, gains/deletions of DNA and mutations of common cellular pathways (Fig. 5). 

Precise identification of these genetic alterations is important for diagnosis, prognostic risk 

stratification and subsequent adjustments of therapy. The detection of genetic abnormalities 

is done by conventional genetic methods like fluorescence in-situ hybridization (FISH), 

karyotyping and polymerase chain reaction (PCR) together with the measurement of DNA 

ploidy by flow cytometry (Pui et al., 2004).  

The introduction of genome-wide approaches, namely whole-genome sequencing, 

whole-exome sequencing (WES), whole-transcriptome sequencing (RNA-seq), single 

nucleotide polymorphism arrays (SNP array) together with genome wide gene expression 
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profiling has enabled us to distinguish novel subtypes of ALL (Gu et al., 2019; Iacobucci and 

Mullighan, 2017; Lilljebjorn and Fioretos, 2017). 

 

 

Figure 5: Prevalence of the most common genetic aberrations in pediatric ALL (adapted from 

(Lilljebjorn and Fioretos, 2017; Mullighan, 2012a; Mullighan, 2012b; Schwab and Harrison, 

2018) 

 

1.3.1.1. BCP-ALL 

Selected BCP-ALL subtypes are introduced below. The list is not exhaustive and doesn’t include 

all known and described BCP-ALL subtypes.  

High hyperdiploid ALL 

Leukemic blasts harboring 51-67 chromosomes are defined as high hyperdiploid. This 

most common cytogenetic abnormality in pediatric BCP-ALL is associated with a favorable 

prognosis. The higher the chromosome number, the better the prognosis (Dastugue et al., 

2013). The gain of chromosomes in high hyperdiploid ALL is nonrandom and is featured by 



26 
 

chromosomes 21, X, 6, 4, 10, 17, 14 and 18 (Paulsson et al., 2010; Paulsson and Johansson, 

2009). High hyperdiploidy is considered an early event in leukemogenesis as was confirmed 

by backtracking studies (Gruhn et al., 2008; Taub et al., 2002). It has been suggested that the 

gain of extra chromosomes occurs simultaneously in a single cell division (Paulsson and 

Johansson, 2009). 

Hypodiploid ALL 

Hypodiploid ALL with less than 44 chromosomes has an extremely poor outcome. 

Patients with hypodiploid blast cells are further stratified by chromosome number into three 

subgroups. The near haploid group (24-31) has an event free survival (EFS) as low as 30%. 

Slightly better are the EFS for the two remaining subgroups, low hypodiploid (32-39) and high 

hypodiploid (40-43) (Holmfeldt et al., 2013; Nachman et al., 2007). 

 t(12;21)/ETV6-RUNX1 ALL 

 The most common chromosomal translocation in pediatric BCP-ALL, 

t(12;21)(p13;q22), results in the production of the fusion gene ETV6-RUNX1 (TEL-AML1) 

(Romana et al., 1995b). It is very common in pediatric patients and almost absent in adults. It 

has been shown that this aberration frequently originates in utero (Wiemels et al., 1999). 

Usually cryptic, the translocation is detectable only by FISH analysis and not by conventional 

karyotyping. The oncogenic fusion protein promotes self-renewal and differentiation of B-

progenitor cells. It seems to be necessary in leukemogenesis, but is alone insufficient to cause 

overt leukemia (Morrow et al., 2004). Patients with this ALL subtype have a very favorable 

prognosis. Occasionally relapses do occur, but tend to respond well to chemotherapy 

(Bhojwani et al., 2012; Loh et al., 2006; Zuna et al., 1999).  

KMT2A-rearranged ALL 

 Rearrangements of the KMT2A gene occur in both ALL and AML. They are specifically 

related to infant leukemia in patients younger than 1 year (Muntean and Hess, 2012; Slany, 

2009). Nearly all KMT2A abnormalities are KMT2A N-terminus in-frame fusions with fusion 

partners, which create a novel oncogene. The KMT2A gene is considered quite promiscuous, 

with more than 120 gene fusion partners described (Meyer et al., 2013; Meyer et al., 2009). 

Nevertheless, nine partner genes represent almost 90% of all rearrangements (Meyer et al., 
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2013; Muntean and Hess, 2012). KMT2A most commonly fuses with AFF1 (AF4), MLLT1 (ENL) 

and MLLT3 (AF9). Evidence points to the in utero origin of KMT2A-rearranged leukemias. 

Moreover, they harbor fewer cooperating mutations, when compared with other B-ALL 

leukemias, indicating the strength of the KMT2A oncogene. Patients with the KMT2A-

rearrangement have a significantly poorer prognosis and are treated with intensified therapy 

in most protocols (Meyer et al., 2013; Meyer et al., 2009). 

t(9;22)/BCR-ABL1 ALL 

The BCR-ABL1 fusion oncogene, located on the Philadelphia (Ph) chromosome, results 

from a balanced translocation of chromosome 9 and 22. It was the first cytogenetic 

abnormality to be associated with a particular malignity (Nowell and Hungerford, 1960; 

Rowley, 1973). A portion of the ABL1 tyrosine kinase, residing on chromosome 9, is fused with 

the BCR gene on chromosome 22. The resulting BCR-ABL1 fusion gene generates a 

constitutively active tyrosine kinase, which subsequently deregulates and aberrantly activates 

a number of crucial signal transduction pathways (Lugo et al., 1990). The fusion gene is a 

typical feature of adult chronic myeloid leukemia (CML) and also ALL. It is less common in 

pediatric ALL were it is presents in about 3% of cases. There are two main forms of the fusion 

gene depending on the BCR break point. The Major BCR-ABL1 variant, resulting from 

breakpoints in the major breakpoint cluster region, is typically present in CML patients and 

gives rises to the 210kD protein p210. In ALL patients we tend to find the minor BCR-ABL1 

fusion gene variant which results in the production of protein p190 (Melo, 1996). Until 

recently, the BCR-ABL1 fusion gene was associated with an inferior prognosis (Arico et al., 

2000). The introduction of a specific tyrosine kinase inhibitor, imatinib mesylate, which is 

active against the fusion protein has significantly improved survival (Biondi et al., 2012; Druker 

et al., 2001; Jeha et al., 2014; Schultz et al., 2009). 

B-other ALL 

An important subgroup of precursor B-ALL leukemias are the so-called “B-others”, 

which are represented by leukemias without the above described genetic aberrations and 

account for approximately 25% of all B-ALL cases (Fig. 5) (Inaba et al., 2013; Zaliova et al., 

2019). The availability of modern genome-wide approaches enabled investigation of the 

genetic background of B-other leukemias. A number of novel subtypes have been described 
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within B-other ALL based on unique gene expression signature profiles and recurrent genetic 

aberrations (Gu et al., 2019; Hirabayashi et al., 2017; Lilljebjorn et al., 2016; Rand et al., 2011; 

Zaliova et al., 2019).   

In addition to the subtype defining aberrations, additional genetic abnormalities have 

been identified, with some proven to be therapeutically relevant, like for example the IKZF1 

deletion (IKZF1del) which has been associated with increased risk of relapse (Clappier et al., 

2015; Dorge et al., 2013; Mullighan et al., 2009b). Moreover a group of aberrations in genes 

encoding cytokine receptors, kinases and regulators of intracellular signaling which eventually 

result in the activation of kinases seems to be therapeutically relevant, namely aberrations in 

the CRLF2, KRAS, NRAS, ZEB2 and fusions involving JAK2, ABL1, EPOR (Mullighan et al., 2009a; 

Perentesis et al., 2004; Roberts et al., 2012; Zhang et al., 2011).  

BCR-ABL1-like/Ph-like ALL  

The BCR-ABL1-like ALL is a new entity, which was recognized by the 2016 WHO 

classification, mainly due to its responsiveness to tyrosine kinase inhibitors (TKI) and clinical 

relevance (Arber et al., 2016). This subgroup lacks the BCR-ABL1 fusion gene, but its expression 

profile resembles BCR-ABL1-positive ALLs (Den Boer et al., 2009; Mullighan et al., 2009b). The 

incidence of BCR-ABL1-like ALL increases with age (Roberts et al., 2017; Roberts et al., 2014a). 

It is associated with poor response to therapy and overall poor prognosis (Roberts et al., 

2014a). Recurrent genetic aberrations in BCR-ABL1-like ALLs are represented by IKZF1 

deletions, mutations and rearrangements of the CRLF2 gene, rearrangement of JAK2 and ABL-

class genes and mutations activating the RAS and JAK/STAT signaling pathways (Roberts et al., 

2017; Roberts et al., 2014a).  

In BCR-ABL1-like ALLs CRLF2 is either translocated into the heavy chain locus of the 

immunoglobulin gene (IGH) or a deletion upstream of the CRLF2 gene causes the production 

of a P2RY8-CRLF2 fusion (Yoda et al., 2010). CRLF2-rearranged ALLs usually harbor additional 

aberrations activating signaling pathways (Mullighan et al., 2009c; Roberts et al., 2017). Poor 

prognosis has led to the investigation of specific kinase inhibitors which would target the 

aberrant signaling in these patients (Maude et al., 2012; Waibel et al., 2013). 
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ETV6-RUNX1-like ALL 

The ETV6-RUNX1-like leukemias display the same gene expression pattern as ETV6-

RUNX1-positive ALL cases, albeit not having the fusion gene (Lilljebjorn et al., 2016; Zaliova et 

al., 2017). This subgroup harbors deletions or various structural aberrations of the ETV6 gene 

together with alterations of IKZF1. The expression of surface markers CD27 and CD44 is also 

similar as in ETV6-RUNX1-positive ALL cases (Zaliova et al., 2017), supporting the biological 

proximity of these two ALL subgroups. 

DUX4-rearranged ALL 

The deregulation of the transcription factor DUX4 (double homeobox 4 gene) in 

childhood ALL has been linked with a distinct gene expression profile and immunophenotype 

(Lilljebjorn et al., 2016; Liu et al., 2016; Yasuda et al., 2016; Zhang et al., 2016). DUX4 is located 

on chromosome 4, in the subtelomeric D4Z4 repeat region. The translocation of DUX4 to IGH 

causes the expression of its truncated isoform in B lymphocytes (Lilljebjorn et al., 2016; Liu et 

al., 2016; Yasuda et al., 2016; Zhang et al., 2016). Rarely, DUX4 can be inserted into the ERG 

gene (Lilljebjorn et al., 2016). The short DUX4 protein binds to the intragenic region of the 

gene encoding ERG and leads to the expression of an aberrant ERG protein, which inhibits ERG 

wild type transcriptional activity (Zhang et al., 2016).  

ZNF384-rearranged ALL 

The zinc finger encoding gene ZNF384 plays an important role in the process of matrix 

metalloprotease regulation. The rearrangements of ZNF384 involves a fusion partner gene, 

usually a chromatin modifier or transcriptional regulator (for example: CREBBP, EP300, TAF15, 

ARID1B, TCF3) (Hirabayashi et al., 2017; Liu et al., 2016; Shago et al., 2016; Yasuda et al., 2016). 

The B precursor leukemias harboring the ZNF384 rearrangement have intermediate 

prognosis.  

MEF2D-rearranged ALL 

Rearrangements of the myocyte enhancer factor 2D (MEF2D) are present in 

approximately 3% of children with BCP-ALL and 6% of adults (Liu et al., 2016; Zaliova et al., 

2019). MEF2D is most commonly rearranged to BCL9 (Gu et al., 2016). The resulting fusion 

proteins are more active and show transforming potential. Increased transcriptional activity 
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in the leukemic cells leads to enhanced expression of HDAC9 (histone deacetylase 9), making 

them particularly sensitive to histone deacetylase inhibitors in vivo (Gu et al., 2016). 

1.3.1.2. ETV6-ABL1-positive ALL 

The ETV6-ABL1 fusion is a rare event in ALL were it represent 0,2% of cases in children 

and 0,4% of cases in adults. Moreover it is also recurrently found in patients with CML without 

BCR-ABL1 and in AML (Zaliova et al., 2016; Zuna et al., 2010). Similarly to the BCR-ABL1 fusion 

gene, which is far more frequent, it is a kinase activating lesion leading to the deregulation of 

cellular survival and growth and subsequently transforming the affected cell into a leukemic 

blast (Hannemann et al., 1998; Million et al., 2004; Okuda et al., 1996; Papadopoulos et al., 

1995; Pendergast et al., 1993). Interestingly ETV6-ABL1 does not induce leukemic 

transformation in mice, unlike BCR-ABL1. On the other hand, it causes a chronic 

myeloproliferation, that is similar to the one induced by BCR-ABL1 in CML (Million et al., 2002). 

Its genomic profile closely resembles the BCR-ABL1-positive and BCR-ABL1-like ALLs. Most 

patients harbor deletions in the CDKN2A/B and IKZF1 genes (Zaliova et al., 2019). The 

expression profile analysis clusters patients positive for ETV6-ABL1 parallel to the BCR-ABL1 

cases, therefore usually classifying them into the BCR-ABL1-like ALL subgroup. The ETV6-ABL1 

fusion gene is associated with poor prognosis in acute leukemias (Zuna et al., 2010). It has 

been shown in vitro that the aberrant kinase can be inhibited by imatinib, a TKI used for 

treatment of BCR-ABL1-positive leukemias, therefore making it a potential treatment option 

also in leukemias harboring the ETV6-ABL1 fusion (Carroll et al., 1997; Zaliova et al., 2016).  

1.3.1.3. T-ALL 

More than half of T-ALL patients harbor chromosomal translocations. These 

translocations usually involve the T-cell receptor alfa (TRA), T-cell receptor delta (TRD) loci 

(14q11) and the T-cell receptor beta (TRB) region (7q34). The chromosomal rearrangements 

juxtapose the T-cell receptor genes to genes encoding for transcription factors, such as LYL1, 

TAL1, TAL2, LMO1, LMO2, TLX1, TLX3, MYC, MYB and HOXA genes. Moreover, T-ALLs can 

contain cryptic rearrangements of ABL1, like ETV6-ABL1, EML1-ABL1 and NUP214-ABL1 

(Durinck et al., 2015; Liu et al., 2017). 
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Activating mutations in NOTCH1 are present in approximately 60% of T-ALLs (Weng et 

al., 2004). They are together with CDKN2A and CDKN2B deletions the most prevalent T-ALL 

alterations (Girardi et al., 2017). Other molecular alterations include JAK1 and JAK3 mutations 

resulting in constitutive activation of JAK/STAT signaling (Liu et al., 2017; Van Vlierberghe and 

Ferrando, 2012). 

2. Myeloid leukemogenesis in Down syndrome 

Down syndrome (DS) was described clinically in 1866 by Langdon Down (Down, 1866) 

and was associated with trisomy of the 21 chromosome a century later (Lejeune et al., 1959). 

Prevalence of the disorder correlates with maternal age and is approximately 1/700 (Mai et 

al., 2019). In 95% of cases, trisomy 21 in Down syndrome patients is due to chromosomal non-

disjunction in meiosis. Three percent of patients harbor translocations that involve the 

additional 21 chromosome or its part. A small group of patients, approximately 2%, are 

affected by mosaic Down syndrome, where a portion of the patient’s cells have trisomy 21, 

while the rest are disomic. The range of the affected cells may vary significantly and can be 

organ or tissue specific. The clinical presentation of DS is associated with typical facial features 

(almond shaped eyes, flattened face, macroglossia, short neck), weak muscle tone, 

developmental delay, congenital heart disease, Alzheimer’s and importantly leukemia (Roizen 

and Patterson, 2003). Interestingly, DS is associated with a lower incidence of solid tumours 

(Hasle et al., 2000). 

A broad spectrum of hematological malignancies has been described in patients with 

DS, ranging from benign to malignant conditions (David et al., 1996; de Hingh et al., 2005; 

Henry et al., 2007; Kivivuori et al., 1996; Starc, 1992; Watts et al., 1999; Webb et al., 2007). 

The incidence of both AML and ALL is increased in DS patients (Table 1) (Hasle et al., 2000). 

Acute myeloid leukemia in DS occurs at a younger age.  The most striking difference from the 

general population is the risk of acute megakaryoblastic leukemia (AMKL), which is 500 times 

higher in patients with DS, than in healthy age-matched individuals. AMKL is a subtype of AML 

and it may be preceded, in DS patients, by a preleukemic phase termed transient 

myeloproliferative disorder (TMD). 

