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Supervisor: RNDr. Miroslav Buĺıček, Ph.D., Mathematical Institute of Charles
University
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1. Introduction
This work is devoted to a fast developing field of viscoelastic fluids and their
mathematical analysis. It seems that the growing interest in viscoelastic fluids is
related to a recent progress in various engineering areas, where these fluids find
many applications. Although there are plenty of studies devoted to the numer-
ical analysis of these fluids in some particular settings, a rigorous treatment of
the models which describe the motion of these fluids is hard to find. Actually,
the corresponding analysis in a reasonably general setting (including the tem-
perature evolution) is non-existent at the present time. This is due to intrinsic
difficulties hidden in the equations describing the evolution of the elastic compo-
nent of the fluid and also of the temperature.

The thesis consists of two independent parts. The first part is the main part,
which has four chapters and concerns an analysis of heat conducting viscoelastic
fluids, where the material coefficients are allowed to depend on the tempera-
ture. As such, the presented existence theory for these fluids is the first of its
kind. Then, the second part is included in Chapter 5 and provides an analysis
in a simpler isothermal case. This part coincides with an author’s upcoming
journal article and thus, it is completely stand-alone and can be read indepen-
dently. The existence analysis of each part rests upon different mathematical
ideas. Throughout the thesis, we sometimes refer to the Chapter 5 in order
to explain why ideas from the isothermal case do not carry over to the general
case. A reader who is unfamiliar with the mathematical and/or physical theory
for viscoelastic fluids might want to start reading Chapter 5, which is simpler,
and thus more lucid. On the other hand, the main contribution of the thesis is
the existence result for heat-conducting viscoelastic fluids. To be more precise, we
prove that, without any restriction on the size of data or dimension of the space,
there exists a suitable weak solution to a system of nonlinear partial differen-
tial equations with initial and boundary conditions, which describes an unsteady
flow of a homogeneous, incompressible, heat-conducting, rate-type viscoelastic
fluid (with stress diffusion), that fills up a mechanically and thermally isolated
container. Throughout the thesis, we explain the meaning of all quantities men-
tioned in the previous sentence. Also, in this chapter, we describe the results
of both parts of the thesis in more detail. We start the explanatory part with
the most important term, the notion of viscoelastic fluid.

1.1 What is a viscoelastic fluid?
The adjective “viscoelastic” means that the fluid has both viscous and elastic
properties. In other words, compared to standard viscous fluids such as water or
oil, viscoelastic fluids behave partly as a rubber band, for example. More pre-
cisely, they can store and release mechanical energy under compression, stretching
or twisting of the material. Examples of materials that fits well to such concepts
are: synthetic polymers, rubbers, molten glasses or metals. Furthermore, many
biomaterials are viscoelastic. Let us name at least two examples: a tendon and
blood. Although these two materials seemingly have nothing in common, they
can be both regarded as viscoelastic. Indeed, the blood is not a standard viscous
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Figure 1.1: On the first row there are 1D analogues of viscous and elastic ma-
terials: dashpot (damper) and spring. On the second row we see two of many
possible combinations of the basic elements. These are examples of 1D models of
a viscoelastic fluid.

fluid as it contains red blood cells which have the tendency to always return to
their original shape. Thus, these cells are responsible for the elastic behaviour of
blood. Vice versa, the fact that an elastic tendon may be stretched during an ex-
ercise proves that a viscous component must be present. In fact, it turns out that
many real-world materials are not purely viscous, nor purely elastic, and therefore
should be regarded and modelled as viscoelastic (see e.g. [2], [22], [44], [46], [7]).
However, it seems that a fluid flow and an elastic deformation can not be truth-
fully described within a single physical theory. As the title suggests, we focus only
on the fluid flow. Thus, in the biological analogy, this thesis is about blood and
not about tendons. To say it more elaborately, we assume that the material and
the time frame in which we consider its motion fits better to a fluid-like movement
than to a solid-like deformation. Furthermore, on a theoretical side, this means
that the material characteristics are studied in an infinitesimal neighbourhood of
its current state, rather than relating them to some initial state.

The idea that a fluid possesses an elastic part can be nicely visualized using
the one-dimensional elements, which we can think of as of the fluid “molecules”,
see Figure 1.1. While the energy which we use to stretch or compress a dash-
pot partially dissipates to heat, a spring can store this energy and release it in
the same form. Thus, it is also useful to think of the dashpot and spring as
representatives of irreversible and reversible processes, respectively. However,
these simple ideas are very idealized for several reasons. First, it is not clear
how the multi-dimensional analogues of the one-dimensional models depicted on
the second line of Figure 1.1 should look like. This issue can be partially resolved
by appealing to certain physical principles, to be seen in Chapter 2. The major
issue, however, is that in reality properties of a viscoelastic fluid (such as re-
sistance to deformation) change dramatically with temperature changes. Thus,
the temperature evolution and its effects on the flow characteristics should not
be omitted for viscoelastic fluids. The main contribution of this thesis is that
we provide an existence analysis for a variant of a viscoelastic fluid model that
incorporates the full evolution of the temperature and also of the whole extra
stress tensor.

The concept of the extra stress tensor is common for all viscoelastic fluids. In
Chapter 2 we show that the Cauchy stress tensor T, which represents the forces
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appearing in the balance of momentum, decomposes as

T = Tviscous + Telastic (1.1)

for viscoelastic fluids. The first part Tviscous is the usual Cauchy stress tensor as in
the theory of Newtonian fluids (with possibly a temperature dependent viscosity,
however). The other part Telastic is the one which is usually called the extra stress
tensor in the literature and it corresponds to the forces arising from the elastic
response of the fluid. Thus, viscoelastic fluids are non-Newtonian by definition
and they always exhibit the effects known as non-linear creep and stress relaxation
(see e.g. [68]).

In what comes next, we specify precisely what kind of viscoelastic fluids we
are interested in.

1.2 Brief description of the model
We show in Chapter 2 that a flow of a viscoelastic fluid is governed by a system
of non-linear partial differential equations completed by initial and boundary
conditions. To fix ideas, we sketch this system here, although we refer the reader
to Chapter 3 for a rigorous formulation.

Let Ω ⊂ Rd, d ∈ N, be a domain. Let T > 0 be the final time and set
Q = (0, T ) × Ω. Furthermore, let v0 : Ω → Rd, B0 : Ω → Rd×d

>0 , θ0 : Ω → (0,∞)
be some given initial data and let f : Q → Rd be a density of external body forces
(such as the gravity). Suppose also that a, cv, µ are some constants and ν, γ, κ, δ, λ
are some positive continuous functions (these quantities are the material param-
eters, or coefficients, of the model). Finally, let us denote the symmetric and
antisymmetric parts of the velocity gradient ∇v as

Dv = 1
2(∇v + (∇v)T ), Wv = 1

2(∇v − (∇v)T ).

Our goal is to show that under some reasonable assumptions, there exist
a velocity v : Q → Rd, a “pressure” p : Q → R, an extra stress tensor B : Q →
Rd×d

>0 and a temperature θ : Q → (0,∞) solving the following initial-boundary
value problem (in some appropriate sense):

div v = 0, (1.2)
∂tv + v · ∇v − div(2ν(θ)Dv) + ∇p = 2aµ div(θB) + f , (1.3)

∂tB + v · ∇B + δ(θ)γ(|B − I|)(B − I) − div(λ(θ)∇B)
= WvB − BWv + a(DvB + BDv), (1.4)

cv∂tθ + cvv · ∇θ − div(κ(θ)∇θ) = 2ν(θ)|Dv|2 + 2aµ θB · Dv, (1.5)

∂tE + v · ∇E − div(κ(θ)∇θ)
= div(−pv + 2ν(Dv)v + 2aµθBv) + f · v,

(1.6)

∂tη + v · ∇η − div(κ(θ)∇ ln θ − λ(θ)µ∇(trB − d− ln detB)) = ξ (1.7)

in Q with boundary conditions (n is the outward unit normal vector to ∂Ω)

v = 0, n · ∇B = 0, n · ∇θ = 0 on (0, T ) × ∂Ω
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and with initial conditions

v = v0, B = B0, θ = θ0 in {0} × Ω.

Here, the total energy E is defined as

E = 1
2 |v|2 + cvθ,

the entropy is related to θ and B via the formula

η = cv ln θ − µ(trB − d− ln detB) (1.8)

and the rate of entropy production ξ is given by

ξ = 2ν
θ

|Dv|2 + κ(θ)|∇ ln θ|2 + δ(θ)γ(|B − I|)
⃓⃓⃓
B

1
2 − B− 1

2
⃓⃓⃓2

+ µλ(θ)
⃓⃓⃓
B− 1

2 ∇BB− 1
2
⃓⃓⃓2

However, in such a form, this goal seems to be too ambitious. In fact, we
need to relieve from this solution concept in several different aspects. Namely,
equation (1.5) is to be abandoned completely, (1.6) is replaced by its global version
inequality and (1.7) is also weakened to just an inequality. The precise reasons
for such reductions are discussed in Chapter 3. On top of that, we work only
with weak solutions, of course. Nevertheless, even then we are be able to show
that the solution which we construct obeys basic physical principles.

Equations (1.2), (1.3) and (1.5) form an incompressible Navier-Stokes-Fourier
system with viscosity depending on temperature and with two additional terms
2aµ div(θB) and 2aµθB · Dv that both depend on B. Since the fluid is assumed
to be homogeneous, its density is taken to be equal to one for simplicity. The un-
known p, which was labelled as “pressure” has no connection to any physical pres-
sure (see [62] for various notions of pressure), except for some simple situations,
such as a pipe flow. In general, it is merely a Lagrange multiplier corresponding
to the incompressibility constraint (1.2) and it is determined only up to a con-
stant (see [57, Sect. 4.2.3.] for a detailed discussion). In fact, in our analysis, we
do not care about the construction of a “pressure” at all since it is eliminated by
taking the Leray projection u ↦→ u−∇∆−1 div u of (1.3). This is indeed possible
since

1) we do not consider any dependence of material coefficients on the pressure,

2) we avoid the local form of (1.6), where p appears explicitly,

3) we consider Dirichlet boundary conditions for the velocity.

If we wished to relax any of these assumptions, we would need to construct
the pressure using an additional approximation (see e.g. [12]). This, however, is
not our goal here.

The quantity B that appears in the system above models the elastic part of
the total deformation of the fluid. In our case, it coincides with Telastic from
(1.1), up to a temperature-dependent multiplicative coefficient. It is possible to
give B a specific physical meaning by appealing to the concept of an evolving
natural (or stress-free) configuration. Then, the quantity B can be interpreted
as the left Cauchy-Green tensor with respect to the stress free configuration. We
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refer the reader to [63] for details. For our purposes, the quantity B is merely
an unknown of the system, which must be a positive definite tensor in order to
ensure that the elastic deformation is regular.

The evolution of B is governed by (1.4), which is a diffusive variant of Oldroyd-
B (or rather Johnson-Segalman, see [41]) model, but with a non-standard growth
given by γ. We want to point out that none of the equations (1.3), (1.4), (1.5)
can be decoupled from the other two, even if the material parameters were in-
dependent of the temperature. Indeed, this is caused by the term 2aµ div(θB)
on the right hand side of (1.3). In fact, this was one of our motivations to study
the system above, to illustrate that the existence theory for such systems is achiev-
able even if the equations for θ and B can not be decoupled from the Navier-Stokes
system.

The term D = − div(λ(θ)∇B) indicates that we are dealing with the diffusive
variant of a viscoelastic model. This term is physically well motivated, see [27],
[30] and references therein. Although it is generally believed that presence of
a diffusion term improves mathematical properties of any system, it is not so
clear here. On one hand, the diffusion should lead to an estimate of ∇B in some
reasonable function space that should, eventually, lead to certain compactness
property of B. On the other hand, obtaining such an estimate is a very delicate (if
possible) procedure. Indeed, in general, we can not test (1.4) by B since the other
terms of the type ∇vB have very poor integrability. In our case however, we are
able to test (1.4) by a small power of trB, which improves the integrability of
B and, consequently, also differentiability. We remark that the form of D is by
no means unique, one can derive similar models with diffusion terms different
from D simply by modifying the entropy production mechanism (see Chapter 2
for details). However, such a modification can have a large (usually negative)
impact on the mathematical analysis of the model. For example if the diffusion
term took the form −B(∆B) − (∆B)B (as suggested e.g. in [53]) then it would be
unclear whether it would be even possible to define such a term in a reasonable
way (B is not twice differentiable, in general). Another possibility is to consider
− div(β(∇B)∇B), where β satisfies certain growth restrictions, similarly as for
the p-Laplacian problems (see [42]). On the other hand, the obvious advantage of
D is that it is linear, which is preferred both physically (for easy interpretation)
and mathematically: we can always assign a weak sense to a Laplacian and we
can easily identify the weak limit, which is not the case for non-linear problems.

Presence of products of the type ∇vB in (1.4) suggests that we are considering
a rate-type model, where an objective derivative of B, defined by

◦
B = ∂tB + v · ∇B − (WvB − BWv) − a(DvB + BDv),

is used. Here on the right hand side, the first two terms correspond to the usual
convected time derivative, while the third term is needed to ensure the material
frame indifference of

◦
B (see Chapter 2 for more details). The case a = 1 corre-

sponds to the upper convected Oldroyd derivative (cf. [61]), the case a = 0 yields
the corrotational Jaumann-Zaremba derivative (see [73]) and the case a ∈ [−1, 1]
gives the class of Gordon-Schowalter derivatives (cf. [36]). The case a = 0 is much
easier to handle mathematically (since the products of the type ∇vB disappear
upon testing (1.4) with B), while the case a = 1 seems to be the correct choice
from the physical point of view. We wish to point out that in our analysis we

7



place no restriction on parameter a.
The equation (1.5) governs the evolution of temperature in the moving fluid.

Its particular form (1.5) which is considered in this work deserves some clarifica-
tion. If we compare it to the temperature equations derived in [40] or [53], our
form (1.5) is much simpler. This is a consequence of the fact that the underlying
Helmholtz free energy of the system (1.2)–(1.7) is chosen as

ψ(θ,B) = −cvθ(ln θ − 1) + µθ(trB − d− ln detB). (1.9)

In particular, the shear modulus takes the linear form µθ, where µ > 0 is constant.
Hence, we also obtain a linear relation between the internal energy and temper-
ature: e = cvθ, where the constant cv > 0 is the heat capacity. On the other
hand, the constitutive equation (1.8) for entropy η is slightly more complicated
than it would be in the case of constant shear modulus. A similar model in-
cluding the assumption (1.9) is used in [65, p. 379] (and in follow-up works) to
model certain polymer melts. Nevertheless, we are aware that the assumption on
the linearity of shear modulus with respect to the temperature should be relaxed
in general (cf. [40, Sect. 2]). This however, would lead to many other compli-
cations in the mathematical analysis of the model that would obscure the other
ideas in this thesis. Thus, we avoid this generalization for now, although in Chap-
ter 2 we derive the model for as general ψ as possible, which opens the door for
future studies. We also remark that the existence analysis for a similar model
with general shear modulus is appearing soon in [20], but with a different sim-
plification. The reduction, which occurs if e = cvθ, is not the only reason why
we choose (1.9) to work with. The other reason is that in the balance equations
(1.3) and (1.5), the terms div(θB) and θB ·Dv appear, respectively. These terms
are quite irregular from the point of view of a priori estimates and subsequent
analysis. Moreover, the term div(θB) on the right hand side of (1.3) introduces an
unavoidable coupling to the rest of the system. These are the main mathematical
issues which occur also in the case of general shear modulus (cf. [20]). Therefore,
the model (1.2)–(1.7), while simpler in structure, really seems as an appropriate
“toy-problem” for the analysis of models with general shear moduli.

The expression θB · Dv appears in (1.5) as a consequence of the laws of ther-
modynamics. It is thus surprising that this term is sometimes omitted even in
some recent works on viscoelastic fluids (see [40] for more details). It can be
seen in Chapter 3 that this term is by far the most difficult to define by using
only the a priori estimates that can be derived for the system (1.2)–(1.7). For
this reason, at some point, we abandon (1.5) completely and replace it by two
inequalities. First one is the global version of the total energy balance (1.6).
Second one is the balance of entropy (1.7). This way, we avoid mathematical
difficulties connected with (1.5), while still obtaining physically relevant solution.
We thus see that the actual form of the temperature equation is not so important
for the analysis. While we use (1.5) in the construction of our weak solution
(which might be impossible in the case of non-linear shear modulus), we may
choose not to do so. Indeed, it is possible to use the balance of internal energy
instead, which always has a simpler structure (see e.g. [20]). However, this brings
other technical difficulties, which we want to avoid here.
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1.3 Isothermal case
In relation to the model introduced above, let us now describe the result in Chap-
ter 5 which concerns only the isothermal case and in a slightly different setting. If
the temperature is constant, then the equations (1.5), (1.7) are trivially satisfied
and it is enough to work with the system (1.2)–(1.4). Moreover, motivated by
the structure of the original Oldroyd-B and Giesekus models, we forbid the non-
standard growth of the term

δ(θ)γ(|B − I|)(B − I) and replace it by δ1(B − I) + δ2(B2 − B), δ1, δ2 ≥ 0.

Furthermore, the coefficient γ (which, in a sense, improves the mathematical
properties of the system) now plays a different role: it is merely a constant sat-
isfying γ ∈ (0, 1). Finally, we also consider Navier-slip boundary conditions for
the velocity (which seem to be physically appropriate and also can approximate
the no-slip boundary condition). Thus, the final form of system studied in Chap-
ter 5 is:

div v = 0, (1.10)
∂tv + v · ∇v − ν∆v + ∇p

= 2µa div((1−γ)(B − I) + γ(B2−B)) + f ,
(1.11)

∂tB + v · ∇B + δ1(B − I) + δ2(B2 − B) − λ∆B
= WB − BW + a(DvB + BDv), (1.12)

in Q with boundary conditions1

v · n = 0, −σvτ =
(︂(︂

2νDv + 2µa(1−γ)(B − I) + 2µaγ(B2 − B)
)︂

n
)︂

τ
,

n · ∇B = 0,

on (0, T ) × ∂Ω and with the initial conditions

v(0, ·) = v0, B(0, ·) = B0 in Ω.

Note that compared to (1.4), the equation (1.11) has a different right hand side.
In terms of the elastic part of the Cauchy stress tensor, we replaced

Telastic = 2µaθB

by
Telastic = 2µa(1 − γ)(B − I) + γ(B2 − B).

It is shown in Chapter 5 that this modification is a direct consequence of the fol-
lowing definition of Helmholtz free energy:

ψ = µ((1 − γ)(trB − d− ln detB) + 1
2γ|B − I|2).

If we compare this to (1.9), the crucial difference is that for γ > 0, the term
1
2 |B − I|2 appears. It turns out that this term can be physically well justified
and improves mathematical properties of the system (1.10)–(1.12) significantly,
compared to the case γ = 0.

1The subscript denotes the tangential part of a vector, i.e., uτ = u − (u · n)n = n × u × n.
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To summarize: In both isothermal and non-isothermal models introduced
above, the main obstacle for an successful analysis of these models are terms
coming from the objective derivative, such as B∇v. In both cases, to over-
come the lack of regularity to define B∇v, we use the (material) parameter γ.
In the non-isothermal case, the coefficient γ improves the energy dissipation of
the model. On the other hand, in the isothermal case, the parameter γ is used
to improve the energy storage mechanism (far away from the rest state).

1.4 Our goal
We aim to prove that the system of equations (1.2)–(1.7) has a solution. Thus, we
want to make clear that this thesis is concerned primarily with the mathematical
analysis of the corresponding model and we do not venture too deep into physical
discussions, nor we adhere to some particular physical notation. For this we refer
the reader to classical works by Truesdell, Noll and Rajagopal [69], [70]. There
are also many articles on the derivation of the models of viscoelastic fluids even
in the non-isothermal case already. It seems however, that any kind of analysis of
these models falls very much behind. This thesis should at least partially fill this
gap. Nevertheless, some physical considerations are applied in the Chapter 2 to
derive the studied model properly. This means that we want our model to obey
all the natural physical and thermodynamical principles as there is no reason
why not to do so. Also, it turns out that it is actually useful in the analysis to
know the way in which the model was derived. In particular, in connection with
viscoelastic fluids, it is advantageous to determine the Helmholtz free energy
corresponding to the system. Indeed, this functional characterizes the way in
which the fluid stores the mechanical energy.

The mathematical analysis in this work is solely the existence analysis, i.e.,
finding a suitable notion of a solution to our problem and proving that such
a solution exists. This is a fundamental question which should be always resolved
first, before any kind of further (numerical) analysis is executed (in practice, it is
usually the other way around). An appropriate existence theory indicates what
is the minimal regularity that we can expect from the solution. On the other
hand, we do not attempt to answer the question of uniqueness of our solution
as this problem is notoriously difficult already for the Navier-Stokes (or Euler)
equations (see [72]). In fact, the recent result [10] for the Navier-Stokes equations
implies that the uniqueness fails if the class of solutions where it is studied is too
broad, broader than the Leray-Hopf class (cf. [48]). This suggests that one should
rather aim to construct a weak solution satisfying as many physical principles as
possible and hence, try to narrow down the class of uniqueness. This is precisely
our philosophy in this work.

1.5 State-of-the-art existence results
Regarding the existence analysis of a viscoelastic fluid model including the full
temperature evolution, there is an upcoming study [20]. There the authors show
global and large-data existence of a weak solution to a rate-type incompressible
viscoelastic fluid model with stress diffusion under the simplifying assumption
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that B = bI. This assumption leads to annihilation of irregular terms com-
ing from the objective derivative and it also simplifies the momentum equation,
where the coupling to the rest of the system is realized only via temperature and
elastic stress-dependent viscosity. Other than that, to the author’s best knowl-
edge, there is no existence theory in a setting that would be of similar generality
as considered in this thesis. Thus, here, for the first time, we provide an exis-
tence analysis for a viscoelastic fluid model that is coupled with a full evolution
of temperature and that takes into account all components of the extra stress
tensor. Moreover, the equation for the temperature that we consider is derived
from fundamental thermodynamical laws (similarly as in [20], [40], [53]) and con-
sequently, the heating originates from both the viscous and elastic forces. Also,
we would like to point out that the majority of material coefficients of the model
are allowed to be temperature dependent here. Although we place some restric-
tions on the growth of these coefficients, these are only asymptotic and therefore
irrelevant from the physical point of view. Furthermore, the model considered
here has the property that the evolution of the temperature can not be decoupled
from the rest of the model even in the case of constant material coefficients.

Even if we confine to a much simpler class of isothermal viscoelastic models,
the existence theory there is far from being complete. Although there are several
relevant global-in-time existence results for large data, in most cases, they are
restricted in some way. For example, in [49] the authors provide an existence
theory for a model with the corrotational Jaumann-Zaremba derivative (the case
a = 0). This case is much easier than for the other choices of a since the corrota-
tional part drops out upon multiplication by any matrix that commutes with B.
Moreover, it seems that the physically preferred case is a = 1, which corresponds
to the Oldroyd derivative (see [57], [55], [56], [63] or [64]). Then, the follow-up
of this is [59], where the author claims to prove existence of a weak solution to
FENE-P, Giesekus and PTT viscoelastic models. However, in these works it is
only shown that certain defect measures of the non-linear terms are compact.
Furthermore, in the scalar case, that is if B = bI, we refer to [19] (and [11]
in the compressible case) for an analysis of such models. In the two-dimensional
case, existence and regularity results can be found in [25]. An existence theory for
related viscoelastic models (Peterlin class) was developed, e.g., in [50]. However,
for these models, the energy storage mechanism depends only on the spherical
part of the extra stress, which is a major simplification compared to our case.
A notable exception is the thesis [43], where the author obtains a global weak
solution to an Oldroyd-like diffusive model under certain growth assumptions on
the material coefficients. Furthermore, there are existence results for viscoelastic
models involving various approximations that improve properties of the system,
see e.g. [5] or [42]. Finally, the forthcoming article [6] (in Chapter 5) contains
the existence theory for viscoelastic diffusive Oldroyd-B or Giesekus models. This
result, however, relies on a certain physical correction of the energy storage mech-
anism away from the stress-free state and thus improving the a priori estimates of
the system. There are also existence results that are of local nature or for small
(initial) data. Again, we stress out that all these results concern only the isother-
mal case. Local-in-time existence of regular solutions to a viscoelastic Oldroyd-B
model without diffusion was shown in [38]. It is also proved there that for small
data there exists a global in time solution. For the steady case of a generalized
Oldroyd-B model with small and regular data, see e.g. [3].
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1.6 Basic notation
In this section, we introduce the basic notation which is used throughout the the-
sis, but might be regarded as non-standard.

We distinguish scalar, vector and tensor quantities by using different fonts:
a for scalars, a for vectors and A for tensors (matrices). The symbol “⊗” denotes
an outer product while “·” is used to denote an inner product. We do not use
any additional notation for vector or tensor inner or outer products as this is
clear from context. If there is any doubt, we use a general rule that the lower
rank of the two objects in the inner product determines how many indices are con-
tracted. For example, the product (B⊗v) ·∇A is understood as ∑︁i,j,k Bijvk∂kAij,
while the product v · ∇B means ∑︁i vi∂iB and the product ∇B · A translates as∑︁

jk ∇BjkAjk (every rank-3 tensor which we encounter decomposes naturally in
a vectorial and matrix part).

By Rd×d
sym we denote the set of real symmetric d× d matrices. Furthermore, by

Rd×d
>0 we denote the subset of Rd×d

sym which consists of positive definite matrices,
i.e., those matrices A satisfying

Az · z > 0 for all z ∈ Rd \ {0}.

The symbol |A| is used to denote the Euclidian (or Frobenius) matrix norm,
defined by

|A| =

⌜⃓⃓⃓
⎷ d∑︂

i=1

d∑︂
j=1

(A)2
ij.

Such a particular choice (all matrix norms are equivalent since Rd×d is a finite
dimensional space) is convenient in our computations. Note also that this norm
satisfies the frequently used sub-multiplicative property in the form

|AB| ≤ |A||B| for all A,B ∈ Rd×d

due to the Cauchy-Schwarz inequality, see [39, Sect. 5.6, 2nd example] for details.
Further, by trA, we denote the trace of A, defined as

trA =
d∑︂

i=1
(A)ii

and detA stands for the determinant of A.
The symbols C, Ci, i ∈ N, are systematically used in estimates to denote

generic positive constants. Their value may change during computations, but
whenever such a constant depends on some important quantity ω, we indicate
it as C(ω). The symbol ↪→ always denotes a continuous embedding: If X ↪→ Y
for some normed vector spaces X, Y , then this means precisely that X ⊂ Y and
there exists a constant C > 0, such that

∥u∥Y ≤ C∥u∥X for all u ∈ X.

Moreover, we write X d
↪→ Y if X ↪→ Y and X is dense in Y .
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2. Physical meaning of the model
In this chapter, we derive system (1.2)–(1.7) from physical principles. The start-
ing point are the balance laws of: mass, linear & angular momenta, energy and
entropy. In fact, these laws can be recognized directly in (1.2), (1.3), (1.5) and
(1.7) (see below). These general laws do not carry any information about proper-
ties of the material, which we are modelling. This is the point where the consti-
tutive theory comes into the game. This theory brings certain restrictions on how
the stress can depend on strain (or vice versa), how the temperature changes may
induce the flux of heat and so on. In fact, whole equation (1.4) can be perceived
as a constitutive relation. In a broader sense, one could also include the choice
of boundary conditions into the constitutive theory, but we do not discuss this
possibility as such a generality is not the primary goal of this work. Generally
speaking, it is a difficult task to determine the right constitutive relations for
a given material, especially for viscoelastic fluids. Though one may be able to
simply fit some experimental data, this still might give no clue about character-
istic properties of the studied material if it is very complex. On the other hand,
if one tries to derive the constitutive laws from some additional information such
as a fluid microstructure, then the transition back to a macrostructure is usually
very difficult or impossible, again due to the complexity of the material. However,
for us, these are not relevant issues since we are interested only in the resulting
(macroscopic) viscoelastic models and their mathematical analysis. Thus, we ac-
tually want to derive as general class of viscoelastic models as possible, which
contains the well established physical models as special cases. Then, the question
is, what are the minimal requirements which every reasonable model should meet.
This is the point, where the laws of thermodynamics can be applied. Namely,
the second law of thermodynamics tells us that whatever happens in our isolated
container filled with fluid, the total entropy can not decrease. This principle
proves very useful in nailing down the right constitutive relations, but is not suf-
ficient by itself. Returning to the one-dimensional analogues from Figure 1.1,
one can realize that mechanical energy in a viscoelastic fluid is managed in two
different ways: it can be either stored for later as a spring does, or it can be dis-
sipated (and thus converted to different forms) as in a dashpot. Thus, these two
mechanisms should be carefully specified: we do so by writing explicit formulas
for the Helmholtz free energy ψ and for the production of entropy ξ, respectively.
We refer to [63] and [64] for a detailed treatment and further ideas involved in
this approach.

Strictly speaking, this chapter contains no new results as there are already
many studies in which even more general models are derived (see, e.g., [27], [40]
or [53]). Nevertheless, the computations made in this chapter should provide
an useful insight into the analysis that is done in Chapter 3. Indeed, one can
recognize quite easily the quantities that should be a priori under control (in our
case this is the entropy production and the total energy). Moreover, one can also
see very clearly which test functions should be used to draw basic information
from the system. On the other hand, nothing in this chapter is really necessary
to understand the analysis in Chapter 3, therefore it is possible to skip it.

First, by keeping ψ in an implicit form, we derive viscoelastic models that are
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considerably more general than the model studied in Chapters 1 and 3. The au-
thor hopes to provide an existence analysis for these models as well in forthcoming
articles. Then we obtain the model (1.2)–(1.7) by an appropriate choice of ψ.

2.1 Balance equations
In Chapter 1 we stated the system (1.2)–(1.7) without explaining the physical
meaning of the quantities involved. Therefore, let us first make an overview of
all quantities that have clear physical interpretation:

v flow velocity,
p pressure,
T Cauchy stress tensor,
B elastic stress tensor,
θ temperature,
e internal energy,

je flux of internal energy,
E total energy (sum of e and 1

2 |v|2),
ψ Helmholtz free energy,
η entropy,

jη entropy flux,
ξ production of entropy,
µ coefficient of shear modulus,
cv heat capacity,
ν kinematic viscosity,
κ thermal conductivity,
λ stress diffusion coefficient,
f external body forces.

Note that we did not include the density ρ of the fluid in the list. Since we are
considering only a homogeneous incompressible fluid, the density ρ is constant
and thus we can renormalize the other parameters in a way that ρ = 1.

In this chapter, to simplify the notation, we omit the dependence of the mate-
rial parameters on the temperature although it is always assumed. Furthermore,
we denote the material time derivative by overset “ • ”, i.e., we set

•
u = d

dtu = ∂tu+ v · ∇u.

Then, the local balance equations take the form:

0 = div v balance of mass, (2.1)
•
v = divT + f , T = TT balance of lin. & ang. momenta, (2.2)
•
e = T · Dv − div je balance of internal energy, (2.3)
•
E = div(Tv − je) + f · v balance of total energy,

•
η = ξ − div jη balance of entropy. (2.4)
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We may notice that the system (2.1)–(2.4) contains some quantities that are not
explicitly seen in the system (1.2)–(1.7), namely, these are T, e, je, jη. Vice versa,
the system (2.1)–(2.4) does not explicitly mention B or p. To see the connection
between these systems, we need to prescribe constitutive relations.

2.2 Constitutive relations
Let us start by specifying the Helmholtz free energy ψ, which is a function of θ
and B. In specific physical settings, the function ψ will depend only on certain
quantities formed from B (due to material frame indifference and also due to
symmetry of B). For example, if the fluid is isotropic, then it is known that ψ is
a function of θ and only of eigenvalues of B, or, equivalently, there exists a function
ψ such that ψ = ψ(θ, trB, trB2, . . . , trBd). Nevertheless, this information is not
needed in what follows and thus, we write simply ψ = ψ(θ,B). We suppose that
ψ = ψ(θ,B) : (0,∞) × Rd×d

>0 → R is a twice differentiable function which, for all
θ > 0, satisfies:

∂2
θθψ(θ,B) < 0 for all B ∈ Rd×d

>0 , (2.5)
∂2
BBψ(θ,B)A · A ≥ 0 for all B ∈ Rd×d

>0 and every A ∈ Rd×d
sym, (2.6)

∂Bψ(θ,B) · (B − I) ≥ 0 for all B ∈ Rd×d
>0 , (2.7)

∂Bψ(θ,B)B − B∂Bψ(θ,B) = 0 for all B ∈ Rd×d
>0 , (2.8)

ψ(θ,B) → ∞ as detB → 0+ or |B| → ∞. (2.9)

The assumptions (2.5) and (2.6) concern strict concavity and convexity with
respect to θ and B, respectively. Then, properties (2.6) and (2.7) together imply
that, for all θ > 0, ψ(θ, ·) has a local minimum at I. Indeed, since Rd×d

>0 is
an open set, if we take any A ∈ Rd×d

sym, then we can choose ε > 0 so small that
I + εA ∈ Rd×d

>0 . Then, on setting B = I + εA in (2.7) and dividing by ε, we get

∂Bψ(θ, I + εA) · A ≥ 0.

Thus, using the continuity of ∂Bψ(θ, ·), we can take the limit ε → 0+ and obtain
∂Bψ(θ, I) · A ≥ 0. But since A ∈ Rd×d

sym was arbitrary, we obviously get

∂Bψ(θ, I) = 0,

which together with (2.6) proves the claim. Thus, no mechanical energy is stored
if B = I. Actually, the whole term

∂Bψ(θ,B) · (B − I)

is precisely one of the entropy producing mechanisms, as we shall see below. Thus,
from this point of view, the assumption (2.7) is natural and we also see that if
B = I, there is no production of entropy due to the elastic effects. Next, the as-
sumption (2.8) means simply that the matrices ∂Bψ(θ,B) and B commute. Fi-
nally, assumption (2.9) penalizes certain unphysical deformations such as a com-
pression of the material to a point or an infinite expansion. The reasons why
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all these assumptions are needed become clearer throughout the thesis. Once we
agree that the function ψ is known, we can define the entropy as

η = η(θ,B) = −∂θψ(θ,B), (2.10)

according to the first law of thermodynamics. Then, the internal energy e is
defined by

e = e(θ,B) = ψ(θ,B) + θη(θ,B), (2.11)
using another fundamental identity of thermodynamics. In the literature dealing
with the derivation of temperature dependent viscoelastic models it is common to
assign some particular function to ψ and only after that proceed with the deriva-
tion of the model. Definitely one of the reasons for this is that a particular form
of ψ helps to identify an explicit form of the equation for the temperature, which,
otherwise, is only implicitly encoded in (2.4) and (2.10) as

− d
dt(∂θψ) = ξ − div jη. (2.12)

For us, this approach makes no sense since in the analysis we need to avoid
the temperature equation anyway (due to its possibly ill-posed terms). Thus, it
turns out that the particular form of the temperature equation has very little
importance for the mathematical analysis of the model. Moreover, by keeping
the general form of ψ, one obtains an entire class of models, where it is easy to
trace the effect of ψ on the resulting system of equations.

We proceed with the constitutive equations for quantities other than ψ. We
make the following choice:

T = −pI + 2νDv + 2aµB∂Bψ, (2.13)
0 =

◦
B + δγ(B − I) − div(λ∇B), (2.14)

◦
B =

•
B − (WvB − BWv) − a(DvB + BDv), (2.15)

je = −κ∇θ + λ(θ∂2
θBψ − ∂Bψ) · ∇B, (2.16)

jη = −κ∇ ln θ + λ∂2
θBψ · ∇B. (2.17)

Let us now comment on these relations. In (2.13) we see clearly how the Cauchy
stress tensor decomposes into a “viscous” and an “elastic” part, as was mentioned
in the introduction. The equation (2.14) is a variant of diffusive Oldroyd-B model
with enhanced growth given by γ and with a generalized objective derivative

◦
B

defined by (2.15). We recall that we do not place any restriction on a ∈ R and
that

◦
B =

•
B − ∇vB − B(∇v)T if a = 1,

which coincides with the upper convected Oldroyd derivative, that seems to have
a special physical meaning, as mentioned before. The need for such a kind of
derivative stems from the fact that the material time derivative

•
B alone is not

an objective physical quantity. Here, by objectivity, we mean invariance with
respect to a time dependent rotation (and translation) of an observer. While
the quantities B, Dv are objective, the quantity

•
B must be corrected by WvB −

BWv, for example. Next, recent studies (such as [30]) suggest that the presence
of the diffusion term in (2.14) is based on solid physical grounds. We remark
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that it appears in (2.14) in a favourable linear form, although it is theoretically
possible to consider also non-linear dependencies. Finally, the equation (2.16)
represents a kind of a generalized Fourier’s law.

2.3 Fulfilment of the laws of thermodynamics
Note that in the previous section we did not specify ξ. The reason is that this
quantity can now be computed from (2.1) and (2.13)–(2.17) using the basic ther-
modynamical identities (2.10) and (2.11). Indeed, taking the material time deriva-
tive of (2.11) and using (2.10), we obtain

•
e = ∂Bψ ·

•
B + ∂θψ

•
θ +

•
θη + θ

•
η = ∂Bψ ·

•
B + θ

•
η.

Then, we use the above identity in (2.3) and further use the identities (2.15),
(2.4) to evaluate the material time derivatives of B, η, and use the commutativity
property (2.8) to deduce

T · Dv − div je = •
e =

•
B · ∂Bψ + θ

•
η

=
◦
B · ∂Bψ + ((WvB − BWv) + a(DvB + BDv)) · ∂Bψ + θξ − θ div jη

=
◦
B · ∂Bψ + Wv · (∂BψB − B∂Bψ) + aDv · (∂BψB + B∂Bψ) + θξ − θ div jη

=
◦
B · ∂Bψ + 2aB∂Bψ · Dv − θ div jη + θξ.

From this, we easily compute

θξ = (T − 2aB∂Bψ) · Dv −
◦
B · ∂Bψ + div(θjη − je) − ∇θ · jη, (2.18)

or alternatively

ξ = T − 2aB∂Bψ
θ

· Dv −
◦
B · ∂Bψ

θ
+ div

(︄
jη − je

θ

)︄
− ∇ ln θ · je

θ

after dividing by θ. Finally, in (2.18) we use the constitutive relations (2.13),
(2.14), (2.16) and (2.17). This way, using also the constraint 0 = div v = I · Dv,
we obtain

θξ = 2ν|Dv|2 + δγ(B − I) · ∂Bψ − div(λ∇B) · ∂Bψ
+ div(λ∂Bψ · ∇B) + κθ|∇ ln θ|2 − λ∂2

θBψ · (∇θ · ∇B)
= 2ν|Dv|2 + κθ|∇ ln θ|2 + δγ(B − I) · ∂Bψ + λ∂2

BBψ∇B · ∇B.
(2.19)

Now it is clear that the assumptions (2.6) and (2.7) are needed to get

ξ ≥ 0, (2.20)

which encodes local version of the second law of thermodynamics. Indeed, inte-
gration of (2.4) over Ω together with the boundary conditions

n · ∇θ = 0, and n · ∇B = 0

and (2.20) yield
d
dt

∫︂
Ω
η ≥ 0.

17



Thus, in this section, we have verified that the fundamental laws of thermo-
dynamics (2.11), (2.10) and (2.20) are satisfied provided that the participating
physical quantities obey the constitutive relations (2.6), (2.7), (2.8) and (2.13)–
(2.17).

Based on the method developed in [63], the computations above may serve as
a justification of the selected constitutive relations. Indeed, this is best seen if we
start the derivation again, but now we replace the information (2.13)–(2.17) by
the single assumption

θξ = 2ν|Dv|2 + κθ|∇ ln θ|2 + δγ(B − I) · ∂Bψ + λ∂2
BBψ∇B · ∇B. (2.21)

With some effort, such an assumption can be justified: The first two terms cor-
respond to an usual Navier-Stokes-Fourier fluid, the third one is common for all
Oldroyd-B type models, while the last one generates the stress diffusion effect.
We remark that it is also possible to interpret the stress diffusion as a conse-
quence of a non-standard energy storage mechanism; however, this would yield
a different class of models (see [53] for derivation and also [19] for a corresponding
analysis in a simplified setting). Note that, so far, we only specified two scalar
functions: ψ (though implicitly) and ξ. This should be, in principle, enough as
ψ tells us how the fluid stores the energy, while ξ describes its dissipation. Then,
we can again use the balance equations (2.1)–(2.4) to derive (2.18). Thus, we
have two different equations for ξ. The idea now is to separate the independent
mechanisms hidden in our system and to deduce the constitutive relations by
comparing the equations for ξ. To this end, we first trace back the computation
in (2.19) to find that (2.21) is equivalent to

θξ = 2ν|Dv|2 + δγ(B − I) · ∂Bψ − div(λ∇B) · ∂Bψ + div(λ∂Bψ · ∇B)
+ κθ|∇ ln θ|2 − λ∂2

θBψ · (∇θ · ∇B)
= 2νDv · Dv + (δγ(B − I) − div(λ∇B)) · ∂Bψ + div(λ∂Bψ · ∇B)

+ ∇θ · (κ∇ ln θ − λ∂2
θBψ · ∇B).

