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Abstract: In this work, we studied three selected problems in FRW spacetime.
In the first part, we analysed the motion of a test particle in the homogeneous
and isotropic universe. We presented a framework in which one can derive the
uniformly accelerated trajectory and geodesic motion if a scale factor for a given
spacetime is provided as a function of coordinate time. By applying the confomal
time transformation, we were able to convert second order differential equations
of motion in FRW spacetime to first order differential equations. From this, we
managed to obtain a formalism to derive the uniformly accelerated trajectory of a
test particle in spatially curved FRW spacetime. The second part of this work is
devoted to dynamical cosmology. In particular, we analyse the cases of barotropic
fluids and non-minimally coupled scalar field in spatially curved FRW spacetime.
First, we set up the dynamical systems for an unspecified EoS of a barotropic
fluid case and an unspecified positive potential for a non-minimal coupled scalar
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variables valid for all curvatures. In the framework of these general setups we
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Introduction
The aim of this thesis is to study selected problems in the isotropic and homoge-
neous universe. On one hand, we studied the dynamics of a test particle moving
in an expanding universe; namely, we presented a novel formalism to obtain the
trajectory of a moving particle that has either uniform acceleration or uniform
velocity. On the other hand, we analysed the dynamics of barotropic fluid and
non-minimally coupled scalar field in spatially curved FRW spacetime.

The materials given in this work can be divided into two parts; the introduc-
tory part and the part based on my research. The introductory part is split into
three chapters, i.e. Chapters 1, 3, and 4; and the Chapters 2, 5, and 6 are based
on the papers Kerachian [2020], Kerachian et al. [2020], and Kerachian et al.
[2019] respectively.

This work is organized as follows. Chapter 1 provides a brief introduction to
modern cosmology by providing notions, equations, and definitions in this field.
In Chapter 2, we study the motion of a test particle uniformly accelerated in an
expanding universe. Chapter 3 provides the necessary background regarding the
theory of dynamical systems. We present the basic definitions and theorem in
this context. In Chapter 4 we give instructions on how dynamical system anal-
ysis should be applied on a cosmological model along with an explicit example.
Chapter 5 analyses the dynamics of classes of barotropic fluids, while Chapter 6
covers dynamics of classes of non-minimally coupled scalar field are discussed.
This work ends with concluding remarks.

0.1 Conventions and Formulas
In this thesis, we define some of general conventions and formulas that we adopt
throughout this work. The metric tensor signature is assumed to be (−,+,+,+).
We work in natural units where the speed of light c is set to one. We considered
coupling constants κ = 8 π G/c4 = 1. Throughout this work, the Greek indices
µ, ν, σ, ... run from 0 to 3 unless stated otherwise. Boldfaced quantities refer to
vectors in a general Rn space.

In this work, some formulas without explicit definition are given. These for-
mulas are:

• The Christoffel symbol Γ is

Γσµν = 1
2 g

σδ (gνδ,µ + gµδ,ν − gµν,δ) , (1)

where gµν is the metric tensor.

• The Ricci tensor Rµν is

Rµν = Γσµν,σ − Γσσν,µ + Γσµν Γδδσ − Γσδµ Γδσµ. (2)

• The Ricci scalar is
R = gµν Rµν . (3)

3



1. An introduction to cosmology
Cosmology is the branch of physics that seeks to understand the origin, the
evolution, the dynamics, the structure formation of the universe along with its
ultimate fate. Cosmology as a field of science was established from the Copernican
principle and was followed by Newtonian laws. Thanks to Albert Einstein’s theory
of general relativity, the modern cosmology have flourished. This field, then, was
improved by major observation discoveries in the 1920s: Edwin Hubble uncovered
that our universe is expanding. Subsequently, all these efforts led to speculations
regarding the origin of the universe and presented the big bang theory as a leading
cosmological paradigm. In 1990s observations from Type Ia supernovae concluded
that the expansion of our universe is accelerating. This finding implies that there
should be a hidden energy density in the universe that expresses itself as some
kind of negative pressure, which is known as the dark energy.

In this chapter, we assume that readers are sufficiently knowledgeable about
the basics of general relativity. Moreover, the chapter derives from the following
well known text books such as Griffiths and Podolský [2009], Weinberg [2008],
and Faraoni [2004] to describe elements of current cosmological trend.

The layout of this chapter is as follows. In Sec. 1.1 we will introduce cosmo-
logical principles and the basic material needed in studying modern cosmology.
In Sec. 1.2 the Einstein universe will be introduced as a model describing static
universe. In order to visualize the known cosmological models, in Sec. 1.3,the
conformal transformation will be applied. The big bang theory and the dark side
of the universe, i.e. dark matter and dark energy, will be discussed in Sec. 1.4.
In the rest of this chapter, we will study possible candidates to solve the accel-
erated expansion of the universe: ΛCDM model, quintessence, and non-minimal
coupling scalar field in Secs. 1.5, 1.6, and 1.7 respectively.

1.1 Introduction to FRW cosmology
On a sufficiently large scales the universe appears to be homogeneous and
isotropic. Namely, the space is invariant under spatial translations and rota-
tions. This means that, there is not any preferred direction or privileged point
in three dimensional space of the universe. This assumption, which implies that
the universe is highly symmetric, is in a good agreement with astronomical ob-
servations and it is represented by the Friedmann-Lemâıtre-Robertson-Walker
(FLRW) paradigm.

Basically, the condition that indicates the cosmological principle, namely the
isotropy and spatial homogeneity, is that the spacetime has a six-parameter group
of isometries. This group of isometries acts transitively on spacelike 3-spaces.
From the geometrical theorems, we know that a three-dimensional space has 6
isometries, at the most. Moreover, the curvature of these maximally symmetric
spaces is constant. Therefore, the isotropic and spatially homogeneous spacetime
has a foliation by a one-parameter family of 3-dimensional hypersurfaces Σ having
constant spatial curvature. It can be proven that there exist only three types of
such spaces, namely a 3-dimensional flat space, a 3-sphere, and a hyperbolic 3-
space. Moreover, each of these hypersufaces Σ are labelled by t =Const., where
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t is the coordinate time.
Therefore, in this paradigm, a four dimensional maximally spatially symmetric

manifold, which is known as a Friedmann-Robertson-Walker (FRW) metric (or
FLRW metric by including Lemâıtre), in pseudo-spherical coordinates reads

ds2 = −dt2 + a2(t)
(︄

dr2

1 − kr2 + r2dθ2 + r2 sin2(θ)dϕ2
)︄
, (1.1)

or
ds2 = −dt2 + a2(t)

(︂
dχ2 + S2

k(χ)(dθ2 + sin2 θdϕ2)
)︂
, (1.2)

where

Sk(χ) =

⎧⎪⎨⎪⎩
sinχ, k = +1, closed,
χ, k = 0, flat,
sinhχ, k = −1, open,

expresses the space curvature and a(t) is the scale factor which describes the
expansion of the universe. Even if these three metrics seem to be similar, they
represent different types of geometries. The range of χ varies for different curva-
tures, χ lies in the range χ ∈ [0,∞) for k = 0,−1 and χ ∈ [0, π] for k = 1; while
the ranges of the coordinate time t ∈ [0,∞) and angles θ ∈ [0, π] and ϕ ∈ [0, 2π)
are selected independently of the curvature.

To determine the unknown scale factor function a(t) and as a consequence the
evolution of the FRW space-time we need to apply the Einstein field equations
(EFE). We already know from general relativity that any spacetime is defined
by a metric gµν and the relation between the metric and matter distribution in
spacetime is given by the Einstein equation, i.e.

Gµν = Rµν − 1
2Rgµν = Tµν , (1.3)

where Rµν is Ricci tensor, R is Ricci scalar, and Tµν is stress-energy tensor.
The next step is to determine the stress-energy tensor. From the assumption

of homogeneity and isotropy, it can be shown that the matter inside the universe
is in the form of perfect fluid for which the stress-energy momentum takes the
form

Tµν = (ϵ+ P )uµuν + Pgµν . (1.4)
Here the vector uµ is the four-velocity of the fluid; ϵ is the energy density of
matter and P is the isotropic pressure. We assume that both ϵ and P can be
only the functions of time. For such a fluid, the energy conditions are

• The weak energy condition (WEC): For any timelike vectors tµ, the condi-
tion

Tµν t
µ tν ≥ 0, (1.5)

should be satisfied. For the fluid (1.4) this condition reads

ϵ ≥ 0, and ϵ+ P ≥ 0. (1.6)

• The dominant energy condition (DEC): For any timelike vector tµ, if the
WEC is satisfied then T µν tµ is a null or timelike vector. Thus, for the (3.31)
we get

ϵ ≥| P | . (1.7)
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• The strong energy condition (SEC): For any timelike vector tµ the condition

Tµν t
µ tν ≥ −1

2T, (1.8)

should be satisfied. This condition for the energy-momentum tensor (1.4)
will be

ϵ+ P ≥ 0, and ϵ+ 3P ≥ 0. (1.9)

• The null energy condition (NEC): For any null vector lµ the condition

Tµν l
µ lν ≥ 0, (1.10)

should be satisfied. This means

ϵ+ P ≥ 0, (1.11)

for the energy-momentum tensor (1.4).

• The null dominant energy condition (NDEC): For any null vector lµ, the
NEC should be satisfied and T µνlµ, is a null or timelike vector. This condi-
tion for the energy-momentum tensor (1.4) will be

ϵ ≥| P |, or ϵ = −P. (1.12)

The next task is to derive the non-vanishing components of Gµν from the met-
ric (1.2) and equating it with the stress-energy tensor (1.4). Therefore, Einstein’s
equations (1.3) for the FRW spacetime reduce to

3
(︄
H2 + k

a2

)︄
= ϵ, (1.13)

2Ḣ + 3H2 + k

a2 = −P. (1.14)

Here H = ȧ/a is Hubble parameter and Eqs. (1.13) and (1.14) are known as
the Friedmann equation and the Raychaudhuri equation respectively. Moreover,
from a Bianchi identity one can derive the continuity equation which reads

ϵ̇+ 3H(P + ϵ) = 0. (1.15)

The unknown scalar function a(t) can be determined if the barotropic equation
of state (EoS), i.e. P = P (ϵ), is given. Common EoS is a linear one of the form

P = wϵ, (1.16)

where 0 ≤ w ≤ 1. This linear EoS includes many special cases. For instance, a
pressureless fluid or dust when w = 0, radiation when w = 1/3. Subsequently,
from the linear EoS (1.16) and continuity equation (1.15) the energy density ϵ as
a function of a will be

ϵ = C

a3(w+1) , (1.17)
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where C is a constant. The former equation reads

ϵ ∝
{︄
a−3, for dust-filled universe,
a−4, for radiation-like fluid.

To derive the scale factor in terms of the coordinate time t, we should substitute
Eq. (1.17) into the Friedmann equation (1.13), namely

ȧ2 = C

3 a
−(1+3w) − k, (1.18)

then, by integrating the former relation one can get

a(ψ) =
(︃
C

3 sin2 ψ
)︃1/(1+3w)

, t(ψ) = 2
∫︁
a(ψ)dψ

1 + 3w , k = +1, (1.19)

a(t) =
(︄√

3C
2 γt

)︄2/(3w+3)

, k = 0, (1.20)

a(ψ) =
(︃
C

3 sinh2 ψ
)︃1/(1+3w)

, t(ψ) = 2
∫︁
a(ψ)dψ

1 + 3w , k = −1, (1.21)

where ψ is defined implicitly.

1.1.1 On the trajectories in a spacetime
In this section, we digress for a while to introduce specific trajectories in spacetime
with the metric gµν . In other words, we will introduce the necessary conditions
for the timelike geodesics and uniformly accelerated trajectories ( for more details
see e.g. Poisson [2004]).

A curve in a spacetime is called a timelike geodesic if the proper time between
two points a and b on the curve is extremum. If a curve γ is described by xµ(λ)
where the parameter λ is chosen arbitrary, then the proper time τ between points
a and b is defined

τ(a, b) =
∫︂ b

a
L(dx

µ

dλ
, xµ) dλ =

∫︂ b

a

√︄
−gµν

dxµ

dλ

dxν

dλ
dλ. (1.22)

The extremum proper time is determined from the Euler-Lagrnage equations
describing the particle’s motions. After some manipulation one can get from
Eq. (1.22)

d2xµ

d λ2 + Γµσδ
dxσ

dλ

dxδ

dλ
= κ

dxµ

dλ
, (1.23)

where κ = 1
L
dL
dλ

and Γµσδ is the Christoffel symbol. If we pick a specific parameter-
ization, i.e. dλ = dτ or λ = c1τ + c2, which is called an affine class of parameters
on the worldline, then κ vanishes and we get the geodesics equation in the more
familiar form

d2xµ

d τ 2 + Γµσδ
dxσ

dτ

dxδ

dτ
= 0, (1.24)

which is equivalent to uµ;νuν = 0. Here, the four-velocity uµ = dxµ

dτ
is tangent to

the geodesic. One can easily check that along an affinely parameterized timelike
geodesic we get uµuµ = −1. Thus, the motion of a test particle with very small
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proper mass which moves in a gravitational field is represented by its worldline;
this worldline is necessarily a timelike geodesic. However, if other forces act on
the test particle, its worldline deviates form the geodesic one.

On the other hand, a trajectory of a uniformly accelerated test particle is
given by ( see e.g. Rohrlich [2020])

P µ
ν ȧ

ν = ȧµ − (aσaσ)uµ = 0. (1.25)

Here P µ
ν = δµν + uµuν is the projection tensor and the over dot means uν∇ν , i.e.

covariant derivative with respect to τ , and

aµ = uν∇νu
µ = d2xµ

d τ 2 + Γµσδ
dxσ

dτ

dxδ

dτ
, (1.26)

is the four-acceleration of a test particle. If we multiply Eq. (1.25) by aµ, we get
ȧµaµ = 0 which guarantees that

aµa
µ = Constant. (1.27)

In other words, the magnitude of the four-acceleration is constant. Consequently,
for a given accelerated trajectory if the condition (1.25) is satisfied the motion of
the particle is uniformly accelerated.

In Minkowski spacetime, it is easy to check that the uniformly accelerated
trajectory is a hyperbola ( see e.g. Rindler [2012]). Although the conditions (1.24)
and (1.25) seem to be simple, deriving the geodesic and the accelerated trajectory
for the FRW spacetime is not an easy task. Kerachian [2020] derived a general
formalism to determine the geodesic and accelerated trajectory of a test particle
in the FRW spacetime.

1.2 The static universe
Historically, when Einstein presented his theory, it was assumed that we live in
a static universe. From Eqs. (1.13) and (1.14) we can derive

ä = −1
6(ϵ+ 3P )a, (1.28)

which implies that in order to have a static universe ȧ = 0 and ä = 0 or equiv-
alently P = −1/3 ϵ, i.e. either pressure is negative or energy density. This
statement violates the energy condition ϵ ≥ P ≥ 0. Therefore, in 1917, Einstein
modified his equations (1.3) by adding a constant called the cosmological constant
Λ:

Rµν − 1
2Rgµν − Λgµν = Tµν . (1.29)

Subsequently, the modifications of the Friedmann equation (1.13) and the Ray-
chaudhuri equation (1.14) become

H2 + k

a2 = ϵ

3 + Λ
3 , (1.30)

2Ḣ + 3H2 + k

a2 = Λ − P. (1.31)
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It can be derived from the former equations that for a desired static universe,
i.e. a = ã =Const., the cosmological constant Λ and the spatial curvature k are
strictly positive. Consequently, a spacetime representing the static universe is
written as

ds2 = −dt2 + ã2
(︂
dχ2 + sin2 χ(dθ2 + sin2 θ dϕ2)

)︂
. (1.32)

This spacetime is known as the Einstein static universe.
Although, this spacetime represents the static universe, it is an unstable space-

time. Moreover, in the late 1920s, it was discovered that the universe is expanding
and the use of the additional term in the Einstein field equation subsided. On
the other hand, as we will see in Sec. 1.3, the global causal structure of other
exact solutions of EFE can be studied simply from the Einstein static universe.

Before we proceed to the next section, here we shall briefly analyze the global
structure of the Einstein universe. First, by using the time rescaling t = ãη̃ and
also χ = χ̃ the static universe metric takes the form

ds2 = ã2
(︂
−dη̃2 + dχ̃2 + sin2 χ̃(dθ2 + sin2 θ dϕ2)

)︂
. (1.33)

Recall that, since the Einstein universe is a specific case of the FRW spacetime
with positive spatial curvature, the range of its coordinate are η̃ ∈ (−∞,+∞),
χ̃ ∈ [0, π], θ ∈ [0, π], and ϕ ∈ [0, 2π]. Therefore, for any point having η̃ =Const.
the spatially section is 3-sphere.

Therefore, Einstein universe can be visualized in 3-dimensions where θ = π/2
as an interior of an infinite cylinder with radius π. Likewise, in 2-dimensions
we suppress both θ = π/2 and ϕ =Const.; in Fig. 1.1 the 2-dimension Penrose
diagram for Einstein universe is plotted.

Figure 1.1: Penrose diagram for the Einstein universe where the θ and ϕ coordi-
nates are suppressed.
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1.3 Conformal structure
In this section we study the global structure of the FRW spacetime. To investigate
this, we use the idea of a conformal transformation. In general, the conformal
transformation is considered as a map between two spacetimes, i.e. M and M̃
with metrics gµν and g̃µν respectively, that satisfy

g̃µν = Ω2gµν . (1.34)

Here we consider that M is a physical spacetime, M̃ can be an unphysical space-
time with a boundary I ( the boundary I is associated with the condition Ω = 0.),
and Ω is a smooth and strictly positive function. Therefore, the infinity of M is
confined with the finite hypersurface I. In other words, asymptotic properties of
M and fields in M can be understood from studying I and the local behaviour
of the fields at I ( For more explanations we refer readers to the lecture given by
Penrose in DeWitt and DeWitt [1964]).

To construct the conformal transformation for the FRW spacetime, it is
enough to introduce the new temporal coordinate as a conformal time η. The
relation between the new confomal time η and coordinate time t is

η =
∫︂ dt

a(t) . (1.35)

Using this transformation, the transformed Friedmann metric (1.2) becomes

ds2 = a2(η)
(︂
−dη2 + dχ2 + sin2(χ)(dθ2 + sin2 θdϕ2)

)︂
for k = 1, (1.36)

ds2 = a2(η)
(︂
−dη2 + dχ2 + χ2(dθ2 + sin2 θdϕ2)

)︂
for k = 0, (1.37)

ds2 = a2(η)
(︂
−dη2 + dχ2 + sinh2(χ)(dθ2 + sin2 θdϕ2)

)︂
for k = −1, (1.38)

where a(η) = a(t(η)) and reads

a(η) = ac

(︃
sin(3w + 1

2 η)
)︃ 2

3w+1
for k = 1, (1.39)

a(η) = acη
2

3w+1 for k = 0, (1.40)

a(η) = ac

(︃
sinh(3w + 1

2 η)
)︃ 2

3w+1
for k = −1. (1.41)

In order to visualize the conformal spacetime, it is appropriate to plot Penrose
diagram in which a given FRW spacetime relates to the part of the Einstein static
universe. Namely, by applying the proper transformation from FRW spacetime
to Einstein static universe (1.33), one should arrive at

ds2
Eins = Ω2dsFRW . (1.42)

It is easy to show that for the FRW spacetime with k = +1, by considering η̃ = η
and χ̃ = χ the conformal factor becomes

Ω = ã

a(η̃) , (1.43)
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where a(η̃) is given in (1.39). From the conformal factor (1.43) and the scale fac-
tor (1.39), it is clear that the infinity I which corresponds to Ω = 0 or equivalently
a(η̃) = ∞ does not exists. However, there are two singular points corresponding
to Ω = ∞, namely when a(η̃) = 0. These two singularities are called the initial
singularity or the big bang when η̃ = 0 and the final singularity when η̃ = 2π

3w+1 .
Therefore, any FRW spacetime with k = 1 is conformal to the part of the Ein-
stein static universe ( see Fig. 1.1) which is bounded between these two sections in
which the universe expands from the initial singularity and reaches its maximum
size ac, this is followed by the re-collapses back to the final singularity.

In Fig. 1.2a the Penrose diagram for the radiation dominated FRW universe
with k = 1 is plotted. As this figure shows, the initial singularity is located at
η̃ = 0 and the final singularity occurs at η̃ = π which are illustrated by the dotted
dashed lines. The vertical dotted lines, on the other hand, show the η =Const.
and the horizontal dotted lines represent χ̃ =Const.. Moreover, the dashed line
is the location of the maximum size a = ac.

For the spatially flat FRW models, one has to apply the conformal transfor-
mations

η = 2 sin η̃
cos η̃ + cos χ̃ ,

χ = 2 sin χ̃
cos η̃ + cos χ̃ , (1.44)

to get the conformal factor

Ω = ã

a(η(η̃, χ̃)) cos
(︃
η̃ + χ̃

2

)︃
cos

(︃
η̃ − χ̃

2

)︃
, (1.45)

with a(η(η̃, χ̃)) given in (1.40). Therefore, we can see that the conformal infinity
I occurs when η̃ + χ̃ = ±π, η̃ − χ̃ = ±π, and a(η(η̃, χ̃)) = ∞. Moreover, the
singularity takes place when a(η(η̃, χ̃)) = 0 or equivalently η̃ = 0. Since the scale
factor 1.40 is a monotonic function of η̃, the Penrose diagram shape is independent
of the choice of the fluid.

In fig. 1.2b the Penrose diagram for the spatially flat FRW spacetime is plot-
ted. This spacetime is the part of the Einstein static universe which is confined
between the initial singularity η̃ = 0 and the η̃ + χ̃ = π.

For the FRW spacetime with negative spatial curvature k = −1 by using the
following conformal transformations

η = arctanh
(︄

sin η̃
cos χ̃

)︄
,

χ = arctanh
(︄

sin χ̃
cos η̃

)︄
, (1.46)

we can derive the conformal factor

Ω = ã

a(η(η̃, χ̃))

√︃
sin(η̃ + χ̃− π

2 ) sin(η̃ − χ̃− π

2 ), (1.47)

where a(η(η̃, χ̃)) is given in (1.41). For this spacetime, the conformal infinity, i.e.
Ω = 0, occurs at η̃+ χ̃ = ±π/2 and η̃− χ̃ = ±π/2 together with a(η(η̃, χ̃)) = ∞.
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(a) k = 1 (b) k = 0

(c) k = −1

Figure 1.2: Penrose diagrams for the FRW spacetime when (a) k = 1, (b) k = 0,
and (c) k = −1. The Penrose diagram for the positive spatial curvature corre-
sponds to the FRW spacetime with radiation. However, the Penrose diagrams for
k = 0 and k = −1 are the same for all the EoS (1.16) with 1 ≤ w ≤ 2. In these
figures, the dotted dashed lines show the singularities, dotted lines correspond to
constant η̃ and χ̃. Moreover, the I+ is called the future null infinity, i+ is the
future timelike infinity, and i0 is the spacelike infinity.
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There is also an initial singularity when η̃ = 0. Similar to the flat cases, the shape
of the Penrose diagram for the FRW spacetime with k = −1 is independent of
the fluid choice.

Fig. 1.2c illustrates the Penrose diagram for the negative spatially curved FRW
spacetime. This spacetime is the part of the Einstein static spacetime bounded
by initial singularity η̃ = 0 and the conformal infinity located at η̃ + χ̃ = ±π/2.

1.4 The dark side of the universe
In Sec. 1.1 the FRW spacetime was presented. By solving the EFE for different
types of T µν , one can deduce different cases of evolution for the scale factor a, i.e.
one can deduce whether a is a constant function of time t or decreasing, or increas-
ing. However, we should find out which of these forms describes the real universe.
This information can be extracted from the observational measurements.

We know that the universe is expanding, which led us to one of the most
important concepts in the modern cosmology, namely the big bang. We already
know that the scale factor is positive, i.e. a > 0, and we also know ȧ > 0 from
the expansion of the universe. Consequently, if t0 is considered as the present
time, we can deduce that there exists a finite time t⋆ in the past, where t⋆ < t0,
that satisfies a(t⋆) = 0. The time t⋆ is called the big bang.

Moreover, Eq. 1.28 implies that for the baryonic matter, for which holds that
ϵ+3P > 0, the rate of the expansion should slow down since ä < 0, i.e. due to the
mutual gravitational effect. However, observations of Type Ia supernovae from
two different surveys, the Supernova Cosmology Project Perlmutter et al. [1999]
and the High-z Supernova Search Team Riess et al. [1998], discovered that the rate
of the expansion is accelerating. Consequently, from Eq. (1.28) the accelerated
expansion (ä > 0) requires an energy density satisfying ϵ + 3P < 0. Since we
do not know the nature of such energy density, this unknown energy density is
called dark energy.

Apart from dark energy, there exists another unknown matter in the universe
which is called dark matter. During 1960−1980 Vera Rubin and her team studied
the rotation curves of spiral galaxies. They observed that the velocity of the stars
in the spiral galaxies, independent of their position from the core of the galaxies,
remains almost constant. These findings are inconsistent with the gravitation of
the visible mass of the galaxies, i.e. the visible is not strong enough to hold the
farther fast-moving stars from the center of a galaxy. Therefore, they concluded
that there should be dark matter in the galaxies and clusters in order to hold
them stable.

According to the data gathered by Planck Collaboration et al. [2020], the
total energy density of the universe consist of: ∼ 68.5% dark energy, ∼ 26.5%
cold dark matter1, and ∼ 5% baryonic matter.

There are three main approaches in order to understand the physics behind
the dark energy: the constant vacuum energy or cosmological constant, non-
constant vacuum energy or scalar fields, and modified gravities. In the rest of
this chapter, we will succinctly introduce the ΛCDM model and the scalar fields.

1Dark matter particles are called cold if their velocities are much lower that speed of light,
i.e. their velocities are non-relativistic.
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1.5 ΛCDM model
In this section we will introduce the standard cosmological model. Namely, we
will discuss the ΛCDM model. Λ is the cosmological constant and CDM stands
for the cold dark matter, as a model that fits well with the observations such as
the survey in Planck Collaboration et al. [2020].

Based on the observations, dark energy’s EoS has wde = −1.03 ± 0.03. From
Eqs. (1.30) and (1.31) together with (1.16) one can deduce that the cosmological
constant acts like an exotic fluid with ϵΛ = Λ, PΛ = −Λ, and also wΛ = −1. We
have seen in Sec. 1.2 that adding the cosmological constant Λ, led us to the non-
physical Einstein Static universe; however, it may be an appropriate cosmological
model to describe the late time inflation.

From the view point of particle physics, the cosmological constant can be
interpreted as a vacuum energy, namely the states of the lowest energy. Lets
start with the action of a scalar field ( see e.g. Carroll [2001])

S = −
∫︂
d4x

√
−g [12g

µν∂µψ ∂νψ + V (ψ)]. (1.48)

It’s energy momentum tensor is

Tµν = 1
2∂µψ ∂νψ − 1

2(gρσ∂ρψ ∂σψ) − V (ψ)gµν . (1.49)

Classically, the lowest energy density is defined when kinetic energy does not con-
tribute, in other words when ∂µψ = 0. This condition implies Tµν = −V (ψ0)gµν
where V (ψ0) is the minimum value of the V (ψ) or

Tµν = −ϵvac gµν , (1.50)

where ϵvac = V (ψ0). From quantum mechanics we already know that the lowest
energy state has an non-zero energy E0 = 1/2 ℏω and consequently V (ψ0) >
0. Moreover, by considering the vacuum energy as a perfect fluid, the energy
momentum tensor (1.4) implies that

Pvac = −ϵvac, (1.51)

and consequently
ϵvac = ϵΛ = Λ. (1.52)

The former relation implies that both vacuum energy and cosmological constant
Λ have the same impact on the EFE. Additionally, cosmological observations
confirm that the value of the cosmological constant is of the order

Λ ≃ 10−52m−2, (1.53)

however, there is a big discrepancy between the theoretical values of the vacuum
energy and the one which is observed; this problem will be discussed in detail in
Sec. 1.5.2.

So far, we have seen that the EoS of the dark energy has wde ≈ −1 and
identified the origin of cosmological constant as the vacuum energy. We shall
now present the fundamental assumptions of the cosmological constituents in the
ΛCDM model:
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• Dark energy which is the main constituents of the universe that acts like
the vacuum energy.

• Cold dark matter is the non-relativistic pressureless matter that does not
interact with the normal matter except gravitationally.

• The spatial curvature of the universe is small and negligible.

Under these assumptions the Friedmann equation (1.30) and the Raychaudhuri
equation (1.31) for the ΛCDM model become

H2 = ϵ

3 + Λ
3 , (1.54)

2Ḣ + 3H2 = Λ − P. (1.55)

1.5.1 A brief introduction to de Sitter universe
In the ΛCDM model, if we consider that the universe is dominated mostly by dark
energy, in other words when the contributions of matter (both dark matter and
baryonic matter) is neglected ( ϵ = 0 and P = 0), we obtain the de Sitter universe
( see de Sitter [1917]). This solution is a vacuum solution from the modified
EFE (1.29). Actually, we can obtain only three vacuum solutions from (1.29). If
we contract Eq. (1.29) with Tµν = 0, we get R = 4 Λ. Thus, the spacetimes with
Λ = 0, Λ > 0, and Λ < 0 are the Minkowski spacetime, de Sitter spacetime, and
anti-de Sitter spacetime respectively.

From the Eqs.(1.54) and (1.55) with ϵ = P = 0 and Λ > 0 one can obtain

a(t) ∝ eH t, with H =
√︄

Λ
3 , (1.56)

and the de Sitter metric will be

ds2 = −dt2 +
(︃
a0 e

√
Λ/3 t

)︃2 (︂
dχ2 + χ2 (dθ2 + sin2 θdϕ2)

)︂
. (1.57)

Since, in the de Sitter universe the scale factor grows exponentially, the ä = H2a
is always positive which means that the de Sitter universe expands for all its
history.