Children with DS are more sensitive to chemotherapy and therefore intensity reduced 

regiments in the treatment of AML are recommended, usually without the need of 
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hematopoietic stem cell transplantation (HSCT) (Creutzig et al., 2012). This approach results 

in survival rates of more than 85% (Creutzig et al., 2005; Kudo et al., 2010; Kudo et al., 2007). 

On the other hand, survival rates of children with ALL in DS are poorer than in non-DS ALL 

patients, mainly due to higher relapse occurrence (Buitenkamp et al., 2014).  

 

Table 1: Acute leukemia in children with and without Down syndrome (adapted from Hitzler 

and Zipursky, 2005).  

 

Trisomy 21 is believed to play an essential role in the pathogenesis of TMD and DS-

AMKL. This is exemplified by the fact that both TMD and DS-AMKL require trisomy 21 in the 

blast cells.  

Despite, that the long arm of chromosome 21 (HSA21) is the most studied 

chromosome (Antonarakis, 2017) its biological role in leukemogenesis remains elusive. 

Trisomy 21 has been shown to increase fetal hematopoietic stem cell self-renewal. It 

accelerates the expansion of early hematopoietic progenitor cells, namely the erythro-

megakaryocytic progenitor compartment (Chou et al., 2008). Moreover, it has been 

postulated by Banno and colleagues, that gene dosage alterations of ERG, RUNX1 and ETS2, 

which are located in a 4-Mb region on HSA21, is critical for the deregulating effects on 

hematopoiesis (Banno et al., 2016). 
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To study the contribution of trisomy 21, induced pluripotent stem (iPS) cells originating 

from DS patients have been established and analyzed for hematopoietic differentiation (Chou 

et al., 2012; Li et al., 2012; Maclean et al., 2012). When cultured under conditions supporting 

primitive hematopoiesis, erythropoiesis was enhanced, myelopoiesis was reduced and 

megakaryocytes were normally produced (Chou et al., 2012). Interestingly, when the iPs cells 

were cultured in conditions supporting differentiation into fetal liver-derived definite 

hematopoietic cells, the trisomic iPs cells showed an increase in multi-lineage colony forming 

potential (Maclean et al., 2012). There was no difference between trisomic iPS cells and 

disomic iPs cells when assessed in conditions appropriate for generating erythroblast co-

expressing fetal and embryonic globin genes (Li et al., 2012). These studies on iPS cells suggest 

that the influence of the additional chromosome 21 on hematopoiesis is dependent on the 

hematopoietic microenvironment.   

Multiple DS mouse models were used to examine the hematopoietic phenotype 

induced by trisomy 21. The Tc1 mice are a transchromosomic line which carries a freely 

segregating copy of human chromosome 21 (Wiseman et al., 2009). These mice present with 

macrocytic anemia together with an increased number of megakaryocytes and in the elderly 

with signs of extramedullary hematopoiesis. Interestingly, major changes in frequencies of 

erythroid progenitors, myeloid progenitors and megakaryocytes were not seen in the fetal 

liver (Alford et al., 2010). Ts16 mice are trisomic for mouse chromosome 16, which is synthetic 

of human chromosome 21 (Epstein et al., 1985; Gropp et al., 1974; Vacano et al., 2012). The 

Ts16 mouse line showed reduced myelopoiesis and increased erythropoiesis during the 

embryonic period (Gjertson et al., 1999). These mice do not survive postnatally, therefore 

their defects in hematopoiesis during this period are uncertain. Ts1Rh, Ts1Cje and Ts65Dn 

mice are lines of euploid DS model mice that bear a region of mouse chromosome 16 which 

contains 33, 81 and 104 genes, respectively. The Ts1Rh mice showed thrombocytosis and 

anemia in adulthood. The number of B-cell progenitors was reduced in Ts1Rh mice and their 

bone marrow cells differentiated preferentially toward granulocytes and monocytes (Lane et 

al., 2014; Malinge et al., 2012). Except for an increase in the HSC population, no hematological 

abnormalities were observed in the embryonic stage of Ts1Rh mice. Disturbed erythropoiesis 

was found in Ts1Cje mice. However, they never developed myeloproliferative diseases or 

thrombocytosis (Carmichael et al., 2009).  In contrast, progressive myeloproliferative diseases, 
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defects of stem cell function and macrocytic anemia were seen in the Ts65Dn mice (Kirsammer 

et al., 2008). The hematological phenotypes of these studied DS model mice lines show 

partially overlapping features with those seen in DS patients, however none of the studied 

mice acquire Gata1 mutations or develop leukemia (Shimizu and Yamamoto, 2015). 

2.1. Transient myeloproliferative disorder 

Transient myeloproliferative disorder (TMD), or transient abnormal myelopoiesis 

(TAM), is a unique and complex preleukemic condition with a specific genetic background and 

a perturbance of fetal hematopoiesis, which affects 10% of neonates with DS. TMD usually 

presents right after birth (Klusmann et al., 2008; Massey et al., 2006; Muramatsu et al., 2008) 

and in most cases resolves spontaneously without intervention in the first few months of life, 

hence the description transient (Klusmann et al., 2008). Nevertheless, approximately 20% of 

TMD patients progress to AMKL in the first 4 years of life, therefore these patients have to be 

closely monitored in this given timeframe (Gamis et al., 2011; Klusmann et al., 2008; Lange et 

al., 1998; Massey et al., 2006).    

The majority of patients present with clinical symptoms and approximately 10% are 

asymptomatic (Klusmann et al., 2008). Hepatomegaly and splenomegaly are common features 

of this disorder, due to the fact, that blasts in TMD likely originate in the fetal liver (Klusmann 

et al., 2008). Rarely, liver fibrosis can occur with life-threatening consequences (Al-Kasim et 

al., 2002). Skin infiltrations in the form of a rash are another common presentation. Less 

frequent symptoms include pericardial effusions, pulmonary edema, ascites and hydrops 

fetalis (Al-Kasim et al., 2002; Zipursky, 2003). Morphological examination of the peripheral 

blood and the bone marrow usually reveals a myeloid-appearing blast population that can be 

quite heterogeneous and vary in number. Megakaryoblasts are commonly present, some with 

characteristic protruding cytoplasmic blebs, together with features of dyserythropoiesis. 

Various alterations in the level of white blood cells, thrombocytes and hemoglobin may be 

observed (Roy et al., 2009).   

Most TMD patients do not require chemotherapy. Nonetheless, symptomatic 

neonates with liver dysfunction or a high percentage of blasts in the peripheral blood, may 

profit from brief treatment with low doses of cytosine arabinoside (Klusmann et al., 2008; 
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Massey et al., 2006). The mortality rate of TMD is about 20% (Klusmann et al., 2008; Massey 

et al., 2006; Muramatsu et al., 2008; Zipursky, 2003). 

The clonal expansion of hematopoietic progenitors, resulting in TMD is exclusively 

associated with two molecular factors – the extra copy of chromosome 21 and mutations in 

the megakaryocyte-erythroid transcription factor gene GATA1. This unique leukemic 

predisposition, presented only in neonates with DS, or in phenotypically normal neonates with 

trisomy 21 mosaicism, or very rarely in patients with somatic trisomy 21 solely in the blast 

population, underlines the important role that trisomy 21 is believed to play in the 

pathogenesis of this condition. Moreover, somatic mutations in GATA1 result in the sole 

expression of a shorter isoform of GATA1, the so called GATA1s protein, while eliminating the 

expression of full-length GATA1. Additional genetic aberrations may be present, as was 

recently exemplified by the largest sequencing study of TMD and AMKL patients so far by 

Labuhn and colleagues (Labuhn et al., 2019). 

Due to the omnipresence of GATA1 mutations and trisomy 21 in TMD, both should be 

investigated and validated to achieve proper diagnosis. Mutations in GATA1 may also serve as 

useful markers to monitor MRD and TMD progression in individual patients. In the recent 

recommendations of the British Society for Haematology, DS-TMD was defined as the 

presence of >10% of blasts in the peripheral blood, together with a GATA1 mutation and/or 

clinical features of DS-TMD in a child with DS or mosaic trisomy 21 (Tunstall et al., 2018). 

The multi-step process of TMD progression into AMKL has provided an essential in vivo 

model to study myeloid leukemogenesis. Trisomy 21 together with acquired somatic 

mutations of the GATA1 gene in stem cells or hematopoietic progenitors initiate the process 

of transformation during prenatal hematopoiesis (Fig. 6). At birth, multiple clones harboring 

GATA1 mutations may be present. However, in most cases of overt TMD, one clone is 

predominant (Hitzler and Zipursky, 2005). TMD manifests itself before, or usually right after 

birth as a preleukemia, in most cases resolves spontaneously and may later on progress to 

full-blown leukemia. In the majority of cases, trisomy 21 together with GATA1s is sufficient to 

initiate TMD, were exonic variants are relatively rare (Labuhn et al., 2019). The progression 

into leukemia on the other hand occurs, when the GATA1-mutated cells acquire additional 

somatic aberrations. The secondary transforming events most frequently occur in genes 
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encoding signaling molecules (JAK/STAT pathway, RAS-RAF-ERK pathway, RUNX1, TP53…), 

epigenetic regulators (KANSL1, SUZ12, EZH2…) and members of the cohesin protein family 

(STAG2, RAD21, SMC1A, CTCF…) (Labuhn et al., 2019; Nikolaev et al., 2013; Walters et al., 

2006; Yoshida et al., 2013). 

2.2. Acute megakaryoblastic leukemia of Down syndrome 

A characteristic molecular signature of trisomy 21, GATA1 mutations and additional 

somatic aberrations, characterizes DS-AMKL (Bourquin et al., 2006; Gruber and Downing, 

2015). Together with better outcome, it distinguishes itself from non-DS AMKL which 

frequently harbors chimeric oncogenes of hematopoietic gene origin and in which outcome 

tends to be poor (Gruber and Downing, 2015). Virtually all cases of DS-AMKL occur in the first 

5 years after birth  (Hasle et al., 2008) and about 20-30% of them are preceded by TMD (Fig. 

6). 

 

 

Figure 6: Multi-step model of leukemogenesis in TMD and AMKL (adapted from Crispino and 

Horwitz, 2017; Gruber and Downing, 2015; Hitzler and Zipursky, 2005)  
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3. GATA transcription factor family 

The GATA gene family consists of six members (GATA1-6) that are structurally related 

and function as master regulators of transcription in a tissue-specific manner (Bresnick et al., 

2012; Chlon and Crispino, 2012). Each transcription factor contains a C-terminal and an N-

terminal Cys4-type zinc finger. GATA1 plays together with GATA2 a major role in normal 

hematopoiesis. As mentioned above, when mutated in the cell context of trisomy 21, GATA1 

mutations lead to TMD and/or AMKL. When mutated in germline, GATA1 aberrations result 

in a wide range of hereditary sex-linked forms of anemias and thrombocytopenias (Crispino 

and Weiss, 2014; Millikan et al., 2011; Nichols et al., 2000). Somatic mutations of GATA2 can 

be associated with myelodysplastic syndrome or AML, germline mutations on the other hand 

lead to the GATA2 deficiency syndrome (Collin et al., 2015; Shiba et al., 2014). GATA1 and 

GATA2 regulate each other’s expression. First, GATA2 initiates the expression of GATA1 in 

early megakaryocyte-erythroid progenitor cells. In comparison, GATA2 gene expression is 

down regulated by GATA1, which additionally activates its own expression. This phenomenon 

is known as GATA factor switching (Kaneko et al., 2010). Balance between these two 

transcription factors is crucial for proper hematopoiesis. GATA3 is widely expressed. In the 

immune system it controls T-cell proliferation (Wang et al., 2013). Interestingly, common 

GATA3 variants have been linked with Ph-like ALL in children and with the risk of relapse 

(Perez-Andreu et al., 2013). The remaining members GATA4, GATA5 and GATA6 play a role in 

the cardiovascular system, mainly during heart formation and are recurrently mutated in 

patients with congenital heart disease (Peterkin et al., 2005; Wei et al., 2013).  

3.1. GATA1 in hematopoiesis 

The GATA1 gene is located on the short arm of chromosome X, consists of 6 exons and 

encodes the GATA-binding factor 1 protein, which has a transactivation domain (TAD) and two 

centrally located zinc-finger domains, the N-terminal zinc-finger (NZF) and the C-terminal zinc-

finger domain (CZF) (Fig. 7). It is expressed in megakaryocytes, erythroid cells, mast cells, 

basophils and also in Sertoli cells (Onodera et al., 1997a; Onodera et al., 1997b; Yamamoto et 

al., 1997). The NZF plays a role in stabilizing GATA1 during its binding to DNA and in the 

specificity of the binding (Fig. 8). It enables the binding of GATA1 to a number of binding sites. 

These binding sites contain a palindromic recognition sequence (Trainor et al., 1996). 
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Moreover, NZF recruits and interacts with FOG1, a key cofactor of GATA1 (Tsang et al., 1997) 

(Fig. 7, 8). The CZF is necessary for GATA consensus sequence (A/T)GATA(A/G) recognition and 

for proper DNA binding activity (Evans et al., 1988; Martin et al., 1989; Tsang et al., 1997; Wall 

et al., 1988; Yang and Evans, 1992). Moreover, it plays an important role in the interaction of 

GATA1 with transcription factors like PU.1 and Sp1 (Merika and Orkin, 1995; Rekhtman et al., 

1999). The N-terminally located 83 residues of TAD have a strong transactivation potential on 

reporter genes that contain the GATA binding consensus sequence (Martin and Orkin, 1990). 

The necessity of GATA1 in erythropoiesis was first demonstrated with Gata1-null mouse 

embryos, which died from anemia at E10.5-E11.5 (Fujiwara et al., 1996). Remarkably, a 

different effect of GATA1 loss has been observed in megakaryocytes, which proliferate 

extensively, but fail to differentiate (Shivdasani et al., 1997). Megakaryocytes lacking GATA1 

possess various abnormalities (Vyas et al., 1999). Moreover, GATA1 has been associated with 

the development of basophils (Nei et al., 2013), mast cells (Migliaccio et al., 2003), eosinophils 

(Hirasawa et al., 2002; Yu et al., 2002) and dendritic cells (Kozma et al., 2010).  

Friend of GATA 1 (FOG1), an important cofactor of GATA1 as its name suggests, is a 

zinc finger protein that plays an essential role in hematopoiesis by binding and interacting with 

GATA1, through the NZF domain (Fig. 8). This interaction seems to be indispensable for FOG1 

in order to fulfil its role in megakaryopoiesis (Chang et al., 2002). Interestingly, absence of 

Fog1 in mice causes embryonic lethality due to severe anemia (Tsang et al., 1998). A number 

of point mutations in GATA1 that result in benign hematological disorders have been 

identified. Some, most notably mutations in V205 (Nichols et al., 2000), D218 (Freson et al., 

2001; Freson et al., 2002) and G208 (Mehaffey et al., 2001), which lead to various forms of 

anemias and thrombocytopenias, affect the affinity of GATA1 for FOG1, without influencing 

binding to DNA (Fig. 8). Aberrations of the NZF, like for example R216W effect GATA1 binding 

to DNA and GATA1 target gene expression (Fig. 8) (Phillips et al., 2007).  
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Figure 7: Schematic representation of the GATA1 gene. Both GATA1 wild type (wt) and GATA1s 

(GATA1 short) are expressed in healthy hematopoietic cells. Frameshift mutations in the 

second exon lead to the sole expression of GATA1s, with the loss of expression of the longer wt 

isoform. GATA1s lacks the transactivation domain (TAD). N-terminal zinc finger (NZF), C-

terminal zinc finger (CZF) (Lukes et al., 2020). 

 

Figure 8: Benign hematological disorders frequently harbor mutations affecting the N-terminal 

zinc finger (NZF) of GATA1 (adapted from Crispino and Horwitz, 2017) 

 

3.2. GATA1 mutations in TMD and AMKL 

Healthy human hematopoietic cells express two types of the GATA1 protein. The full-

length GATA1 and an alternative splicing variant, which originates from skipping of the second 

exon and is identical to GATA1s found in TMD and lacks the 83 N-terminal amino acids, which 

encode for TAD (Shimizu and Yamamoto, 2015; Wechsler et al., 2002). It utilizes an alternative 

translation initiation codon (Met84) in the third exon, instead of the translation initiation 

codon used by GATA1 full-length in exon 2 (Fig. 7) 

In TMD and DS-AMKL somatic mutations in GATA1 result in the exclusive production 

of GATA1s, nullifying the expression of GATA1 full-length (Fig. 7). Mutations, usually in the 

form of frameshift and nonsense mutations in the second exon, lead to an introduction of a 
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premature stop codon or possibly to the loss of the adjoining splice site (Alford et al., 2011). 