Now by comparison of this with (2.18), which is

θξ = (T − 2aB∂Bψ) · Dv −
◦
B · ∂Bψ + div(θjη − je) − ∇θ · jη,

we can precisely read the constitutive relations (2.13)–(2.17). However, this final
step is, of course, ambiguous and must be seen only as a motivation for the con-
stitutive relations. First of all, one has to assume that the terms in ξ can really
be separated so that they represent independent entropy producing mechanisms.
Then, even if we assume this and obtain, for example, the identity

2ν|Dv|2 = (T − 2aB∂Bψ) · Dv,

then this only implies that

T = −pI + 2νDv + 2aB∂Bψ + A − A · Dv

|Dv|2
Dv,

where A can be any matrix. Thus, such a derivation can be unambiguous only if
we introduce further physical assumptions (such as the material frame indifference
or the maximisation of the entropy production principle, see [64]).

Finally, we remark that this is, of course, not the only way how to derive
(non-isothermal) viscoelastic models. For different or earlier approach, we refer
to [47] or [71] and references therein.
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2.4 Complete system of equations
Here we put together the constitutive assumptions with the balance laws and
deduce the final appearance of the system of partial differential equations. We
still keep the general form of ψ, which could be useful for future studies of similar
models.

By simply plugging (2.13)–(2.17) into (2.1)–(2.4) and rearranging the terms,
we obtain the system

div v = 0,
∂tv + v · ∇v − div(2νDv) + ∇p = div(2aB∂Bψ) + f ,

∂tB + v · ∇B + δγ(B − I) − div(λ∇B)
= WvB − BWv + a(DvB + BDv),

∂te+ v · ∇e− div(κ∇θ) + div(λ(θ∂2
θBψ − ∂Bψ) · ∇B)

= 2ν|Dv|2 + 2aB∂Bψ · Dv,

∂tE + v · ∇E − div(κ∇θ) + div(λ(θ∂2
θBψ−∂Bψ) · ∇B)

= div(−pv + 2ν(Dv)v + 2a(B∂Bψ)v) + f · v,

∂tη + v · ∇η − div(κ∇ ln θ) + div(λ∂2
θBψ · ∇B)

= 2ν
θ

|Dv|2 + κ|∇ ln θ|2 + δγ

θ
(B − I) · ∂Bψ + λ

θ
∂2
BBψ∇B · ∇B,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.22)

where e, E, η are given by

e = ψ(θ,B) − θ∂θψ(θ,B),
E = 1

2 |v|2 + cvθ,

η = −∂θψ(θ,B)

and the functions v, p, B, θ are the unknowns of (2.22). An explicit equation for
the temperature can be derived from (2.12) by using the chain rule and (2.14) to
substitute for

•
B.

Though it would be tempting to try to do an existence analysis for the sys-
tem (2.22) with a general ψ satisfying (2.5)–(2.9), it is not done in this work.
Instead, we choose a canonical representative for ψ, which makes the existence
analysis of Chapter 3 more illuminating. This way, we do not have to refer to
the assumptions (2.5)–(2.9) all the time as they are implicitly encoded in the sys-
tem (2.22). Moreover, the assumptions (2.5)–(2.9) might not be sufficient for
the existence theory, but they are definitely necessary, should the second law of
thermodynamics hold.

A common choice for the Helmholtz free energy (see e.g. [53]) is

ψ(θ,B) = ψ0(θ) + µψ2(B), (2.23)

where µ > 0 is a constant. In this setting, the coupling in the system (2.22) is
very weak. Indeed, one can get the a priori estimates for v and B without using
the equation for internal energy. Also, since ∂2

θBψ = 0, we see that the entropy
is just a function of temperature and also that the fourth term in the entropy
equation vanishes. Consequently, the estimates for temperature are then rather
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standard and one can follow the classical theory for Navier-Stokes-Fourier system,
compare also with [17]. Also, the model (2.23) is oversimplified from the point
of view of physics since one would like to allow a non-constant coefficient µ
depending on the temperature, i.e.,

ψ(θ,B) = ψ0(θ) + µ(θ)ψ2(B). (2.24)

Then the analysis of (2.22) indeed becomes a challenging problem for several
reasons, as can be seen in [20], where the authors treated such system under
the additional hypothesis B = bI. One of the difficulties is that if one starts with
construction of the approximate solutions using the equation for e (which seems
to be the only way if we want to use a constructive approximative scheme), then
at some point it is needed to invert the relation between the temperature and
the internal energy (as the material coefficients are temperature dependent). To
do so, one can introduce an approximation and make the dependence of e on θ
linear near zero as it is done in [20]. Inspired by this idea, but not going into such
technicalities now, let us make a compromise between (2.23) and (2.24) and set

ψ(θ,B) = ψ0(θ) + µθψ2(B),

where µ > 0 is a constant. We recall that such a model was considered in [65],
for example. Further, we consider the common choice of the functions ψ0, ψ2 (see
e.g. [27]). Thus, our final choice of ψ for analysis of the next chapter is

ψ(θ,B) = −cvθ(ln θ − 1) + µθ(trB − d− k ln detB), (2.25)

where, however, we set k = 1 to simplify the notation (as long as k > 0, this
parameter does not affect the subsequent analysis). Note that in this case, we
have

η(θ,B) = −∂θψ(θ,B) = cv ln θ − µ(trB − d− ln detB),

and thus
e(θ,B) = ψ(θ,B) + θη(θ,B) = cvθ. (2.26)

Also, we can easily verify that ψ satisfies (2.5)–(2.9). To this end, we apply (4.40)
and observe that, for all θ > 0 and B ∈ Rd×d

>0 , we have

∂2
θθψ(θ,B) = −cv

θ
< 0, ∂Bψ(θ,B) = µθ(I − B−1)

and, using also (4.38), (4.39), we obtain

∂2
BBψ(θ,B)A · A = −µθ∂B(B−1)A · A = µθB−1AB−1 · A

= µθ|B− 1
2AB− 1

2 |2 ≥ 0.
(2.27)

Finally, upon inserting (2.25), (2.26) into (2.22), redefining the pressure p by

p1 = p + 2aµθ,

noting that
θ∂2

θBψ − ∂Bψ = 0,
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using
(B − I) · ∂Bψ(θ,B) = µθ(B − I) · (I − B−1)

= µθB
1
2 (B 1

2 − B− 1
2 ) · B− 1

2 (B 1
2 − B− 1

2 )
= µθ|B

1
2 − B− 1

2 |2

and also

∂2
BBψ(θ,B)∇B · ∇B = µθB−1∇BB−1 · ∇B = µθ|B− 1

2 ∇BB− 1
2 |2,

we obtain (1.2)–(1.7) in the form

div v = 0,

∂tv + v · ∇v − div(2νDv) + ∇p1 = div(2aµθB) + f ,

∂tB + v · ∇B + δγ(B − I) − div(λ∇B) = WvB − BWv + a(DvB + BDv),

cv∂tθ + cvv · ∇θ − div(κ∇θ) = 2ν|Dv|2 + 2aµθB · Dv,

∂tE + v · ∇E − div(κ∇θ) = div(−pv + 2ν(Dv)v + 2aµθBv) + f · v,

∂tη + v · ∇η − div(κ∇ ln θ − µλ∇(trB − d− ln detB))
= 2ν

θ
|Dv|2 + κ|∇ ln θ|2 + µδγ|B

1
2 − B− 1

2 |2 + µλ|B− 1
2 ∇BB− 1

2 |2.
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3. Mathematical theory
In this chapter, we investigate the system (1.2)–(1.7), that was introduced in
Chapter 1, from the analytical point of view. In particular, we discuss several
possibilities how to capture the temperature evolution and choose the one that
is most convenient for an existence analysis. Then we define the notion of suit-
able weak solution and verify that such a definition is meaningful. After that,
we state and prove our main result about existence of a suitable weak solution
to (1.2)–(1.7). Finally, we also determine what additional conditions are needed
for the fulfilment of local balances of total and internal energy.

3.1 Function spaces
First, let us introduce the function spaces used in the thesis and the correspond-
ing notation. If not stated otherwise, the set Ω ⊂ Rd is always an open bounded
set with a Lipschitz boundary (in the sense of [60, Sect. 2.1.1]). By Lp(Ω) and
W n,p(Ω), 1 ≤ p ≤ ∞, n ∈ N, we denote the usual Lebesgue and Sobolev spaces,
with their usual norms denoted as ∥·∥p and ∥·∥n,p, respectively. In certain situa-
tions, we use the notation ∥·∥p;Ω instead to clarify which domain is considered in
the norm. Further, if p > 1, we set W−n,p(Ω) = (W n,p′(Ω))∗, where p′ = p/(p−1),
n ∈ N, and the star symbol “∗” denotes the topological (continuous) dual space.
These Banach spaces are separable if 1 ≤ p < ∞ and reflexive if 1 < p < ∞ (see
e.g. [45, Ch. 2, 5] or [29, Corollary IV.8.2.]). Occasionally, we take advantage of
the uniform convexity of the spaces Lp(Ω), 1 < p < ∞, for this, we refer to [26,
Ch. 3]. Every uniformly convex Banach space X has the following property:

If {uk}∞
k=1 ⊂ X converges weakly to u ∈ X and if ∥uk∥X → ∥u∥X , then

uk → u strongly in X. We refer to this property as to the Radon-Riesz property
of X in the thesis.

We use the same notation for the function spaces of scalar-, vector-, or tensor-
valued functions. We do not specify the meaning of the duality pairing ⟨·, ·⟩,
since it is always clear from the context. For certain subspaces of vector valued
functions, we use the following notation:

D(Ω) =
{︂
w ∈ C∞(Ω), {w ̸= 0} is a compact set in Ω

}︂
,

Ddiv = {w ∈ D(Ω) : div w = 0 in Ω},

W 1,p
0,div = Ddiv

∥·∥1,p , W−1,p
0,div =

(︂
W 1,p′

0,div(Ω)
)︂∗
, 1 < p < ∞.

The standard inner product in L2(Ω) is denoted as (·, ·).
The Bochner spaces Lp(0, T ;X) with 1 ≤ p ≤ ∞ consist of strongly measur-

able mappings u : [0, T ] → X for which the norm

∥u∥LpX =

⎧⎨⎩
(︄∫︂ T

0
∥u∥p

X

)︄ 1
p

if 1 ≤ p < ∞;

ess sup
(0,T )

∥u∥X if p = ∞,

is finite. If X = Lq(Ω) or X = W k,q(Ω), with 1 ≤ q ≤ ∞, we shorten the notation
and use the symbols ∥·∥LpLq or ∥·∥LpW k,q , respectively, for corresponding norms.
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The space C([0, T ];X) contains continuous X-valued functions on [0, T ], i.e., such
mappings u : [0, T ] → X, for which

lim
t→t0

∥u(t) − u(t0)∥X = 0, for any t0 ∈ [0, T ].

This space is equipped with the norm

∥u∥CX = sup
t∈[0,T ]

∥u(t)∥X .

Furthermore, the space Cw([0, T ];X) ⊂ L∞(0, T ;X) denotes a space of weakly
continuous functions on [0, T ], i.e., for every u ∈ Cw([0, T ];X) and every g ∈ X∗

there holds
lim
t→t0

⟨u(t), g⟩ = ⟨u(t0), g⟩ for any t0 ∈ [0, T ].

We use certain Bochner spaces also for weakly differentiable mappings from
[0, T ] → X. For u ∈ L1(0, T ;X), the default meaning of the symbols u′ = d

dt
u =

∂tu is always the distributional derivative of u that coincides with an integrable
function. In other words, if there exists w ∈ L1(0, T ;Y ), where Y is a Banach
space satisfying X ↪→ Y , such that∫︂ T

0
wφ = −

∫︂ T

0
u∂tφ for all φ ∈ D(0, T ), (3.1)

then we say that ∂tu = w. In case that Y = X∗, it is assumed that X admits
the Gelfand triplet structure, i.e., that X is separable, reflexive and there exists
a separable Hilbert space H such that X d

↪→ H. Then, any element u ∈ X
belongs to H and thus defines a continuous linear functional fu on H by virtue
of the isomorphism

Φ : H → H∗, Φ(u) ↦→ fu = (u, ·)H .

Moreover, using continuity and density of the embedding X d
↪→ H, one can show

that
X

d
↪→ H = H∗ d

↪→ X∗

and that the map Ψ : X → X∗, u ↦→ fu is continuous and injective. In this sense
we interpret the embedding X d

↪→ X∗. Then, we define the space

W 1,p(0, T ;X) =
{︂
u ∈ Lp(0, T ;X); ∂tu ∈ Lp′(0, T ;X∗)

}︂
(3.2)

and equip it with the norm

∥u∥W 1,pX = ∥u∥LpX + ∥∂tu∥Lp′ X∗ .

We recall that, for any u ∈ W 1,p(0, T ;X), identity (3.1) can be rewritten (using
only the classical Lebesgue integral) as∫︂ T

0
⟨∂tu, g⟩φ = −

∫︂ T

0
(u, g)H∂tφ for all φ ∈ D(0, T ) and every g ∈ X,

see [74, Proposition 23.20]. Moreover, we also define the space C1([0, T ];X) as
the space of functions u such that u, ∂tu ∈ C([0, T ];X), where ∂tu now coincides
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with the classical derivative of u. For more details regarding the definition of
W 1,p(0, T ;X), we refer to [74, Ch. 23].

Suppose that X is a separable reflexive Banach space. The spaces Lp(0, T ;X),
W 1,p(0, T ;X) are separable if 1 ≤ p < ∞ and reflexive if 1 < p < ∞, see [74,
Propositions 23.2, 23.7]. These properties are used in Lemma 4.1, which is then
applied several times in the proof of our main result Theorem 3.2 below. More-
over, for 1 < p < ∞ and X separable, reflexive, we can make the identification

(Lp(0, T ;X))∗ = Lp′(0, T ;X∗), (3.3)

see [74, Convention 23.8].

3.2 System of equations and its variants
We recall that T > 0 and Ω is a domain in Rd with a Lipschitz boundary ∂Ω.
Then, we set Q = (0, T )×Ω. Assume that ν, γ, κ, δ, λ are real functions that are
continuous, positive, and with an appropriate growth near 0 and ∞ (specified in
the next section). Finally, let f , v0, B0 and θ0 be some appropriate data.

In the best case scenario, we would like to find a sufficiently regular triple
(v,B, θ) : Q → Rd × Rd×d

>0 × (0,∞) that solves the system

div v = 0, (3.4)
∂tv + v · ∇v − div(2ν(θ)Dv) + ∇p = 2aµ div(θB) + f , (3.5)

∂tB + v · ∇B + δ(θ)γ(|B − I|)(B − I) − div(λ(θ)∇B)
= WvB − BWv + a(DvB + BDv), (3.6)

cv∂tθ + cvv · ∇θ − div(κ(θ)∇θ) = 2ν(θ)|Dv|2 + 2aµ θB · Dv (3.7)

everywhere in Q = (0, T ) × Ω, T > 0, fulfils the boundary conditions

v = 0, n · ∇θ = 0, n · ∇B = 0 on (0, T ) × ∂Ω (3.8)

and satisfies the initial conditions

v(0) = v0, B(0) = B0, θ(0) = θ0 in Ω.

Moreover, we require that such a solution satisfies basic physical principles,
namely the conservation of total energy and the second law of thermodynam-
ics (at least in some weakened sense). As long as (v,B, θ) are so smooth that
every term in (3.4)–(3.7) is well defined and that (3.5) can be tested by v, one
can derive the local form of the total energy balance. Indeed, if we take the scalar
product of (3.5) with v and add the result to (3.7), we obtain

∂tE + v · ∇E − div(κ(θ)∇θ) = div(−pv + 2ν(θ)(Dv)v + 2aµθBv) + f · v. (3.9)

However, unless in some rather unrealistic setting, it is not known whether
the multiplication of (3.5) by v can be justified rigorously due to low regular-
ity of v, as can be seen already in the case of Navier-Stokes equations in three
dimensions. This issue can be overcome by enforcing validity of (3.9), i.e., sim-
ply by replacing (3.7) with (3.9). This has several positive side effects. Firstly,
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the term 2ν(θ)|Dv|2 (usually only an integrable quantity) is replaced by the term
2ν(θ)(Dv)v, whose integrability is always better. On the other hand, it is then
necessary to take care of the pressure, which appears explicitly in (3.9). This pro-
cedure was fully exploited in [12] in the case of the Navier-Stokes-Fourier system
with temperature, pressure and shear rate dependent coefficients. The second
benefit of (3.9) over (3.7) applies only in our case as it concerns the additional
term 2aµθB · Dv. We shall see later in this chapter that it may be impossible
to give a meaning to this term on the level of weak solutions (depending on
the growth of κ, γ and on B0). This is also the term which is very often omitted
in the “naive” approach to the temperature dependent viscoelastic models (see
the discussion in [40] and references therein). But we have seen in Chapter 2
that such a simplification is physically incorrect. Thus, the equation (3.9) really
seems as a suitable replacement for (3.7).

However, our solution concept defined below is so weak that even the term
2aµθBv (or κ(θ)∇θ) may not be integrable. Thus, in general, we need to avoid
(3.9) in its local form (as well as (3.7)). Instead, we only require that the total
energy of the whole fluid is conserved, i.e., we integrate (3.9) over Ω and, using
the integration by parts and boundary conditions (3.8), it reduces to

d
dt

∫︂
Ω
E =

∫︂
Ω

f · v. (3.10)

The equation (3.10) always makes sense for our weak solution and it plays an im-
portant role in the a priori estimates.

Since (3.10) is only an ordinary differential equation in time, we clearly need
to supplement our system with another information. This is the point where
the laws of thermodynamics come into play. In our case, these can be expressed
by

η = cv ln θ − µ(trB − d− ln detB), (3.11)

ξ = 2ν(θ)
θ

|Dv|2 + κ(θ)|∇ ln θ|2 + µδ(θ)γ(|B − I|)|B 1
2 − B− 1

2 |2

+ µλ(θ)|B− 1
2 ∇BB− 1

2 |2 ≥ 0,
(3.12)

where (3.11) is the definition of entropy in our model, while (3.12) expresses
the fact that the entropy of a closed system never decreases over time. These
quantities are related by the balance equation

∂tη + v · ∇η − div(κ(θ)∇ ln θ − µλ(θ)∇(trB − d− ln detB)) = ξ, (3.13)

which is added to our system and which can be derived from (3.6) and (3.7) as
follows. First, we multiply (3.6) by µ(I − B−1). To this end let us denote

ψe(B) = µ(trB − d− ln detB)

and compute the resulting terms separately. By (4.40) from Chapter 4, we have

∂ψe(B) = µ(I − B−1),

hence we can rewrite the first two terms as

µ(I − B−1) · (∂tB + v · ∇B) = ∂tψe + v · ∇ψe. (3.14)
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Next, relying on (4.34) and positive definiteness of B, we may write that

µ(I − B−1) · δ(θ)γ(|B − I|)(B − I)
= µδ(θ)γ(|B − I|)B− 1

2 (B 1
2 − B− 1

2 ) · B
1
2 (B 1

2 − B− 1
2 )

= µδ(θ)γ(|B − I|)|B 1
2 − B− 1

2 |2.

Further, utilizing (4.39), we get

−µ(I − B−1) · div(λ(θ)∇B) =
− div(µλ(θ)(I − B−1) · ∇B) − µλ(θ)∇B−1 · ∇B

− div(λ(θ)∇ψe) + µλ(θ)|B− 1
2 ∇BB− 1

2 |2.

Finally, using (4.34) and (3.4), we deduce that

µ(I − B−1) · (WvB − BWv + a(DvB + BDv))
= µI · (WvB − BWv + a(DvB + BDv))
= aµI · (DvB + BDv)
= 2aµB · Dv.

(3.15)

Therefore, applying (3.14)–(3.15) in (3.6) multiplied by µ(I − B−1), we obtain

∂tψe(B) + v · ∇ψe(B) − div(λ(θ)∇ψe(B))
= −µδ(θ)γ(|B − I|)|B 1

2 − B− 1
2 |2 − µλ(θ)|B− 1

2 ∇BB− 1
2 |2 + 2aµB · Dv.

(3.16)

Secondly, we multiply (3.6) by 1
θ

to get

cv∂t ln θ + cvv · ∇ ln θ − div(κ(θ)∇ ln θ)
= κ(θ)|∇ ln θ|2 + 2ν(θ)

θ
|Dv|2 + 2aµB · Dv.

(3.17)

If we subtract (3.16) from (3.17), we obtain precisely the entropy equality (3.13).
Note that, from the point of view of analysis, the equation (3.13) should really

be preferred over (3.7) or (3.9) since the terms 2aµθB · Dv, 2aµθBv disappeared
and, most importantly, every term in (3.13) is either a derivative of something,
or non-negative. Thus, by integrating (3.13) over Ω, we find

d
dt

∫︂
Ω
η =

∫︂
Ω
ξ ≥ 0, (3.18)

which is the second law of thermodynamics. This relation is the cornerstone of
our a priori estimates since it yields integrability of ξ.

Here it is interesting to make another comparison with the work [12]. There,
an analogous version of entropy equality (actually an inequality, see below) is de-
rived merely as an additional property of the constructed weak solution and is not
needed for its existence. The key uniform estimates are deduced by testing some
approximating equations for v and θ separately by v and θλ, λ ∈ (−1, 0). On
the other hand, in our case, testing (3.6) by v gives us nothing as the right hand
side now contains B. Instead, we draw most of the information from (3.18) (3.10)
and from (3.7) (in its approximated form). Thus, unlike in [12], the fulfilment
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of the entropy inequality is absolutely crucial in our analysis. A similar remark
actually applies also for analysis of “scalar” viscoelastic models as in [19], [11] or
[20]. There one obtains uniform estimates on ∇v simply by testing the momen-
tum equation with v and using the Young inequality to absorb the term f · v.
This is not possible in our situation as we need first to add the equation for in-
ternal energy (to eliminate the terms with B), which then annihilates the viscous
dissipation term and leads only to (3.10). We, on the other hand derive the uni-
form estimates on ∇v from the entropy inequality and from the approximated
temperature equation. These issues suggest that the fundamental information
about the solution stems from the entropy inequality rather than from the en-
ergy balances.

Another major difference compared to the theory of Navier-Stokes-Fourier
fluids can be seen in (3.7). If B = I, then the term 2aµθB · Dv vanishes and
the right hand side of (3.7) is positive. Thus, one obtains a minimum principle for
the temperature and the analysis in [12] is very much built on this fact. However,
in our case, the term 2aµθB ·Dv does not have a sign, nor can it be estimated and
hence it is impossible to prove a minimum principle for the temperature. Instead,
we again have to rely solely on the entropy inequality to show that θ > 0 (and
that B is positive definite) almost everywhere in Q.

The reason why we speak about entropy inequality (instead of equality) is that
ξ is a priori only an integrable quantity. Hence, when constructing a solution as
a weak limit of some approximations, it is not clear if one can pass to the limit
in (3.13) without using measures. Therefore we take advantage of ξ ≥ 0 and
impose (3.13) only with inequality sign (relying on the Fatou lemma or weak
lower semi-continuity in the limiting processes). Thus, we actually construct
a weak solution whose dissipation is at least ξ. Hereby we are admitting that
there might be further entropy producing mechanisms that we do not know. For
similar reasons, (3.10) is going to be only an inequality as well. On the physical
side, this means that the energy can not be spontaneously created from nothing,
but it is allowed to transmute into some forms that are not modelled. A precise
nature of this transformation of energy is not yet known even in the much simpler
case of (three-dimensional) Navier-Stokes equations, even though a formula for
it was found in [28] (actually, this issue is intimately connected with the open
problem of regularity of solution to Navier-Stokes equations).

The importance of the entropy inequality in the mathematical analysis of
fluids has been observed in several other works treating fairly complex fluids. For
example, we can mention its use in the theory of compressible Navier-Stokes-
Fourier equations (see [32] or [33]). There, the so-called relative entropy/energy
inequalities play a key role in proving, e.g., the weak-strong uniqueness property
of solutions. Furthermore, in [18], the entropy inequality is a crucial tool for
proving existence of a weak solution to a model describing an unsteady flow of
an incompressible heat-conducting mixture of several fluids.

An interesting comparison can be made with the theory in Chapter 5, where
the isothermal case of a similar viscoelastic model is studied. There, the analysis
relies on the uniform control of the quantity d

dt
(1

2 |v|2+ψ). If we go back to (2.11),
take the material time derivative and use the balance equations (2.2), (2.3), (2.4),
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we (eventually) obtain

d
dt(

1
2 |v|2 + ψ) + θξ +

•
θη + ∇θ · jη = div(Tv − je + θjη) + f · v. (3.19)

From this we clearly see that in the isothermal case one obtains, after integration
over Ω and application of boundary conditions, that

d
dt

∫︂
Ω
(1

2 |v|2 + ψ) +
∫︂

Ω
θξ =

∫︂
Ω

f · v. (3.20)

As ξ ≥ 0, this is a very powerful identity, which yields all the necessary a priori
estimates. This approach completely fails in our case, as we can not eliminate
the term

•
θη in (3.19). Although we can use that

•
ψ +

•
θη = ∂θψ

•
θ + ∂Bψ ·

•
B −

•
θ∂θψ = ∂Bψ ·

•
B,

this does not help either, since the right hand side is not in the form of a total
derivative (since ψ now depends also on θ). Intuitively, this phenomenon can be
understood as follows. In (3.20), the term θξ represents energy which is dissipated
into some unknown quantities that are not modelled in the isothermal case and
thus have no influence on v and B. On the other hand, in (3.19), we clearly see
that this dissipation has an immediate impact on the evolution of temperature,
which in turn affects the evolution of v and B via corresponding changes in
the material coefficients. Therefore, the identity (3.19) is merely a tautology
and gives us no information at all. Finally, in relation with the analysis in [6],
we remark that modifying the Helmholtz free energy with the term 1

2 |B − I|2 is
possible in our situation as well. However, the major drawback of this approach
in our setting is that (3.5) newly includes the term 2aµ div(θB2), which has very
poor regularity due to the presence of θ (unlike in [6]).

Now we state the final form of the model (3.4)–(3.7), which we consider in
the subsequent analysis. For the reasons explained above, instead of (3.4)–(3.7),
we actually study the system

div v = 0, (3.21)
∂tv + v · ∇v − div(2ν(θ)Dv) + ∇p = 2aµ div(θB) + f , (3.22)

∂tB + v · ∇B + δ(θ)γ(|B − I|)(B − I) − div(λ(θ)∇B)
= WvB − BWv + a(DvB + BDv), (3.23)

∂tη + v · ∇η − div(κ(θ)∇ ln θ − λ(θ)µ∇(trB − d− ln detB)) ≥ ξ, (3.24)
η = cv ln θ − µ(trB − d− ln detB),

ξ = 2ν
θ

|Dv|2 + κ(θ)|∇ ln θ|2 + δ(θ)γ(|B − I|)|B 1
2 − B− 1

2 |2

+ µλ(θ)|B− 1
2 ∇BB− 1

2 |2
(3.25)

in Q together with the inequality
d
dt

∫︂
Ω
(1

2 |v|2 + cvθ) ≤
∫︂

Ω
f · v, in (0, T ), (3.26)

with boundary conditions

v = 0, n · ∇θ = 0, n · ∇B = 0 on (0, T ) × ∂Ω

29



and with initial conditions

v(0) = v0, B(0) = B0, θ(0) = θ0 in Ω. (3.27)

Although the system (3.21)–(3.25) is stated in the classical way (for better read-
ability), our existence analysis concerns only its weak formulation, of course. This
seems to be more natural even from the physical point of view, as the primary
form of balance laws is global, i.e., integrated over some volume of the fluid (cf.
[17]). In the literature, it is common to refer to weak solutions of Navier-Stokes(-
Fourier) equations as to suitable weak solutions if they fulfil the second law of
thermodynamics. We stick to this convention, however we do not claim that our
notion of suitable weak solution coincides with, for example, the similar notion
in [12], [17] or [21], even if B = I. The crucial difference is that we consider
the balance of the total energy only globally and thus, there is no local relation
between ∂tθ and ∂t|v|2. However, we can observe that our suitable weak solution
is also a suitable weak solution in the sense of [17] if it is sufficiently regular.
Indeed, if we were able to multiply (3.22) by v, (3.23) by µ(I − B−1) and (3.24)
by θ, then, after summing everything together, we would obtain

∂tE + v · ∇E − div(κ(θ)∇θ) ≥ div(−pv + 2ν(θ)(Dv)v + 2aµθBv) + f · v.

However, this inequality must actually be an equality since the strict inequality
(on any subset of Q of positive measure) would violate the global conservation of
total energy (3.26). Thus, we recover the local balance of total energy (3.9) and
the equivalence to the concept of weak solutions in [17] easily follows (in the case
B = I). Of course, the requirement that (3.22) can be tested by v (and so on) is
overly optimistic (unless d ≤ 2). However, since our solution can be constructed
as a limit of suitable approximations, the decisive criterion for the validity of (3.9)
is merely that every term can be defined in a distributional sense. We discuss in
Section 3.6 below when this actually happens.

3.3 Assumptions on the material coefficients
In this section we specify the growth properties of the material coefficients ν, γ,
κ, δ, λ quantitatively. Assume that for some numbers r > 0, q > 1 (that are
further specified below) the parameters of the model fulfil

a ∈ R, (3.28)
cv, µ > 0, (3.29)

0 < ν, γ, κ, δ, λ ∈ C(0,∞), (3.30)
C−1 ≤ ν(s) ≤ C for all s > 0, (3.31)

C−1sq ≤ γ(s) ≤ Csq for all s > s0, (3.32)
C−1(1 + sr) ≤ κ(s) ≤ C(1 + sr) for all s > 0, (3.33)

C−1 ≤ δ(s) ≤ C for all s > 0, (3.34)
C−1 ≤ λ(s) ≤ C for all s > 0. (3.35)

for some constants C > 0, s0 > 0. Let us make a few remarks concerning these
assumptions. The property (3.31) is quite relevant for fluids as there seems to
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be an experimental evidence that the viscosity of fluids (unlike gases) is not
growing above all bounds with increasing temperature. Thus, we decided to
stick with the assumption (3.31) even though a possible growth of ν for large
temperatures (which is typically the case for compressible gases) leads to less
restrictive assumptions on other parameters (for example, if ν was linear, then
one could choose r = 2 to proceed with the analysis). The assumption (3.32)
is purely theoretical; we need it to show sufficient integrability of B, which is
otherwise not available as the a priori estimates on ∇B are too weak. However,
as this term is related to the dissipation, we do not feel it is a serious drawback.
Indeed, assumption (3.32) gives a restriction only for extreme values of B, which
are never attained in reality. In addition, there are also models (the so-called
FENE models), where the a priori estimates require that B remains bounded.
We remark that (3.30) and (3.32) imply that there exist C,C1, C2 > 0 such that

C1s
q − C2 ≤ γ(s) ≤ C(1 + sq) for all s > 0, (3.36)

which is a convenient form of (3.32) for the analysis below. The assumption (3.33)
governs the growth of the thermal conductivity coefficient. In the existence theory
below, we require that either r, or q, is fairly large. For example, we assume that

r → ∞ if q → 1+

(cf. (A1) below). Finally, the assumptions (3.33) and (3.35) are chosen just for
simplicity. On one hand we could easily assume some growth with respect to
the temperature, on the other hand, the experimental data do not show any
rapid growth of these parameters neither for large and for small temperatures.

In addition to q and r, our model also contains the parameter ϱ > 1, which is
the integrability exponent of the initial datum for the unknown B. The parameter
ϱ has a direct impact not only on the integrability of the unknown B, but also
on the other unknowns v and θ. The larger ϱ is, the better information can be
drawn from the equation (3.23). Nevertheless, the case ϱ > q, gives no further
advantage over the case ϱ = q since we cannot expect that the quantity Dv (which
is present on the right hand side of (3.23)) is better than square integrable. Vice
versa, in the excluded1 limiting case ϱ = 1, the equation (3.23) does not seem
to provide any additional information than what is encoded in the energy and
entropy balances.

Next, we place the restrictions on r, q and ϱ that are needed for:

1) existence of suitable weak solution,

2) fulfilment of the local balance of the total energy,

3) fulfilment of the local balance of the internal energy (or the temperature
inequality in our case).

To this end, let us first define

σ = min{q, ϱ} and rd = r + 2
d
. (3.37)

1The case ϱ = 1 is excluded since then the third term of (3.23) becomes only a L1 quantity,
which causes difficulties in the construction of a solution.
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Conditions needed for existence of a suitable weak solution

We always suppose that r, q and ϱ satisfy

r > 1 − 2
d
, q > 1, ϱ > 1. (A0)

Then, the conditions

(rd − 1)(q − 1) > 2, (A1)

(rd − 1)
(︄
q + σ − 2d

d+ 2

)︄
>

4d
d+ 2 (A2)

are the minimal requirements for which we can prove existence of a suitable weak
solution, as we explain in the next section.

Conditions needed for the local balance of E

Further, the conditions

(rd − 1)(q + σ − 2) > 4 − 2
d
, (B1)

(rd − 1)
(︄
q + σ − 3d

d+ 2

)︄
>

6d
d+ 2 (B2)

seem necessary should the local balance of the total energy (3.9) be fulfilled if
d = 2 or d = 3. The case d = 1 necessitates another restriction on r, q, ϱ and
is omitted for simplicity. On the other hand, in the cases d ≥ 4, it is unclear if
v ∈ L3(Q), for any choice of r, q and ϱ.

Condition needed for the local balance of e

Finally, the condition
(rd − 1)(q + σ − 2) > 4 (C)

is needed for the validity of the temperature inequality

cv∂tθ + cvv · ∇θ − div(κ(θ)∇θ) ≥ 2ν(θ)|Dv|2 + 2aµ θB · Dv

(i.e., for the local balance of the internal energy).
Since σ ≤ q, it is obvious that (C) implies (A1) and (A2), written symbolically

as
(C) ⇒ (A1) ∧ (A2).

Moreover, if d ≤ 3, it is easy to see that the relation

(C) ⇒ (A1) ∧ (B1) ∧ (B2) ⇒ (A1) ∧ (A2)

is valid. Instead of (A1), we often use one of its equivalent versions:

rd >
q + 1
q − 1 , rd > 2q′ − 1, or r′

d <
q + 1

2 .
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Likewise, it is useful to note that (A2) is equivalent to

rd > 1 +
4d

d+2

q + σ − 2d
d+2

,

hence also to

r′
d <

1 +
4d

d+2
q+σ− 2d

d+2
4d

d+2
q+σ− 2d

d+2

= d+ 2
4d

(︄
q + σ + 2d

d+ 2

)︄
. (3.38)

Similarly, condition (B2) is equivalent to

r′
d <

d+ 2
6d

(︄
q + σ + 3d

d+ 2

)︄
. (3.39)

Furthermore, defining

r0 = q + 1
q − 1 and r1 = q + σ + 2

q + σ − 2 ,

we observe that
(A1) is equivalent to rd > r0 and (C) is equivalent to rd > r1.

Let us make one important remark on the assumptions above. By impos-
ing (A0)–(A2) and (3.31)–(3.35), we place some restrictions on the coefficients
of the model which may not agree with experimental measurements. Thus, one
could think that this renders our analysis useless in the actual applications. How-
ever, from the physical point of view, these assumptions are completely irrelevant.
Indeed, note that (3.31)–(3.35) restrict only the asymptotic behaviour of the coef-
ficients. For example, any continuous function κ defined on some interval (θ0, θ1),
0 < θ0 < θ1 < ∞, can be modified in a neighbourhood of 0 and ∞ so that
(3.33) holds. The interval (θ0, θ1) may represent the temperature range for which
the model we are considering makes sense. When the fluid starts to freeze or
boil, then we are clearly outside this range and it makes no sense to prescribe
the coefficients ν, κ, δ and λ there. On the other hand, it is unclear whether one
can deduce some absolute bounds for the temperature, besides θ > 0, using only
the information that is encoded in (1.2)–(1.7). Thus, purely for mathematical
reasons, we have to assume that these material coefficients are defined in some
way also outside (θ0, θ1). A similar remark applies also for the coefficient γ. If
|B− I| is too large, any realistic material eventually breaks down. Thus, we may
set γ(s) = 1, s ∈ [0, s1), where s1 is large, to mimic the Oldroyd-B model, for
example.

3.4 Definition of suitable weak solution
To state the definition of the weak solution conveniently, let us first define certain
quantities that depend only on the given numbers q, r, ϱ and d. These play
an important role in the existence theory below. We set

p =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
q + σ

2r′
d − 1 if rd < r1,

2) if rd = r1,

2 if rd > r1,

(3.40)
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where the symbol x0), x0 ∈ R, is an abbreviation for any number from a (suffi-
ciently small) left neighbourhood of x0, excluding x0. Furthermore, we set

Rd = R + 2
d
, where R =

⎧⎪⎨⎪⎩
(rd − 1)(q + σ)

2 − 2
d

if rd < r1,

r + 1) if rd ≥ r1.
(3.41)

Next, we define

p1 = min
{︄
p, p

d+ 2
2d

}︄
(3.42)

and
σ1 =

{︄
σ if σ < q,

σ) if σ = q.
(3.43)

Finally, we set

s0 = 2(q + σ)
q + σ + 2 and s4 = min

{︃
2 + 2

d
, q + σ

}︃
. (3.44)

Definition 3.1. Let T > 0 and let Ω ⊂ Rd, d ∈ N be a Lipschitz domain. As-
sume that the constants a, cv, µ and the functions ν, δ, γ, κ, λ fulfil the assumptions
(3.28)–(3.35) with the numbers q, r, ϱ satisfying (A0)–(A2). Let the numbers σ,
p, R, Rd, p1, σ1, s0 and s4 be defined by (3.37), (3.40), (3.41), (3.42), (3.43) and
(3.44), respectively. Suppose that the data satisfy

v0 ∈ L2(Ω), B0 ∈ Lϱ(Ω), θ0 ∈ L1(Ω), f ∈ L2(0, T ;L2(Ω)), (3.45)

where the function B0 is positive definite a.e. in Ω and the function θ0 is positive
a.e. in Ω. Moreover, assume that the function η0 defined by

η0 = cv ln θ0 − µ(trB0 − d− ln detB0)

fulfils
η0 ∈ L1(Ω). (3.46)

Then, we say that a function (v,B, θ, η) : Q → Rd × Rd×d
>0 × (0,∞) × R

is a suitable weak solution of the initial-boundary value problem (3.21)–(3.27) if
the following properties are satisfied:

v ∈ Lp(0, T ;W 1,p
0,div) ∩ Cw([0, T ];L2(Ω)), (3.47)

∂tv ∈ Lp1(0, T ;W−1,p1
0,div ), (3.48)

B ∈ Ls0(0, T ;W 1,s0(Ω)) ∩ Cw([0, T ];Lσ(Ω)) ∩ Lq+σ(Q), (3.49)

∂tB ∈
(︂
Ls′

0(0, T ;W 1,s′
0(Ω)) ∩ L

q+σ
σ−1 (Q)

)︂∗
, (3.50)

B− 1
2 ∇BB− 1

2 ∈ L2(Q),
ln detB ∈ L2(0, T ;W 1,2(Ω)) ∩ L∞(0, T ;L1(Ω)), (3.51)

θ
R
2 ∈ L2(0, T ;W 1,2(Ω)), (3.52)
θ ∈ L∞(0, T ;L1(Ω)) ∩ LRd(Q), (3.53)

ln θ ∈ L2(0, T ;W 1,2(Ω)) ∩ L∞(0, T ;L1(Ω)), (3.54)
η ∈ Ls0(0, T ;W 1,s0(Ω)) ∩ L∞(0, T ;L1(Ω)) ∩ Ls4(Q); (3.55)
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the identity
η = cv ln θ − µ(trB − d− ln detB), (3.56)

holds almost everywhere in Q; equations (3.22), (3.23), (3.24) and (3.26) are
satisfied in the following sense:
∫︂ T

0
(⟨∂tv,φ⟩ − (v ⊗ v,∇φ) + (2ν(θ)Dv,∇φ))

= −
∫︂ T

0
(2aµθB,∇φ) +

∫︂ T

0
(f ,φ)

for all φ ∈ Lp′
1(0, T ;W 1,p′

1
0,div),

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
(3.57)

∫︂ T

0
⟨∂tB,A⟩ −

∫︂ T

0
(B ⊗ v,∇A)

+
∫︂ T

0
(δ(θ)γ(|B − I|)(B − I),A) +

∫︂ T

0
(λ(θ)∇B,∇A)

=
∫︂ T

0
((aDv + Wv)B,A + AT )

for all A ∈ Ls′
0(0, T ;W 1,s′

0(Ω)) ∩ L
q+σ
σ−1 (Q),

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(3.58)

(η0, ϕ)φ(0) −
∫︂ T

0
(η, ϕ)∂tφ

+
∫︂ T

0

(︂
κ(θ)∇ ln θ − µλ(θ)∇(trB−d−ln detB) − ηv,∇ϕ

)︂
φ

≥
∫︂ T

0

(︃2ν(θ)
θ

|Dv|2 + κ(θ)|∇ ln θ|2

+ µδ(θ)γ(|B − I|)|B 1
2 − B− 1

2 |2 + µλ(θ)|B− 1
2 ∇BB− 1

2 |2, ϕ
)︃
φ

for all 0 ≤ φ ∈ W 1,∞(0, T ), φ(T ) = 0, and every 0 ≤ ϕ ∈ W 1,∞(Ω),

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.59)

∫︂
Ω
(1

2 |v|2 + cvθ)(t) ≤
∫︂

Ω
(1

2 |v0|2 + cvθ0) +
∫︂ t

0
(f ,v) for a.a. t ∈ (0, T ); (3.60)

and the initial data are attained in the following way:

lim
t→0+

∥v(t) − v0∥2 = 0, (3.61)

lim
t→0+

∥B(t) − B0∥σ1
= 0, (3.62)

ess lim
t→0+

∥θ(t) − θ0∥1 = 0, (3.63)

ess lim inf
t→0+

∫︂
Ω
η(t)ϕ ≥

∫︂
Ω
η0ϕ for all 0 ≤ ϕ ∈ W 1,∞(Ω). (3.64)

The bounds (A1)–(A2) are needed to define all the terms appearing in (3.57)–
(3.59). Let us now quickly verify this fact using Hölder’s inequality and properties
(3.47)–(3.55). Also, for this purpose, let us assume that the test functions are
smooth, the precise computations are carried out in Section 3.5 below. From
an interpolation inequality, the Sobolev inequality and (3.47), we get

v ∈ L(1+ 2
d

)p(0, T ;L(1+ 2
d

)p(Ω)). (3.65)
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Now we observe that (A2) ensures that the exponent (1+ 2
d
)p is greater than two.