1.5.2 Cosmological constant problems
In the previous section we presented that the cosmological constant can be con-
sidered as the vacuum energy and based on the observations it has the value of
the order

Λ ≃ 10−52m−2 ≃ (10−12 GeV )4. (1.58)
On the other hand, it is possible to calculate the vacuum energy from quantum
theory. As we will see in the following, there is a big difference between the
theoretical values of the vacuum energy and the one which is observed. This
conundrum is known as the cosmological constant problem ( see e.g. Carroll
[2001] and Bahamonde et al. [2018]).
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Cosmological constant can consist of different contributions, such as the elec-
troweak ( EW) phase, quantum chromodynamics (QCD), and fluctuations at the
Planck scale. The EW phase transition provides the value of the vacuum energy
density of the order

ϵEWvac ≃ (200GeV )4, (1.59)
whereas the QCD phase transitions calculates the value

ϵQCDvac ≃ (0.3GeV )4. (1.60)

Moreover for the vacuum energy at the Planck scale the fluctuations has the value

ϵPlvac ≃ (10−12 GeV )4. (1.61)
The observational value of the cosmological constant (1.58) is much smaller

than the theoretical ones (1.59), (1.60), and (1.61); this discrepancy is not ame-
liorated even by introducing a bare cosmological constant ϵB and summing up all
the known theoretical vacuum energy densities to achieve

Λ = ϵB + ϵEWvac + ϵQCDvac + ϵPlvac + .... (1.62)

From quantum field theory there is not any theoretical way to determine such a
bare cosmological constant to cancel out all the other vacuum energy densities
in the right hand of (1.62) and provide the observed value for the left hand side;
this constitutes another problem for cosmology which is called a problem of fine
tuning.

In fact, these conundrums are not the only unsolved question in the ΛCDM
model. Apart from how one could theoretically determine such a small value for
the cosmological constant, we know that this extremely small value of the cos-
mological constant led the universe to have a transition from the radiation epoch
to the dark matter domination era. If the cosmological constant had just slightly
bigger value, the universe would have directly transited from radiation to dark
energy epoch without forming the galaxies, clusters, or other cosmological struc-
tures. Additionally, due to this value of the cosmological constant, the transition
from dark matter to dark energy have been taking place at current time; this is
another conundrum and it is called the cosmic coincidence problem.

So far, we have seen that the ΛCDM model is the simplest candidate to explain
the dark energy and fits well with the observational data; however, it suffers from
some unsolved conundrums. In the following we will present alternative models
in order to alleviate these problems.

1.6 Quintessence
In the previous section, the ΛCDM model introduced as the standard model to
describe the accelerated expansion of the universe; however, this model faces
some problems with the cosmological constant (Sec. 1.5.2). Therefore, the idea
of the non-constant vacuum energy density came forward in the cosmological
community, this idea is often called quintessence. It suggests that the reason
why the vacuum energy density contribution is small, is that our universe is old.
In order to construct the time-varying vacuum energy density, it is considered
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that there exist one or more scalar fields in which the vacuum energy density is
changing with time.

In the following, we consider the action of the scalar field which is minimally
coupled to gravity

S =
∫︂
d4x

√
−g

(︃
R

2 + Lψ

)︃
, (1.63)

where Lψ is the Lagrangian of a scalar field ψ given by

Lψ = −1
2 g

µν ∂µψ ∂νψ − V (ψ), (1.64)

where V (ψ) is an unspecified positive potential. The field equations can be de-
termined from variation of the action (1.63) with respect to gµν

Rµν − 1
2Rgµν = Tψµν , (1.65)

where Tψµν is the energy momentum tensor of the scalar field given by (1.49).
Moreover, the Klein-Gordon equation is given by the variation with respect to ψ:

∇µ ∇µ ψ − ∂V (ψ)
∂ψ

= 0. (1.66)

In the context of FRW cosmology the EFE (1.65) gives

3
(︄
H2 + k

a2

)︄
= 1

2 ψ̇
2 + V (ψ), (1.67)

2Ḣ + 3H2 + k

a2 = −1
2 ψ̇

2 + V (ψ), (1.68)

and the Klein-Gordon equation (1.66) becomes

ψ̈ + 3Hψ̇ + V
′(ψ) = 0, (1.69)

where the over-dot means derivation with respect to the coordinate time and
prime means derivation with respect to the scalar field ψ.

From the Friedmann equation (1.67) and the Raychaudhuri equation (1.68)
we can define the energy density and pressure of the scalar field as follows

ϵψ = 1
2 ψ̇

2 + V (ψ), (1.70)

Pψ = 1
2 ψ̇

2 − V (ψ), (1.71)

therefore, the effective EoS parameter for the scalar field becomes

wψ = Pψ
ϵψ

=
1
2 ψ̇

2 − V (ψ)
1
2 ψ̇

2 + V (ψ)
. (1.72)

From Eq. (1.72) we see that the wψ is the dynamical EoS parameter in range
[−1, 1], in other words if 1/2 ψ̇2 ≪ V (ψ) we get wψ ≈ −1 and if V (ψ) ≪ 1/2 ψ̇2

we get wψ ≈ 1. Moreover, the former case refers to the dark energy.
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1.7 Non-minimally coupled scalar field
In the previous section, we rendered the minimally coupled scalar field as the
simplest choice of the scalar field, i.e. where the direct coupling between the
scalar field and the Ricci curvature was ignored. In 1968, a non-minimal coupling
was presented by Chernikov and Tagirov [1968] and followed by Callan et al.
[1970]. There are some areas in which the inclusion of such a coupling term,
like −1/2 ξRψ2 where ξ is the dimensionless coupling constant, in the scalar field
Lagrangian provides interesting outcome. For instance, the first loop correction
generates ξ ̸= 0 even if it does not exists in the classical action ( see e.g. Birrell
and Davies [1982]). Moreover, a renormalization of a classical theory with ξ = 0,
shifts the classical theory to a one with ξ ̸= 0; although the shift is not big, it has
a great impact on the inflation scenario ( for more details see Faraoni [2004]).

For the non-minimally coupling scalar field, we shall start with the action in
the form

S =
∫︂
d4x

√
−g

(︃
R

2 + Lψ

)︃
, (1.73)

where Lψ is the Lagrangian of a non-minimally coupled scalar field ψ:

Lψ = −1
2
(︂
gµν ∂µψ ∂νψ + ξRψ2

)︂
− V (ψ), (1.74)

where V (ψ) is a scalar field potential. Variation of the action (1.73) with respect
to gµν gives the EFE as follows

Rµν − 1
2Rgµν = Tψµν . (1.75)

Here the Tψµν is the energy momentum tensor for the non-minimally coupled scalar
field and reads

Tψµν = (1 − 2 ξ)∇µψ∇νψ +
(︃

2 ξ − 1
2

)︃
gµν∇αψ∇αψ − V (ψ) gµν

+ξ
(︃
Rµν − 1

2gµνR
)︃
ψ2 + 2 ξψ (gµν ∇α ∇α − ∇µ ∇ν)ψ. (1.76)

Moreover, variation with respect to the scalar field ψ provides the Klein-Gordon
equation

∇µ ∇µ ψ − ξRψ − ∂V (ψ)
∂ψ

= 0. (1.77)

There are three special cases for the coupling constant value:

• ξ = 1/6 is the conformal coupling, namely the physics of ψ and the Klein-
Gordon equation (1.77) is conformally invariant if the scalar field potential
is vanishing or V (ψ) = λψ4 .

• ξ = 0 is the minimal coupling.

• | ξ |>> 1 is called the strong coupling.
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Since we deal with the isotropic and homogeneous universe, the Friedmann
and the Raychaudhuri equations for the non-minimally coupled scalar field in the
FRW background are

3
(︄
H2 + k

a2

)︄
= ϵψ, (1.78)(︄

2 Ḣ + 3H2 + k

a2

)︄
= −Pψ, (1.79)

and the Klein-Gordon equation will be

ψ̈ + 3H ψ̇ + ∂ψV + 6 ξ ψ
(︄
Ḣ + 2H2 + k

a2

)︄
= 0. (1.80)

Here the ϵψ and Pψ are

ϵψ = 1
2 ψ̇

2 + V (ψ) + 3 ξ ψ
(︄

2H ψ̇ + ψ

(︄
H2 + k

a2

)︄)︄
, (1.81)

Pψ = (1 − 4 ξ) 1
2 ψ̇

2 − V (ψ) − ξ

(︄
4H ψ ψ̇ + 2ψ ψ̈ + ψ2

(︄
2 Ḣ + 3H2 + k

a2

)︄)︄
.

(1.82)

The effective EoS parameter wψ can then be derived from Eqs. (1.81)
and (1.82). However, the wψ is very complicated and it is difficult to analyse it
in a way similar to the effective EoS parameter of the minimal coupling (1.72).
However, one can apply a dynamical system analysis, as we will see in Chapter 6,
to study a model of a non-minimally coupled scalar field cosmology.
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2. Uniformly accelerated traveler
This chapter is based on the paper Kerachian [2020] ” Uniformly accelerated trav-
eler in an FLRW universe”, published in Physical Review D. Here, we presented
the version from arXiv.

In Sec. 1.1.1, the definition of the uniformly accelerated trajectories and the
geodesics were presented. However, as we mentioned there, computing the exact
form of these trajectories are not an easy task. Therefore, in this article, we
managed to present a novel method, by applying the conformal time transfor-
mation, to derive general analytic solutions both for the accelerated motion and
for the geodesic motion in spatially curved FRW spacetime. The conformal time
transformation reduces the FRW metric to the forms (1.36), (1.37), and (1.38),
in which the coordinates η and χ share a common coefficient a(η). This allows
us to convert the second order differential equations (1.26) into a first order set
of equations. Geodesics can be calculated from the accelerated trajectories when
the norm of acceleration is vanishing. Furthermore in this work, we provided
some examples for the spatially flat FRW models.

The formalism presented in this work can be applied in a similar way to the
whole Anti-de Sitter spacetime.

In the last part of this work, we studied the return journey of a rocketeer in
spatially flat FRW spacetime. It was suggested by Rindler [1960] that having
uniform deceleration would be enough to have a return journey; however, we
prove that this condition is not sufficient for all spacetimes.

This work can be considered as a generalization of the work done by Rindler
[1960].
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Uniformly accelerated traveler in an FLRW universe
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This paper introduces an analytical treatment of accelerated and geodesic motion within the framework of the
Friedmann -Lemaı̂tre-Robertson-Walker (FLRW) spacetime. By employing conformal time transformations we
manage to convert second order differential equations of motion in FLRW spacetime to first order equations in
the conformally transformed spacetime. This allows us to derive a general analytical solution in closed-form
for accelerated motion in spatially curved FLRW spacetime. We provide few examples of this general solution.
The last part of our work focuses on the return journey for a traveler exploring a FLRW universe. We derive
certain conditions for a de Sitter universe that have to be satisfied in order to achieve a return journey.

PACS numbers:
Keywords: Gravitation, Cosmology; Dynamical systems

1. INTRODUCTION

The paradigm of a homogeneous expanding isotropic uni-
verse in the framework of General Relativity is realised via the
Friedmann-Lemaı̂tre-Robertson-Walker (FLRW) model [1–
4]. In this work we are going to investigate the accelerated
motion of a test particle in FLRW. Such a test particle cor-
responds to a rocketeer traveling in an FRLW universe. The
derivation and the interpretation of accelerated motion have
suffered from ambiguous treatments which will be discussed
later on1.

The motion of a uniformly accelerated traveller in an ex-
panding universe is described by a set of differential equations
which are in general non-trivial coupled. This set of equations
does not become less complicated even if a specific cosmo-
logical model is applied. Thus, an analytical derivation of the
path of a rocketeer is highly challenging. Actually a goal of
this work is to present a general formulation which allows an
analytical treatment. In particular, this work has been inspired
by [10] in which W. Rindler proposed a generalization of the
hyperbolic motion in Minkowski spacetime to solve the cor-
responding set of equations. However, Rindler solved it only
for the de Sitter spacetime [10].

Studying the accelerated motion of a rocketeer is useful for
the future accelerated space probe. For our universe ( with
Ωm ≈ 0.27, ΩΛ ≈ 0.73 and nearly spatially flat) a space trav-
eler could visit a galaxy which is observed today at a red-
shift of 1.7 on a one-way journey with proper acceleration
equal to the terrestrial gravitational acceleration, in almost
100 years [11]. However, for galaxies at redshift less than
1.7, e.g. 0.65, it is not clear whether the traveller would suc-
ceed to return back home. Therefore, it might be appropriate
to consider a traveller of intermittent accelerations to explore
the universe [9]. In this study, we are going to address this

∗Electronic address: kerachian.morteza@gmail.com
1 For example, it has been debated whether analysing uniformly accelerated

motion in an expanding universe could clarify the physics behind the ex-
pansion. Namely, the debate has been about if the expansion is a trick of
coordinates or a physical phenomenon [5–9].

issue from a different point of view, i.e. our rocketeer travels
with uniform deceleration in order to achieve a return trip.

The formalism presented in this work reduces to the
geodesic motion in a spatially curved FLRW spacetime in the
limit of zero proper acceleration. Since geodesic in an expand-
ing universe has vast applications in cosmology, astrophysics
and quantum gravity, many attempts have been undertaken to
solve the geodesic equations of motion (for more details see
references [12− 39] of [12]). The first attempt to tackle this
issue was initiated by Whiting [13]. Whiting derived the equa-
tions of motion for a free particle with Newtonian background
and its relativistic generalization. In [14] geodesic in low-
velocity regime has been studied. These efforts by [13, 14] for
solving geodesic motion was not sufficient due to the number
of shortcomings in calculation and interpretation. Latter on,
Grøn & Elgarøy [15] derived a general solution for geodesics
in the full general relativity framework. Moreover, Ref. [13]
claimed that particle moving uniformly in an expanding uni-
verse will join the Hubble flow. This claim has been refuted
in [16], in which it has been formally proven that particles
following the geodesic motion in an eternally expanding uni-
verse do not asymptotically rejoin the Hubble flow. Recently,
a method for deriving both timelike and spacelike geodesic
distances in spatially flat FLRW spacetime with given initial-
value or boundary-value constraints was presented in [12].

In this work, we use conformal time transformations in or-
der to get a general analytical formulation. Thus, it is useful
to provide a brief overview of what has been already done in
FLRW with conformal transformations. Conformal transfor-
mation and its symmetries help us to grasp the notion of the
causal structure of spacetime [17]. FLRW metric has vanish-
ing Weyl tensor, therefore, all Friedmann cosmological mod-
els are conformally flat and their systematic description has
been studied in detail in Ref. [18–20]. The nature of FLRW
models in conformal coordinates has been studied in [21]. It
has been demonstrated in [22] that transformation into confor-
mal coordinates do not eliminate superluminal recession ve-
locities for open or flat matter dominated FLRW cosmologies,
and all of them possess superluminal expansion. Ref. [23] de-
rived the scalar field and the electromagnetic field of a moving
charged particle in de Sitter spacetime, when the particle is
following geodesic trajectories or it is uniformly accelerated.
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2

In order to achieve this, conformal transformation between de
Sitter and Minkowski spacetime was applied.

The layout of this work is as follows; Sec. 2 provides the es-
sential mathematical background in which the conformal time
transformation is applied. In Sec. 3 a novel general formalism
is presented. Namely, using the transformed FLRW space-
time enables us to solve the equations of motion of acceler-
ated particle. In this way, second order differential equations
reduce to first order differential equations which allow us to
solve the trajectories for accelerated particle and free motion.
In addition, this formalism specifies the four-velocities of par-
ticles. This extends previous results [12, 15] covering only
geodesic motion. We prove that accelerated and geodesic mo-
tions in FLRW universe depend on the expansion factor and
its integral for any specific FLRW model. In Sec. 4 we give
some examples for known FLRW models that have an ana-
lytic solution. In cases where there is no analytical solutions,
we use numerical integration to solve them. Furthermore, in
Sec. 4.4 we provide solutions for both the uniformly acceler-
ated and the geodesic motion in the global anti-de Sitter space-
time by implementing similar prescription as we did in Sec. 3.
This accelerated trajectory is indeed the generalized form of
the known uniformly accelerated observer in the anti-de Sit-
ter spacetime [24–26]. In Sec. 5 we discuss the return jour-
ney. We show that, in order to achieve a return journey hav-
ing uniformly deceleration is not sufficient condition for every
spacetime. For a de Sitter spacetime we derive the boundary
condition that must be satisfied to be able to fulfill the return
journey. Concluding remarks are driven in Sec. 6.

2. MATHEMATICAL BACKGROUND

We begin by introducing the line element of the FLRW
spacetime, which describes the metric of an expanding, ho-
mogeneous and isotropic universe

ds2 =−c2dt2 +R2(t)[dχ2 +S2
k(χ)(dθ 2 + sin2 θdφ 2)], (1)

where c is light speed (hereafter c = 1),

Sk(χ) =

⎧
⎨
⎩

sin χ, k =+1, closed,
χ, k = 0, flat,
sinh χ, k =−1, open,

expresses the space curvature and R(t) is the scale factor
which describes the expansion of the universe. t is the co-
ordinate time t ∈ [0,∞); χ lies in the range χ ∈ [0,∞) for
k = 0,−1 and χ ∈ [0,π] for k = 1; while the angles θ ∈ [0,π]
and φ ∈ [0,2π) independently of the curvature.

Let us assume a cosmological model with a cosmological
constant Λ and a fluid with equation of state given by

P = P(ρ) = (γ −1)ρ (2)

where P is the pressure, ρ is the energy density and we as-
sume that constant γ can take any values. Then, the Friedmann
equation reads

Ṙ2
(t)

R2(t)
=

Λ
3
− k

R2(t)
+

C
R3γ(t)

, (3)

where dot means derivation with respect to t and C is a con-
stant proportional to the matter density (see e.g. [24]).

The four-acceleration of a particle is given by

aµ = uµ
;ν uν =

duµ

dλ
+Γµ

νσ
dxν

dλ
dxσ

dλ
, (4)

where uµ is the four-velocity and λ is the proper time. aµ and
uµ satisfy the following constraints

uµ uµ =−1, (5)

aµ aµ = A2, (6)

aµ uµ = 0, (7)

where A is the norm of the acceleration. Having uniform ac-
celeration means that A =const.

Solving Eq. (4) for a given acceleration (say for A =const)
is almost analytically intractable (see e.g [10]). Here we in-
troduce the conformal time transformation in order to tackle
this problem. In particular, the conformal time η is such that

η =
∫︂ dt

R(t)
. (8)

Additionally, by putting χ̃ = χ , the FLRW metric reads

ds2 = R̃2
(η)[−dη2 +dχ̃2 +S2

k(χ̃)(dθ 2 + sin2 θdφ 2)], (9)

Notice that, R̃(η) = R(t).
When we have cosmological models with Λ = 0 or Λ ̸= 0

but without matter, it holds that (see e.g. [24])

R̃(η) =

⎧
⎨
⎩

R̃c sinb(η
b ), k =+1,

R̃cηb, k = 0,
R̃c sinhb(η

b ), k =−1,

where R̃c is a constant length which determines the scale of
the universe. The power coefficient b for Λ = 0 is b = 2

3γ−2 .
The value of b distinguishes between different cosmological
models. For example, if b = 2 then the universe is filled with
dust;for stiff matter b = 1

2 ; while b = 1 describes the radia-
tion case. Moreover, for non-negative curvature when Λ ̸= 0
and without matter, which is actually a de-Sitter cosmological
model, then b =−1.

3. PATH OF PARTICLES IN FLRW SPACETIME

We would like first to present the general formulation for
the motion of particles in the transformed FLRW spacetime
(9) by considering only the radial motion. To do that, we shall
define the four-velocity as follows [11]

uη =
dη
dλ

=
coshζ (λ )

R̃(η)
, uχ̃ =

dχ̃
dλ

=
sinhζ (λ )

R̃(η)
, (10)
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where ζ (λ ) is the rapidity, which will be determined later.
Note that equations (10) automatically satisfy constraint (5).

The only needed non-vanishing Christoffel symbols for this
case are

Γη
ηη = Γη

χ̃ χ̃ = Γχ̃
η χ̃ =

1
R̃(η)

dR̃(η)

dη
. (11)

The four-acceleration in the set of coordinates (9) can be
written in the following way

aη =
duη

dλ
+Γη

ηη(u
η)2 +Γη

χ̃ χ̃(u
χ̃)2, (12)

aχ̃ =
duχ̃

dλ
+2Γχ̃

η χ̃ uη uχ̃ . (13)

From now on, since all used Christoffel symbols have equal
value, we shall denote them by Γ.

By differentiating the first term in the right-hand side of
Eq. (12) and by using Eq. (10) we obtain

duη

dλ
=

sinhζ (λ )
R̃(η)

dζ (λ )
dλ

− coshζ (λ )
R̃(η)2

dR̃(η)

dλ
. (14)

Since the dR̃(η)
dλ can be written in terms of η

dR̃(η)

dλ
=

dη
dλ

dR̃(η)

dη
= uη dR̃(η)

dη
, (15)

by substituting it into Eq. (14) together with Eqs. (10) and (11)
we arrive to

duη

dλ
= uχ̃ dζ (λ )

dλ
− (uη)2Γ. (16)

Thus

aη = uχ̃ dζ (λ )
dλ

+(uχ̃)2Γ = uχ̃(
dζ (λ )

dλ
+Γuχ̃). (17)

Similar calculation can be undertaken for aχ̃ where

duχ̃

dλ
= uη dζ (λ )

dλ
−uη uχ̃ Γ, (18)

which finally gives

aχ̃ = uη dζ (λ )
dλ

+uη uχ̃ Γ = uη(
dζ (λ )

dλ
+Γuχ̃). (19)

We denote

A =
dζ (λ )

dλ
+Γuχ̃ , (20)

where A, is the norm of acceleration as mentioned earlier in
Eq. (6). As a result, the four-acceleration becomes

aη = Auχ̃ , aχ̃ = Auη . (21)

Note that Eq. (21) satisfies also the constraints (6) and (7).
In the transformed FLRW metric (9) the coordinates η and

χ̃ share a common coefficient, i.e. the R(η)˜ . If we constraint
the motion only on the radial direction through this transfor-
mation we get a solvable set of equations from Eq. (4). This
allows us to analyze the radial motion of the rocketeer in the
FLRW spacetime.

3.1. Accelerated Radial Motion

It is convenient to express the equation of motion of the
rocketeer in terms of η . Therefore, from the four-velocity
(10), we get

dχ̃
dη

=
dχ̃/dλ
dη/dλ

= tanhζ (λ ). (22)

To find the unknown rapidity ζ (λ ) we need to use Eq. (20)
and reparametrize it in terms of η

A−uη dζ̃ (η)

dη
−Γuχ̃ = 0, (23)

where ζ̃ (η) = ζ̃ (η(λ )) = ζ (λ ) and A =const..
Integrating Eq. (23) with respect to η , we obtain

ζ̃ (η) = arcsinh(AR̃(η)+
υ

R̃(η)
), (24)

where

R̃(η) =

∫︁ η R̃(η̃)2dη̃
R̃(η)

, (25)

and υ is an integration constant which is related to the initial
velocity of particle. Consequently,

χ̃ = A
∫︂

R̃(η)√︂
(AR̃(η)+ υ

R̃(η)
)2 +1

dη

+υ
∫︂ 1/R̃(η)√︂

(AR̃(η)+ υ
R̃(η)

)2 +1
dη . (26)

Now, we go back to the coordinates of the original FLRW
metric (1). This is achieved by using the inverse transfor-
mation of Eq. (8), i.e. R̃(η)dη = dt, and by recalling that
R(t) = R̃(η). Thus, we obtain for Eq. (24)

ζ̂ (t) = arcsinh(AR(t)+
υ

R(t)
), (27)

where

R(t) =
∫︁ t R(t ′)dt ′

R(t)
. (28)

Using Eq. (27) enables us to derive the four-velocity in stan-
dard FLRW spacetime as follows

ut =
dt
dλ

= cosh ζ̂ (t), uχ =
dχ
dλ

=
sinh ζ̂ (t)

R(t)
. (29)

Finally, the trajectory of uniform acceleration motion is
given by

χ = A
∫︂ 1

R(t)
R(t)√︂

(AR(t)+ υ
R(t) )

2 +1
dt

+υ
∫︂ 1

R(t)2
1√︂

(AR(t)+ υ
R(t) )

2 +1
dt, (30)

By specifying the evolution of the scale factor R(t) Eq. (30)
provides the accelerated radial path of the rocketeer in the
standard FLRW coordinate.

23



4

3.2. Some characteristic types of motion

a. Purely accelerated motion. When one ignores the in-
tegration constant υ (i.e. υ = 0) in trajectories (26) and (30)
the motion is called purely accelerated. In the conformally
transformed coordinates the trajectory is given by

χ̃a = A
∫︂

R̃(η)√︂
A2R̃(η)2 +1

dη , (31)

and in the original FLRW coordinates we get

χa = A
∫︂ 1

R(t)
R(t)√︁

A2R(t)2 +1
dt, (32)

where index a in both Eqs. (31) and (32) refers to the purely
accelerated motion.

b. Geodesic motion. To get the trajectory for the
geodesic motion one has to substitute A = 0 into the Eqs. (24),
(26) and (30). Thus, the rapidity function ζ̃ (η) becomes

ζ̃ (η) = arcsinh
(︂ υ

R̃(η)

)︂
. (33)

Consequently, Eq. (26) will be

χ̃v =
∫︂ υ√︁

R̃(η)2 +υ2
dη , (34)

and for Eq. (30) we obtain

χv =
∫︂ υ

R(t)
1√︁

R(t)2 +υ2
dt. (35)

Here index v in Eqs. (34) and (35) denotes geodesic motion.
For all υ values, υ2 > 0, which guarantees that Eq. (35) is a
timelike geodesic [12].

Eqs. (34) and (35) are geodesics in any conformal time
FLRW spacetime and FLRW spacetime respectively. Eq. (35)
is the same as equation derived in [15] and recently in [12].

c. Null geodesics. We can see from Eq. (30) that for
large acceleration A the particle’s trajectory asymptotically
reaches the null geodesic, that means

lim
A>>

χa =±
∫︂ 1

R(t)
dt. (36)

Moreover, this statement holds for large υ value, i.e.

lim
υ>>

χa =±
∫︂ 1

R(t)
dt. (37)

d. Transformation conditions. For the flat spatial cur-
vature FLRW spacetime the accelerated motion (31) can be
transformed into geodesic motion (34) under certain condi-
tions. In order to investigate this statement, we consider two
different spacetimes having scale factors R̃m(η) = µηm and
R̃k(η) = κηk. By substituting R̃m(η) and R̃k(η) into the
Eqs. (34) and (31) respectively we get

χ̃v =
υ η1−m

µ (m−1) 2F1

(︃
1
2
,

m−1
2m

;
3m−1

2m
;−υ2 η−2m

µ2

)︃
, (38)

and

χ̃a =
Aκ η2+k

(2+ k)(1+2k) 2F1

(︃
1
2
,

2+ k
2+2k

;
4+3k
2+2k

;−A2 κ2 η2+2k

(1+2k)2

)︃
,

(39)
where 2F1(a,b; c; z) is the Gauss hypergeometric function.
These two trajectories become equivalent if

⎧
⎨
⎩

1+ k =−m,
Aκ

1+2k = υ
µ ,

1+2k ̸= 0.
(40)

For instance, the uniformly accelerated trajectories in the de
Sitter spacetime get transformed to the geodesic motion in
the Minkowski spacetime and vice versa ( See Sec. 4.3 for
more details). Moreover, one can show that an observer with
a suitable acceleration moving in a decelerating Friedmann
universe, i.e. a dust field universe, has the same cosmological
redshift as the observer in the ΛCDM model [27].

4. SOME EXAMPLES

In this section of section’s 3 formalism is applied to specific
FLRW universe models. The motion of a particle both in the
original and in the transformed coordinates depends only on
the scale factor and its integral (Eq. (28) and Eq. (25) respec-
tively). Thus, specifying the expansion factor for each cos-
mological model enables us to determine the particles world-
lines. In this section the behavior of the trajectories presented
in paragraphs a and b of Sec. 3.2 is studied.

Recently, the solution of Friedmann Eq. (3) was presented
for various FLRW models with k = 0 [28]. Namely, Chavanis
has derived an analytical solution for R(t) in a universe un-
dergoing a various combination of eras, e.g. stiff matter era,
dark matter era, and dark energy era due to the cosmological
constant. From this study we use the form of the scale factor
in the cosmological examples of Sec. 4 and Sec. 5.

Note that, although the transformation (8) is not, in general,
conformally flat transformation (CFT) for spatially curved
FLRW models, it is CFT for all the flat FLRW models. Thus,
since the cosmological models appearing in Secs. 4.1 and 4.3
have zero spatial curvature, the transformation (8) is a CFT,
i.e. it holds that

ds2
k=0 = Ω2ds2

f lat , (41)

where Ω = R̃(η).
It is clear that this formalism is able to reproduce the known

hyperbolic motion in the Minkowski spacetime [29]. In a sim-
ilar manner as in the Minkowski spacetime, the uniformly ac-
celerated motion can be derived in the Einstein static universe,
since for both spacetimes the scale factor R(t) = 1.