On a large cohort of DS patients using targeted NGS, Roberts and colleagues showed that 30% 

of patients with DS harbor GATA1 mutations. Interestingly, only one-third of them had clinical 

and hematological findings, which correlates with the previously published studies that 

suggest a 10% occurrence of TMD in DS (Roberts et al., 2013).  

Transgenic mice expressing GATA1s have been established in the past to investigate 

the function of GATA1s in vivo. Transgenic expression of GATA1s rescued males deficient for 

GATA1 from embryonic lethality (Shimizu et al., 2001). Interestingly, an accumulation of 

immature megakaryocytes was observed in fetal liver of the rescued mice (Shimizu et al., 

2009). However, this phenotype disappeared after birth, pointing to the fact that in mice 

GATA1s can provoke a TMD-like condition regardless of trisomy of chromosome 16, which 

serves as an equivalent to the human chromosome 21 (Shimizu et al., 2009). Transgenic mouse 

lines expressing low or high levels of GATA1s have been assessed for rescue analysis. 

Interestingly, low levels of GATA1s predisposed the mice to developing leukemia, while high 

levels of GATA1s never led to leukemia development in the studied mice (Shimizu and 

Yamamoto, 2015). Gene targeting has led to the establishment of mouse lines expressing 

GATA1 which lacked the 63 N-terminal amino acids (Li et al., 2005). This mouse model showed, 

that GATA1s leads to a hyperproliferation of a unique population of fetal liver progenitors and 

doesn’t affect the adult hematopoiesis (Li et al., 2005). Another mouse model was created by 

deleting the second exon of GATA1 (Gata1Δe2), leading to exclusive production of GATA1s in 

the Gata1Δe2 mice, also causing a transient hyperproliferative phenotype of the early 

embryonic megakaryocytes (Li et al., 2005). The here described models support the 

postulation that GATA1s alone causes the hypeproliferation of fetal liver megakaryocytic 

progenitors in mice (Li et al., 2005; Shimizu et al., 2009; Shimizu and Yamamoto, 2015). This 

observation was later validated in a CRISPR/Cas9 model of TMD in human fetal HSPCs 

(Gialesaki et al., 2018). Altogether, evidence clearly suggests that TMD initiates during fetal 

hematopoiesis and that GATA1s plays a major role in its pathogenesis. 
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4. JAK/STAT signalling pathway 

The Janus Kinase/Signal Transducer and Activator of Transcription (JAK/STAT) pathway 

plays a key role in hematopoiesis, growth, cell differentiation and immunity by mediating 

signals of more than fifty cytokines, hormones and growth factors (Constantinescu et al., 2013; 

Ihle, 1995; Rawlings et al., 2004; Schindler et al., 2007; Schindler, 2002; Villarino et al., 2015). 

There are four members in the JAK family: JAK1, JAK2, JAK3 and Tyk2. These intracellularly 

located, receptor associated, non-receptor protein tyrosine kinases are activated by receptor 

multimerization after ligand-binding (Haan et al., 2006; Ihle and Kerr, 1995). Activated JAKs 

phosphorylate their constitutively associated receptors and most importantly the STAT 

molecules, which consequentially dimerize and are trafficked into the nucleus, where they 

bind to specific DNA sequences and regulate target gene transcription (Becker et al., 1998; 

Chen et al., 1998; Darnell, 1997; Horvath and Darnell, 1997) (Fig. 9).  

 

Figure 9: JAK/STAT signalling pathway (adapted from Heinrich et al., 2003 and Haan et al., 

2006). Y (Tyrosine residues), P (phosphorylation). 
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JAKs consist of four domains, the N-terminally located FERM-domain, SH2-like domain, 

pseudokinase domain and a C-terminally located signalling protein kinase domain, that is 

catalytically active (Fig. 10). The two-faced god Janus gave JAKs their name, due to its 

resemblance with the two kinase domains that are present in JAKs. The JAK-receptor 

interaction is mediated by the FERM domain and the SH2-like domain (Radtke et al., 2005; 

Zhao et al., 2009), which also seem to play a role in JAK kinase activity regulation (Zhao et al., 

2010). The pseudokinase domain, shares a similarity with other kinase domains, like with the 

adjacent tyrosine kinase domain, but lacks crucial residues and therefore remains catalytically 

inactive. Nevertheless, it is believed to play a critical role in regulating the JAK kinase domain 

(Saharinen et al., 2000; Toms et al., 2013). 

 

 

Figure 10: Domain organization of the JAK1 protein (Lukes et al, 2020) 

 

4.1. JAK mutations in hematology 

Aberrant activation of JAK/STAT signalling plays a major role in hematological 

malignancies. Mutations in the JAK family are usually point mutations and are often associated 

with inferior prognosis (Flex et al., 2008). Interestingly, somatic gain of function mutations are 

most frequently located in the pseudokinase domain (Haan et al., 2010).  

Somatic JAK1 mutations occur recurrently in both childhood and adult acute leukemias 

(Jeong et al., 2008; Zhang et al., 2012). In adults they are present in about 20% of T-cell 

precursor ALL and have been linked to poor prognosis and response to therapy (Flex et al., 

2008). JAK1 mutations are less common, but still recurrent, in B-cell ALL (Mullighan et al., 

2009c), T-cell prolymphocytic leukemia (Bellanger et al., 2014) and in AML (Xiang et al., 2008). 

The aberrations are usually located in the pseudokinase domain, as for example the V658F 

mutant (Flex et al., 2008; Jeong et al., 2008), that has been proven as activating (Staerk et al., 

2005) and is an equivalent to the frequent and well-studied JAK2 V617F. The crystal structure 

of the JAK1 pseudokinase mutant V658F has served as a model for deciphering the role of the 
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pseudokinase in JAK activation. It has been postulated that three residues, Val658, Phe575 

and Phe636, termed as the F-F-V triad, play an important role in this process (Toms et al., 

2013). The triad is highly conserved and seems to be evolutionarily coupled. If Val658 is 

mutated into Phe658, as in the JAK1 V658F mutant, upon activation the Phe658 displaces 

Phe575, causing a switch resulting in the rearrangement of the SH2-PK linker (Fig. 11). 

 

 

Figure 11: The pseudokinase domain in JAK1 wild type (blue) and in the JAK1 V658F mutant 

(grey). A conformation switch can be observed in JAK1 V658F, with the displaced F575 residue.  

 

JAK2 mutations, which are associated with rearrangements of CRLF2 (Mullighan et al., 

2009a), are present in 20% of B-ALL patients with DS (Gaikwad et al., 2009; Kearney et al., 

2009) and in a lesser extent also in non-DS patients (Mullighan et al., 2009c). Importantly, JAK2 

mutations have been tightly linked with myeloproliferative neoplasms (Baxter et al., 2005). 

The substitution of valine 617 to phenylalanine (JAK2 V617F) is present in more than 90% of 

patients with polycythemia vera (James et al., 2005; Kralovics et al., 2005) and in 50% of 

patients with essential thrombocythemia and primary myelofibrosis (Levine et al., 2005). It is 

a gain of function mutation that is thought to activate JAK2 by the same conformation switch 

as described above on the JAK1 V658F mutant (Fig. 11). In this case the three crucial residues 

are represented by V617, F537 and F595 (Bandaranayake et al., 2012; Leroy et al., 2016; Toms 

et al., 2013). In vitro, JAK2 V617F induced cytokine independent growth (James et al., 2005) 

and a myeloproliferative-like disorder in vivo in mouse models (Lacout et al., 2006).  
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Mutations in JAK3 have been associated with T-ALL (Zhang et al., 2012), adult T-cell 

leukemia and lymphoma (Elliott et al., 2011; Kameda et al., 2010) and also with TMD and 

AMKL (De Vita et al., 2007; Kiyoi et al., 2007; Malinge et al., 2008; Riera et al., 2011; Walters 

et al., 2006). 
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Aims 

 

The aim of this Ph.D. study was to identify and subsequently characterize novel genetic 

aberrations in childhood acute leukemias. 

1. To elucidate the alternative pathogenic mechanism of TMD development in the absence 

of trisomy 21. 

a. perform comprehensive genomic and transcriptomic profiling of a non-Down 

syndrome TMD.  

b. characterize the novel GATA1 D65_C228del mutation 

c. characterize the novel JAK1 F636del mutation 

d. study the impact of JAK1 F636del on GATA1s induced deregulation of erythroid and 

megakaryocytic lineage development in a murine TMD model 

2. To characterize two novel fusion gene, AIF1L-ETV6 and ABL1-AIF1L, in an ETV6-ABL1-

positive pediatric ALL and to describe the chromosomal rearrangement(s) that led to their 

formation. 

 a. thoroughly analyze the genomic profile of an exceptional ETV6-ABL1-positive ALL 

b. identify genomic fusion sites of the AIF1L-ETV6, ABL1-AIF1L and ETV6-ABL1 fusion 

genes 

c. characterize the chromosomal rearrangement(s) that led to the production of the 

fusion genes 

d. perform backtracking analysis in order to investigate the potential prenatal origin of 

the observed rearrangement(s). 

e. analyze potential AIF1L chimeric proteins 

3. To investigate the feasibility of genomic fusion identification and subsequent fusion-gene 

based MRD monitoring in patients harboring PML-RARA, CBFB-MYH11 or RUNX1-RUNX1T1. 

 - results not discussed in the thesis; manuscript under consideration (attached) 
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Methods 

Biological samples 

Total DNA and RNA was isolated from mononuclear cells that were separated by 

density centrifugation of patient’s diagnostic and remission bone marrow aspirates and 

peripheral blood samples as part of the routine sample processing procedure. The archived 

Guthrie card containing the patient’s neonatal blood was obtained from the national central 

repository. The study was approved by the Institutional Review Board of the University 

Hospital Motol and informed consent was obtained from patients’ parents in accordance with 

the Declaration of Helsinki. 

 

Single-nucleotide polymorphism assay (SNPa) 

Copy number aberrations (CNA) and regions of uniparental disomy (UPD) were 

analyzed using CytoScan HD array (Affymetrix, Santa Clara, CA, USA). The Chromosome 

Analysis Suite software (Affymetrix) was used for genotype calling, quality control, CNV/UPD 

identification and data visualization. Results were manually curated, deletions corresponding 

to somatic rearrangements of the immunoglobulin and T-cell receptor gene loci and common 

population variations were excluded. In case of the TMD patient a sample of peripheral blood 

containing 56% of blasts (as assessed by flow cytometry) was utilized for the analysis. For the 

patient with pre-BCP ALL, the SNPa analysis was performed as a service in the Laboratory for 

Molecular Biology and Tumor Cytogenetics at the Department of Internal Medicine of Hospital 

Barmherzige Schwestern (Linz, Austria). 

 

Analysis of acquired mutations and fusion transcripts by whole exome and whole 

transcriptome sequencing 

DNA and total RNA was used for sequencing libraries preparation using Agilent 

SureSelectXT HumanAllExon V5 and Agilent SureSelect mRNA Strand Specific kits, 

respectively, according to the manufacturer’s instructions (Agilent Technologies, Santa Clara, 

CA, USA). Read pairs were aligned to the human genome reference (hg19) using BWA (Li and 
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Durbin, 2010) (WES) and STAR (Dobin et al., 2013) (RNAseq) aligners and further processed by 

Picard tools (http://broadinstitute.github.io/picard/). VarScan (Koboldt et al., 2012) (WES) and 

Samtools (http://samtools.sourceforge.net/; RNAseq) were used for variant calling. Variants 

detected in remission samples were excluded from the analysis. TopHat (Kim and Salzberg, 

2011) and deFuse (McPherson et al., 2011) algorithms were used for the analysis of presence 

of fusion transcripts in RNAseq data.  

In the case of the trisomy 21-independent TMD patient the peripheral blood sample 

containing 56% of blasts was utilized for RNA isolation and subsequent RNAseq. DNA for WES 

was isolated from blasts that were sorted based on their immunophenotype by a fluorescence 

assisted cell sorter (FACS). WES was also performed on DNA isolated from non-tumor cells 

(FACS-sorted peripheral blood B and T lymphocytes) to facilitate the identification of somatic 

tumor-specific SNV and indels. Identified mutations were confirmed by Sanger sequencing and 

were annotated using the following NCBI transcript reference sequences: GATA1 – 

NM_002049.4, JAK1 – NM_002227.2, FN1 – NM_212482.1, SPIRE2 – NM_032451.1. 

 

Fusion gene screening 

 The BCR-ABL1, ETV6-RUNX1, KMT2A-AFF1 and TCF3-PBX1 fusions were screened by 

in-house developed multiplex reverse transcription PCR (RT-PCR). This was done as part of the 

routine molecular genetic diagnostics. A single PCR reaction, which combined primers for all 

four fusion, enabled the amplification of the ETV6-ABL1 fusion. 

 

Identification of genomic fusion sites  

Long distance PCR was performed using AccuPrime™ Taq DNA Polymerase (Thermo 

Fisher Scientific, Waltham, MA, USA) according to the manufacturer’s instructions. A series of 

primers annealing to various regions of the respective introns of ETV6, ABL1 and AIF1L were 

used. PCR products were analyzed by Sanger sequencing. 
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Backtracking of the ETV6-ABL1 fusion in archived neonatal blood (Guthrie card)  

The specific detection of the ETV6-ABL1 genomic fusion was performed with the 

following PCR primers: 

Primers used for ETV6-ABL1 detection (5’ to 3’) 

forward: GGAAGGAGAGGGAACTATACTTGG 
reverse: CCAGGCCCAATACAATGTAAAATAAAC 

 

The DNA from the patient’s diagnostic bone marrow sample was serially diluted into 

control healthy DNA and was used for the optimization of PCR conditions and to assess proper 

sensitivity. This initial optimization allowed us to achieve a sensitivity of 0.001%. The final PCR 

reaction included 12.5 µl of 2x SureDirect Blood PCR Master Mix (Agilent, Santa Clara, CA, 

USA), 1 µl of each primer (10 µM) and 2.5 µl MgCl2 (25 µM). The final reaction volume was 25 

µl. The cycling conditions were as follows: 5 min at 90oC; 14 cycles at 95oC for 30 sec, 65oC for 

30 sec (-0.5oC each cycle), and 72oC for 1 min; 40 cycles at 95oC for 30 sec, 58oC for 30 sec, and 

72oC for 1 min; 72oC for 5 min. Guthrie card segments (1/12 of blood spot) with the archived 

patient’s neonatal blood were directly added to the PCR tube. Guthrie card segments of the 

corresponding size, but without any blood, were added into the PCR tubes with positive 

control. The positive control tubes contained diluted patients diagnostic DNA. This was done 

in order to demonstrate the actual sensitivity of this assay which could potentially be 

compromised by Guthrie card material presence. The PCR products were finally analyzed by 

Sanger sequencing.  

 

Cloning 

Cloned AMV First-Strand cDNA Synthesis Kit (Thermo Fisher Scientific) was used for 

RNA transcription into cDNA. PCR-amplified whole coding sequences of GATA1 wt, GATA1 

D65_C228del and JAK1 wt were cloned into a pWCC19 vector. InFusion HD Cloning Kit 

(Clontech, Takara Bio, Japan) was used for cloning. Sanger sequencing was used for the 

analysis of inserted coding sequences. pWCC19 vector-based constructs of JAK1 V658I, JAK1 

K908G, JAK1 F636del, JAK1 F636del+K908G and GATA1 M1V (resulting in GATA1s) were 

generated from respective wild type constructs using QuikChange Lightning Site-Directed 
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Mutagenesis kit (Agilent, Santa Clara, CA, USA). Primers used for the PCR reactions are listed 

below.  