Indeed, recalling (3.40), this is obvious if rd ≥ r1, while if r0 < rd < r1 we use
(A2) in the form (3.38) to estimate

p = q + σ

2r′
d − 1 >

q + σ
d+2
2d

(q + σ)
= 2d
d+ 2 .

Thus, by the virtue of the Cauchy-Schwarz inequality, the convective term v ⊗ v
in (3.57) is integrable. Next, using (3.41) and (A1), we get

1
Rd

+ 1
q + σ

= 2
(rd − 1)(q + σ) + 1

q + σ
= rd + 1

(rd − 1)(q + σ) = 1
p
< 1

if rd < r1 and the same inequality also holds in the (subcritical) case rd ≥ r1
since

1
rd + 1 + 1

q + σ
<

1
2q′ + 1

q + σ
<

1
q′ + 1

q
= 1.

Thus, appealing to (3.49), (3.53) and Hölder’s inequality, the term θB appearing
in (3.57) is also integrable. In (3.58), the expression δ(θ)γ(|B − I|)(B − I) is well
defined due to (3.36), (3.34), (3.49) and q+ 1 < q+ σ. In certain sense the worst
term is ∇vB, which nevertheless, is integrable by (3.49) and (3.47) since (A1)
implies

1
p

+ 1
q + σ

= 2r′
d − 1
q + σ

+ 1
q + σ

<
q + 1
q + σ

< 1 if rd < r1,

while in the case rd ≥ r1, it is enough to use q+ σ > 2. Moreover, the convective
term B ⊗ v is clearly more regular than ∇vB, recall (3.65). In equation (3.59),
the convective term ηv is also well defined due to (3.55): we already know that
v is better than square integrable and η has the same property since

s2 = min
{︃

2 + 2
d
, q + σ

}︃
> 2.

The term κ(θ)∇ ln θ is integrable provided that
√︂
κ(θ) is square integrable (using

(3.54)), which is true since θ r
2 ∈ L

2Rd
r (Q) by (3.53) and

Rd > rd > r.

Indeed, this inequality is obvious if rd ≥ r1, while if r0 < rd < r1, it follows from
(A1) as

Rd = (rd − 1)(q + σ)
2 = rd + rd(q + σ − 2) − q − σ

2

> rd + q2 + qσ − 2q + q + σ − 2 − q2 − qσ + q + σ

2(q − 1)

= rd + σ − 1
q − 1 > rd.

The term ∇ ln detB is square integrable due to (3.51). Finally, each term on
the right hand side of (3.59) is integrable since every one of them is non-negative
and η ∈ L∞(0, T ;L1(Ω)).

Thus, we have verified that Definition 3.1 is reasonable if (A0)–(A2) hold and
also that the requirements (3.47)–(3.55) are natural. The purpose of the further
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assumptions (B1), (B2) and (C) is explained later in Section 3.6 and Section 3.7,
respectively.

It is easy to show that every smooth suitable weak solution satisfies the weak
form of local balance of total energy, using the same manipulations as in Sec-
tion 3.2. Then, using integration by parts and the fundamental lemma of vari-
ational calculus, we obtain precisely the system (3.21)–(3.27), (3.9). This is the
the weak-strong compatibility of the suitable weak solution.

In our main result below we show that under the assumptions of Definition 3.1
a suitable weak solution exists. It may be interesting to note that p < 2 if
rd < r1. In other words, we obtain a weak solution of our system even without
knowing whether the viscous dissipation 2ν(θ)|Dv|2 is an integrable quantity or
not. A similar phenomenon is also observed in the existence theory for heat-
conducting compressible Navier-Stokes equations (see [33], [34, Ch. 2]) or for
certain fluid mixtures.

It remains to show that a suitable weak solution to (3.21)–(3.27) exists.

3.5 Existence of a suitable weak solution
In this section we state and prove the main result of this thesis, which is the fol-
lowing theorem.

Theorem 3.2. Suppose that all the assumptions of Definition 3.1 are fulfilled.
Then, there exists a suitable weak solution to the system (3.21)–(3.27).

Proof. Although the Theorem 3.2 is stated for d ∈ N, the proof is done for d ≥ 3.
The cases d = 1 and d = 2 are, of course, simpler and can be obtained by obvious
modifications of the proof below.

The general strategy is the following: We approximate the system (3.4)–
(3.7) (the one with temperature equation) using several parameters to obtain
a proper Galerkin approximation and we show that the resulting (ODE) system
has a solution. After that, our aim is to derive the entropy equation. At this
point, possibly irregular terms containing θ and B are cut off and v is smooth,
hence we easily obtain uniform estimates for the Galerkin approximations of B
and θ. After taking the limit in these, we can extend the space of test functions
in the equations for B and θ. Using this, we prove invertibility of θ and B, which,
in turn, enables us to derive the entropy equation. From this equation we read
the fundamental uniform estimates. Some of these estimates are then improved
by considering appropriate test functions in the equations for θ and B. Finally,
we pass to the final limit, identify the non-linear terms and initial conditions,
hereby obtaining a solution of the original problem.

3.5.1 Approximation scheme
Here we introduce an approximation, which is essential for the proof. It is con-
structed in a way that one can prove a minimum principle for the spectrum of B
and for θ. This is a key step in obtaining the entropy inequality, from which we
then read a powerful a priori estimate that is uniform with respect to all parame-
ters. We also prepare some simple estimates corresponding to this approximation,
that are used later in the proof.
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For any ω ∈ (0, 1), let us define the “cut-off” function

gω(A, τ) = max{0,Λ(A) − ω} max{0, τ − ω}
(|Λ(A)| + ω)(1 + ω|A|3)(|τ | + ω)(1 + ωτ 2) , A ∈ Rd×d

sym, τ ∈ R,

where
Λ(A) = the smallest eigenvalue of A.

Note that gω is a continuous function in Rd×d
sym × R and satisfies 0 ≤ gω(A, τ) < 1

for every (A, τ) ∈ Rd×d
sym × R. Moreover, if Λ(A) ≤ ω or τ ≤ ω, then gω(A, τ) = 0,

whereas if Λ(A) > 0 and τ > 0, then

lim
ω→0+

gω(A, τ) = 1.

Furthermore, we remark that

gω(A, τ)(1 + |A| + |A|2 + |A|3)(1 + τ + τ 2) ≤ C(ω). (3.66)

Then, we consider the following ω-approximated system of equations in Q:

∂tv + div(v ⊗ v) − div(2ν(θ)Dv) + ∇p = div(2aµgω(B, θ)θB) + f , (3.67)

∂tB + v · ∇B + δ(θ)γ(|B − I|)(B − I) − div(λ(θ)∇B)
= gω(B, θ)(a(DvB + BDv) + WvB − BWv),

cv∂tθ + cvv · ∇θ − div(κ(θ)∇θ) − ω div(|∇θ|r∇θ)
= 2ν(θ)|Dv|2 + 2aµgω(B, θ)θB · Dv

(3.68)

with the boundary conditions

v = 0, n · ∇B = 0, n · ∇θ = 0 on (0, T ) × ∂Ω (3.69)

and the initial conditions

v(0) = v0, B(0) = Bω
0 , θ(0) = θω

0 in Ω,

where Bω
0 and θω

0 are defined by

Bω
0 (x) =

{︃
B0(x) if Λ(B0(x)) > ω and |B0(x)| <

√
d

ω
,

I elsewhere;

θω
0 (x) =

{︃
θ0(x) if ω < θ0(x) < 1

ω
,

1 elsewhere.

With such a definition, these functions clearly satisfy

Λ(Bω
0 ) > ω, θω

0 > ω (3.70)

and
|Bω

0 | <
√
d

ω
, |θω

0 | < 1
ω

(3.71)

in Ω. Moreover, it is evident that

|Bω
0 | ≤

√
d+ |B0|, θω

0 ≤ 1 + θ0, (3.72)
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and, since ln 1 = 0, also that

| ln detBω
0 | ≤ | ln detB0|, | ln θω

0 | ≤ | ln θ0| (3.73)

a.e. in Ω. Let us further remark that, since B0 ∈ Lσ(Ω) is positive definite a.e. in
Ω, the Lebesgue measure of the sets {Λ(B0) ≤ ω} and {|B0| ≥ 1

ω
} tends to zero

as ω → 0+, and thus

∥Bω
0 − B0∥σ

σ =
∫︂

Λ(B0)≤ω
|I − B0|σ +

∫︂
|B0|≥ 1

ω

|I − B0|σ → 0. (3.74)

Using a completely analogous argument for θω
0 and relying on the assumptions

θ0 ∈ L1(Ω), θ > 0 a.e. in Ω, we also obtain

∥θω
0 − θ0∥1 → 0, ω → 0+. (3.75)

In (3.68) we also included the term −ω div(|∇θ|r∇θ) which does not appear
in the original temperature equation. This term vanishes in the limit ω → 0+ and
is used only to avoid the construction of a weighted Sobolev space of the type{︃

u ∈ W 1,2(Ω) :
∫︂

Ω
κ(θ)|∇u|2 < ∞

}︃
(where the density of smooth functions is not available in general).

Galerkin approximation

Next, we discretize the ω-approximated system in space by the Galerkin method.
Following the results from [52], we find the bases {wi}∞

i=1, {Wj}∞
j=1 and {wk}∞

k=1
of WN,2(Ω)∩W 1,2

0,div, WN,2(Ω) and WN,2(Ω), respectively, with the following prop-
erty: The bases are orthonormal in L2(Ω) and orthogonal in WN,2(Ω) with N ∈ N
so large that WN,2(Ω) ↪→ W 1,∞(Ω). Let us also assume, without loss of general-
ity, that w1 = |Ω|− 1

2 in Ω and that WT
j = Wj for every j ∈ N. Moreover, for any

ℓ, n ∈ N, there exist L2-orthogonal projections

Pℓ : L2(Ω) → span{wi}ℓ
i=1,

Qn : L2(Ω) → span{Wj}n
j=1,

Rn : L2(Ω) → span{wk}n
k=1

and

Pℓ, Qn, Rn are continuous in L2(Ω) and WN,2(Ω), independently of ℓ, n. (3.76)

We fix ℓ, n ∈ N and consider the problem of finding the functions αi
ℓn, βj

ℓn, γk
ℓn of

time, where i = 1, . . . , ℓ and j, k = 1, . . . , n, such that the functions vℓn, Bℓn, θℓn

defined as

vℓn(t, x) =
ℓ∑︂

i=1
αi

ℓn(t)wi(x),

Bℓn(t, x) =
n∑︂

j=1
βj

ℓn(t)Wj(x) and θℓn =
n∑︂

k=1
γk

ℓn(t)wk(x)
(3.77)
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satisfy the following equations a.e. in (0, T0), T0 > 0:

(∂tvℓn,wi) − (vℓn ⊗ vℓn,∇wi) + (2ν(θℓn)Dvℓn,∇wi)
= −(2aµgω(Bℓn, θℓn)θℓnBℓn,∇wi) + (f ,wi),

(3.78)

(∂tBℓn,Wj) + (vℓn · ∇Bℓn,Wj)
+ (δ(θℓn)γ(|Bℓn − I|)(Bℓn − I),Wj) + (λ(θℓn)∇Bℓn,∇Wj)

= (2gω(Bℓn, θℓn)(aDvℓn + Wvℓn)Bℓn,Wj),
(3.79)

(cv∂tθℓn, wk) + (cvvℓn · ∇θℓn, wk) + ((κ(θℓn) + ω|∇θℓn|r)∇θℓn,∇wk)
= (2ν(θℓn)|Dvℓn|2 + 2aµgω(Bℓn, θℓn)θℓnBℓn · Dvℓn, wk),

(3.80)

for all 1 ≤ i ≤ l, 1 ≤ j, k ≤ n and with the initial conditions

vℓn(0) = Pℓv0, Bℓn(0) = QnBω
0 , θℓn(0) = Rnθ

ω
0 in Ω. (3.81)

Since, by the L2-orthonormality of the bases, we have

(∂tvℓn,wi) =
ℓ∑︂

m=1
∂tα

m
ℓn(wm,wi) = (αi

ℓn)′

and similarly
(∂tBℓn,Wj) = (βj

ℓn)′, (∂tθℓn, wk) = (γk
ℓn)′,

the system (3.78)–(3.80) can be rewritten as

(αi
ℓn)′ = F1(t, α1

ℓn, . . . , α
ℓ
ℓn), i = 1, . . . , ℓ,

(βj
ℓn)′ = F2(β1

ℓn, . . . , β
n
ℓn), j = 1, . . . , n,

(γk
ℓn)′ = F3(γ1

ℓn, . . . , γ
n
ℓn), k = 1, . . . , n.

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (3.82)

This is a system of ℓ+2n ordinary differential equations. Though it contains many
non-linearities, it is easy to see, using (3.30), that F1, F2 and F3 are continuous
with respect to the variables αi

ℓn, βj
ℓn and γk

ℓn, respectively. Moreover, the explicit
dependence of F1 on time is controlled by

|(f ,wi)| ≤ ∥f∥2∥wi∥2 ∈ L2(0, T ).

Thus, we can apply the Caratheodory existence theorem (see [24, Chapter 2,
Theorem 1]) and hereby obtain absolutely continuous functions αi

ℓn, βj
ℓn, γk

ℓn,
1 ≤ i ≤ ℓ, 1 ≤ j, k ≤ n, solving (3.82) on (0, T0), where T0 < T is the time of
the first blow-up, i.e., the time, for which

lim
t→(T0)−

⎛⎝ ℓ∑︂
i=1

|αi
ℓn(t)| +

n∑︂
j=1

|βj
ℓn(t)| +

n∑︂
k=1

|γk
ℓn(t)|

⎞⎠ = ∞. (3.83)

If we use the a priori estimates derived in the next section (see e.g. (3.85)) and
apply them onto the interval (0, T0), we can prove that

sup
t∈(0,T0)

⎛⎝ ℓ∑︂
i=1

(αi
ℓn(t))2 +

n∑︂
j=1

(βj
ℓn(t))2 +

n∑︂
k=1

(γk
ℓn(t))2

⎞⎠ < ∞,

which contradicts (3.83). Hence, there can be no blow-up and the functions
vkl,Bkl, θkl are defined on an arbitrary time interval, in particular on [0, T ].
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3.5.2 Limit n → ∞
By multiplying the i-th equation in (3.78) by αi

ℓn, summing the result over all
i = 1, . . . , ℓ and using (3.69), integration by parts, and the fact that div v = 0
(so that the convective term vanishes), we obtain

1
2

d
dt∥vℓn∥2

2 +
⃦⃦⃦⃦√︂

2ν(θℓn)Dvℓn

⃦⃦⃦⃦2

2

= −(2aµgω(Bℓn, θℓn)θℓnBℓn,Dvℓn) + (f ,vℓn)

a.e. in (0, T ). Then we use (3.31), (3.66), (3.81), Korn’s and Young’s inequality,
and deduce

d
dt∥vℓn∥2

2 + ∥∇vℓn∥2
2 ≤ C(ω)

∫︂
Ω

|Dvℓn| + C∥f∥2∥∇vℓn∥2

≤ C(ω) + C∥f∥2
2 + 1

2∥∇vℓn∥2
2

a.e. in (0, T ). Integration with respect to time and the use of (3.76) and (3.45)
directly leads to

sup
t∈(0,T )

∥vℓn(t)∥2
2 +

∫︂ T

0
∥∇vℓn∥2

2 ≤ C(ω). (3.84)

(we do not need to trace the dependence of constants C on the data f , v0, θ0, or
B0 as these are fixed functions in our setting). Recalling the construction of vℓn

in (3.77) and L2-orthonormality of the basis vectors {wi}ℓ
i=1, we note that

∥vℓn(t)∥2
2 =

ℓ∑︂
i=1

(αi
ℓn(t))2.

Hence, the estimate (3.84) yields

sup
t∈(0,T )

ℓ∑︂
i=1

(αi
ℓn(t))2 ≤ C(ω), (3.85)

which, together with wi ∈ W 1,∞(Ω), i = 1, . . . , ℓ, implies

∥vℓn∥L∞W 1,∞ ≤ C(ω, ℓ). (3.86)

Using (3.85) together with (3.66) and (3.31) in (3.78), we see that⃦⃦⃦
(αi

ℓn)′
⃦⃦⃦

2;(0,T )
= ∥(∂tvℓn,wi)∥2;(0,T )

= ∥(vℓn⊗vℓn−2ν(θℓn)Dvℓn−2aµgω(Bℓn, θℓn)θℓnBℓn,∇wi) + (f ,wi)∥2;(0,T )

≤ C(ℓ)
⃦⃦⃦⃦
⃦

ℓ∑︂
i=1

(︂
(αi

ℓn)2 + |αi
ℓn| + 1

)︂⃦⃦⃦⃦⃦
2;(0,T )

+ C(ℓ)∥f∥L2L2

≤ C(ω, ℓ).

Thus, we get

∥∂tvℓn∥L2W 1,∞ =
⃦⃦⃦⃦
⃦

ℓ∑︂
i=1

(αi
ℓn)′wi

⃦⃦⃦⃦
⃦

L2W 1,∞

≤ C(ω, ℓ) (3.87)
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and, using the fundamental theorem of calculus (see [67, Theorem 7.20]) and
Hölder’s inequality, also that

|αi
ℓn(t) − αi

ℓn(s)| ≤
∫︂ t

s
|(αi

ℓn)′| ≤ C(ω, ℓ)|t− s|
1
2 for every t, s ∈ [0, T ] (3.88)

and any i = 1, . . . , ℓ.
Next, we multiply the j-th equation in (3.79) by βj

ℓn and sum the result over
j = 1, . . . , n. Note that the convective term vanishes after integration by parts
and use of (3.69) and div v = 0. Also the term including Wvℓn vanishes due
to (4.34) and symmetry of B2

ℓn. Thus, we obtain

1
2

d
dt∥Bℓn∥2

2 + (δ(θℓn)γ(|Bℓn − I|)(Bℓn − I),Bℓn) +
⃦⃦⃦⃦√︂

λ(θℓn)∇Bℓn

⃦⃦⃦⃦2

2

= (2agω(Bℓn, θℓn)DvℓnBℓn,Bℓn)
(3.89)

a.e. in (0, T ). To estimate the second term in (3.89) from below, first we remark,
using the Young inequality, that

(Bℓn − I) · Bℓn = |Bℓn − I|2 + (Bℓn − I) · I ≥ 1
2 |Bℓn − I|2 − d

2 ,

and then we apply (3.36), (3.34) and use the Young inequality again to get

δ(θℓn)γ(|Bℓn − I|)(Bℓn − I) · Bℓn

≥ 1
2δ(θℓn)γ(|Bℓn − I|)|Bℓn − I|2 − δ(θℓn)γ(|Bℓn − I|)d

2
≥ C1|Bℓn − I|2+q − C2|Bℓn − I|2 − C|Bℓn − I|q − C

≥ C1|Bℓn − I|2+q − C.

If we use this estimate in (3.89), together with (3.35), (3.66), (3.81), we obtain,
after integration over (0, t), t ∈ (0, T ), that

∥Bℓn(t)∥2
2 +

∫︂ t

0
∥Bℓn − I∥2+q

2+q +
∫︂ t

0
∥∇Bℓn∥2

2 ≤ ∥QnBω
0 ∥2

2 + C(ω, ℓ).

From this, using (3.76) and (3.71), we easily read that

∥Bℓn∥L∞L2 + ∥Bℓn∥L2+qL2+q + ∥∇Bℓn∥L2L2 ≤ C(ω, ℓ). (3.90)

To estimate the time derivative of Bℓn, we take A ∈ Lq+2(0, T ;WN,2(Ω)) with
∥A∥Lq+2W N,2 ≤ 1 and use (3.79), Hölder’s inequality, (3.90), (3.86), (3.34), (3.36),
(3.35), (3.66), (3.76) and

(︄
min

{︄
2, q + 2
q + 1

}︄)︄′

=
(︄
q + 2
q + 1

)︄′

= q + 2
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to get∫︂ T

0
⟨∂tBℓn,A⟩ =

∫︂ T

0
(∂tBℓn, QnA)

= −
∫︂ T

0
(vℓn · ∇Bℓn, QnA) −

∫︂ T

0
(δ(θℓn)γ(|Bℓn − I|)(Bℓn − I), QnA)

−
∫︂ T

0
(λ(θℓn)∇Bℓn,∇QnA) +

∫︂ T

0
(2gω(Bℓn, θℓn)(aDvℓn + Wvℓn)Bℓn, QnA)

≤ C(ω, ℓ)
∫︂ T

0

∫︂
Ω

(︂
|∇Bℓn||QnA| + |Bℓn − I|q+1|QnA| + |∇Bℓn||∇QnA| + |QnA|

)︂
≤ C(ω, ℓ)

∫︂ T

0
(∥∇Bℓn∥1 + ∥Bℓn − I∥q+1

q+1 + ∥Bℓn∥1)∥QnA∥1,∞

≤ C(ω, ℓ)
∫︂ T

0
(∥∇Bℓn∥2 + ∥Bℓn∥q+1

q+2 + 1)∥QnA∥N,2

≤ C(ω, ℓ)∥A∥Lq+2W N,2 ≤ C(ω, ℓ),

hence
∥∂tBℓn∥

L
q+2
q+1 W −N,2

≤ C(ω, ℓ). (3.91)

Finally, we multiply the k-th equation in (3.80) by γk
ℓn, sum the result over

k = 1, . . . , n, use (3.69) and integration by parts in the convective term to get

cv

2
d
dt∥θℓn∥2

2 +
⃦⃦⃦⃦√︂

κ(θℓn)∇θℓn

⃦⃦⃦⃦2

2
+ ω∥∇θℓn∥r+2

r+2

= (2ν(θℓn)|Dvℓn|2 + 2aµgω(Bℓn, θℓn)θℓnBℓn · Dvℓn, θℓn)
(3.92)

a.e. in (0, T ). Therefore, integrating this inequality over (0, t), t ∈ (0, T ), using
(3.29), (3.31), (3.33), (3.66), (3.86), (3.90), Young’s inequality, (3.76) and (3.71),
we deduce

∥θℓn(t)∥2
2 +

∫︂ t

0

⃦⃦⃦⃦
∇θ

r
2 +1
ℓn

⃦⃦⃦⃦2

2
+
∫︂ t

0

⃦⃦⃦⃦√︂
κ(θℓn)∇θℓn

⃦⃦⃦⃦2

2
+
∫︂ t

0
∥∇θℓn∥r+2

r+2 ≤ C(ω, ℓ).

This, with the help of the interpolation inequality2

∥θℓn∥
L

r+2+ 4
d L

r+2+ 4
d

≤ ∥θℓn∥
4

(r+2)d+4
L∞L2 ∥θℓn∥

(r+2)d
(r+2)d+4

Lr+2L
d

d−2 (r+2) = ∥θℓn∥
4

(r+2)d+4
L∞L2

⃦⃦⃦⃦
θ

r
2 +1
ℓn

⃦⃦⃦⃦ 2d
(r+2)d+4

L2L
2d

d−2
,

Sobolev’s inequality and also Poincaré’s inequality yields

∥θℓn∥L∞L2 +
⃦⃦⃦⃦√︂

κ(θℓn)∇θℓn

⃦⃦⃦⃦
L2L2

+ ∥θℓn∥
L

r+2+ 4
d L

r+2+ 4
d

+ ∥∇θℓn∥Lr+2Lr+2 ≤ C(ω, ℓ).
(3.93)

Furthermore, taking τ ∈ Lr+2(0, T ;WN,2(Ω)) with ∥τ∥Lr+2W N,2 ≤ 1 and using
(3.80), Young’s inequality, Hölder’s inequality, the inequality

(r + 1)r + 2
r + 1 = r + 2

r + 1 + b+ b

r + 1 ≤ r + 2
r + 1 + b+ r

r + 1 = r + 2,

2A better estimate could be derived using ∇θℓ ∈ Lr+2Lr+2 instead. However, at this moment
we do not need it, and later we shall need ω-uniform estimates only.
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(3.31), (3.33) (3.86), (3.93), (3.66) and (3.76), we obtain∫︂ T

0
⟨∂tθℓn, τ⟩ =

∫︂ T

0
(∂tθℓn, Rnτ)

= −
∫︂ T

0
(cvvℓn · ∇θℓn, Rnτ) −

∫︂ T

0
(κ(θℓn)∇θℓn + ω|∇θℓn|r∇θℓn,∇Rnτ)

+
∫︂ T

0
(2ν(θℓn)|Dvℓn|2 + 2aµgω(Bℓn, θℓn)θℓnBℓn · Dvℓn, Rnτ)

≤ C(ω, ℓ)
∫︂ T

0

∫︂
Ω

(︃
|∇θℓn||Rnτ | + |θℓn|

r
2

⃓⃓⃓⃓√︂
κ(θℓn)∇θℓn

⃓⃓⃓⃓
|∇Rnτ |

+ |∇θℓn|r+1|∇Rnτ | + |Rnτ |
)︃

≤ C(ω, ℓ)
∫︂ T

0

∫︂
Ω

(︃
|∇θℓn| + |θℓn|r+1 +

⃓⃓⃓⃓√︂
κ(θℓn)∇θℓn

⃓⃓⃓⃓ 2r+2
r+2

+ |∇θℓn|r+1 + 1
)︃

∥Rnτ∥1,∞

≤ C(ω, ℓ)
∫︂ T

0

(︃
∥∇θℓn∥ r+2

r+1
+ ∥θℓn∥r+1

r+2 +
⃦⃦⃦⃦√︂

κ(θℓn)∇θℓn

⃦⃦⃦⃦ 2r+2
r+2

2

+ ∥∇θℓn∥r+1
r+1 + 1

)︃
∥Rnτ∥N,2

≤ C(ω, ℓ)∥τ∥Lr+2W N,2 ≤ C(ω, ℓ),

hence
∥∂tθℓn∥

L
r+2
r+1 W −N,2

≤ C(ω, ℓ). (3.94)

At this point, we want to apply Lemma 4.1 to obtain weakly converging
subsequences and their limits. Before we do that, let us make two conventions.
First, we never relabel subsequences obtained from Lemma 4.1 or by similar
arguments. Second, instead of

uk → u strongly in Ls(Q) for any 1 ≤ s < S,

we write just

uk → u strongly in LS)(Q)

(and analogously for other spaces) in order to avoid cumulation of unimportant
parameters.

Taking the limit n → ∞

For every i = 1, . . . , ℓ, the sequence {αi
ℓn}∞

n=1 ⊂ C([0, T ]) is bounded due to (3.85)
and uniformly equicontinuous by (3.88). Hence, using the Arzelà-Ascoli theorem
(see [45, Theorem 1.5.3] or [29, Theorem IV.6.7]), for every i = 1, . . . , ℓ, we obtain
αi

ℓ ∈ C([0, T ]) and a subsequence (not relabelled) such that

αi
ℓn → αi

ℓ strongly in C([0, T ])

as n → ∞. Then, we define

vℓ =
ℓ∑︂

i=1
αi

ℓwi ∈ C([0, T ];W 1,∞(Ω) ∩W 1,2
0,div)

44



and note that
vℓn → vℓ strongly in C([0, T ];W 1,∞(Ω)). (3.95)

According to estimates (3.87), (3.90), (3.91), (3.93), (3.94) and Lemma 4.1, there
exist subsequences {vℓn}∞

n=1, {Bℓn}∞
n=1, {θℓn}∞

n=1 and their limits vℓ, Bℓ, θℓ, such
that

∂tvℓn
∗
⇀ ∂tvℓ weakly* in L2(0, T ;W 1,∞(Ω)),

Bℓn ⇀ Bℓ weakly in L2(0, T,W 1,2(Ω)), (3.96)
Bℓn → Bℓ strongly in L2+q)(Q) and a.e. in Q,

∂tBℓn ⇀ ∂tBℓ weakly in L
q+2
q+1 (0, T ;W−N,2(Ω)),

θℓn ⇀ θℓ weakly in Lr+2(0, T,W 1,r+2(Ω)), (3.97)
θℓn → θℓ strongly in Lr+2+ 4

d
)(Q) and a.e. in Q, (3.98)

∂tθℓn ⇀ ∂tθℓ weakly in L
r+2
r+1 (0, T ;W−N,2(Ω)). (3.99)

Now we explain how to take the limit in the non-linear terms appearing in (3.78),
(3.79) and (3.80). To handle most of the terms, namely

T = {vℓn ⊗ vℓn, ν(θℓn)Dvℓn, gω(Bℓn, θℓn)θℓnBℓn, δ(θℓn)γ(|Bℓn − I|)(Bℓn − I),
λ(θℓn)∇Bℓn, gω(Bℓn, θℓn)(aDvℓn + Wvℓn)Bℓn, vℓn · ∇θℓn,

gω(Bℓn, θℓn)θℓnBℓn · Dvℓn},

we use the following generic scheme. Any term U ∈ T can be written as U = WS,
where

W is linear and converges weakly in Lq1 (3.100)

and
S converges strongly in Lq2 , (3.101)

where
1
q1

+ 1
q2

≤ 1, (3.102)

Indeed, to deduce a weak convergence of W , we either set it to 1, or use (3.95),
(3.96), or (3.97). Further, the strong convergence of S follows from Vitali’s the-
orem if we use pointwise convergence of vℓn, θℓn, Bℓn together with continuity of
ν, δ, γ, λ and gω and their growth properties (3.31)–(3.35). That q1, q2 can be
chosen so as to satisfy (3.102) is obvious from the spaces in which the conver-
gence results (3.95)–(3.99) hold. Then, by (3.100), (3.101) and (3.102), we obtain
the weak convergence of U to its appropriate limit.

At this point, we have every information needed to take the limit n → ∞
in the equations (3.78) and (3.79). In (3.79), we first multiply the equation by
a function φ ∈ C1([0, T ]), integrate over (0, T ), then take the limit and finally
use the density of functions of the form φA, A ∈ span{Wj}∞

j=1, in the space
L(q+2)′(0, T ;WN,2(Ω)). This way, we obtain

(∂tvℓ,wi) − (vℓ ⊗ vℓ,∇wi) + (2ν(θℓ)Dvℓ,∇wi)
= −(2aµgω(Bℓ, θℓ)θℓBℓ,∇wi) + (f ,wi)

for every i = 1, . . . , ℓ
(3.103)
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a.e. in (0, T ) and∫︂ T

0
⟨∂tBℓ,A⟩ +

∫︂ T

0
(vℓ · ∇Bℓ,A) +

∫︂ T

0
(δ(θℓ)γ(|Bℓ − I|)(Bℓ − I),A)

+
∫︂ T

0
(λ(θℓ)∇Bℓ,∇A) =

∫︂ T

0
(2gω(Bℓ, θℓ)(aDvℓ + Wvℓ)Bℓ,A)

for all A ∈ L(q+2)′(0, T ;WN,2(Ω)), A = AT ,

(3.104)

almost everywhere in (0, T ). However, the space of test functions in (3.104) can
be enlarged using a standard density argument. Indeed, using Hölder’s inequality,
it is easy to see that every term of (3.104) (taking aside the time derivative) is
well defined provided that

A ∈ L2(0, T ;W 1,2(Ω)) ∩ Lq+2(Q)

and thus, we can read from (3.104) that

∂tBℓ ∈
(︂
L2(0, T ;W 1,2(Ω)) ∩ Lq+2(Q)

)︂∗
.

Since we also have that Bℓ ∈ L2(0, T ;W 1,2(Ω)) ∩ Lq+2(Q), it follows from Theo-
rem 4.2 below (with X = W 1,2(Ω), Y = Lq+2(Ω) and H = L2(Ω)) that

Bℓ ∈ C([0, T ];L2(Ω)). (3.105)

Now let us identify Bℓ(0). Clearly, we can use A(t, x) = ψ(t)P(x) in (3.104), where
ψ ∈ C1([0, T ]), ψ(0) = 1, ψ(T ) = 0, and P ∈ WN,2(Ω), to get, after integration
by parts, that

(Bℓ(0),P) = −
∫︂ T

0

(︂
(Bℓ,P)∂tψ + (vℓ · ∇Bℓ,P)ψ

+ (δ(θℓ)γ(|Bℓ − I|)(Bℓ − I),P)ψ
− (λ(θℓ)∇Bℓ,∇P)ψ − (2gω(Bℓ, θℓ)(aDvℓ + Wvℓ)Bℓ,P)ψ

)︂
.

(3.106)

On the other hand, if we multiply (3.79) by ψ, integrate over (0, T ) and by parts
in the time derivative using (3.81), we obtain

(QnBω
0 ,Wj) = −

∫︂ T

0

(︂
(Bℓn,Wj)∂tψ + (vℓn · ∇Bℓn,Wj)ψ

+ (δ(θℓn)γ(|Bℓn − I|)(Bℓn − I),Wj)ψ
− (λ(θℓn)∇Bℓn,∇Wj)ψ − (2gω(Bℓn, θℓn)(aDvℓn + Wvℓn)Bℓn,Wj)ψ

)︂
.

(3.107)

for every j = 1, . . . , n. Then, we use completeness of {Wj}∞
j=1 in L2(Ω) and

the same arguments as before to take the limit n → ∞ in (3.107). This way,
using also density of span{Wj}∞

j=1 in WN,2(Ω), we get, for all P ∈ WN,2(Ω), that

(Bω
0 ,P) = −

∫︂ T

0

(︂
(Bℓ,P)∂tψ + (vℓ · ∇Bℓ,P)ψ + (δ(θℓ)γ(|Bℓ − I|)(Bℓ − I),P)ψ

− (λ(θℓ)∇Bℓ,∇P)ψ − (2gω(Bℓ, θℓ)(aDvℓ + Wvℓ)Bℓ,P)ψ
)︂
.

If we compare this with (3.106) and use density of WN,2(Ω) in L2(Ω), we deduce

Bℓ(0) = Bω
0 a.e. in Ω. (3.108)
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We can use an analogous procedure to identify vℓ(0). Indeed, here the situation
is even simpler since (3.95) directly implies vℓ ∈ C([0, T ];W 1,∞(Ω)) and thus, we
obtain

vℓ(0) = Pℓv0. (3.109)

Our aim is now to take the limit in equation (3.80), where we need to justify
the limit in the terms κ(θℓn)∇θℓn, |∇θℓn|r∇θℓn and 2ν(θℓn)|Dvℓn|2 (the other terms
can be easily handled according to the scheme (3.100)–(3.102)). For the first one,
we use (3.30), (3.33), (3.98) and Vitali’s theorem to get√︂

κ(θℓn) →
√︂
κ(θℓ) strongly in L2+ 4

r (Q) (3.110)

and then we combine this with (3.97), to obtain√︂
κ(θℓn)∇θℓn ⇀

√︂
κ(θℓ)∇θℓ weakly in L1(Q). (3.111)

However, by the estimate (3.93) we know that (3.111) is valid also in L2(Q) up
to a subsequence, and hence, using again (3.110), we obtain

κ(θℓn)∇θℓn =
√︂
κ(θℓn)

√︂
κ(θℓn)∇θℓn ⇀ κ(θℓ)∇θℓ weakly in L

r+2
r+1 (Q). (3.112)

Next, to take the limit of the term 2ν(θℓn)|Dvℓn|2, we first remark, using
(3.30), (3.31), (3.98) and Vitali’s theorem that

ν(θℓn) → ν(θℓ) strongly in L∞)(Q).

This and
Dvℓn → Dvℓ strongly in C([0, T ];L∞(Ω))

(cf. (3.95)) clearly proves that

2ν(θℓn)|Dvℓn|2 → 2ν(θℓ)|Dvℓ|2 strongly in L∞)(Q). (3.113)

Finally, due to (3.93) and reflexivity of the space L(r+2)′(Q), there exists
K ∈ L(r+2)′(Q) such that

|∇θℓn|r∇θℓn ⇀ K weakly in L(r+2)′(Q). (3.114)

Then, using also (3.112), (3.113) and previous convergence results, we can take
the limit in (3.80) and obtain, for all τ ∈ Lr+2(0, T ;WN,2(Ω)), that∫︂ T

0
⟨cv∂tθℓ, τ⟩ +

∫︂ T

0
(cvvℓ · ∇θℓ, τ) +

∫︂ T

0
(κ(θℓ)∇θℓ,∇τ) + ω

∫︂ T

0
(K,∇τ)

=
∫︂ T

0
(2ν(θℓ)|Dvℓ|2 + 2aµgω(Bℓ, θℓ)θℓBℓ · Dvℓ, τ).

(3.115)

Recalling (3.99), (3.112) and (3.114), we easily conclude, using a density argu-
ment, that (3.115) is valid for all τ ∈ Lr+2(0, T ;W 1,r+2(Ω)) and that the time
derivative extends to the functional ∂tθℓ ∈ L(r+2)′(0, T ;W−1,(r+2)′). Thus, using
Theorem 4.2, we also see that

θℓ ∈ C([0, T ];L2(Ω)). (3.116)
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Furthermore, choosing τ = θℓ in (3.115), rewriting the time derivative term and
integrating by parts in the convective term leads to

ω
∫︂

Q
K · ∇θℓ = −cv

2 ∥θℓ(T )∥2
2 + cv

2 ∥θℓ(0)∥2
2 −

∫︂
Q
κ(θℓ)|∇θℓ|2

+
∫︂ T

0
(2ν(θℓ)|Dvℓ|2 + 2aµgω(Bℓ, θℓ)θℓBℓ · Dvℓ, θℓ).

(3.117)

We use this information to identify K as follows. We note that weak lower semi-
continuity and (3.111) (which is valid in L2(Q)) imply∫︂

Q
κ(θℓ)|∇θℓ|2 ≤ lim inf

n→∞

∫︂
Q
κ(θℓn)|∇θℓn|2. (3.118)

Thus, if we integrate (3.92) over (0, T ) and use (3.118), (3.113), weak lower semi-
continuity of ∥·∥2 and the convergence results above to take the limes superior
n → ∞ and then apply (3.117), we get

ω lim sup
n→∞

∫︂
Q

|∇θℓn|r+2

= − lim inf
n→∞

cv

2 ∥θℓn(T )∥2
2 + cv

2 ∥θω
0 ∥2

2 − lim inf
n→∞

∫︂
Q
κ(θℓn)|∇θℓn|2

+ lim
n→∞

∫︂ T

0
(2ν(θℓn)|Dvℓn|2 + 2aµgω(Bℓn, θℓn)θℓnBℓn · Dvℓn, θℓn)

≤ −cv

2 ∥θℓ(T )∥2
2 + cv

2 ∥θω
0 ∥2

2 −
∫︂

Q
κ(θℓ)|∇θℓ|2

+
∫︂ T

0
(2ν(θℓ)|Dvℓ|2 + 2aµgω(Bℓ, θℓ)θℓBℓ · Dvℓ, θℓ)

= cv

2 ∥θω
0 ∥2

2 − cv

2 ∥θℓ(0)∥2
2 + ω

∫︂
Q
K · ∇θℓ.