To provide visualization for our examples we are going to
plot some trajectories in Penrose diagrams with coordinates η
and χ given by the metric (9).
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4.1. Flat FLRW spacetime without Λ

In this section we consider spatially flat FLRW spacetime
with vanishing cosmological constant, i.e. Λ = 0, and a single
fluid content provided by the EoS (2). From the Friedmann
equation (3) one can obtain the scale factor

R(t) = Rct
2

3γ , (42)

where Rc =
(︁ 3

2 γ
√

C
)︁ 2

3γ . Substituting this scale facor into the
equations Eqs. (32) and (35) we obtain

χa =
9At2−2/3γ γ2

Rc (3γ +2)(6γ −2)

2F1

(︄
1
2
,1− 1

3γ
;2− 1

3γ
;−
(︃

3Aγ t
2+3γ

)︃2
)︄
, (43)

and

χv =
3 t1−2/3γ

Rc (3−2γ)

2F1

(︄
1
2
,

3γ
4

− 1
2

;
3γ
4

+
1
2

;−
(︃

Rc t2/3γ
υ

)︃2
)︄
, (44)

where a and v denote uniform acceleration and geodesic mo-
tion respectively. In conformal representation, where R̃(η) =
R̃cηb where b = 2

3γ−2 , we have

χ̃a =
AR̃c η2+b

(2+b)(1+2b)

2F1

(︄
1
2
,

2+b
2+2b

;
4+3b
2+2b

;−A2 R̃2
c η2+2b

(1+2b)2

)︄
(45)

and

χ̃v =
υ η1−b

R̃c (b−1) 2F1

(︄
1
2
,

b−1
2b

;
3b−1

2b
;−υ2 η−2b

R̃2
c

)︄
. (46)

The dynamical features of the above trajectories on a Pen-
rose diagram are very similar for all the usual barotropic flu-
ids, i.e. for fluids with 1 ≤ γ ≤ 2. Thus, in Fig. 1 we plot
just the case γ = 1, which shows different trajectories in a
spatially flat FLRW universe with dust. Namely, Fig. 1 shows
accelerated trajectories with zero υ and non zero υ (solid blue
and dotted dashed red lines respectively), the geodesic trajec-
tories (orange dashed lines) together with the null geodesic
(black thick solid line). In the case of constant acceleration,
the greater the acceleration the faster the rocketeer approaches
the null geodesic behavior. We plot also one decelerating
trajectory with non-zero υ , which exhibits a return journey:
such trajectories will be discussed in Sec. 5. Regarding the
geodesic motion the greater the initial velocity, the further the
traveller can reach. Note that even if initially geodesic trav-
ellers overtake accelerated ones, eventually as expected the

accelerated ones prevail. Additionally, this figure provides the
asymptotic behavior of the trajectories as t → ∞. One can see
that, accelerated trajectories reach the future null infinity ,i.e.
I +, whereas the geodesics motion ends up to timelike infin-
ity, i.e. i+.

+

0

ℐ+

A=5

A=1

A=0.1

υ=1

υ=0.1υ=0.1

A=-4,υ=0.34

η=0

Null

χ
=
C
o
n
st
.

η=Const.

η=0

χ
=
0

FIG. 1: Penrose diagram for the dust-filled universe. The thick black
solid line denotes the photon trajectory. Solid lines have constant
acceleration A and υ = 0, while the dotted dashed lines have constant
acceleration A and υ ̸= 0. Dashed curves are geodesics, i.e. A = 0.

4.2. Milne Universe

Vacuum FLRW model with Λ = 0 and k = −1 is known
as Milne universe [30], where R(t) = t. For this spacetime
particle’s paths are

χa = ln
(︂

At +
√︁

A2t2 +4
)︂
+ ln(C5) , (47)

where C5 is an integration constant. For a particle starting
from χa = t = 0 (C5 =

1
2 ), χa reduces to

χa = arcsinh(
A
2

t), (48)

and χv becomes

χv =−arctanh(
υ√

t2 +υ2
)+ arctanh(− υ√

1+υ2
). (49)

For Milne universe we cannot use Eqs. (26) and (34) since
transformation (8) is not CFT. In order to plot the above case
in a Penrose diagram we have to use the transformation

t =
√︁

T 2 −R2, χ = arctanh(
R
T
), (50)

between a Milne Universe and the Minkowski spacetime [29].
Using this transformation we get

(Ra +
1
A
)2 −T 2 =

1
A2 , (51)

and

Rv =
υ T√
1+υ2

, (52)
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for the trajectories (48) and (49) respectively in the
Minkowski spacetime.

It is known that Eqs. (51) and (52) describe hyperbolic and
geodesic motion respectively in Minkowski spacetime. In
Fig. 2 examples of these types of motion are depicted in the
same manner as Fig. 1. The shaded region in this figure indi-
cates the part of the Penrose diagram that does not belong to
the Milne universe.

+

0

ℐ+

A=2

A=1

A=0.3

υ=1

υ=0.5

A=-0.5,υ=2

Null

χ
=
C
on
st
.

η=Const.

FIG. 2: Penrose diagram for the Milne universe. Curves have the
same coloring as described in Fig. 1. Note that, the shaded part of
the plot does not belong to the Milne universe.

4.3. de-Sitter Universe, γ = 0

Considering the dark energy dominated universe in the ab-
sence of any matter the scale factor is

R(t) = R0e
√︂

Λ
3 t
, (53)

where Λ is a cosmological constant [28]. This solution is
known as the de Sitter solution.

Accelerated and geodesic motion in this particular space-
time are described by

χa =− A
√︂

Λ
3 R0e

√︂
Λ
3 t
√︂

A2 + Λ
3

+C1, (54)

χv =−
√︃

3
Λ

√︃
(R0e

√︂
Λ
3 t
)2 +υ2

υR0e
√︂

Λ
3 t

. (55)

In conformal coordinates, where scale factor is R̃(η) =

−
√︂

3
Λ

1
η , we get

χ̃a =
A√︂

A2 + Λ
3

η , (56)

χ̃v =−
√︃

3
Λυ2 +η2 +C3. (57)

It is clear from Eqs. (56) and (57) that the geodesic equa-
tion in conformally flat coordinates ( Minkowski spacetime)
get transformed to uniformly accelerated worldline in de Sitter
spacetime, whereas the trajectory of a uniformly accelerated
particle in Minkowski spacetime get transformed to geodesic
in de Sitter spacetime (see Fig. 3). This result confirms previ-
ous works of Rindler2 [10] and Bičák & Krtouš [23].

Fig. 3 shows the trajectories in the de Sitter spacetime. In
this spacetime, all trajectories have the same description as
in Fig 1, but some of them have different initial conditions.
Namely, some of them do not pass through the origin t = 0.
Another difference is that the de Sitter spacetime covers only
the lower part of the Penrose diagram, since all trajectories
end up at the I +. We continue plotting the trajectories even
to the upper shaded region in order to provide a global view
of the behavior of these trajectories.

4.4. Anti-de Sitter spacetime

In this section we consider a vacuum FLRW universe with
a negative cosmological constant Λ and negative spatial cur-
vature k =−1 namely Anti-de Sitter universe. This particular
case of Anti-de Sitter universe has the scale factor

R(t) = α cos(
t
α
) (58)

where α =
√︁

3/ | Λ |. Thus, the accelerated and geodesic tra-
jectories become

χa = ln

⎛
⎝2

A2 α2 +Aα
√︂

A2 α2 sin2(t/α)+ cos2(t/α)

cos(t/α)

⎞
⎠ ,

(59)
and

χv = arctanh

(︄
υ sin(t/α)√︁

α2 cos2(t/α)+υ2

)︄
. (60)

In Fiq. 4 we illustrate these trajectories and we denote the
different types of trajectories as we did in Fig. 1.

Note that this coordinate system does not cover the whole
anti-de Sitter spacetime. In order to study the accelerated mo-
tion in the whole anti-de Sitter spacetime we use the following
line element

ds2 =−cosh2(r)dt2 +α2 (︁dr2 + sinh2(r)(dθ 2 + sin2 θ dφ 2)
)︁
,

(61)

2 Note that, W.Rindler obtained only one special case of accelerated motion
in de Sitter spacetime. Namely, he studied the case when a particle leaves
the origin (t = χ = 0) from rest, i.e. ut = 1 and uχ = 0. One can rederive

Rindelr’s trajectory by putting υ =−
√︂

3
Λ A into the Eq. (30) together with

χ(t=0) = 0.
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t=-∞

t=0

η=-∞

η=∞

A=4,υ=-2

A=-1,υ=0.25

A=-2,υ=-1

A=1

A=3

A=-1

υ=1

υ=-1

η=0 ℐ+ t=+∞

χ=∞χ=-∞

NullNull

χ
=
C
on
st
.

η=Const.

FIG. 3: Penrose diagram for de Sitter universe.The shaded part is not covered by the flat de Sitter universe.

where r is dimentionless. The accelerated and geodesic mo-
tions of this metric can not be studied from the formulation
presented in Sec. 3. However, we can introduce a similar pre-
scription to obtain those trajectories. Namely, we introduce
the conformal coordinate χ by setting sinh(r) = tan(χ) to-
gether with t = α η . Then, the metric (61) takes the form

ds2 =
α2

cos2(χ)
[−dη2 +dχ2 + sin2(χ)(dθ 2 + sin2 θ dφ 2)].

(62)
It is clear that the anti-de Sitter spacetime time covers only
half of the Einstein static universe, namely in the range χ ∈
[0,π/2).

Now, similarly to the formulation presented in Sec. 3, we
introduce the radial four-velocity

uη =
dη
dλ

=
cosh(ξ (λ ))

F(χ)
, uχ =

dχ
dλ

=
sinh(ξ (λ ))

F(χ)
, (63)

where F(χ) =
α

cos(χ)
. This radial motion has the four-

acceleration given by

aη = Auχ , aχ = Auη , (64)

where

A =
dξ (λ )

dλ
+Γuη (65)

and Γ = 1
F(χ)

dF(χ)
dχ . Therefore, for the rapidity function

ξ (χ) = ξ (χ(λ )) = ξ (λ ), which can be determined from
Eq. (65), we get

ξ (χ) = arcCosh
(︃

AF (χ)+
υ

F(χ)

)︃
, (66)

where

F (χ) =
∫︁

F(χ̂)2dχ̂
F(χ)

, (67)

and υ is an initial velocity of the accelerated particle. Thus,
from the four-velocity (63) and Eq. (66) we get

η =
∫︂

coth(ξ (χ))dχ. (68)

By substituting υ = 0 into the Eq. (68), namely for the purely
accelerated motion, after some manipulation we get the fol-
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ℐ
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υ=1

Null
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FIG. 4: Penrose diagram of the part of the anti-de Sitter spacetime as
a particular case of the FLRW universe. Trajectories are collored in
the same manner as Fig. 1.

lowing trajectory

χa = π − arccos

(︄√
A2 α2 −1

Aα
tan(∆η)√︁

1+ tan2(∆η)

)︄
, (69)

where A2 α2 > 1 has to be satisfied, ∆η = η − η0 and the
constant η0 is an integration constant from integral appears in
Eq. (68). Observers with an acceleration A travel radially in
the range

arcsin
(︃

1
Aα

)︃
< χa <

π
2
.

At χa = arcsin(1/(Aα)) the χ component of the four-velocity
vanishes and the radial moving observer turns to the station-
ary observer. Furthermore, Eq. (69) show that the maximum
duration of the radial accelerated traveler in the anti-de sitter
spacetime is ∆η = π/2, since the trajectories reach the I .

Moreover, by putting A = 0 into the Eq. (68) we derive the
trajectories for geodesic motion

χv = arcsin

(︄√
υ2 −α2

υ
tan(∆η)√︁

1+ tan2(∆η)

)︄
, (70)

which holds under the condition that υ2 > α2 (for υ = α the
geodesic trajectory vanishes). Eq. (70) shows that, the ob-

server moving with the constant υ moves in the range

0 < χv < arccos
(︂α

υ

)︂
.

When the observer reaches at χv = arccos(α/υ) the uχ be-
comes zero and therefore the radial moving observer becomes
stationary. Similar to the accelerated motion, maximum dura-
tion of this motion is π/2.

Setting ξ (χ0) = 0 for any fixed χ = χ0 reduces the acceler-
ated radial motion to the family of the timelike worldlines rep-
resenting uniformly accelerated observers studied in previous
works [24–26]. Thus, the newly found radially moving ac-
celerated observers have as a limiting case the already known
stationary ones.

Fig. 5 shows these trajectories denoted in the same manner
as in Fig. 1. As we discussed previously, worldlines of fixed
χ represent uniformly accelerated observers. In this figure,
trajectory number (1) shows that the stationary observer from
η ∈ (−∞,0]. Then, at η = 0 it starts to accelerated radially
with an acceleration A = 3 and goes toward I ( trajectory (4)
has the similar behavior). Observer number (6) has a decel-
eration A = −1.8 from η ∈ (−π/2,0). Then, at η = 0 its uχ

vanishes and becomes stable. On the other hand, trajectories
(5) and (7) which have the υ > 0 start from η = χ = 0 travel-
ing with for ∆η = π/2 with constant υ . Its radial component
of four-velocity, i.e. uχ is decreasing until at η = 0 it become
zero. After this point, the observer becomes stationary. Ob-
servers (2) and (3) are at rest from η ∈ (−∞,−π/2] and then
they move with negative υ towards O.

5. RETURN JOURNEY

In this section we are going to focus our study on analyz-
ing the return journey of the rocketeer in spatially flat FLRW
universe. In particular, we are going to study the behavior of
the Eq. (30) or Eq. (26) in the spacetimes studied in the previ-
ous section. Actually, in order to fulfill the return journey, our
rocketeer must begin to decelerate, i.e. Ad < 0, long enough
time before it reaches the designated proper distance.

Assuming that, the spaceship is travelling with non-zero
positive value υ , at t = λ = χ = 0 the rocketeer applies a de-
celeration Ad . Thus, the rocketeer reaches the maximum co-
moving distance from the origin at the return point with coor-
dinates {t1,x1}> 0 when ζ̂ (t1) = 0 or equivalently uχ(t1) = 0.

Therefore, depending on the form of scale factor, one can
analyze the return journey of the rocketeer.

5.1. R(t) = tn spacetimes

In this section we analyze the return journey in the space-
time studied in sections 4.1- 4.2 , namely spacetimes having
the scale factor like R(t) = tn. In these particular spacetimes
the rockeeter reaches the maximum comoving distance from
the origin at

t1 =
(︃
−υ(n+1)

Ad

)︃ 1
n+1

. (71)
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FIG. 5: The Penrose diagram for the global anti-de Sitter spacetime. See the text for more details.

Afterwards, the rocketeer returns towards the origin. As t →∞
the trajectory of the rocketeer asymptotically becomes

lim
t→∞

χ =−
∫︂ 1

tn dt, (72)

which means that there is a finite t2 > t1, when the rocke-
teer arrives back to the origin, χ = 0. In Figs. (1)- (2), the
dotted dash trajectories represent the return journeys in each
spacetimes.

5.2. de-Sitter case

The return journey in the de Sitter spacetime has a differ-
ent behavior with respect to the previous examples, since the
scale factor (53) is given by a different function of time. In
this specific spacetime, the rocketeer reaches the maximum
comoving distance from the origin at

t1 =

√︃
3
Λ

ln

(︄
−
√︃

Λ
3

υ
Ad

)︄
. (73)

Moreover, the total cosmic time t2 needed to cover the return
journey for a rocketeer that leaves the origin at t = λ = 0, is
derived from Eq. (30) and it is given by

t2 =

√︃
3
Λ

ln

(︄
−

√
3Λυ√

3Λυ +6Ad

)︄
. (74)

Thus, from Eqs. (73) and (74) one can see that the return jour-
ney does not happen for all values of Ad and υ (see Fig. 6).
Actually, to attain an actual return journey, the following rela-
tion

2Ad <−
√︃

Λ
3

υ < Ad , (75)

has to be satisfied. In Fig. 6 we show several cases of return
journeys in de Sitter spacetime for Λ = 3 and A = −2. The
negative values of χ represents the opposite direction from
the one that the rocketeer is supposed to explore.

Line 1. For −
√︂

Λ
3 υ ≥ Ad , there isn’t any return point for the

particle and rocketeer will move toward the −χ direc-
tion.

Line 2. For 2Ad < −
√︂

Λ
3 υ < Ad , there is a return point and

the rocketeer is able to come back to the origin.

Line 3. For −
√︂

Λ
3 υ = 2Ad , there is a return point but the

rocketeer will return back to origin in a infinite cosmic
time.

Line 4. For −
√︂

Λ
3 υ > 2Ad , there is a return point but the

rocketeer will never go back to the origin.

Thus, we have seen that in de Sitter spacetime, having the
uniform deceleration motion is not sufficient for the rocketeer
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to come back to the origin. One has to apply the deceleration
which satisfies Eq. (75).

t=0η=-1

η=0 t=+∞1 2 3 4 ℐ+

NullNull

χ
=
C
o
n
st
.

η=Const.

η=0

χ
=
0

FIG. 6: Penrose diagram for the worldlines of return journeys in de
Sitter spacetime. Here Λ = 3 and A = −2 and the spacetime is de-
picted only for t ≥ 0.

6. CONCLUSIONS

In 1960, W.Rindler [10] proposed the problem of a ”Hyper-
bolic Motion in Curved Spacetime” to study the accelerated
motion in curved spacetime.

In particular, it was suggested that the accelerated motion
is the best way of exploring our universe in a reasonably short
time [9]. Taking the above suggestion into account, the mo-
tion of an accelerated traveller in an expanding universe has
been studied in this work. This involves solving the non-trivial
Eq. (4) for a given acceleration. To achieve this, we applied a
conformal time transformation (8) to the generic FLRW uni-

verse. Using the method introduced in Sec. 3 has helped us to
determine a generalized form of rapidity function (27), which
leads us to derive the trajectory (30) of an accelerated traveler.

We have shown that the accelerated and the geodesic mo-
tion in an expanding universe are solely determined by the
expansion factor and its integral (28). The scale factor is the
solution of the Friedmann equation (3), which depends on the
spatial curvature k, the cosmological constant Λ, and the equa-
tion of state P = P(ρ). Although, we have chosen a specific
form of the equation of state in Sec. 2, this formulation is in-
dependent of the choice of an equation of state. It depends
only on whether the scale factor can be expressed analytically
as a function of time or not.

Additionally, we have provided a similar formulation in the
case of the anti-de Sitter spacetime for the uniformly accel-
erated and geodesic radial motion. The newly found radially
accelerated trajectories are generalizations of the known uni-
formly accelerated stationary observers in the anti-de Sitter
universe.

In the last part of our work we have focused on the return
journey of the rocketeer. It had been suggested that having
uniform deceleration would be enough in order to have an ac-
tual return journey [10]. Here we have proved that even if this
condition is necessary, it is not sufficient for all spacetimes.
In particular, among the cosmological models analyzed here,
in the de Sitter case Eq. (75) must be satisfied for a return
journey to be possible.
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3. Dynamical Systems
In this section, we are going to give a succinct introduction to dynamical system
analysis. The dynamical system is a powerful mathematical instrument that
has vast applications to different fields of science such as mathematics, physics,
chemistry, biology, and medicine. Dynamics itself was proposed by Newton when
he invented his laws of motion and universal gravitation. Namely, Newton was
able to solve the motion of the earth around the sun which is known as the
two-body problem. Later on, when physicists and mathematicians tried to solve
the three-body problem, i.e., the motion of the earth, the moon and the sun,
they found out this problem is too complicated to solve. Then in the late 1800s,
Henry Poincaré made a breakthrough into this field. Basically, he suggested that
one can study celestial mechanics by considering the qualitative behavior of the
objects rather than quantitative. This was the first step to found the dynamical
systems.

In the context of cosmology, the dynamical system analysis is also a useful
technique for the qualitative study of the early and late time behavior of different
cosmological models. Since the governing equations describing the evolution of
cosmological models which are derived from the Einstein field equations (EFE)
are an autonomous system of ordinary differential equations (ODE). This chapter
follows mainly textbooks such as Wiggins [2003], Wainwright and Ellis [2005],
Perko [2013] and the article written by Bahamonde et al. [2018] and the thesis
of Tamanini [2014].

The layout of this chapter is as follows. In Sec. 3.1 basic ideas and theorems
in dynamical system analysis together with fundamental definitions are provided.
In Sec. 3.2 linear stability theory is presented. In Sec. 3.3 and Sec. 3.4 we will
introduce the Lyapunov stability theorem and the centre manifold theorem as
the methods when the linear stability theorem fails. Finally, in Sec. 3.5 we will
provide an example to show how to apply these methods for a dynamical system.

3.1 Basic theorems
Principally, a well-established dynamical system is considered as an abstract sys-
tem made up of a space, i.e., state space, together with a mathematical framework
to explain the evolution of any particle in that space. This evolution is parame-
terized by τ which is considered mostly as time but it does not necessarily need
to be a physical time. Moreover, the dynamical systems analysis is divided into
two main parts:

• continuous dynamical systems where the evolution of the system is governed
by the ODEs.

• time-discrete dynamical systems which are defined by a map or difference
equations.

Note that, in studying the dynamical cosmology we are interested in the contin-
uous dynamical systems.

32



To analyze a dynamical system, we choose the state space as Rn and a math-
ematical framework is given as a system of ODE of the form

Ω′ = f(Ω), (3.1)
where prime denotes differentiation with respect to the time τ and

Ω = (Ω1,Ω2, ...,Ωn) ∈ Rn,

is a point in the state space. The ODE system (3.1) is called an autonomous
system since the right-hand-side of (3.1) does not explicitly depend on time τ .

In order to find a solution for the ODE (3.1) which is valid for all τ ∈ R, we
need to present three theorems.
Theorem 1 (Existence- Uniqueness). Consider the initial value problem

Ω′ = f(Ω), Ω(0) = a ∈ Rn, (3.2)
if f : Rn → Rn is of class C1(Rn), there exists an interval (−δ, δ) and unique
function ψa : (−δ, δ) → Rn such that

ψ
′

a(τ) = f(ψa(τ)), ψa(0) = a. (3.3)
This theorem provides the existence of the solution only for the small interval

(−δ, δ) centred around τ = 0; however, we are seeking for the solution that covers
all τ ∈ R. The treatment comes from reapplying the above theorem to extend
the interval. Resulting in the following theorem.
Theorem 2 (Maximality). For the ODE Ω′ = f(Ω) where f ∈ C1(Rn), let
ψa(τ) be a unique solution of this ODE, which satisfies ψa(0) = a, together with
(τmin, τmax) be a maximal range that ψa(τ) is defined. If τmax is finite, then

lim
τ→τmax

∥ψa(τ)∥ = +∞. (3.4)

Here ∥∥ denotes the standard norm on Rn.
This theorem is valid also for the left-hand side limit. A consequence of

theorem 2 is the statement in the next corollary.
Corollary. Consider the ODE Ω′ = f(Ω) where f ∈ C1(Rn), and let D ⊂ Rn be
a compact set. If ψa(τ), which is a maximally extended solution, lies in D, then
this solution is defined for all τ ∈ R.
Theorem 3 (Extendibility). If f : Rn → Rn is continuous, and there exists a
constant M such that ∥f(Ω)∥ ≤ M∥Ω∥ for all Ω ∈ Rn, then any solutions of the
ODE Ω′ = f(Ω) is valid for all τ ∈ R.

Therefore, according to these three theorems one can conclude that a solution
for the ODE system Ω′ = f(Ω) on Rn is a function ψ : R → Rn that satisfies:

ψ
′(τ) = f(ψ(τ)), (3.5)

for all τ ∈ R in the domain of ψ.
Since we have the ODE’s solutions for all times we can define a new concept

in dynamical systems which is called a flow. The flow of the ODE is defined as a
one-parameter family of maps {ϕτ}τ∈R, of Rn → Rn such that

ϕτ (a) = ψa(τ) for all a ∈ Rn. (3.6)
Consequently, from the (3.5) and (3.6) one can show that the vector field f is
tangent to its associated orbit which can be considered as a velocity of the point
in Rn.
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3.1.1 Basic definitions
In this section we are going to introduce some basic concepts and definitions in
dynamical system theory.

Orbits: An orbit through each point of state space, i.e. Ω0, for a given ODE
and also its flow ϕτ is defined as

γ(Ω0) = {Ω ∈ Rn | Ω = ϕτ (Ω0) , τ ∈ R}. (3.7)

The most important concept in the dynamical system analysis is the notion
of critical points. Mainly, we can characterize each points on the orbits as either
critical points or ordinary points.

Critical point: A critical (or fixed or equilibrium) point Ωc ∈ Rn is a point
in the state space that satisfies

f(Ωc) = 0. (3.8)

Namely, critical points are the zeros of the vector fields f . Equivalently, in the
context of flow, we can define the critical point as a point satisfying the condition
ϕτ (Ωc) = Ωc for all τ ∈ R. Moreover, from (3.7) one can see that the orbit
through a critical point is the point itself, i.e. γ(Ωc) = {Ωc}.

Ordinary orbit: An orbit passing through an ordinary point is called the
ordinary orbit. The ordinary orbit is the the smooth curve with the vector field
f as a tangent. There are two important types of the ordinary orbits:

• Periodic orbit: for an orbit γ(Ωp) passing through an ordinary point Ωp

exists a T > 0 such that ϕT (Ωp) = Ωp. In other words, consider that
the flow ϕτ has a periodic orbit with a period T , then the corresponding
physical system shows an oscillatory behavior of period T .

• Recurrent orbit: is defined as an orbit γ(Ωr) such that for all neighborhoods
of Ωr, i.e. N(Ωr), and for all T ∈ R, there exists t > T in such a way that
ϕt(Ωr) = N(Ωr). That means, if a flow ϕτ has a recurrent orbit, the
physical system corresponding to that flow can return arbitrarily close to
an earlier state.

Heteroclinic orbit: An orbit that connects distinct critical points is called
a heteroclinic orbit.

Homoclinic orbit: Homoclinic orbit is an orbit that connects a critical point
into itself.

Note that in heteroclinic and homoclinic orbits the critical points are not the
part of the orbits. They can only be reached asymptotically, i.e. when τ → ±∞.

Invariant set: In the dynamical system analysis invariant sets play a key
role in analyzing the systems. A set S ⊂ Rn is called an invariant set of flow
ϕτ on Rn if for all Ω ∈ S and for all τ ∈ R we have ϕτ (Ω) ∈ S. Moreover, an
invariant set might have a lower dimensionality than the full parameter space.
Namely, if a class of physical system is restricted, e.g. from a special property, it
is described by a lower dimensional invariant set. In general, any orbits start in
the invariant set remain in the invariant set as τ → ±∞.

So far, we have introduced some useful theorems and definitions in the theory
of dynamical systems. However, finding the exact solution for the flow is equiv-
alent to deriving the solution of the ODE which is almost impossible or rather
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difficult for ODE’s with n ≥ 2. In particular, as Poincaré proposed, the aim of
dynamical system analysis is to use the flow as a tool to derive the qualitative
behavior of the whole family of the solutions of ODE. Therefore, by studying the
vector field f we are able to determine the properties of the flow. In the next
section, we will introduce a technique to do this.

3.2 Linear stability theory
To solve the dynamical system in a qualitative way, we need to know how the
vector field f or equivalently the orbits behave in the vicinity of the critical points.
In fact, for analyze this behavior we implement the linearization of the ODE at
critical points as a first approximation method. Before we proceed to the linear
stability theorem, we briefly introduce the linear ODEs in Rn.

3.2.1 Linear ODEs
Suppose we have a linear ODE Ω′ = AΩ on Rn with the eigenvalues of A and
its associated generalized eigenvectors. Three different subspaces of Rn can be
defined as

the stable subspace Es = span(e1, ..., es), (3.9)
the unstable subspace Eu = span(es+1, ..., es+u), (3.10)

the centre subspace Ec = span(es+u+1, ..., es+u+c), (3.11)

where the union of these three subspace create the Rn, namely

Es ⊕ Eu ⊕ Ec = Rn. (3.12)

Here, the stable subspace refers to those generalized eigenvectors (e1, ..., es) whose
associated eigenvalues have the negative real parts, the unstable subspace refers
to those generalized eigenvectors (es+1, ..., es+u) whose corresponding eigenvalues
have the positive real parts. And the centre subspace means that the eigenvalues
have the vanishing real part from the eigenvectors (es+u+1, ..., es+u+c).

Additionally, a general solution Ωs for a given linear dynamical system Ω′ =
AΩ with an initial condition Ωs(τ0) = Ω0 is

Ωs(τ) = Ω0 e
A (τ−τ0), (3.13)

where
eA (τ−τ0) =

∞∑︂
N=0

AN(τ − τ0)N
N ! . (3.14)

Note that from solution (3.13) and the subspaces of Rn we conclude that

Ω0 ∈ Es implies lim
τ→+∞

Ωs(τ) = 0, (3.15)

Ω0 ∈ Eu implies lim
τ→−∞

Ωs(τ) = 0, (3.16)

where 0 is the location of the critical point Ωc. These statements claim that
asymptotically all the orbits in the stable subspace converge to the critical point
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whereas in the unstable subspace they diverge from the critical point. Moreover,
if the state space consists of the stable subspace, i.e. Rn = Es, then all the orbits
in the state space attract by the 0 as τ → ∞ which is called as a linear sink,
while if the state space consists of unstable subspace, i.e. Rn = Eu, all orbits in
the state space repeal from the 0 as τ → −∞, which is called as a linear source.

These results, which are obtained from the linear ODEs, are helpful to under-
stand the notion of the linearization of the non-linear ODEs.

3.2.2 Non-linear ODEs
For a given non-linear ODE (3.1) on Rn, where f is of class C1, the linear ap-
proximation is given by the Taylor expansion for the vector field f around the
critical point Ωc up to the first order

f(Ω) ≃ f(Ωc) +Df(Ωc)(Ω − Ωc), (3.17)

where

Df = ∂fi
∂Ωj

=

⎛⎜⎜⎜⎜⎜⎝
∂f1
∂Ω1

∂f1
∂Ω2

· · · ∂f1
∂Ωn

∂f2
∂Ω1

∂f2
∂Ω2

· · · ∂f2
∂Ωn... ... . . . ...

∂fn

∂Ω1

∂fn

∂Ω2
· · · ∂fn

∂Ωn

⎞⎟⎟⎟⎟⎟⎠ ,
which is called the Jacobian matrix or the stability matrix of the function f at
point Ωc. The eigenvalues of Df and the associated generalized eigenvectors at
each critical points are denoted by λi and ei respectively. Since, the vector field
vanishes at the critical point, i.e., f(Ωc) = 0, the Taylor expansion (3.17) reduces
to

f(Ω) ≃ Df(Ωc)(Ω − Ωc). (3.18)
If we reparametrize Eq.(3.18) by defining U = Ω−Ωc, namely moving the critical
point to the center, the ODE (3.1) at the critical point Ωc becomes

U ′ = Df(Ωc) U . (3.19)

Thus, the Eq. (3.19) is called the linearization of the ODE (3.1) at the equi-
librium point Ωc.