 

Primers used for amplification from cDNA and for cloning (5’ to 3’) 

JAK1 forward: GTCGACCTCGAATCGGATCCGAACACTGGACAGCTGAATAAATGC 
JAK1 reverse: AGATTCCTGCAGCCCGGGCAGGAGAAGGACTTGATAATCTGTGG 
GATA1 forward: GTCGACCTCGAATCGGATCCAGGTTAATCCCCAGAGGCTCC 
GATA1 reverse: AGATTCCTGCAGCCCGGGCATGCTCTGTGCCCTCATGAG 

 

Primers used for mutagenesis (5’ to 3’) 

JAK1 K908G forward: GGAGCAGGTGGCTGTTGGATCTCTGAAGCCTG 
JAK1 K908G reverse: CAGGCTTCAGAGATCCAACAGCCACCTGCTCC 
JAK1 F636del forward: GGATATTTCCCTGGCCTTCGAGGCAGCCAGCATGATGAG 
JAK1 F636del reverse: CTCATCATGCTGGCTGCCTCGAAGGCCAGGGAAATATCC 
JAK1 V658I forward: CCTCTATGGCGTCTGTATCCGCGACGTGG 
JAK1 V658I reverse: CCACGTCGCGGATACAGACGCCATAGAGG 
GATA1 M1V forward: CCCAGAGGCTCCGTGGAGTTCCCTGGCCTGG 
GATA1 M1V reverse: CCAGGCCAGGGAACTCCACGGAGCCTCTGGG 

 

ABL1-AIF1L, AIF1L-ETV6 and wild type AIF1L constructs were produced from total RNA 

isolated from the patient’s diagnostic bone marrow sample and from HEK293T cells. Cloned 

AMV First-Strand cDNA Synthesis Kit (Thermo Fisher Scientific) was used for reverse 

transcription of RNA. HEK293T cDNA was used for the amplification of full-length coding 

sequence of AIF1L wild type. The patient’s cDNA was used for the amplification of coding 

sequences of fusion transcripts ABL1-AIF1L and AIF1L-ETV6. InFusion HD Cloning Kit (Clontech) 

was used for cloning of the PCR products into the pIRES2-EGFP vector. Inserted sequences 

were confirmed by Sanger sequencing.  

 

Primers used for amplification from cDNA and for cloning (5’ to 3’) 

AIF1L forward: CTCGCCATGTCGGGCG 
AIF1L reverse: CGGGGTCCTCAGGGCAG 
ETV6 reverse: GGTGGACTGTTGGTTCCTTCAGC 
ABL1 forward: CCCTCTTCTGGAAAGGGGTACC 
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Analysis of the AIF1L-ETV6 and ABL1-AIF1L fusion transcripts 

RT-PCR and subsequent Sanger sequencing verified the AIF1L-ETV6 and ABL1-AIF1L 

fusion transcripts identified by RNAseq. Fusion sequences from RNAseq served as bases for 

RT-PCR primer design: 

Primers used for RT-PCR (5’ to 3’) 

AIF1L-ETV6 forward: GCAGCTACAGAGGATTTCATGTTCC 
AIF1L-ETV6 reverse: CATAGGTCATGTTTGTTCTGTTCTTATGG 
ABL1-AIF1L forward: CTCTACGCTCGCTGACCGTTC 
ABL1-AIF1L reverse: TGAGGACAGCCGACCGTTTC 

 

The same PCR systems were used for the analysis of the presence of these particular 

fusion transcripts in 10 ETV6-ABL1-positive leukemia patients collected during our previous 

study (Zaliova et al., 2016). 

 

Cultivation and transient transfection of HEK293T cells and NIH cells 

The HEK293T (human embryonic kidney carcinoma) and NIH3T3 (murine fibroblast) 

cell lines were kindly provided by the Tenen lab (Harvard Medical School). The cell lines were 

cultivated in Dulbecco’s Modified Eagle Medium (DMEM; Thermo Fisher Scientific) 

supplemented with 10% of heat-inactivated fetal bovine serum (FBS; Biosera, Nuaille, France) 

and Antibiotic-Antimycotic (Thermo Fisher Scientific). Lipofectamine 2000 (Thermo Fisher 

Scientific) was used for the transfection of plasmid constructs according to manufacturer’s 

instructions.  

 

Western Blot 

RIPA buffer was used to prepare whole cell extracts. NE-PER Nuclear and Cytoplasmic 

Extraction Reagents (Thermo Fisher Scientific) supplemented with Complete Protease 

Inhibitor Cocktail (Roche, Basel, Switzerland) were used to extract nuclear and cytoplasmic 

protein lysates. Proteins were resolved by the Bolt 4–12% Bis-Tris Plus protein gels (Thermo 

Fisher Scientific). The resolved proteins were transferred onto a nitrocellulose membrane 

(Bio-Rad, Hercules, CA, USA). Non-specific binding was blocked with phosphate-buffered 
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saline containing 0.1% Tween 20 (Bio-Rad) and 5% dry milk for 1 hour. The following primary 

antibodies were used for immunoblotting: GATA1 (ab11852, 1:500, Abcam, Cambridge, UK), 

Jak1 (sc-376996, 1:500, Santa Cruz, Dallas, TX, USA), p-Jak1 (Tyr1034/1035, 74129, 1:1000, 

Cell Signaling, Danvers, MA, USA), TBP (ab63766, 1:1000, Abcam), GAPDH (G8795, 1:10000, 

Sigma-Aldrich), Stat3 (sc-8019, 1:500, Santa Cruz), p-Stat3 (Tyr705, 9145, 1:1000, Cell 

Signaling). Primary antibodies against the N-terminus of AIF1L (HPA056852; 1:500, Sigma-

Aldrich) and the C-terminus of AIF1L (HPA020522; 1:250, Sigma-Aldrich). Incubation with the 

primary antibody was done overnight. The primary protein bound antibodies were detected 

with an appropriate secondary antibody, which was conjugated with horseradish peroxidase 

and Super Signal West Pico Chemiluminescent Substrate kits (Thermo Fisher Scientific). 

Visualization was performed using an ECL system (Bio-Rad). 

 

Lentivirus production 

HEK293T cells were used for lentivirus production. pWCC19 vectors together with 

packaging plasmids (p-gag-pol, p-VSV-G) were co-transfected into the cells using Xfect 

Transfection Reagent (Clontech). Centricon Plus-70 Centrifugal Filter Devices (Merck 

Millipore, Burlington, MA, USA) were used for the concentration of the collected 

supernatants. Virus titer was assessed in the NIH3T3 cell line. 

 

Ba/F3 cell proliferation 

Ba/F3 cells were purchased from DSMZ (ACC 300). They were cultured in RPMI 

(Thermo Fisher Scientific) with 10% FBS, 10µg/ml interleukin 3 (IL3; Sigma-Aldrich, St. Louis, 

MO, USA) and Antibiotic-Antimycotic. Transduced Ba/F3 cells positive for GFP were sorted. 

For the IL3 withdrawal experiments Ba/F3 cells transduced by JAK1 

F636del/F636del+K908G/V658I/JAK1 wild type or the empty vector were washed with PBS 3 

times. Then they were cultured in the absence of IL3 for 10 days. Cells were counted every 

other day using trypan blue to assess proliferation. 
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TF1 cell proliferation 

TF1 (human erythroleukemia) cells were transduced with JAK1 F636del/JAK1 wild 

type/GATA1 D65_C228del/GATA1 M1V/GATA1 wild type or empty vector. The target 

transduction efficiency was 10%. After 72 hours cells were split into two populations. The 

control population was cultured in the presence of 5ng/ml of human recombinant granulocyte 

macrophage-colony stimulation factor (GM-CSF). The second cell population was washed 3 

times with PBS and cultured in the absence of GM-CSF. Cell proliferation was monitored by 

assessing GFP positivity. 

 

K562 cell assay 

The K562 (chronic myeloid leukemia in blast crisis) cell line was transduced with GATA1 

D65_C228del/GATA1 M1V/GATA1 wild type or empty vector. Transduction efficiency was 

assessed by GFP-positivity. The cells were stimulated with 10ng/ml Phorbol-12-myristate-13-

acetate (PMA) to induce differentiation. Dimethylsulfoxid (DMSO) served as control. Flow 

cytometry analysis was conducted 1, 2 and 3 days after stimulation.  

 

Human adult CD34-positive HSPC assay 

Human CD34-positive adult hematopoietic stem and progenitor cells (HSPCs) were 

isolated from peripheral blood samples of healthy donors. The cells were transduced with 

GATA1 D65_C228del/GATA1 M1V/GATA1 wild type or empty vector. Differentiation was 

induced by change of media two days after transduction. The differentiation media included 

5ng/ml stem cell factor (SCF), 5ng/ml GM-CSF, 10ng/ml granulocyte-colony stimulating factor 

(G-CSF) and 5ng/ml IL3. Differentiation was evaluated by flow cytometry 5 and 9 days after 

stimulation.  
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Colony-forming assays 

Murine bone marrow was extracted from long bones and hips of C57BL/6J mice by 

crunching. Murine fetal liver cells were isolated from E13.5 mouse embryos. Erythrocytes 

were lysed using ACK buffer (150 mM NH4Cl, 10 mM KHCO3, 0.1 mM 

ethylenediaminetetraacetic acid). Biotinylated anti-CD117 antibody was used for c-kit+ cells 

staining. Cells were separated from the bone marrow using Anti-Biotin MicroBeads UltraPure 

(Miltenyi Biotec, Bergisch Gladnach, Germany) by MACS. The c-kit+ cells were lentivirally 

transduced with JAK1 F636del/JAK1 wild type or empty vector. Transduced cells were 

expanded for 48 hours in IMDM with 15% FBS, mSCF, mIL3, mIL6 (Peprotech, Rocky Hill, NJ, 

USA). Transduced c-kit+ GFP expressing cells were sorted and seeded in MethoCult GF M3434 

medium (Stemcell Technologies, Vancouver, BC, Canada). Microscopy was used for counting 

and classification of the cell colonies. 

 

Competitive growth assay of Gata1s-positive mouse fetal liver cells. 

Ter119 depleted fetal liver cells were isolated from E13.5 Cas9 knock-in mouse 

embryos. Cells were transduced with a Gata1-sgRNA expression vector. Transduced cells were 

cultured under low cytokine conditions for the duration of 3 weeks. A population of 

transduced Gata1s cells was obtained by this selection as previously described (Labuhn et al., 

2019). Gata1s expression in these cells was confirmed by Western blot analysis. The Gata1s-

positive cells were transduced with JAK1 F636del/JAK1 wild type or empty vector. In one 

experimental setting the cells were simultaneously transduced with Gata1-sgRNA and JAK1 

F636del/JAK1 wild type. Double positive cells were measured every other day by flow 

cytometric analysis to assess their percentage. Cells were cultured either in a fully cytokine-

supplemented growth-supportive media (mSCF, mTPO) or in a cytokine-depleted growth-

restrictive (only mSCF/only mTPO) media or in a media containing 0ng/ml / 0,1ng/ml / 1ng/ml 

or 10ng/ml of IL6. 
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Homology modelling 

JAK1 F636del models were generated by Modeller (Webb and Sali, 2016) using the 

structure of JAK1 wild type as template (PDB entry 4L00) (Toms et al., 2013).  
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Results 

Project 1. The alternative pathogenesis of TMD development in the absence 

of trisomy 21 

1. The identification of a trisomy 21-independent TMD questions the indispensability of 

trisomy 21 in the pathogenesis of this preleukemic condition. 

We have identified a unique TMD with a typical clinical and morphological 

manifestation (Table 1, Fig. 1-2) in a newborn without the features of Down syndrome. 

Immunophenotypic analysis of the peripheral blood, performed by flow cytometry, revealed 

56% of atypical cells (Fig. 3-4). We compared the expression levels of selected antigens on the 

gated blast cells population from the non-DS-TMD with expression levels in DS-TMDs and with 

AMKL cases diagnosed and treated at our department. The non-DS-TMD exhibited an 

immunophenotype that differed from the DS-TMDs, particularly by a high expression of the 

CD61 and CD41 antigens and a weak expression of the CD33 antigen, resembling more an 

immunophenotype of AMKL (Fig. 3-4). Due to critical clinical manifestation, advanced 

symptomatic treatment was initially required. However, during the intensive 2-week 

treatment period after diagnosis (after birth) the clinical picture gradually improved and no 

chemotherapeutics were therefore administered. Due to the spontaneous remission of the 

blast population, which occurred at 2 months of age, the final diagnosis of TMD was confirmed 

(Fig. 5). 
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Table 1 (previous page): Typical clinical and hematological features of DS-TMD (* based on 

data from Klusmann et al., 2008; Roberts et al., 2013; Tunstall et al., 2018) were also found in 

the here presented non-DS-TMD, exemplifying the clinical and hematological similarity of both 

entities. 

 

Figure 1: The examination of a bone marrow (top) and peripheral blood (bottom) smears 

identified blasts with prominent nucleoli, cytoplasmic blebs and a basophilic cytoplasm 

morphologically resembling megakaryoblasts. This finding is indicative of a TMD/AMKL. 

 

Figure 2. Signs of dyserythropoiesis in the bone marrow aspirate. The blue arrow shows one 

polychromatophilic erythroblast. The red arrow point an oxyphilic erythroblast. Its nucleus is 

atypically shaped with constrictions. The green arrows points to erythroblasts, whereas the 

black arrows point to atypical megakaryoblasts. 
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Figure 3: The diagnostic cell immunophenotyping analysis revealed atypical blasts that were 

gated as a CD45dim subpopulation from the lymphomonocytic compartment (“wide 

lymphomono”). A strong expression of CD41 (91%), CD61 (86%), CD42 (67%), CD4 (87%) and a 

weak expression of CD38 (26%), CD7 (14%), CD33 (12%), CD71 (42%) and CD117 (17%) was 

recorded. Dot plots show expression of selected antigens on the gated blasts. 



58 
 

 

Figure 4: The comparison of immunophenotypes in AMKL patients (n=7, blue circles) and DS-

TMD patients (n=15, black circles) treated at the University Hospital Motol (Department of 

Paediatric Haematology and Oncology) with the immunophenotype of the non-DS-TMD (red 

circles).  

 

 

Figure 5: MRD monitoring of the patients’ disease progression by quantifying GATA1 

D65_C228del in peripheral blood samples. Spontaneous remission occurred at 2 months of 

age. 
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2. Cytogenetic and SNP array analysis confirms absence of trisomy 21 and genomic profiling 

identifies novel potential drivers of the trisomy 21-independent TMD development. 

To exclude trisomy 21 involvement of the hematopoietic lineage, cytogenetic 

examination of the blast population was conducted. The FISH analysis of chromosome 21 was 

repeated twice and in both cases showed absence of trisomy 21. The examined blast cells had 

a normal male karyotype.  

High-density SNP array analysis was performed to detect copy number changes (Fig. 

6). Peripheral blood was used with a proportion of 56% of blasts (as assessed by flow 

cytometry). The analysis reliably excluded presence of whole-chromosome or partial trisomy 

21 in the blasts. 

We performed a comprehensive review of literature to establish if other trisomy 21-

independent cases have been identified. All of the non-Down syndrome TMD cases that were 

described so far, harbored trisomy 21 in the blast population (Table 3). To the best of our 

knowledge the presented non-DS-TMD is the first described case of trisomy 21-independent 

GATA1-mutated TMD.  

To elucidate the alternative pathogenesis of this exceptional TMD without trisomy 21 

involvement we performed whole exome and whole transcriptome sequencing. We found in-

frame deletions in the JAK1 and GATA1 genes and missense mutations in the SPIRE2 and FN1 

genes (Table 2). All genetic aberrations were confirmed by Sanger sequencing.  

JAK1 mutations are implicated in a number of hematological malignancies including 

TMD and AMKL. On the other hand SPIRE2 and FN1 are genes that do not have an established 

role in hematopoietic disorders.  
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Figure 6: CNA analysis by SNP array. No aberrations were observed by CNA on any 

chromosome. No gain of chromosome 21 or its part was detected. Some regions with changed 

copy number are noticeable, mainly in the upper graph. These correspond to array specific 

artefacts and common population polymorphisms.  

 

 

Table 2: Novel genetic aberrations discovered by WES which was performed using DNA from 

sorted blasts. Chr (chromosome), VAF (variant allele frequency). 

 

 

 

 

Table 3 (next page): Literature review of non-Down syndrome TMD patients. M (male), F 

(female), CCR (complete clinical remission), AML (acute myeloid leukemia), AMKL (acute 

megakaryoblastic leukemia). 
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3. The novel GATA1 deletion, GATA1 D65_C228del, results in the expression of an internally 

truncated protein lacking the entire N-terminal zinc finger domain. 