(3.119)

To identify the initial condition for θℓ(0), it is enough to show that

θℓ(t) ⇀ θω
0 weakly in L2(Ω) (3.120)

as t → 0+ since then we can use (3.116) to conclude

θℓ(0) = θω
0 a.e. in Ω (3.121)

by the uniqueness of a (weak) limit. To prove (3.120), we return to (3.80), which
we multiply by φ ∈ W 1,∞(0, T ) fulfilling φ(0) = 1, φ(T ) = 0 and integrate
the result over (0, T ) to get

− (cvθ
ω
0 , wk) −

∫︂ T

0
(cvθℓn, wk)∂tφ =

∫︂ T

0
fnφ. (3.122)

for all k = 1, . . . , n, where we integrated by parts in the time derivative and used
the abbreviation

fn = −(cvvℓn · ∇θℓn, wk) − (κ(θℓn)∇θℓn + ω|∇θℓn|r∇θℓn,∇wk)
+ (2ν(θℓn)|Dvℓn|2 + 2aµgω(Bℓn, θℓn)θℓnBℓn · Dvℓn, wk).

It follows from the results above (cf. the derivation of (3.115)) that

fn ⇀ f weakly in L(r+2)′(0, T ),
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where
f = −(cvvℓ · ∇θℓ, wk) − (κ(θℓ)∇θℓ,∇wk) − ω(K,∇wk)

+ (2ν(θℓ)|Dvℓ|2 + 2aµgω(Bℓ, θℓ)θℓBℓ · Dvℓ, wk).
Thus, by taking the limit n → ∞ in (3.122), we arrive at

− (cvθ
ω
0 , wk) −

∫︂ T

0
(cvθℓ, wk)∂tφ =

∫︂ T

0
fφ.

Making now a special choice

φε(s) =

⎧⎪⎨⎪⎩
1 s ≤ t,

1 − s−t
ε

s ∈ (t, t+ ε),
0 s ≥ t+ ε,

where t ∈ (0, T ) and 0 < ε < T − t, leads to

− (cvθ
ω
0 , wk) + 1

ε

∫︂ t+ε

t
(cvθℓ, wk) =

∫︂ t+ε

0
fφε.

Furthermore, we can take the limit ε → 0+ in this equation using (3.116) on
the left hand side and absolute continuity of integral on the right hand side to
get

−(cvθ
ω
0 , wk) + (cvθℓ(t), wk) =

∫︂ t

0
f.

Finally, taking the limit t → 0+ yields

lim
t→0+

(θℓ(t), wk) = (θω
0 , wk),

for all k = 1, . . . , n, from which (3.120) follows by exploiting the density of the set
span{wk}∞

k=1 in L2(Ω). Hence, the identity (3.121) is proved and (3.119) hereby
simplifies to

lim sup
n→∞

∫︂
Q

|∇θℓn|r+2 ≤
∫︂

Q
K · ∇θℓ. (3.123)

Since the operator M : u ↦→ |u|ru is monotone, we have that

0 ≤
∫︂

Q
(|∇θℓn|r∇θℓn − |u|ru) · (∇θℓn − u) for all u ∈ Lr+2(Q).

Thus, taking the limes superior in this inequality and using (3.123), (3.114) and
(3.97), we obtain

0 ≤ lim sup
n→∞

∫︂
Q

|θℓn|r+2 − lim
n→∞

∫︂
Q

|∇θℓn|r∇θℓn · u

− lim
n→∞

∫︂
Q

|u|ru · ∇θℓn +
∫︂

Q
|u|r+2

≤
∫︂

Q
K · ∇θℓ −

∫︂
Q
K · u −

∫︂
Q

|u|ru · ∇θℓ +
∫︂

Q
|u|r+2

=
∫︂

Q
(K − |u|ru) · (∇θℓ − u).

Then, if we choose u = ∇θℓ − εφ, where ε > 0 and φ ∈ Lr+2(Q) (following
the Minty method), we get

0 ≤
∫︂

Q
(K − |∇θℓ − εφ|r(∇θℓ − εφ)) · φ
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after dividing by ε. Using continuity of the operator M and the dominated
convergence theorem, we arrive at

0 ≤
∫︂

Q
(K − |∇θℓ|r∇θℓ) · φ.

Since this holds for arbitrary φ ∈ Lr+2(Q) (and thus even with equality), we find

K = |∇θℓ|r∇θℓ a.e. in Q.

Hence, we proved that∫︂ T

0
⟨cv∂tθℓ, τ⟩ +

∫︂ T

0
(cvvℓ · ∇θℓ, τ) +

∫︂ T

0
(κ(θℓ)∇θℓ + ω|∇θℓ|r∇θℓ,∇τ)

=
∫︂ T

0
(2ν(θℓ)|Dvℓ|2 + 2aµgω(Bℓ, θℓ)θℓBℓ · Dvℓ, τ)

(3.124)

for all τ ∈ Lr+2(0, T ;W 1,r+2(Ω)).

3.5.3 Positive definiteness of Bℓ and positivity of θℓ
Here we closely follow the method developed in [6] (cf. (5.52) in Chapter 5), i.e.,
we use

Ax = χ(0,t)(Bℓx · x − ω|x|2)− x ⊗ x,

in (3.104), where x ∈ Rd, t ∈ (0, T ) and

f+ = max{0, f}, f− = min{0, f}.

Note that, since Bℓ ∈ L2(0, T ;W 1,2(Ω)) ∩ Lq+2(Q) and x is a constant vector,
the function Ax belongs to the same space, and is thus a valid test function
in (3.104). The key property of Ax is that it vanishes whenever the smallest
eigenvalue of Bℓ is greater than ω (since Bℓy · y ≥ ω|y|2 for all y ∈ Rd in such
a case). Thus, we have

(Λ(Bℓ) − ω)+(Bℓx · x − ω|x|2)− = 0,

which implies
gω(Bℓ, θℓ)Ax = 0 a.e. in Q. (3.125)

Let us now evaluate separately the terms arising from the choice A = Ax in
(3.104). For the time derivative, we write∫︂ T

0
⟨∂tBℓ,Ax⟩ =

∫︂ t

0

⟨︂
∂t(Bℓx · x − ω|x|2), (Bℓx · x − ω|x|2)−

⟩︂
= 1

2
⃦⃦⃦
(Bℓx · x − ω|x|2)−(t)

⃦⃦⃦2

2
− 1

2
⃦⃦⃦
(Bℓx · x − ω|x|2)−(0)

⃦⃦⃦2

2

= 1
2
⃦⃦⃦
(Bℓx · x − ω|x|2)−(t)

⃦⃦⃦2

2
,

where the first equality is a consequence of the linearity of the weak time deriva-
tive, the second one follows from Lemma 4.4 since the function s ↦→ s− is Lipschitz
and ∫︂ v

0
s− ds = 1

2(v−)2, v ∈ R,
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and the third equality follows from (3.108) and (3.70). Furthermore, using inte-
gration by parts and the facts that vℓ · n = 0 on ∂Ω and div vℓ = 0 in Q, we
get ∫︂ T

0
(vℓ · ∇Bℓ,Ax) =

∫︂ t

0
(vℓ · ∇(Bℓx · x − ω|x|2), (Bℓx · x − ω|x|2)−)

= 1
2

∫︂ t

0

∫︂
∂Ω

((Bℓx · x − ω|x|2)−)2vℓ · n = 0

and also ∫︂ T

0
(λ(θℓ)∇Bℓ,∇Ax) =

∫︂ t

0

⃦⃦⃦⃦√︂
λ(θℓ)∇(Bℓx · x − ω|x|2)−

⃦⃦⃦⃦2

2
≥ 0.

Moreover, since ω < 1 and the functions δ, γ are non-negative, we also obtain∫︂ T

0
(δ(θℓ)γ(|Bℓ − I|)(Bℓ − I),Ax)

=
∫︂ t

0

∫︂
Ω
δ(θℓ)γ(|Bℓ − I|)(Bℓx · x − |x|2)(Bℓx · x − ω|x|2)− ≥ 0.

In addition, the right hand side of (3.104) vanishes due to (3.125). Thus, using
the above computation in (3.104), we obtain⃦⃦⃦

(Bℓx · x − ω|x|2)−(t)
⃦⃦⃦2

2
≤ 0

for all t ∈ (0, T ) (recall (3.105)), whence

Bℓ(t)x · x ≥ ω|x|2 a.e. in Ω, for all t ∈ (0, T ) and for every x ∈ Rd. (3.126)

Note that this immediately yields Bℓ ∈ Rd×d
>0 , B−1

ℓ ∈ Rd×d
>0 a.e. in Q, and thus

|B−1
ℓ | ≤ |B− 1

2
ℓ |2 = trB−1

ℓ ≤ d

ω
.

Also, using the identity
∇B−1

ℓ = −B−1
ℓ ∇BℓB−1

ℓ ,

(see (4.38)) and (3.90) we conclude that B−1
ℓ exists a.e. in Q and satisfies

B−1
ℓ ∈ L∞(0, T ;L∞(Ω)) ∩ L2(0, T ;W 1,2(Ω)). (3.127)

Moreover, we define
ψ2(Bℓ) = trBℓ − d− ln detBℓ

and observe, using (4.36), (4.37) and simple inequalities

detBℓ ≥ ωd and | ln x| ≤ x+ 1
x
, x > 0,

that

0 ≤ ψ2(Bℓ) ≤
√
d|Bℓ| − d+ d

(︂
| detBℓ|

1
d + | detBℓ|−

1
d

)︂
≤

√
d|Bℓ| − d+ C

(︃
|Bℓ| + 1

ω

)︃
≤ C|Bℓ| + C

ω
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and also, using (4.40), that

|∇ψ2(Bℓ)| = |(I − B−1
ℓ ) · ∇Bℓ| ≤ C

(︃
1 + 1

ω

)︃
|∇Bℓ|.

Hence, we conclude

ψ2(Bℓ) ∈ L2(0, T ;W 1,2(Ω)) ∩ Lq+2(Q).

Next, we prove positivity of θℓ. Since θℓ ∈ Lr+2(0, T ;W 1,r+2(Ω)), we can use
the analogous method as before. Indeed, we start by choosing

τ = χ(0,t)(θℓ − ω)− ∈ Lr+2(0, T ;W 1,r+2(Ω))

as a test function in (3.124) to get
cv

2 ∥(θℓ − ω)−(t)∥2
2 − cv

2 ∥(θℓ − ω)−(0)∥2
2

+
∫︂ t

0

⃦⃦⃦⃦√︂
κ(θℓ)∇(θℓ − ω)−

⃦⃦⃦⃦2

2
+
∫︂ t

0
∥∇(θℓ − ω)−∥r+2

r+2

=
∫︂ t

0

(︂
2ν(θℓ)|Dvℓ|2 + 2aµgω(Bℓ, θℓ)θℓBℓ · Dvℓ, (θℓ − ω)−

)︂
.

≤ 0

Hence, using θℓ(0) = θω
0 ≥ ω in Ω and (3.116), we obtain that

∥(θℓ(t) − ω)−∥2 = 0 for all t ∈ (0, T ),

which means
θℓ(t) ≥ ω a.e. in Ω and for all t ∈ (0, T ). (3.128)

Consequently, since ∇θ−1
ℓ = θ−2

ℓ ∇θℓ, we also obtain

θ−1
ℓ ∈ L∞(0, T ;L∞(Ω)) ∩ Lr+2(0, T ;W 1,r+2(Ω)). (3.129)

From these findings we also easily read that

| ln θℓ| ≤ θℓ + 1
θℓ

≤ θℓ + 1
ω

and
|∇ ln θℓ| = |∇θℓ|

θℓ

≤ 1
ω

|∇θℓ|,

hence
ln θℓ ∈ Lr+2(0, T ;W 1,r+2(Ω)).

3.5.4 Entropy equation
In order to take the remaining limits ℓ → ∞ and ω → 0+, we need to replace
(3.124) by the equation for entropy, whose terms are easier to handle. From this
equation, we then deduce that detBℓ and θℓ remain strictly positive a.e. in Q.

First, we rewrite (3.124) in the form

⟨cv∂tθℓ, τ⟩ + (cvvℓ · ∇θℓ, τ) + (κ(θℓ)∇θℓ + ω|∇θℓ|r∇θℓ,∇τ)
= (2ν(θℓ)|Dvℓ|2 + 2aµgω(Bℓ, θℓ)θℓBℓ · Dvℓ, τ)

(3.130)

52



for all τ ∈ W 1,r(Ω) and a.e. in (0, T ). Then, we take ϕ ∈ W 1,∞(Ω) and note that
τ = θ−1

ℓ ϕ can be used as a test function in (3.130) thanks to (3.129). This way,
we get ⟨︄

cv∂tθℓ,
ϕ

θℓ

⟩︄
+ (cvvℓ · ∇ ln θℓ, ϕ)

+ (κ(θℓ)∇ ln θℓ,∇ϕ) − (κ(θℓ)|∇ ln θℓ|2, ϕ)
+ ω(|∇θℓ|r∇ ln θℓ,∇ϕ) − ω(|∇θℓ|r|∇ ln θℓ|2, ϕ)

=
(︃2ν(θℓ)

θℓ

|Dvℓ|2 + 2aµgω(Bℓ, θℓ)Bℓ · Dvℓ, ϕ
)︃

(3.131)

a.e. in (0, T ). Similarly, we observe that µ(I − B−1
ℓ )ϕ is a valid test function in

(the localized version of) (3.104) due to (3.127). Thus, using the same algebraic
manipulations as those leading to (3.13) in Section 3.2, we obtain⟨︂

∂tBℓ, µ(I − B−1
ℓ )ϕ

⟩︂
+ (µvℓ · ∇ψ2(Bℓ), ϕ)

+ (µδ(θℓ)γ(|Bℓ − I|)|B
1
2
ℓ −B− 1

2
ℓ |2, ϕ) + (µλ(θℓ)|B

− 1
2

ℓ ∇BℓB
− 1

2
ℓ |2, ϕ)

= −(µλ(θℓ)∇ψ2(Bℓ),∇ϕ) + (2aµgω(Bℓ, θℓ)Bℓ · Dvℓ, ϕ)
(3.132)

a.e. in (0, T ). If we define

ηℓ = cv ln θℓ − µψ2(Bℓ) (3.133)

and

ξℓ = 2ν(θℓ)
θℓ

|Dvℓ|2 + κ(θℓ)|∇ ln θℓ|2 + ω|∇θℓ|r|∇ ln θℓ|2

+ µδ(θℓ)γ(|Bℓ − I|)|B
1
2
ℓ − B− 1

2
ℓ |2 + µλ(θℓ)|B

− 1
2

ℓ ∇BℓB
− 1

2
ℓ |2

and subtract (3.132) from (3.131), we get⟨︄
cv∂tθℓ,

ϕ

θℓ

⟩︄
−
⟨︂
∂tBℓ, µ(I − B−1

ℓ )ϕ
⟩︂

+ (vℓ · ∇ηℓ, ϕ)

+
(︂
(κ(θℓ) + ω|∇θℓ|r)∇ ln θℓ − µλ(θℓ)∇ψ2(Bℓ),∇ϕ

)︂
= (ξℓ, ϕ)

(3.134)

a.e. in (0, T ) and for all ϕ ∈ W 1,∞(Ω).
Obviously, we need to rewrite the time derivative accordingly. Concerning

the term containing ∂tθℓ, note that ψ(s) = max{|s|, ω}−1, s ∈ R, is a bounded
Lipschitz function. Since θℓ ≥ ω a.e. in Q by (3.128) and ω < 1, we get∫︂ θℓ

1
ψ(s) ds =

∫︂ θℓ

1

1
s

ds = ln θℓ.

Thus, if we apply Lemma 4.4, we get⟨︄
cv∂tθℓ,

ϕ

θℓ

⟩︄
= d

dt(cv ln θℓ, ϕ)

by taking the (weak) time derivative of (4.32). Hence, if we multiply this by
φ ∈ W 1,∞(0, T ) with φ(T ) = 0, integrate over (0, T ) and by parts, we are led to∫︂ T

0

⟨︄
cv∂tθℓ,

ϕ

θℓ

⟩︄
φ = −

∫︂ T

0

∫︂
Ω
cv ln θℓϕ∂tφ−

∫︂
Ω
cv ln θω

0 ϕφ(0), (3.135)
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where we also used (3.121).
Analogous ideas can be used to rewrite the second term of (3.134). However,

we can not apply Lemma 4.4 directly since the duality
⟨︂
∂tBℓ, (I − B−1

ℓ )ϕ
⟩︂

can
not be interpreted entry-wise. Thus, let us proceed more explicitly. We apply
Theorem 4.2 to obtain functions Bε

ℓ ∈ C1([0, T ];W 1,2(Ω) ∩ Lq+2(Ω)) such that

∥Bε
ℓ − Bℓ∥L2W 1,2∩Lq+2Lq+2 + ∥∂tBε

ℓ − ∂tBℓ∥
L2W −1,2+L

q+2
q+1 L

q+2
q+1

→ 0 (3.136)

as ε → 0+ and also
Λ(Bε

ℓ) ≥ ω a.e. in Q.

Since Bℓ ∈ C([0, T ];L2(Ω)) (cf. (3.105)), we know that

∥Bε
ℓ − Bℓ∥2 ⇒ 0 uniformly in [0, T ]. (3.137)

Furthermore, using (4.38) and (3.127), we can write, for any ϕ ∈ W 1,∞(Ω), that⃓⃓⃓
∇((I − (Bε

ℓ)−1)ϕ)
⃓⃓⃓
=
⃓⃓⃓
(Bε

ℓ)−1∇Bε
ℓ(Bε

ℓ)−1ϕ+ (I − (Bε
ℓ)−1)∇ϕ

⃓⃓⃓
≤ C

ω2 |∇Bε
ℓ||ϕ| +

(︃
1 + C

ω

)︃
|∇ϕ|

and thus, we eventually obtain that

(I − (Bε
ℓ)−1)ϕ ⇀ (I − B−1

ℓ )ϕ weakly in L2(0, T ;W 1,2(Ω)) ∩ Lq+2(0, T ;Lq+2(Ω)).

By applying this with (3.136), we get, for all φ ∈ W 1,∞(0, T ), φ(T ) = 0, that⃓⃓⃓⃓
⃓
∫︂ T

0

⟨︂
∂tBε

ℓ, µ(I − (Bε
ℓ)−1)ϕ

⟩︂
φ−

∫︂ T

0

⟨︂
∂tBℓ, µ(I − B−1

ℓ )ϕ
⟩︂
φ

⃓⃓⃓⃓
⃓

≤
∫︂ T

0

⃓⃓⃓⟨︂
∂tBε

ℓ − ∂tBℓ, µ(I − (Bε
ℓ)−1)ϕ

⟩︂⃓⃓⃓
|φ|

+
⃓⃓⃓⃓
⃓
∫︂ T

0

⟨︂
∂tBℓφ, µ(I − (Bε

ℓ)−1)ϕ− µ(I − B−1
ℓ )ϕ

⟩︂⃓⃓⃓⃓⃓
→ 0 as ε → 0+.

(3.138)

On the other hand, using ∂tBε
ℓ ∈ C([0, T ];W 1,2(Ω) ∩Lq+2(Ω)) and (4.40), we find∫︂ T

0

⟨︂
∂tBε

ℓ, µ(I − (Bε
ℓ)−1)ϕ

⟩︂
φ =

∫︂ T

0
(µ∂tψ2(Bε

ℓ), ϕ)φ

= −
∫︂

Ω
µψ2(Bε

ℓ(0))ϕφ(0) −
∫︂ T

0

∫︂
Ω
µψ2(Bε

ℓ)ϕ∂tφ

(3.139)

To take the limit in the last two terms, let us first remark that the set{︂
A ∈ Rd×d : Ax · x ≥ ω for all x ∈ Rd

}︂
is convex in Rd×d (as it is defined by a linear constraint). This, (3.126) and (4.37)
imply, for any s ∈ (0, 1), that⃓⃓⃓

(Bℓ + s(Bε
ℓ − Bℓ))−1

⃓⃓⃓
≤ tr(Bℓ + s(Bε

ℓ − Bℓ))−1

≤ 1
dΛ(Bℓ + s(Bε

ℓ − Bℓ))
≤ 1
dω
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a.e. in Ω. Thus, by the mean value theorem, (4.40) and (3.137), we get∫︂
Ω

|ψ2(Bε
ℓ) − ψ2(Bℓ)|2

=
∫︂

Ω

⃓⃓⃓⃓∫︂ 1

0
(I − (Bℓ + s(Bε

ℓ − Bℓ))−1) · (Bε
ℓ − Bℓ) ds

⃓⃓⃓⃓2
≤ C

(︃
1 + 1

ω

)︃
∥Bε

ℓ − Bℓ∥2
2 ⇒ 0 uniformly in [0, T ]

(3.140)

as ε → 0+. Similarly, using (3.105) and (3.108), we can also show that

ψ2(Bℓ) ∈ C(0, T ;L2(Ω)), ψ2(Bℓ(0)) = ψ2(Bω
0 ). (3.141)

Using this and (3.140), we take the limit in (3.139) and then compare to (3.138)
to obtain∫︂ T

0

⟨︂
∂tBℓ, µ(I − B−1

ℓ )ϕ
⟩︂
φ = −

∫︂
Ω
µψ2(Bω

0 )ϕφ(0) −
∫︂ T

0

∫︂
Ω
µψ2(Bℓ)ϕ∂tφ (3.142)

for all φ ∈ W 1,∞(Ω), φ(T ) = 0, and every ϕ ∈ W 1,∞(Ω).
Finally, if we subtract (3.142) from (3.135) and use (3.133), we can rewrite

(3.134) as

−
∫︂ T

0
(ηℓ, ϕ)∂tφ− (ηω

0 , ϕ)φ(0) −
∫︂ T

0
(vℓηℓ,∇ϕ)φ

+
∫︂ T

0

(︂
(κ(θℓ) + ω|∇θℓ|r)∇ ln θℓ − µλ(θℓ)∇ψ2(Bℓ),∇ϕ

)︂
φ =

∫︂ T

0
(ξℓ, ϕ)φ

(3.143)

for all φ ∈ W 1,∞(0, T ), φ(T ) = 0, and ϕ ∈ W 1,∞(Ω), where

ηω
0 = cv ln θω

0 − µψ2(Bω
0 ).

Moreover, since ln θℓ ∈ C([0, T ];L2(Ω)) and (3.141) hold, we easily read

ηℓ ∈ C([0, T ];L2(Ω)), ηℓ(0) = ηω
0 . (3.144)

3.5.5 Total energy equality
The integrated version of the total energy equality is important in the derivation
of the apriori estimates below.

Let
Eℓ = 1

2 |vℓ|2 + cvθℓ.

We multiply the i-th equation in (3.103) by (vℓ,wi), sum up the result over i =
1, . . . , ℓ and then we add (3.124) with τ = 1. This way, after several cancellations
using also (3.69), we obtain

d
dt

∫︂
Ω
Eℓ = (f ,vℓ) (3.145)

a.e. in (0, T ).
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3.5.6 Final limit
We start by derivation of an estimate that is uniform with respect to ℓ. In fact,
since we derive this estimate without appealing to the properties of gω (except
for 0 ≤ gω ≤ 1), it is uniform also with respect to ω. This saves us some work
in exchange for the fact that this estimate is not optimal for the ω-approximated
system.

Uniform estimates

As we explained several times before, the key to the uniform estimates is the en-
tropy (in)equality used together with the energy (in)equality. Let us first show
that the total energy of the fluid remains bounded. In (3.145), we apply Young’s
inequality, (3.45) and θℓ > 0, to estimate

d
dt

∫︂
Ω
Eℓ ≤ 1

2

∫︂
Ω

|vℓ|2 + 1
2

∫︂
Ω

|f |2 ≤
∫︂

Ω
Eℓ + 1

2

∫︂
Ω

|f |2

a.e. in (0, T ). Hence, by the Gronwall inequality (see e.g. [31, B.2.]), we get
∫︂

Ω
Eℓ(t) ≤ et

(︃∫︂
Ω
Eℓ(0) + 1

2

∫︂ t

0
∥f∥2

2

)︃
for all t ∈ [0, T ].

Then, we apply (3.109), (3.121) to identify that

Eℓ(0) = 1
2 |Pℓv0|2 + cvθ

ω
0

and if we use (3.76), (3.72), (3.45), we arrive at

∥θℓ∥L∞L1 + ∥vℓ∥L∞L2 ≤ C∥Eℓ∥L∞L1 ≤ C. (3.146)

Now we turn our attention to (3.143), which we need to localize in time. To
this end, we want to multiply (3.143) by φ = χ(0,t) with t ∈ (0, T ). However,
such a test function is not admissible in (3.143) and therefore, we approximate it
in a standard way as follows. Fix ϕ ∈ W 1,∞(Ω), and let us define

u =
∫︂

Ω
ηℓϕ ∈ C([0, T ]) (cf. (3.144)) (3.147)

jℓ = −vℓηℓ + (κ(θℓ) + ω|∇θℓ|r)∇ ln θℓ − λ(θℓ)∇ψ2(Bℓ) ∈ L1(Q)

v =
∫︂

Ω
(jℓ · ∇ϕ− ξℓϕ) ∈ L1(0, T ).

Fix t ∈ (0, T ) and let

φk(s) =

⎧⎪⎨⎪⎩
1 s ≤ t

(t− s)k + 1 s ∈ (t, t+ 1
k
)

0 s ≥ t+ 1
k

Then, for any k > 1
T −t

, we have φk ∈ W 1,∞(Ω) and φk(T ) = 0. Hence, by
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considering φk in (3.143), we obtain

0 = −
∫︂

Q
ηℓ∂tφkϕ−

∫︂
Ω
ηω

0φk(0)ϕ+
∫︂

Q
φkjℓ · ∇ϕ−

∫︂
Q
ξℓφkϕ

= k
∫︂ t+ 1

k

t

∫︂
Ω
ηℓϕ−

∫︂
Ω
ηω

0 ϕ+
∫︂

Q
(jℓ · ∇ϕ− ξℓϕ)φk

= k
∫︂ t+ 1

k

t
u−

∫︂
Ω
ηω

0 ϕ+
∫︂ t+ 1

k

0
vφk

= u(t) −
∫︂

Ω
ηω

0 ϕ+
∫︂ t

0
v + k

∫︂ t+ 1
k

t
(u− u(t)) +

∫︂ t+ 1
k

t
vφk.

(3.148)

Since ⃓⃓⃓⃓
⃓k
∫︂ t+ 1

k

t
(u− u(t))

⃓⃓⃓⃓
⃓ ≤ k

∫︂ t+ 1
k

t
|u− u(t)| → 0 as k → ∞ (3.149)

by the continuity of u and⃓⃓⃓⃓
⃓
∫︂ t+ 1

k

t
vφk

⃓⃓⃓⃓
⃓ ≤

∫︂ t+ 1
k

t
|v| → 0 as k → ∞

by the absolute continuity of Lebesgue integral, we obtain from (3.148) that∫︂
Ω
ηℓ(t)ϕ+

∫︂ t

0

∫︂
Ω

jℓ · ∇ϕ =
∫︂

Ω
ηω

0 ϕ+
∫︂ t

0

∫︂
Ω
ξℓϕ for all ϕ ∈ W 1,∞(Ω) (3.150)

and all t ∈ (0, T ) (in fact, for all t ∈ [0, T ] due to continuity of both sides of
(3.150)). In particular, taking ϕ = 1,3 we deduce, using ξℓ ≥ 0, that the function
t ↦→

∫︁
Ω ηℓ(t) is non-decreasing, and thus∫︂
Q
ξℓ = max

t∈[0,T ]

∫︂ t

0

∫︂
Ω
ξℓ = max

t∈[0,T ]

∫︂
Ω
ηℓ(t) −

∫︂
Ω
ηω

0 =
∫︂

Ω
ηℓ(T ) −

∫︂
Ω
ηω

0 . (3.151)

Then, using (3.133), the inequalities

ln x ≤ x− 1 for all x > 0 (3.152)

and
µψ2(Bℓ) = µ(trBℓ − d− ln detBℓ) ≥ 0 (3.153)

(see (4.36)), assumption (3.46) and (3.146) (recall also (3.116)), we obtain∫︂
Q
ξℓ ≤

∫︂
Ω
(cv ln θℓ(T ) − µψ2(Bℓ(T ))) + C ≤ C

∫︂
Ω

(θℓ(T ) − 1) + C ≤ C,

hence
∥ξℓ∥L1L1 ≤ C. (3.154)

Also, it is easy to see using (3.151), (3.73), (3.72), (3.45) and (3.46) that

∥ηℓ∥L∞L1 ≤ C. (3.155)
3The case with ϕ ̸= 1 is used for the identification of initial conditions below
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Estimate (3.154) implies, using (3.31), (3.34) and (3.35), that⃦⃦⃦⃦
⃦ 1√

θℓ

Dvℓ

⃦⃦⃦⃦
⃦

L2L2
+
⃦⃦⃦⃦√︂

κ(θℓ)∇ ln θℓ

⃦⃦⃦⃦
L2L2

+ ω
⃦⃦⃦
|∇θℓ|

r
2 ∇ ln θℓ

⃦⃦⃦
L2L2

+
⃦⃦⃦⃦√︂

γ(|Bℓ − I|)(B
1
2
ℓ − B− 1

2
ℓ )

⃦⃦⃦⃦
L2L2

+
⃦⃦⃦⃦
B− 1

2
ℓ ∇BℓB

− 1
2

ℓ

⃦⃦⃦⃦
L2L2

≤ C.

(3.156)

In what follows, we improve the uniform estimate (3.156) considerably by choos-
ing appropriate test functions in (3.104) and (3.124) and then using (A1) and
the definitions of p,R, σ to estimate the right hand sides.

From (3.156) and (3.36) one can deduce, using Young’s inequality that

∥Bℓ∥Lq+1Lq+1 ≤ C.

However, we can obtain better information (cf. (3.49)) as follows. For any K > d
let us define the truncation function TK as

TK(s) = min{max{s, ω}, K}, s ≥ 0,

and then we also define

ϕ(s) = (TK(s))σ−1, s ≥ 0.

As TK is a Lipschitz function bounded from below by ω, from above by K and

ϕ′(s) = (σ − 1)(TK(s))σ−2T ′
K(s),

the function ϕ is Lipschitz as well. Then, since Bℓ ∈ L2(0, T ;W 1,2(Ω)) ∩Lq+2(Q),
we obtain

ϕ(trBℓ) ∈ L2(0, T ;W 1,2(Ω)) ∩ L∞(0, T ;L∞(Ω))
by a standard result (see e.g. [75, Theorem 2.1.11.]). Thus, we see that

AK = ϕ(trBℓ)I = (min{trBℓ, K})σ−1I (3.157)

is a valid test function in (3.104) (recall that trBℓ ≥ Λ(Bℓ) ≥ ω). Moreover, it
follows from Lemma 4.4 that

⟨∂tBℓ,AK⟩ =
⟨︂
∂t trBℓ, TK(trBℓ)σ−1

⟩︂
= d

dt

∫︂
Ω

Φ(trBℓ), (3.158)

where
Φ(s) =

∫︂ s

ω
ϕ(s).

Furthermore, noting that ϕ is non-decreasing as σ > 1, we have

(∇Bℓ,∇AK) = (∇ trBℓ,∇ϕ(trBℓ)) = (∇ trBℓ, ϕ
′(trBℓ)∇ trBℓ)

=
⃦⃦⃦⃦√︂

ϕ′(trBℓ)∇TK(trBℓ)
⃦⃦⃦⃦2

2
≥ 0.

(3.159)

Next, using div vℓ = 0 in Ω, vℓ · n = 0 on ∂Ω and integration by parts, we can
write

(vℓ · ∇Bℓ,AK) = (vℓ · ∇ trBℓ, ϕ(trBℓ)) =
∫︂

Ω
div(Φ(trBℓ)vℓ) = 0. (3.160)
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Furthermore, we use (3.36), (3.34), (4.37) and Young’s inequality to obtain

δ(θℓ)γ(|Bℓ − I|)(trBℓ − d)(trBℓ)σ−1

≥ (C1|Bℓ|q − C2)(trBℓ)σ − C(|Bℓ|q + 1)(trBℓ)σ−1

≥ C1|Bℓ|q+σ − C2|Bℓ|σ − C|B|q+σ−1 − C|Bℓ|σ−1

≥ C1|Bℓ|q+σ − C.

Since K > d, this yields the estimate

(δ(θℓ)γ(|Bℓ − I|)(Bℓ − I),AK)
= (δ(θℓ)γ(|Bℓ − I|)(trBℓ − d), TK(trBℓ)σ−1)

≥
∫︂

Ω
(C1|Bq+σ

ℓ | − C)χ{trBℓ<K}.

(3.161)

Hence, if we use (3.158), (3.159), (3.160) and (3.161) in (3.104) multiplied by AK ,
we obtain

d
dt

∫︂
Ω

Φ(trBℓ) +
∫︂

Ω
|Bℓ|q+σ χ{trBℓ<K} ≤ C

∫︂
Ω
Bℓ · Dvℓ TK(trBℓ)σ−1 + C.

By integrating this inequality over (0, t), t ∈ (0, T ), using (3.108), (4.37) and
TK(trBℓ) ≤ trBℓ in Q, we get∫︂

Ω
Φ(trBℓ(t)) +

∫︂ t

0

∫︂
Ω

|Bℓ|q+σχ{trBℓ<K} ≤ C
∫︂ t

0

∫︂
Ω

|Bℓ|σ|Dvℓ| +
∫︂

Ω
Φ(trBω

0 ) + Ct.

Since

Φ(trBℓ(t)) =
trBℓ(t)∫︂

ω

min{s,K}σ−1 ds ≥ χ{trBℓ(t)<K}

trBℓ(t)∫︂
ω

sσ−1 ds

≥ 1
σ

(︂
(trBℓ(t))σχ{trBℓ(t)<K} − ωσ

)︂
and

Φ(trBω
0 ) =

trBω
0∫︂

ω

min{s,K}σ−1 ds ≤
trBω

0∫︂
ω

sσ−1 = 1
σ

((trBω
0 )σ − ωσ)

a.e. in Ω, we are led to∫︂
Ω
(trBℓ(t))σχ{trBℓ(t)<K} +

∫︂ t

0

∫︂
Ω

|Bℓ|q+σχ{trBℓ<K}

≤ C
∫︂ t

0

∫︂
Ω

|Bℓ|σ|Dvℓ| +
∫︂

Ω
(trBω

0 )σ + Ct.

As the integrands on the left hand side are non-negative and converge point-wise
as K → ∞ (due to trBℓ(t) ∈ L1(Ω) and trBℓ ∈ L1(Q)), the application of
the limes inferior and the Fatou lemma gives∫︂

Ω
(trBℓ(t))σ +

∫︂ t

0

∫︂
Ω

|Bℓ|q+σ ≤ C
∫︂ t

0

∫︂
Ω

|Bℓ|σ|Dvℓ| +
∫︂

Ω
(trBω

0 )σ + Ct. (3.162)

Thus, taking the essential supremum over (0, T ), using Young’s inequality on
the right hand side (with exponents q+σ

σ
and q+σ

q
), (3.72), (3.45) and (4.37), we

arrive at
∥Bℓ∥L∞Lσ + ∥Bℓ∥Lq+σLq+σ ≤ C∥Dvℓ∥

1
q

L
q+σ

q L
q+σ

q
+ C, (3.163)
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where note that the right hand side is finite due to vℓ ∈ L∞(0, T ;W 1,∞(Ω)).
Next, we use (3.163) and (3.124) to improve the information about θℓ and

Dvℓ. Here, we want to make clear that the term ω|∇θℓ|r∇θℓ appearing in (3.124)
is not used any more to deduce estimates on θℓ since we actually want that
the resulting estimate is uniform with respect to ω. For any β ∈ [0, 1), we can
show that θ−β

ℓ ∈ Lr+2(0, T ;W 1,r+2(Ω)) ∩L∞(0, T ;L∞(Ω)) similarly as in (3.129),
and thus τβ = −θ−β

ℓ is an admissible test function in (3.124). Using Lemma 4.4
with ψ(s) = − max(s, ω)−β to rewrite the time derivative, (3.146) with Young’s
inequality, integration by parts, vℓ ∈ W 1,2

0,div and (3.33), we obtain

∫︂ T

0
⟨cv∂tθℓ, τβ⟩+

∫︂ T

0
(cvvℓ · ∇θℓ, τβ)+

∫︂ T

0
(κ(θℓ)∇θℓ,∇τβ)+ω

∫︂ T

0
(|∇θℓ|r∇θℓ,∇τβ)

≥ −cv

1 − β

d
dt

∫︂ T

0

∫︂
Ω
θ1−β

ℓ − cv

1 − β

∫︂ T

0

∫︂
∂Ω
θ1−β

ℓ vℓ · n + β
∫︂

Q
θ−1−β

ℓ κ(θℓ)|∇θℓ|2

= cv

1 − β

∫︂
Ω
((θ

1
ω
0 )1−β − θ1−β

ℓ (T )) + β
∫︂

Q
θ−1−β

ℓ κ(θℓ)|∇θℓ|2

≥ Cβ
∫︂

Q

⃓⃓⃓⃓
∇θ

r+1−β
2

ℓ

⃓⃓⃓⃓2
− C.

We use this estimate in (3.124) with τ = τβ to deduce, using also (3.31), gω ≤ 1,
Hölder’s inequality and (3.163) that, in the case σ < q, we have

β
∫︂

Q

⃓⃓⃓⃓
∇θ

r+1−β
2

ℓ

⃓⃓⃓⃓2
+
∫︂

Q
θ−β

ℓ |Dvℓ|2 ≤ C
∫︂

Q
θ1−β

ℓ |Bℓ||Dvℓ| + C

≤ C
⃦⃦⃦⃦
θ

1− β
2

ℓ

⃦⃦⃦⃦
2(q+σ)
q+σ−2 ;Q

∥Bℓ∥q+σ;Q

⃦⃦⃦⃦
θ

− β
2

ℓ Dvℓ

⃦⃦⃦⃦
2;Q

+ C

≤ C∥θℓ∥
1− β

2
(2−β)(q+σ)

q+σ−2 ;Q
∥Dvℓ∥

1
q
q+σ

q
;Q

⃦⃦⃦⃦
θ

− β
2

ℓ Dvℓ

⃦⃦⃦⃦
2;Q

+ C∥θℓ∥
1− β

2
(2−β)(q+σ)

q+σ−2 ;Q

⃦⃦⃦⃦
θ

− β
2

ℓ Dvℓ

⃦⃦⃦⃦
2;Q

+ C

≤ C∥θℓ∥
1− β

2
(2−β)(q+σ)

q+σ−2 ;Q
∥θℓ∥

β
2q
β(q+σ)

q−σ
;Q

⃦⃦⃦⃦
θ

− β
2

ℓ Dvℓ

⃦⃦⃦⃦1+ 1
q

2;Q

+ C∥θℓ∥
1− β

2
(2−β)(q+σ)

q+σ−2 ;Q

⃦⃦⃦⃦
θ

− β
2

ℓ Dvℓ

⃦⃦⃦⃦
2;Q

+ C

while if σ = q, we omit the final step to get

β
∫︂

Q

⃓⃓⃓⃓
∇θ

r+1−β
2

ℓ

⃓⃓⃓⃓2
+
∫︂

Q
θ−β

ℓ |Dvℓ|2 ≤ C∥θℓ∥
1− β

2
(2−β)q′;Q∥Dvℓ∥

1
q

2;Q

⃦⃦⃦⃦
θ

− β
2

ℓ Dvℓ

⃦⃦⃦⃦
2;Q

+ C∥θℓ∥
1− β

2
(2−β)q′;Q

⃦⃦⃦⃦
θ

− β
2

ℓ Dvℓ

⃦⃦⃦⃦
2;Q

+ C.