So far we have introduced the linearization of the ODE and we briefly intro-
duced the linear ODEs. Actually, linear stability theorem provides a framework
in which one can deduce, approximately, the stability behaviour of a critical point
of the non-linear ODE from its linearization if the critical point is hyperbolic.

Hyperbolic critical point: A critical point Ωc for a given ODE (3.1) is a
hyperbolic critical point if all eigenvalues of Df(Ωc) have non-zero real part. (
the critical point is called non-hyperbolic point if it’s otherwise).

From this definition, we can now present the Hartman-Grobman theorem.

Theorem 4 (Hartman-Grobman). For an ODE Ω′ = f(Ω) on Rn, if f is of class
C1,with flow ϕτ . If Ωc be a hyperbolic critical point, then there exists a neigh-
bourhood N of the hyperbolic critical point such that the flow ϕτ is topologically
equivalent to the flow of the linearization of ODE at Ωc.
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Moreover, two flows ϕτ and ϕ̃τ on Rn, are called topologically equivalent if
there exists a homeomorphism h : Rn → Rn, that maps orbits of ϕτ onto orbits
of ϕ̃τ , preserving the orientation.

Hyperbolic fixed points are divided into three categories. The critical point
is called a local sink or stable point iff all the eigenvalues from Df(Ωc) have
negative real part, i.e., Re(λi) < 0. On the other hand, the point is called the
unstable or local source if Re(λi) > 0. Moreover, if the eigenvalues of a given
hyperbolic point have mixed sign in the real part, this point is called a saddle
point.

Another important issue is to distinguish between the asymptotic behaviors
of the orbits in the phase space. In other words, to see which orbits are attracted
or repelled by a critical point Ωc as τ → ∞. To do this, we should generalize
the idea of the subspaces introduced for a linear ODEs in Sec.3.2. Therefore, we
shall define three differentiable manifolds as follows

the stable manifold W s, (3.20)
the unstable manifold W u, (3.21)

the centre manifold W c. (3.22)

At any critical point Ωc these manifolds are tangent to the corresponding sub-
spaces of linearization at Ωc, e.g., the W s is tangent to Es at the critical point
Ωc. Moreover, all the orbits in the stable manifold W s are attracted by the Ωc as
τ → ∞. While all the orbits in the unstable manifold W u are attracted by the Ωc

as τ → −∞. However, the linear stability theory fails to predict the asymptotic
behavior of the orbits in the centre manifold W c.

3.3 Lyapunov stability theory
In the previous section, we have seen that from the linear stability theory we are
not able to extract the stability properties of the orbits in the neighborhood of the
non-hyperbolic critical points. Here we introduce a method which was introduced
by Lyapunov to study the stability for all hyperbolic and non-hyperbolic points.

The Lyapunov method, on one hand, is a powerful method since it can be
applied directly to the dynamical system. One the other hand, it’s not an appli-
cable method always since we need to determine a function, called a Lyapunov
function, to study the stability.

The Lyapunov function V is defined as a continuous function in a neighbour-
hood of critical point Ωc and V : Rn → R be at least C1 function with the
conditions

• V (Ωc) = 0,

• V (Ω) > 0 in a neighborhood of Ωc.

Then, the Lyapunov stability theorem claims that: if Ωc is a critical point for
a ODE system Ω′ = f(Ω) with a Lyapunov function V then

• Ωc is stable iff V ′ =
n∑︁
i=1

∂V
∂Ωi

Ω′
i = 1 ≤ 0 in a neighborhood of Ωc,
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• Ωc is asymptotically stable iff V ′ < 0 in a neighborhood of Ωc,

• Ωc is unstable iff V ′ ≥ 0 in a neighborhood of Ωc.
In Lyapunov stability analysis the stable point is a point for which, for any
neighborhood Nϵ of Ωc there exists a neighborhood Nδ such that for Ωc ∈ Nδ at
τ0 we get

ϕτ (Ω) ∈ Nϵ

for all τ > τ0. Additionally, asymptotically stable refers to a critical point for
which there exists a neighborhood Nδ such that for Ωc ∈ Nδ we get

lim
τ→+∞

ϕτ (Ω) = Ωc.

Note that, the local sink presented in the linear stability theorem is an asymp-
totically stable point.

3.4 Centre manifold theorem
In this section we introduce another approach to describe the stability of non-
hyperpolic critical point Ωc. Although in the last section the Lyapunov theorem
was introduced, this method is not an applicable method since in some cases it is
almost impossible to guess the right Lyapunov function. To introduce the centre
manifold theorem, we recall that in Sec. 3.2 we expand the vector field around
the critical point Ωc up to the first order. To analyzing the centre manifold we
use the Taylor expansion and keep the terms up to the second order, namely

U ′ = Df(Ωc) U +R(U ), (3.23)

where R(U ) = O(| U |2).
To apply the centre manifold method, we should transform Eq. (3.23) to the

desirable form. Therefore, one should first diagonalize the Jacobian matrix. It
is know from elementary linear algebra that for a linear ODE U ′ = Df(Ωc) U
there exists a linear transformation T that transform the Jacobian matrix into
block diagonal form ⎛⎜⎝x

′

y′

z′

⎞⎟⎠ =

⎛⎜⎝As 0 0
0 Au 0
0 0 Ac

⎞⎟⎠
⎛⎜⎝xy
z

⎞⎟⎠ , (3.24)

where

T−1U ≡ T−1

⎛⎜⎝U1
U2
U3

⎞⎟⎠ =

⎛⎜⎝xy
z

⎞⎟⎠ ,
where x, y, and z are vectors of certain dimensionality and As is an s× s matrix
with the eigenvalues having negative real part, Au is an n × n matrix which its
eigenvalues have positive real part, and Ac is an c× c matrix with zero real part
eigenvalues. Likewise, for a non-linear ODE, such as (3.23), we apply same linear
transformation to obtain

x′ = Asx+Rs(x, y, z),
y′ = Auy +Ru(x, y, z), (3.25)
z′ = Acz +Rc(x, y, z),
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which are the appropriate form of the non-linear vector field for analyzing the
centre manifold.

Before proceeding to the centre manifold analysis, we should consider whether
in the dynamical system (3.25) the Jacobian of the non-hyperbolic critical point
has both As and Au non zero, the corresponding non-hyperbolic critical point
represents as an unstable point and it is considered as a saddle point. However,
the situation is different when either As or Au is vanishing. Thus, the centre
manifold analysis is implemented only in these two cases:

• For Eu = {Ø}, if the point is an attractor or a saddle as τ → +∞.

• For Es = {Ø}, if the point is a past attractor or a saddle as τ → −∞.
In the following we will assume that the autonomous system has Eu = {Ø}. Then
the case of Es = {Ø} is also treated in the similar way by performing the analysis
as τ → −∞.

Now, lets consider the dynamical system in the form
x′ = Asx+Rs(x, z),
z′ = Acz +Rc(x, z). (3.26)

where
Rs(0, 0) = 0, DRs(0, 0) = 0,
Rc(0, 0) = 0, DRc(0, 0) = 0. (3.27)

Definition: If an invariant manifold can be locally represented as
W c(0) = {(x, z) ∈ Es × Ec | x = h (z), | z |< δ,h(0) = 0, D h(0) = 0}, (3.28)

for a reasonably small δ, this invariant manifold is called a centre manifold. In
other words, a centre manifold is described by a function h : Ec ↦→ Es. The
conditions h(0) = 0 and D h(0) = 0 imply that the wc is tangent to Ec at u3 = 0.

By introducing these three theorems, we are able to analyse the stability of
orbits in centre manifold ( using z at this point is somehow obscured since z is
the original coordinate for the vector field). Hereafter, we will use z instead of u
since it is usually done in the literature.
Theorem 5 (Existence). there exists a C r centre manifold which restricts the
dynamics of the system (3.26) by the c-dimensional vector field as follows

u′ = Acu+ f(h(u), u), u ∈ Ec. (3.29)
Here we used the new notation u instead of z to emphasize that, in general,

the restriction of the vector field to the center manifold is a vector field on a
nonlinear surface.
Theorem 6 (Stability). i) If the zero solution of (3.29) is either stable, asymptot-
ically stable, or unstable; the zero solution of (3.26) is also stable, asymptotically
stable, and unstable respectively. ii) Consider that the solution of (3.29) is sta-
ble. Then, if (x(τ), z(τ)) is a solution of (3.26) with sufficiently small (x(0), z(0)),
there exists a solution u(τ) from (3.29) that as τ → ∞ we get

x(t) = h(u(τ)) + O(e−γτ ),
z(t) = u(τ) + O(e−γτ ), (3.30)

where γ > 0 is a constant.
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In order to compute the stability of a given non-hyperbolic critical point from
centre manifold, we should first derive the function h(z) in advance. To do this
we should follow these steps:

• Any point on W c(0) with the coordinates (x, z) should satisfy

x = h(z). (3.31)

• Derivative of (3.31) with respect to time should satisfy

x′ = Dh(z)z′. (3.32)

• Since any point on W c(0) has to obey the dynamical system (3.26), thus
substituting

x′ = Ash(z) +Rs(h(z), z),
z′ = Acz +Rc(h(z), z), (3.33)

in to (3.32), gives

Ash(z) +Rs(h(z), z) = Dh(z)[Acz +Rc(h(z), z)]. (3.34)

• The latter equation can be re-arrange and written in the quasilinear partial
different equation

N (h(z)) ≡ Ash(z) +Rs(h(z), z) −Dh(z)[Acz +Rc(h(z), z)] = 0. (3.35)

This equation must be satisfied in order to be a centre manifold.

However, solving the equation (3.35) in some cases is rather more difficult than
the original problem; But, there is a theorem which provides an approximation
solution to calculate the function h(z).

Theorem 7 (Approximation). Let ϕ : Rc → Rs be a C1 mapping with ϕ(0) =
Dϕ(0) = 0 such that N (ϕ(z)) = O(| z |q) az z → 0 for some q > 1, then

| h(z) − ϕ(z) | = ϕ(| z |q) as z → 0, (3.36)

This theorem allows us to determine the center manifold to any desired degree
of accuracy by solving (3.35) to the same degree of accuracy. Namely, this theorem
suggests that to find the unknown function h(z) approximately, one can simply
use the power series expansion of h(z) and substitute it in (3.35), then calculate
the h(z) up to the desired order of accuracy. The following example makes it
more clear.

3.5 An explicit example
In this section, we present an example of a dynamical system taken from Baha-
monde et al. [2018].
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3.5.1 Changing variables
We start the example from following autonomous system

u
′ = 1

8[γ − 26 + 36v − (6γ + 4)u− (8γ + 1)u3

+(12γ − v + 3)u2 + (v2 − 2v)u+ v3 − 13v3], (3.37)

v
′ = 1

8[18 + γ − 20v − (6γ − 4)u− (8γ + 1)u3

+(12γ − v + 3)u2 + 3v2 + v3 + (v2 − 2v)u], (3.38)

where γ is an arbitrary parameter. It can be verified that this dynamical system
has a critical point located at (u, v) = (1/2, 3/2). Therefore, the first step is to
shift the critical point to the origin using the following transformation

U = u− 1
2 , V = v − 3

2 . (3.39)

With these new transformed variable the system becomes

U
′ = 1

8[−4U + 4V − U3(8γ + 1) − U2V + UV 2 + V 3 − 8V 2], (3.40)

V
′ = 1

8[−4V + 4U − U3(8γ + 1) − U2V + UV 2 + V 3 + 8V 2]. (3.41)

Although the critical point is at the center, the system (3.40)-(3.41) is not in the
form of (3.26). At this point, we need to diagonalize the Jacobian matrix. In
order to do this, we compute the Jacobian matrix at the origin

J

⃓⃓⃓⃓
⃓
U=0,V=0

= 1
2

(︄
−1 1
1 −1

)︄
. (3.42)

Then, by using the standard linear algebra method, we write

1
2

(︄
−1 1
1 −1

)︄
=
(︄

1 −1
1 1

)︄(︄
0 0
0 −1

)︄(︄
1/2 1/2

−1/2 1/2

)︄
= T−1DT, (3.43)

where D matrix is the diagonalized matrix, T matrix is the matrix of eigenvectors
and T−1 is its inverse. To derive the transformed coordinates, we use(︄

x
y

)︄
= T−1

(︄
U
V

)︄
=
(︄

1/2 1/2
−1/2 1/2

)︄(︄
U
V

)︄
, (3.44)

or U = x − y and V = x + y. By substituting this result into the dynamical
system (3.40) and (3.41), we arrive at

x′ = x2y − γ(x− y)3, (3.45)
y′ = −y + (x+ y)2. (3.46)

Thus, by doing these transformations, the dynamical system is now in the form of
(3.26) where Ac = 0, As = −1, Rc(x, y) = x2y−γ(x−y)3, and Rs(x, y) = (x+y)2.

The dynamical system (3.45)-(3.46) is the desired form of the dynamical sys-
tem; therefore, now we are able to apply either the Lyapunov stability or the
centre manifold to analyse the stability of the non-hyperbolic critical point.
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3.5.2 Lyapunov stability
In order to apply the Lyapunov method, one has to guess the appropriate form
of the Lyapunov function. Therefore, we begin with the following Lyapunov
function

V = 1
2x

2 + αy4, (3.47)

where α is a positive constant. It is clear that this function satisfies the first
two conditions, namely V (0, 0) = 0 and V > 0 in a neighborhood of the critical
point. To analyse the stability, the V ′ at the critical point should be evaluated.
Therefore

V
′ = x3y + 4αy3((x+ y)2 − y) − γx(x− y)3. (3.48)

This equation indicates that in the neighborhood of the origin, only the quartic
terms dominate. Thus, this function might satisfy V

′
< 0 for some values of α.

Moreover, we can also change the coordinate to the polar coordinate, to see it
more explicitly. By substituting x = r cos(ϕ) and y = sin(ϕ) we get

V
′ = (−4α sin4 ϕ− γ cosϕ(cosϕ− sinϕ)3 + sinϕ cos3 ϕ)r4 + O(r5). (3.49)

This equation implies that for γ > 0 it is enough to choose a reasonably large
α to ensure that V ′ is negative. On the other hand, for γ ≤ 0 the Lyapunov
function is not a suitable choice since V ′ will not be negative for all values of ϕ.

These calculation proves that the critical point is globally asymptotically sta-
ble for γ > 0.

3.5.3 Centre manifold
In this section we apply the centre manifold theorem to investigate the stability
of the non-hyperbolic critical point for the dynamical system (3.45)-(3.46). To
do this, we should substitute As, Ac, Rs and Rc that we found in Sec. (3.5.1) into
the Eq. (3.35) as follows

h′(x)[x2h(x) − γ(x− h(x))3] + h(x) − (x+ h(x))2 = 0. (3.50)

Deriving the explicit for of the h(x) is almost impossible; however, from the
approximation theorem one can use the power expansion of h(x) as

h(x) = ax2 + bx3 + cx4. (3.51)

The next step is to substitute the former equation into the Eq. (3.50) which
becomes

(a− 1)x3 + (b− 2a)x3 + (c− 3b− a2 − 2γa)x4 = 0, (3.52)
where we keep the terms up to the forth order. Since this equation has to be
valid for all power of x, we can deduce that

a = 1, b = 2, c = 5 + 2γ, (3.53)

and also
h(x) = x2 + 2x3 + (5 + 2γ)x4 (3.54)
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Moreover, function h(x) together with Eq.(3.29) enable us to analyze the dynam-
ics of the system reduced to the centre manifold, which becomes

u′ = −γu3 + (1 + 3γ)u4 + O(u5). (3.55)

Now the stability of the point can be verified from Eq. (3.55). Thus, one can see
that this point is stable for γ > 0 and unstable for γ ≤ 0. Fig. 3.1 illustrates the
phase space for γ > 0,γ < 0, and γ = 0. Its is clear in Fig 3.1a that the orbits
along the centre manifold, i.e. the orange line, are attracting from the critical
point. However, Fig. 3.1b shows that orbits are repelling from the critical point
along the centre manifold. For the case γ = 0 in Fig. 3.1c we see that orbits are
attracted by one direction and repelled from another direction.

(a) γ > 0 (b) γ < 0

(c) γ = 0

Figure 3.1: Phase space portraits of the autonomous system (3.45)- (3.46) in the
vicinity of the critical point for γ > 0, γ < 0, and γ = 0. The Orange line
represent the centre manifold (3.54).
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4. Dynamical cosmology
In the previous chapters, we presented succinct introductions to the modern cos-
mology and the dynamical systems analysis. In Chapter 1, we have seen that
the governing equations describing the evolution of the universe are systems of
ODEs. Hence, dynamical system analysis would be an elegant way to investigate
the global behaviours of any cosmological model. By choosing the proper dy-
namical variables for a given cosmological model, one can derive its autonomous
system. Then, we are able to analyse the features of the parameter space by
determining and analysing the critical points, anomalies, and orbits in this space.
This procedure provides a good insight on the global features of a cosmological
model.

The layout of this chapter is as follows. Sec. 4.1 introduces the necessary
steps that should be done in order to determine a dynamical cosmology system.
This section drives from the text books Wainwright and Ellis [2005] and Coley
[2013] and the article written by Wainwright and Lim [2005]. In Sec.4.2, we
will implement the dynamical systems analysis to a specific cosmological model,
namely the minimally coupled scalar field with an unspecified potential together
with matter. The Sec. 4.3 is in fact a continuation of the Sec. 4.2 in which the form
of potential is specified. These last two sections are given in this chapter in order
to provide a pedagogical example showing how this dynamical analysis works. In
these two sections, we mainly use the result of the work done by Copeland et al.
[1998].

4.1 General framework
One of the reasons that we would like to apply dynamical systems analysis in
the context of cosmology is that we want to describe the evolution of a cos-
mological model near the initial singularity as a source or past attractor of a
dynamical system and late-time evolution as a sink or a future attractor of a
dynamical system. From the governing equations in the FRW cosmology, namely
the Friedmann, Raychaudhuri, and Kein-Gordon equations, one can not study
these asymptotic behaviours since the physical variables tend to either diverge
or vanish near the initial singularity or for late-time. Therefore, one needs to
define a new set of variables, namely to normalize the physical variables, in order
to achieve this goal. In the context of cosmology, the most appropriate normal-
ization is to use the Hubble parameter as a normalization factor. One of the
advantages of these new variables is that, in most cases, they are bounded. For
instance, the Friedmann equation (1.13) for zero spatial curvature, in the new set
of variables, takes the form

1 = Ωm = ϵ

3H2 . (4.1)

As we can see, the new variable Ωm is dimensionless and it does not diverge
or vanish at the initial singularity and for late-time. Therefore, in general, one
should be able to rewrite the Friedmann equation in terms of the dimensionless
variables, i.e.

1 = f(Ω1,Ω2, ...,Ωn), (4.2)
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where n refers to the number of dimensionless variables; moreover, a set of di-
mensionless variables creates a n-dimensional variable space. In order to create
a well-defined set of dimensionless variables, each Ωn should be defined in such
a way that, each physical variable can be identified with a single dimensionless
variable. By doing this, dimensionless variables have a direct physical interpre-
tation. Thus, in this way, we transform the old variables, i.e. physical variables
such as energy density ϵ, cosmological constant Λ, scalar field ψ, scalar potential
V (ψ), etc., to the new variables, i.e. Ωϵ, ΩΛ, Ωψ, ΩV , etc. This transformation
is valid if the Jacobian determinant of the transformation is not singular ( see
e.g.Alho et al. [2016]).

Another property of this setup is that, in most cases, we can write one of
these variables in terms of the other variables, i.e. as a constraint; thus, this
constraint allows us to study the dynamics of the reduced system. For instance,
let’s consider the ΛCDM model where the matter part consists of radiation and
dust. The Friedmann equation (1.54) for such a system will be

3H2 = ϵr + ϵd + Λ, (4.3)

where ϵr and ϵd refers to the energy density of radiation and dust. The Friedmann
equation (4.3) in the dimensionless variables will be

1 = Ωr + Ωd + ΩΛ. (4.4)

where Ωr = ϵr/3H2, Ωd = ϵd/3H2, and ΩΛ = Λ/3H2. Since 0 < ϵr, 0 < ϵd,
and 0 < Λ, Friedmann equation (4.4) implies 0 < Ωr < 1, 0 < Ωd < 1, and
0 < ΩΛ < 1, in other words they are bounded. Subsequently, one can obtain the
constraint

0 < Ωr + Ωd = 1 − ΩΛ < 1, (4.5)
and eliminate, for instance, ΩΛ in the further analysis.

The next step is to investigate the evolution of the dimensionless variables.
To do this, a new evolution parameter τ is defined as dτ = Hdt. Therefore, the
evolution of dimensionless variables can be written in the following form

Ω′ = f(Ω), (4.6)

where Ω = (Ω1,Ω2, ...,Ωn). This equation is similar to the system of ODEs,
namely the autonomous systems introduced in Sec.3.1. Finally, the last step is
to investigate the critical points of the autonomous system and their stabilities.
Once we have found the critical points, we can look for their physical interpreta-
tion.

So far, we have presented the necessary steps that one has to follow in order
to determine an autonomous system form the Friedmann equation, Raychaudhuri
equation, and Klein-Gordon equation1 together with investigation of the critical
points. However, there are still some points that we would like to mention:

• In order to analyse the whole variable space, the dimensionless variables
have to be bounded. However, there are some cases that some ( or all) of

1The Raychaudhuri equation and Klein-Gordon equation are needed in order to write the
autonomous systems in terms of new variables.
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these variables are not bounded. In these cases, one can again define new
bounded variables from dimensionless variables. For instance, in Kerachian
et al. [2020], some of the dimensionless variables were not bounded. There-
fore, we introduced the bounded variables from the unbounded variables.

• If the dimensionless variables are defined in such a way that physical vari-
ables are mixed, then one should be careful about the interpretation of a
critical point.

• We have introduced the Hubble parameter as a normalization factor. For
the cases that the spatial curvature is not vanishing, i.e. k ̸= 0, one can
define D =

√︂
H2+ | k | /a2 as a generalized normalization factor ( see Ker-

achian et al. [2019] and Kerachian et al. [2020]). Subsequently, the evolution
parameter is defined as dτ = Ddt.

• One has to notice that, in general, there is not a unique prescription on how
the dimensionless variable and the evolution parameter should be defined.
What we have introduced here is the most common procedure in the dy-
namical cosmology analysis ( See e.g. Ananda and Bruni [2006], Sami et al.
[2012], and Szydlowski et al. [2014], for the different approaches).

4.2 Minimally coupled scalar field cosmology
In Sec. 1.6 we have introduced the Friedmann and the Raychaudhuri equations
for a scalar field which is minimally coupled to gravity. Here we assume that the
spatial curvature is zero k = 0 and also the matter sector is not vanishing and it
has a linear EoS (1.16) as it was defined in Sec. 3.1. Moreover, we demand that
the scalar field potential V (ψ) is positive. Therefore, the Friedmann equation
and the Raychaudhuri equation for this model read

3H2 = ϵ+ 1
2 ψ̇

2 + V (ψ), (4.7)

2Ḣ + 3H2 = −wϵ− 1
2 ψ̇

2 + V (ψ). (4.8)

Recall that the the Klein-Gordon equation (1.69) is

ψ̈ + 3Hψ̇ + V
′(ψ) = 0. (4.9)

We shall define the effective energy density ϵe and pressure Pe as

ϵe = ϵ+ ϵψ, and Pe = P + Pψ, (4.10)

where ϵψ = 1
2 ψ̇

2 + V (ψ) and Pψ = 1
2 ψ̇

2 − V (ψ). Therefore, the effective EoS will
be we = Pe/ϵe. Introducing the effective EoS is crucial since this parameter can
tell us whether the expansion of the universe is accelerating ( we < −1/3) or
decelerating ( we > −1/3).

In order to apply the dynamical system, we rewrite the Friedmann equa-
tion (4.7) in the form

1 = ϵ

3H2 + ψ̇
2

6H2 + V (ψ)
3H2 . (4.11)
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Thus, the dynamical variables or dimensionless variables for this system are

Ωm = ϵ

3H2 , Ωψ = ψ̇√
6H

, ΩV =
√︄
V (ψ)

3
1
H
. (4.12)

By using this new variable, for the effective EoS parameter we obtain

we = Ω2
ψ − Ω2

V + w(1 − Ω2
ψ − Ω2

V ). (4.13)

Since we assume that the energy density and the potential should be strictly
positive, each term in the right-hand side of the Eq. (4.11) is positive. Therefore,
we can rewrite the Friedmann equation in the form

0 ≤ Ω2
ψ + Ω2

V = 1 − Ωm ≤ 1. (4.14)

From the former relation, we can reduce the dimensionality of the variable space,
since Ωm can be written as a function of the other two variables. Subsequently,
the autonomous system will be

Ω′
ψ = ψ̈√

6H2
− Ωψ

Ḣ

H2 , (4.15)

Ω′
V = ΩV

⎛⎝√︄3
2 Ω∂V Ωψ − Ḣ

H2

⎞⎠ , (4.16)

where prime means d/Hdt and Ω∂V , which is yet another dimensionless variable,
is defined as

Ω∂V = ∂ψV

V
. (4.17)

Moreover, from the Raychaudhuri equation and Klein-Gordon equation we obtain

Ḣ

H2 = 3
2
[︂
(w − 1) Ω2

ψ + (w + 1) (Ω2
V − 1)

]︂
, (4.18)

ψ̈

H2 = −3
√

6Ωψ − 3Ω2
V Ω∂V . (4.19)

Since, from Eq. (4.16) we defined another dynamical variable, i.e. Ω∂V (ψ), the
autonomous system (4.15)-(4.16) is not closed ( see e.g. Steinhardt et al. [1999]
and De La Macorra and Piccinelli [2000]). Therefore, it is needed to derive an
evolution equation governing the Ω∂V . This equation is given by

Ω′
∂V =

√
6 Ω2

∂V Ωψ (Γ − 1) , (4.20)

where Γ is called the tracker parameter (Steinhardt et al. [1999]) and it is defined
as

Γ =
V ∂2

ψV

(∂ψV )2 . (4.21)

Again, it seems that we derived another dynamical variable that the respective
system is not closed. However, since both Ω∂V and Γ are functions of ψ, we can
relate them to each other if ψ(Ω∂V ) exists ( see e.g. Zhou [2008]). Namely, if the
function Ω∂V (ψ) is invertible, then we can write ψ(Ω∂V ) and hence Γ(ψ(Ω∂V )).

47



Note that the physical features of the universe do not dependent directly on
the choice of Ω∂V . In other words, different functions of the potential V does
not change the phenomenological properties of the universe. This statement
comes from the fact that the effective EoS parameter (4.13), the EoS parameter
of the scalar field 2, and the relative energy density of the scalar field ΩΨ

3 are
independent of Ω∂V .

4.2.1 General features of the system
Global critical points. Before we specify the form of V , its is useful to de-
termine the critical points of the autonomous system (4.15), (4.16), and (4.20).
One can check that, for this system there is one global critical point located at

{Ωm,Ωψ,ΩV ,Ω∂V } = {1, 0, 0,∀}.

However, ΩV = 0 means that V = 0 and subsequently Ω∂V = 0, which is not ob-
vious from the autonomous system. This point refers to the case when the scalar
field contributions vanishes and the universe is filled with barotropic matter.

Invariant subsets. One of the tools in analysing a dynamical system are the in-
variant subsets since they help us to characterize and understand the global prop-
erties of the phase space. From the autonomous system (4.15), (4.16), and (4.20)
we can identify the invariant subsets. For this system, ΩV = 0 represents an
invariant set.

One may choose Ω∂V = 0 as an invariant subset. However, this choice of Ω∂V

is a specific case of Ω∂V = const.. This condition is equivalent to Γ = 1 and
seems like an invariant subset due to Eq. (4.20). However, this is a more subtle
case, because choosing a constant value of Ω∂V actually constraints the form of
the potential to the exponential form V = V0 e

Ω∂V ψ (see, e.g., Kerachian et al.
[2019]).

Symmetries. The dynamical system (4.15), (4.16), and (4.20) under the simul-
taneous transformation {Ωψ,ΩV ,Ω∂V } → {−Ωψ,ΩV ,−Ω∂V } remains invariant if
Γ(Ω∂V ) = Γ(−Ω∂V ) satisfies.

Moreover, under the transformation {Ωψ,ΩV ,Ω∂V } → {Ωψ,−ΩV ,Ω∂V } the
dynamical system is invariant. In other words, this transformation means that
the sign of H is changing. This implies that the physical behaviour for the
expanding universe H > 0 is the same as the contracting universe H < 0 if the
time direction is reversed.

2In Sec. 1.6 we derived the EoS parameter for the minimal coupled scalar field, namely
Eq.(1.72). If we substitute the new dynamical variables instead of ψ and V we obtain

wψ = Pψ
ϵψ

=
1
2 ψ̇

2 − V (ψ)
1
2 ψ̇

2 + V (ψ)
=

Ω2
ψ − Ω2

V

Ω2
ψ + Ω2

V

. (4.22)

3The relative energy density of the scalar field is defined as ΩΨ = ϵψ
3H2 = Ω2

ψ + Ω2
V .
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4.3 Γ = 1: Exponential potentials
By choosing a form of the potential V (ψ), the system is completely specified;
subsequently, the variable Ω∂V becomes redundant. One of the special cases is
Γ = 1, which holds that Ω∂V = const.; therefore, in this case the form of the
potentials are

V = V0e
Ω∂V ψ, (4.23)

where Ω∂V is a constant and V0 > 0. The autonomous systems for this spacial
case are

Ω′
ψ = −3

2

⎡⎣2Ωψ + (w − 1)Ω3
ψ + Ωψ (w + 1) (Ω2

V − 1) −
√︄

2
3Ω∂V Ω2

V

⎤⎦ , (4.24)

Ω′
V = −3

2ΩV

⎡⎣(w − 1)Ω2
ψ + (w + 1) (Ω2

V − 1) +
√︄

2
3Ω∂V Ωψ

⎤⎦ . (4.25)

So far, we have introduced the dimensionless variables and the dynamical
systems for the universe having a minimally coupled scalar field with exponential
potentials together with regular matter. The next step is to determine the critical
points of this system.

4.3.1 Critical points and their interpretation
In this section we are going to determine the critical points of the system with
their physical interpretations. Table 4.1 and Table 4.2 summarizes all this infor-
mation.