All TMD patients harbor mutations in the GATA1 gene usually represented by small 

insertions, duplications and deletions which cluster in the second exon. These aberrations lead 

to the introduction of a premature stop codon or to the loss of an adjoining splice site and 

finally result in the exclusive production of a shorter version of GATA1, the GATA1s protein, 

which lacks the transactivation domain (Fig. 7-8). The novel GATA1 aberration, GATA1 

D65_C228del, described in the trisomy 21-independent TMD presented here, causes a 

deletion of 1106 base pairs (bp) and an insertion of 9 bp spanning between the second and 

forth exon. The deletion is in-frame and results in the expression of an internally truncated 

protein. This protein lacks part of the TAD and more importantly also the whole N-terminal 

zinc finger (Fig. 7-8). 

To elucidate if the aberrant protein is expressed, we cloned the full-length cDNA of 

GATA1 wt, GATA1s and GATA1 D65_C228del into lentiviral vectors. The GATA1s expressing 

construct was prepared by introducing a M1V mutation in the canonical start codon of GATA1. 

We studied the expression of GATA1 D65_C228del chimeric protein in HEK293T cells. The 

presence of GATA1 proteins in transiently transfected HEK293T cells was analyzed using a 

polyclonal anti-GATA1 antibody. We confirmed the expression of the GATA1 D65_C228del 

protein and showed that it is trafficked into the nucleus, similarly to the physiological isoforms 

(Fig. 8).  
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Figure 7: Schematic representation of the GATA1 gene. The upper model shows physiological 

production of GATA1 in a healthy individual where both GATA1 wt and GATA1s are expressed. 

The model in the middle represents the situation in trisomy 21-positive TMD patients were due 

to mutations in the second exon, exclusively GATA1s is expressed. The bottom diagram shows 

the novel mutation described in the presented patient, resulting in the production of an even 

shorter GATA1 variant. bp (base pair), del (deletion), ins (insertion), TAD (transactivation 

domain), NZF (N-terminal zinc finger), CZF (C-terminal zinc finger). 

 

Figure 8: Western blot analysis of GATA1 wt, GATA1s and GATA1 D65_C228del expressing 

HEK293T cells. Different protein sizes are nicely visible. Protein separation into the cytoplasmic 

(C) and nuclear (N) fractions shows that all three transiently expressed proteins are trafficked 

into the nucleus. TBD and GAPDH serve as loading controls. EV (empty vector), kDa (kilodalton) 
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4. Searching for a model to study the effect of GATA1 D65_C228del on megakaryocytic and 

erythroid differentiation. 

First, we decided to study the effect of GATA1 D65_C228del on megakaryocytic and 

erythroid differentiation in the human K562 erythroleukemia cell line. The K562 cell line has 

served as a valuable model for the study of mechanisms associated with the differentiation of 

leukemic cells (Jacquel et al., 2006; Lam et al., 2000; Racke et al., 2001; Rainis et al., 2005) and 

to study the role of GATA1 in hematopoiesis (Halsey et al., 2012; Huang et al., 2005; 

Matsumura et al., 2000). Most importantly, the K562 cells have been previously used to 

compare the effects of GATA1 wt and GATA1s (Halsey et al., 2012).  The K652 cells express, in 

undifferentiated conditions, markers of both megakaryocytic and erythroid lineages. 

Depending on the stimulus, they can undergo further differentiation.  Phorbol-12-myristate-

13-acetate (PMA) stimulates K562 cells to undergo megakaryocytic differentiation (Dorsey et 

al., 2002; Huang et al., 2014; Kim et al., 2001; Pettiford and Herbst, 2003; Shelly et al., 1998). 

The PMA-induced megakaryocytic differentiation partially mimics the physiological processes 

that occur in the bone marrow (Long et al., 1990). The differentiation is accompanied by 

expression of specific megakaryocytic markers like CD61 and CD41, together with changes in 

morphology (Jacquel et al., 2006). 

We introduced the empty vector (EV), GATA1 wt, GATA1s and GATA1 D65_C228del 

constructs into the K562 cells. A high (>90%) and similar transduction efficiency, measured by 

GFP positivity, was achieved with all four constructs (Fig. 9). Megakaryocytic and erythroid 

differentiation was induced two days after transduction by 10ng/ml of PMA. Dimethylsulfoxid 

(DMSO) served as control. Flow cytometry analysis was conducted one, two and three days 

after stimulation by measuring megakaryocytic (CD41, CD42b) and erythroid (CD235a, CD71) 

surface markers (Fig. 9). DAPI was used to distinguish viable from non-viable cells. 

We hypothesised that introduction of GATA1 wt will allow the cells to differentiate 

into the megakaryocytic linage, whereas GATA1s introduction will decelerate or even arrest 

this differentiation as previously described (Halsey et al., 2012). Moreover we expected to see 

a similar or stronger effect induced by the GATA1 D65_C228del as compared to GATA1s. The 

PMA stimulation was successful. However, no difference between the GATA1 wt, GATA1s and 

GATA1 D65_C228del constructs in the expression of both erythroid and megakaryocytic 
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markers was visible (Fig. 10). We were not successful in optimizing the model. The lack of 

variation between GATA1 wt and GATA1s deemed this approach inappropriate for our usage. 

Next, we conducted a similarly designed experiment on human CD34 positive adult 

hematopoietic stem and progenitor cells (HSPCs) isolated from peripheral blood samples. The 

cells were transduced with lentiviral empty vector, GATA1 wt, GATA1s and GATA1 

D65_C228del constructs. Differentiation was induced by change of media two days after 

transduction. Myeloid (CD14, CD15), erythroid (CD71, CD235a) and megakaryocytic (CD41) 

differentiation was assessed by flow cytometry five and nine days after stimulation. 

Unfortunately, no difference was apparent between GATA1s and GATA1 D65_C228del, except 

for a slight difference in the expression of CD41, therefore making this model also unfit for 

assessing the impact of GATA1 D65_C228del (Fig. 11). 

 

 

Figure 9: K562 experimental design and transduction efficiency 
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Figure 10: The expression of CD41, CD45b, CD71 and CD235a+ in lentivirally transduced K562 

cells. Only GFP+ cells were used for the gating analysis.  



67 
 

 

 

Figure 11: The expression of CD71, CD235a, CD41, CD14 and CD15 in lentivirally transduced 

human CD34+ HSPCs. Only GFP+ cells were used for the gating analysis.  
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Finally, we attempted to study the differences between GATA1s and GATA1 

D65_C228del in the human erythroleukemia cell line TF1, which is dependent on GM-CSF and 

was at our disposal.  This model has been previously used to assess the functionality of the 

CSF2RB A455D variant (Labuhn et al., 2019). The TF1 cells were transduced with GATA1 wt, 

GATA1s and GATA1 D65_C228del constructs, aiming for 10% transduction efficiency. Cells 

were cultured either with or without human GM-CSF. Cells harboring either GATA1 wt, 

GATA1s or GATA1 D65_C228del ceased to proliferate in both cytokine rich and cytokine free 

conditions, demonstrating the inapplicability of this model to study differences between 

GATA1 variants (Fig. 12). 

 

Figure 12: Transduced TF1 cells (with GATA1 wt, GATA1s or GATA1 D65_C228del) cultured in 

the presence (left panel) or absence (right panel) of GM-CSF. 

 

5. The novel JAK1 mutation is located in a crucial part of the pseudokinase domain. 

 The identified novel mutation is located in the pseudokinase domain of JAK1, which is 

a hotspot region for activating mutations (Flex et al., 2008; Haan et al., 2010; Jeong et al., 

2008) (Fig. 13). JAK mutations have been described previously as drivers in hematological 

malignancies, including AMKL (Chen et al., 2012; Labuhn et al., 2019). The deletion results in 

the loss of phenylalanine 636 (F636del) which is a highly conserved aminoacid among various 

species (Fig. 14). Moreover, it belongs to a highly conserved triad of aminoacids, namely V658, 

F636, F575, which is believed to control JAK1 catalytic activity by mediating a conformation 

switch between the active and inactive forms (Toms et al., 2013). Therefore JAK1 F636del 
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seemed as the likely candidate for a driver mutation that could cooperate with GATA1 

D65_C228del on TMD induction without the involvement of trisomy 21. 

 

Figure 13: Schematic representation of the JAK1 protein and its domain organization. The 

brown arrow highlights the deletion of F636 which is located in the pseudokinase domain. The 

red arrow highlights a known activating mutation V658I, the blue arrow highlights an 

inactivating mutation in the kinase domain. V658I and K908G were used as controls.  

 

Figure 14: The comparison of the wild type and mutated allele F636del (shown in red) of the 

JAK1 gene. The nucleotides are denoted by capital letters and aminoacids in bolt, dashes 

indicate missing nucleotides/aminoacids. The comparison between various animal species 

points to a high conservation of the phenylalanine located on the 636 position in the JAK1 gene 

(shown in red).  
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We performed homology modeling of the mutated JAK1 pseudokinase domain which 

suggested that JAK1 F636del is compatible with both the active and the inactive conformation. 

Moreover, the mutated pseudokinase may adopt a third conformation. This alternative 

conformation, which was not achieved, or previously described, by the wild type JAK1 

pseudokinase, may potentially mimic the “inactive” state (Fig. 15). We hypothesized that the 

neighboring phenylalanine F635 could replace the deleted phenylalanine F636 in its vacant 

position. The modeling suggested otherwise. F635 of the mutated JAK1 F636del, in both the 

active and inactive conformation, was modelled into a similar position as in JAK1 wild type 

(Fig. 16). 

 

 

Figure 15: Homology modeling of the JAK1 pseudokinase domain. Three predicted 

conformations of the mutated pseudokinase domain (JAK1 F636del) were superposed with the 

JAK1 wild type structure (white; PDB entry 4L00; Toms et al, 2013) in the inactive 

(crystallographic molecule A; left panel) or active (crystallographic molecule A; middle and 

right panel) state. F575, F636, and V658 in JAK1 wild type are labelled. The modelling suggests 

that the SH2-PK linker (with F575 shown in red) of JAK1 F636del can adopt either an inactive 

(orange) or active (green), or an “alternative” (blue) conformation, the latter of which has not 

been experimentally documented for JAK1 wild type.  
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Figure 16: Homology modelling of JAK1 F636del in the active (orange) and inactive (green) 

conformation superimposed with JAK1 wild type (blue) showing the side chain of F635. 

 

6. JAK1 F636del does not activate the JAK1 kinase but rather attenuates its function. 

 We assessed the kinase activity of JAK1 F636del. In order to distinguish between auto- 

and trans-phosphorylation, we utilized side-directed mutagenesis and created a JAK1 

construct harboring an inactivating mutation of an ATP-binding site (K908G) and a construct 

harboring both the JAK1 F636del and K908G mutations together (Fig. 13). The JAK1 F636del, 

but not JAK1 F636del + K908G, was autophosphorylated on Y1034/Y1035 both under steady 

state conditions and after non-specific PMA stimulation (Fig. 17-19). 

JAK1 F636del induced STATs phosphorylation both in non-stimulated and stimulated 

HEK293T cells. However, all phosphorylation levels, at all studied time points were lower when 

comparted to wild type JAK1, except immediately after PMA stimulation, when STAT3 

phosphorylation was comparable between JAK1 F636del and JAK1 wt (Fig. 19) These data 

suggest the decrease of kinase activity upon F636 loss. 
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Figure 17: Western blot analysis of the kinase activity in HEK293T cells transiently transfected 

with empty vector (EV), JAK1 wt, JAK1 F636del or the catalytically deficient form (bearing the 

K908G mutation). Catalytic activity is preserved in JAK1 F636del which was 

autophosphorylated on Y1034/Y1035. GAPDH and TBP serve as loading controls. Cells were 

stimulated for 15 minutes with 1µg/ml PMA. Separated cytoplasmic (C) and nuclear (N) protein 

fractions were analyzed.  

 

 

Figure 18: Western blot analysis of the kinase activity in HEK293T cells transiently transfected 

with empty vector (EV), JAK1 wt, JAK1 F636del. Stimulation was carried out for 15 minutes with 

1µg/ml PMA. Cells were harvested and analyzed immediately after stimulation, 1 hour (h), 2h 

and 24h after stimulation. GAPDH served as loading control. 
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Figure 19: Western blot analysis of JAK/STAT signalling in transiently transfected HEK293T cells 

with empty vector (EV), JAK1 wt or JAK1 F636del. Lower levels of STAT3- and auto- 

phosphorylation when compared to JAK1 wild type suggest decrease in JAK1 F636del kinase 

activity. 

 

To assess the activating potential of JAK1 F636del, we utilized the well-known murine 

Ba/F3 cell transformation assay (Lacronique et al., 1997; Palacios and Steinmetz, 1985; 

Warmuth et al., 2007). For example, the activating potential of the JAK2 V617F mutation that 

is present in almost 90% of polycythemia vera patients has been validated via this assay (James 

et al., 2005). Similarly several novel JAK1 mutations were shown activating in this particular 

assay (Arulogun et al., 2017; Li et al., 2017). We used the previously described activating 

mutation JAK1 V658I as a positive control (Fig. 13) (Arulogun et al., 2017).  



74 
 

 Unlike V658I, JAK1 F636del did not induce IL3-independent growth in the Ba/F3 assay 

after 10 days of culture in a cytokine depleted environment (Fig. 20). Moreover, JAK1 F636del 

did not induce cytokine independent growth in the human TF1 cell line (Fig. 21). These data 

suggest, that F636del does not activate the JAK1 kinase but rather attenuates its function.  

 

Figure 20: The proliferation of Ba/F3 cells in an IL3 depleted medium shows identical 

proliferation rates of JAK1 F636del and JAK1 wt. The known activating mutation V658I serves 

as a positive control. Sorted Ba/F3 were cultured for 10 days in a cytokine deprived medium. 

Proliferation of the Ba/F3 cells was measured every other day. Dead cells were excluded with 

the use of trypan blue. EV (empty vector). 

 

 

Figure 21: Transduced TF1 cells (with empty vector, JAK1 wt or JAK1 F636del) cultured in the 

presence (left panel) or absence (right panel) of GM-CSF 
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Interestingly, we observed a confusing phenomenon of the Ba/F3 assay also recently 

described by Watanabe-Smith and colleagues (Watanabe-Smith et al., 2017). Strikingly, the 

JAK1 wild type which served as control in our Ba/F3 assay exhibited cytokine independent 

growth 15 days after IL3 depletion (Fig. 22A). Sequencing of the transformed JAK1 wild type 

expressing Ba/F3 cells revealed acquired, previously described, activating mutations L910P 

and S729C (Kan et al., 2013; Yang et al., 2016). Our data imply that similar unwanted 

transforming events can appear in wild type genes following Ba/F3 cell selection when 

cultured in a cytokine depleted medium for a longer time period. Therefore we propose that 

up to 5 days of culture can give results sufficiently accurate to evaluate the studied mutations 

transforming potential (Fig. 22B). Moreover transformed cells should always be sequenced, a 

practice not performed by all laboratories (Watanabe-Smith et al., 2017).   

 

 

Figure 22: A) Proliferation of Ba/F3 cells transduced with JAK1 wild type or empty vector, 

cultured either in an IL3 rich medium or in an IL3 depleted environment. Cells harboring the 

JAK1 wild type construct started proliferating independently of IL3 after 15 days in culture. B) 

Risk of unwanted acquired mutations occurring in various oncogenes depending on their 

transforming potential. 
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7. The colony forming capacity of JAK1 F636del does not differ from wild type in both murine 

CD34+ bone marrow and fetal liver cells. 

 To further evaluate the phenotypic impact of JAK1 F636 loss, we introduced empty 

vector, JAK1 wt or JAK1 F636del into murine bone marrow HSPCs using lentiviruses. 

Transduced, GFP expressing c-kit positive cells were sorted and used for colony-forming unit 

(CFU) assays. There was no difference in the colony-forming capacity of JAK1 wt and JAK1 

F636del (Fig. 23A). To assess the cell morphology, the percentage of granulocytes, 

macrophages and immature cells was counted for each construct. There was no difference 

between the three constructs (Fig. 23B). 

 

Figure 23: A) Colony-forming unit assays in sorted murine CD34+ bone marrow HSPCs 

transduced with empty vector, JAK1 wt and JAK1 F636del.  B) Percentage of granulocytes, 

macrophages and immature cells in individual constructs.  

 

 Since TMD originates prenatally in the fetal liver we decided to mimic its 

microenvironment by using fetal liver HSCPs extracted from embryonic day 13.5 mouse 

fetuses. Transduced, GFP expressing c-kit positive cells were sorted and used for CFU assays. 