Thus, using q > 1, ( 2q
q+1)′ = 2q′ and the Young inequality, we arrive at

β
∫︂

Q

⃓⃓⃓⃓
∇θ

r+1−β
2

ℓ

⃓⃓⃓⃓2
+
∫︂

Q
θ−β

ℓ |Dvℓ|2 ≤ C∥θℓ∥(2−β)q′

(2−β)(q+σ)
q+σ−2 ;Q

∥θℓ∥
βq′

q
β(q+σ)

q−σ
;Q

+ C∥θℓ∥2−β
(2−β)(q+σ)

q+σ−2 ;Q
+ C

(3.164)
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if σ < q and

β
∫︂

Q

⃓⃓⃓⃓
∇θ

r+1−β
2

ℓ

⃓⃓⃓⃓2
+
∫︂

Q
θ−β

ℓ |Dvℓ|2 ≤ C∥θℓ∥2−β
(2−β)q′;Q∥Dvℓ∥

2
q

2;Q

+ C∥θℓ∥2−β
(2−β)q′;Q + C

(3.165)

if σ = q, respectively. Next we focus on the case σ < q. Let

β0 = max
{︄

0, rd + 1 − (rd − 1)(q + σ)
2

}︄
, β1 = min

{︄
1, (rd + 1)(q − σ)

2q

}︄

and note that
0 ≤ β0 < β1 ≤ 1

since (recall σ > 1, rd > r0 = q+1
q−1)

rd + 1 − (rd − 1)(q + σ)
2 < rd + 1 − (rd − 1)(q + 1)

2 = 1 − rdq − rd − q − 1
2

= 1 − (q − 1)rd − r1

2 < 1

and

rd + 1 − (rd − 1)(q + σ)
2 = rd + 1 −

(︃
1 − 2

rd + 1

)︃
q

(rd + 1)(q + σ)
2q

< rd + 1 − (rd + 1)(q + σ)
2q = (rd + 1)(q − σ)

2q .

Then, we observe that the inequality

max
{︄

(2 − β) q + σ

q + σ − 2 , β
q + σ

q − σ

}︄
≤ rd + 1 − β (3.166)

holds if
r0 < rd < r1 and β0 ≤ β ≤ β1, (3.167)

or
rd ≥ r1 and 0 ≤ β ≤ β1. (3.168)

Indeed, in the first case, we write

(2 − β) q + σ

q + σ − 2 = 2 − β + 2(2 − β)
q + σ − 2

≤ 2 − β + 2 − 2rd + (rd − 1)(q + σ)
q + σ − 2 = rd + 1 − β

and in the second case we have

(2 − β) q + σ

q + σ − 2 = r1 + (1 − β)(q + σ + 2) − 2(2 − β)
q + σ − 2

≤ rd + 1 − β
q + σ

q + σ − 2 ≤ rd + 1 − β,
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while the bound β ≤ β1 is needed for

β
q + σ

q − σ
= −β + β

2q
q − σ

≤ rd + 1 − β.

Thus, by application of (3.166), the Hölder inequality, an interpolation inequality,
the Sobolev inequality, the Poincaré inequality and (3.146), we get

∥θℓ∥ (2−β)(q+σ)
q+σ−2 ;Q + ∥θℓ∥β(q+σ)

q−σ
;Q ≤ C∥θℓ∥rd+1−β;Q

≤ C∥θℓ∥
2

d(r+1−β)+2
L∞L1 ∥θℓ∥

d(r+1−β)
d(r+1−β)+2

Lr+1−βL
d

d−2 (r+1−β)

≤ C

⃦⃦⃦⃦
θ

r+1−β
2

ℓ

⃦⃦⃦⃦ 2d
d(r+1−β)+2

L2L
2d

d−2

≤ C

⃦⃦⃦⃦
∇θ

r+1−β
2

ℓ

⃦⃦⃦⃦ 2
rd+1−β

L2L2
+ C.

(3.169)

If we use (3.166) and Hölder’s inequality in (3.164), and then also (3.169), we
obtain

β
∫︂

Q

⃓⃓⃓⃓
∇θ

r+1−β
2

ℓ

⃓⃓⃓⃓2
+
∫︂

Q
θ−β

ℓ |Dvℓ|2 ≤ C∥θℓ∥2q′−β
rd+1−β;Q + C∥θℓ∥2−β

rd+1−β;Q + C

≤ C
⃦⃦⃦⃦
∇θ

r+1−β
2

ℓ

⃦⃦⃦⃦ω1

2;Q
+ C

⃦⃦⃦⃦
∇θ

r+1−β
2

ℓ

⃦⃦⃦⃦ω2

2;Q
+ C,

(3.170)

where
0 < ω2 < ω1 = 2(2q′ − β)

rd + 1 − β
< 2

due to 2q′ < rd + 1 (which is equivalent to rd > r0). Hence, we can apply
the Young inequality in (3.170) to finally get

β
∫︂

Q

⃓⃓⃓⃓
∇θ

r+1−β
2

ℓ

⃓⃓⃓⃓2
+
∫︂

Q
θ−β

ℓ |Dvℓ|2 ≤ C(β) (3.171)

for any r, β fulfilling (3.167) or (3.168). In case that (3.167) holds, we make
the optimal choice

β = β0 (3.172)
and note that

r + 1 − β

2 = −1
d

+ (rd − 1)(q + σ)
4 = R

2 ,

cf. (3.41). Then, from Hölder’s inequality and (3.169), we deduce

∥Dvℓ∥p;Q ≤
⃦⃦⃦⃦
θ

− β
2

ℓ Dvℓ

⃦⃦⃦⃦
2;Q

⃦⃦⃦⃦
θ

β
2
ℓ

⃦⃦⃦⃦
2 rd+1−β

β
;Q

≤ C,

where
p = 2rd + 1 − β

rd + 1 = 2 − 2β
rd + 1 < 2.

Note again that this definition of p agrees with the one given in (3.40) since

2rd + 1 − β

rd + 1 = rd − 1
rd + 1(q + σ)
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by (3.172). In the special case rd = r1, we can repeat the above estimates
without (3.172), choosing instead β > 0 arbitrarily small. Finally, if rd > r1, we
can improve the information on Dvℓ simply by taking τ = −1 in (3.124). Then,
using similar computation as above with β chosen as to satisfy

0 < β < min
{︄
rd + 1 − 2 q + σ

q + σ − 2 , rd − 1
}︄

= rd + 1 − 2 q + σ

q + σ − 2 (3.173)

and using (3.163), (3.169), σ ≤ q, we obtain∫︂
Q

|Dvℓ|2 ≤ C
∫︂

Q
θℓ|Bℓ||Dvℓ| ≤ C∥Bℓ∥q+σ;Q∥Dvℓ∥2;Q∥θℓ∥ 2(q+σ)

q+σ−2 ;Q + C

≤ C
(︃

∥Dvℓ∥
1
q
q+σ

q
;Q + 1

)︃
∥Dvℓ∥2;Q∥θℓ∥rd+1−β;Q + C

≤ C
(︃

∥Dvℓ∥
1+ 1

q

2;Q + ∥Dvℓ∥2;Q

)︃(︄⃦⃦⃦⃦
∇θ

r+1−β
2

ℓ

⃦⃦⃦⃦ 2
rd+1−β

2;Q
+ 1

)︄
+ C.

(3.174)

Hence, using 1 + 1
q
< 2, (3.173), Young’s inequality and (3.171), we get

β
∫︂

Q

⃓⃓⃓⃓
∇θ

r+1−β
2

ℓ

⃓⃓⃓⃓2
+
∫︂

Q
|Dvℓ|2 ≤ C(β) (3.175)

for any β satisfying (3.173). Finally, it remains to consider the excluded case
σ = q. However, in this situation, we have r1 = r0 < rd, and thus we can take
τ = −1 in (3.124) as before. This way, adding also (3.165) and using analogous
estimation as in (3.174), we obtain

β
∫︂

Q

⃓⃓⃓⃓
∇θ

r+1−β
2

ℓ

⃓⃓⃓⃓2
+
∫︂

Q
|Dvℓ|2

≤ C
∫︂

Q
θℓ|Bℓ||Dvℓ| + C∥θℓ∥2−β

(2−β)q′;Q

(︃
∥Dvℓ∥

2
q

2;Q + 1
)︃

+ C

≤ C
(︃

∥Dvℓ∥
1+ 1

q

2;Q + ∥Dvℓ∥2;Q

)︃(︄⃦⃦⃦⃦
∇θ

r+1−β
2

ℓ

⃦⃦⃦⃦ 2
rd+1−β

2;Q
+ 1

)︄

+ C
(︃

∥Dvℓ∥
2
q

2;Q + 1
)︃⎛⎝⃦⃦⃦⃦∇θ r+1−β

2
ℓ

⃦⃦⃦⃦ 2(2−β)
rd+1−β

2;Q
+ 1

⎞⎠+ C.

If we choose β as in (3.173) and use Young’s inequality, noticing that

2(2 − β)
rd + 1 − β

q′ < 22q′ − βq′

2q′ − β
= 2

(︄
1 − (q′ − 1)β

2q′ − β

)︄
< 2,

we again conclude that (3.175) holds.
To summarize the estimates up to this point, we proved (3.154)–(3.163),⃦⃦⃦⃦

∇θ
R
2

ℓ

⃦⃦⃦⃦
L2L2

+ ∥θℓ∥LRd LRd ≤ C (3.176)

and
∥Dvℓ∥LpLp ≤ C. (3.177)

63



Moreover, we deduce from (3.163), (3.177) and

q + σ

q
= (q + σ)

(︄
1 − 2

2q′

)︄
< (q + σ)

(︃
1 − 2

rd + 1

)︃
= p (3.178)

that
∥Bℓ∥L∞Lσ + ∥Bℓ∥Lq+σLq+σ ≤ C. (3.179)

Next, the combination of (4.33) and (4.35) yields

|∇Bℓ| ≤ |B
1
2
ℓ ||B− 1

2
ℓ ∇BℓB

− 1
2

ℓ ||B
1
2
ℓ | = (trBℓ)|B

− 1
2

ℓ ∇BℓB
− 1

2
ℓ |.

Then, since q + σ > 2, we deduce by appealing to the Hölder inequality and
(3.90), (3.179) that

∥∇Bℓ∥Ls0 Ls0 ≤ C, (3.180)
where

s0 = 1
1

q+σ
+ 1

2
= 2(q + σ)
q + σ + 2 .

Next, we derive the uniform estimates for the time derivatives. To this end,
we need to determine integrability of the non-linear terms in (3.103), (3.104) and
(3.143).

It follows from an interpolation inequality, Korn’s inequality, (3.146) and
(3.177) that

∥vℓ∥
L

p(1+ 2
d

)
L

p(1+ 2
d

) ≤ C∥vℓ∥
2

d+2
L∞L2∥Dvℓ∥

d
d+2
LpLp ≤ C. (3.181)

We remark that (3.40) and (A2) imply

p
(︃

1 + 2
d

)︃
> 2. (3.182)

Indeed, this is obvious if rd ≥ r1 (and p = 2 or p = 2)), while if rd < r1, we use
(3.38) to estimate

p
(︃

1 + 2
d

)︃
= d+ 2

d

q + σ

2r′
d − 1 >

d+ 2
d

q + σ
d+2
2d

(q + σ)
= 2.

Furthermore, the Hölder inequality, (3.176) and (3.163) yield

∥θℓBℓ∥Lϱ1 Lϱ1 ≤ C,

where
ϱ1 = 1

1
Rd

+ 1
q+σ

.

Recalling (3.41), we note that

ϱ1 = 1
2

(rd−1)(q+σ) + 1
q+σ

= q + σ
rd+1
rd−1

= p if rd < r1

and

ϱ1 = 1
1

rd+1) + 1
q+σ

= 1
q+σ−2
2(q+σ) + 1

q+σ

⎞⎠ = 2) = p if rd = r1,
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and then obviously also ϱ1 > 2 = p if rd > r1. Hence, we read from (3.103) that

∥∂tvℓ∥Lp1 W
−1,p1
0,div

≤ C, (3.183)

where p1 is defined in (3.42).
Next, we focus on the non-linear terms in (3.104). There, we integrate by parts

in the convective term with the help of (3.69). Then, using Hölder’s inequality
and (3.163), (3.181), we observe that

∥Bℓ ⊗ vℓ∥Ls1 Ls1 ≤ C, (3.184)

with
s1 = 1

1
q+σ

+ 1
p(1+ 2

d
)
>

1
1

q+σ
+ 1

2
= s0, (3.185)

where we used (3.182). Moreover, Young’s inequality, (3.36) and (3.34), give

|δ(θℓ)γ(|Bℓ − I|)(Bℓ − I)| ≤ C(|Bℓ|q+1 + 1),

hence, making use of (3.179), we obtain

∥δ(θℓ)γ(|Bℓ − I|)(Bℓ − I)∥Ls2 Ls2 ≤ C, (3.186)

where
s2 = q + σ

q + 1 .

Furthermore, using (3.179), (3.177) and Hölder’s inequality, we get

∥(aDvℓ + Wvℓ)Bℓ∥Ls3 Ls3 ≤ C, (3.187)

where
s3 = 1

1
q+σ

+ 1
p

= q + σ

1 + rd+1
rd−1

>
q + σ

q + 1 = s2 (3.188)

(using rd > r0). Thus, we read from (3.104) using (3.180), (3.184), (3.185) and
(3.186), (3.187), (3.188) that4

∥∂tBℓ∥(Ls′
0 W

1,s′
0 ∩L

s′
2 L

s′
2 )∗ ≤ C. (3.189)

This property is important for obtaining a point-wise convergence of Bℓ using the
Aubin-Lions lemma. To avoid any confusion regarding this argument and the
space appearing in (3.189), we can use s2 ≤ s0 (which follows from σ ≤ q) and
obvious embeddings to replace (3.189) by a weaker information

∥∂tBℓ∥Ls2 W −1,s2 ≤ C, (3.190)

which is still sufficient for the use of Aubin-Lions lemma (and for weak compact-
ness of ∂tBℓ as s2 > 1).

Finally, we examine the non-linearities related to (3.143). There, since ξℓ is
under control thanks to (3.154), the problematic terms could be only on the left

4For the definition and properties of intersection (and sums) of two normed spaces, we refer
to Section 4.2 below.
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hand side. To get an appropriate uniform control over the convective term, we
need to show that ηℓ is bounded in L2(Q) (or only slightly worse, recall (3.181)
and (3.182)). To this end, we use inequalities (3.152), (3.153) once again to get

ηℓ ≤ ηℓ + µψ2(Bℓ) = cv ln θℓ ≤ cv(θℓ − 1).

This, together with (3.146) and (3.155), yields

∥ln θℓ∥L∞L1 ≤ C. (3.191)

Then, since (3.156) and (3.33) give

∥∇ ln θℓ∥L2L2 ≤ C, (3.192)

we can use Sobolev’s inequality, Poincaré’s inequality and an interpolation to
obtain

∥ln θℓ∥
L

2+ 2
d L

2+ 2
d

≤ C∥ln θℓ∥
1

d+1
L∞L1∥ln θℓ∥

d
d+1
L2W 1,2 ≤ C. (3.193)

Now we observe that a similar reasoning applies also for the quantity ln detBℓ.
Indeed, using (3.155), (3.191), (3.163) and (3.133) in the form

ln detBℓ = 1
µ

(ηℓ − cv ln θℓ) + trBℓ − d,

it is clear that
∥ln detBℓ∥L∞L1 ≤ C. (3.194)

Further, the estimate of its derivative follows immediately from (4.40) and (3.156)
as

∥∇ ln detBℓ∥L2L2 =
⃦⃦⃦⃦
tr(B− 1

2
ℓ ∇BℓB

− 1
2

ℓ )
⃦⃦⃦⃦

L2L2
≤ C. (3.195)

Hence, using again the Sobolev, the Poincaré and interpolation inequalities, we
get

∥ln detBℓ∥
L

2+ 2
d L

2+ 2
d

≤ C. (3.196)

From (3.193), (3.196), (3.163) and (3.133), we finally deduce

∥ηℓ∥Ls4 Ls4 , where s4 = min
{︂
2 + 2

d
, q + σ

}︂
> 2, (3.197)

and thus

∥vℓηℓ∥Ls5 Ls5 ≤ C, where s5 =
(︄

d

p(d+ 2) + 1
s4

)︄−1

> 1. (3.198)

due to (3.182) and (3.197). We remark that, since

∇ηℓ = cv∇ ln θℓ − µ(tr ∇Bℓ − tr(B− 1
2

ℓ ∇BℓB
− 1

2
ℓ )),

we also have, using (3.192), (3.180), (3.156) and Poincaré’s inequality that

∥ηℓ∥Ls0 W 1,s0 ≤ C. (3.199)

Looking at (3.143), we still need to verify that the flux terms are under control.
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As for the term κ(θℓ)∇ ln θℓ, we use Hölder’s inequality, (3.33), (3.176) and
(3.156) to get

∥κ(θℓ)∇ ln θℓ∥ 2Rd
r+Rd

;Q ≤
⃦⃦⃦⃦√︂

κ(θℓ)
⃦⃦⃦⃦

2Rd
r

;Q

⃦⃦⃦⃦√︂
κ(θℓ)∇ ln θℓ

⃦⃦⃦⃦
2;Q

≤ C, (3.200)

where note, using (A1), that

Rd = (rd − 1)(q + σ)
2 = rd + rd(q + σ − 2) − q − σ

2

> rd + q2+qσ−2q+q+σ−2 − q2−qσ+q+σ
2(q − 1) = rd + σ − 1

q − 1 > rd.
(3.201)

Finally, let us derive an estimate on ω|∇θℓ|r∇θℓ, from which it follows that
this term vanishes as ω → 0+. The number s6 defined by

s6 = Rd(r + 2)
Rd(r + 1) + r

= 1 + Rd − r

Rd(r + 1) + r

is greater that one due to (3.201). Next, we remark that (3.156) yields

ω
∫︂

Q

|∇θℓ|r+2

θ2
ℓ

≤ C. (3.202)

Using this together with (3.176) and Hölder’s inequality leads to

∥ω|∇θℓ|r∇ ln θℓ∥s6;Q = ω

⎛⎜⎝∫︂
Q

|∇θℓ|
Rd(r+2)(r+1)

Rd(r+1)+r

θ
2Rd(r+1)

Rd(r+1)+r

ℓ

θ
Rdr

Rd(r+1)+r

ℓ

⎞⎟⎠
1

s6

≤ ω

⃦⃦⃦⃦
⃦⃦⃦ |∇θℓ|

Rd(r+2)(r+1)
Rd(r+1)+r

θ
2Rd(r+1)

Rd(r+1)+r

ℓ

⃦⃦⃦⃦
⃦⃦⃦

Rd(r+1)+r

Rd(r+2)

Rd(r+1)+r

Rd(r+1) ;Q

⃦⃦⃦⃦
⃦θ

Rdr

Rd(r+1)+r

ℓ

⃦⃦⃦⃦
⃦

Rd(r+1)+r

Rd(r+2)

Rd(r+1)+r

r
;Q

= ω
1

r+2

∫︂
Q

(︄
ω

|∇θℓ|r+2

θ2
ℓ

)︄ r+1
r+2

∥θℓ∥
r

r+2
Rd;Q ≤ Cω

1
r+2 .

(3.203)

From this and from (3.200), (3.195), (3.156), (3.143), we see, using the defi-
nition of a weak time derivative, that

∥∂tηℓ∥L1W −M,2 ≤ C, (3.204)

where M is so large that WM,2(Ω) ↪→ W 1,∞(Ω).

Taking the final limit

Let us note that the estimates above are independent not only of ℓ, but also of ω
(except for (3.202), which is used only to infer (3.203)). Indeed, since 0 ≤ gω < 1,
the presence of gω in some terms does not affect the corresponding estimates.
Actually, the only information which is ω-dependent are the lower estimates on
Λ(Bℓ) and θℓ, but we used this information only quantitatively to verify that B−1

ℓ

67



and θ−1
ℓ are admissible test functions in (3.104) and (3.124), respectively. Hence,

to spare us some work, we set
ω = 1

ℓ
,

and hereby, it remains to take the limit ℓ → ∞ only.
By collecting the estimates (3.146), (3.177), (3.183), (3.179), (3.180), (3.190),

(3.197), (3.199), (3.204) and using Lemma 4.1, we get the following convergence
results:

vℓ ⇀ v weakly in Lp(0, T ;W 1,p
0,div), (3.205)

vℓ → v strongly in Lp+ 2p
d

)(Q) and a.e. in Q, (3.206)
∂tvℓ ⇀ ∂tv weakly in Lp1(0, T ;W−1,p1

0,div ),
Bℓ ⇀ B weakly in Ls0(0, T ;W 1,s0(Ω)), (3.207)
Bℓ → B strongly in Lq+σ)(Q) and a.e. in Q, (3.208)

∂tBℓ ⇀ ∂tB weakly in Ls2(0, T ;W−1,s2(Ω)),
ηℓ ⇀ η weakly in Ls0(0, T ;W 1,s0(Ω)),
ηℓ → η strongly in Ls4)(Q) and a.e. in Q, (3.209)
θℓ ⇀ θ weakly in LRd(Q). (3.210)

Now we explain how to take the limit in equations (3.103), (3.104), (3.143),
(3.145) and then, we also identify the corresponding initial conditions. First, we
focus on taking the limit in the function g 1

ℓ
. From (3.126), (3.128) and (3.205),

(3.207) (or (3.206), (3.208)), we obtain

Bx · x ≥ 0 for all x ∈ Rd and θ ≥ 0 a.e. in Q, (3.211)

however, we need these properties with strict inequalities. To this end, we use
the Fatou lemma, (3.208) and (3.194) to get∫︂

Ω
| ln detB| ≤ lim inf

ℓ→∞

∫︂
Ω

| ln detBℓ| ≤ C a.e. in (0, T ).

Thus, by taking the essential supremum over (0, T ), we obtain

∥ln detB∥L∞L1 < ∞,

which, together with (3.211) implies

Bx · x > 0 for all x ∈ Rd a.e. in Q. (3.212)

Then, note that, by (3.133), we have

cv ln θℓ = ηℓ + µψ2(Bℓ) (3.213)

and, by (3.209), (3.208), the right hand side of (3.213) converges a.e. in Q. There-
fore, we also have

cv ln θℓ → η + µψ2(B) a.e. in Q
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with the limit being finite a.e. in Q thanks to (3.212). This we can rewrite as

θℓ → exp
(︃ 1
cv

(︂
η + µψ2(B)

)︂)︃
a.e. in Q,

where the limit is positive and finite a.e. in Q. But looking at (3.210), this yields

θ = exp
(︃ 1
cv

(︂
η + µψ2(B)

)︂)︃
> 0 a.e. in Q, (3.214)

which is (3.56), and

θℓ → θ a.e. in Q. (3.215)

By combination of (3.212), (3.214) and the point-wise convergence (3.207),
(3.215) we deduce that, at almost every point (t, x) ∈ Q, we can find Mt,x ∈ N
such that for all ℓ > Mt,x we have

Λ(Bℓ(t, x)) > 1
2Λ(B(t, x)) > 1

ℓ
and θℓ(t, x) > 1

2θ(t, x) > 1
ℓ
.

Then, looking at the definition of gλ, we see that at almost every point (t, x) ∈ Q
and for ℓ > Mt,x, the positive parts max{0, ·} can be removed and thus, it is clear
that g 1

ℓ
(Bℓ, θℓ) converges point-wise a.e. in Q to 1. Hence, the Vitali theorem and

0 ≤ g 1
ℓ
< 1, imply

g 1
ℓ
(Bℓ, θℓ) → 1 strongly in L∞)(Q). (3.216)

Therefore, regarding the first two equations (3.103) and (3.104), we can take
the limit in the same way as we did in the limit n → ∞ (using the scheme
(3.100)–(3.102)). Indeed, the integrability of the resulting non-linear limits was
already verified when estimating ∂tvℓ and ∂tBℓ ((3.181)–(3.187)). This way, taking
(3.216) into account, using the density of {wi}∞

i=1 in W
1,p′

1
0,div, integrating by parts

in the convective term of (3.104) and extending the functional ∂tB to the space
stated in (3.50) using (3.189) and

s′
0 = 2(q + σ)

q + σ − 2 and s′
2 = q + σ

σ − 1 ,

we obtain precisely (3.57) and (3.58).
Next, we show how to take the limit in (3.143). In particular, we need to

prove that

η
1
ℓ
0 = cv ln θ

1
ℓ
0 − µ(trB

1
ℓ
0 − d− ln detB

1
ℓ
0 )

→ cv ln θ0 − µ(trB0 − d− ln detB0) = η0, ℓ → ∞,
(3.217)

weakly in L1(Ω), at least. Using (3.73) and (3.72), we estimate

|ηω
0 | ≤ cv| ln θω

0 | + µ(| trBω
0 | + d+ | ln detBω

0 |) ≤ C(| ln θ0| + |B0| + | ln detB0| + 1),

where the right hand side is integrable by assumptions (3.45) and (3.46). More-
over, the function η

1/ℓ
0 converges point-wise a.e. in Ω due to (3.74) and (3.75).
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Thus, the limit (3.217) indeed holds (even strongly in L1(Ω)) by the dominated
convergence theorem. In order to take the limit in the convective term, we use
(3.206), (3.209) and (3.198). Next, in order to identify the objects ∇ ln θ and
∇ ln detB, note first that (3.193), (3.196) with (3.215), (3.208) yield

ln θℓ ⇀ ln θ weakly in L2+ 2
d (Q),

ln detBℓ ⇀ ln detB weakly in L2+ 2
d (Q).

This, together with (3.195) and (3.192), implies

∇ ln θℓ ⇀ ∇ ln θ weakly in L2(Q), (3.218)
∇ ln detBℓ ⇀ ∇ ln detB weakly in L2(Q). (3.219)

Then, for the term κ(θℓ)∇ ln θℓ, we use (3.30), (3.33), (3.176) and Vitali’s theorem
to find that √︂

κ(θℓ) ⇀
√︂
κ(θ) strongly in L

2Rd
r

)(Q), (3.220)

where we recall that Rd > rd. As an immediate consequence of this and (3.218),
we get √︂

κ(θℓ)∇ ln θℓ ⇀
√︂
κ(θ)∇ ln θ weakly in L1(Q). (3.221)

However, this weak convergence is true (up to a subsequence) also in L2(Q) due
to (3.156). Therefore, using again (3.220), we obtain

κ(θℓ)∇ ln θℓ ⇀ κ(θ)∇ ln θ weakly in L1(Q).

Next, the term containing ω|∇θℓ|r∇ ln θℓ tends to zero by (3.203). Furthermore,
in the term µλ(θℓ)∇ trBℓ, we use (3.30), (3.35), (3.215), Vitali’s theorem and
(3.207). Analogously, we take the limit in the term µλ(θℓ)∇ ln detBℓ, only we use
(3.219) instead of (3.207).

Now we take the limit in the terms on the right hand side of (3.143). From
(3.156), we deduce that there exists K ∈ L2(Q) such that√︄

2ν(θℓ)
θℓ

Dvℓ ⇀ K weakly in L2(Q). (3.222)

For ε ∈ (0, 1), let hε : (0,∞) → [0, 1] be a smooth function satisfying

hε(s) =
{︂ 1, s > ε;

0, s < ε
2 ,

and define

fε,ℓ = hε(θℓ)
√︄

2ν(θℓ)
θℓ

Dvℓ, fε = hε(θ)
√︄

2ν(θ)
θ

Dv

For fixed ε > 0, the function

hε(θℓ)
√︄

2ν(θℓ)
θℓ
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is bounded independently of ℓ and converges point-wise due to (3.215) and (3.30).
Thus, using the Vitali theorem and (3.205), we find

fε,ℓ ⇀
ℓ→∞

fε weakly in L1(Q). (3.223)

Next note that, by Hölder’s, Chebyshev’s inequalities and (3.191) we have
∫︂

Q

⃓⃓⃓⃓
fε,ℓ −

√︄
2ν(θℓ)
θℓ

Dvℓ

⃓⃓⃓⃓
≤
∫︂

{θℓ<ε}

√︄
2ν(θℓ)
θℓ

|Dvℓ| ≤ C|{θℓ < ε}|
1
2

≤ C |{− ln θℓ > − ln ε}|
1
2 ≤ C√

− ln ε

(︃∫︂
Q

| ln θℓ|
)︃ 1

2
≤ C√

− ln ε

for all ℓ ∈ N. Hence, using (3.222), (3.223) and weak lower semi-continuity, we
get ∫︂

Q
|fε −K| ≤ lim inf

ℓ→∞

∫︂
Q

⃓⃓⃓⃓
fε,ℓ −

√︄
2ν(θℓ)
θℓ

Dvℓ

⃓⃓⃓⃓
≤ C√

− ln ε
,

and thus, for ε → 0+, we obtain

fε → K strongly in L1(Q). (3.224)

On the other hand, since θ > 0 a.e. in Q by (3.214), it is clear that

fε →
√︄

2ν(θ)
θ

Dv a.e. in Q. (3.225)

Therefore, from (3.224) and (3.225), we conclude

K =
√︄

2ν(θ)
θ

Dv,

which, using (3.222) and weak lower semi-continuity of ∥·∥L2L2 , finally gives

lim inf
ℓ→∞

∫︂
Q

2ν(θℓ)
θℓ

|Dvℓ|2 ≥
∫︂

Q

2ν(θ)
θ

|Dv|2.

In the next term κ(θℓ)|∇ ln θℓ|2, we can use the weak lower semi-continuity
directly since we already proved that (3.221) is valid in L2(Q). Moreover, the aux-
iliary term ω|∇θℓ|r|∇ ln θℓ|2 is simply estimated from below by zero.

To take the limit in the term δ(θℓ)γ(|Bℓ − I|)|B
1
2
ℓ − B− 1

2
ℓ |2, we use (3.215),

(3.208) and apply Fatou’s lemma.
To handle the limit in the last term of (3.143), we use again the function hε,

but this time, we define

Fε,ℓ = hε(detBℓ)
√︂
λ(θℓ)B

− 1
2

ℓ ∇BℓB
− 1

2
ℓ , Fε = hε(detB)

√︂
λ(θ)B− 1

2 ∇BB− 1
2 .

Let G ∈ L2(Q) such that√︂
λ(θℓ)B

− 1
2

ℓ ∇BℓB
− 1

2
ℓ ⇀ G weakly in L2(Q). (3.226)

For ε > 0 fixed, the function

Hε,ℓ =
√︃
hε(detBℓ)

√︂
λ(θℓ)B

− 1
2

ℓ
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is bounded and converges point-wise a.e. in Q due to (3.208) and (3.215). Thus,
using Vitali’s theorem and (3.207), we get

Fε,ℓ = Hε,ℓ∇BℓHε,ℓ ⇀
ℓ→∞

Fε weakly in L1(Q). (3.227)

Moreover, using Hölder’s and Chebyshev’s inequalities and (3.194), we find∫︂
Q

⃓⃓⃓⃓
Fε,ℓ −

√︂
λ(θℓ)B

− 1
2

ℓ ∇BℓB
− 1

2
ℓ

⃓⃓⃓⃓
≤

∫︂
{detBℓ<ε}

√︂
λ(θℓ)

⃓⃓⃓
B− 1

2
ℓ ∇BℓB

− 1
2

ℓ

⃓⃓⃓

≤ C|{detBℓ < ε}|
1
2 ≤ C |{− ln detBℓ > − ln ε}|

1
2

≤ C√
− ln ε

(︃∫︂
Q

| ln detBℓ|
)︃ 1

2
≤ C√

− ln ε

for every ℓ ∈ N. Therefore, from (3.226), (3.227) and weak lower semi-continuity,
we deduce∫︂

Q
|Fε −G| ≤ lim inf

ℓ→∞

∫︂
Q

⃓⃓⃓
Fε,ℓ −

√︂
λ(θℓ)B

− 1
2

ℓ ∇BℓB
− 1

2
ℓ

⃓⃓⃓
≤ C√

− ln ε
,

hence
Fε → G strongly in L1(Q).

Since detB > 0 a.e. by (3.212), we also have that

Fε →
√︂
λ(θ)B− 1

2 ∇BB− 1
2 a.e. in Q.

Thus, we identified that
G =

√︂
λ(θ)B− 1

2 ∇BB− 1
2

and, by (3.226) and weak lower semi-continuity, there holds

lim inf
ℓ→∞

∫︂
Q
λ(θℓ)

⃓⃓⃓⃓
B− 1

2
ℓ ∇BℓB

− 1
2

ℓ

⃓⃓⃓⃓2
≥
∫︂

Q
λ(θ)

⃓⃓⃓
B− 1

2 ∇BB− 1
2
⃓⃓⃓2
.

Using the argumentation above to take the limit ℓ → ∞ in (3.143), we obtain
(3.59).

Finally, to take the limit in (3.145), we first integrate it over (0, t), t ∈ (0, T ),
and use (3.121), (3.109) to get∫︂

Ω
Eℓ(t) −

∫︂
Ω
(1

2 |Pℓv0|2 + cvθ
1
ℓ
0 ) =

∫︂ t

0
(f ,vℓ). (3.228)

Then, note that (3.206) and (3.215) yield

Eℓ(t) → E(t) a.e. in Ω (3.229)

for almost every t ∈ (0, T ) and also that

vℓ → v strongly in L2(0, t;L2(Ω)) (3.230)

(cf. (3.182)). Thus, in order to take the limit ℓ → ∞ in (3.228), we use (3.229),
Fatou’s lemma and (3.75), ∥Pℓv0 − v0∥2 → 0 on the left hand side and (3.230)
on the right hand side. This leads precisely to (3.60).
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3.5.7 Attainment of initial conditions
To finish the proof, it remains to identify the initial conditions stated in the The-
orem 3.2. Note in particular, that we search for the initial condition for the tem-
perature while now we only have the entropy inequality at our disposal. Let us
start by an observation that v and B are weakly continuous in time. Indeed, first
of all, let us recall that

v ∈ L∞(0, T ;L2(Ω)), ∂tv ∈ Lp1(0, T ;W−1,p1
0,div (Ω)), (3.231)

where p1 > 1 is given in Definition 3.1. Concerning B, we have

B ∈ L∞(0, T ;Lσ(Ω)), ∂tB ∈ L
q+σ
q+1 (0, T ;W−1, q+σ

q+1 (Ω)),

cf. (3.190) and (3.179). From this and (3.231) we obtain, by a standard argument
known from the theory of Navier-Stokes equations (see e.g. [54, Sect. 3.8.]), that

v ∈ Cw([0, T ];L2(Ω)) and B ∈ Cw([0, T ];Lσ(Ω)). (3.232)

Then, to identify the corresponding weak limits, we can use an analogous idea as
in the part where the limit n → ∞ was taken together with (3.74). This way, we
obtain

lim
t→0+

∫︂
Ω

v(t) · w =
∫︂

Ω
v0 · w for all w ∈ L2(Ω) (3.233)

and

lim
t→0+

∫︂
Ω
B(t) · W = lim

ℓ→∞

∫︂
Ω
B

1
ℓ
0 · W =

∫︂
Ω
B0 · W for all W ∈ Lσ′(Ω). (3.234)

Before we improve this information, it is worthy to realize that, unlike in
the theory of Navier-Stokes(-Fourier) systems, we can not draw any information
about lim supt→0+∥v(t)∥2

2 from the (kinetic) energy estimate because of the pres-
ence of θB in (3.57). However, we can use roughly this idea for B. Indeed, let us
return to (3.162), where we apply the Young inequality to deduce that∫︂

Ω
(trBℓ(t))σ ≤

∫︂
Ω
(trBω

0 )σ + C
∫︂ t

0

∫︂
Ω

|Dvℓ|
q+σ

q + Ct

for all t ∈ [0, T ] (appealing also to (3.232)). Recalling (3.178) and (3.177), we see
that application of Hölder’s inequality yields∫︂

Ω
(trBℓ(t))σ ≤

∫︂
Ω
(trBω

0 )σ + Ctε1 + Ct

for certain ε1 > 0.5 Thus, using (3.208) and Fatou’s lemma on the left hand side
and (3.74) on the right hand side, we get, for all t ∈ [0, T ], that∫︂

Ω
(trB(t))σ ≤ lim inf

ℓ→∞

∫︂
Ω
(trB

1
ℓ
0 )σ + Ctε1 + Ct =

∫︂
Ω
(trB0)σ + Ctε1 + Ct.

Thus, by taking the limes superior, we arrive at

lim sup
t→0+

∫︂
Ω
(trB(t))σ ≤

∫︂
Ω
(trB0)σ. (3.235)

5This is possible whenever σ < q. In the special case σ = q, p = 2, one has to derive a version
of (3.162) with the number σ replaced by σ1 < σ.
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It is evident that the functional

A ↦→
(︃∫︂

Ω
(trA)σ

)︃ 1
σ

is a norm in {A ∈ Lσ(Ω); A ∈ Rd×d
>0 }. (3.236)

Then, using (3.234), weak lower semi-continuity of that norm and (3.235), we
obtain

lim
t→0+

∫︂
Ω
(trB(t))σ =

∫︂
Ω
(trB0)σ. (3.237)

Since the norm defined in (3.236) is, by (4.37), one of the equivalent norms
in the space Lσ(Ω), which is uniformly convex as σ > 1, we conclude using
the Radon-Riesz property, (3.234) and (3.237) that (3.62) holds.

Next we focus on obtaining the initial condition for θ. From (3.60), (3.45),
(3.233) and weak lower semi-continuity, we get∫︂

Ω
(1

2 |v0|2 + cvθ0) ≥ ess lim sup
t→0+

∫︂
Ω
(1

2 |v(t)|2 + cvθ(t)) − lim
t→0+

∫︂ t

0
∥f∥2∥v∥2

≥ lim inf
t→0+

∫︂
Ω

1
2 |v(t)|2 + ess lim sup

t→0+

∫︂
Ω
cvθ(t)

≥
∫︂

Ω
1
2 |v0|2 + ess lim sup

t→0+

∫︂
Ω
cvθ(t),

hence
ess lim sup

t→0+

∫︂
Ω
θ(t) ≤

∫︂
Ω
θ0. (3.238)

To obtain also the corresponding lower estimate, we need to extract the available
information from the entropy inequality (3.59). To this end, we proceed analo-
gously as we did between (3.146) and (3.150), with two small nuances, however.
First, now we are working with an inequality and thus ϕ has to be non-negative.
Second, instead of (3.147), we can only use that

u =
∫︂

Ω
ηϕ ∈ L∞(0, T ).

Consequently, the fixed time t ∈ (0, T ) has to be chosen as a Lebesgue point of u
and to conclude (3.149), we use the Lebesgue differentiation theorem (for which
we can refer to [29, Corollary III.12.7]). This way, we obtain∫︂

Ω
η(t)ϕ+

∫︂ t

0

∫︂
Ω

j ·∇ϕ ≥
∫︂

Ω
η0ϕ+

∫︂ t

0

∫︂
Ω
ξϕ for all ϕ ∈ W 1,∞(Ω), ϕ ≥ 0, (3.239)

a.e. in (0, T ) (in every Lebesgue point of
∫︁

Ω ηϕ), where

j = −vη + κ(θ)∇ ln θ − µλ(θ)∇(trB − d− ln detB),

ξ =
(︃2ν(θ)

θ
|Dv|2 + κ(θ)|∇ ln θ|2

+ µδ(θ)γ(|B − I|)|B 1
2 − B− 1

2 |2 + µλ(θ)|B− 1
2 ∇BB− 1

2 |2, ϕ
)︃

are both integrable functions. Hence, by taking ess lim inft→0+ of (3.239), we
deduce

ess lim inf
t→0+

∫︂
Ω
η(t)ϕ ≥

∫︂
Ω
η0ϕ,
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which is (3.64).6 Let us now fix φ ∈ C1(Ω) such that φ ≥ 0 in Ω and
∫︁

Ω φ = 1.
Since ψ2 is convex (cf. (2.27)), we get from (3.64) and (3.234) (or (3.62)) that∫︂

Ω
cv ln θ0φ =

∫︂
Ω
η0φ+

∫︂
Ω
µψ2(B)φ ≤ ess lim inf

t→0+

∫︂
Ω
η(t)φ+ lim inf

t→0+

∫︂
Ω
ψ2(B(t))φ

≤ ess lim inf
t→0+

∫︂
Ω
cv ln θ(t)φ.

If we use this information together with Jensen’s inequality and the fact that
the function s ↦→ exp( s

2), is increasing and convex in R, we are led to

exp
(︃1

2

∫︂
Ω

ln θ0φ
)︃

≤ exp
(︃1

2 ess lim inf
t→0+

∫︂
Ω

ln θ(t)φ
)︃

= ess lim inf
t→0+

exp
(︃∫︂

Ω
ln
√︂
θ(t)φ

)︃
≤ ess lim inf

t→0+

∫︂
Ω

√︂
θ(t)φ.