A matter dominated critical point:

The coordinate of this critical point is {Ωψ,ΩV } = {0, 0}. This point ( called O)
has Ωm = 1 ( from Eq. (4.14)) and describes a matter dominated universe with
we = w. This point however is the global critical point introduce in Sec. (4.2.1)
and it represents a saddle point since it has the eigenvalues

{λi} = {3
2(w − 1), 3

2(w + 1)}, (4.26)

where the i = 1, 2

Two stiff fluid like critical points:

These critical points are located at {Ωψ,ΩV } = {±1, 0} together with Ωm = 0.
At these points ( called A±), since ΩV vanishes the universe is dominated by
kinetic energy of the scalar field and the effective EoS parameter is we = Ω2

ψ = 1.
These points describe the stiff fluid with the scale factor a ∝ t1/3. The point A+
which corresponds to the Ωψ = +1 has the eigenvalues

{λA+
i } = {3(w − 1),

√︄
3
2(

√
6 − Ω∂V )}. (4.27)
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Critical point Ωψ ΩV Ωm Existence we

O 0 0 1 ∀ Ω∂V , w w

A+ 1 0 0 ∀ Ω∂V , w 1

A− −1 0 0 ∀ Ω∂V , w 1

B
√︂

3
2

1+w
Ω∂V

√︃
3(1−w)2

2Ω2
∂V

1 − 3(1+w)
Ω2

∂V
Ω2
∂V > 3(1 + w) w

C Ω∂V√
6

√︃
1 − Ω2

∂V

6 0 Ω2
∂V < 6 Ω∂V

3 − 1

Table 4.1: The critical points of the dynamical system (4.24)- (4.25).

Critical point Stability

O Saddle

A+
Unstable node for Ω∂V ≤

√
6

Saddle point for Ω∂V >
√

6

A−
Unstable node for Ω∂V ≥ −

√
6

Saddle point for Ω∂V < −
√

6

B
Stable node if 3 (w + 1)2 < Ω2

∂V <
24 (w+1)2

9w+7
Stable spiral for Ω2

∂V ≥ 24 (w+1)2

9w+7

C
Stable if Ω∂V < −

√
6

Saddle point if 3(1 + w) ≤ Ω2
∂V < 6

Table 4.2: The stability of the critical points of the dynamical system (4.24)-
(4.25).
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This point is a saddle point if Ω∂V >
√

6 and it is an unstable node or a source
if Ω∂V <

√
6.

However, the critical point A− has the eigenvalues

{λA−
i } = {−3(w − 1),

√︄
3
2(

√
6 + Ω∂V )}. (4.28)

This point represents a saddle point if Ω∂V < −
√

6 and an unstable node if
Ω∂V > −

√
6.

One scaling solution critical point:

There is another critical point ( called B) located at

{Ωψ,ΩV } = {
√︄

3
2

1 + w

Ω∂V

,

⌜⃓⃓⎷3(1 − w2)
2Ω2

∂V

}.

At this point, neither the scalar field nor the regular matter dominate the universe
entirely. That is why this point have been called the scaling solution by Wetterich
[1988]; in other words, at the same time, we have both 0 < ΩΨ < 1 and 0 < 1 −
Ωm < 1, hence the universe evolution is influenced from both the regular matter
and the scalar field. Moreover, point B exists if the condition Ω2

∂V > 3(1 + w) (
since we have 0 < ΩΨ < 1) is satisfied. This point has the effective EoS parameter
we = w with eigenvalues

{λBi } = { 3
4 Ω∂V

((w − 1) Ω∂V − ∆) , 3
4 Ω∂V

((w − 1) Ω∂V + ∆)}, (4.29)

where ∆ =
√︂

(w − 1) [(7 − 9w) Ω2
∂V − 24 (w + 1)2]. Point B represents a stable

node if
3 (w + 1)2 < Ω2

∂V <
24 (w + 1)2

9w + 7
and a stable spiral if

Ω2
∂V ≥ 24 (w + 1)2

9w + 7 .

One scalar field dominated critical point:

The last critical point ( called C) of this system is located at {Ωψ,ΩV } =
{Ω∂V /

√
6,
√︂

1 − Ω2
∂V /6}. At this point Ωm = 0 and ΩΨ = 1 which means that the

universe is dominated by the scalar field. It exists for the range Ω2
∂V < 6 and has

the effective EoS parameter we = wψ = Ω∂V /3 − 1; the effective EoS implies that
for Ω∂V < 2 the universe undergoes an accelerated expansion. The eigenvalues of
this point are

{λCi } = {Ω2
∂V

2 − 3,Ω2
∂V − 3(w + 1)}. (4.30)

Point C is an attractor if Ω2
∂V < 3(1+w) and saddle point if 3(1+w) ≤ Ω2

∂V < 6.
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Figure 4.1: Variable space for w = 0 and Ω∂V = 1. The orange lines denotes
the separatrice of the system and the green shaded regions is the part of the
parameter space where the universe is accelerating, i.e. we < −1/3. The points
A± are the past attractors while the point C is the future attractor represent an
accelerating expansion phase.

4.3.2 Parameter space portraits
In the previous section, we derived the critical points of the dynamical sys-
tem (4.24)- (4.25) with their stability conditions and their interpretations. In
this section, we would like to plot the parameter space portraits for different val-
ues of Ω∂V . According to the Table 4.1 and Table 4.2, there are three regions for
Ω∂V where the qualitative features of the parameter space remain similar; these
regions are: 0 < Ω2

∂V < 3(1 +w) , 3(1 +w) < Ω2
∂V < 6, and 6 < Ω2

∂V < ∞. In the
following ( Figs. 4.1, 4.2, and 4.3), we plot the parameter spaces for these three
regions with w = 0. Since we are interested in the late time accelerated expansion
and also the transitions between matter dominated era to the dark energy epoch,
choosing the matter EoS parameter w = 0 would be a suitable choice.

Figure 4.2: Variable space for w = 0 and Ω∂V = 2. The orange lines denotes
the separatrice of the system and the green shaded regions is the part of the
parameter space where the universe is accelerating. Here, the points A± are the
past attractors and the pont B is the future attractor.

The first region, i.e. 0 < Ω2
∂V < 3(1 + w), is plotted in Fig. 4.1. This

figure is divided into two subregions from the separatrice or the heteroclinic orbit
connecting points O to C ( the orange line). Both subregions start from the stiff
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fluid dominated areas ( points A±), pass through a matter dominated phase in
case they approach point O, and going toward the point C; where point C is the
scalar field dominated area.

The second region is depicted in Fig. 4.2. Here the parameter space is divided
into two subregions from two separatrices, i.e. the separatrices that connect the
point O to the point B and point B to the point C. Both subregions start from
stiff fluid ( points A±), pass through both a matter dominated phase ( point O)
and also scalar field dominated phase ( point C), then going towards the scaling
solution point B.

For the region 6 < Ω2
∂V < ∞, the parameter phase space illustrates in Fig. 4.3.

Here, the past attractor is only the point A− and the other stiff fluid critical point
A+ is a saddle point. Although there is a separatrix in this region, it does not
split the parameter space into two distinct subregions. Same as the previous
cases, here the matter dominated phase O is a saddle point; however, the scaling
solution is the future attractor.

Figure 4.3: Variable space for w = 0 and Ω∂V = 3. The orange lines shows
the separatrice of the system and the green shaded regions is the part of the
parameter space where the universe is accelerating. Here, the point A− is the
past attractor and the pont B is the future attractor.

So far, we have presented a minimally coupled scalar field having an expo-
nential potential together with the regular matter. This model is one of the most
interesting models in dynamical cosmology in the sense of simplicity. Namely,
in this model, the three dimensional dynamical system reduces to the two di-
mensional dynamical system; the parameter space is compact and there are no
anomalies. Moreover, the asymptotic features of the system can be determined
from the behaviors of the critical points. Similar analysis by including both ra-
diation and matter ( dust and/or dark matter), by considering two barotropic
fluids, has been done by Azreg-Aı̈nou [2013]. In our analysis, we considered only
the case V > 0; however, the dynamical system of scalar field with negative
exponential potentials was done by Heard and Wands [2002].
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5. Dynamic of barotropic fluids
This chapter is based on the paper Kerachian et al. [2020] ” Dynamics of classes
of barotropic fluids in spatially curved FRW spacetimes”, published in Physical
Review D. Here, we presented the version from arXiv.

In the first part of this work, we studied the dynamics of a cosmological model
with unspecified EoS, without the cosmological constant Λ, in the spatially curved
FRW spacetime. From the Friedmann equation, we derived the dimensionless
variables in such a way that the variables are well-defined and valid for all curva-
tures. Therefore, the autonomous systems were derived from the dimensionless
variables for both positive and non-positive curvatures. We defined a tracker-like
parameter Γ; this parameter enables us to encode the EoS. Subsequently, general
features of the Γ together with the critical points of the system their cosmological
interpretations analyzed. For this general setup, we identified that there are three
critical lines in the system:

• two de Sitter critical lines for the case k = 0,

• one static universe critical line for the case k ≤ 0.

In the second part of the paper, we provided two examples to show how this
formalism can be used.

In the first example, we allied some conditions on Γ, such as causality condi-
tion, and consequently we could determine the EoS. This EoS represents a linear
superposition of an exotic fluid with stiff matter. For large energy densities, the
stiff matter part of EoS takes over; however, for low energy densities the other
part, i.e. the exotic part, dominates.

In the second example, we analyzed the quadratic EoS in our framework.
Since the quadratic EoS was analyzed previously by Ananda and Bruni [2006],
we made a comparison with their findings.
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Dynamics of classes of barotropic fluids in spatially curved FRW spacetimes

Morteza Kerachian,1, ∗ Giovanni Acquaviva,1, † and Georgios Lukes-Gerakopoulos2, ‡

1Institute of Theoretical Physics, Faculty of Mathematics and Physics,
Charles University, CZ-180 00 Prague, Czech Republic

2Astronomical Institute of the Academy of Sciences of the Czech Republic,
Bočńı II 1401/1a, CZ-141 00 Prague, Czech Republic

In this article we perform dynamical analysis of a broad class of barotropic fluids in the spatially
curved Friedmann-Robertson-Walker (FRW) spacetime background without considering the cosmo-
logical constant. The first part of our study concerns the dynamics of a fluid with an unspecified
barotropic equation of state (EoS) having as the only assumption the non-negativity of the fluid’s
energy density. After defining a new set of dimensionless variables and a new evolution parameter,
we introduce the function Γ that encodes the EoS. In this general setup several features of the sys-
tem are identified: critical points, invariant subsets and the characteristics of the function Γ, along
with their cosmological interpretations. The second part of our work provides two examples with
specific Γ functions. In the first example we provide a Γ function and then we exhibit how it can be
trimmed down to a specific class of EoS through physical arguments, while in the second example
we discuss the quadratic EoS studied in Phys.Rev. D 74, 023523 (2006) by comparing our approach
with their analysis.

PACS numbers:
Keywords: Gravitation, Cosmology; Dynamical systems

1. INTRODUCTION

On large scales, the Universe appears to be homoge-
neous and isotropic [1]: hence the Friedmann-Robertson-
Walker (FRW) model still seems relevant in approximat-
ing its evolution. Moreover, considering a non-zero cur-
vature of the spatial slices seems to be observationally
relevant and might help in alleviating some tensions in
cosmology [2, 3]. From the point of view of the source in
Einstein’s field equations, barotropic fluids are the first
step in describing the matter content of the Universe.
The above setting is a common starting point for studies
trying to describe important cosmological aspects, such
as the phenomenological behaviour of the dark sector. In
such a setup one can, for instance, describe a multi-fluid
source by a single phenomenological equation of state,
such as in the case of Generalized Chaplygin Gas [4] or
Logotropic fluids [5].

For a FRW cosmology with only a fluid component,
the Friedmann equation and the Raychaudhuri equation
are respectively given by

H2 +
k

a2
=

3
, (1)

2 Ḣ + 3H2 +
k

a2
= −P , (2)

while the continuity equation for the energy density is

˙ + 3H(P + ) = 0 , (3)

∗Electronic address: kerachian.morteza@gmail.com
†Electronic address: gioacqua@gmail.com
‡Electronic address: gglukes@gmail.com

where a is the scale factor, k is the spatial curvature, H =
ȧ
a is the Hubble expansion rate, ˙ denotes derivative with
respect to the coordinate time, is the energy density
and P is the pressure of the barotropic fluid. Once the
EoS is given, i.e. P = P ( ), the system is closed and
it is in principle possible to provide the scale factor as
function of the energy density:

a = a0 exp −1

3

Z

0

d

+ P ( )
, (4)

where subscripts 0 denote integration constants result-
ing from integrating evolution equations, like the Ray-
chaudhuri and the continuity equations. In this way the
problem is reduced to solving a single second order or-
dinary differential equation (ODE) and it seems trivial.
However, the integral in Eq. (4) is not necessarily easy
to calculate and the resulting ODE might be difficult to
treat. Of course, in order to address the problem in this
manner, one has to know first the EoS.

In our study we analyse the dynamics of barotropic
fluids in spatially curved FRW without specifying the
EoS. The only assumption is that ≥ 0, while we do
not impose any restrictions on the pressure P . Allow-
ing pressure to attain negative values allows us to de-
scribe cosmological models driven by one fluid with a
phenomenological EoS which can end with an acceler-
ated expansion. During the evolution of the models such
a fluid can have a standard behavior, i.e. the speed of
sound 0 ≤ c2

s ≤ 1, but also more exotic cases. Analysis of
cosmological models including fluids with rather general
EoS can be found in the literature. In [6, 7] the authors
study the general properties of barotropic EoS: although
a linear relation between energy density and pressure is
implied, the proportionality parameter has a generic de-
pendence on the scale factor. In [8] a dynamical analysis
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of a generic real gas is performed in the parameter space
spanned by the Hubble function H, the number density n
and the temperature T of the gas. A quite general equa-
tion of state has been considered in [9] with the aim of
studying future cosmological singularities. On the other
hand, attempts to determine the form of EoS from obser-
vations can be found, for example, in [10] (see also [11]
for a review).

A general functional form of dark energy has been
considered in various settings: for instance, in [12] the
cosmological consequences of a time-dependent Λ were
discussed. A varying cosmological constant can be in-
terpreted as a particle creation process, which has been
discussed for example in [13], while an attempt to re-
construct dark matter/dark energy interaction through
particle creation has been presented in [14].

The analysis that we carry out in the present paper
takes inspiration from dynamical analysis of scalar fields
in cosmology: in the simplest models describing a scalar
field with an unspecified potential, general features re-
garding the dynamics of the system can be inferred by
inspecting the properties of the so-called ”tracker param-
eter”, which depends on second derivatives of the poten-
tial (see [15]). Similarly, we will relate the global and
asymptotic behaviour of entire classes of EoS to the prop-
erties of a function which depends on second derivatives
of the pressure P ( ). An analogous study has been car-
ried out in [16] for the generic functional form P = P (H).

2. THE DYNAMICAL SYSTEM

In order to compose well-defined dimensionless vari-
ables which are valid for both k > 0 and k ≤ 0 one can
introduce the normalization D2 = H2 + |k|/a2. Thus, we
construct the new dimensionless variables as follows

Ω =
3D2

, ΩH =
H

D
, (5)

ΩP =
P

D2
, Ω∂P =

∂P

∂
, (6)

Γ =
∂2P

∂ 2
. (7)

The Jacobian determinant of the above transformation
is

det J = − Γ

3D7
, (8)

which implies that the transformation is singular when
Γ = 0. We will discuss in detail the implications of this
singularity in Sec. 4, here we just mention that when Γ =
0 then Ω∂P becomes redundant and the dimensionality of
the system is reduced. Note also that the EoS is defined
by the parameter Γ. Since we allow ∂P/∂ to be negative,
we relax its interpretation as speed of sound and instead
of denoting it as c2

s we have renamed it Ω∂P .
In order to recast the evolution equations as an au-

tonomous system, we take derivatives of the dimension-
less variables with respect to the evolution parameter τ ,

related to the cosmic time by dτ = Ddt. This time
parameter is well-defined throughout the whole cosmic
evolution, in particular during possible recollapsing or
bouncing scenarios where H = 0. The resulting system
is given by

Ω0 = −ΩH

"
Ωp + Ω

 
3 + 2

 
Ḣ

D2
+ Ω2

H − 1

!!#
,

(9)

Ω0
H = 1 − Ω2

H

 
Ḣ

D2
+ Ω2

H

!
, (10)

Ω0
P = −ΩH

"
3Ω∂P (ΩP + 3Ω ) + 2ΩP

 
Ḣ

D2
+ Ω2

H − 1

!#
,

(11)

Ω0
∂P = −ΩH

ΩP

Ω
+ 3 Γ . (12)

2.1. Positive curvature

When k > 0, the Friedmann equation can be expressed
in terms of the variables Eqs. (5)-(7) in the following
form:

Ω = 1 . (13)

From Raychaudhuri equation we get

Ḣ

D2
= −1

2
(ΩP + 1) − Ω2

H . (14)

2.2. Non-positive curvature

Applying the same definitions given by Eqs. (5)-(7) to
the case of non-positive spatial curvature k ≤ 0, one can
reexpress the Friedmann constraint (1) as

Ω = 2 Ω2
H − 1, (15)

and the Raychaudhuri equation (2) as

Ḣ

D2
= −1

2
(ΩP + 1) + 1 − 2Ω2

H . (16)

Since by definition Ω2
H ≤ 1 and by assumption ≥ 0,

Eq. (15) implies that 0 ≤ Ω ≤ 1 and 1
2 ≤ Ω2

H ≤ 1. How-
ever, as we will see, the system of evolution equations
does not include automatically the requirement of posi-
tivity of energy and the trajectories might cross towards
the negative energy regions: hence, we will have to se-
lect by hand the parts of variable space that we consider
physically plausible.
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3. CRITICAL POINTS AND THEIR
INTERPRETATION

The critical elements of the system are those values of
the variables such that Ω0 = 0. Once the critical points
are found, one can provide a cosmological interpretation
in terms of the deceleration parameter

q = −1 − Ḣ

H2

= −1 − Ω−2
H

Ḣ

D2
, (17)

where we used the definition of ΩH . From the Raychaud-
huri Eq. (14) for positive curvature we see that, in order
to have accelerated expansion, i.e. q < 0, one needs
ΩP < −1. For the negative curvature case, by using
Eq. (16), one has instead ΩP < 1 − 2 Ω2

H = −Ω . Thus,
of course, having negative pressure is a necessary but not
sufficient condition for accelerated expansion.

3.1. Two de Sitter critical lines

The system presents two critical lines with a de Sit-
ter behavior, with coordinates {Ω ,ΩH ,ΩP ,Ω∂P } =
{1,±1,−3,∀}. Note that since Γ has not yet been de-
fined, these critical elements are independent of the EoS
of the fluid. Specific choices of EoS can provide certain
values for Ω∂P , as we will show later on.

Taking into account the definitions of Ω and ΩP , for
both of these lines one could claim that P = − , which
would imply that Ω∂P = −1. However, this is not the
case, since at this point the EoS is still kept unspecified.
Actually, as we will see in Sec. 5, once an EoS is specified
this critical point corresponds to the intersection between
the function P = P ( ) and the P = − line.

The line with ΩH = 1 (called A+) has the typical cos-
mological constant behaviour given by q = −1. The cor-
responding eigenvalues are

{λA+

i } = {−2, 0,−3 (1 + Ω∂P )}. (18)

Thus, Eq. (18) implies that for Ω∂P < −1 critical points
along the line A+ are saddles. If Ω∂P ≥ −1 the center
manifold theorem does not provide the stability, thus we
will discuss it through numerical examples for specific Γ.

The line with ΩH = −1 (called A−) describes an ex-
ponentially shrinking universe with q = −1. The eigen-
values in this case are

{λA−
i } = {2, 0, 3 (1 + Ω∂P )}, (19)

Eq. (19) implies that A− is saddle for Ω∂P < −1. Again,
for Ω∂P ≥ −1 we will use numerical examples to discuss
the stability for specific Γ.

3.2. Static universe critical line

For positive curvature, the coordinates
{Ω ,ΩH ,ΩP ,Ω∂P } = {1, 0,−1,∀} correspond to a
critical line (called B) describing a static universe, i.e
a = const.. These points have eigenvalues

{λB
i } = {0,−

p
1 + 3Ω∂P ,

p
1 + 3Ω∂P }. (20)

Regarding the stability, as long as 1 + 3Ω∂P > 0, B is
saddle; for 1 + 3Ω∂P < 0 it is center; for Ω∂P = −1/3
the corresponding point is degenerate and all eigenvalues
are zero, hence the center manifold theory cannot say
anything about its stability: however, from a numerical
inspection we find that in this case the point is marginally
unstable.1

4. GENERAL FEATURES OF Γ: INVARIANT
SUBSETS AND CRITICAL POINTS

Since we have assumed that P = P ( ), the definition of
Γ Eq. (7) implies that Γ = Γ( ). But the energy density is
not a dimensionless parameter of the system and since Γ
should not depend on the geometry, the only valid option

for its functional form is Γ = Γ Ω∂P ,
ΩP

Ω . In some cases

(see Appendix A) one can express ΩP

Ω as a function of

Ω∂P and hence Γ = Γ(Ω∂P ) or vice versa.
Eq. (12) of our dynamical system has been derived by

combining the barotropicity of the effective fluid with the
continuity equation (3), namely

Ω̇∂P =
∂Ω∂P

∂
˙

= −3H 1 +
P ∂Ω∂P

∂
, (21)

where the last square bracket defines the parameter Γ.
Eq. (21) is independent of our choice of dimensionless
variables and it clearly indicates that any root of Γ will
be a stationary point in time for Ω∂P : this can happen ei-
ther when = 0 or whenever Ω∂P has an extremum with
respect to the energy density, i.e. whenever P ( ) has an
inflection point. Physically we expect = 0 only asymp-
totically, either past or future depending whether the
model is collapsing or expanding; the second case instead
can happen for some finite energy density and at a finite
time. Hence, any inflection point of the EoS for > 0
will create an invariant subset in the parameter space of
the dynamical system in the case that Γ = Γ(Ω∂P ).

1 A critical line (denoted by B̄) corresponding to a static universe
exist also for the case of negative curvature. These points are lo-
cated at {Ω ,ΩH ,ΩP ,Ω∂P } = {−1, 0, 1, ∀}. This location, how-
ever, lies at Ω < 0, which, as discussed in Sec. 2.2, is excluded
from our study.
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By choosing appropriately the form of the function Γ
we can impose physically meaningful constraints on the
evolution of the system. For instance, being Ω∂P a dy-
namical variable, one could require the causality condi-
tion Ω∂P ≤ 1 by imposing that Γ(Ω∂P = 1) = 0 (see
sec. 5.1). Such condition cannot be imposed at the level
of equation of state, since this would not be part of the
evolution equations of the system and it wouldn’t stop
the dynamical system from crossing the value Ω∂P = 1.
Something analogous can happen for any other condition
which is not imposed at the level of evolution equations
(see e.g. Sec. 4.2).

Critical lines A± and B are independent of the EoS
since they exist for any Ω∂P . However, once the func-
tion Γ is chosen, its roots Ω̃∂P introduce invariant sub-
sets lying on {ΩH ,ΩP } planes and critical points lying
in these planes2. These critical points are located at
{ΩH ,ΩP } = {±1, 3 Ω̃∂P }, hence for each root of Γ there
will be a pair of critical points C±. Moreover, any new
invariant subset might intersect the critical lines: we de-
note the resulting critical points with the same name as
the respective critical lines throughout the text.

The scale factor in C+ grows as a ∼ (t − t0)
2

3 (Ω̃∂P +1) ,
while in C− the scale factor decreases as a ∼ (t0 −
t)

2
3 (Ω̃∂P +1) . Moreover, the deceleration parameter at

these points is q = 1
2 (3 Ω̃∂P + 1). Therefore, accord-

ing to this parameter these critical points describe an
accelerated phase if Ω̃∂P < − 1

3 and a decelerated phase

if Ω̃∂P > − 1
3 .

On the invariant subset {ΩH ,ΩP } point C+ has eigen-
values

{λC+

i } = {3 (1 + Ω̃∂P ), 1 + 3 Ω̃∂P }, (22)

and C− has

{λC−
i } = {−3 (1 + Ω̃∂P ),−(1 + 3 Ω̃∂P )}. (23)

From Eqs. (22) and (23) we see that for − 1
3 < Ω̃∂P point

C+ (C−) represent a source (sink). For the case −1 <

Ω̃∂P < − 1
3 instead C± are saddle. Finally, for Ω̃∂P < −1

point C+ (C−) is a sink (source).
Since the stability of A±, B (see Sec. 3) and C± de-

pends on the value of Ω̃∂P , we split our analysis into the
following three ranges

• − 1
3 < Ω̃∂P ,

• −1 < Ω̃∂P < − 1
3 ,

• Ω̃∂P < −1.

2 It is not necessary to analyse the roots of Γ with respect to
the combination ΩP /Ω , because having a constant ratio ΩP /Ω
is equivalent to having a constant Ω∂P and hence the critical
elements in the two cases can be related to each other.

The behaviour of these cases will be depicted for positive
and non-positive curvatures, choosing one representative
value of Ω̃∂P for each range, noting that the topology
of the trajectories is independent of the specific value
inside each range. Assuming further that the function Γ
has only one root, there is only one pair of critical points
C±.

4.1. Positive curvature

For positive curvature the system has invariant subsets
located at ΩP = −3 and ΩP = 3 Ω̃∂P . In order to study
the behaviour at ΩP = ±∞ one can compactify ΩP by
using the transformation

XP =
ζΩPp

1 + ζ2Ω2
P

∈ [−1, 1], (24)

where ζ > 0 is just a constant rescaling parameter. This
kind of compactification is well-defined and doesn’t in-
troduce any spurious element into the system (see e.g.
Appendix B in [17]).

The evolution equation for this variable is

X 0
P =

ΩH

ζ

q
1 −X2

P

XP + 3 ζ
q

1 −X2
P XP − 3 ζ Ω∂P

q
1 −X2

P ,

(25)

which along with the Eq. (10) defines the compactified
system.
a. Invariant subsets for − 1

3 < Ω̃∂P . The corre-
sponding invariant subsets divide the variable space into
three disjoint regions. The portrait of the variable space
is depicted in Fig.1a where the value Ω̃∂P = 1 has been
chosen. The sources of the system are C+ and A−, B is
a saddle point, and A+ and C− are sinks.

• The region 3 Ω̃∂P ≤ ΩP describes recollapsing mod-
els starting from expanding C+ and going towards
contracting C−.

• The region bounded between −3 ≤ ΩP ≤ 3 Ω̃∂P is
divided into four subregions by separatrices. The
separatrices meet at the static universe point B.
The right subregion is characterized by trajectories
starting from decelerating expansion in C+ and go-
ing towards the de Sitter point A+. The left sub-
region describes cosmologies which start from ac-
celerated Anti-de Sitter A− and end their collapse
decelerating at C−. The upper subregion describes
recollapsing senarios starting from expanding C+

and ending at the contracting C−. The lower sub-
region describes bouncing models starting from the
Anti-de Sitter A− and ending at the expanding de
Sitter A+.

58



5
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(b) Ω̃∂P = − 1
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(c) Ω̃∂P = −2
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FIG. 1: Invariant subsets for positive spatial curvature
and ζ = 0.2 plotted for three representative values of
Ω̃∂P in the ranges given in Sec. 4.1. The orange thick
lines are the separatrices of the system and the green
shaded regions denote the part of the variable space

where the universe is accelerating.

• The last region lying in ΩP ≤ −3 also describes
bouncing models starting from the Anti-de Sitter
A− and going to the expanding de Sitter A+.

b. Invariant subsets for −1 < Ω̃∂P < − 1
3 . In this

range, points A− and A+ still behave as source and
sink respectively. Points C± become saddle points, while
point B becomes a center. The variable space portrait is
illustrated in Fig. 1b for Ω̃∂P = − 1

2 . In this range the full
invariant subset is divided into the three regions same as
in the previous case.

• The region in the range 3 Ω̃∂P ≤ ΩP is dominated
by the presence of the center B. The trajectories in
this region describe cyclic models which go through
alternating accelerated and decelerated phases.

• The bounded region −3 ≤ ΩP ≤ 3 Ω̃∂P describes
bouncing universes starting from Anti-de Sitter A−
and going to expanding de Sitter A+.

• The region for the case ΩP ≤ −3 also represents
bouncing universes starting from Anti-de Sitter A−
and going to the expanding de Sitter A+.

c. Invariant subsets for Ω̃∂P < −1. In this range,
points A± become saddle points. Point B still describes
center, while point C− is a source and C+ is a sink.

The variable space dynamic for Ω̃∂P = −2 is depicted
in Fig. 1c. Similar to the previous cases the variable
space is divided into three independent regions. These
three regions are topologically the same as in the previ-
ous case. The only differences are that A± and C± have
swapped stability properties and C± are located at lower
values of ΩP than A±.

4.2. Non-positive curvature

There are additional critical points for the non-positive
curvature once we consider Γ(Ω̃∂P ) = 0. These criti-
cal points are located at {ΩH ,ΩP } = {± 1√

2
, 0} and de-

scribe the Milne universe. At these points the decelera-
tion parameter is q = 0 and the scale factor evolves as
a = ± | k | (t + c1) for ΩH = ± 1√

2
respectively.

A critical point with ΩH = 1√
2
, which we denote as

D+, has the eigenvalues

{λD+

i } = {
√

2,−
√

2

2
1 + 3 Ω̃∂P }, (26)

in the invariant subset {ΩH ,ΩP }. When ΩH = − 1√
2
, the

critical point is denoted as D− and has the eigenvalues

{λD−
i } = {−

√
2,

√
2

2
1 + 3 Ω̃∂P }. (27)

Eqs. (26) and (27) imply that for − 1
3 < Ω̃∂P the critical

points D± are saddles, while for − 1
3 > Ω̃∂P , D+ is a

source and D− is a sink.