Even in this setting we did not observe any difference in colony-forming capacity between 

individual constructs (Fig. 24) 
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Figure 24: Colony-forming unit assays in sorted murine fetal liver HSPCs transduced with empty 

vector, JAK1 wt or JAK1 F636del. The number of colonies did not differ between the constructs 

in both the first and second plating.  

 

8. Mimicking trisomy 21-independent TMD in a murine fetal liver cell model to study the 

cooperation of JAK1 F636del and GATA1s. 

 Our results suggested that JAK1 F636del may exert its impact in TMD pathogenesis 

only in cooperation with mutated GATA1. Therefore the need for a more precise model was 

warranted.  We established a collaboration with Prof. Jan-Henning Klussman from the Martin-

Luther University in Halle, Germany. I conducted the here described experiments during a 3-

month stay in Prof. Klusmann’s laboratory. We utilized an in vitro model recently described by 

Prof. Klusmann and colleagues (Labuhn et al., 2019).  Induction of Gata1s expression in 

disomic fetal liver HSPCs from embryonic day 13.5 ROSA26:Cas9-EGFPki/wt mice was 

mediated by the CRISPR/Ca9 gene editing system. In this setting, Gata1s expression leads to 

the expansion and hyperproliferation of fetal liver HSPCs. A 3-week selection process under 

low levels of the cytokines thrombopoietin (TPO) and stem cell factor (SCF) facilitate the 

acquisition of a pure Gata1s positive cell population, whereas the cells negative for Gata1s 

differentiate and arrest their expansion. Next, we introduced empty vector, JAK1 wt or JAK1 
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F636del into the Gata1s expressing cells in order to study their joined effect on the fetal liver 

HSPCs proliferation (Fig. 25-26). 

 

Figure 25: Mimicking Gata1 mutated TMD without trisomy 21 in a murine fetal liver cell model 

to study the cooperation of Gata1s and JAK1 F636del. sgRNA (single guide RNA), APC 

(allophycocyanin), GFP (green fluorescent protein). 

 

 

Figure 26: Western blot analysis confirming the sole expression of Gata1s in the CRISPR/Cas9 

edited mouse fetal liver cells (mFLCs). GAPDH was used as loading control.  
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In the competitive growth assay setting were empty vector, JAK wt or JAK1 F636del 

were lentivirally introduced into the Gata1-edited HSPCs, JAK1 F636del had no additional 

impact on cell proliferation (Fig. 27) or maturation status (Fig. 28).  

Next, we conducted competitive growth assays, focusing on the JAK/STAT pathway. 

Similarly as in the previous experiment, empty vector, JAK wt or JAK1 F636del were lentivirally 

introduced into the Gata1-edited HSPCs. The cells were then cultured with various levels of 

interleukin 6 (IL6) in order to specifically stimulate JAK1 signaling. Overgrowth of the double-

positive (Gata1s + JAK1 F636del) cell population was not present in any of the used culturing 

conditions (Fig. 29). 

Additionally, cells were cultured in cytokine-depleted growth-restrictive conditions. 

Likewise, no difference between JAK1 wt and JAK1 F636del was visible in this experimental 

setting (Fig. 30). 

Moreover, JAK1 wt or JAK1 F636del were introduced into murine fetal HSPCs 

simultaneously with the GATA1 editing tools in order to monitor their combined effect on cell 

proliferation instantly after transduction. There was no proliferative advantage of the double 

positive HSPCs population (Gata1s + JAK1 F636del) (Fig. 31). 

 

 

Figure 27: Competitive growth experiment of the Gata1-edited murine fetal liver HSPCs (APC+) 

transduced at day 0 with empty vector (EV), JAK1 wt or JAK1 F636del (GFP+). The percentage 

of double positive cells (APC+GFP+) in the whole population of Gata1-edited cells (APC+) is 

showed on the y-axis.  
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Figure 28: Expression of the megakaryocytic marker CD41 after transduction (day 7 and 21) of 

the Gata1-edited cells with EV, JAK1 wt or JAK1 F636del. The double positive (APC+GFP+) cell 

population was used for the analysis.   

 

Figure 29: Competitive growth experiment of the Gata1-edited murine fetal liver HSPCs 

transduced at day 0 with empty vector (EV), JAK1 wt or JAK1 F636del. Cells were treated with 

either no IL6; 0,1 ng/ml IL6; 1 ng/ml IL6 or 10 ng/ml IL6. 
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Figure 30: Competitive growth experiment of the Gata1-edited murine fetal liver HSPCs 

transduced at day 0 with empty vector (EV), JAK1 wt or JAK1 F636del. Cells were cultured in 

the absence of mouse SFC. 

 

 

Figure 31: Simultaneous introduction of Gata1s together with JAK1 wt or JAK1 F636del into 

murine fetal liver HSPCs. The different cell fraction percentage from the total cell population 

after transduction is shown on the y axis. The x axis shows days after transduction (Day 0). 



82 
 

Project 2. Characterization of two novel fusion genes, AIF1L-ETV6 and ABL1-

AIF1L, resulting from a single chromosomal rearrangement in ETV6-ABL1-

positive pediatric ALL 

1. Novel fusion genes identified in a BCP-ALL harboring an ETV6-ABL1 fusion. 

We decided to characterize in detail the molecular background of an interesting BCP-

ALL harboring the ETV6-ABL1 fusion, diagnosed in our department in 2016. Both the clinical 

picture and immunophenotype (Table 4) did not differ from the previously described BCP-ALLs 

associated with an ETV6-ABL1 fusion gene.   

Cytogenetic analysis revealed a diploid male karyotype together with an isodicentric 

chromosome 7. No rearrangements of ETV6, RUNX1 and KMT2A gene loci were observed. 

Multiplex RT-PCR was positive for the ETV6-ABL1 fusion transcript and negative for BCR-ABL1, 

TCF3-PBX1, ETV6-RUNX1 and KMT2A-AFF1 fusion transcripts (Table 4). 

To assess the genomic profile of leukemic blasts, SNP array analysis, WES and RNAseq 

were applied. Four copy number aberrations were detected using SNP array. A 102 kb 

(kilobase) long monoallelic deletion on 3p affecting the FHIT gene, a 164 kb-long monoallelic 

deletion on 9p affecting the CDKN2A and CDKN2B genes and a loss of 1 copy of 7p, involving 

the IKZF1 gene, with gain of 1 copy of 7q corresponding to the presence of the isodicentric 

chromosome 7  (Lukes et al., 2018). 

Five non-synonymous substitutions affecting five genes were identified by WES, 

namely TPO A477T, SLC25A15 I254L, PCDHB15 R494Q, ELOVL4 A253S and OBP2A R118H. 

None of the affected genes have been, to the best of our knowledge, associated with ALL so 

far.  

We utilized RNAseq to identify leukemia-specific fusion transcripts. The presence of 

the type B (exon 5 to exon 2) ETV6-ABL1 fusion was confirmed and additionally, two novel in-

frame fusion transcripts were found. The ABL1-AIF1L fusion gene, were exon 1 from ABL1 is 

fused to exon 5 in AIF1L and the AIF1L-ETV6 fusion gene, were exon 4 in AIF1L is fused with 

exon 6 in ETV6 (Table 4, Fig. 33-34). 
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 Next, we analyzed the gene expression profile of the leukemic blasts. An in house 

cohort of 108 B-other BCP-ALL patients, negative for TCF3-PBX1, BCR-ABL1, ETV6-RUNX1 and 

KMT2A-involving fusions, was used for the gene expression analysis. Hierarchical clustering of 

the patients from this cohort using a gene set specific for BCR-ABL1-positive or BCR-ABL1-like-

positive ALL showed that the leukemic blasts harbored a BCR-ABL1-like gene expression 

signature (Fig. 32). 

 

2. Three fusion genes resulting from a single chromosomal rearrangement 

The AIF1L gene and the ABL1 gene have the same genomic orientation. Moreover, 

AIF1L is located on 9q downstream of ABL1. We therefore concluded that all three in-frame 

gene fusions resulted from a single chromosomal rearrangement (Fig. 33) (Lukes et al., 2018). 

We applied DNA-based long-distance PCR and described the exact intronic junction sequences 

of AIF1L-ETV6, ABL1-AIF1L and ETV6-ABL1, confirming the predicted chromosomal 

rearrangement on genomic level (Fig. 33-34). The insertion of a portion of 9p that included 

parts of the AIF1L and the ABL1 genes into chromosome 12 was balanced. There were no gains 

or losses at breakpoint sites in intron 5 of the ETV6 and intron 1 of the ABL1 gene. The 

breakpoint in intron 4 of the AIF1L gene harbored a deletion of 2 base pairs (Fig. 34).  

ABL1 gene insertion into the ETV6 gene represents the most frequent mechanism that 

results in the ETV6-ABL1 fusion in BCP-ALL as has been previously reported by our group 

(Zaliova et al., 2016; Zuna et al., 2010). In order to clarify, if the breakpoint of the telomeric 

9q segment in the AIF1L gene, which results in the ABL1-AIF1L and/or AIF1L-ETV6 fusions, 

occurs recurrently, we screened a cohort of 10 patients with ETV6-ABL1-positive leukemias 

from our previous study for the corresponding fusion transcripts. This cohort of patients 

included 5 cases with an unknown localization of the ETV6-ABL1 fusion and 5 patients with a 

confirmed insertion of the ABL1 gene into the ETV6 gene by cytogenetic analysis. No fusion 

transcripts involving the AIF1L gene were detected. 
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3. The observed chromosomal rearrangement originated prenatally. 

The prenatal origin of the ETV6-ABL1 fusion has been previously demonstrated by us 

in a pediatric ALL case positive for the ETV6-ABL1 fusion gene (Zuna et al., 2010). We optimized 

a sensitive and specific PCR system in order to detect the patient‘s ETV6-ABL1 genomic fusion. 

We used the patient‘s Guthrie card (neonatal blood spot) for the analysis (Fig. 35). A positive 

result in the form of a PCR product of an expected length was obtained in 1 out of 7 reactions 

that contained a portion of the patient‘s Guthrie card (Fig. 36). The presence of the ETV6-ABL1 

fusion gene in the positive PCR product was verified by Sanger sequencing. Our results confirm 

the prenatal origin of the observed genomic rearrangement, which therefore probably 

represents the first leukemogenic event, followed by the acquisition of secondary aberrations 

in later stages of the leukemogenic process. Deletions in the IKZF1 and/or CDKN2A/B most 

likely represent the secondary hits (Fig. 35-37). 

 

4. Chimeric protein analysis reveals in vitro expression of AIF1L-ETV6. 

The two fusion genes AIF1L-ETV6 and ABL1-AIF1L have not been previously reported. 

Importantly, no disruptions of the AIF1L gene have been, to the best of our knowledge, 

described in leukemias so far. Therefore we decided to study these novel fusion genes in more 

detail. The allograft inflammatory factor 1 like (AIF1L) gene encodes three protein isoforms 

(Coordinators, 2017). The isoform 1 (NP_113614) consists of 150 amino acids with a predicted 

molecular weight of 17 kilodalton (kDa). It contains two centrally located EF-hand calcium-

binding domains (EF1, EF2). Its main function is binding and cross-linking actin (Fig. 38).  

The predicted molecular weight of the hypothetical chimeric protein encoded by the 

ABL1-AIF1L fusion gene is 14 kDa. The ABL1 moiety encodes 45 N-terminal amino acids of this 

chimeric protein that do not form any known functional domains. The AIF1L moiety encodes 

83 amino acids of ABL1-AIF1L that include the incomplete EF1 and the complete EF2 domains 

(Fig. 38). 

The predicted molecular weight of the hypothetical chimeric protein encoded by the 

AIF1L-ETV6 fusion gene is 22 kDa.  The AIF1L moiety encodes 67 N-terminal amino acids that 

include a part of the EF1 domain. The ETV6 moiety encodes 115 C-terminal amino acids that 
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include the ETS domain which mediates DNA binding of the wild type ETV6 (Fig. 38) (Lukes et 

al., 2018). 

We were not able to analyze the presence of the chimeric proteins ABL1-AIF1L and 

AIF1L-ETV6 in the patient’s primary leukemic cells due to insufficient quality and amount of 

protein isolated from the patient’s diagnostic bone marrow sample. Therefore we decided to 

study the expression of AIF1L-ETV6 and ABL1-AIF1L hypothetical chimeric proteins in HEK293T 

cells. The patient’s diagnostic bone marrow sample was used for cDNA amplification of the 

full-length coding regions of both of the fusion transcripts (Lukes et al., 2018). HEK293T cDNA 

was used for AIF1L wild type amplification. PCR products were analyzed by Sanger sequencing 

and showed that AIF1L wild type transcript represents the variant 1 of AIF1L, encoding for 

isoform 1. Moreover it revealed that the AIF1L-ETV6 transcript that is expressed by the 

leukemic cells lacks exon 3 of AIF1L. The third exon of AIF1L is also spliced out in the AIF1L 

wild type transcript variant 1 (Lukes et al., 2018).  

Coding sequences of the AIF1L-ETV6 and ABL1-AIF1L fusion transcripts were 

transfected into HEK293T cells. The presence of AIF1L wild type, AIF1L-ETV6 and ABL1-AIF1L 

proteins was analyzed with two antibodies targeting AIF1L. The AIF1L-N antibody was used for 

AIF1L-ETV6 chimeric protein detection, hence it detects the near N-terminal region of AIF1L 

which is involved in AIF1L-ETV6. The AIF1L-C antibody was used for ABL1-AIF1L chimeric 

protein detection, as it detects the C-terminal part of AIF1L which is involved in ABL1-AIF1L. 

Both the AIF1L-N and the AIF1L-C antibody detected the AIF1L wild type protein (Fig. 

39). We confirmed the expression of the chimeric protein AIF1L-ETV6 in HEK293T cells 

transfected with this particular construct using the AIF1L N-terminal antibody. The AIF1L-ETV6 

chimeric protein was located in both the nucleus and the cytoplasm, similarly to AIF1L wild 

type. We did not detect the expected chimeric protein ABL1-AIF1L in transfected HEK293T 

cells using the AIF1L C-terminal antibody (Fig. 39). 
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Table 4: Characteristics of the BCP-ALL harboring the ETV6-ABL1 fusion. 
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Figure 32: Gene expression analysis. Hierarchical clustering of 108 pediatric B-others BCP-ALL 

patients using a gene set specific for BCR-ABL1-positive or BCR-ABL1-like-positive ALLs. The 

patient leukemic blasts harbored a BCR-ABL1-like gene expression signature. 
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Figure 33: A single chromosomal rearrangement resulted in three fusion genes, two of them 

novel. A portion of 9p that included parts of the AIF1L and the ABL1 genes was inserted into 

chromosome 12 into the ETV6 gene. This insertion and subsequent fusion on chromosome 12 

resulted in the ETV6-ABL1 and the AIF1L-ETV6 fusion genes. The remaining parts of 

chromosome 9 fused together and generated the ABL1-AIF1L fusion gene.  
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Figure 34: (A) Fusion gene junctional sequences at genomic DNA level (gDNA) and at RNA level 

(cDNA). The junctional regions of the fusion genes were amplified by PCR in the case of gDNA 

and by RT-PCR in the case of cDNA. The PCR products were sequenced by Sanger sequencing. 

Non-templated inserted nucleotides (NN). (B) Reference sequences of the fusion gene 

breakpoint regions. The genomic coordinates correspond to GRCh37/hg19 reference genome 

(Lukes et al., 2018). Vertical red lines indicate specific breakpoints. 
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Figure 35: Graphic representation of backtracking studies from Guthrie cards. First, a PCR 

system able to detect the studied aberration is optimized. Portion of the neonatal blood spot 

is used for the reaction. Results are validated by gel electrophoresis and Sanger sequencing. 

Emphasis should be given on limiting the possibility of sample contamination. 

 

Figure 36: Backtracking analysis of the ETV6-ABL1 fusion gene on the patient‘s Guthrie card. 