(3.240)

By (3.60), we have
ess sup

(0,T )

⃦⃦⃦√
θ
⃦⃦⃦

2
< ∞,

which means that ⃦⃦⃦⃦√︂
θ(t)

⃦⃦⃦⃦
2

≤ C in (0, T ) \N0, (3.241)

where C is independent of t and N0 is a set of zero Lebesgue measure. Let us
denote

L = ess lim sup
t→0+

⃦⃦⃦⃦√︂
θ(t) −

√︂
θ0

⃦⃦⃦⃦
2
. (3.242)

Then, since |N0| = 0 (and thus the values at points t ∈ N0 can not affect L), we
can find a set N ⊂ (0, T ), such that N ⊃ N0, |N | = 0, and there exists a sequence
{tn}∞

n=1 ⊂ (0, T ) \N for which

lim
n→∞

⃦⃦⃦⃦√︂
θ(tn) −

√︂
θ0

⃦⃦⃦⃦
2

= L. (3.243)

Using (3.241) and reflexivity of L2(Ω), we get a subsequence {sn}∞
n=1 ⊂ {tn}∞

n=1
and a function h ∈ L2(Ω), such that√︂

θ(sn) ⇀ h weakly in L2(Ω). (3.244)

Therefore, we can write

ess lim inf
t→0+

∫︂
Ω

√︂
θ(t)φ ≤ lim

n→∞

∫︂
Ω

√︂
θ(sn)φ =

∫︂
Ω
hφ,

which, together with (3.240), gives

exp
(︃1

2

∫︂
Ω

ln θ0φ
)︃

≤
∫︂

Ω
hφ. (3.245)

6Using a similar technique, we could prove that η is essentially lower semi-continuous on
[0, T ] in the weak topology of measures.
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Let x0 be a Lebesgue point of both ln θ0 and h. Furthermore, let B(ε) be the ball
centered in x0 with radius ε so small that B(ε) ⊂ Ω and choose φε ∈ C1(Rd),
ε > 0, with the properties:

0 ≤ φε ≤ 2
|B(ε)| in Ω, φ = 0 in Rd \B(ε) and

∫︂
Rd
φε = 1.

Then, by the Lebesgue differentiation theorem, we obtain⃓⃓⃓⃓∫︂
Ω

ln θ0φε − (ln θ0)(x0)
⃓⃓⃓⃓
≤
∫︂

Ω
|ln θ0 − (ln θ0)(x0)|φε (3.246)

≤ 2
|B(ε)|

∫︂
B(ε)

|ln θ0 − (ln θ0)(x0)| → 0 as ε → 0+

and similarly also ⃓⃓⃓⃓∫︂
Ω
hφε − h(x0)

⃓⃓⃓⃓
→ 0 as ε → 0+. (3.247)

On choosing φ = φε in (3.245), taking ε → 0+ and using (3.246), (3.247), we get√︂
θ0(x0) = exp(1

2 ln θ(x0)) ≤ h(x0),

and, consequently, also √︂
θ0 ≤ h a.e. in Ω.

From this, (3.243), (3.244) and (3.238), we deduce that

L2 = lim
n→∞

⃦⃦⃦⃦√︂
θ(sn) −

√︂
θ0

⃦⃦⃦⃦2

2
≤ ess lim sup

t→0+

∫︂
Ω
θ(t) − 2 lim

n→∞

∫︂
Ω

√︂
θ(sn)

√︂
θ0 +

∫︂
Ω
θ0

≤ 2
∫︂

Ω
θ0 − 2

∫︂
Ω
h
√︂
θ0 ≤ 0,

which, looking at the (3.242), yields

ess lim
t→0+

⃦⃦⃦⃦√︂
θ(t) −

√︂
θ0

⃦⃦⃦⃦
2

= 0.

Hence, by Hölder’s inequality, we get

ess lim sup
t→0+

∥θ(t) − θ0∥1 = ess lim sup
t→0+

∫︂
Ω

⃓⃓⃓⃓(︃√︂
θ(t) +

√︂
θ0

)︃(︃√︂
θ(t) −

√︂
θ0

)︃⃓⃓⃓⃓
≤ C ess lim sup

t→0+

⃦⃦⃦⃦√︂
θ(t) −

√︂
θ0

⃦⃦⃦⃦
2

= 0,

which is (3.63).
Using information above, we can finally improve the initial condition for v as

well. Indeed, from (3.60), (3.63) and (3.45), we obtain

lim sup
t→0+

∫︂
Ω

1
2 |v(t)|2 ≤ ess lim sup

t→0+

∫︂
Ω
(1

2 |v(t)|2 + cvθ(t)) − ess lim inf
t→0+

∫︂
Ω
cvθ(t)

≤
∫︂

Ω
(1

2 |v0|2 + cvθ0) + lim
t→0+

∫︂ t

0
(f ,v) −

∫︂
Ω
cvθ0 =

∫︂
Ω

1
2 |v0|2.

Thus, using also (3.233), we conclude that

lim sup
t→0+

∥v(t) − v0∥2
2 = lim sup

t→0+

∫︂
Ω

|v(t)|2 +
∫︂

Ω
|v0|2 − 2 lim

t→0+

∫︂
Ω

v(t) · v0 ≤ 0,

which implies (3.61).
The proof of Theorem 3.2 is complete.
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We remark that the differentiability of B could be slightly improved to

∇B ∈ L
σ
2 (Q)

if we used Bσ−1 instead of (trB)σ−1I as a test function in (3.58) (or rather its
truncation, recall (3.157) and (3.159)). However, as long as d ≥ 2, this additional
information does not improve the integrability of B (via the Sobolev embeddings
and interpolation), and thus conditions (A0)–(A2) can not be relaxed based on
this information. Since the corresponding matrix computation (in order to show
Bσ−1 ∈ W 1,1(Ω) and ∇B · ∇Bσ−1 ≥ C|∇Bσ

2 |2) seems quite involved (due to
the non-commutativity of B and ∇B), we decided to omit this improvement.

It remains unclear whether a suitable weak solution constructed above fulfils
the local balance of total/internal energy. It seems that the conditions (A0)–(A2)
are insufficient to give any sense to these balances. However, it turns out that
if the parameters r, q and ϱ are large enough (in certain sense), then the local
balance of total/internal energy holds. In the next two sections we show that
the sufficient conditions for this to happen are (B1), (B2) and (C), respectively.

3.6 Local balance of total energy
If we insisted on fulfilment of

∂tE + v · ∇E − div(κ(θ)∇θ) = div(−pv + 2ν(θ)(Dv)v + 2aµθBv) + f · v

locally, we need to ensure that every its term can be defined in a weak (i.e.,
the distributional sense). Thus, in addition to the requirements imposed by
Definition 3.1, it is necessary that the terms |v|3, κ(θ)∇θ, pv, (Dv)v and θBv
are integrable (or actually slightly better for the compactness arguments to work).
In particular, we need to construct the pressure p which appears in (3.9) explicitly.
To this end, we need to consider different boundary conditions than we did so far
(there are indications that with Dirichlet boundary conditions for v, the pressure
is only a time-distribution, see [8]). For example, if we consider a Navier’s slip
v · n = 0, n × (Tn + v) × n = 0 on (0, T ) × ∂Ω as in Chapter 5 or in [12], we
can formally estimate the pressure using regularity of solutions to the following
Neumann problem:

∆p = div div(v ⊗ v − 2ν(θ)Dv − 2aµθB) + div f .

If the domain Ω is sufficiently smooth, then it follows from this equation that
the pressure p has the same integrability as the terms inside the double divergence
operator on the right hand side (see e.g. [37]). Thus in fact, we only need to verify
that the terms |v|3, (Dv)v, θBv and κ(θ)∇θ are integrable (with some exponent
greater than one).

The condition (3.39) (which is an equivalent version of (B2)) yields

p = q + σ

2r′
d − 1 >

q + σ
d+2
3d

(q + σ)
= 3d
d+ 2 if rd < r1

while if rd > r1, we use d < 4 to write 2 = 2d+4
d+2 > 3d

d+2 . Hence, property (3.65)
ensures that v ∈ L3+ε(Q) for some ε > 0 sufficiently small. Next, we rewrite
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the condition (B1) equivalently as

r′
d < 1 + d

4d− 2(q + σ − 2)

and then we estimate, using also d ≥ 2, that

p = q + σ

2r′
d − 1 >

q + σ

q + σ − 1
d

2d− 1
d

> 2 − 2
d+ d

≥ 2 − 2
d+ 2 = 2d+ 1

d+ 2

(this inequality is obviously true also if rd ≥ r1). Hence, we get

1
p

+ 1
p(1 + 2

d
) =

1 + d
d+2
p

< 1

and thus, with the help of Hölder’s inequality, (3.47) and (3.65), we see that
(Dv)v ∈ L1+ε(Q). Furthermore, we remark that θB ∈ Lp(Q) (i.e., the same
integrability as that of Dv) if rd < r1. Indeed, this follows from (3.41) and (3.40)
as

1
Rd

+ 1
q + σ

=
2

rd−1 + 1
q + σ

= 2r′
d − 1
q + σ

= 1
p

and thus we deduce using (3.53) and (3.49) that also θBv ∈ L1+ε(Q). If rd ≥ r1,
then we write

1
rd + 1 + 1

q + σ
+ 1

2(1 + 2
d
) <

q + σ − 2
2(q + σ) + 1

q + σ
+ d

2d+ 4 = 2d+ 2
2d+ 4 < 1

and we see by Hölder’s inequality that also in this case we have θBv ∈ L1+ε(Q).
Finally, to verify that the term κ(θ)∇θ is integrable, we first use (3.33) to write

|κ(θ)∇θ| ≤ C|∇θ| + C|θr∇θ| ≤ C|∇θ| + Cθr+1− R
2 |∇θ

R
2 |,

where note that r + 1 − R
2 > 0 since

R

2 = Rd

2 − 1
d

= p(rd − 1)(2r′
d − 1)

4 − 1
d
<
rd + 1

2 − 1
d

= r + 1
2

if rd < r1 and the other case is obvious. As (B1) gives

2
(︃
r + 1 − R

2

)︃
= 2r + 2 − (rd − 1)(q + σ)

2 + 2
d

= Rd + 4 − 2
d

− (rd − 1)(q + σ − 2) < Rd,

the term θr+1− R
2 |∇θR

2 | is integrable in view of (3.52), (3.53) and Hölder’s inequal-
ity. To see that also ∇θ ∈ L1+ε(Q), let us distinguish two cases. If R ≥ 2, we
write

|∇θ| = θ|∇ ln θ|,
use Hölder’s inequality, (3.54), (3.53) and the fact that Rd > 2. On the other
hand, if R < 2, we can write

|∇θ| = 2
R
θ1− R

2 |∇θ
R
2 |. (3.248)
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Then, note that (3.41) and (B1) imply

Rd >
(rd − 1)(q + σ − 2)

2 > 2 − 1
d
,

hence
2 −R = Rd + 2 + 2

d
− 2Rd < Rd + 4

d
− 2 ≤ Rd

due to d ≥ 2. Therefore, if we apply (3.248), the Hölder inequality, (3.53) and
(3.52), we also obtain ∇θ ∈ L1+ε(Q).

Based on these observations, we postulate the following theorem, which how-
ever, is not proved here. Due to different boundary conditions, we denote the trace
operator by T and we replace the space W 1,p

0,div by

W 1,p
n = {w ∈ C∞(Ω), w · n = 0 on ∂Ω}∥·∥1,p ,

W 1,p
n,div = {w ∈ C∞(Ω), w · n = 0 on ∂Ω, div v = 0 in Ω}∥·∥1,p .

Theorem 3.3. Let the assumptions of Theorem 3.2 be satisfied and suppose that
functions (v, p,B, η) are a suitable weak solution in the sense of Definition 3.1
with properties (3.47), (3.48) replaced by

v ∈ Lp(0, T ;W 1,p
n,div) ∩ Cw([0, T ];L2(Ω))

∂tv ∈ Lp1(0, T ;W−1,p1
n,div )

T v ∈ L2(0, T ;L2(∂Ω))

and with equation (3.57) replaced by∫︂ T

0

(︂
⟨∂tv,φ⟩ − (v ⊗ v,∇φ) + (2ν(θ)Dv,∇φ) +

∫︂
∂Ω

T v · T φ
)︂

=
∫︂ T

0
(pI − 2aµθB,∇φ) +

∫︂ T

0
(f ,φ)

for all φ ∈ Lp′
1(0, T ;W 1,p′

1
n ).

Moreover, let d = 2, or d = 3, suppose that Ω is a domain of class C1,1 and
assume that (B1), (B2) hold.

Then, the functions E and E0 defined by

E = 1
2 |v|2 + cvθ and E0 = 1

2 |v0|2 + cvθ0,

respectively, satisfy

E ∈ L∞(0, T ;L1(Ω)) ∩ Lp( 1
2 + 1

d
)(Q)

and

− (E0, ϕ)φ(0) −
∫︂ T

0
(E, ϕ)∂tφ−

∫︂ T

0
(Ev,∇ϕ)φ

+
∫︂ T

0

∫︂
∂Ω

|T v|2ϕφ+
∫︂ T

0
(κ(θ)∇θ,∇ϕ)φ

=
∫︂ T

0
(pv − 2ν(θ)(Dv)v − 2aµθBv,∇ϕ)φ

for all φ ∈ W 1,∞(0, T ), φ(T ) = 0, and every ϕ ∈ W 1,∞(Ω).

(3.249)
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To prove this theorem, one has to introduce an additional layer of approxima-
tion in (3.67)–(3.68), in which the pressure p is constructed. This can be achieved
by relaxing the divergence free condition on v in the Galerkin approximation and
by adding the constraint

ε∆p = div v

instead. Then, as ε → 0+, one recovers div v = 0 and moreover, appealing
to the regularity of solution to the Neumann-Poisson problem, one can deduce
the a priori estimates for the pressure. See [12] for details. Besides that, one
can proceed analogously as in the proof of Theorem 3.2. The compactness of
all the terms appearing in (3.249) follows from (B1), (B2) as was verified above.
A detailed proof of Theorem 3.3 falls outside the scope and aims of this thesis,
and therefore is omitted.

3.7 Local balance of internal energy
Finally, we investigate when the local balance of internal energy

cv∂tθ + cvv · ∇θ − div(κ(θ)∇θ) ≥ 2ν(θ)|Dv|2 + 2aµθB · Dv (3.250)

holds. To make the right hand side of this equation integrable, we need to impose
conditions that are even stricter than those from the previous section. Let us now
verify that the condition (C) is optimal for this purpose. First of all, recall that
(C) is equivalent to rd > r1 and that we have p = 2 and Rd = rd + 1) > 2
in this case. Hence, we easily deduce that the terms θv and κ(θ)∇θ are well
defined, using the ideas from the last section. Next, the viscous dissipation term
is obviously integrable as (3.31) is assumed and p = 2. However, we can not
improve this information, and therefore (3.250) is stated only as an inequality.
Finally, the term θB · Dv is integrable since (C) gives

1
Rd

+ 1
q + σ

+ 1
p

= 1
rd + 1) + 1

q + σ
+ 1
p
<

1
q+σ+2
q+σ−2 + 1

+ 1
q + σ

+ 1
2

= q + σ − 2
2(q + σ) + q + σ + 2

2(q + σ) = 1.

Now let us state the precise result.

Theorem 3.4. Let the assumptions of Theorem 3.2 be satisfied and let (v,B, θ, η)
be a corresponding suitable weak solution.

If the condition (C) holds, then

− (cvθ0, ϕ)φ(0) −
∫︂ T

0
(θ, ϕ)∂tφ−

∫︂ T

0
(cvθv,∇ϕ)φ+

∫︂ T

0
(κ(θ)∇θ,∇ϕ)φ

≥
∫︂ T

0
(2ν(θ)|Dv|2 + 2aµθB · Dv, ϕ)φ

for all 0 ≤ φ ∈ W 1,∞(0, T ), φ(T ) = 0, and every 0 ≤ ϕ ∈ W 1,∞(Ω).

(3.251)

Proof. In the proof of Theorem 3.2 it was shown that the suitable weak solution
(v,B, θ, η) can be constructed as weak limit of a sequence (vℓ,Bℓ, θℓ, ηℓ) satisfying,
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among other things, the equation

−(cvθ
1
ℓ
0 , ϕ)φ(0) −

∫︂ T

0
(θℓ, ϕ)∂tφ−

∫︂ T

0
(cvθℓvℓ,∇ϕ)φ+

∫︂ T

0
(κ(θℓ)∇θℓ,∇ϕ)φ

≥
∫︂ T

0
(2ν(θℓ)|Dvℓ|2 + 2aµg 1

ℓ
(Bℓ, θℓ)θℓBℓ · Dvℓ, ϕ)φ

(3.252)

for all φ ∈ W 1,∞(0, T ) and every ϕ ∈ W 1,∞(Ω) (recall (3.124), take τ = φϕ and
integrate by parts in the first two terms). Moreover, as p = 2 and Rd = rd+1), we
have the following information about the convergence of (vℓ,Bℓ, θℓ) to (v,B, θ):

vℓ ⇀ v weakly in L2(0, T ;W 1,2
0,div), (3.253)

vℓ → v strongly in L2+ 4
d

)(Q) and a.e. in Q, (3.254)
Bℓ → B strongly in Lq+σ)(Q) and a.e. in Q, (3.255)
θℓ → θ strongly in LRd(Q) and a.e. in Q, (3.256)

∇θ
R
2

ℓ ⇀ ∇θ
R
2 weakly in L2(Q), (3.257)

g 1
ℓ
(Bℓ, θℓ) → 1 strongly in L∞)(Q). (3.258)

(recall (3.205)–(3.210), (3.215), (3.176) and (3.216)). It remains to take the limit
ℓ → ∞ in (3.252).

Taking the limit in the first two terms of (3.252) is easy, we use (3.75) and
(3.256), respectively. In the convective term we apply (3.256), (3.254) and the fact
that Rd = rd + 1) > 2. Next, we observe that

0 < r + 1 − R

2 = r + 1 − r + 1)
2 < r + 1 −

r + 1 − 1
d

2 =
rd + 1 − 1

d

2 <
Rd

2
and thus

κ(θℓ)θ
1− R

2
ℓ → κ(θ)θ1− R

2 strongly in L2(Q)
by (3.33), (3.30), (3.256) and Vitali’s theorem. Hence, using also (3.257) (and
θ > 0 a.e. in Q), we arrive at

κ(θℓ)∇θℓ = 2
R
θ

1− R
2

ℓ κ(θℓ)∇θ
R
2

ℓ ⇀
2
R
θ1− R

2 κ(θ)∇θR
2 = κ(θ)∇θ

weakly in L1(Q).
To see that the term 1

ℓ
κ(θℓ)∇θℓ vanishes in the limit ℓ → ∞, we can use

roughly the same argumentation as for the analogous term in the entropy in-
equality (recall (3.203)). First we need to realize that in the estimates that follow
after (3.163), we can keep the term

ω
∫︂

Q
|∇θℓ|r∇θℓ · ∇τβ = βω

∫︂
Q

|∇θ|r+2

θβ+1

on the left hand side (this term was previously omitted on the first occasion since
we were interested only in ω-uniform estimates). This way, we observe that the
estimate (3.175) can be replaced by

β
∫︂

Q

⃓⃓⃓⃓
∇θ

r+1−β
2

ℓ

⃓⃓⃓⃓
+ βω

∫︂
Q

|∇θℓ|r+2

θβ+1
ℓ

+
∫︂

Q
|Dvℓ|2 ≤ C(β)
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(recall that we are now in the case rd > r1). Then, using an analogous estimation
as in (3.203), we arrive at

∥ω|∇θℓ|r∇θℓ∥α;Q = ω

⎛⎜⎝∫︂
Q

|∇θℓ|(r+1)α

θ
α(1+β)(r+1)

r+2
ℓ

θ
α(1+β)(r+1)

r+2
ℓ

⎞⎟⎠
1
α

≤ ω
1

r+2

(︄
ω
∫︂

Q

|∇θℓ|r+2

θβ+1
ℓ

)︄ r+1
r+2

∥θℓ∥
(1+β)(r+1)

r+2

( r+2
α(r+1) )′ α(1+β)(r+1)

r+2

≤ C(β)ω
1

r+2 ∥θℓ∥
(1+β)(r+1)

r+2
Rd;Q

where α solves (︄
r + 2

α(r + 1)

)︄′
α(1 + β)(r + 1)

r + 2 = Rd.

Since this is equivalent to

α =
r+2
r+1

1 + 1+β
Rd

and we have Rd = rd + 1) > r + 1 we see that β > 0 can be chosen so small that
α > 1, and hereby we get

∥ω|∇θℓ|r∇θℓ∥α;Q ≤ C

ℓ
1

r+2
→ 0 as ℓ → ∞.

Next, using (3.31), (3.256) and (3.253), it is easy to see that√︂
2ν(θℓ)Dvℓ ⇀

√︂
2ν(θ)Dv weakly in L2(Q).

Then, by the weak lower semi-continuity, we get

lim inf
ℓ→∞

∫︂
Q

2ν(θℓ)|Dvℓ|2 ≥
∫︂

Q
2ν(θ)|Dv|2.

Finally, since

1
Rd

+ 1
q + σ

= 1
rd + 1) + 1

q + σ
<

1
q+σ+2
q+σ−2 + 1

+ 1
q + σ

= 1
2

due to rd > r1 (which is equivalent to (C)), we deduce from (3.256) and (3.255)
that

θℓBℓ → θB strongly in L2+ε(Q)
for some sufficiently small ε > 0. Hence, by (3.258), it is also true that

g(Bℓ, θℓ)θℓBℓ → θB strongly in L2(Q).

But this together with (3.253) implies

g(Bℓ, θℓ)θℓBℓ · Dvℓ ⇀ θB · Dv weakly in L1(Q).

Therefore, we can indeed take the limit ℓ → ∞ in every term of (3.252), leading
to (3.251), and the proof is finished.
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4. Auxiliary analytic tools
In this chapter, we prove all the auxiliary assertions that were used in the thesis.
Based on similar results in simpler settings, it should be intuitively clear that these
assertions hold true, however it seems difficult (or impossible in some cases) to
find a precise reference.

For the purposes of this chapter, we replace the interval (0, T ) (or [0, T ]) by
an arbitrary bounded interval I ⊂ R and set Q = I × Ω. The set Ω is always
assumed to be a bounded Lipschitz domain in Rd, d ∈ N.

4.1 Sequential (weak) compactness
To deduce that some subsequences of solutions constructed in Chapter 3 converge
in an appropriate sense, we need to combine several classical results of functional
analysis. To make the corresponding argumentation clear, let us formulate pre-
cisely the following auxiliary lemma, which is used many times in the proof of
Theorem 3.2.

Lemma 4.1. Let 1 < p1, p2, q2 < ∞ be such that

dq2

d+ q2
≤ p1 ≤ p2

and suppose also 1 < v < ∞ and 1 ≤ w ≤ ∞. Let the sequence {uk}∞
k=1 ⊂ L1(Q)

be bounded in the sense that

∥∇uk∥Lp1 Lp1 + ∥uk∥Lp2 Lq2 + ∥∂tuk∥LwW −m,v ≤ C (4.1)

for some m ∈ N.
Then, there exists a subsequence, which we do not relabel, and its limit u, such

that

uk ⇀ u weakly in Lp1(I;W 1,p1(Ω)), (4.2)
uk ⇀ u weakly in Lp2(I;Lq2(Ω)), (4.3)
uk → u almost everywhere in Q, (4.4)
uk → u strongly in Ls(I;Ls(Ω)) for all 1 ≤ s < S, (4.5)

where

S =
1
d

+ 1
q2

− 1
p2

1
p2d

+ 1
p1q2

− 1
p1p2

. (4.6)

Moreover, if w > 1, then also

∂tuk ⇀ ∂tu weakly in Lw(I;W−m,v(Ω)). (4.7)

Furthermore, if p1 = ∞ or p2q2 = ∞ then the conclusion of the lemma still
holds if the weak convergence in (4.2) or (4.3), respectively, is replaced by the weak
star convergence.
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Proof. Let us first consider the case p1p2q2 < ∞. Note that, since p1 ≤ p2, we
have ∥uk∥Lp1 L1 ≤ C∥uk∥Lp2 Lq2 ≤ C, and thus we also get

∥uk∥Lp1 W 1,p1 ≤ C

from (4.1) and Poincaré’s inequality (see, e.g., [31, Sec. 5.8., Theorem 1]). Since
the spaces Lp1(I;W 1,p1(Ω)) and Lp2(I;Lq2(Ω)) are reflexive Banach spaces, there
exists a (not relabelled) subsequence of {uℓ} which is weakly converging to u
in these spaces by the Kakutani theorem (see [9, Theorem 3.18] or [29, V.4,
Corollary 8]). This proves (4.2) and (4.3). Further, the compact embedding

W 1,p1(Ω) ↪→↪→ Lp1(Ω)

holds by the Rellich-Kondrachov theorem (cf. [1, Theorem 6.3 part I]). Thus,
since we also control ∂tuk, we can apply the Aubin-Lions lemma (see, e.g., [66,
Lemma 7.7]) to select another subsequence such that

uk → u strongly in Lp1(I;Lp1(Ω)).

Thus, by the properties of (Bochner-)Lebesgue spaces, there exists another subse-
quence which fulfils (4.4), hence it remains to show (4.5). To this end, let p1 < d
and start with the Sobolev embedding

W 1,p1(Ω) ↪→ Lp∗
1(Ω), where p∗

1 = dp1

d− p1
(4.8)

(for a reference see, e.g., [1, Theorem 4.12]). Then, for the θ ∈ [0, 1] and S ∈ [1,∞]
solving

1 − θ

p1
+ θ

p2
= 1 − θ

p∗
1

+ θ

q2
= 1
S
,

we observe that S satisfies (4.6) and

∥uk∥LSLS ≤ ∥uk∥1−θ

Lp1 L
p∗

1
∥uk∥θ

Lp2 Lq2

by the Hölder (interpolation) inequality. Thus the sequence {uk}∞
k=1 is bounded

in LS(I;LS(Ω)). Therefore, by Hölder’s inequality, the sequence defined as ak =
|uk − u|s, k ∈ N satisfies∫︂

E
ak ≤ ∥ak∥S

s
|E|1/( S

s
)′ ≤ C|E|

S−s
S ,

for any measurable E ⊂ Q, and thus ak is uniformly integrable whenever 1 ≤
s < S. Moreover, by (4.4), we get ak → 0 a.e. in Q. Hence, by Vitali’s theorem
(see [29, III.6, Theorem 15]), there exists yet another subsequence of {uk}∞

k=1, for
which ak → 0 strongly in L1(Q), which is (4.5). If p1 > d, then (4.8) holds with
p∗

1 = ∞ and there is no other change in the proof1. Finally, if p∗
1 = d, then (4.8)

can be replaced by

W 1,p1(Ω) ↪→ Lp3(Ω) for any p3 < ∞,

1Here we are obviously losing some information. To deduce a corresponding precise result
in the case p1 > d, one can use the interpolation between Lebesgue and Sobolev-Slobodeckij
spaces. This is omitted since in Chapter 3 we actually only need the case p1 < d.
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which is again sufficient to prove (4.5).
The property (4.7) holds since the Banach space Lw(I;W−m,v(Ω)) is reflexive

if and only if 1 < w, v < ∞.
If p1p2q2 = ∞, we think of the sequence {uk}∞

k=1 as of a bounded subset of
an appropriate dual space. Then, relying on separability of L1 spaces and using
the Banach theorem (cf. [4, Ch. 8, Theorem 3] or [9, Corollary 3.30]), we obtain
weakly star converging subsequence(s). Also, we can use the Aubin-Lions lemma
on a slightly worse space (to ensure its separability and reflexivity) if p1 = ∞.
We can argue similarly in the case w = ∞. Otherwise, there is no change in
the proof.

4.2 Intersections of Sobolev-Bochner spaces
Suppose that X ↪→ H ↪→ X∗ is a Gelfand triple and consider the space W 1,p(I;X)
(defined in (3.2)) with 1 ≤ p ≤ ∞. Then, it is known that the space C1(I;X)
is dense in W 1,p(I;X). Also, we have the embedding W 1,p(I;X) ↪→ C(I;H)
and the corresponding “integration by parts” formula holds true. These classical
results can be found in [74, Problem 23.10], [66, Ch. 7] or [35, Ch. IV]). In this
section, we derive an analogous result with W 1,p(I;X) replaced by the space

W = {u ∈ Lp(I;X) ∩ Lq(I;Y ); ∂tu ∈ (Lp(I;X) ∩ Lq(I;Y ))∗}, 1 < p, q < ∞,

equipped with the norm

∥u∥W = ∥u∥LpX∩LqY + ∥∂tu∥(LpX∩LqY )∗ .

The primary application which we have in mind is the case where X = W 1,2(Ω),
Y = Lω(Ω) and ω > 2d

d−2 (i.e., we know better integrability than what follows
from the Sobolev embedding). Thus, we may assume that both X and Y admit
the Gelfand triplet structure with a common Hilbert space H:

X
d
↪→ H

d
↪→ X∗ and Y

d
↪→ H

d
↪→ Y ∗

(even though this assumption could be relaxed if we needed similar results as
presented below in a more general setting). This implies

X + Y ↪→ H ↪→ (X + Y )∗ (4.9)

(the space H is identified with H∗ using the canonical isomorphism). Before we
continue, let us first review some properties of sums and intersections of normed
vector spaces.

Let A,B be normed vector spaces. The intersection A ∩ B is defined simply
as the set intersection of A and B, equipped with the norm

∥u∥A∩B = ∥u∥A + ∥u∥B.

Furthermore the space A+B is defined as

A+B = {a+ b; a ∈ A, b ∈ B}
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with the norm

∥u∥A+B = inf{∥a∥A + ∥b∥B; a ∈ A, b ∈ B, a+ b = u}.

We recall that the norm in the continuous dual space A∗ is given by

∥u∥A∗ = sup{|⟨u, v⟩|; v ∈ A, ∥v∥A ≤ 1}.

Then, one has
(A ∩B)∗ = A∗ +B∗ (4.10)

and
(A+B)∗ = A∗ ∩B∗, (4.11)

where the equalities must be understood as isomorphisms. Since we actually
do not need (4.11), let us verify (4.10) only. If u ∈ (A ∩ B)∗, then we can
extend this functional to uE ∈ A∗ (using the Hahn-Banach theorem) and thus,
we can identify uE with an element of A∗ +B∗ (adding the zero element of B∗).
Moreover, the extension uE is chosen as to satisfy ∥uE∥A∗ = ∥u∥(A∩B)∗ . Then, we
can estimate

∥uE∥A∗+B∗ ≤ ∥uE∥A∗ + ∥0∥B∗ = ∥u∥(A∩B)∗

and the embedding
(A ∩B)∗ ↪→ A∗ +B∗

follows. Vice versa, let u ∈ A∗ + B∗, and choose a ∈ A∗ and b ∈ B∗ such that
a+ b = u. We denote the restrictions of the functionals a and b to A ∩ B by aR

and bR, respectively. It is obvious that aR, bR ∈ (A∩B)∗, and thus uR = aR + bR

satisfies uR ∈ (A ∩B)∗ as well. Moreover, note that

⟨uR, v⟩ = ⟨aR, v⟩ + ⟨bR, v⟩ = ⟨a, v⟩ + ⟨b, v⟩ = ⟨u, v⟩ for all v ∈ A ∩B.

Hence, the definition of uR is independent of the choice of a, b and we may write

∥uR∥(A∩B)∗ = sup{|⟨uR, v⟩|; v ∈ A ∩B, ∥v∥A∩B ≤ 1}
≤ sup{|⟨a, v⟩|; v ∈ A ∩B, ∥v∥A∩B ≤ 1}

+ sup{|⟨b, v⟩|; v ∈ A ∩B, ∥v∥A∩B ≤ 1}
≤ sup{|⟨a, v⟩|; v ∈ A, ∥v∥A ≤ 1} + sup{|⟨b, v⟩|; v ∈ B, ∥v∥B ≤ 1}
= ∥a∥A∗ + ∥b∥B∗ .

Since a ∈ A∗ and b ∈ B∗ are arbitrary functionals satisfying a+ b = u, we get

∥uR∥(A∩B)∗ ≤ ∥u∥A∗+B∗

and the embedding
A∗ +B∗ ↪→ (A ∩B)∗

follows. Thus, identity (4.10) is verified.
Note that (4.9) implies

X + Y ↪→ (X + Y )∗ ↪→ (X ∩ Y )∗.
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Thus, denoting P = max{p, q}, it is to see that

Lp(I;X) ∩ Lq(I;Y ) ↪→ Lp(I;X + Y ) ∩ Lq(I;X + Y )
= LP (I;X + Y ) ↪→ LP (I; (X ∩ Y )∗)

(4.12)

and also that

(Lp(I;X) ∩ Lq(I;Y ))∗ ↪→ (Lp(I;X ∩ Y ) ∩ Lq(I;X ∩ Y ))∗

= LP (I;X ∩ Y )∗ = LP ′(I; (X ∩ Y )∗).

Hence, the time derivative appearing in the definition of W is correctly defined
by ∫︂

I
∂tuφ = −

∫︂
I
u∂tφ for all φ ∈ D(I),

which is an equality in the space (X ∩ Y )∗ (cf. (3.1)). Furthermore, from (4.10)
and (3.3), we see that

(Lp(I;X) ∩ Lq(I;Y ))∗ = Lp′(I;X∗) + Lq′(I;Y ∗) (4.13)

(up to an isomorphism) and therefore, the norm ∥·∥W is equivalent with the norm

∥u∥′
W = ∥u∥LpX∩LqY + ∥∂tu∥Lp′ X∗+Lq′ Y ∗ .

Theorem 4.2. Let 1 < p, q < ∞ and suppose that X, Y are separable reflex-
ive Banach spaces and H is separable Hilbert space forming Gelfand triples in
the sense that

X
d
↪→ H

d
↪→ X∗ and Y

d
↪→ H

d
↪→ Y ∗. (4.14)

Then, we have the embeddings

C1(I;X ∩ Y ) d
↪→ W ↪→ C(I;H). (4.15)

Moreover, the integration by parts formula

(u(t2), v(t2))H − (u(t1), v(t1))H =
∫︂ t2

t1
⟨∂tu, v⟩ +

∫︂ t2

t1
⟨∂tv, u⟩ (4.16)

holds for any u, v ∈ W and any t1, t2 ∈ I.

Proof. Let us prove the first embedding in (4.15). If u ∈ C1(I;X ∩ Y ), then

u ∈ C1(I;X ∩ Y ) = C1(I;X ∩ Y ) ∩ C1(I;X ∩ Y )
↪→ C1(I;X) ∩ C1(I;Y ) ↪→ Lp(I;X) ∩ Lq(I;Y )

and, using (3.3), (4.12), we also get

∂tu ∈ C(I;X∩Y ) ↪→ LP ′(I;X∩Y ) = (LP (I;X∩Y )∗)∗ ↪→ (Lp(I;X)∩Lq(I;Y ))∗.

Hence, we obtain C1(I;X ∩ Y ) ↪→ W . To show that this embedding is dense, we
take u ∈ W and extend outside I. Let a < b ∈ R be the left and right endpoints
of I, respectively. We define the extension of u on (2a− b, 2b− a) by

u(t) =
{︃
u(2a− t), t ∈ (2a− b, a);
u(2b− t), t ∈ (b, 2b− a).
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Then, for ε ∈ (0, b−a
2 ), let ϱε ∈ C1(R) be a non-negative function supported in

(−ε, ε) satisfying

ϱε(t) ≤ 1
ε

for all t ∈ R and
∫︂
R
ϱε = 1.

Next, we define uε by a convolution as

uε(t) = u ∗ ϱε(t) =
∫︂
R
u(s)ϱε(t− s) ds, t ∈ I.

Note that ϱε(t− s) is non-zero only if s ∈ (t− ε, t+ ε) ⊂ (a− b−a
2 , b+ b−a

2 ), which
is an interval, where u has been defined. Since ϱε ∈ C1(R) and

∂tuε(t) =
∫︂
R
u(s)ϱ′

ε(t− s) ds,

it is evident that uε ∈ C1(X ∩ Y ). Then, using the properties of ϱε, we can write∫︂
I
∥uε(t) − u(t)∥p

X dt =
∫︂

I

⃦⃦⃦⃦∫︂
R
(u(s) − u(t))ϱε(t− s) ds

⃦⃦⃦⃦p

X
dt

=
∫︂

I

⃦⃦⃦⃦∫︂
R
(u(t+ s) − u(t))ϱε(s) ds

⃦⃦⃦⃦p

X
dt

≤
∫︂

I

(︃∫︂ ε

−ε
∥u(t+ s) − u(t)∥Xϱε(s) ds

)︃p

dt

≤
∫︂

I

(︃∫︂ ε

−ε
ϱε(s)p′ ds

)︃p−1 ∫︂ ε

−ε
∥u(t+ s) − u(t)∥p

X ds dt

≤ 2p

2ε

∫︂ ε

−ε

∫︂
I
∥u(t+ s) − u(t)∥p

X dt ds

≤ 2p sup
|s|<ε

∫︂
I
∥u(t+ s) − u(t)∥p

X ,

where the right hand side tends to zero as ε → 0+ by the classical property
of the translation operator in Bochner spaces (see [35, Ch. IV, Lemma 1.5.]).
Analogously, we obtain that ∫︂

I
∥uε − u∥q

Y → 0,

and thus
∥uε − u∥LpX∩LqY → 0

as ε → 0+. Next, note that ∂tu exists also in the interval (a− b−a
2 , b+ b−a

2 ) (thanks
to the even extension of u outside I) and satisfies ∂tu ∈ Lp′(I;X∗) + Lq′(I;Y ∗)
(cf. (4.13)). Therefore, there exist w1 ∈ Lp′(I;X∗) and w2 ∈ Lq′(I;Y ∗) with
w1 + w2 = ∂tu. Then, using the same estimate as above, we can show that∫︂

I
∥w1 ∗ ϱε − w1∥p′

X∗ +
∫︂

I
∥w2 ∗ ϱε − w2∥q′

Y ∗ → 0

as ε → 0+. This implies

∥∂tuε − ∂tu∥Lp′ X∗+Lq′ Y ∗ = ∥(w1 ∗ ϱε − w1) + (w2 ∗ ϱε − w2)∥Lp′ X∗+Lq′ Y ∗

≤ ∥w1 ∗ ϱε − w1∥Lp′ X∗ + ∥w2 ∗ ϱε − w2∥Lq′ Y ∗ → 0
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as ε → 0+, which finishes the proof of C1(I;X ∩ Y ) d
↪→ W .

If u, v ∈ C1(I;X ∩Y ) ↪→ C(I;H), then ∂tu, ∂tv ∈ C(I;X ∩Y ) ↪→ C(I;H) and,
using density of the embeddings in (4.14), the duality in (4.16) can be represented
as

⟨∂tu, v⟩ + ⟨∂tv, u⟩ = (∂tu, v)H + (∂tv, u)H = ∂t(u, v)H a.e. in I,

hence (4.16) is obvious in that case. Now we proceed as in [66, Lemma 7.3.].
Note that, for any a, b ≥ 0, the inequality

x− y ≤
√︂

|x2 − y2| (4.17)

holds. Indeed, it is obvious if x ≤ y and in the other case x > y, we can rewrite
it as

(x− y)2 ≤ (x− y)(x+ y),

which is again evident. Let t ∈ I and in (4.16) we take v = u ∈ C1(I;X ∩ Y ),
t2 = t and t1 ∈ I such that

∥u(t1)∥H = 1
|I|

∫︂
I
∥u∥H (4.18)

(using the mean value theorem). This way, we obtain

∥u(t)∥2
H − ∥u(t1)∥2

H = 2
∫︂ t

0
⟨∂tu, u⟩

and by taking
√︂

| · | of both sides and using (4.17), we get

∥u(t)∥H − ∥u(t1)∥H ≤
(︃

2
⃓⃓⃓⃓∫︂ t

0
⟨∂tu, u⟩

⃓⃓⃓⃓)︃ 1
2

≤
√

2
(︃∫︂

I
|⟨∂tu, u⟩|

)︃ 1
2
.

If we rearrange this, use (4.18), estimate the duality pairing and use Young’s
inequality, we obtain

∥u(t)∥H ≤ 1
T

∫︂
I
∥u∥H +

√
2∥∂tu∥

1
2
Lp′ X∗+Lq′ Y ∗∥u∥

1
2
LpX∩LqY

≤ C(∥u∥L1H + ∥u∥W).
(4.19)

Moreover, by (4.14), we have

W ↪→ Lp(I;X) ∩ Lq(I;Y ) ↪→ L1(I;X) ∩ L1(I;Y ) ↪→ L1(I;X + Y ) ↪→ L1(I;H),

and thus (4.19) yields
∥u∥CH ≤ C∥u∥W . (4.20)

Since C1(I;X ∩ Y ) is dense in W , the estimate (4.20) and identity (4.16) remain
valid for all u ∈ W . Moreover, if u ∈ W , then we can take v = u and t2 → t1
in (4.16) to deduce that u ∈ C(I;H). Thus, the embedding W ↪→ C(I;H) holds
and the proof is finished.