59



6
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(b) Ω̃∂P = − 1
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(c) Ω̃∂P = −2
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FIG. 2: Invariant subsets for negative spatial curvature
and ζ = 0.2 plotted for three representative values of
Ω̃∂P in the ranges given in Sec. 4.2. The orange thick

lines are the separatrices. The blue shaded areas are the
regions excluded by our assumption that Ω > 0. The
green shaded region are the part of the variable space

where we have accelerating universe.

As in the positive curvature case, one can compactify
the variable space by applying the transformation (24)
to obtain

X 0
P =

ΩH

ζ

q
1 −X2

P (9 ζ2 Ω∂P (1 − 2 Ω2
H) (1 −X2

P )+

ζ XP

q
1 −X2

P (1 − 3 Ω∂P + 2 Ω2
H) + X2

P )). (28)

Our assumption of non-negative energy density causes
the Friedman constraint to limit the physically admissible
values of ΩH as discussed in Sec. 2.2. This assumption
is not imposed at the level of the evolution equations
and hence some trajectories might cross to the forbidden
area. The only trajectories lying entirely in the physical
region are confined between the separatrices connecting
the points {C+, D+, A+} for ΩH > 0 and {C−, D−, A−}
for ΩH < 0, as can be seen in Fig. 2. In the following we
will focus our discussion only in these physical regions.
a. Invariant subsets for − 1

3 < Ω̃∂P . The points C+

and A− are sources, D± are saddle points while the points
C− and A+ are sinks. Fig 2a shows the variable space

dynamics for Ω̃∂P = 1. For positive ΩH , the trajectories
start from C+ and go towards the expanding de Sitter
A+. On the other hand, for negative ΩH , the trajectories
begin from the Anti-de Sitter universe A− and go towards
the contracting C−. In both cases the trajectories can
pass close to the saddle points D+ and D− respectively.

b. Invariant subsets for −1 < Ω̃∂P < − 1
3 . The vari-

able space is plotted in Fig. 2b for Ω̃∂P = − 1
2 . In this

case points D+ and A− represent sources, C± become
saddle points and the sinks are A+ and D−. For ΩH > 0
the trajectories start from expanding Milne universe D+

and going towards the expanding de Sitter A+. On the
other hand, for ΩH < 0, we see that the past attractor is
now the Anti-de Sitter A− and the trajectories move to-
wards the collapsing Milne universe. In both cases some
trajectories may approach transiently C+ and C− respec-
tively.
c. Invariant subsets for Ω̃∂P < −1. The variable

space portrait for this case is illustrated in Fig. 2c where
Ω̃∂P = −2 is chosen. In contrast to the other cases, here
A± become saddle points. Points D+ and C− represent
sources and C+ and D− are sinks. For ΩH > 0 the
trajectories start from expanding Milne universe and go
towards the late attractor C+. For ΩH < 0, the trajec-
tories emerge from the past attractor C− and end up at
the contracting Milne universe D−. In both cases, there
are some trajectories passing transiently trough A+ and
A− respectively.

5. EXAMPLES

In this section we close the system of equations follow-
ing two approaches: first by choosing a specific form of
the function Γ, and then by imposing instead a form of
EoS from which Γ can be derived. As we will see, both
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cases will have the simplest functional form of Γ, that is
linear in Ω∂P , i.e.

Γ = αΩ∂P + β, (29)

where α and β are free parameters. One can find
the functional form of the EoS by integrating Eq. (7).
Namely, when 0 6= α 6= −1

P =
αΩ∂P? + β

α (1 + α) α
?

1+α − β

α
+ P? , (30)

and

Ω∂P =
∂P

∂
=

αΩ∂P? + β

α α
?

α − β

α
, (31)

where P?, Ω∂P?, ? are EoS integration constants.3 De-
pending on the free parameters, the first term in eq. (30)
can represent a generalized Chaplygin gas [4], while the
second term includes a typical linear EoS; however in
general both terms can describe more exotic fluids.

We can rewrite Eq. (30) as

ΩP =
3

1 + α
Ω (Ω∂P − β) + ΩP? , (32)

where ΩP? =
P?

D2
. Eq. (32) is a constraint between ΩP?

and the dynamical variables of our system and it implies
that, even though this quantity appears as a new vari-
able, we can retreat it during the evolution.

5.1. β = −α: causality condition

In light of the discussion of Sec. 4, we impose the
causality condition to this model by choosing β = −α,
which implies Γ = α(Ω∂P −1). The EoS (30) in this case
reduces to

P =
Ω∂P? − 1

(1 + α) α
?

1+α + + P? . (33)

Note that this represents a combination of a stiff EoS and
an exotic fluid.

By demanding further that when the energy density
tends to zero, the pressure does not diverge, Eq. (33)
implies that α > −1.4

The EoS (33) has an extremum at

e =
?

(1 − Ω∂P?)1/α
, (34)

3 The two special cases α = 0 and α = −1 will not be discussed,
since in the former case the EoS can violate causality, while in
the latter case the pressure diverges as → 0.

4 Note that, since we have assumed causality, it holds that 1 −
Ω∂P? ≥ 0. Thus,

Ω∂P? − 1

(1 + α) α
?

≤ 0.

which is maximum if α > 0 and minimum if α < 0. If
one ignores an early inflationary epoch, then the pressure
of the fluid should be positive for large energy densities.
For low energy densities, to reproduce the effect of dark
energy, one would expect negative pressure. Thus, the
EoS we want has a minimum, i.e. −1 < α < 0.

For P = P? Eq. (33) implies that either

Ω∂P? = −α

or ? = 0. The latter leads to the trivial EoS of the stiff
fluid, since −1 < α < 0. Thus, we choose the former. If
further we make the reasonable demand that the pressure
tends to zero along with the energy density, then

P? = 0 ,

which brings the constraint (32) to

ΩP =
3

1 + α
Ω (Ω∂P + α) . (35)

This, combined with the Friedmann constraint, reduces
the system to two dimensions. Namely, due to the Fried-
mann constraints (13) or (15) one can disregard the Ω
evolution eq. (9), and due to the constraint (35) we can
ignore the ΩP evolution equation (11). Thus, the re-
maining dynamical variables are Ω∂P and ΩH . Note
that constraint (35) introduces an invariant subset at
Ω∂P = −(1 + 2α). As we want to preserve causality and
also allow for positive Ω∂P , we will focus our analysis in
the compact region Ω∂P ∈ [−(1 + 2α), 1].

The critical lines A± intersect the new invariant subset
at

{ΩH ,Ω∂P } = {±1,−(1 + 2α)} , (36)

while the critical line B intersects it at

{ΩH ,Ω∂P } = {0,−1 + 4α

3
} . (37)

The critical points D± lie at

{ΩH ,Ω∂P } = {± 1√
2
, 1} . (38)

Given the chosen form of Γ and the assumptions on the
parameters made above, for the negative curvature we
get a new pair of Milne-like critical points E± at

{ΩH ,Ω∂P } = {± 1√
2
,−(1 + 2α)} . (39)

In the invariant subset {ΩH ,Ω∂P } critical point E+ has
eigenvalues

{λE+

i } = {
√

2, 3
√

2α}, (40)

while critical point E− has eigenvalues

{λE+

i } = {
√

2, 3
√

2α}, (41)
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which shows that points E± represent saddle points in
the range −1 < α < 0. The critical points C± lie at

{ΩH ,Ω∂P } = {±1, 1} . (42)

Points C± describe cases of stiff matter dominated uni-

verse, in which the scale factor evolves as a ∼ t
1
3 and the

cosmological parameter q = 2. Point C+ (ΩH = 1) has
eigenvalues

{λC+

i } = {4, −6α} , (43)

while C− (ΩH = −1) has eigenvalues

{λC−
i } = {−4, 6α} . (44)

Note that points C± lie on the invariant subset Ω∂P = 1.
All the aforementioned critical points along with their
stability are summarized in Table I.

In Figs. 3 and 4 we show these critical points for the
cases k ≥ 0 and k ≤ 0 respectively where the free pa-
rameter α = −0.1. The variable space for k ≥ 0, i.e.
Fig. 3, is divided into four subregions from the respec-
tive separatrices. All four can transiently pass through
a static phase in case they approach point B. The right
subregion starts from the stiff matter era C+ expanding
exponentially towards the de Sitter point A+. The left
subregion describes cosmologies starting from the con-
tracting Anti-de Sitter point A− and collapsing to the
future stiff matter attractor C−. The upper subregion
describes recollapsing scenarios starting from the expand-
ing stiff point C+ and ending at the stiff point C−. The
lower subregion is describing bouncing models from the
contracting de sitter A−, to the expanding de Sitter A+.
On the other hand, the variable space for k ≤ 0 is di-
vided into two subregions since 1

2 ≤ Ω2
H ≤ 1. The right

subregion describes models starting from the stiff mat-
ter source C+, which expand towards the de Sitter point
attractor A+. Whereas, the left subregion describes sce-
narios starting from contracting de Sitter, point A−, and
eventually collapsing to the stiff mater point attractor
C−. Note that the variable spaces depicted in Figs. 3
and 4 depend only on the free parameter α and they just
rescale accordingly. Namely, changing the value of α in
the interval −1 < α < 0, changes the coordinate Ω∂P

of points A± in the interval [−1, 1] (alongside with the
invariant subset Ω∂P = −(1 + 2α)) and B in the interval
[−1/3, 1].

The setup −1 < α < 0 has also the following conse-
quences:

• For the positive curvature, by combining the lim-
its imposed on Ω∂P by the invariant subsets, the
Friedmann constraint (13) and the constraint (35),
we have

−3 ≤ ΩP ≤ 3 . (45)

• For the negative curvature, Friedmann constraint
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FIG. 3: Invariant subset of the system studied in
Sec. 5.1 for non-negative curvature with α = −0.1 . The

green shaded area denotes the phase of accelerated
expansion q < 0 and the orange thick lines indicate the

separatrices.

TABLE I: The critical points of the system described in
Sec. 5.1 on the {ΩH , Ω∂P } plane and their stability for

−1 < α < 0 and non-negative curvature.

point ΩH Ω∂P stability curvature

A+ 1 −(1 + 2α) sink flat

A− −1 −(1 + 2α) source flat

B 0 −1 + 4α

3
saddle positive

C+ 1 1 source flat

C− −1 1 sink flat

D+
1√
2

1 saddle negative

D− − 1√
2

1 saddle negative

E+
1√
2

−(1 + 2α) saddle negative

E− − 1√
2
−(1 + 2α) saddle negative

together with constraint (35) and the limits im-
posed on Ω∂P by the invariant subsets, lead to

(
−3 Ω ≤ ΩP ≤ 3 Ω

0 ≤ Ω ≤ 1
(46)

By substituting Eq. (33) with P? = 0 into the continu-
ity equation (3) we can calculate the scale factor in terms
of as follows (taking into account that −1 < α < 0)

a = a0




2 − ?

0

|α|

2 − ?
|α|




1
6|α|

0
1/6

. (47)
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FIG. 4: Invariant subset of the system studied in
Sec. 5.1 with α = −0.1 for non-positive curvature. The

blue shaded area is the region excluded by our
assumption that Ω > 0. The green shaded region is the

part of the variable space where we have accelerating
universe.

B

ϵd
ϵ

a

FIG. 5: Behaviour of the scale factor as a function of
energy density as given by Eq. (47). The orange line is

the value = 2−
1

|α|
? where the scale factor diverges.

From Eq. (47) and Eq. (31) we can explain the behaviour
of the scale factor in the different subregions of Fig. 3 and
Fig. 4, with the aid of Fig. 5. Points C± correspond to
→ ∞ where the scale factor a → 0. On the other

hand, A± are points in which → 2−
1

|α|
? ≡ d and

the scale factor diverges. The latter actually happens
when the EoS intersects P = − . Point B corresponds

to B = (3/4)
1

|α|
? which has a finite scale factor value.

In the right subregion of Fig. 3 the scale factor evolves

from a = 0 at = ∞ to the point = 2−
1

|α|
? where the

scale factor diverges. The left subregion has the oppo-
site behaviour, namely the scale factor starts from infi-
nite value and decreases to zero. In the upper subregion
the scale factor starts from zero, increases and then de-
creases to zero again. The maximum value it can attain is

max > B . In the lower subregion, the scale factor starts
from infinity, decreases and then increases again to infin-
ity. The minimum value it can attain is min < B . The
behaviour of the scale factor in the left and right subre-
gions of Fig. 4 are analogous to the behaviour in the left
and right subregions of Fig. 3 respectively.

When α > − 1
2 , then d < e and Ω∂P can attain nega-

tive values. For α = −1/2 the energy density of the scale
factor divergence coincides with the EoS’s minimum, i.e

d = e and this happens when Ω∂P = 0. For α < − 1
2 ,

Ω∂P > 0.

5.2. The quadratic EoS

In [18–22] the quadratic EoS

P =
δ

c

2 + σ + P?, (48)

was studied thoroughly. Here we compare the results of
[21] with our formalism, by adopting their reasoning by
viewing the EoS (48) as a Taylor expansion of an un-
known barotropic EoS around = 0 without necessarily
demanding that P? = 0. From Eq. (48) we can write

Ω∂P = 2
δ

c
+ σ, (49)

ΩP =
3

2
Ω (Ω∂P + σ) + ΩP?

(50)

and derive the Γ function in our variables as follows

Γ = Ω∂P − σ, (51)

which shows that the quadratic EoS brings a Γ which is
linear in Ω∂P . In order to analyze the behaviour of the
quadratic EoS we split it into the three cases as done in
[21].
a. δ = 0 the linear EoS. In this case, since Ω∂P = σ

is a constant, the system is similar to the cases analyzed
in Sec. 4.
b. P? = 0. This amounts to assuming that the pres-

sure tends to zero along with the energy density. Thus,
Eq. (50) provides the constraint

ΩP =
3

2
Ω (Ω∂P + σ) . (52)

Similarly to the example given in Sec. 5.1 this constraint
reduces the system to two dimensions. Therefore, the
critical points A± lie at

{ΩH ,Ω∂P } = {±1,−(2 + σ)}. (53)
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FIG. 6: Invariant subsets {ΩH , X∂P } for the quadratic EoS with P? = 0 in the case of positive spatial curvature (left
panel) and negative spatial curvature (right panel) when ζ = 0.2 and σ = 1. The orange thick lines are the

separatrices of the system and the green shaded regions denote the part of the variable space where the universe is
accelerating.
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FIG. 7: Invariant subsets {ΩH , X∂P } for the quadratic EoS with P? = 0 in the case of positive spatial curvature (left
panel) and negative spatial curvature (right panel) when ζ = 0.2 and σ = −0.5. The orange thick lines are the

separatrices of the system and the green shaded regions denote the part of the variable space where the universe is
accelerating.

The critical point B is located at

{ΩH ,Ω∂P } = {0,− 2

3
+ σ }. (54)

Critical points C± are located at

{ΩH ,Ω∂P } = {±1, σ}. (55)

Critical lines D± are located at

{ΩH ,Ω∂P } = {± 1√
2
, σ}. (56)

There is also a pair of Milne-like critical points E± for
negative curvature at

{ΩH ,Ω∂P } = {± 1√
2
,−(2 + σ)}. (57)
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FIG. 8: Invariant subsets {ΩH , X∂P } for the quadratic EoS with P? = 0 in the case of positive spatial curvature (left
panel) and negative spatial curvature (right panel) when ζ = 0.2 and σ = −2. The orange thick lines are the

separatrices of the system and the green shaded regions denote the part of the variable space where the universe is
accelerating.

As in Sec. 4 in order to compactify the variable space we
use the transformation

X∂P =
ζΩ∂Pp

1 + ζ2Ω2
∂P

∈ [−1, 1]. (58)

The evolution equation for X∂P becomes

X
0
∂P =

3 ΩH

2 ξ

q
1 −X2

∂P×

σ ξ2 (σ + 2) (1 −X2
∂P ) + X∂P 1 + 2 ξ

q
1 −X2

∂P

(59)

and it holds for both curvatures.
Once we have compactified the variable space two more

pairs of critical points appear for the flat case, while two
Milne-like pairs of critical points appear for the nega-
tive curvature. In particular, I± appear at {ΩH ,Ω∂P } =
{±1,+∞}, F± appear at {ΩH ,Ω∂P } = {±1,−∞}, G±
appear at {ΩH ,Ω∂P } = {± 1√

2
,+∞}, while H± appear

at {ΩH ,Ω∂P } = {± 1√
2
,−∞}.

In Figs. 6- 8 the variable spaces {ΩH , X∂P } for different
ranges of σ are plotted. These variable spaces are divided
into two main subregions depending on the sign of δ: the
subregions above the separatrices connecting points C±
correspond to an EoS with δ = +1 and the rest of variable
space describes the case δ = −1.

For comparing our analysis to the one in [21] let’s de-

note X̃∂P = X∂P (Ω∂P = σ) by using Eq. (58). Figs. 4

and 7 of [21] correspond to X∂P > X̃∂P and X∂P < X̃∂P

in our Fig. 6 respectively. Figs. 3 and 6 of [21] correspond

TABLE II: Quadratic EoS: number of critical points
appearing on the invariant subsets for different ranges

of the parameters with P? = 0. C± exist for any
parameter ranges and curvature, while points D± exist
for any parameter ranges for negative curvature. The

points at infinity are not included.

δ σ A+ A− B E+ E− Figure

− 1
3
< σ 0 0 0 0 0 Fig.6

+1 −1 < σ < − 1
3

0 0 1 0 0 Fig.7

σ < −1 1 1 1 1 1 Fig.8

− 1
3
< σ 1 1 1 1 1 Fig.6

−1 −1 < σ < − 1
3

1 1 0 1 1 Fig.7

σ < −1 0 0 0 0 0 Fig.8

to X∂P > X̃∂P and X∂P < X̃∂P in our Fig. 7 respec-
tively. Figs.1 and 5 of [21] correspond to X∂P > X̃∂P

and X∂P < X̃∂P in our Fig. 8 respectively. When
X∂P = X̃∂P , Eq. (49) implies either = 0 or δ = 0.
However, due to the Friedmann constraint is in general
different from zero; hence we have δ = 0, which is case
a. above.

The points A±, B, I± and F± were identified also in
[21]. Additionally, we find a pair of fluid-dominated mod-
els (C±) and two pairs of Milne-like solutions for negative
curvature (D± and E±). Moreover, through compactifi-
cation we are able to identify the critical points G± and
H± at infinity. On the other hand, contrary to [21], in
our setting we cannot identify a critical element corre-
sponding to Minkowski spactime.
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c. Generic quadratic EoS. We can write P? as

P? = ∆
c

4 δ
(σ − ξ)2, (60)

where ξ ∈ {−∞,+∞} and ∆ = −δ sgn(σ−ξ). Writing it
in terms of our dimensionless variables by using Eq. (49)
we get

ΩP?
=

3

2
∆ Ω

(σ − ξ)2

Ω∂P − σ
. (61)

By combining Eqs. (60) and (61) along with our assump-
tion Ω > 0, we get the following constraints on the al-
lowed values of Ω∂P for σ 6= ξ:

if δ > 0 ⇒ Ω∂P > σ (62)

if δ < 0 ⇒ Ω∂P < σ (63)

In the case σ = ξ, then P∗ = 0 and we reduce to the
previous case.

By combining Eqs. (61) and (50) we get the constraint

ΩP =
3

2

Ω

Ω∂P − σ
Ω2

∂P − σ2 + ∆ (σ − ξ)2 , (64)

which together with Friedmann constraints (13) or (15)
reduce the system to two dimensions, namely the remain-
ing dynamical variables are Ω∂P and ΩH .

Note that for Ω∂P = σ, Eq. (61) becomes singular:
however, this singularity does not affect the evolution
equation (12), since the denominator is cancelled by the
Γ given by Eq. (51). Actually, Ω∂P = σ is the intersection
line between the plane {Ω∂P ,ΩH} and the case a. above.

The critical points discussed in Secs. 3 and 4 are now
the following:

• the critical points A± are located at

{ΩH ,Ω∂P } = {±1,−1 ±
p

1 − σ (2 − σ) − ∆ (σ − ξ)2 };
(65)

• the critical point B is located at

{ΩH ,Ω∂P } = {0,−1

3
±
r

1

9
+ σ (

2

3
+ σ) − ∆ (σ − ξ)2 };

(66)

• the critical points C± are located at

{ΩH ,Ω∂P } = {±1, σ}; (67)

• the critical points D± are located at

{ΩH ,Ω∂P } = {± 1√
2
, σ}; (68)

The additional Milne-like critical points E± are located
at

{ΩH ,Ω∂P } = {± 1√
2
,−1±

p
1 − σ (2 − σ) − ∆ (σ − ξ)2 }.

(69)
In appendix B we show representative cases which are

summarized in Table 3. The comparison of the number of
critical points between our study and the analysis of [21]
for this generic case follows the same lines as in paragraph
b.

6. CONCLUSIONS

This work introduces a framework to analyze dynam-
ically systems of barotropic fluids with non-negative en-
ergy density in spatially curved FRW spacetimes in
absence of the cosmological constant. First we have
introduced the new variables and the new evolution
parametrization of this framework along with the func-
tion Γ, which includes all the information about the EoS.
In this general setup we have identified three critical lines:

• two de Sitter for spatially flat FRW,

• one static universe for non-negative curvatures,

that are independent of the EoS. The stability of these
lines depends on the value of the variable Ω∂P along the
lines themselves. Then we have discussed general features
of the function Γ:

• we have shown that Γ = Γ Ω∂P ,
ΩP

Ω ;

• we have shown that the roots of Γ are stationary
points in time and in the case Γ = Γ(Ω∂P ) they
define invariant subsets;

• we have studied these invariant subsets in the case
that there is a single root Ω̃∂P and have found that:

– there is a pair of new critical points corre-
sponding to one-fluid flat universe, whose sta-
bility depends on Ω̃∂P ,

– there is a pair of Milne critical points for non-
positive curvature, whose stability depends on
Ω̃∂P .

In the second part of the work we have provided two
examples of how the framework we have introduced can
be used.

• In the first example we have taken a function of Γ
linear in Ω∂P with two free parameters and through
physically motivated arguments, like causality, we
have trimmed the Γ model to a one parameter
model with specific value interval. The resulting
EoS represents a linear superposition of an exotic
fluid with stiff matter. The stiff matter part of EoS
dominates for large energy densities, while for low
energy densities the exotic fluid part takes over.
In this example apart from the dynamical elements
identified in the general setup, a new invariant sub-
set and a new pair of critical points exist. The new
pair corresponds to Milne-like models. Regarding
the invariant subsets, the one coming from the gen-
eral analysis confines our model to obey causality,
while the new one does not allow the EoS to cross
the P = − line.

• In the second example we have applied our frame-
work to the quadratic EoS studied in [21] and made
the comparison with that study. We have identified
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TABLE III: Quadratic EoS: number of critical points appearing on the invariant subsets for different ranges of the
parameters with P? 6= 0. C± exist for any parameter ranges and curvature, while points D± exist for any parameter

ranges for negative curvature. The points at infinity are not included.

δ σ P? ξ ΩP? A+ A− B E+ E− Figure
c(1+3σ)2

36 δ
< P? − 1

3
< ξ 1

6
Ω (1+3σ)2

Ω∂P−σ
< ΩP? 0 0 0 0 0 Fig.9

P? = c(1+3σ)2

36 δ
ξ = − 1

3
ΩP? = 1

6
Ω (1+3σ)2

Ω∂P−σ
0 0 1 0 0 Fig.10

σ < −1 c(1+σ)2

4 δ
< P? < c(1+3σ)2

36 δ
−1 < ξ < − 1

3
3
2
Ω (1+σ)2

Ω∂P−σ
< ΩP? <

1
6
Ω (1+3σ)2

Ω∂P−σ
0 0 2 0 0 Fig.11

P? = c(1+σ)2

4 δ
ξ = −1 ΩP? = 3

2
Ω (1+σ)2

Ω∂P−σ
1 1 2 1 1 Fig.12

0 < P? < c(1+σ)2

4 δ
σ < ξ < −1 0 < ΩP? <

3
2
Ω (1+σ)2

Ω∂P−σ
2 2 2 2 2 Fig.13

+1 P? < 0 ξ < σ ΩP? < 0 1 1 1 1 1 Fig.14
c(1+3σ)2

36 δ
< P? − 1

3
< ξ 1

6
Ω (1+3σ)2

Ω∂P−σ
< ΩP? 0 0 0 0 0 Fig.9

−1 < σ < − 1
3

P? = c(1+3σ)2

36 δ
ξ = − 1

3
ΩP? = 1

6
Ω (1+3σ)2

Ω∂P−σ
0 0 1 0 0 Fig.10

0 < P? < c(1+3σ)2

36 δ
σ < ξ < − 1

3
0 < ΩP? <

1
6
Ω (1+3σ)2

Ω∂P−σ
0 0 2 0 0 Fig.11

P? < 0 ξ < σ ΩP? < 0 1 1 1 1 1 Fig.14

− 1
3
< σ 0 < P? σ < ξ 0 < ΩP? 0 0 0 0 0 Fig.9

P? < 0 ξ < σ ΩP? < 0 1 1 1 1 1 Fig.14

σ < −1 0 < P? σ < ξ 0 < ΩP? 1 1 1 1 1 Fig.15

P? < 0 ξ < σ ΩP? < 0 0 0 0 0 0 Fig.20

0 < P? σ < ξ 0 < ΩP? 1 1 1 1 1 Fig.15

−1 < σ < − 1
3

c(1+σ)2

4 δ
< P? < 0 −1 < ξ < σ 3

2
Ω (1+σ)2

Ω∂P−σ
< ΩP? < 0 2 2 0 2 2 Fig.18

P? = c(1+σ)2

4 δ
ξ = −1 ΩP? = 3

2
Ω (1+σ)2

Ω∂P−σ
1 1 0 1 1 Fig.19

-1 P? < c(1+σ)2

4 δ
ξ < −1 ΩP? <

3
2
Ω (1+σ)2

Ω∂P−σ
0 0 0 0 0 Fig.20

0 < P? σ < ξ 0 < ΩP? 1 1 1 1 1 Fig.15
c(1+3σ)2

36 δ
< P? < 0 − 1

3
< ξ < σ 1

6
Ω (1+3σ)2

Ω∂P−σ
< ΩP? < 0 2 2 2 2 2 Fig.16

− 1
3
< σ P? = c(1+3σ)2

36 δ
ξ = − 1

3
ΩP? = 1

6
Ω (1+3σ)2

Ω∂P−σ
2 2 1 2 2 Fig.17

c(1+σ)2

4δ
< P? < c(1+3σ)2

36 δ
−1 < ξ < − 1

3
3
2
Ω (1+σ)2

Ω∂P−σ
< ΩP? <

1
6
Ω (1+3σ)2

Ω∂P−σ
2 2 0 2 2 Fig.18

P? = c(1+σ)2

4δ
ξ = −1 ΩP? = 3

2
Ω (1+σ)2

Ω∂P−σ
1 1 0 1 1 Fig.19

P? < c(1+σ)2

4δ
ξ < −1 ΩP? <

3
2
Ω (1+σ)2

Ω∂P−σ
0 0 0 0 0 Fig.20

all the critical points found in [21], except from a
critical point describing the Minkowski spactime,
and additionally we have found

– a pair of fluid-dominated models for the flat
case,

– two pairs of Milne-like solutions for negative
curvature,

– two pairs of critical points with Milne-like be-
havior at Ω∂P → ±∞.
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Appendix A: Function Γ linear in ΩP
Ω

.

The linear Γ function Eq. (29) can be written also in
terms of the dimensionless combination ΩP

Ω . By solving

Eq. (32) in term of Ω∂P

Ω∂P =
1 + α

3

ΩP − ΩP?

Ω
+ β, (A1)

and then substituting it into the Eq. (29) we get

Γ = α̂
Ω̂P

Ω
+ β̂, (A2)

where α̂ =
α (α + 1)

3
, β̂ = β (α + 1) and

Ω̂P = ΩP − ΩP?
=

P − P?

D2
.

In the case that P? = 0, Γ is just a linear function of ΩP

Ω .