Lanes 1-7 show PCR products where pieces of the patient‘s Guthrie card containing samples of 

his newborn blood were included into the reaction. Lanes 8-17 represent positive control 

reactions and lanes 18-22 negative control reactions. For positive control reactions, DNA from 

patient‘s diagnostic bone marrow sample was diluted into control (“healthy”) DNA to a final 

concentration of 0.005% or 0.001% and used as template (lanes 8–12 and 13–17, respectively) 

(Lukes et al., 2018). In negative control reactions DNA of a healthy donor was applied. Both 

the positive and the negative control reactions contained a portion of the Guthrie card from a 

healthy donor without any blood, therefore achieving same PCR conditions in all reactions. The 

ETV6-ABL1 fusion was confirmed in the patient‘s newborn blood by Sanger sequencing of PCR 

product from lane 3. M (molecular weight markers). 
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Figure 37: The single chromosomal rearrangement resulting in 3 fusion genes, ETV6-ABL1, 

AIF1L-ETV6 and ABL1-AIF1L, probably represents the first leukemogenic hit which occured 

already in utero. The second hit is most likely represented by deletions in the IKZF1 and/or 

CDKN2A/B genes which probably occured postnatally.  
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Figure 38: Representation of wild type (top scheme) and chimeric proteins (bottom scheme). 

Known functional protein domains are shown. The protein length is depicted in number of 

amino acids (aa). Positions corresponding to genomic breakpoints or junctions are displayed 

by dashed lines. Reference: ETV6-NM_001987 (NP_001978), ABL1-NM_007313 (NP_009297), 

AIF1L-NM_031426 (NP_113614). PNT (pointed domain), ETS (ETS domain), SH3 (SH3 domain), 

SH2 (SH2 domain), Tyr Kc (Tyrosine protein kinase, catalytic domain), FABD (F-actin binding 

domain), EF-H1 (EF-hand1), EF-H2 (EF-hand2). 
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Figure 39: The expression of expected chimeric proteins in HEK293T cells. Cytoplasmic (C) and 

nuclear (N) protein fractions were analyzed. Plasmid vector with coding sequences of empty 

vector, AIF1L wild type (wt), AIF1L-ETV6 and ABL1-AIF1L were transiently transfected into 

HEK293T cells. Antibodies recognizing N-terminal (AIF1L-N) and C-terminal (AIF1L-C) epitopes 

of AIF1L were used. AIF1L wild type expression together with the AIF1L-ETV6 chimer protein 

expression was confirmed with the AIF1L-N antibody. The AIF1L-C antibody was successfull in 

detecting AIF1L wild type, however no band corresponding to the expected ABL1-AIF1L 

chimeric protein was observed. Not even after the application of long signal acquisition (see 

lower plot). GAPDH and TBP were used as loading controls. kDa (kilodalton) 

  



94 
 

Discussion 

Childhood acute leukemias are genetically diverse entities. The one technological 

breakthrough that precipitated major improvements in molecular genetics in general, and in 

diagnostics and dissection of childhood leukemias in particular within the last decade were 

high-throughput sequencing technologies. They helped identify novel and recurrent 

molecular aberrations in both acute myeloid and lymphoblastic leukemias, as well as allow 

fast and highly accurate investigation of individual cases (Iacobucci and Mullighan, 2017; 

Moorman, 2016; Papaemmanuil et al., 2016; Yohe, 2015). A significant number of these 

aberrations seem to play a major role in disease classification, management and risk 

stratification. Moreover, subsequent functional studies characterizing these molecular events 

help us gain insight into their role in the transformation of a normal hematopoietic cell into a 

malignant one. Understanding the pathogenesis of these processes is crucial for developing 

novel targeted therapies.  

Focus of my thesis rests mainly in a thorough identification and characterization of 

genetic events in TMD and BCP-ALL. It includes both a detailed dissection of novel genetic 

mutations and fusion genes, as well as presentation of numerous experimental in vitro 

approaches that focus on the functional description of these particular aberrations. The main 

aim was to decipher an alternative pathogenesis of TMD development in the absence of 

trisomy 21 and to characterize a chromosomal rearrangement in BCP-ALL resulting in the 

production of multiple fusion genes (Lukes et al., 2020; Lukes et al., 2018).  

Moreover, I have also participated on a project aiming to study the feasibility of the 

identification of PML-RARA, CBFB-MYH11 and RUNX1-RUNX1T1 genomic fusion sequences 

using targeted sequencing. The identified fusion gene breakpoint sequences subsequently 

served for the design of patient-specific qPCR systems for MRD monitoring. We showed that 

fusion gene-based MRD monitoring represents a superior tool for therapy response evaluation 

than the widely used fusion-transcript based approach. By applying the fusion gene-based 

approach a higher sensitivity was reached. Importantly, we show that fusion gene breakpoint 

identification is feasible and enables unambiguously interpretable monitoring of MRD in AML 

patients harboring the PML-RARA, CBFB-MYH11 and RUNX1-RUNX1T1 fusions (Lukes et al., 

manuscript under consideration). 
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Last but not least, I participated in studying the frequency of H1038/Q1072 ZEB2 

mutations in pediatric B-other ALL and the impact of these aberrations on patient outcome 

(Zaliova et al., manuscript in revision). 

TMD is a leukemia-like disease that originates from fetal hematopoietic cells. In the 

past two decades substantial effort has been invested into our understanding of the 

pathogenesis of TMD. Trisomy 21 seems to be a necessary requirement for the development 

of this preleukemic condition (Banno et al., 2016; Carpenter et al., 2005; Kruger, 2007). 

However, the exact mechanism of its contribution still remains elusive. A minimal amplified 

region together with particular genes, namely RUNX1, ETS2, ERG and miR-125b-2, on 

chromosome 21 have been proposed to be responsible for the expansion of early 

hematopoietic progenitors, represented mainly by megakaryocytic progenitors (Banno et al., 

2016; Chou et al., 2008; Klusmann et al., 2010). Most patients suffering from TMD have 

constitutional trisomy 21, in the form of Down syndrome or mosaic Down syndrome (Malinge 

et al., 2009; Roberts and Izraeli, 2014). Rarely TMD also occurs in non-DS patients. However, 

all described cases of this nature harbored somatic trisomy 21 (Carpenter et al., 2005; 

Magalhaes et al., 2005; Yumura-Yagi et al., 1992).  

We identified, to the best of our knowledge, the first case of TMD with no involvement 

of chromosome 21. To rule out mosaicism for trisomy 21 or a partial trisomy 21, two 

independent cytogenetic analyses were performed, both of which revealed a normal 

karyotype without any numerical aberrations of the chromosome in question. Furthermore, 

the SNP array analysis of the blast population reliably excluded the presence of trisomy 21. 

The sequential acquisition of uniform genetic events has established TMD in the past as a 

perfect model of myeloid leukemogenesis (Garnett et al., 2020; Hitzler and Zipursky, 2005). 

Our observations, discussed below, point to additional mechanisms that may participate in 

TMD pathogenesis. More importantly, the absence of trisomy 21 in the blast population 

questions the (absolute) necessity of the additional chromosome 21 in TMD origin. 

To further characterize the genetic background of this exceptional TMD, we performed 

next generation sequencing and identified novel somatic mutations in the GATA1, JAK1, 

SPIRE2 and FN1 genes. Normal definitive hematopoiesis is not only maintained by two copies 

of the 21 chromosome, but also by full-length GATA1 (Crispino, 2005). Mutations in the GATA1 
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gene are the second essential factor that was postulated as necessary for TMD development 

(Banno et al., 2016; Carpenter et al., 2005; Gialesaki et al., 2018; Xu et al., 2003). These 

aberrations are usually located in the second exon and lead to the exclusive production of an 

N-terminally truncated variant called GATA1s (Shimizu et al., 2008). The dysregulation of 

GATA1, perturbs a complex transcriptional network regulating HSCs development, that 

eventually causes an accumulation of immature progenitors (Banno et al., 2016; Shimizu et 

al., 2008; Shimizu et al., 2009) in a stage specific manner (Gialesaki et al., 2018). When GATA1s 

expression was induced in human fetal, neonatal and adult HSPCs, terminal differentiation 

and progenitor cell accumulation was present only in the fetal ontogeny (Gialesaki et al., 

2018). The distinct effects of GATA1s in individual developmental stages of hematopoiesis 

could explain the temporary nature of TMD, which is a self-limiting disease usually resolving 

spontaneously within the first few months after birth (Klusmann et al., 2008). The 

spontaneous remission coincides with the gradual transition of hematopoiesis from fetal liver 

into the bone marrow (Dzierzak and Speck, 2008; Hitzler and Zipursky, 2005). When hepatic 

hematopoiesis ceases, it may result in loss of necessary microenvironment crucial for TMD 

blast growth. Possibly, unknown factors in the bone marrow microenvironment may stop the 

blast proliferation (Miyauchi and Kawaguchi, 2014). The novel GATA1 mutation, GATA1 

D65_C228del, described by us, differs significantly from the common mutations resulting in 

the production of GATA1s, usually represented by small duplications, insertions and deletions 

(Rainis et al., 2003). GATA1 D65_C228del results in a large deletion spanning between multiple 

exons. We proved the production of the GATA1 chimeric protein in a cell model and tracked 

its localization into the nucleus, similarly to GATA1 wt and GATA1s. Interestingly the GATA1 

D65_C228del protein lacks the whole NZF and a part of TAD. Conversely, GATA1s lacks only 

TAD. Point mutations in the NFZ are commonly present in benign congenital anemias (Freson 

et al., 2001; Freson et al., 2002; Mehaffey et al., 2001; Nichols et al., 2000). However, we have 

not found any published information about cases of TMD or other hematological malignancies 

harboring aberrations in the GATA1 gene leading to complete NZF loss. The two major 

functions of NZF are to enable and subsequently stabilize GATA binding to DNA and to mediate 

the interaction between GATA1 and its essential cofactor FOG1 (Lowry and Mackay, 2006; 

Trainor et al., 2000; Trainor et al., 1996; Tsang et al., 1997). Interestingly, abrogation of the 

interaction between GATA1 and FOG1 results in loss of differentiation, however proliferation 

of immature megakaryocytes is conserved (Kuhl et al., 2005). The association of GATA1 with 
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FOG1 is crucial during embryonic hematopoiesis (Shimizu et al., 2004). Mutations perturbing 

this interaction lead to essential thrombocytopenia (Chang et al., 2002; Nichols et al., 2000). 

Moreover, the indispensability of NZF was demonstrated previously in two pivotal rescue 

studies. In transgenic mice, NZF was required for definite erythropoiesis (Shimizu et al., 2001), 

and in GATA1-null erythroid cells, NZF rescued erythroid differentiation (Weiss et al., 1997). It 

has been postulated that NZF loss may affect the function of GATA1 more severely than TAD 

loss (Shimizu et al., 2001). When expressed at high levels, GATA1s was able to rescue definite 

erythropoiesis, however the NZF lacking GATA1 variant had no rescue effect, regardless of 

expression levels (Shimizu et al., 2001). We therefore hypothesize, that the novel GATA1 

mutation identified in our patient, resulting in complete loss of NZF together with partial loss 

of TAD, negatively influences GATA1 function in a more severe way when compared with 

GATA1 aberrations found in trisomy 21-associated TMDs. The aberrant GATA1 D65_C228del 

isoform is predicted to lose transactivation potential, together with partially losing the ability 

to recognize DNA binding sites. Conversely, the GATA1s isoform loses only transactivation 

potential, therefore possibly compromising fetal hematopoiesis to a lesser extent than GATA1 

D65_C228del. Nevertheless, the effect of GATA1 D65_C228del remains limited to fetal 

hematopoiesis, parallel to GATA1s. Interestingly, GATA1s alone, similarly to trisomy 21 alone, 

is insufficient to cause TMD. This has been exemplified by the presence of a germline GATA1 

mutation, resulting in GATA1s production, in a family without TMD occurrence (Hollanda et 

al., 2006).  In comparison, the GATA1 D65_C228del isoform may possibly be able to induce 

the non-DS-TMD alone. 

Tumorigenesis however only rarely results from a single genetic hit and usually 

requires multiple cooperating aberrations (Inaba et al., 2013). The novel JAK1 deletion, JAK1 

F636del, identified by us represented the most probable candidate involved in TMD induction, 

together with the aberrant GATA1. Mutated JAK genes are recurrently found in various 

hematological malignancies, importantly also in AML and AMKL (Chen et al., 2012; Jeong et 

al., 2008; Nikolaev et al., 2013; Xiang et al., 2008; Zhang et al., 2012). JAK1 F636del results in 

the loss of one highly conserved phenylalanine on position 636 located in the pseudokinase 

domain a region frequently harboring activating mutations (Flex et al., 2008; Haan et al., 

2010). F636 belongs to a triad of aminoacids which, together with V658 and F575, likely 

controls the catalytic activity of JAK1 (Toms et al., 2013). Hence, we expected that its loss will 
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significantly impact the structure and possibly function of JAK1. However, homology modeling 

suggested the compatibility of F636 loss with both the active and inactive conformations of 

JAK1, together with a third possible “alternative” conformation, resembling the inactive state. 

We showed that catalytic activity of JAK1 F636del is preserved, however phosphorylation 

levels of JAK1 and STATs, its downstream signaling molecules, were lower when compared to 

their wild type counterparts, implicating that F636del results in decreased kinase activity. 

Typical JAK pseudokinase activating mutations, including JAK2 V617F, which is present in the 

majority of polycythemia vera patients, cause activation of the kinase domain (James et al., 

2005). Similarly, the JAK1 V658F variant which is homologous to JAK2 V617F, activates the 

JAK1/STAT3 pathway (Hornakova et al., 2009; Jeong et al., 2008; Mullighan et al., 2009c). 

Furthermore, the activating potential of various aberrations affecting JAK1 via the Ba/F3 cell 

assay has been demonstrated (Arulogun et al., 2017; Li et al., 2017). In the case of JAK1 

F636del, IL3 independent growth was not achieved, therefore questioning the oncogenic 

potential of this particular deletion. We hypothesized that JAK1 F636del may only exert its 

effect in the context of mutated GATA1, due to the delicate interplay between these two 

aberrations in a site and cell specific manner. Therefore, we assessed the cooperation of JAK1 

F636del with GATA1s by utilizing a mouse fetal liver HSPC model, successfully mimicking the 

trisomy 21-independent TMD. However, even in this setting no impact on cell maturation and 

proliferation was registered. The involvement, if any, of JAK1 F636del in the pathogenesis of 

the trisomy 21-independent TMD remains elusive. Our findings regarding JAK1 complement 

the recently published data from the largest sequencing study of TMD and myeloid leukemia 

of Down syndrome (ML-DS) patients conducted so far. Labuhn and colleagues showed that 

tyrosine kinase mutations, most prevalently JAK mutations, are very common in both patients 

with TMD and in patients who progress to ML-DS (Labuhn et al., 2019). Interestingly, the vast 

majority of JAK aberrations found in ML-DS patients were either already documented as gain-

of-function mutations (Baxter et al., 2005; Bercovich et al., 2008; Kiyoi et al., 2007; Malinge et 

al., 2008), or were proved activating in various cell assays by Labuhn and colleagues (Labuhn 

et al., 2019). On the other hand, none of the JAK mutations found in this large cohort of TMD 

patients was shown to be activating (Labuhn et al., 2019). Moreover, another study identified 

JAK3 loss-of-function mutations in DS-TMD and AMKL (De Vita et al., 2007). Some of these 

mutations were also previously found in patients with severe combined immunodeficiency 

(De Vita et al., 2007; O'Shea et al., 2004). Due to their abundance in TMD, it seems that JAK 
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gene mutations, are not merely passenger mutations and may therefore play a role in the 

pathogenesis of this preleukemia, however the mechanism of their contribution may 

significantly differ from that of previously described gain-of-function mutations.  

Alternatively, the novel mutations in SPIRE2 (SPIRE2 R471W) and FN1 (FN1 R2420C) 

genes, identified by WES, may also contribute to the development of this unique TMD. SPIRE2, 

which encodes Spire type actin nucleation factor 2, plays a role in asymmetric oocyte division. 

It mediates asymmetric spindle positioning by assembling the actin network and drives polar 

body extrusion by promoting assembly of the cleavage furrow (Pfender et al., 2011). The FN1 

gene encodes fibronectin 1, a glycoprotein involved in cell migration and adhesion processes 

like wound healing, metastasis and blood coagulation (Barbazan et al., 2017; Grinnell, 1984; 

Li et al., 2019; Wang and Ni, 2016). However, current knowledge about the involvement of 

SPIRE2 and FN1 in hematological malignancies is very limited and we can therefore only 

speculate about their involvement in trisomy 21-independent TMD pathogenesis. 