By taking X = Y and p = q in the previous theorem, we obtain the classical
result as an obvious corollary.
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Corollary 4.3. Let 1 < p < ∞. Suppose that X is a separable reflexive Banach
space and that H is a separable Hilbert space such that X d

↪→ H
d
↪→ X∗ is a Gelfand

triple.
Then, we have

C1(I;X) d
↪→ W 1,p(I;X) ↪→ C(I;H).

Moreover, the integration by parts formula

(u(t2), v(t2))H − (u(t1), v(t1))H =
∫︂ t2

t1
⟨∂tu, v⟩ +

∫︂ t2

t1
⟨∂tv, u⟩ (4.21)

holds for any u, v ∈ W 1,p(I;X) and any t1, t2 ∈ I.

Let H = L2(Ω). The formula (4.21) can be used to identify that

⟨∂tu, u⟩ = 1
2

d
dt

∫︂
Ω
u2 (4.22)

a.e. in I. This is an useful identity when deriving an a priori estimate by multi-
plying a parabolic equation including the term ∂tu by its solution. However, in
certain situations we need to consider also test functions of the form ψ(u) and
then, we would like to generalize (4.22) to

⟨∂tu, ψ(u)⟩ = d
dt

∫︂
Ω

∫︂ u

w
ψ(s) ds.

Whether this is possible depends on what kind of function ψ is and also on
the choice of X. The next lemma characterizes one situation where such an iden-
tification is possible.

Lemma 4.4. Let 1 < p, q < ∞. Suppose that ψ : R → R is a Lipschitz function.2
For w ∈ R, we define

Ψ(x) =
∫︂ x

w
ψ(s) ds, x ∈ R.

Then, for any u ∈ W 1,p(I;W 1,q(Ω)), there holds

Ψ(u) ∈ C(I;L1(Ω)) (4.23)

and ∫︂ t2

t1
⟨∂tu, ψ(u)⟩ =

∫︂
Ω

Ψ(u(t2)) −
∫︂

Ω
Ψ(u(t1)) for all t1, t2 ∈ I. (4.24)

Moreover, if ψ is bounded, then

Ψ(u) ∈ C(I;L2(Ω)).

Proof. First of all, we remark that ψ(u) ∈ W 1,q(Ω) a.e. in I, e.g. by [75, The-
orem 2.1.11.], and thus the duality in (4.24) is well defined. Next, we apply
Theorem 4.2 to find uε ∈ C1(I;W 1,q(Ω)) satisfying

∥uε − u∥LpW 1,q + ∥∂tuε − ∂tu∥Lp′ W −1,q′ → 0 as ε → 0+. (4.25)
2This means that there exists L ≥ 0 such that |ψ(x) − ψ(y)| ≤ L|x− y| for all x, y ∈ R.
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Then, using the classical calculus (chain rule and changing the order of integration
and differentiation), it is easy to see that the identity∫︂ t2

t1
⟨∂tuε, ψ(uε)⟩ =

∫︂ t2

t1

∫︂
Ω
ψ(uε)∂tuε

=
∫︂ t2

t1

∫︂
Ω
∂tΨ(uε) =

∫︂
Ω

Ψ(uε(t2)) −
∫︂

Ω
Ψ(uε(t1))

(4.26)

holds true for any t1, t2 ∈ I. Since ψ is Lipschitz (with some Lipschitz constant
L ≥ 0), we can estimate

|ψ(uε)| ≤ |ψ(uε) − ψ(0)| + |ψ(0)| ≤ L|uε| + |ψ(0)|

and
|∇ψ(uε)| ≤ |ψ′(uε)||∇uε| ≤ L|∇uε|.

Hence, the sequence ψ(uε) is bounded in Lp(I;W 1,q(Ω)). As 1 < p, q < ∞, this
is a reflexive space, and thus, there exist a subsequence and its limit ψ(u) ∈
Lp(I;W 1,q(Ω)) such that

ψ(uε) ⇀ ψ(u) weakly in Lp(I;W 1,q(Ω)). (4.27)

Since p > 1, a subsequence of uε converges point-wise a.e. in Q to u, and thus
ψ(u) = ψ(u) using the continuity of ψ. Hence, by (4.25) and (4.27), we obtain∫︂ t2

t1
⟨∂tuε, ψ(uε)⟩ =

∫︂ t2

t1
⟨∂tuε − ∂tu, ψ(uε)⟩ +

∫︂ t2

t1
⟨∂tu, ψ(uε)⟩

→
∫︂ t2

t1
⟨∂tu, ψ(u)⟩

(4.28)

as ε → 0+. Next, using the embedding

W 1,p(I;W 1,q(Ω)) ↪→ C(I;L2(Ω))

from Corollary 4.3 and (4.25), we get, for any t0 ∈ I, that

∥u(t) − u(t0)∥2 → 0 as t → t0 (4.29)

and
∥uε(t0) − u(t0)∥2 → 0 as ε → 0+. (4.30)

Then, the Lipschitz continuity of ψ, Hölder’s inequality and (4.29) yield
∫︂

Ω
|Ψ(u(t)) − Ψ(u(t0))| =

∫︂
Ω

⃓⃓⃓⃓
⃓
∫︂ u(t)

u(t0)
ψ(s) ds

⃓⃓⃓⃓
⃓ ≤

∫︂
Ω

∫︂ u(t)

u(t0)
(|ψ(0)| + L|s|)

≤
∫︂

Ω

∫︂ u(t)

u(t0)
C(1 + |u(t0)| + |u(t)|) ≤ C

∫︂
Ω
(1 + |u(t0)| + |u(t)|)|u(t) − u(t0)|

≤ C∥1 + |u(t0)| + |u(t)|∥2∥u(t) − u(t0)∥2 ≤ C∥u(t) − u(t0)∥2 → 0
(4.31)

as ε → 0+, which proves (4.23) (and thus, the values Φ(u(t)), t ∈ I, are well
defined). By an analogous estimate, using (4.30) instead of (4.29), we can prove
that ∫︂

Ω
|Φ(uε(t0)) − Φ(u(t0))| → 0 as ε → 0+
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for any t ∈ I. This and (4.28) used in (4.26) to take the limit ε → 0+ proves
(4.24).

If ψ is bounded, we replace (4.31) by

∫︂
Ω

|Ψ(u(t)) − Ψ(u(t0))|2 =
∫︂

Ω

⃓⃓⃓⃓
⃓
∫︂ u(t)

u(t0)
ψ(s) ds

⃓⃓⃓⃓
⃓
2

≤ C
∫︂

Ω
|u(t) − u(t0)|2

and the rest of the proof remains the same.

We also consider a small modification of the above lemma. In (4.24), we can
replace ψ(·) by ψ(·)ϕ, where ϕ ∈ W 1,∞(Ω), leading to the identity
∫︂ t

0
⟨∂tu, ψ(u)ϕ⟩ =

∫︂
Ω

∫︂ u(t)

w
ψ(s) ds ϕ−

∫︂
Ω

∫︂ u(0)

w
ψ(s) ds ϕ for all t ∈ I. (4.32)

Then, since ϕ is a Lipschitz (time independent) function, the proof is basically
the same as the one presented above.

4.3 Calculus for positive definite matrices
We recall that the operations “·” and | · | on matrices are defined by

A1 · A2 =
d∑︂

i=1

d∑︂
j=1

(A1)ij(A2)ij and |A| =
√
A · A,

respectively. Then, the object |A| coincides, in fact, with the Frobenius matrix
norm of A. Thus, we also have that

|A| =
√︂

tr(ATA) =
√︂

tr(AAT ), where trA =
d∑︂

i=1
(A)ii

and
|ATA| ≤ |A|2. (4.33)

As a consequence of the Schur decomposition, every symmetric (and thus
normal) matrix admits a spectral decomposition of the form

A = QDQT ,

where D is a diagonal matrix containing the eigenvalues of A and Q is a unitary
matrix satisfying Q−1 = QT , |Q| = 1, see [39, Theorem 2.5.4] or [51, Theo-
rem 1.13]. Moreover, since A is positive definite, the eigenvalues of A are strictly
positive. Thus, we may consistently define any real power α of A by

Aα = QDαQT .

Then, the matrix Aα is again symmetric and positive definite.
In the next lemma, we collect some basic algebraic facts.
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Lemma 4.5. Let Ai ∈ Rd×d, i = 1, 2, 3, 4, d ∈ N be some matrices and let
A = AT ∈ Rd×d

sym be a symmetric matrix. Then, the identities

(i) A1A2A3 · A4 = A2 · AT
1 A4AT

3 ; (4.34)
(ii) |A|2 = trA2 (4.35)

hold. Moreover, if A ∈ Rd×d
>0 is a positive definite matrix, then the estimates

(iii) 0 ≤ trA − d− ln detA; (4.36)
(iv) |A| ≤ trA ≤

√
d|A|; (4.37)

(v) min
{︂
1, d

1−α
2
}︂
|A|α ≤ |Aα| ≤ max

{︂
1, d

1−α
2
}︂
|A|α for any α ∈ [0,∞).

hold.

Proof. The identity (i) is a consequence of the well known identities for the trace
operator. Indeed, we can write

A1A2A3 · A4 = tr(A1A2A3AT
4 ) = tr(A2A3AT

4 A1)
= A2 · (A3AT

4 A1)T = A2 · AT
1 A4AT

3 .

The property (ii) then follows from (i) and symmetry of A since

|A|2 = A · A = A2 · I = trA2.

Let us denote the eigenvalues of A by {λi}d
i=1. Then, it is well known and

easy to see using the spectral decomposition that invariants of A satisfy

trA =
d∑︂

i=1
λi, |A| =

⌜⃓⃓⎷ d∑︂
i=1

λ2
i , detA =

d∏︂
i=1

λi.

Thus, we get (iii) from the fact that x ↦→ x − 1 − ln x ≥ 0 for all x > 0 (this
function attains its minimum at x = 1). Furthermore, by (4.33), (4.35) and
Young’s inequality, we get

|A| = |(A 1
2 )TA

1
2 | ≤ |A

1
2 |2 = trA

=
d∑︂

i=1
λi ≤

√
d

⌜⃓⃓⎷ d∑︂
i=1

λ2
i =

√
d|D| =

√
d|QDQT | =

√
d|A|,

which proves (iv). Next, for α ∈ [0,∞), we denote σ(α) = ∑︁d
i=1 λ

2α
i . If we use

concavity of the power function x ↦→ xα for α ∈ [0, 1] twice (first time in the form
εxα ≤ (εx)α, ε ∈ (0, 1)), we get the inequality

σ(1)α =
d∑︂

i=1

λ2
i

σ(1)σ(1)α ≤
d∑︂

i=1
λ2α

i = σ(α) = d
d∑︂

i=1

λ2α
i

d
≤ d

(︄
d∑︂

i=1

λ2
i

d

)︄α

= d1−ασ(1)α.

Thus, since

σ(α) 1
2 = |Dα| =

√︂
QDαQT ·QDαQT =

√
Aα · Aα = |Aα|,
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we obtain

|A|α = σ(1)α
2 ≤ σ(α) 1

2 = |Aα| = σ(α) 1
2 ≤ d

1−α
2 (σ(1))α

2 = d
1−α

2 |A|α.

Analogously, for α ∈ [1,∞), using the convexity of x ↦→ xα, we obtain

d
1−α

2 |A|α ≤ |Aα| ≤ |A|α

and the proof of (v) is finished.

Next, we assume that

A : Ω → Rd×d
>0 , d ∈ N,

is a Sobolev mapping defined in a domain Ω ⊂ Rd, d ∈ N, with a Lipschitz
boundary. Thus, the derivatives of A exist in the distributional sense and they
are integrable in Ω. The result below is stated only for the domain Ω just for
simplicity. However, it is easy to see that an analogous assertion will hold also in
the case where the domain Ω and the symbol ∇A are replaced with (0, T ) (i.e.,
only an one-dimensional domain) and ∂tA, respectively. This fact is occasionally
used in Chapter 3.

Lemma 4.6. Let A,A−1 ∈ W 1,2(Ω) be positive definite a.e. in Ω. Then the fol-
lowing identities hold:

(i) ∇A−1 = −A−1∇AA−1; (4.38)
(ii) −∇A · ∇A−1 = |A− 1

2 ∇AA− 1
2 |2; (4.39)

(iii) ∇ ln detA = A−1 · ∇A = tr(A− 1
2 ∇AA− 1

2 ) (4.40)

a.e. in Ω.

Proof. Let φ ∈ D(Ω). Using integration by parts twice, we obtain∫︂
Ω
A∇A−1φ+

∫︂
Ω

∇AA−1φ = −
∫︂

Ω
∇(Aφ)A−1 +

∫︂
Ω

∇AA−1φ

= −
∫︂

Ω
∇φ = −

∫︂
∂Ω
φn = 0,

hence, we find
A∇A−1 = −∇AA−1 a.e. in Ω (4.41)

by the fundamental theorem of variational calculus. The identity (i) then follows
upon multiplying (4.41) by A−1 from the left.

The identity (ii) is an easy consequence of (i) and (4.34) since

−∇A · ∇A−1 = ∇A · A−1∇AA−1 = ∇A · A− 1
2A− 1

2 ∇AA− 1
2A− 1

2

= A− 1
2 ∇AA− 1

2 · A− 1
2 ∇AA− 1

2 = |A− 1
2 ∇AA− 1

2 |2.

To prove (iii) (which is a version of well known Jacobi’s formula) we consider
a suitable approximation of A. For λ, ε > 0, we define

Aλ,ε = λI + Aε,
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where Aε ∈ C1(Ω) satisfies

Aε → A a.e. in Ω and ∥A − Aε∥1,2 → 0 as ε → 0+. (4.42)

Since Aε can be constructed using a convolution and Ax · x > 0 for all x ∈ Rd,
we may suppose that

Aεx · x > 0 for all x ∈ Rd. (4.43)
Consequently, we also get

Aλ,εx · x = Aεx · x + λ|x|2 > λ|x|2 for all x ∈ Rd

and Aλ,ε,A−1
λ,ε ∈ C1(Ω). Then, we recall the Jacobi formula

∇ detAλ,ε = detAλ,ε A−T
λ,ε · ∇Aε

which we divide by detAλ,ε and rewrite as∫︂
Ω

∇ ln detAλ,εφ =
∫︂

Ω
A−1

λ,ε · ∇Aλ,εφ for all φ ∈ D(Ω) (4.44)

(see [51, Theorems 8.1, 8.2]). Next, denoting the eigenvalues of Aε by {λi}d
i=1

(which are positive due to (4.43)) and using (4.37), we observe that

|A−1
λ,ε| ≤ tr

(︂
(λI + Aε)−1

)︂
=

d∑︂
i=1

1
λ+ λi

≤ d

λ
.

Therefore, we have ⃦⃦⃦
A−1

λ,ε

⃦⃦⃦
L∞L∞

≤ C(λ)

and moreover it follows from (4.44) and the properties of Aε that

∥∇ ln detAλ,ε∥2 ≤ C(λ).

Thus, by selecting appropriate subsequences we get

A−1
λ,ε ⇀ K1 weakly in L∞)(Ω), (4.45)

∇ ln detAλ,ε ⇀ K2 weakly in L2(Ω) (4.46)

as ε → 0+. Due to (4.42), we have K1 = (λI + A)−1. Furthermore, note that

| ln detAλ,ε| = d| ln(detAλ,ε)
1
d | ≤ d| detAλ,ε|

1
d + d| detA−1

λ,ε|
1
d

≤ C(|Aλ,ε| + |A−1
λ,ε|),

which implies, using also (4.42), that

ln detAλ,ε ⇀ ln det(λI + A) weakly in L2(Ω).

Hence, we identify that K2 = ∇ ln det(λI + A). If we use ∇Aλ,ε = ∇Aε, (4.42),
(4.45) and (4.46) to take the limit in (4.44), we obtain∫︂

Ω
∇ ln det(λI + A)φ =

∫︂
Ω
(λI + A)−1 · ∇Aφ for all φ ∈ D(Ω). (4.47)
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Denoting the eigenvalues of A by {µi}d
i=1 and using (4.37), we find that

|(λI + A)−1| ≤ tr(λI + A)−1 =
d∑︂

i=1

1
λ+ µi

≤ trA−1 ≤
√
d|A−1|.

Together with the Sobolev embedding W 1,2(Ω) ↪→ L
2d

d−2 (Ω), this yields⃦⃦⃦
(λI + A)−1

⃦⃦⃦
2d

d−2
≤ C.

Thus, from Hölder’s inequality and (4.47), we see that

∥∇ ln det(λI + A)∥ d
d−1

≤ C.

Then, using analogous procedure as above, we eventually find that

(λI + A)−1 ⇀ A−1 weakly in L
2d

d−2 (Ω),

∇ ln det(λI + A) ⇀ ∇ ln detA weakly in L
d

d−1 (Ω),

which is sufficient to take the limit λ → 0+ in (4.47) and obtain∫︂
Ω

∇ ln detAφ =
∫︂

Ω
A−1 · ∇Aφ for all φ ∈ D(Ω).

Consequently, the first part of (4.40) is proved. The second equality in (4.40)
follows directly from (4.34).
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5. Analysis of viscoelastic fluids
in the isothermal setting
This stand-alone chapter contains the work [6] titled Large data existence theory
for three-dimensional unsteady flows of rate-type viscoelastic fluids with stress
diffusion.

5.1 Introduction
We aim to establish a global-in-time and large-data existence theory, within the
context of weak solutions, to a class of homogeneous incompressible rate-type vis-
coelastic fluids flowing in a closed three-dimensional container. The studied class
of models can be seen as the Navier-Stokes system coupled with a viscoelastic
rate-type fluid model that shares the properties of both Oldroyd-B and Giesekus
models and is completed with a diffusion term. Such models are frequently en-
countered in the theory of non-Newtonian fluid mechanics, see [30, 27] and further
references cited in [27].

In order to precisely formulate the problems investigated in this chapter, we
start by introducing the necessary notation. For a bounded domain Ω ⊂ R3

with the Lipschitz boundary ∂Ω and a time interval of the length T > 0, we set
Q = (0, T ) × Ω for a time-space cylinder and Σ = (0, T ) × ∂Ω for a part of its
boundary. The symbol n denotes the outward unit normal vector on ∂Ω and, for
any vector z, the vector zτ denotes the projection of the vector to a tangent plane
on ∂Ω, i.e., zτ = z − (z · n)n. Then, for a given density of the external body
forces f : Q → R3, a given initial velocity v0 : Ω → R3 and a given initial extra
stress tensor B0 : Ω → Rd×d

>0 (here Rd×d
>0 denotes the set of symmetric positive

definite (3 × 3)-matrices), we look for a vector field v : Q → R3, a scalar field
p : Q → R and a positive definite matrix field B : Q → Rd×d

>0 solving the following
system in Q:

div v = 0, (5.1)
∂tv + v · ∇v − ν∆v + ∇p = 2µa div((1−γ)(B − I) + γ(B2−B)) + f , (5.2)

∂tB + v · ∇B + δ1(B − I) + δ2(B2 − B) − λ∆B
= a+1

2 (∇vB + (∇vB)T ) + a−1
2 (B∇v + (B∇v)T ),

(5.3)

and being completed by the following boundary conditions on Σ:

v · n = 0,
−σvτ =

(︂(︂
ν∇v + ν(∇v)T + 2µa(1−γ)(B − I) + 2µaγ(B2−B)

)︂
n
)︂

τ
,

n · ∇B = O, (here O stands for zero 3 × 3-matrix)
(5.4)

and by the initial conditions in Ω:

v(0, ·) = v0, (5.5)
B(0, ·) = B0. (5.6)
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The parameters γ ∈ (0, 1), ν, λ, σ > 0, δ1, δ2 ≥ 0 and a ∈ R are given numbers.
The main result of this chapter can be stated as:
Let v0 and B0 be such that the initial total energy is bounded. Then, for

sufficiently regular f , there exists a global-in-time weak solution to (5.1)–(5.6).
Although the above result is stated vaguely, we would like to emphasize that

we are going to establish the long-time existence of a weak solution for large
data and for three-dimensional flows. A more precise and rigorous version of
the above result including the correct function spaces and the properly defined
weak formulation is stated in Theorem 5.2 below.

We complete the introductory part by providing the physical background rele-
vant to the studied problem and by recalling earlier results relevant to the problem
(5.1)–(5.6) analyzed here.

5.2 Mathematical and physical background
The system (5.1)–(5.4) can be rewritten into a more concise form once one rec-
ognizes some physical quantities. First of all, let

Dv = 1
2(∇v + (∇v)T ) and Wv = 1

2(∇v − (∇v)T )

denote the symmetric and antisymmetric parts of the velocity gradient ∇v, re-
spectively. Then, looking at the equation (5.2), we see that (5.2) is obtained from
a general form of the balance of linear momentum, namely

ϱ
•
v = divT + ϱf , (5.7)

once we set the density ϱ = 1 and require that the Cauchy stress tensor T has
the form

T = −pI + 2νDv + 2aµ((1 − γ)(B − I) + γ(B2 − B)). (5.8)
In (5.7), •

v stands for the material time derivative of v, i.e., •
v = ∂tv + v · ∇v.

Defining similarly the material time derivative of a tensor B as
•
B = ∂tB + v · ∇B,

we can recognize the presence of a general objective derivative in (5.3). Namely,
defining

◦
B =

•
B − a(DvB + BDv) − (WvB − BWv),

we can rewrite the system (5.1)–(5.3) into a more familiar form as

div v = 0, (5.9)
•
v = divT + f , (5.10)

◦
B + δ1(B − I) + δ2(B2 − B) = λ∆B, (5.11)

which is supposed to hold true in Q and which is completed by the initial con-
ditions (5.5), (5.6) fulfilled in Ω and by the boundary conditions (5.4) on Σ that
take the form:

v · n = 0, (5.12)
(Tn)τ = −σvτ , (5.13)

n · ∇B = O. (5.14)

98



We provide several comments regarding (5.8)–(5.11) as well as the boundary
conditions (5.12)–(5.14). The Navier slip boundary condition (5.13) is considered
here just for simplicity; note that for smooth domains, namely if Ω ∈ C1,1, we can
introduce the pressure p as an integrable function, e.g., by using an additional
layer of approximation as in [12], see also [16, 15] or [8] which discuss the treatment
of the pressure in evolutionary models subject to the Navier boundary condition.
Nevertheless, since we always deal with formulation without the pressure (see
Definition 5.1), we can also treat the Dirichlet boundary condition, as well as
very general implicitly specified boundary conditions see, e.g., [58, 13, 14] or [8].
The Neumann boundary condition for B is considered here only for simplicity
and without any specific physical meaning.

A further aspect, which makes the above system more complicated than the
Navier-Stokes equation is the form of the Cauchy stress tensor T as in (5.8).
The term −pI + 2νDv corresponds to the standard Newtonian fluid flow model
with a constant kinematic viscosity ν. The next part of the Cauchy stress, which
depends linearly on B, appears in all the viscoelastic rate-type fluid models - see,
e.g., [53, (7.20b), (8.20e)], [40, (6.43e)] or [27, (43a)]. On the other hand, the
addition of the term 2aµγ(B2 − B) is, to our best knowledge, considered here for
the first time. The fact that we require that γ is positive (and strictly less than
1) plays a key role in the analysis of the problem, as is shown below. Note that
the linearization of T with respect to B when B is close to the identity I yields

T = −pI + 2νDv + 2aµ(B − I)

and we recover the standard form of T (after possible redefinition of the pressure).
The quantity B takes into account the elastic responses of the fluid and the

equation (5.11) describes its evolution in the current configuration (Eulerian coor-
dinates), just as the velocity v. It is frequent to call the tensor µ(B− I) the extra
stress or conformation tensor and to denote it by τ . More importantly, since the
material derivative of B is not objective, it must be “corrected” and this is the
reason, why in (5.11) the derivative

◦
B appears. The parameter a in the definition

of
◦
B determines the type of the objective derivative. The case a = 1 leads to the

upper convected Oldroyd derivative, that has favourable physical properties and
that leads to a clear interpretation of B within the thermodynamical framework
developed in [63], see also [64, 55, 56, 57]. Next, the case a = 0 leads to the
corrotational Jaumann-Zaremba derivative and this is the only case for which the
analysis is much simpler than in other cases. Furthermore, if a ∈ [−1, 1], one
obtains the entire class of Gordon-Schowalter derivatives. However, it turns out
that the physical properties of these derivatives are irrelevant for the analysis
presented below (except the case a = 0), therefore we may take any a ∈ R. For
a = 1 and λ = 0 we distinguish two cases: if δ1 > 0 and δ2 = 0 we obtain the
classical Oldroyd-B model while if δ1 = 0 and δ2 > 0 we get the Giesekus model.
Next, by considering a ∈ [−1, 1], we obtain the class of Johnson-Segalman mod-
els. If we further let λ > 0, we are introducing diffusive variants of the previous
models. It has been observed that including the diffusion term in (5.11) is physi-
cally reasonable, see, e.g., [30] or [27] and references therein. However, up to now,
it has been unknown what precise form should the diffusion term take and also
whether it actually helps in the analysis of the model. Our main result provides
a partial answer to this question, namely: for γ ∈ (0, 1) and with the diffusion
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term being of the form ∆B (or more generally, a linear second order operator),
the global existence of a weak solution is available.

Compared to the equations describing flows of standard Oldroyd-B viscoleastic
rate-type fluids, there are two deviations in the set of equations (5.9)–(5.11)
studied hereafter. We provide a few comments on these differences.

The first deviation concerns the incorporation of the stress diffusion term, i.e.
the term −∆B, into the equations. Following the pioneering work of [30] it is
clear that a quantity related to |∇B|2 has to be added into the list of underlying
dissipation mechanisms. On the other hand, the precise form in which stress
diffusion should appear depends on the choice of a thermodynamical approach
and specific assumptions. In fact, using the thermodynamical concepts as in [53]
or [27], one can derive models, where the stress diffusion term takes the form
−B∆B − ∆BB, −B 1

2 ∆BB 1
2 etc., however, we would prefer −∆B simply because

it coincides with the form proposed by [30], and, from the perspective of PDE
analysis and numerical approximation, one prefers to deal with stress diffusion
that leads to a linear operator.

The second deviation from usual viscoelastic models consists in the presence
of the term (B2 − B) in the Cauchy stress tensor, see (5.8). This term arises
if we slightly modify energy storage mechanism and apply the thermodynamic
approach as developed in [53]. In what follows, we give a clear interpretation and
a thermodynamic derivation of our model.

5.3 Thermodynamical derivation of the model
Viscoelastic models with (nonlinear) stress diffusion, but without the term B2

in the stress tensor are derived, e.g., in [53] and [27] even in the temperature-
dependent case. Here, we briefly explain the approach in a simplified isothermal
setting (sufficient for the purpose of this study), referring to the cited works for
the derivation in a complete thermal setting and for more details.

First, we postulate the constitutive equation for the Helmholtz free energy in
the form

ψ(B) = µ((1 − γ)(trB − 3 − ln detB) + 1
2γ|B − I|2), (5.15)

where µ > 0 and γ ∈ [0, 1] is a parameter interpolating between two forms of the
energy. The choice γ = 0 would lead to a standard Oldroyd-B diffusive model.
To our best knowledge, the case γ > 0 was not considered before in literature.
The term 1

2γ|B − I|2, which is newly included in ψ is obviously convex with the
minimum at B = I and depends only on trB and on tr(BB), i.e., on invariants of
B, therefore it does not violate any of the basic principles of continuum physics.
Moreover, such an addition does not affect the first three terms in the asymptotic
expansion of ψ near I, on the logarithmic scale. To see this, let H denote the
Hencky logarithmic tensor satisfying eH = B (which exists due to the positive
definiteness of B). Using Jacobi’s identity, we compute that

trB − 3 − ln detB = tr(eH − I − H) = tr(1
2H

2 +O(H3)).

On the other hand, we easily get

1
2 |B − I|2 = 1

2 tr(e2H − 2eH + I) = tr(1
2H

2 +O(H3)),
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hence we also have

(1 − γ)(trB − 3 − ln detB) + 1
2γ|B − I|2 = tr(1

2H
2 +O(H3))

and we see that for B being close to identity, the form of ψ is almost independent
of the choice of parameter γ and the second part of ψ in (5.15) can be just
understood as a correction for large values of B.

Next, we show how the constitutive equation for T (see (5.8)) appears natu-
rally if we start with the choice of the Helmholtz free energy (5.15) and require
that the form of the equation for B is given by (5.11). For the derivation, we
followed the approach developed in [53] that stems from the balance equations
and requires the knowledge of how the material stores the energy, but we simplify
the derivation presented there by assuming that the density is constant (in fact
we set for simplicity ϱ = 1 and hence div v = 0) and the flow is isothermal,
i.e., the temperature θ is constant as well. Under these assumptions the balance
equations of continuum physics (for linear and angular momenta, energy and for
formulation of the second law of thermodynamics) take the form

•
v = divT, T = TT ,
•
e = T · Dv − div je,
•
η = ξ − div jη with ξ ≥ 0,

where e is the (specific) internal energy, η is the entropy, ξ is the rate of entropy
production, T is the Cauchy stress tensor and the quantities je, jη represent the
internal and the entropy fluxes, respectively. Since the quantities ψ, e, θ and η
are related through the thermodynamical identity

e = ψ + θη,

we can easily deduce from above identities that

θξ = θ
•
η + div (θjη) = T · Dv − div(je − θjη) −

•
ψ. (5.16)

To evaluate the last term, we rewrite (5.11) as

−
•
B = −λ∆B−a(DvB+BDv) − (WvB−BWv) + δ1(B− I) + δ2(B2 −B). (5.17)

Next, it follows from (5.15) that

∂ψ(B)
∂B

= J,

where J is defined by

J = µ(1 − γ)(I − B−1) + µγ(B − I).

Consequently, taking the inner product of (5.17) with J we observe that (since
BJ = JB, the term with Wv vanishes)

−
•
ψ = −λ∆B · J − a(DvB + BDv) · J − (WvB − BWv) · J

+ δ1(B − I) · J + δ2(B2 − B) · J
= −λ div(∇ψ(B)) − a(DvB + BDv) · J

+ δ1(B − I) · J + δ2(B2 − B) · J + λ∇B · ∇J.

(5.18)
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To evaluate the terms on the last line, we use the symmetry and the positive
definiteness of the matrix B to obtain

(B − I) · J = µ(1 − γ)|B 1
2 − B− 1

2 |2 + µγ|B − I|2,
(B2 − B) · J = µ(1 − γ)|B − I|2 + µγ|B

3
2 − B

1
2 |2,

∇B · ∇J = µγ|∇B|2 − µ(1 − γ)∇B · ∇B−1

= µγ|∇B|2 + µ(1 − γ)∇B · B−1∇BB−1

= µγ|∇B|2 + µ(1 − γ)|B− 1
2 ∇BB− 1

2 |2.

(5.19)

Similarly, we obtain

a(BDv + DvB) · J =
[︂
2µa((1 − γ)(B − I) + γ(B2 − B))

]︂
· Dv. (5.20)

Thus, using (5.18)–(5.20) in (5.16), we conclude that

θξ = − div(λ∇ψ(B) + je − θjη)
+
[︂
T − 2aµ((1 − γ)(B − I) + γ(B2 − B))

]︂
· Dv

+ µλ(γ|∇B|2 + (1 − γ)|B− 1
2 ∇BB− 1

2 |2)
+ µ

(︂
(1 − γ)δ1|B

1
2 − B− 1

2 |2 + γδ2|B
3
2 − B

1
2 |2
)︂

+ µ
(︂
((1 − γ)δ2 + γδ1)|B − I|2

)︂
.

(5.21)

Hence, assuming that the fluxes fulfil

λ∇ψ(B) + je − θjη = 0, (5.22)

and setting (compare with (5.8))

T = −pI + 2νDv + 2aµ((1 − γ)(B − I) + γ(B2 − B)),

the identity (5.21) reduces to (noticing that −pI · Dv = −p div v = 0)

θξ = µλ(γ|∇B|2 + (1 − γ)|B− 1
2 ∇BB− 1

2 |2) + 2ν|Dv|2

+ µ
(︂
(1 − γ)δ1|B

1
2 − B− 1

2 |2 + γδ2|B
3
2 − B

1
2 |2
)︂

+ µ
(︂
((1 − γ)δ2 + γδ1)|B − I|2

)︂
,

(5.23)

which gives the nonnegative rate of the entropy production. Moreover, we have
seen how the form of the Cauchy stress tensor T in (5.8) is dictated by the second
line in (5.21). Furthermore, we can also see in (5.23) (and also in the last line
of (5.19)) how the choice of the free energy (5.15) affects the entropy production
due to the presence of the diffusive term ∆B in (5.3).

5.4 Concept of weak solution
In order to introduce the proper concept of weak solution, we first derive the
basic energy estimates based on the observations from the previous section. First,
taking the scalar product of (5.10) and v, we deduce the kinetic energy identity

1
2∂t|v|2 + 1

2 div(|v|2v) − div(Tv) + T · Dv = f · v
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and replacing the term T ·Dv from the equation (5.16), and using then also (5.22)
and (5.23), we finally obtain

∂t(ψ + 1
2 |v|2) + div((ψ + 1

2 |v|2)v) − div(Tv + λ∇ψ(B)) + 2ν|Dv|2

+ µλ
(︂
γ|∇B|2 + (1 − γ)|B− 1

2 ∇BB− 1
2 |2
)︂

+ µ
(︂
(1 − γ)δ1|B

1
2 − B− 1

2 |2 + γδ2|B
3
2 − B

1
2 |2 + ((1 − γ)δ2 + γδ1)|B − I|2

)︂
= f · v.

Integrating the above identity over Ω, using integration by parts and the boundary
conditions (5.12)–(5.14), we obtain

d
dt

∫︂
Ω

(︂
1
2 |v|2 + ψ(B)

)︂
+ 2ν

∫︂
Ω

|Dv|2 + σ
∫︂

∂Ω
|v|2

+ µλ
∫︂

Ω

(︂
γ|∇B|2 + (1 − γ)|B− 1

2 ∇BB− 1
2 |2
)︂

+ µ
∫︂

Ω

(︃
(1 − γ)δ1|B

1
2 − B− 1

2 |2 + γδ2|B
3
2 − B

1
2 |2

+ ((1 − γ)δ2 + γδ1)|B − I|2
)︃

=
∫︂

Ω
f · v.

(5.24)

The identity (5.24) indicates the proper choice of the function spaces for the
solution (v,B) and the form of the (weak) formulation of the solution to (5.1)–
(5.6).

Definition 5.1. Let T > 0 and assume that Ω ⊂ R3 is a Lipschitz domain. Let
γ ∈ (0, 1), ν, σ, λ > 0, δ1, δ2 ≥ 0, a ∈ R, and f ∈ L2(0, T ;W−1,2

n,div), v0 ∈ L2
n,div(Ω).

Furthermore, let B0 ∈ L2(Ω) be such that

−
∫︂

Ω
ln detB0 < ∞.

Then, we say that a couple (v,B) : Q → R3×Rd×d
>0 is a weak solution to (5.1)–(5.6)

if the following hold:

v ∈ L2(0, T ;W 1,2
n,div) ∩ L∞(0, T ;L2(Ω)), ∂tv ∈ L

4
3 (0, T ;W−1,2

n,div),
B ∈ L2(0, T ;W 1,2(Ω)) ∩ L∞(0, T ;L2(Ω)), ∂tB ∈ L

4
3 (0, T ;W−1,2(Ω));

For all φ ∈ L4(0, T ;W 1,2
n,div) we have

∫︂ T

0
⟨∂tv,φ⟩ +

∫︂
Q

v · ∇v · φ + σ
∫︂ T

0

∫︂
∂Ω

T v · T φ

= −
∫︂

Q
(2νDv + 2aµ((1−γ)(B − I) + γ(B2 − B))) · ∇φ +

∫︂ T

0
⟨f ,φ⟩;

(5.25)

For all A ∈ L4(0, T ;W 1,2(Ω)), A = AT , we have∫︂ T

0
⟨∂tB,A⟩ +

∫︂
Q

(v · ∇B + 2BWv − 2aBDv) · A

+
∫︂

Q
(δ1(B − I) + δ2(B2 − B)) · A + λ

∫︂
Q

∇B · ∇A = 0;
(5.26)
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The initial conditions are satisfied in the following sense

lim
t→0+

(∥v(t) − v0∥2 + ∥B(t) − B0∥2) = 0. (5.27)

Moreover, we say that the solution satisfies the energy inequality if, for all t ∈
(0, T ):

∫︂
Ω

(︄
|v(t)|2

2 + ψ(B(t))
)︄

+
∫︂ t

0

(︂
2ν∥Dv∥2

2 + σ∥T v∥2
2,∂Ω

)︂
+ µλ

∫︂ t

0

(︃
(1 − γ)

⃦⃦⃦
B− 1

2 ∇BB− 1
2
⃦⃦⃦2

2
+ γ∥∇B∥2

2

)︃
+ µ

∫︂ t

0

(︃
(1 − γ)δ1

⃦⃦⃦
B

1
2 − B− 1

2
⃦⃦⃦2

2
+ γδ2

⃦⃦⃦
B

3
2 − B

1
2
⃦⃦⃦2

2

+ (γδ1 + (1 − γ)δ2)∥B − I∥2
2

)︃
≤
∫︂

Ω

(︄
|v0|2

2 + ψ(B0)
)︄

+
∫︂ t

0
⟨f ,v⟩.

(5.28)

In the above definition we used the following notation. By Lp(Ω) and W n,p(Ω),
1 ≤ p ≤ ∞, n ∈ N, we denote the usual Lebesgue and Sobolev space, with their
usual norms denoted as ∥·∥p and ∥·∥n,p, respectively. The trace operator that
maps W 1,p(Ω) into Lq(∂Ω), for certain q ≥ 1, is denoted by T . Further, we set
W−1,p′(Ω) = (W 1,p(Ω))∗, where p′ = p/(p− 1). We use the same notation for the
function spaces of scalar-, vector-, or tensor-valued functions, but we distinguish
the functions themselves using different fonts such as a for scalars, a for vectors
and A for tensors. Also, we do not specify the meaning of the duality pairing
⟨·, ·⟩, assuming that it is clear from the context. Moreover, for certain subspaces
of vector valued functions, we use the following notation:

C∞
n = {w : Ω → R3 : w infinitely differentiable, w · n = 0 on ∂Ω},

C∞
n,div = {w ∈ C∞

n : div w = 0 in Ω},

L2
n,div = C∞

n,div
∥·∥2 , W 1,2

n,div = C∞
n,div

∥·∥1,2 , W 3,2
n,div = C∞

n,div
∥·∥3,2 ,

W−1,2
n,div = (W 1,2

n,div)∗, W−3,2
n,div = (W 3,2

n,div)∗.

Occasionally, we denote the standard inner products in L2(Ω) and L2(∂Ω) as
(·, ·) and (·, ·)∂Ω, respectively. The Bochner spaces of mappings from (0, T ) to a
Banach spaceX is denoted as Lp(0, T ;X) with the norm ∥·∥Lp(0,T ;X) = (

∫︁ T
0 ∥·∥p

X)
1
p .

If X = Lq(Ω), or X = W k,q(Ω), we write just ∥·∥LpLq , or ∥·∥LpW k,q , respectively.
The space Cweak(0, T ;X) ⊂ L∞(0, T ;X) denotes a space of weakly continuous
functions, i.e., for every f ∈ Cweak(0, T ;X) and every g ∈ X∗ there holds

lim
t→t0

⟨f(t), g⟩ = ⟨f(t0), g⟩.

The symbol R3×3
sym denotes the set of symmetric 3 × 3 real matrices. Furthermore,

by Rd×d
>0 we denote the subset of R3×3

sym which consists of positive definite matrices,
i.e., those which satisfy

Az · z > 0 for all z ∈ R3 \ {0}.
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5.5 Existence of a weak solution
The key result of this chapter is the following

Theorem 5.2. Let T > 0 and assume that Ω ⊂ R3 is a Lipschitz domain.
Suppose that γ ∈ (0, 1), ν, σ, λ > 0, δ1, δ2 ≥ 0, a ∈ R, and f ∈ L2(0, T ;W−1,2

n,div),
v0 ∈ L2

n,div(Ω). Furthermore, let B0 ∈ L2(Ω) be such that

−
∫︂

Ω
ln detB0 < ∞.

Then there exists a weak solution to (5.1)–(5.6) satisfying the energy inequal-
ity.