Appendix B: Invariant subsets for quadratic EoS

In Figs. 9-20 we compare the results of our analysis
in different parameter cases with respect to the ones ob-
tained in [21]. Parameter cases that are topologically
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analogous are represented by a single figure for each case
– see Table III and the captions of the respective figures

for details.
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FIG. 9: Invariant subsets {ΩH , X∂P } for the quadratic EoS with P? 6= 0. The right panel corresponds to the positive
spatial curvature and the left panel corresponds to the negative spatial curvature case. Invariant subsets are plotted

for the parameters δ = 1, σ = −4, ξ = 1 and ζ = 0.1 (these figures are topologically similar to the cases with
parameters δ = 1, −1 < σ < − 1

3 , − 1
3 < ξ and also δ = 1, − 1

3 < σ, σ < ξ). The orange thick lines are the separatrices
of the system, the blue region corresponds to Ω < 0. This figure corresponds to Fig. 10 in [21].
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FIG. 10: Invariant subsets {ΩH , X∂P } for the quadratic EoS with P? 6= 0. The right panel corresponds to the
positive spatial curvature and the left panel corresponds to the negative spatial curvature case. The invariant

subsets are plotted for the parameters δ = 1, σ = −4, ξ = − 1
3 and ζ = 0.1 (these figures are topologically similar to

the case with parameters δ = 1, −1 < σ < − 1
3 and ξ = − 1

3 ). The orange thick lines are the separatrices of the
system, the blue region corresponds to Ω < 0. This figure corresponds to Fig. 14 in [21].
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FIG. 11: Invariant subsets {ΩH , X∂P } for the quadratic EoS with P? 6= 0. The right panel corresponds to the
positive spatial curvature and the left panel corresponds to the negative spatial curvature case. The invariant

subsets are plotted for the parameters δ = 1, σ = −4, ξ = −0.5 and ζ = 0.1 (these figures are topologically similar to
the case with parameters δ = 1, −1 < σ < − 1

3 , σ < ξ < − 1
3 ). The orange thick lines are the separatrices of the

system, the blue region corresponds to Ω < 0 and the green shaded region corresponds to accelerated dynamics.
This figure corresponds to Fig. 15 in [21].
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FIG. 12: Invariant subsets {ΩH , X∂P } for the quadratic EoS with P? 6= 0. The right panel corresponds to the
positive spatial curvature and the left panel corresponds to the negative spatial curvature case. The invariant

subsets are plotted for the parameters δ = 1, σ = −4, ξ = −1 and ζ = 0.1. The orange thick lines are the
separatrices of the system, the blue region corresponds to Ω < 0 and the green shaded region corresponds to

accelerated dynamics. This figure corresponds to Fig. 16 in [21].
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FIG. 13: Invariant subsets {ΩH , X∂P } for the quadratic EoS with P? 6= 0. The right panel corresponds to the
positive spatial curvature and the left panel corresponds to the negative spatial curvature case. The invariant

subsets are plotted for the parameters δ = 1, σ = −4, ξ = −1.5 and ζ = 0.1. The orange thick lines are the
separatrices of the system, the blue region corresponds to Ω < 0 and the green shaded region corresponds to

accelerated dynamics. This figure corresponds to Fig. 17 in [21].
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FIG. 14: Invariant subsets {ΩH , X∂P } for the quadratic EoS with P? 6= 0. The right panel corresponds to the
positive spatial curvature and the left panel corresponds to the negative spatial curvature case. The invariant

subsets are plotted for the parameters δ = 1, σ = −4, ξ = −8 and ζ = 0.1 (these figures are topologically similar to
the cases with parameters δ = 1, −1 < σ < − 1

3 , ξ < σ and also δ = 1, − 1
3 < σ, ξ < σ). The orange thick lines are

the separatrices of the system, the blue region corresponds to Ω < 0 and the green shaded region corresponds to
accelerated dynamics. This figure corresponds to Fig. 13 in [21].
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FIG. 15: Invariant subsets {ΩH , X∂P } for the quadratic EoS with P? 6= 0. The right panel corresponds to the
positive spatial curvature and the left panel corresponds to the negative spatial curvature case. The invariant

subsets are plotted for the parameters δ = −1, σ = 1, ξ = 3 and ζ = 0.2 (these figures are topologically similar to
the cases with parameters δ = −1, σ < −1, σ < ξ and also δ = −1, −1 < σ < − 1

3 , σ < ξ). The orange thick lines are
the separatrices of the system, the blue region corresponds to Ω < 0 and the green shaded region corresponds to

accelerated dynamics. This figure corresponds to Fig. 8 in [21].
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system, the blue region corresponds to Ω < 0 and the green shaded region corresponds to accelerated dynamics the

blue regions are not covered by the analysis. This figure corresponds to Fig. 18 in [21].
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FIG. 17: Invariant subsets {ΩH , X∂P } for quadratic EoS with P? 6= 0. The right panel corresponds to the positive
spatial curvature and the left panel corresponds to the negative spatial curvature case. Invariant subsets are plotted
for the parameters δ = −1, σ = 1, ξ = − 1

3 and ζ = 0.2. The orange thick lines are the separatrices of the system, the
blue region corresponds to Ω < 0 and the green shaded region corresponds to accelerated dynamics. This figure

corresponds to Fig. 19 in [21].
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FIG. 18: Invariant subsets {ΩH , X∂P } for the quadratic EoS with P? 6= 0. The right panel corresponds to the
positive spatial curvature and the left panel corresponds to the negative spatial curvature case. Invariant subsets are
plotted for the parameters δ = −1, σ = 1, ξ = −0.5 and ζ = 0.2 (these figures are topologically similar to the case

with parameters δ = −1, −1 < σ < − 1
3 , −1 < ξ < σ). The orange thick lines are the separatrices of the system, the

blue region corresponds to Ω < 0 and the green shaded region corresponds to accelerated dynamics. This figure
corresponds to Fig. 20 in [21].
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FIG. 19: Invariant subsets {ΩH , X∂P } for the quadratic EoS with P? 6= 0. The right panel corresponds to the
positive spatial curvature and the left panel corresponds to the negative spatial curvature case. The invariant

subsets are plotted for the parameters δ = −1, σ = 1, ξ = −1 and ζ = 0.2 (these figures are topologically similar to
the case with parameters δ = −1, −1 < σ < − 1

3 , ξ = −1). The orange thick lines are the separatrices of the system,
the blue region corresponds to Ω < 0 and the green shaded region corresponds to accelerated dynamics. This figure

corresponds to Fig. 21 in [21].
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FIG. 20: Invariant subsets {ΩH , X∂P } for the quadratic EoS with P? 6= 0. The right panel corresponds to the
positive spatial curvature and the left panel corresponds to the negative spatial curvature case. The invariant

subsets are plotted for the parameters δ = −1, σ = 1, ξ = −2 and ζ = 0.2 (these figures are topologically similar to
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corresponds to accelerated dynamics. This figure corresponds to Fig. 11 in [21].
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6. Dynamics of non-minimally
coupled scalar field
This chapter is based on the paper Kerachian et al. [2019] ” Classes of non-
minimally coupled scalar fields in spatially curved FRW spacetimes”, published
in Physical Review D. Here, we presented the version from arXiv.

In the first part of this paper, we analyzed the dynamics of a non-minimal
coupled scalar field, with an unspecified positive potential, in spatially curved
FRW spacetime. As we have seen from previous chapters, the first step to start
analyzing the dynamics of a cosmological model is to determine the dimensionless
variables. However, defining the dimensionless variables for complicated cases,
such as non-minimal coupling scalar field, requires more attention than the pre-
vious cases studied in Chapters 4 and 5.

In Sec. 1.7, we derived the Friedmann equation for a non-minimal coupling
scalar field in Eq.(1.78). This equation together with equation (1.81), will be

3
(︄
H2 + k

a2

)︄ (︂
1 − ξ ψ2

)︂
= 6 ξ H ψ ψ̇ + 1

2 ψ̇
2 + V (ψ). (6.1)

In the previous cases, we divide the Friedmann equation by 3H2 for the minimal
coupling, and 3(H2+ | k | /a2) for barotropic the fluid; however, here if we divide
the Friedmann equation by 3(H2+ | k | /a2)(1 − ξψ2), we would not get the
suitable dimensionless variables. The problem comes from the fact that, by doing
this, we came to the dimensionless variables which are mixture of spacetime ele-
ments and scalar field. Therefore, we transformed the Friedmann equation (6.1)
for positive spatial curvature into the form

3
(︄
H2 + k

a2

)︄ (︂
1 + ξ ψ2

)︂
= 6 ξ ψ2 k

a2 + 3 ξ
[︃
2ψ2 H2 + 2H ψ ψ̇ + 1

2 ψ̇
2
]︃

+1
2 (1 − 3 ξ) ψ̇2 + V (ψ), (6.2)

at this point, we can divide both sides by 3
(︂
H2 + k

a2

)︂
(1 + ξ ψ2) to get

1 = 2ξ ( ψ√
1 + ξ ψ2 )2 k/a

2

D2

+3 ξ
⎡⎣2

3 ( ψ√
1 + ξ ψ2 )2(H

D
)2 + 2

√︄
2
3

ψ√
1 + ξ ψ2

H

D
+ ( ψ̇√

6D
√

1 + ξ ψ2
)2

⎤⎦
+(1 − 3 ξ) ψ̇

6D2 (1 + ξ ψ2) + V

3D2 (1 + ξ ψ2) , (6.3)

where D =
√︂
H2+ | k | /a2. Thus, from the former equation, it is easy to de-

termine the well-defined dimensionless variables ( see Kerachian et al. [2019]).
By substituting those variables into the Friedmann equation (6.3), after some
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manipulations we obtain

1 = 2 ξ Ω2
(︂
1 − Ω2

H

)︂
+ 3 ξ

⎛⎝√︄2
3 ΩH Ω + Ωψ

√︂
1 − ξ Ω2

⎞⎠2

+ (1 − 3 ξ) Ω2
ψ

(︂
1 − ξ Ω2

)︂
+ Ω2

V

(︂
1 − ξ Ω2

)︂
. (6.4)

In a similar way, one can determine the Friedmann equation for the negative
spatial curvature.

From this procedure, one can define the well-defined dimensionless variables,
namely all the dimensionless variables are only a function of either spacetime
elements or scalar field divided by the normalization f(D).

From the dynamical variables we determined the autonomous system and
from that, the critical points of this systems were derived together with their
cosmological interpretation. For this general setup, we identified the following
critical points/ lines/ planes of the system:

• two de Sitter critical points for the case k = 0,

• two de Sitter critical lines for the case k = 0,

• two radiation-like critical lines for the case k = 0,

• two Milne-like critical planes for the case k < 0.

In the second part of this work, we analyzed the specific potentials, namely
the exponential potentials, the runaway potentials, and potentials with positive
powers of the field.
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In this work we perform a dynamical analysis of a broad class of non-minimally coupled real
scalar fields in the Friedmann-Robertson-Walker (FRW) spacetime framework. The first part of
our study concerns the dynamics of an unspecified positive potential in a spatially curved FRW
spacetime, for which we define a new set of dimensionless variables and a new evolution parameter.
In the framework of this general setup we have recognized several general features of the system,
like symmetries, invariant subsets and critical points, and provide their cosmological interpretation.
The second part of our work focuses on flat FRW cases for which the tracker parameter is constant,
i.e. we examine specific classes of potentials. After analyzing these cases dynamically, we discuss
their physical interpretation.

PACS numbers:
Keywords: Gravitation, Cosmology; Dynamical systems

1. INTRODUCTION

The importance of scalar fields in cosmological frame-
works is manifold. In the context of inflation [1–4], for
instance, field theories have been proposed which could
appropriately explain the observational evidence of large-
scale homogeneity and flatness of the Universe, together
with several other features (the graceful exit from infla-
tion itself [5] and the subsequent reheating [6]). While
the specific mechanism giving rise to such inflaton field
is still debated, several forms of potentials that are able
to trigger a transient phase of exponential expansion of
the Universe have been proposed, see e.g. [7, 8]. Scalar
fields play a major role as well in the description of the
present-day accelerated expansion of the Universe [9]: the
simplest and most effective model available, the ΛCDM ,
considers a constant potential, but the origin of such cos-
mological constant is purely phenomenological and can-
not be physically motivated in the context of GR and
quantum field theory yet; however, other potential forms
[10, 11] are also able to provide the necessary slow-rolling
dynamic of the field, which is necessary for achieving a
sufficiently negative pressure and consequently an accel-
eration of the scale factor’s expansion.

In a Lagrangian formulation of a gravitating scalar
field, the simplest choice is to ignore any direct coupling
between the field and the Ricci curvature, i.e. to consider
the so-called minimal coupling. However, the inclusion of
coupling terms involving products of the Ricci scalar with
the field (or its derivatives [12–14]) can be motivated in
different contexts: they can arise from quantum correc-
tions to the field in curved metrics [15, 16] or as low-

∗Electronic address: kerachian.morteza@gmail.com
†Electronic address: gioacqua@gmail.com
‡Electronic address: gglukes@gmail.com

energy limits of superstring theories or in induced grav-
ity [17, 18]; moreover, a non-minimal coupling can render
the Higgs field a good candidate for inflation [19], hence
giving a cosmological status to the recently-discovered
particle [20]. On a more fundamental level, requiring a
non-minimal coupling is actually necessary in order to
avoid causal pathologies in the propagation of the fields
in generic curved backgrounds [21]. Several authors have
analysed the repercussions of non-minimal couplings on
the cosmological dynamics [22–31],

In the present paper we perform a global analysis of
models in which a curved Friedmann-Robertson-Walker
background is non-minimally coupled to a scalar field
with generic potential. A similar analysis in the context
of dynamical systems has been performed in [28] with the
additional presence of matter. Our goal here is to present
an alternative formulation which allows for several im-
provements in the aforementioned analysis. Namely we
consider a generic spatially curved FRW model and we
include in the analysis the collapsing scenarios as well.
In Sec. 2 we provide definitions of dimensionless variables
that render the invariant subsets compact in a physically
relevant range of the coupling parameter ξ, without the
need of further compactification through an additional
change of variables. In Sec.3 we perform an initial anal-
ysis keeping the potential of the field completely unspec-
ified (apart from its positivity): this approach covers a
class of potentials broader than the ones in [28]. Under
our general assumptions we derive the existence, stabil-
ity and cosmological meaning of the critical points of the
system. It is known that the system cannot be closed
without specifying the functional form of the potential:
in Sec.4 we briefly review the case of exponential poten-
tials and then introduce the analysis of the wide class
of potentials characterised by a constant tracker param-
eter Γ. In the latter case, we show that the models with
Γ ≥ const > 1 and constant always posses de Sitter at-
tractors, irrespective of the value of the other parameters
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involved.
We start by considering the effective Lagrangian de-

scribing a scalar field ψ with generic potential V (ψ) and
non-minimally coupled to a FRW background spacetime:

L = 6 ȧ2 − k aU(ψ)+6 ȧ a2 ψ̇ U 0(ψ)−1

2
a3 ψ̇2+a3 V (ψ),

(1)
where dot and prime denote derivatives w.r.t. the cos-
mic time and the scalar field respectively. The function
U(ψ) specifies the type of coupling considered: minimal
coupling corresponds to a constant U = 1/2, while in the
following we will consider the quadratic form

U =
1

2
1 − ξ ψ2 , (2)

with ξ ≥ 0. The case ξ = 1/6 corresponds to the confor-
mal coupling. With the choice Eq. (2), we can explicitly
calculate the momenta conjugate to the generalized co-
ordinates {a, ψ}, namely

pa ≡ ∂L

∂ȧ
= 6 ȧ a 1 − ξ ψ2 − 6 ξ a2 ψ ψ̇ (3)

pψ ≡ ∂L

∂ψ̇
= −6 ξ a2 ȧ ψ − a3 ψ̇ , (4)

and hence the Hamiltonian function

H ≡ pa ȧ+ pψ ψ̇ − L (5)

The Hamiltonian constraint is expressed by the condition
H = 0 and it corresponds to Friedmann equation

3 H2 +
k

a2
1 − ξ ψ2 = 6 ξ H ψ ψ̇ +

1

2
ψ̇2 + V (ψ) ,

(6)
where H = ȧ/a is the FRW Hubble expansion. The
Hamilton-Jacobi equations,

ṗa =
∂L

∂a
, ṗψ =

∂L

∂ψ
, (7)

correspond, respectively, to Raychaudhuri and Klein-
Gordon equations:

2 Ḣ + 3H2 +
k

a2
1 − ξ ψ2 − 4 ξ H ψ ψ̇ − 2 ξ ψ ψ̈ =

− (1 − 4 ξ)
1

2
ψ̇2 + V (ψ) (8)

ψ̈ + 3H ψ̇ + ∂ψV + 6 ξ ψ Ḣ + 2H2 +
k

a2
= 0 . (9)

2. THE SYSTEM IN A NEW SET OF
VARIABLES

In the minimally coupled case one can clearly distin-
guish two behaviours of the dynamics depending on the
sign of the spatial curvature: specifically, if k > 0 the

expansion scalar can change sign during the evolution,
leading to bounces or recollapses, while if k ≤ 0 the solu-
tions are either always expanding or always contracting.
For this reason, in order to construct well-defined dimen-
sionless variables in the case of positive curvature, one
usually employs the normalization

p
H2 + k/a2 which is

positive definite and does not vanish at the turning points
of the scale factor. Introducing a nonminimal coupling
renders the former distinction meaningless, due to the
modifications of the Raychaudhuri equation which allow
for sign changes of H during the evolution irrespective of
the sign of k. Since now the evolution of the scale fac-
tor can present turning points in either curvature cases,
we define a set of dimensionless variables which is well-
defined for both:

Ω =
ψp

1 + ξ ψ2
, ΩH =

H

D
(10)

Ωψ =
ψ̇√
6D

, ΩV =

√
V√

3D
(11)

Ω∂V =
∂ψV

V
, Γ =

V · ∂2
ψV

(∂ψV )2
(12)

where

D2 = H2 +
|k|
a2

. (13)

A useful relation is the time evolution of D in terms of
the dimensionless variables:

Ḋ

D2
= ΩH

 
Ḣ

D2
+ Ω2

H − 1

!
. (14)

The Friedmann, Raychaudhuri and Klein-Gordon equa-
tions in terms of the normalized variables will take a dif-
ferent form depending on the sign of the spatial curvature
(see next subsections). It is however possible to derive
a common autonomous system of equations for the vari-
ables, with evolution parameter defined by dτ = Ddt, by
taking derivatives of the definitions with respect to such
parameter and using Eq. (14):

Ω0 =
√

6 Ωψ 1 − ξΩ2 3/2
(15)

Ω0
H = 1 − Ω2

H

 
Ḣ

D2
+ Ω2

H

!
(16)

Ω0
ψ =

ψ̈√
6D2

− Ωψ ΩH

 
Ḣ

D2
+ Ω2

H − 1

!
(17)

Ω0
V = ΩV

"r
3

2
Ω∂V Ωψ − ΩH

 
Ḣ

D2
+ Ω2

H − 1

!#

(18)

Ω0
∂V =

√
6 Ω2

∂V Ωψ (Γ − 1) , (19)

where Γ = V · ∂2
ψV/ (∂ψV )

2
is the so-called tracker pa-

rameter. The quantities Ḣ and ψ̈ are obtained by de-
coupling Eq. (8) and Eq. (9) and they determine dif-
ferent dynamics for the two curvature cases. For the
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generic non-minimally coupled cases the decoupling of
the Eqs. (8), (9) can be achieved by diagonalizing the
following linear system:

2(1 − ξψ2) −2ξψ
6ξψ 1

Ḣ

ψ̈
=

f1(Ωi)
f2(Ωi)

, (20)

where f1(Ωi) and f2(Ωi) include the terms which are not

linear in Ḣ and ψ̈ in Raychaudhuri and Klein-Gordon
equations respectively, with Ωi representing the set of
dimensionless variables. In order to diagonalize the ma-
trix in Eq. (20) its determinant should be non-zero, i.e.
ψ2 ξ (1 − 6ξ) 6= 1. The case ξ = 0 is trivial, while
the conformal coupling case ξ = 1/6, as we will see,
leads to a generic unboundedness of the invariant sub-
sets of the system. We will be mostly interested in the
range ξ ∈ (0, 1/6) for two reasons: first of all, the invari-
ant subsets of the system in this range of the parameter
are compact; moreover, in [32] the value of the coupling
constant has been constrained using observational data
from the Union2.1+H(z)+Alcock-Paczyński data set and
found to be in good accord with values around the con-
formally coupled case. In this sense we will scan the be-
haviour of the system inside the intersection between the
physically motivated and the mathematically convenient
range. The vanishing of the determinant for specific val-
ues of the field implies the appearance of singularities in
the system. Such anomalies are independent of the defi-
nition adopted for the dimensionless variables: different
definitions would simply move the singularities in differ-
ent parts of the parameter space. We point out that our
choice of dimensionless variables is particularly suitable
for the analysis of the late-time behaviour of the sys-
tem and for situations in which the scalar field diverges
ψ → ±∞, because the new variable Ω remains finite.

2.1. Positive curvature

When k > 0, the Friedmann equation can be expressed
in terms of the variables Eqs. (10)-(12) in the following
form:

1 = 2 ξΩ2 1 − Ω2
H + 3 ξ

 r
2

3
ΩH Ω + Ωψ

p
1 − ξΩ2

!2

+ (1 − 3 ξ) Ω2
ψ 1 − ξΩ2 + Ω2

V 1 − ξΩ2 (21)

Since from the definitions we have that Ω ∈
−1/

√
ξ, 1/

√
ξ and ΩH ∈ (−1, 1), the constraint

Eq. (21) defines a compact parameter space if ξ ∈ (0, 1/6)
(see discussion in Sec. 2.3 paragraph b). From Klein-

Gordon and Raychaudhuri equations we get

ψ̈√
6 D2

= −3 ΩH Ωψ −
r

3

2
Ω∂V Ω2

V

−
√

6 ξ Ωp
1 − ξ Ω2

 
Ḣ

D2
+ Ω2

H + 1

!
, (22)

Ḣ

D2
+ Ω2

H + 1 = − 1

1 − 2 ξ (1 − 3 ξ) Ω2

(
− 1

2
1 − 2 ξΩ2

+ ξΩ
p

1 − ξΩ2
√

6 ΩH Ωψ + 3 Ω∂V Ω2
V

+
3

2
1 − ξΩ2

h
(1 − 4 ξ) Ω2

ψ − Ω2
V

i)

(23)

2.2. Non-positive curvature

Applying the same definitions given by Eqs. (10)-(12)
to the case of non-positive spatial curvature k ≤ 0, one
can express the Friedmann constraint in the following
form:

1 = 2 1 − ξΩ2 1 − Ω2
H

+ 3 ξ

 r
2

3
ΩH Ω + Ωψ

p
1 − ξΩ2

!2

+ (1 − 3 ξ) Ω2
ψ 1 − ξΩ2 + Ω2

V 1 − ξΩ2 . (24)

In this case the parameter space spanned by such vari-
ables is not compact, because Ωψ diverges as Ω →
±1/

√
ξ. Eqs. (8)-(9) give

ψ̈√
6 D2

= − 3 ΩH Ωψ −
r

3

2
Ω∂V Ω2

V

+

√
6 ξ Ωp

1 − ξ Ω2

 
1 − Ḣ

D2
− 3 Ω2

H

!
, (25)

Ḣ

D2
+ Ω2

H =
1

2
− Ω2

H

+
1

1 − 2 ξ (1 − 3 ξ) Ω2

(
3 ξ2 Ω2 1 − 2 Ω2

H

− ξΩ
p

1 − ξΩ2
√

6 ΩH Ωψ + 3 Ω∂V Ω2
V

− 3

2
1 − ξΩ2

h
(1 − 4 ξ) Ω2

ψ − Ω2
V

i)
. (26)

2.3. General features of the system

a. Symmetries. The dynamical system (15)-(19) re-
mains invariant under the simultaneous transformation
{Ω,ΩH ,Ωψ,ΩV ,Ω∂V } → {−Ω,ΩH ,−Ωψ,ΩV ,−Ω∂V }.
Physically such symmetry is equivalent to the invariance
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under the transformation ψ → −ψ. Having assumed the
positivity of the potential, we have that V (−ψ) is still
positive and hence ΩV is not affected by this transforma-
tion.

b. Singularities. As we have discussed before, the
decoupling of Raychaudhuri and Klein-Gordon equations
cannot be carried out if the determinant of Eq. (20) van-
ishes: the points where this is the case appear as singular-
ities in the autonomous system. In terms of dimensionless
variables these singularities correspond to the vanishing
of the denominators in Eqs. (23) and (26), namely

Ω = ± 1p
2ξ(1 − 3ξ)

. (27)

By plugging Eq. (27) into the Friedmann constraints and
solving for Ωψ we get

Ωψ =

√
6ξΩH +

p
(Ω2

H ∓ Ω2
V − 1)6ξ ± Ω2

V√
1 − 6ξ

, (28)

where the upper/lower sign corresponds to nega-
tive/positive curvature. In either cases the coordinates
(Ω,Ωψ) of the singularity remain finite in the range
ξ ∈ (0, 1/6). For ξ > 1/6, Ωψ is complex. In the case
of a flat spacetime ΩH = ±1 we call these singularities
S± respectively. Comparing with [28], we note that for
Ω2
H = 1 and ΩV = 0 this corresponds to their criti-

cal point 1., which was identified as a finite scale factor
singularity. Such critical point was identified thanks to
a time reparametrization (see eq. (2.14) of [28]), which,
however, we are not considering here as it is ill-defined
in the point (27).

c. Invariant subsets. Invariant submanifolds are
very useful tools in studying a dynamical system, as they
allow to characterize and understand some global fea-
tures of the phase space. One can identify some invariant
subsets of the system Eqs. (15)-(19), namely ΩH = ±1
(flat spacetime) and ΩV = 0 (free scalar field). For the
latter case we plot in the left and right panels of Fig. 1 the
Friedmann constraints (21) and (24) respectively; in the
middle panel of Fig. 1 we plot the Friedmann constraint
in the spatially flat expanding case ΩH = 1 (the collaps-
ing case can be obtained by transforming Ωψ → −Ωψ).
Notice that our definitions of variables allow to have com-
pact invariant subsets for the positive and zero curvature
cases, but not for the negative curvature case.

Although from the system of equations Ω = ±1/
√
ξ

looks like an invariant subset, it is actually outside of the
Friedmann constraint in the case of positive and zero spa-
tial curvature; for negative curvature, instead, the Fried-
mann constraint in that locus reduces to Ω2

H = 1/2.
The condition Ω∂V = const., which is equivalent to

Γ = 1 (including the Ω∂V = 0 case), looks also like an
invariant subset due to Eq. (19), but this is a more subtle
case, since choosing a constant value of Ω∂V actually con-
straints the form of the potential to the exponential form
V = V0 e

Ω∂V ψ (see, e.g., [33] and references therein). We
will discuss these kind of potentials in Sec 4. However,

being the potential V a function of the field ψ only, in
order to allow for the most general forms of the potential,
Ω∂V has to be left as a general function of Ω.

3. CRITICAL POINTS AND THEIR
INTERPRETATION

To study the behaviour of the dynamical system
Eqs. (15)-(19), we need to derive the equilibrium points
of the system. The equilibrium points (or critical points)
of the system Ω0 = f(Ω) correspond to those points Ωc

that satisfy Ω0(Ωc) = 0, which means that the system
is at rest. The stability of the critical points can be in-
vestigated by inspecting the eigenvalues of the Jacobian
matrix of the linearized system evaluated at each critical
point: if the real part of all eigenvalues is positive (resp.
negative), then the point is an unstable source (resp. sta-
ble sink); mixed signs of the eigenvalues signal the pres-
ence of a saddle point; the presence of vanishing eigenval-
ues means that the critical point is non-hyperbolic and
one would need to implement further method in order
to ascertain the stability unambiguously – or resort to
numerical and visual approaches.

One can interpret the critical points in terms of cos-
mological models thanks to several physical quantities,
such as the deceleration parameter

q = −1 − Ω−2
H

Ḣ

D2
, (29)

and the effective equation of state parameter, which stems
from considering the scalar field as a barotropic fluid
sourcing the unmodified Einstein’s equations with equa-
tion of state

we =
pe

e
, (30)

where from Eqs. (6), (8) we define the effective energy
density and pressure, respectively:

e := 3 H2 +
k

a2
, (31)

pe := −2Ḣ − 3H2 − k

a2
. (32)

3.1. Two de Sitter critical points

The coordinates of these two critical points are
{Ω,ΩH ,Ωψ,ΩV ,Ω∂V } = {0,±1, 0, 1, 0}. One of these
points (called A+) has ΩH = 1 and it describes an expo-
nentially expanding model, i.e a ∼ eH0t, with the typical
cosmological constant behaviour given by q = −1 and
we = −1. The corresponding eigenvalues are

{λA+

i } = {−3,−2, 0,−
√

3

2

√
3 +

p
3 − 16ξ ,

√
3

2
−

√
3 +

p
3 − 16ξ }, (33)
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FIG. 1: Invariant subsets constrained by the Friedmann equations for ξ = 1/10. Left Panel: Positive curvature Eq. (21) for
ΩV = 0. Middle Panel: Spatially flat Eqs. (21) and (24) for ΩH = 1. Right Panel: Non-positive curvature Eq. (24) for ΩV = 0.

TABLE I: The critical elements of the system and their stability in the range 0 ≤ ξ ≤ 1/6.

Ωψ ΩH Ω ΩV Ω∂V Curvature q we stability

A+ 0 1 0 1 0 flat -1 -1 sink

A− 0 −1 0 1 0 flat -1 -1 source

B+ 0 1 0 < Ω2 < 1
2ξ

q
1−2ξΩ2

1−ξΩ2 − 4ξΩ
√

1−ξΩ2

1−2ξΩ2 flat -1 -1 sink

B− 0 −1 0 < Ω2 < 1
2ξ

q
1−2ξΩ2

1−ξΩ2 − 4ξΩ
√

1−ξΩ2

1−2ξΩ2 flat -1 -1 source

C± 0 ±1 ± 1√
2ξ

0 ∀ flat 1 1
3

saddle

D± 0 ± 1√
2

∀ 0 ∀ negative 0 - saddle

where the i = 1, ..., 5. The real parts of all the non-
vanishing eigenvalues is always negative.

The critical point with ΩH = −1 (called A−) describes
an exponentially collapsing model, i.e. a ∼ e−H0t with
q = −1 and we = −1. The eigenvalues in this case are

{λA−
i } = {3, 2, 0,

√
3

2

√
3 −

p
3 − 16ξ ,

√
3

2

√
3 +

p
3 − 16ξ }, (34)

The real part of all the non-vanishing eigenvalues is al-
ways positive.

For both points, the eigenvalues are complex in the
range ξ > 3/16: this signals a transition of the charac-
ter of the critical points from node to focus and it is in
accord with the findings of [34]. Since Ω∂V = 0, then
in a neighborhood of the critical points V = V0 > 0:
this eliminates the relevance of the Ω0

∂V equation in such
neighborhood. Using the remaining 4×4 system of equa-
tions with Ω∂V = 0, one recovers exactly the above sets

of eigenvalues (33), (34) where the λ
A±
3 = 0 are missing.

This indicates that indeed the A+ and A− are a sink and
a source respectively.

3.2. Two de Sitter critical lines

These critical points lie along the segments 0 < Ω2 <
1
2ξ for the cases ΩH = ±1 with Ωψ = 0, Ω2

V = 1−2ξΩ2

1−ξΩ2

and1

Ω∂V = −4ξΩ
p

1 − ξΩ2

1 − 2ξΩ2
. (35)

In this case one can derive a form of the potential in
a neighbourhood of the critical lines by integrating the
definition of Ω∂V as a function of Ω given above: trans-
forming back to the variable ψ one obtains

V = V0(1 − ξψ2)2, (36)

as well as H = ±
p
V0(1 − ξψ2)/3. Potential (36) has a

Higgs-like form which can provide a symmetry breaking
Goldstone mechanism. One can see that Ω = 0 cor-
responds to the local maximum of the potential, while
Ω = ±1/

√
2ξ correspond to the global minima.