Chromosomal rearrangements resulting in fusion gene production represent a 

hallmark of pediatric ALL (Iacobucci and Mullighan, 2017; Mitelman et al., 2007). The ETV6-

ABL1 fusion gene is a rare, but recurrent, genetic event in both children and adults diagnosed 

with ALL (Zaliova et al., 2016). Our laboratory focused its research on the characterization of 

patients harboring the ETV6-ABL1 fusion and published a number of pivotal articles regarding 

this topic in the past (Zaliova et al., 2016; Zuna et al., 2010). In the presented study we 

characterize a unique childhood BCP-ALL positive for the ETV6-ABL1 fusion gene. ETV6-ABL1 

originates either from the insertion of a part of the ABL1 gene into the ETV6 gene, which is 

located on chromosome 12, or from the insertion of a part of ETV6 into ABL1 located on 

chromosome 9 (Zaliova et al., 2016). Rarely, additional chromosomes are involved in the 

rearrangement (La Starza et al., 2002; Tirado et al., 2005). The fusion identified by us was 

localized on chromosome 12, supporting the fact that ABL1 insertion into ETV6 represents a 

more common mechanism over the opposite event (Zaliova et al., 2016). The insertion was 

cryptic, similarly to the majority of previously described cases. Therefore, no abnormalities 

were detected during routine FISH analysis with the ETV6 probe.  

In leukemias, commonly one or two in-frame fusion genes originate from a single 

chromosomal rearrangement. We identified three in-frame fusion genes, namely ETV6-ABL1, 
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ABL1-AIF1L and AIF1L-ETV6. By detecting the exact intronic junction sequences of all three in-

frame fusions we confirmed that they originated from a single rearrangement, which 

represents a rare event. Reciprocal in-frame fusion transcripts can be detected in recurrent 

fusions like BCR-ABL1, KM2TA-AFF1, ETV6-RUNX1, PML-RARA, CBFB-MYH11 and RUNX1-

RUNX1T1 represented by ABL1-BCR, AFF1-KMT2A, RUNX1-ETV6, RARA-PML, MYH11-CBFB 

and RUNX1T1-RUNX1, respectively (Kowarz et al., 2007; Loncarevic et al., 2002; Romana et al., 

1995a, Lukes et al., manuscript under consideration). Despite the fact that these additional 

fusion genes are undetectable in a proportion of patients, certain studies suggest that they 

might contribute to leukemia phenotype or perhaps have even oncogenic potential, and 

therefore are not mere passenger aberrations (Bursen et al., 2010; Gaussmann et al., 2007; 

Rafiei et al., 2015; Zheng et al., 2009). This has been nicely demonstrated on a number of 

reciprocal KMT2A fusion proteins (Marschalek, 2020). For example, in mice the AFF1-KMT2A 

fusion protein, reciprocal to KMT2A-AFF1, was capable of inducing ALL, even without the 

direct KMT2A-AFF1 fusion protein (Bursen et al., 2010). Moreover, the oncogenic potential of 

the NEBL-KMT2A fusion protein, reciprocal to KMT2A-NEBL, has been shown in transfected 

cells (Emerenciano et al., 2013). The BCR-ABL1 fusion gene is a molecular hallmark of CML 

(Zhou et al., 2018). Its reciprocal counterpart, the ABL1-BCR fusion gene, has been proposed 

to exhibit leukemogenic potential (Zheng et al., 2009). The ABL1-BCR chimeric protein 

increased short term stem cell capacity of murine hematopoietic stem cells and the 

proliferation of early progenitors. Interestingly, BCR-ABL1 exclusively assigned the cells a 

myeloid phenotype, whereas ABL1-BCR forced the B-cell commitment. By influencing the 

lineage commitment, ABL1-BCR could possibly contribute to leukemia phenotype 

determination (Zheng et al., 2009). However, the exact role of ABL1-BCR in CML still remains 

to be defined.  

Moreover, we demonstrated that the fusion genes likely represent the first 

leukemogenic event in this BCP-ALL case by revealing the prenatal origin of the fusions by 

backtracking ETV6-ABL1 into archived neonatal blood withdrawn from the patient right after 

birth. These data support our previous findings suggesting that prenatal origin of ETV6-ABL1 

is not uncommon in childhood ALL (Zuna et al., 2010). Leukemia manifestation occurred 

almost 3 years after birth in the studied patient. From this we can assume that the combined 

effect of the ETV6-ABL1, ABL1-AIF1L and AIF1L-ETV6 is insufficient to launch overt leukemia, 
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similarly to ETV6-ABL1 alone. Additional aberrations that cooperate with ETV6-ABL1 are 

necessary for leukemia development. In 80% of ALL cases positive for the ETV6-ABL1 fusion 

these lesions are represented by deletions in the CDKN2A/B and IKZF1 genes, as has been 

demonstrated previously by us (Zaliova et al., 2016; Zuna et al., 2010). Importantly, CDKN2A/B 

and IKZF1 deletions are also recurrently found in BCR-ABL1-positive ALLs. Aside from 

similarities in their genomic profiles, these two entities share an analogous gene expression 

profile (Mullighan et al., 2007; Roberts et al., 2014b; Zaliova et al., 2016). In the presented 

BCP-ALL both deletions in CDKN2A/B and IKZF1 were identified, likely representing the second 

hit aberrations contributing to the process of leukemogenesis. Moreover, these findings 

support the notion, that CDKN2A/B and IKZF1 silencing is a common feature of ETV6-ABL1-

positive leukemia.  

The ETV6 protein plays an important role in hematopoiesis, especially in the bone 

marrow, and during embryonic development (De Braekeleer et al., 2012; Wang et al., 1997; 

Wang et al., 1998). The main functions of the ABL1 gene concern cell adhesion and motility, 

autophagy, receptor endocytosis and actin binding (Colicelli, 2010; De Braekeleer et al., 2011).  

The ETV6-ABL1 fusion gene can be found not only in ALL, as described here, but also in AML 

and myeloproliferative neoplasms (Zaliova et al., 2016). It effects cell survival, proliferation 

and transforming capacity similarly as BCR-ABL1 (Hannemann et al., 1998; Okuda et al., 1996). 

Their effect varies in mice, were BCR-ABL1 induces leukemia and ETV6-ABL1 a chronic 

myeloproliferation (Million et al., 2002). In comparison with the ETV6 and ABL1 genes, 

information about the biological role and function of AIF1L, except its involvement in actin 

bundling, remains unclear (Lu et al., 2017; Schulze et al., 2008). Physiologically, AIF1L is 

expressed in a variety of tissues including the hematopoietic system.  Importantly, it is also 

expressed in the majority of ALLs, according to our RNA sequencing data. However, its 

expression levels vary significantly. The here described AIF1L-ETV6 and ABL1-AIF1L fusion 

genes represent, to the best of our knowledge, the first leukemia associated disruptions of 

the AIF1L gene. Insufficient amount of available material prevented us from the direct analysis 

of chimeric AIF1L protein expression in the leukemic blast population. Therefore we utilized 

an in vitro approach and successfully localized the AIF1L-ETV6 fusion protein in the nucleus of 

transfected HEK293T cells. The ETV6 DNA-binding domain is preserved in this chimeric 

protein, therefore possibly enabling the recognition of ETV6 binding motifs and subsequent 
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DNA binding. It may play a similar role as in the MN1-ETV6 fusion protein, which can be found 

in patients with myelodysplastic syndrome and AML (Buijs et al., 1995), where the ETV6 DNA-

binding domain is also preserved, and is together with the MN1 moiety capable of 

transforming murine fibroblasts (Buijs et al., 2000). In this case MN1 probably functions as a 

transcriptional co-activator, instead of serving as a transcription factor capable of binding to 

a specific DNA sequence (van Wely et al., 2003). Moreover, in translocations involving the BTL 

and PAX5 genes, the ETV6 DNA-binding domain is also part of the fusion protein, suggesting 

possible similarities in the mechanisms involved (Bohlander, 2005; Cazzaniga et al., 2001; 

Cools et al., 1999; Fazio et al., 2008). However, additional functional studies would be required 

to examine this hypothesis and reveal the exact function of AIF1L-ETV6. We did not detect the 

ABL1-AIF1L chimeric protein, despite the fact that the antibody showed a robust signal for 

AIF1L wild type protein. These data imply that ABL1-AIF1L is unstable or is not expressed at 

all.  

In conclusion, I have participated in the description and detailed characterization of 

the molecular background behind two unique hematological entities: a TMD that evolved in a 

trisomy 21-independent setting and a ETV6-ABL1-positive BCP-ALL resulting from a single 

chromosomal translocation of prenatal origin. Deciphering the role of these molecular events 

helps us better understand the process of leukemogenesis in both childhood AML and ALL. 

During my medical and doctoral studies I had the honor of personally meeting both 

Prof. Koutecký and Prof. Hrodek, the two pioneers, who introduced pediatric hematology and 

oncology in late 1960s into general medical practice in the Czech Republic, formerly 

Czechoslovakia.  The initial protocols that they implemented gave a mere 30% disease-free 

survival of ALL (Kavan et al., 1997; Koutecky, 1990). Advances in diagnosis, disease monitoring 

and treatment have risen this bar as high as to 90% in the 21st century (Stary et al., 2014). I 

am glad that during my Ph.D. studies I was able to be part of a team of leading scientist and 

clinicians facilitating these improvement and could also slightly contribute to this positive 

trend. 
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Conclusions 

The identification and characterization of genetic aberrations in childhood leukemias 

plays a pivotal role in understanding the process of leukemogenesis which subsequently helps 

us in developing novel therapeutic strategies and tailoring patient-specific treatments. In this 

study we identified novel mutations in protein coding genes together with a chromosomal 

aberration resulting in the production of previously undescribed fusion genes, providing 

significant information on the genetic background of two childhood acute leukemia entities, 

the transient myeloproliferative disorder and the ETV6-ABL1-positive B-cell precursor acute 

lymphoblastic leukemia. 

We described the first case of trisomy 21-independent GATA1 mutation-positive TMD. 

Our findings contradict the generally accepted claim that this preleukemic condition, which 

presents an ideal model to study the individual steps of leukemogenesis, requires the extra 

chromosome 21 during its development. We identified novel molecular aberrations in the 

JAK1 and GATA1 genes which we functionally characterized. JAK/STAT signaling studies 

together with various cell based models question the contribution of JAK1 F636del in the 

pathogenesis of TMD. We hypothesize, that the large in-frame GATA1 deletion which results 

in the production of an aberrant protein lacking the N-terminal zinc finger, impacts fetal 

hematopoiesis more severely when compared to GATA1s and may therefore trigger the 

trisomy 21-independent TMD condition alone.   

Moreover, we described two novel fusion genes, AIF1L-ETV6 and ABL1-AIF1L, which 

result from a single chromosomal rearrangement in an ETV6-ABL1-positive BCP-ALL. We 

demonstrated the prenatal origin of this unique rearrangement and hence its inability to cause 

overt leukemia. 

Last but not least, we showed that fusion gene-based MRD monitoring is superior to 

fusion transcript-based MRD monitoring in pediatric AML patients positive for the PML-RARA, 

CBFB-MYH11 and RUNX1-RUNX1T1 fusion genes. Importantly we demonstrate that fusion 

gene breakpoint sequence identification by targeted sequencing is efficient and feasible. 
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KMT2A    Lysine Methyltransferase 2A 
KRAS    KRAS Proto-Oncogene 
LMO    LIM Domain Only 
LMO1    LIM Domain Only 1 
LMO2    LIM Domain Only 2 
LSI    locus specific identifier 
LYL1    Lymphoblastic Leukemia Associated Hematopoiesis Regulator 1 
m     mouse 
M    male 
MACS    magnetic activated cell sorting 
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MDS    myelodysplastic syndrome 
MEF2D    Myocyte Enhancer Factor 2D 
MFC    multiparametric flow cytometry 
miR-125b-2   microRNA 125b-2 
ML-DS    myeloid leukemia of Down syndrome 
MLL    mixed lineage leukemia 
MLLT1 (ENL)   MLLT1 Super Elongation Complex Subunit 
MLLT3 (AF9)   MLLT3 Super Elongation Complex Subunit 
MNX1    Motor Neuron And Pancreas Homeobox 1 
MRD    minimal residual disease 
MYB    MYB Proto-Oncogene 
MYC    MYC Proto-Oncogene 
MYH11    Myosin Heavy Chain 11 
N    nuclear 
NN     non-templated nucleotides 
NCBI    National Center for Biotechnology Information 
NGS    next generation sequencing 
NIH3T3   murine embryonic fibroblast cell line 
NOTCH1   Notch Receptor 1 
NPM1    Nucleophosmin 1 
NRAS    NRAS Proto-Oncogene 
NUP214   Nucleoporin 214 
NZF    N-terminal zinc finger 
OBP2A    Odorant Binding Protein 2A 
p     short arm of the chromosome 
P2RY8    P2Y Receptor Family Member 8 
PacBlue   pacific blue 
PAX5    Paired Box 5 
PBS    phosphate buffered saline 
PBX1    Pre-B-Cell Leukemia Homeobox 1 
PCDHB15    Protocadherin Beta 15 
PCR    polymerase chain reaction 
PE    phycoerythrin 
PE-Cy7    phycoerythrin-cyanine 7 
p-gag-pol   plasmid-group specific antigen-reverse transcriptase 
Ph    Philadelphia 
pIRES2-EGFP   plasmid 
PMA     phorbol-12-myristate-13-acetate 
PML    Promyelocytic Leukemia 
PNT    pointed domain 
PTPN11   Protein Tyrosine Phosphatase Non-Receptor Type 11 
PU.1    transcription factor PU.1; encoded by SPI1 gene 
p-VSV-G   plasmid-vesicular stomatitis virus G 
pWCC19   plasmid 
q    long arm of the chromsome 
RAD21    RAD21 Cohesin Complex Component 
RAF    RAF kinases; rapidly accelerated fibrosarkoma 
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RAG    Recombination Activating Gene 
RAG1     Recombination Activating Gene 1 
RAG2    Recombination Activating Gene 2 
RARA    Retinoic Acid Receptor Alpha 
RAS    RAS family of proteins 
RNA-seq   whole transcriptome sequencing 
ROSA26   Gt(ROSA)26Sor locus 
RPMI     Roswell Park Memorial Institute 
RT-PCR    reverse transcription polymerase chain reaction 
RT-qPCR   real-time quantitative polymerase chain reaction 
RUNX1    RUNX Family Transcription Factor 1 
RUNX1T1 RUNX1 Partner Transcriptional Co-Repressor 1  
SCF    stem cell factor 
sgRNA    single guide RNA 
SH2    Src Homology 2 domain 
SH2-PK    Src Homology 2 domain-protein kinase 
SH3    Src Homology 3 domain 
SLC25A15    Solute Carrier Family 25 Member 15 
SMC1A    Structural Maintenance Of Chromosomes 1A 
SNPa    single nucleotide polymorphism array 
SNV    single nucleotide variant  
Sp1    transcription factor Sp1; encoded by SP1 gene 
SPIRE2     Spire Type Actin Nucleation Factor 2 
STAG2    Stromal Antigen 2 
STAT    Signal Transducer And Activator Of Transcription 
STAT3     Signal Transducer And Activator Of Transcription 3 
SUZ12     SUZ12 Polycomb Repressive Complex 2 Subunit 
TAD    transactivation domain 
TAM    Transient Abnormal Myelopoiesis 
T-ALL    T cell lineage acute lymphoblastic leukemia 
TAF15     TATA-Box Binding Protein Associated Factor 15 
TAL    T-Cell Acute Lymphocytic Leukemia 
TAL1     T-Cell Acute Lymphocytic Leukemia 1 
TAL2     T-Cell Acute Lymphocytic Leukemia 2  
TBP    TATA-Box Binding Protein 
TCF3    Transcription Factor 3 
Ter119    Ter119 antigen 
TF1    human erythroleukemia cell line 
TKI    tyrosine kinase inhibitor 
TLX1     T Cell Leukemia Homeobox 1 
TLX3     T Cell Leukemia Homeobox 3 
TMD    Transient Myeloproliferative Disorder 
TP53    Tumor Protein P53 
TPO    thrombopoietin 
TRA    T-cell receptor alfa 
TRB    T-cell receptor beta 
TRD    T-cell receptor delta 
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Tri21    trisomy 21 
Tyk2    Tyrosine Kinase 2 
Tyr Kc     tyrosine protein kinase; catalytic domain 
UPD    uniparental disomy 
V(D)J recombination  variable (diversity) joining gene segment rearrangement 
WES    whole exome sequencing 
WHO    World Health Organization 
wt    wild type 
ZNF384   Zinc Finger Protein 384  
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