Let us briefly explain the main difficulties connected with the analysis of the
system (5.9)–(5.13) and our ideas how to solve them. In the standard models
where γ = 0, to get an a priori estimate for B, the appropriate test function
to take in (5.11) is I − B−1. Then, using (5.9) and (5.10) tested by v, one
can eliminate the problematic terms, such as B · Dv coming from the objective
derivative. However, the non-negative quantity to be controlled, which comes
from the diffusion term, turns out to be just |B− 1

2 ∇BB− 1
2 |2 and this provides

little to no information. In particular, the terms ∇vB appearing in (5.11) are
going to be just integrable and it is unclear if one can show strong convergence
of B. Instead, one would like to test also by B to achieve control over |∇B|2.
But this is not possible, since the resulting term ∇vB · B cannot be estimated
without some serious simplifications (such as boundedness of ∇v, two or one
dimensional setting or small data). Quite remarkably, this problem is solved
simply by adding 1

2γ|B − I|2 into the constitutive form for ψ. More precisely,
considering γ ∈ (0, 1), we observe that the appropriate test function in (5.11) is
in fact (1−γ)(I−B−1)+γ(B−I). Indeed, the terms from the objective derivative
cancel again due to the presence of γ(B2 −B) in T. But now, we also get γ|∇B|2
under control, which is much better information than in the case γ = 0 and it
yields compactness of all the terms appearing in (5.10) and (5.11). We have seen
above that such a modification of ψ, and consequently of T, is not ad-hoc and
that it rests on solid physical grounds.

The second and also the last major difficulty which we encounter is how one
can justify testing of (5.11) by B−1 on the approximate (discrete level), where B−1

might not even exist. This we overcome by designing a delicate approximation
scheme, which takes into account the smallest eigenvalue of B, and also by noting
that testing (5.11) only by B yields sufficiently strong a priori estimates for the
initial limit passage (in the Galerkin approximation of B).

Up to now, there have been no results on global existence of weak solutions to
Oldroyd-B models in three dimensions, including either the standard, or diffusive
variants. The closest result so far is probably [59, Theorem 4.1], however there
it is assumed that δ2 > 0 and λ = 0 (Giesekus model), whereas we treat also the
case δ2 = 0, but with λ > 0 (diffusive Oldroyd-B or Giesekus model). Moreover,
in [59], only the weak sequential stability of a hypothetical approximation is
proved. We, on the other hand, provide the complete existence proof, including
the construction of approximate solutions (which, in viscoelasticity, is generally
a non-trivial task). In the article [49], Lions and Masmoudi prove the global
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existence in three dimensions, but only for a = 0 (corrotational case), which is
known to be much easier. The local in time existence of regular solutions for the
non-diffusive variants of the models above (λ = 0) is proved in the pioneering
work [38, Theorem 2.4.]. There, also the global existence for small data is shown.
In two dimensions, the problem is solved in [25] in the case λ > 0, δ1 > 0, δ2 = 0
(diffusive Oldroyd-B model). There are also global large data existence results
in three dimensions for slightly different classes of diffusive rate-type viscoelastic
models, but under some simplifying assumptions. For example, in [19] and [11],
the authors consider the case where B = bI. This assumption, however, turns
(5.11) into a much simpler scalar equation. Moreover, note that if B = bI, then
the equations (5.10) and (5.11) decouple (which is not the case in [19] and [11]
since there the considered constitutive relation for T is more complicated than
here). Furthermore, in [50], the authors consider yet another class of Peterlin
viscoelastic models with stress diffusion and prove existence of a global two-
or three-dimensional solution. However, the free energy associated with these
models depends only on the trace of the extra stress tensor. This is a significant
simplification, which can even be seen as unphysical. See also [23] for various
modifications of Oldroyd-B viscoelastic models, for which an existence theory is
available. Finally, in [5] (see also [42]), the global existence of a weak solution is
shown for a certain regularized Oldroyd-B model (including a cut-off or nonlinear
p−Laplace operator in the diffusive term in B). Thus, one might argue that since
the case γ > 0 could be also seen as a regularization of the original model, we
are just proving an existence of a solution to another regularization. However,
this argument is not, in our opinion, correct for several reasons. First of all, the
“regularization” γ > 0 does not touch the equation (5.11) at all. Second, it is not
obvious why the nonlinear term γ(B − I)2 should have any regularization effect.
And, perhaps most importantly, we already showed in Section 5.3 that the model
with γ > 0 is physically well founded and worthy of studying in its own right.

Since the topic is quite new and unexplored, we decided, for brevity and clarity
of presentation to consider only the isothermal case. However, we believe that the
framework and ideas presented here are robust enough to provide an existence
analysis also for the full thermodynamical model if the evolution of the internal
energy is described correctly. This is the subject of our forthcoming study.
Remark. Finally, we close this section with several concluding remarks on possible
extensions, but we do not provide their proofs in this paper.

(i) Theorem 5.2 holds also in arbitrary dimensions d > 3 (in d ≤ 2, it is
known), however with worse function spaces for the time derivatives and
better for the test functions. Indeed, the only dimension-specific argument
in the proof below is in the derivation of interpolation inequalities, which
are then used to estimate ∂tv and ∂tB. Moreover, all of the non-linear
terms in (5.25), (5.26) are integrable for arbitrary d if the test functions
are smooth. In addition, if d = 2, then we can prove the existence of a
weak solution satisfying even the energy equality, i.e., (5.28) holds with the
equality sign.

(ii) When Ω has C1,1 boundary, then, in addition, there exists a pressure p ∈
L

5
3 (Q), which appears in (5.2). Then, the test functions in (5.25) need not

be divergence-free if we include the term
∫︁

Ω p div φ in (5.25). This follows
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in a standard way, using the Helmholtz decomposition of v (see e.g. [8] for
details).

(iii) It is possible to replace (5.12), (5.13) by the no-slip boundary condition
v = 0 on ∂Ω. Then, we only need to change the space W 1,2

n to W 1,2
0 , and

so on. However, then it seems that the pressure p can be only obtained as
a distribution (see [8]).

Proof. Throughout the proof, we simplify notation by assuming

λ = µ = ν = σ = 1

and refer to Section 5.3 for a detailed computation for general parameters. To
shorten all formulae, we also denote

S(A) = (1 − γ)(A − I) + γ(A2 − A) for A ∈ R3×3,

R(A) = δ1(A − I) + δ2(A2 − A) for A ∈ R3×3.

The general scheme of the proof is the following: In order to invert the matrix
B and to avoid problems with low integrability in the objective derivative, we
introduce the special cut-off function

ρε(A) = max{0,Λ(A) − ε}
Λ(A)(1 + ε|A|3) for A ∈ R3×3

sym,

where Λ(A) denotes a minimal eigenvalue of A (whose spectrum is real due to its
symmetry)1. Since eigenvalues of a matrix depend continuously on its entries, the
function ρε is continuous. Moreover, for any positive definite matrix A there holds
ρε(A) → 1 as ε → 0+. We construct a solution by an approximation scheme with
parameters k, l and ε, where k, l ∈ N correspond to the Galerkin approximation
for v and B, respectively, and ε corresponds to the presence of the cut-off function
ρε in certain terms. The first limit we take is l → ∞, which corresponds to the
limit in the equation for B. This way, the limiting object B is infinite-dimensional
and, using the properties of ρε, we prove that B−1 exists. With the help of this
information, we derive the energy estimates that are uniform with respect to all
the parameters. Next, we let ε → 0+ in order to remove the truncation function
and finally we take k → ∞, which corresponds to the limiting procedure in the
equation for the velocity v.

Galerkin approximation

Following e.g., [52, Appendix A.4], we know that there exists a basis {wi}∞
i=1 of

W 3,2
n,div, which is orthonormal in L2(Ω) and orthogonal in W 3,2

n,div. Moreover, the
projection Pk : L2(Ω) → span{wi}k

i=1, defined as

Pkφ =
k∑︂

i=1
(φ,wi)wi, φ ∈ L2(Ω),

is continuous in L2(Ω) and also in W 3,2
n,div independently of k, i.e.,

∥Pkφ∥2 ≤ C∥φ∥2 ∥Pkφ∥W 3,2
n,div

≤ C∥φ∥W 3,2
n,div

1We set ρε(A) = 0 if Λ(A) = 0.
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for all φ ∈ W 3,2
n,div, where the constant C is independent of k. Furthermore,

by the standard embedding, we also have that W 3,2
n,div ↪→ W 2,6(Ω) ↪→ W 1,∞(Ω).

Similarly, we construct the basis {Wj}∞
j=1 of W 1,2(Ω), which is L2-orthonormal,

W 1,2-orthogonal and the projection

QlA =
l∑︂

j=1
(A,Wj)Wj, A ∈ L2(Ω),

is continuous in L2(Ω) and in W 1,2(Ω) independently of l.
Then for fixed k, l ∈ N and ε ∈ (0, 1), we look for the functions vk,l

ε ,Bk,l
ε of

the form

vk,l
ε (t, x) =

k∑︂
i=1

ck,l,ε
i (t)wi(x) and Bk,l

ε (t, x) =
l∑︂

j=1
dk,l,ε

j (t)Wj(x),

where ck,l,ε
i , dk,l,ε

j , i = 1, . . . , k, j = 1, . . . , l, are unknown functions of time, and we
require that vk,l

ε ,Bk,l
ε (and consequently the functions ck,l,ε

i (t) and dk,l,ε
j (t)) satisfy

the following system of (k + l) ordinary differential equations in time interval
(0, T ):

d
dt(v

k,l
ε ,wi) + ((vk,l

ε ·∇)vk,l
ε ,wi) + 2(Dvk,l

ε ,∇wi) + (T vk,l
ε , T wi)∂Ω

= −2a(ρε(Bk,l
ε )S(Bk,l

ε ),∇wi) + ⟨f ,wi⟩ for i = 1, . . . , k,
(5.29)

d
dt(B

k,l
ε ,Wj) + ((vk,l

ε ·∇)Bk,l
ε ,Wj) + (ρε(Bk,l

ε )R(Bk,l
ε ),Wj) + (∇Bk,l

ε ,∇Wj)

= 2(ρε(Bk,l
ε )Bk,l

ε (aDvk,l
ε − Wvk,l

ε ),Wj) for j = 1, . . . , l.
(5.30)

Due to the L2-orthonormality of the bases {wi}∞
i=1 and {Wj}∞

j=1, the system
(5.29)–(5.30) can be rewritten as a nonlinear system of ordinary differential equa-
tions for ck,l,ε

i and dk,l,ε
j , where i = 1, . . . , k and j = 1, . . . , l, and we equip this

system with the initial conditions

ck,l,ε
i (0) = (v0,wi) and dk,l,ε

j (0) = (Bε
0,Wj). (5.31)

Here, Bε
0 is defined by

Bε
0(x) =

{︃ B0(x) if Λ(B0(x)) > ε,

I elsewhere.

Since B0(x) ∈ Rd×d
>0 for almost every x ∈ Ω, we have that Λ(B0(x)) > 0 for almost

all x ∈ Ω. Consequently, using the fact B0 ∈ L2(Ω), we obtain, as ε → 0+, that

∥Bε
0 − B0∥2

2 =
∫︂

Λ(B0)≤ε
|I − B0|2 → 0

Note also that the initial conditions (5.31) can be rewritten as vk,l
ε (0) = Pkv0 and

Bk,l
ε (0) = QlBε

0.
For the system (5.29)–(5.31), Carathéodory’s theorem can be applied and

therefore there exists T ∗ > 0 and absolutely continuous functions ck,l,ε
i , dk,l,ε

j

satisfying (5.31) and (5.29)–(5.30) almost everywhere in (0, T ∗). If T ∗ is the
maximal time, for which the solution exists, and T ∗ < T , then at least one of the
functions ck,l,ε

i , dk,l,ε
j must blow up as t → T ∗

−. But using the estimate presented
below (see (5.36) valid for all t ∈ (0, T ∗)), this never happens. Thus, we can set
T ∗ = T .
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5.5.1 Limit l → ∞
In this part, we simplify the notation and denote the approximating solution,
constructed in the previous section, by setting (vl,Bl) = (vk,l

ε ,Bk,l
ε ). We start by

proving estimates independent of l. Since Bl(t) and vl(t) belong for almost all t
to the linear hull of {Wj}l

j=1 and {wi}k
i=1, respectively, we can use vl instead of

wi in (5.29) and Bl instead of Wj in (5.30) to deduce

1
2

d
dt∥Bl∥2

2 + ∥∇Bl∥2
2 = 2a(ρε(Bl)BlDvl,Bl) − (ρε(Bl)R(Bl),Bl), (5.32)

1
2

d
dt∥vl∥2

2 + 2∥Dvl∥2
2 + ∥T vl∥2

2,∂Ω = −2a(ρε(Bl)S(Bl),Dvl) + ⟨f ,vl⟩, (5.33)

where we used the integration by parts formula and the facts that div vl = 0 and
T v · n = 0. Next, it follows from the definition of ρε, R and S that

ρε(Bl)
(︂
|S(Bl)| + |R(Bl)||Bl| + |Bl|2

)︂
≤ C

1 + |Bl|3

1 + ε|Bl|3
≤ C(ε). (5.34)

Here, the notation C(ε) emphasizes that the constant C depends on ε; we keep
this notation in what follows. Summing (5.32) and (5.33) and using the estimate
(5.34) to bound the term on the right-hand side, we obtain with the help of
Hölder’s, Young’s and Korn’s inequalities that

d
dt
(︂
∥vl∥2

2 + ∥Bl∥2
2

)︂
+ ∥Dvl∥2

2 + ∥T vl∥2
2,∂Ω + ∥∇Bl∥2

2 ≤ C(ε) + C∥f∥2
W −1,2

n,div
.

After integrating over (0, T ) with respect to time, we obtain the following bound:

sup
t∈(0,T )

(︂
∥vl∥2

2 + ∥Bl∥2
2

)︂
+
∫︂ T

0

(︂
∥Dvl∥2

2 + ∥T vl∥2
2,∂Ω + ∥∇Bl∥2

2

)︂
≤ C(ε) + ∥Pkv0∥2

2 + ∥QlBε
0∥

2
2 + C

∫︂ T

0
∥f∥2

W −1,2
n,div

≤ C(ε),
(5.35)

where the last inequality follows from the continuity of the projections Pk and Ql

and from the assumptions on data, namely that

∥v0∥2
2 + ∥B0∥2

2 + ∥ln detB0∥1 + C
∫︂ T

0
∥f∥2

W −1,2
n,div

< ∞.

Next, we focus on the estimate for time derivatives. First, it follows from
L2-orthonormality of the bases and the estimate (5.35) that

k∑︂
i=1

ci(t)2 +
l∑︂

j=1
dj(t)2 ≤ C(ε). (5.36)

Then, since vl is a linear combination of {wi}k
i=1 ⊂ W 1,∞(Ω), we can estimate

∥vl∥L∞W 1,∞ ≤ ess sup
t∈(0,T )

k∑︂
i=1

|ci(t)|∥wi∥1,∞ ≤ C(ε, k), (5.37)

and we can deduce from (5.29) that

∥∂tvl∥L∞W 1,∞ ≤ C(ε, k). (5.38)
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Finally, it follows from (5.30) and (5.35) that (5.38)

∥∂tBl∥L2W −1,2 ≤ C(ε, k). (5.39)

Using (5.35), (5.37)–(5.39) and Banach-Alaoglu’s theorem, we can find subse-
quences (which we do not relabel) and corresponding weak limits (denoted with
the subscript ε), such that, for l → ∞, we get

vl ⇀ vε weakly in L2(0, T ;W 1,2
n,div), (5.40)

vl
∗
⇀ vε weakly∗ in L∞(0, T ;W 1,∞(Ω)), (5.41)

∂tvl
∗
⇀ ∂tvε weakly∗ in L∞(0, T ;W 1,∞(Ω)), (5.42)

T vl ⇀ T vε weakly in L2(0, T ;L2(∂Ω)), (5.43)
Bl ⇀ Bε weakly in L2(0, T ;W 1,2(Ω)), (5.44)

∂tBl ⇀ ∂tBε weakly in L2(0, T ;W−1,2(Ω)). (5.45)

Moreover, it follows from (5.40), (5.42), (5.44), (5.45) and from the Aubin-Lions
lemma that for some further subsequences, we have(5.41)(5.43)

vl → vε strongly in L2(Q), (5.46)
Bl → Bε strongly in L2(Q) and a.e. in Q, (5.47)

ρε(Bl) → ρε(Bε) a.e. in Q.(5.46)(5.47) (5.48)

Using the convergence results (5.40)–(5.48), it is rather standard to let l → ∞ in
(5.29)–(5.30). This way, for almost all t ∈ (0, T ), we obtain

(∂tvε,wi) + (vε · ∇vε,wi) + 2(Dvε,∇wi) + (T vε, T wi)∂Ω

= −2a(ρε(Bε)S(Bε),∇wi) + ⟨f ,wi⟩
(5.49)

for i = 1, . . . , k, and

⟨∂tBε,A⟩ + (vε · ∇Bε,A) + (∇Bε,∇A)
= 2(ρε(Bε)Bε(aDvε − Wvε),A) − (ρε(Bε)R(Bε),A)

(5.50)

for all A ∈ W 1,2(Ω). Also, from (5.44) and (5.45), we get Bε ∈ C(0, T ;L2(Ω)) and
it is standard to show that Bε(0, ·) = Bε

0 and vε(0, ·) = Pkv0.

5.5.2 Limit ε → 0
In this part we consider the solutions (vε,Bε) constructed in the preceding section
for ε ∈ (0, 1) and we study their behaviour as ε → 0+. To do so, we first have
to derive estimates that are uniform with respect to ε. Following the ideas used
before in the derivation of the model, we wish to test (5.50) by the function

Jε = (1 − γ)(I − B−1
ε ) + γ(Bε − I). (5.51)

This test function, however, contains B−1
ε and we need to justify that it exists

(for any ε ∈ (0, 1)).
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Estimates for the inverse matrix, still ε-dependent

First, we prove that Λ(Bε) ≥ ε. For this purpose, let z ∈ R3 be arbitrary and
consider2

A = (Bεz · z − ε|z|2)− (z ⊗ z), where (z ⊗ z)ij = zizj (5.52)

in (5.50). Due to the properties of Bε (see (5.44)), we know that A belongs to
L2(0, T ;W 1,2(Ω)) and we can use it as a test function in (5.50). Upon inserting
A into (5.50), we integrate the result over (0, τ) with some fixed τ ∈ (0, T ). We
evaluate all terms in (5.50) separately. For the time derivative, we have∫︂ τ

0
⟨∂tBε,A⟩ =

∫︂ τ

0

⟨︂
∂t(Bεz · z − ε|z|2), (Bεz · z − ε|z|2)−

⟩︂
= 1

2
⃦⃦⃦
(Bε(τ)z · z − ε|z|2)−

⃦⃦⃦2

2
− 1

2
⃦⃦⃦
(Bε

0z · z − ε|z|2)−

⃦⃦⃦2

2

= 1
2
⃦⃦⃦
(Bε(τ)z · z − ε|z|2)−

⃦⃦⃦2

2
,

(5.53)

where, for the last equality, the definition of Bε
0 was used. Furthermore, we obtain∫︂

Q
∇Bε · ∇A =

∫︂ τ

0

∫︂
Ω

∇(Bε − εI) · ∇((Bεz · z − ε|z|2)− (z ⊗ z))

=
∫︂ τ

0

⃦⃦⃦
∇(Bεz · z − ε|z|2)−

⃦⃦⃦2

2

(5.54)

and ∫︂
Q

vε · ∇Bε · A =
∫︂ τ

0

∫︂
Ω

vε · ∇(Bεz · z − ε|z|2)(Bεz · z − ε|z|2)−

= 1
2

∫︂ τ

0

∫︂
Ω

vε · ∇((Bεz · z − ε|z|2)2
−

= −1
2

∫︂ τ

0

∫︂
Ω
((Bεz · z − ε|z|2)2

− div vε = 0,

(5.55)

integrating by parts and using the fact that div vε = 0 and T vε = 0. Since

Bεz · z ≥ Λ(Bε)|z|2 a.e. in Q,

we also observe, that

0 ≥ (Λ(Bε) − ε)+(Bεz · z − ε|z|2)− ≥ (Λ(Bε) − ε)+(Λ(Bε) − ε)− |z|2 = 0.

Hence, we get
ρε(Bε)A = 0 a.e. in Q. (5.56)

Consequently, inserting A of the form (5.52) into (5.50), we see that the right-
hand side is identically zero. Therefore, relations (5.53), (5.54), (5.55) and (5.56)
yield ⃦⃦⃦

(Bεz · z − ε|z|2)−

⃦⃦⃦2

2
(τ)

≤
⃦⃦⃦
(Bεz · z − ε|z|2)−

⃦⃦⃦2

2
(τ) + 2

∫︂ τ

0

⃦⃦⃦
∇(Bεz · z − ε|z|2)−

⃦⃦⃦2

2
= 0,

2In this subsection, we use the notation (f)+ = max{0, f} and (f)− = min{0, f}.
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which implies

Bεz · z ≥ ε|z|2 for every z ∈ R3 and a.e. in Q. (5.57)

Thus, we have the following estimate for the minimal eigenvalue of Bε:

Λ(Bε) ≥ inf
0 ̸=z∈R3

Bεz · z

|z|2
≥ ε.

Therefore, the inverse matrix B−1
ε is well defined and satisfies

|B−1
ε | ≤ C

ε
a.e. in Q. (5.58)

Furthermore, since

∇B−1
ε = B−1

ε Bε∇B−1
ε = B−1

ε ∇(BεB−1
ε ) − B−1

ε (∇Bε)B−1
ε = −B−1

ε (∇Bε)B−1
ε ,

we conclude from (5.35) and (5.58), that∫︂
Q

|∇B−1
ε |2 ≤

∫︂
Q

|B−1
ε |4|∇Bε|2 ≤ C(ε).

Hence, the inverse of Bε exists and B−1
ε ∈ L2(0, T ;W 1,2(Ω)).

Estimates independent of (ε, k)

At this point, we can test (5.50) with Jε defined in (5.51). This way, we obtain

⟨∂tBε, Jε⟩ + (vε · ∇Bε, Jε) + (∇Bε,∇Jε)
= 2(ρε(Bε)Bε(aDvε − Wvε), Jε) − (ρε(Bε)R(Bε), Jε).

Next, we evaluate all terms. Here, we follow very closely the procedure developed
in Section 5.3, see the derivation of (5.18) and consequent identities. Since

Jε = ∂ψ(Bε)
∂Bε

,

where ψ is defined in (5.15), it is clear that

⟨∂tBε, Jε⟩ = d
dt

∫︂
Ω
ψ(Bε),

(vε · ∇Bε, Jε) =
∫︂

Ω
vε · ∇ψ(Bε) = 0.

Next, recalling (5.19), we get

(ρε(Bε)R(Bε), Jε) =
∫︂

Ω
ρε(Bε)

(︃
δ1(1 − γ)|B

1
2
ε − B− 1

2
ε |2 + (δ1γ + δ2(1 − γ))|Bε − I|2

+δ2γ|B
3
2
ε − B

1
2
ε |2
)︃
,

(∇Bε,∇Jε) = γ∥∇Bε∥2
2 + (1 − γ)∥B− 1

2
ε ∇BεB

− 1
2

ε ∥2
2
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and due to the fact that BεJε = JεBε we also have

(ρε(Bε)(WvεBε − BεWvε), Jε) = 0,
a(ρε(Bε)(DvεBε + BεDvε), Jε) = 2a(ρε(Bε)Dvε,BεJε)

= 2a(ρε(Bε)Dvε, (1 − γ)(Bε − I) + γ(B2
ε − Bε))

= 2a(ρε(Bε)S(Bε),Dvε),

where we used the fact that the trace of Dvε is identically zero. Hence, using
A = Jε (defined in (5.51)) in (5.50) and taking into account the above identities,
we deduce that

d
dt

∫︂
Ω
ψ(Bε) + (1 − γ)

⃦⃦⃦⃦
B− 1

2
ε ∇BεB

− 1
2

ε

⃦⃦⃦⃦2

2
+ γ∥∇Bε∥2

2

+(γδ1 + (1 − γ)δ2)
⃦⃦⃦⃦√︂

ρε(Bε)(Bε − I)
⃦⃦⃦⃦2

2

+(1 − γ)δ1

⃦⃦⃦⃦√︂
ρε(Bε)(B

1
2
ε − B− 1

2
ε )

⃦⃦⃦⃦2

2

+γδ2

⃦⃦⃦⃦√︂
ρε(Bε)(B

3
2
ε − B

1
2
ε )
⃦⃦⃦⃦2

2
= 2a(ρε(Bε)S(Bε),Dvε).

(5.59)

Similarly as in previous section, replacing wi in (5.49) by vε, we get

1
2

d
dt∥vε∥2

2 + 2∥Dvε∥2
2 + ∥T vε∥2

2,∂Ω = ⟨f ,vε⟩ − 2a(ρε(Bε)S(Bε),Dvε). (5.60)

Thus, summing (5.59) and (5.60) and integrating the result with respect to time
t ∈ (0, τ), we deduce the identity

1
2∥vε(τ)∥2

2 +
∫︂

Ω
ψ(Bε(τ))

+
∫︂ τ

0

(︃
2∥Dvε∥2

2 + ∥T vε∥2
2,∂Ω + (1 − γ)

⃦⃦⃦⃦
B− 1

2
ε ∇BεB

− 1
2

ε

⃦⃦⃦⃦2

2
+ γ∥∇Bε∥2

2

+ (γδ1 + (1 − γ)δ2)
⃦⃦⃦⃦√︂

ρε(Bε)(Bε − I)
⃦⃦⃦⃦2

2

+ (1 − γ)δ1

⃦⃦⃦⃦√︂
ρε(Bε)(B

1
2
ε − B− 1

2
ε )

⃦⃦⃦⃦2

2
+ γδ2

⃦⃦⃦⃦√︂
ρε(Bε)(B

3
2
ε − B

1
2
ε )
⃦⃦⃦⃦2

2

)︃
= 1

2∥Pkv0∥2
2 +

∫︂
Ω
ψ(Bε

0) +
∫︂ τ

0
⟨f ,vε⟩ ≤ 1

2∥v0∥2
2 +

∫︂
Ω
ψ(B0) +

∫︂ τ

0
⟨f ,vε⟩,

(5.61)

where, for the last inequality we used the continuity of Pk, the definition of Bε
0

and the fact that ψ(I) = 0.
From (5.61), we get, using Korn’s, Sobolev’s, Hölder’s and Young’s inequali-

ties, that

∥vε∥L∞L2 + ∥vε∥L2L6 + ∥vε∥L2W 1,2 + ∥Bε∥L2W 1,2 + ∥Bε∥L2L6 ≤ C, (5.62)

where the constant C depends only on Ω, v0, B0 and f . Furthermore, the inter-
polation inequalities yield

∥vε∥
L

10
3 L

10
3

+ ∥vε∥L4L3 + ∥Bε∥
L

10
3 L

10
3

+ ∥Bε∥L4L3 + ∥Bε∥
L

8
3 L4 ≤ C. (5.63)
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Finally, we focus on the estimate for time derivatives. Let φ ∈ L4(0, T ;W 3,2
n,div)

be such that ∥φ∥L4W 3,2 ≤ 1. Then, since vε is a linear combination of {wi}k
i=1,

we obtain, using (5.49), Hölder’s inequality, (5.61), (5.63) and W 3,2-continuity of
Pk, that ∫︂ T

0
⟨∂tvε,φ⟩ ≤ C,

hence
∥∂tvε∥

L
4
3 W −3,2

n,div
≤ C. (5.64)

Similarly, by considering A ∈ L4(0, T ;W 1,2(Ω)) in (5.50), we get

∥∂tBε∥
L

4
3 W −1,2 ≤ C. (5.65)

Taking the limit ε → 0.

From (5.62), (5.64), (5.65), the Banach-Alaoglu theorem and the Aubin-Lions
lemma, we obtain the existence of a couple (vk,Bk) satisfying the following con-
vergence results3

vε ⇀ vk weakly in L2(0, T ;W 1,2
n,div),

∂tvε ⇀ ∂tvk weakly in L
4
3 (0, T ;W−3,2

n,div),
T vε ⇀ T vk weakly in L2(0, T ;L2(∂Ω)),
Bε ⇀ Bk weakly in L2(0, T ;W 1,2(Ω)),

∂tBε ⇀ ∂tBk weakly in L
4
3 (0, T ;W−1,2(Ω)),

vε → vk strongly in L3(Q) and a.e. in Q, (5.66)
Bε → Bk strongly in L3(Q) and a.e. in Q. (5.67)

Using (5.67) and letting ε → 0+ in (5.57), we obtain

Bkz · z ≥ 0 a.e. in Q and for all z ∈ R3.

Hence Λ(Bk) ≥ 0 and detBk ≥ 0 a.e. in Q. Therefore, using (5.67) again and the
continuity of ψ, there exists (still possibly infinite) limit

ψ(Bε) → ψ(Bk) a.e. in Q.

However, since ψ ≥ 0, Fatou’s lemma implies that, for almost every t ∈ (0, T ),
we have ∫︂

Ω
ψ(Bk)(t) ≤ lim inf

ε→0+

∫︂
Ω
ψ(Bε)(t) ≤ C.

Thus, we deduce that
∥ψ(Bk)∥L∞L1 ≤ C. (5.68)

If there existed a set E ⊂ Q of a positive measure, where Λ(Bk) = 0, then also
− ln detBk = ∞ on that set, which contradicts (5.68). Thus, we have

Λ(Bk) > 0 a.e. in Q. (5.69)
3The convergence results (5.66), (5.67) are true in any space Lp(Q), 1 ≤ p < 10

3 , as can be
seen from (5.63) and Vitali’s theorem. The space L3(Ω) is chosen for simplicity; in our proof,
we need p > 2.
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Then it directly follows from the continuity of Λ, that ρε(Bε) → 1 a.e. in Q.
Then, since ρε(Bε) ≤ 1, we further get, by Vitali’s theorem, that

ρε(Bε) → 1 strongly in Lp(Q) for all p ∈ [1,∞).

Using the established convergence results, it is easy to let ε → 0+ in (5.49) and
(5.50) and obtain, for almost all t ∈ (0, T ), that

⟨∂tvk,wi⟩ + (vk · ∇vk,wi) + 2(Dvk,∇wi)
= −(T vk, T wi)∂Ω − 2a(S(Bk),∇wi) + ⟨f ,wi⟩, for i = 1, . . . , k,

and that

⟨∂tBk,A⟩ + (vk · ∇Bk,A) + (∇Bk,∇A)
= 2(Bk(aDvk − Wvk),A) − (R(Bk),A) for all A ∈ W 1,2(Ω).

Furthermore, we can take the limit in the estimates (5.61), (5.63), (5.64) and
(5.65) using either the weak lower semi-continuity of norms or, in the terms
which depend on Bε, e.g.

∫︁
Q ρε(Bε)|B

3
2
ε − B

1
2
ε |2, we apply (5.69) to conclude the

pointwise limit and then use Fatou’s lemma. Thus, inequalities (5.61), (5.63),
(5.64) and (5.65) continue to hold in the same form, but for (vk,Bk) instead of
(vε,Bε) and with 1 instead of ρε(Bε). In particular, for almost all t ∈ (0, T ), we
have

1
2∥vk(τ)∥2

2 +
∫︂

Ω
ψ(Bk(τ))

+
∫︂ τ

0

(︃
2∥Dvk∥2

2 + ∥T vk∥2
2,∂Ω + (1 − γ)

⃦⃦⃦⃦
B− 1

2
k ∇BkB

− 1
2

k

⃦⃦⃦⃦2

2
+ γ∥∇Bk∥2

2

+ (γδ1 + (1 − γ)δ2)∥Bk − I∥2
2

+ (1 − γ)δ1

⃦⃦⃦⃦
B

1
2
k − B− 1

2
k

⃦⃦⃦⃦2

2
+ γδ2

⃦⃦⃦⃦
B

3
2
k − B

1
2
k

⃦⃦⃦⃦2

2

)︃
≤ 1

2∥v0∥2
2 +

∫︂
Ω
ψ(B0) +

∫︂ τ

0
⟨f ,vk⟩.

The attainment of initial conditions is standard (see the last section for details
in a more complicated case).

5.5.3 Limit k → ∞
Since we start from the same a priori estimates as in the previous section, we
follow, step by step, the procedure developed when taking the limit ε → 0+. The
only difference is that the term ρε(Bε) is not present. Thus, using the density of
{wi}∞

i=1 in W 3,2
n,div, we obtain, after letting k → ∞, for almost all t ∈ (0, T ), that

⟨∂tv,φ⟩ + (v · ∇v,φ) + 2(Dv,∇φ)
= −(T v, T φ)∂Ω − 2a(S(B),∇φ) + ⟨f ,φ⟩ for all φ ∈ W 3,2

n,div
(5.70)

and that

⟨∂tB,A⟩ + (v · ∇B,A) + (∇B,∇A)
= 2(B(aDv − Wv),A) − (R(B),A) for all A ∈ W 1,2(Ω).
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Moreover, from the weak lower semi-continuity of norms, we obtain the energy
inequality (5.28) for almost all t ∈ (0, T ). Furthermore, the same argument as
above implies that B is positive definite a.e. in Q. Now observe that, by Hölder’s
inequality and (5.63), all the terms in (5.70) except the first one, are integrable
for every φ ∈ L4(0, T ;W 1,2

n,div) ↪→ L4(0, T ;L6(Ω)). Indeed, for example for the
non-linear terms, we get∫︂

Q
|v · ∇v · φ| ≤ ∥v∥L4L3∥∇v∥L2L2∥φ∥L4L6

and ∫︂
Q

|S(B) · ∇φ| ≤ C∥B∥2
L

8
3 L4∥∇φ∥L4L2 .

Hence, the functional ∂tv can be uniquely extended to ∂tv ∈ L
4
3 (0, T ;W−1,2

n,div)
and we can use the density argument to conclude (5.25). Analogously, we obtain
(5.26). Hence, it remains to show that (5.28) holds for all t ∈ (0, T ) and that the
initial data fulfil (5.27).

Energy inequality for all t ∈ (0, T )

First, we observe, that due to (5.62), (5.64) and (5.65), we have that

v ∈ Cweak(0, T ;L2(Ω)) and B ∈ Cweak(0, T ;L2(Ω)). (5.71)

Next, we notice that the function ψ is convex on the convex set Rd×d
>0 . Indeed,

evaluating the second Fréchet derivative of ψ, we get
∂2ψ(A)

A2 = (1 − γ)A−1 ⊗ A−1 + γI ⊗ I for all A ∈ Rd×d
>0 ,

which is obviously a positive definite operator for any γ ∈ [0, 1] and consequently,
ψ must be convex on Rd×d

>0 .
Further, we integrate (5.28) over (t1, t1 + δ), where t1 ∈ (0, T ), and divide the

result by δ. Using also an elementary inequality∫︂ t1

0
g ≤ 1

δ

∫︂ t1+δ

t1

(︃∫︂ t

0
g
)︃

dt

valid for every integrable non-negative g, we get
1
2δ

∫︂ t1+δ

t1
∥v(t)∥2

2 + 1
δ

∫︂ t1+δ

t1

∫︂
Ω
ψ(B(t))

+
∫︂ t1

0

(︃
2∥Dv∥2

2 + ∥T v∥2
2,∂Ω + (1 − γ)

⃦⃦⃦
B− 1

2 ∇BB− 1
2
⃦⃦⃦2

2
+ γ∥∇B∥2

2

+ (γδ1 + (1 − γ)δ2)∥B − I∥2
2

+ (1 − γ)δ1

⃦⃦⃦
B

1
2 − B− 1

2
⃦⃦⃦2

2
+ γδ2

⃦⃦⃦
B

3
2 − B

1
2
⃦⃦⃦2

2

)︃
≤ 1

2∥v0∥2
2 +

∫︂
Ω
ψ(B0) + 1

δ

∫︂ t1+δ

t1

∫︂ τ

0
⟨f ,v⟩.

Finally, we let δ → 0+. The limit on the right hand side is standard and conse-
quently, if we show that

1
2∥v(t1)∥2

2 +
∫︂

Ω
ψ(B(t1)) ≤ lim inf

δ→0+

1
δ

∫︂ t1+δ

t1

(︄
∥v(t)∥2

2
2 +

∫︂
Ω
ψ(B(t))

)︄
, (5.72)
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then (5.28) holds for all t ∈ (0, T ). To show (5.72), we notice that due to (5.71)

v(t) ⇀ v(t1) weakly in L2(Ω) as t → t1,

B(t) ⇀ B(t1) weakly in L2(Ω) as t → t1,
(5.73)

Consequently, due to the weak lower semicontinuity and the convexity of ψ we
also have for all t ∈ (0, T ) ∫︂

Ω
|v(t)|2 + ψ(B(t)) ≤ C.

Hence denoting by ΩM ⊂ Ω the set where |v(t1, ·)| + |B(t1, ·)| + |B−1(t1, ·)| ≤ M ,
it follows from the previous estimate that |Ω\ΩM | → 0 as M → ∞. Hence, since
ψ is nonnegative and convex, we have for all t ∈ (t1, t1 + δ) that
∫︂

Ω

|v(t)|2
2 + ψ(B(t)) ≥

∫︂
ΩM

|v(t)|2
2 + ψ(B(t))

≥
∫︂

ΩM

|v(t1)|2
2 + ψ(B(t1)) +

∫︂
ΩM

v(t1) · (v(t) − v(t1)) + ∂ψ(B(t1))
∂B

· (B(t) − B(t1)).

Since, v(t1) and ∂Bψ(B(t1)) are bounded on ΩM , we can integrate the above
estimate over (t1, t1 + δ) and it follows from (5.73) that

lim inf
δ→0+

1
δ

∫︂ t1+δ

t1

∫︂
Ω

|v(t)|2
2 + ψ(B(t)) ≥

∫︂
ΩM

|v(t1)|2
2 + ψ(B(t1)).

Hence, letting M → ∞, we deduce (5.72) and the proof of (5.28) is complete.

Attainment of initial conditions

First, it is standard to show from the construction and from the weak continuity
(5.73), that for arbitrary φ,A ∈ L2(Ω) there holds

lim
t→0+

(v(t),φ) = (v0,φ) and lim
t→0+

(B(t),A) = (B0,A). (5.74)

Next, using the convexity of ψ and (5.74) (and consequently weak lower semi-
continuity of the corresponding integral) and letting t → 0+ in (5.28), we deduce
that

∥v0∥2
2 + 2

∫︂
Ω
ψ(B0) ≤ lim inf

t→0+

(︃
∥v(t)∥2

2 + 2
∫︂

Ω
ψ(B(t))

)︃
≤ lim sup

t→0+

(︃
∥v(t)∥2

2 + 2
∫︂

Ω
ψ(B(t))

)︃
≤ ∥v0∥2

2 + 2
∫︂

Ω
ψ(B0).

(5.75)

We claim that this implies that

∥v0∥2
2 = lim

t→0+
∥v(t)∥2

2 and
∫︂

Ω
ψ(B0) = lim

t→0+

∫︂
Ω
ψ(B(t)). (5.76)

Indeed, assume for a moment that

∥v0∥2
2 < lim inf

t→0+
∥v(t)∥2

2.
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But then it follows from (5.75) that∫︂
Ω
ψ(B0) > lim inf

t→0+

∫︂
Ω
ψ(B(t)),

which contradicts (5.74) and convexity of ψ. Consequently, (5.76) holds.
It directly follows from (5.74)1 and (5.76)1 that

lim
t→0+

∥v(t) − v0∥2
2 = 0.

To claim the same result also for B, we simply split ψ as follows

ψ(A) = γ

2 |A − I|2 + (1 − γ)(trA − 3 − ln detA) =: γψ1(A) + (1 − γ)ψ2(A).

Similarly as above, it is easy to observe that ψ1 as well as ψ2 are convex on the
set of positive definite matrices. Therefore, (5.76)2 and (5.74)2 imply∫︂

Ω
|B0 − I|2 = 2

∫︂
Ω
ψ1(B0) = 2 lim

t→0+

∫︂
Ω
ψ1(B(t)) = lim

t→0+

∫︂
Ω

|B(t) − I|2,∫︂
Ω
ψ2(B0) = lim

t→0+

∫︂
Ω
ψ2(B(t)).

(5.77)

Finally, (5.74) and (5.77)1 lead to

lim
t→0+

∥B(t) − B0∥2
2 = lim

t→0+
∥(B(t) − I) + (I − B0)∥2

2

= lim
t→0+

(︃
∥B(t) − I∥2

2 + ∥B0 − I∥2
2 − 2

∫︂
Ω
(B(t) − I) · (B0 − I)

)︃
= 0,

which finishes the proof of (5.27) and consequently also the proof of Theorem 5.2.
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