1 Note that the since ΩV > 0 by definition, the only acceptable

solution is ΩV =
q

1−2ξΩ2

1−ξΩ2 (Table I). Similarly, in Sec. 3.1 from

ΩV = ±1 we accept only ΩV = 1.
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Exactly on the critical lines, both the potential V
and the Hubble parameter H are constant, thus describ-
ing exponentially expanding and collapsing models with
a ∼ e±Ht respectively. For calculating the eigenvalues
below, we need to specify Γ. To do this, we use the local
expression of the potential (36). These points for ΩH = 1
(called B+) describe sources, since they have eigenvalues

{λB+

i } = {0,−2, 0,−3,−3}, (37)

which holds in the allowed ranges of ξ and Ω.
The critical points for ΩH = −1 (called B−) have

eigenvalues

{λB−
i } = {0, 2, 3, 3, 0}, (38)

thus, we can interpret B− as source points.
Critical points A+ and B+ agree with the critical

points 5 of [28], in our analysis there are additionally
the A− and B− sources describing collapsing models. As
it is stressed in [28] the evolution of the system is inde-
pendent of the form of the potential, but we find that in
the neighborhood of B± the potential has to acquire the
form (36).

One would expect that in the limit Ω → 0 one should
recover the eigenvalues of the previous critical point, i.e.

{λB±
i } → {λA±

i }, which however is not the case, since po-
tential (36) is just an approximation holding in the neigh-
bourhood of the critical line. However, the feature that

matters for the local stability is the sign of the {λB±
i }.

Just like in Sec. 3.1, specifying the local form of the po-
tential makes one equation of motion redundant and thus
reduces the dimensionality of the system.

3.3. Two radiation-like critical lines

There exist other sets of critical points arranged as
critical lines with coordinates

{Ω,ΩH ,Ωψ,ΩV ,Ω∂V } = {± 1√
2ξ
,±1, 0, 0,∀}. (39)

The cosmological parameters at these points are q = 1
and we = 1

3 , being in agreement with the model describ-
ing a radiation dominated universe in which the scale
factor evolves like a ∼

√
t . The corresponding eigenval-

ues are

{λC+

i } = {2, 2,−1, 1, 0}, (40)

for ΩH = 1 (called C+), and

{λC−
i } = {−2,−2,−1, 1, 0}, (41)

for ΩH = −1 (called C−).
To investigate the exact form of scale factor, from Ray-

chaudhuri equation we get

H =
1

2(t− t0) + 1
H0

, (42)

where H0 is the Hubble parameter value at time t0
with a0 = 1. For expanding models (ȧ > 0) a =p

2H0(t− t0) + 1 with t > t0 − 1
2H0

, while for collaps-

ing (ȧ < 0) a =
p

−(2H0(t− t0) + 1) with t < t0 − 1
2H0

.
Since the eigenvalues of both critical lines have real parts
with mixed signs, they correspond to saddle points. The
set of points B+ agrees with the critical point 3.b of [28].

3.4. Two Milne-like critical planes

These critical points lie on planes defined by
{Ω,ΩH ,Ωψ,ΩV ,Ω∂V } = {∀,± 1√

2
, 0, 0,∀} .2 All points in

this case describe vacuum FLRW space-time with nega-
tive spatial curvature. This model is known as the Milne
universe with the scale factor a = c2(t + c1) and Hub-
ble function H = 1

t+c1
. Given that Ω2

H = 1/2, one finds

that c22 = |k|. From the definitions of the effective energy
and pressure (31), (32) we get that e = 0 and pe = 0.
This implies that we have a vacuum universe dominated
by negative curvature and the effective equation of state
parameter (30) is undefined. Furthermore, this implies
that D → 0 for t → ∞. Since ΩV = 0 and Ωψ = 0 in

the critical point, we necessarily have that ψ̇ → 0 and
V → 0, both faster than D approaches zero. Since we
do not have a specific form for the potential, the limiting
value of Ω∂V remains unspecified.

For the line with ΩH = 1√
2
, which we call D+, we get

the eigenvalues

{λD+

i } = {0, 0,
1√
2
,−

√
2,− 1√

2
}, (43)

and for ΩH = − 1√
2
, which we call D− , we get

{λD−
i } = {0, 0,− 1√

2
,

1√
2
,
√

2}. (44)

The mixed character of the eigenvalues identify these crit-
ical planes as saddles.

4. SPECIFIC POTENTIAL CASES

Once a form of potential is chosen, the system is com-
pletely specified and the variable Ω∂V becomes redun-
dant. In the most general case Ω∂V has to be a function
of Ω only, because V = V (ψ). This fact allows to rewrite
Ω0
∂V as

Ω0
∂V =

∂Ω∂V
∂Ω

Ω0 . (45)

2 Note that ∀ means any Ω satisfying the Friedmann constraint.
In our case Ω2 ≤ 1

2ξ(1−3ξ)
.
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Using now eqs. (15) and (19) we obtain the following
differential equation (for Ωψ 6= 0):

∂Ω∂V
∂Ω

1 − ξΩ2 3/2
= Ω2

∂V (Γ(Ω) − 1) . (46)

To consider Ω∂V = Ω∂V (Ω) has been our assumption
up to here. One can however make a different, less
general assumption, like in [28] where it is assumed
that Ω = Ω(Ω∂V ) and Γ = Γ(Ω∂V ): this implies that
Ω∂V = Ω∂V (Ω) has to be an invertible function, which
might not always be the case. In the cases in which this
is true, it holds that

ψ =

Z
dΩ∂V

Ω2
∂V (Γ(Ω∂V ) − 1)

, (47)

cfr. eq. (2.16) in the reference above.
Dropping the discussion of general potential forms, in

this section we are going to focus our study on specific
classes of potentials and further restrict our analysis on
spatially flat spacetime, which corresponds to an invari-
ant subset of the system. In particular, once the form
of potential is chosen, the system reduces to 4 dimen-
sions; further, by assuming ΩH = ±1 and by employing
the Friedmann constraint the system effectively reduces
to 2-dimensions, evolving on the (Ω, Ωψ) plane. Thus,
the critical points discussed in Sec. 3 and singularities of
the system (see Sec. 2.3) will be depicted in the invariant
subsets.

Some of these points are independent of the form of
potentials and hence will be present in every specific case
that we will discuss below. These points are

1. Big Bang and Big Crunch:
There are two points S+ on the invariant subsets

ΩH = 1 at {Ω,Ωψ} → {±
q

1
2ξ(1−3ξ) ,∓

q
6ξ

1−6ξ},

which are the singular points of the system and
act like Big Bang sources. Moreover, there are
two points S− on the invariant subset ΩH = −1

at {Ω,Ωψ} → {±
q

1
2ξ(1−3ξ) ,±

q
6ξ

1−6ξ}: these are

also singular points of the system and act like Big
Crunch sinks. In order to recognize the cosmo-
logical character of such points, recall the defi-
nition of the evolution parameter of system τ =
± ln a, where plus/minus applies to the expand-
ing/collapsing dynamics: as the critical points are
approached along the trajectories we have that the
parameter τ → ∓∞ and hence in both cases a→ 0.

2. Radiation-like transient phase:
One can find saddle points C+ or C− with coordi-
nates {Ω,Ωψ} → {± 1√

2ξ
, 0} in each invariant sub-

set. These points describe a radiation-like universe
since we = 1/3 (see Table I), and evolution flows
around them define a possible radiation-like tran-
sition phase of the universe.

In order to find the locations of the de-Sitter points B±
in the invariant subsets, one needs instead to specify the
form of the potential.

4.1. Γ = 1: exponential potentials

For the special cases when Γ = 1 it holds that Ω∂V =
const., thus in this case the potentials are of the form

V = V0e
Ω∂V ψ.

Each system with ΩH = 1 has one sink at the coordinate:

• {Ω,Ωψ} → {
q

1
2ξ − 1√

Ω2
∂V ξ+4ξ2

, 0} for Ω∂V < 0,

• {Ω,Ωψ} → {−
q

1
2ξ − 1√

Ω2
∂V ξ+4ξ2

, 0} for Ω∂V > 0,

• {Ω,Ωψ} → {0, 0} for Ω∂V = 0.

These three cases correspond to the points B+ depicted
on the right column of Fig. 2, from top to bottom. With
ΩH = −1 instead the system has a source at the coordi-
nate:

• {Ω,Ωψ} → {
q

1
2ξ − 1√

Ω2
∂V ξ+4ξ2

, 0} for Ω∂V < 0,

• {Ω,Ωψ} → {−
q

1
2ξ − 1√

Ω2
∂V ξ+4ξ2

, 0} for Ω∂V > 0,

• {Ω,Ωψ} → {0, 0} for Ω∂V = 0.

These cases correspond to the points B− depicted in the
left column of Fig. 2, from top to bottom. For a global
view see Fig. 3: horizontal slicings correspond to different
constant values of Ω∂V .

4.2. Constant Γ 6= 1

Assuming Γ 6= 1 and constant we can integrate Eq. (46)
and obtain

Ω∂V =

p
1 − ξΩ2

(1 − Γ)Ω − c1
p

1 − ξΩ2
. (48)

Using the definition of Ω∂V , this expression can be inte-
grated again, resulting in the following family of poten-
tials:

V = V0 (1 − Γ)ψ − c1

1
1−Γ

(49)

The denominator of Eq. (48) introduces a singular line
when

c1 −
(1 − Γ)Ωp

1 − ξΩ2
= 0 (50)

and the location of the singular line is at

Ω2
s =

c21
(1 − Γ)2 + ξ c21

<
1

2ξ (1 − 3 ξ)
(51)

for ∀Ωψ inside the Friedmann constraint apart the Fried-
mann constraint’s outer edge (ΩV = 0). The inequality
in Eq. (51) comes from the restrictions of Ωs between
the singularities (27) discussed in Sec. 2.3, also shown in
Figs. 2, 3. Further, Eq. (50) indicates that:
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FIG. 2: Some invariant subsets Ω∂V = const. for ξ = 1
10

. The left column of panels shows ΩH = −1 cases, while the right
column shows the ΩH = 1 cases. Upper panels show Ω∂V = −1, the middle ones Ω∂V = 1 and the Lower ones Ω∂V = 0. Blue
dots identify sources, red dots are sinks and black ones are saddle points. The green areas denote the phase of accelerated
expansion q < 0 .

• when Γ < 1 then the sign of Ω (Eq. (51)) has to be
the same as of c1,

• while when Γ > 1, then the sign of Ω (Eq. (51)) has
to be the opposite of c1.

In order to find the critical points B± for the po-
tential (49) we equate Eq. (48) with the value of Ω∂V
(Eq. (35)) presented in Sec. 3.2. Note that by doing
this we select a particular case of the general treatment.
This provides the following relation that will be helpful
in order to determine which critical points are inside the
Friedmann constraint:

c1Ω =
1 + 2 ξΩ2 (1 − 2Γ)

4 ξ
p

1 − ξΩ2
(52)

Solving the equation above provides four solutions for Ω:

Ω±,± = ± 1√
2ξ

s
(4c21ξ + 2Γ − 1) ± 2

p
c21ξ(4c

2
1ξ + 4Γ − 3)

4(c21ξ + Γ(Γ − 1)) + 1
,

(53)

where the first set of signs in the definition refers to the
global sign, while the second one refers to the sign un-
der square-root. 3 The existence of such critical points
depends on the relative sign of c1 and Ω as expressed in
Eq. (52); then, if a root exists, we need additionally a
condition for it to satisfy the Friedmann constraint. In

3 One can easily check that these 4 roots appear as critical points
of the general dynamical system when Ω∂V is given by Eq.(48).

84



9

FIG. 3: Global view of the parameter space for the system
with Γ = 1, ΩH = 1 and ξ = 1/10. The dynamics takes
place inside every horizontal plane with constant Ω∂V ; the
case Ω∂V = −1 is shown as representative. For a better view,
the closed boundary surface corresponding to ΩV = 0 is cut
along the plane Ωψ = 0. The blue dashed line is one set of
sources, the black lines are the saddles and the red line is the
set of future attractors.

Tables II–IV we give the exact ranges of parameters in
which the roots (53) exist. In particular:

1. if Γ ≤ 1/2, then the numerator of Eq. (52) is posi-
tive and hence c1 and Ω should have the same sign,
i.e. c1 ·Ω > 0. This implies that only the two roots
among those in Eq. (53) with the same global sign
as c1 will be allowed. Additionally, the Friedmann
constraint and the combination of parameters will
define whether these two roots will appear or not,
as shown in Table II. When both roots exist, they
appear on the same side of the singular line Ωs: if
c1 > 0, then Ω+− is a sink (source) while Ω++ is a
saddle; if c1 < 0, then Ω−− is a sink (source) while
Ω−+ is a saddle.

2. if 1/2 < Γ < 1, then

1 + 2 ξΩ2 (1 − 2 Γ) > 1 − 2 ξΩ2 > 0 , (54)

where the last inequality comes from the Friedmann
constraint. This has the same implication as the
case above about the relative signs of c1 and Ω. In
this case there is at most one root, see Table III for
the details.

3. if Γ > 1, the numerator of Eq. (52) has two roots

Ω = ± (2 ξ |1 − 2Γ|)−1/2
: between these roots the

FIG. 4: Global view of the parameter space for the system
with Γ 6= 1 and constant, ΩH = 1, ξ = 1/10 and c1 = 0.
The dynamics takes place inside every horizontal plane with
constant Γ; the cases Γ = 1/2 and Γ = 3/2 are shown as
representative. For a better view, the closed boundary surface
corresponding to ΩV = 0 is cut along the plane Ωψ = 0. The
blue dashed line is the set of sources, the black lines are the
saddles and the red lines are the sets of future attractors.

numerator is positive, while outside it is negative.
The sign of c1 · Ω has to be the same as the one of
the numerator, thus determining which of the roots
in Eq. (53) are present, see Table IV. When both
roots exist, the singular line Ωs lies between them;
in this case B+ (B−) retain their sink (source) na-
ture.

It is worth stressing that the critical points Ω±±, denoted
as B± in Figs.5-7, move inside the Friedmann constraint
along the line Ω = 0 when the parameters change in the
ranges allowed by Tables II,III and IV. In cases 1. and 3.
above, when ξ c21 → (1 − Γ)2, then Ω±+ approaches the
position of the radiation-like saddle points C±; in case
2., the same happens for Ω±−. However, the cosmologi-
cal interpretation of points B± is preserved as they move
and Table 1 excludes the case Ω2 = 1/2ξ for the de Sit-
ter sinks/sources: hence the de Sitter character which is
preserved as the points move is not in contradiction with
the radiation character on the boundary in the above-
mentioned limit.

In Fig. 5 we show the case Γ = −1, corresponding to a
potential V ∝ √

ψ which has some interesting dynamical
property but is otherwise physically questionable. From
top to bottom, we change gradually the parameter c1
in order to show how one of the de Sitter points B+
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appears inside the Friedmann constraint and changes its
character from sink to saddle. In the top panel such
point is outside the constraint; in the middle panel, it
coincides with the radiation-like saddle C+; and in the
bottom panel, it appears as a saddle on the right-hand
side of the singular segment. The dynamical setup of
the bottom panel is quite intriguing, as it presents de
Sitter phases both as a transient and as an asymptotic
attractor; note however that the potential is complex on
the left-hand side of the singular segment, so one cannot
give a physical interpretation to such dynamics. In the
next subsection instead we will present some physically
meaningful cases.
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FIG. 5: For the case ξ = 1
10

invariant subsets for Γ = −1.

The upper panel shows c1 =
q

(1−Γ)2

ξ
+ 5, the middle panel

c1 =
q

(1−Γ)2

ξ
and the bottom panel c1 =

q
(1−Γ)2

ξ
− 2 . The

green areas denote the phase of accelerated expansion q < 0 .

c1 < 0 c1 = 0 c1 > 0

Ω++ – – 3
4
− Γ ≤ ξ c21 < (1 − Γ)2

Ω+− – – ξ c21 >
3
4
− Γ

Ω−+
3
4
− Γ ≤ ξ c21 < (1 − Γ)2 – –

Ω−− ξ c21 >
3
4
− Γ – –

TABLE II: Existence of the roots Eq. (53) for Γ ≤ 1/2.

c1 < 0 c1 = 0 c1 > 0

Ω++ – – –

Ω+− – – ξ c21 > (1 − Γ)2

Ω−+ – – –

Ω−− ξ c21 > (1 − Γ)2 – –

TABLE III: Existence of the roots Eq. (53) for 1/2 < Γ < 1.

4.3. Physical interpretation

In this section we focus on the cases with Γ 6= 1 that
could have physical interest. Our discussion will be con-
strained to ΩH = 1 and we will keep ξ = 1/10 for our
examples.

First of all, our initial requirement of positivity of the
potential translates into the choice Γ = 2n+1

2n for n ∈ Z:
the set of potentials characterized by such exponents are
positively defined on the real axis. Depending on the sign
of the integer n one can identify the following classes:

1. if n ∈ N−, then Γ > 1 and the potentials have the
so-called runaway form:

V = V0
ψ

2|n| + c1

−2|n|
(55)

2. if n ∈ N+, then 1/2 ≤ Γ < 1 and the potentials are
positive even powers of the (shifted) field:

V = V0
ψ

2n
− c1

2n

(56)

As one usually considers only potentials with even powers
of the field, the cases Γ < 1/2 are excluded. Note that
potentials Eq. (56) can be considered as truncated Taylor
expansions of more general potentials.

One can check whether a potential defines a mass for
the scalar field by analysing the second derivative ∂2

ψV in

c1 < 0 c1 = 0 c1 > 0

Ω++ 0 < ξ c21 < (1 − Γ)2 ∀ξ –

Ω+− – ∀ξ ∀ξ
Ω−+ – ∀ξ 0 < ξ c21 < (1 − Γ)2

Ω−− ∀ξ ∀ξ –

TABLE IV: Existence of the roots Eq. (53) for Γ > 1.
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a local minimum ψ̄ of V itself. While in the class 1. there
is no such minimum for finite values of the field, in the
class 2. we can distinguish

• n = 1 ⇒ Γ = 1/2 and (∂2
ψV )ψ̄ = V0/2 > 0,

massive scalar field;

• n ≥ 2 ⇒ (∂2
ψV )ψ̄ = 0, massless scalar field.

Hence, in the class of positive definite potentials, only
the ones with Γ = 1/2 have non-zero mass. This case
corresponds to the simple quadratic potential.

On the other hand, one could relax the requirement
of positivity and well-definedness of the potential on the
whole real axis and accept also potentials which are de-
fined only for some ranges of ψ. Potentials of class 1. di-
verge in ψ0 = 2|n|c1 and the field is expected to roll down
the slope only on one side of ψ0: this translates into a
dynamics which is confined only on one side of the singu-
lar line (51) in the parameter space. Hence, in the case
of runaway potentials one could in principle allow for any
real value in the range Γ > 1 and be careful to consider
only the dynamics in the appropriate side of the param-
eter space. For instance, in Fig. 6 we represent the case
Γ = 3/2, for which the runaway-type potential is real
and positively defined on the whole real axis except for
the singular point ψ0: hence the field can in principle roll
down on both sides of the singularity, depending on the
initial conditions, and both sides of the parameter space
are physically admissible. For c1 <

p
(1 − Γ)2/ξ, the

model evolves towards an asymptotic de Sitter attractor
on both sides.

For the massless case Γ = 3/4 we give a couple of ex-
amples in Fig. 7. In the top panel we show a case where
the Ωs splits the invariant subset in two parts. The flow
of the stream plot indicates that the trajectories oscillate
around the Ωs segment. However, this interpretation is
ambiguous since the flow has to reach the invariant sub-
set ΩV = 0 to pass from one side to the other. The
problem stems from our choice of variables which makes
the system singular around the minimum of the poten-
tial. Thus, the cases we can interpret clearly in the range
1/2 < Γ < 1 are the ones for which Ωs lies outside the
Friedman constraint: such a case is shown in the middle
panel of Fig. 7. For one of the trajectories of the middle
panel (dashed black line) we provide also the evolution
of the effective equation of state, which starts from ultra-
stiff close to S+ and ends up at the de Sitter sink.

5. CONCLUSIONS

We have started our study in a very general setup of
non-minimally coupled real scalar fields in a FRW space-
time in the absence of regular matter. Namely, in a spa-
tially curved FRW we have specified only the coupling
term and not the potential of the scalar field, which we
have just demanded to be positive. Transforming prop-
erly the variables of the system we have achieved to end

up with a new set of dimensionless variables, which are
bounded for most of the parameter ranges we consider
and are well–defined even for recollapsing scenarios. In
this general setup, we have investigated the general fea-
tures of the system, some of which we recall below:

• There are singularities lying on the the boundaries
of the Friedmann constraint. In the case of the
flat spacetime ΩH = ±1 we have named them S±
respectively, S+ singularities act as sources and S−
as sinks.

• For the positive curvature and the flat FRW cases
the invariant subsets are compact in our new vari-
ables in the range ξ ∈ (0, 1/6).

• The critical points, we have found, can be separated
into three categories: de Sitter points, radiation–
like points and Milne–like points. The critical
points of the first two categories exist for the spa-
tially flat FRW, while the Milne–like points exist
for the FRW with negative curvature. The critical
points found for the spatially flat case are in agree-
ment with those found in [28]. Note, however, that
our analysis covers a broader family of potentials
than the one in [28] and takes into account also
collapsing scenarios. The critical points found for
the negative curvature were analysed in this con-
text for the first time.

We start the second part with the reasonable assump-
tion assumption that Ω∂V depends only on Ω (because
V = V (ψ)) and derive the general Eq. (46), which can
be integrated in order to obtain classes of potentials. We
further specialize our investigation for spatially flat cases
and constant tracking parameter Γ: on one hand, the
case Γ = 1 corresponds to the well-known exponential
potential; on the other hand, Γ 6= 1 provides the broad
class of potentials given in Eq. (49). The latter case is
further divided into two main subclasses: Γ > 1 corre-
sponds to runaway potentials, while Γ < 1 corresponds
to potentials with positive powers of the field. The free
parameters of the model are ξ, Γ and the integration
constant c1: we analyse in detail the ranges of values for
which the de Sitter critical points exist inside the Fried-
mann constraint. We find that, while the Γ > 1 cases are
easily interpreted as transitions from an early-time ultra-
stiff era towards a late-time de Sitter expansion (possibly
passing through an intermediate radiation epoch), the
cases 1/2 < Γ < 1 might present a singular behaviour
introduced by our choice of coordinates; if Γ < 1/2, the
potentials might be real and positive only in some ranges
of the field, which implies that only some portions of the
parameter space can have physical interpretation.
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FIG. 6: For the case ξ = 1
10

invariant subsets for Γ = 3/2. The upper left panel shows c1 =
q

(1−Γ)2

ξ
+ 1, the upper right panel

c1 =
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(1−Γ)2

ξ
and the bottom ones c1 =
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ξ
− 1 . The green areas denote the phase of accelerated expansion q < 0. The

bottom right panel shows the effective EOS parameter corresponding to the black-dashed trajectory in the left bottom panel,
with initial conditions given by {Ω = 5/2,Ωψ = −1 − 1/

√
3}.
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Summary
This thesis was devoted to analyzing three problems in the isotropic and ho-
mogeneous universe. On one hand, we studied the accelerated observers in the
expanding universe. One the another hand, we analyzed the dynamics of two
cosmological models in the FRW spacetime.

In Chapter 1, we introduced the fundamental elements of modern cosmology.
We started from the cosmological principle to introduce the FRW spacetime.
Since we assume that our universe is isotropic and homogeneous, we presented
the energy-momentum tensor for a suitable matter inside the universe. The Fried-
mann equation and the Raychaudhuri equation were introduced since they are the
most important equations in the modern cosmology. From this step, we provided
the form of the scale factor for positive, negative, and zero spatial curvatures.
Later on, we introduced the definitions of the geodesics and uniformly acceler-
ated motion in the FRW spacetime. Although the Einstein static universe is not
an actual cosmological model, we mentioned it in this chapter because the causal
structure of other spacetimes can be simply studied from the static universe. Sub-
sequently, the conformal structures and the Penrose diagrams for spatially curved
FRW spacetimes were introduced. However, these aspects of modern cosmology
are mainly based on the theoretical considerations; observations raise more funda-
mental questions about our universe. The observations tell us that our knowledge
about the universe is only a small portion of the whole universe. Namely, our
knowledge covers approximately 5% of the actual universe. What is the rest is
the main question of contemporary cosmology. So far, observations admitted
that the hidden side of the universe consists of a dark matter and dark energy.
Since this part of modern cosmology is the most challenging one, we provided
a succinct introduction to the dark sector. There exist three main areas that
have been suggested in the context of cosmology in order to find out the physics
behind the dark energy. These areas are the cosmological constant, scalar fields,
and the extended gravity. In the rest of this chapter, we introduced the first two
areas. The ΛCDM model is introduced as a standard model for the dark energy.
However, this model suffers from some problems, which were discussed. Finally,
we introduced the scalar field cosmology. Namely, the minimal coupling and the
non-minimal coupling were discussed at the end of this chapter.

In Chapter 2, we analyzed the dynamics of a test particle in the FRW space-
time. Although in the previous chapter we introduced the definition of the uni-
formly accelerated motion and geodesic motion in FRW spacetime, solving re-
spective equations of motion for a given cosmological model is not an easy task.
Therefore, we presented a framework in which the uniformly accelerated trajec-
tory and the geodesic can be calculated if for a given cosmological model, the
expansion factor is given as a function of coordinate time. To derive this formal-
ism we did the following steps: we started from the spatially curved FRW metric.
Then, the conformal time transformation was applied. Since, the transformed
metric share a common coefficient a(η), i.e. the scale factor in the transformed
coordinates, this allowed us to derive the trajectory for an accelerated radial mo-
tion. Moreover, from this formalism, we studied the return journey of a rocketeer
in the expanding universe. Although it was suggested that having the uniform
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deceleration is enough to have a return journey Rindler [1960], we proved that
this condition is necessary but not sufficient for all spacetimes. Finally, in this
work, we presented a formalism to derive the accelerated trajectory and geodesic
in the anti-de Sitter spacetime.

Chapter 3 is dedicated to the dynamical system theory. In this chapter, we
provided the necessary theorems and definitions in dynamical system analysis.
We introduced the linear stability theorem to analyse the stability of hyperbolic
critical points along with the Lyapunov and centre manifold theories to study
the stability of the non-hyperbolic critical points. Since our interest lies in the
applications of dynamical systems in cosmology, we did not present the proof
of the theorems. This chapter ends with an explicit example to show how the
stability of a non-hyperbolic critical point can be determined from the Lyapunov
and the centre manifold stability.

In the first part of Chapter 4, we provided useful information about the proce-
dures that one should follow in order to implement the dynamical systems analysis
to a cosmological model. Namely, we explained why we can not directly use the
governing cosmological equations to do dynamical systems analysis. Afterwards,
we introduced the normalization parameter and the dynamical variables. Then,
by introducing the evolution parameter we presented autonomous dynamical sys-
tem. In the second part of this chapter we provided a pedagogical example on
how a cosmological model can be studied as a dynamical system. We started from
the governing equations, i.e. the Friedmann, Raychaudhuri, and Klein-Gordon
equations, of a minimally coupled scalar field with an unspecified potential in
the FRW spacetime background. Then, we introduced the dimensionless vari-
ables from the Friedmann equation. Subsequently, the autonomous system was
determined from the dimensionless variables. Additionally, we analyzed the gen-
eral features of this system, such as global critical points, invariant subsets, and
symmetries of the system. Later on, we defined the scalar field potential, i.e. ex-
ponential potentials, in which three dimensional dynamical system reduced into
the two dimensional dynamical systems. Therefore, at this point, we calculated
the critical points of this system, which are

• one matter dominated critical point,

• two stiff fluid like critical points,

• one scaling solution critical point,

• one scalar field dominated critical point.

Finally, the stability of the critical points, their interpretations, and the portraits
of the parameter space was derived and discussed. This showed the procedures
needed to analyse a cosmological model by implementing the dynamical system
analysis.

Chapter 5 presents the content of Kerachian et al. [2020], in which we stud-
ied the dynamics of a broad class of barotropic fluids in spatially curved FRW
spacetime. Namely, we started from a cosmological model for which the EoS
of the barotropic fluid is not determined. For this system, we introduced the
dimensionless variables that are well-defined and valid for all spatial curvatures.
Then, the autonomous system for these variables were presented. We defined a
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function Γ which tells us all the necessary information about the EoS. For this
general setup, the critical lines were identified:

• two de Sitter critical lines for spatially flat FRW.

• one static critical line for positive spatially curved FRW.

These critical lines are valid for all barotropic fluids since they are independent
of the choice of EoS. Furthermore, we investigated the general features of the
function Γ. We showed that, for the specific forms of Γ, we found more critical
points. Up to this point, we presented the general investigation for an unknown
barotropic fluids. In the second part of this work, two examples were studied to
show how this general setup can be used.

Chapter 6 covers the dynamics of classes of non-minimally coupled scalar fields
in spatially curved FRW spacetime; this chapter is based on our work Kerachian
et al. [2019]. Similar to the previous chapter, where we analyzed the dynamics
of barotropic fluids with an unspecified EoS; here, we studied dynamics of a non-
minimal coupling scalar field for a generic unspecified positive potential. As we
have seen in Chapters 4 and 5, the first step to study a dynamical cosmology
is to define the dynamical variables. However, for the non-minimally coupled
case, determining these variables is more subtle than in the other cases. The first
part of this chapter is dedicated to this issue; we fully explained what procedures
should be followed in order to derive well-defined dimensionless variables. Similar
to the previous chapter, also here the dimensionless variables are valid for positive
and non-positive curvatures. Then, from these variables, the autonomous systems
were obtained together with the critical points/ lines/ planes of the system, which
are

• two de Sitter critical points for the case k = 0,

• two de Sitter critical lines for the case k = 0,

• two radiation-like critical lines for the case k = 0,

• two Milne-like critical planes for the case k < 0.

These critical points/ lines/ planes are independent of the choice of the poten-
tials. Apart from these, we found that, there are two singular points in this
general setup; these singular points can be identified as a finite scale factor sin-
gularity. This chapter ends with two examples where we examine specific classes
of potentials in this framework.
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