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Abstract: Existing duopoly models as Cournot duopoly or Stackelberg duopoly, when 

firms compete on quantities, does not explain in the real world observed phenomenon 

of collusive behaviour. We try to simulate and explain such behaviour with agent-

based computational economics. Expansion of this model by adding possibility of 

endogenous timing of production is also examined and arise of simultaneous or 

sequential plays is observed. Both models are fully implemented by JAVA 

programming language and resulting data are analysed through graphical 
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1. Introduction 
 

Economic models are created to capture and describe the outside economical 

world as good as possible. Nowadays, we can see nowadays a huge effort in 

mainstream economy to model and formalize economic situations 

quantitatively. However, this thesis is out of scope to answer the question 

whether this is a right approach or not. What we can say about this approach 

is that we need quite strict conditions to be able to solve models and to obtain 

reasonable results. Liberalization of these conditions leads to analytically 

intractable models.  

These aforementioned conditions include perfect information, profit 

maximization and rational choices. These conditions create benign 

environment suitable for further analysis with mathematical analytical tools. 

Unfortunately, under these conditions we face the problem that we do not 

model reality, but rather a situation close to reality. Therefore we are 

sometimes experiencing situations in which theories predict outcomes that 

are not observed in the real world.  

Nevertheless, research in recent years on the field of computer science 

brought us ability to simulate artificial societies, allowing us to analyze 

economic models in the mean of making simulations. This approach is called 

Agent-based Computational Economics (ACE).  

Aim of the work is to present this modelling approach on the example 

of firms acting in a duopoly market. Structure of this thesis is following. After 

a brief explanation of Agent-based computational economics and Q-learning 

we chose to use as a learning reinforcement algorithm, we explain theoretical 

bases of duopoly and other models, used in this thesis, in the second section. 

The third and the fourth section is concerned about two different market 

models, they theoretical bases, implementation and analysis of results we 

obtained from simulations. 

 



  7 

1.1 Agent-based computational economics 
 

One of the leading researchers on the field of ACE, Leigh Tesfatsion 

claims ACE to be “the computational study of economic processes modelled as 

dynamic systems of interacting agents” [8].  Formally, ACE as a field of study 

is supposed to be somewhere in between cognitive science, computer science 

and evolutionary economics. It creates artificial societies of interacting agents 

and combines approaches and views from social science, economics and 

computer science. 

Speaking about agents in ACE, we define agent as an individual entity 

with limited rationality and decision-making capabilities. At the beginning of 

the simulation, we have a population of agents with preset possible 

interactions, some behavioural rules and goals, which they are trying to 

achieve. This population is located into an environment with some 

characteristics. ACE simulate interactions between agents, looking at their 

adaptation to the other agents and environment, and observing output. Thus 

this basic inter-agent interaction creates the structure as agents are trying to 

achieve their goals. As we are not studying overall outcome, but observing at 

the very first stage of creation of economic model, we are able to figure out 

global patterns, interactions which are hidden in classical approach. ACE 

simulation can provide us an inner look in an equilibrium selection, which we 

are looking in this thesis. 

One of the features of ACE is creation of modelled systems from the 

bottom up. It means that we are concerned about proper construction of 

agents in the first place and final system is made and defined by these agents. 

Secondly, we are able to relax some of the strict conditions provided by 

classical models. There are several aspects, in which conditions can be 

relaxed.  

While classical economic models assume perfect information, profit 

maximization and rational choices, ACE can assume “bounded” rationality of 

agents. In classical models, there are usually entities interacting in economical 

models perfect information and their decision-making is made based on this 
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perfect information. Clearly, this does not describe the real world perfectly, as 

we cannot have all information needed for our decision-making process. On 

the other hand, by so-called bounded rationality, we describe situation in 

which agents deal with “limited time, limited resources and incomplete 

information” and “the fact that decision making makers, often do not have the 

computational capabilities and the information needed to make a perfectly 

rational decisions” [1]. In the case of perfect information it means usually we 

do not have all information needed about market environment or moves and 

choices of agent acting on this market, whose can be taken into consideration 

as important for our decision. In the case of profit maximization it means that 

as we do not have perfect information about environment and other agents, it 

is difficult to know how to maximize profit. In the case of rational choices it 

means that as we have limited time, resources and incomplete information, 

we are not able to examine all available cases and decide which one is the best 

one.  

As we say above, we can use different means of modelling interactions 

and decision-making process. While we are examining simple interaction of 

two agents in a duopoly market, our focus was reduced to the selection of 

appropriate mean of modelling the decision-making process. As they are 

many algorithms for modelling decision-making process, we chose Q-learning 

as Waltman and Kaymak [9] denote that it gives an interesting result of 

collusive behaviour of agents in a Cournot game in duopoly market. This 

behaviour is common in the real world, but it is predicted by almost no other 

model of learning behaviour of individual economic agents. Only exception is 

a trial-and-error model by [6]. 

1.2 Q-learning model 
 

Q-learning is a reinforcement learning algorithm of agent’s behaviour and 

decision-making process developed by Watkins in 1989. It does not need a 

model of its environment and it is suitable for repetitive games against 

unknown opponents. Model is based on so-called Q-values and probabilities 

which are assigned to these Q-values. One of advantages of this model is that 
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it can compare the expected outcome of available actions without having 

information about the external environment, which is suitable as normal 

economic actors rarely have complete information about the external 

environment. 

Basically, Q-learning reinforcement model is based on two 

assumptions: 

1. The agent knows the outcome for every possible strategy based on his 

previous experience with this strategy. This value is referred to as Q-

value and in very simple way it can be described as a weighted average 

of outcomes the agent has obtained by choosing this strategy in the 

past. Moreover, the newest strategy is considered to be the most 

important one, whereas the oldest one is considered to be the least 

important one.  

2. The agent probabilistically chooses an action he wants to play and the 

probability with which he chooses a certain action is dependent on Q-

value of this action. This his decision making behaviour is modelled by 

a logit model, which is widely use in economic models. 

Having these two assumptions, the agent’s goal is to maximize his profit by 

choosing appropriate action in a current state. As we said, he is rewarded by 

outcome and this is only available information he gets from the external 

environment. He starts from the scratch and he has to learn and adapt to the 

best strategy he is able to find. What is important to us, is that as long as it is 

probabilistic he does not converge to the same result. Final results are similar, 

but often the same. But it gives a good representation of the real world, as we 

as human beings often face the situations in which we would make different 

decisions having an opportunity to solve this situation repeatedly. We know 

the two basic assumptions of Q-learning reinforcement model, now we can 

explain it more formally.  

Fundamentally, problem is defined as a problem of action selection of 

the agent in repeated game in round t, so as the agent is in state st and he has 

to choose action at in the round t. So we have a finite set of available states of 

agent S and a finite set of agent’s available actions A. By choosing action at 
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when the agent is in the state st, the agent moves into the new state st+1. 

Additionally, the agent is rewarded or punished by some outcome. Therefore 

we have function Q, which defines the Quality of state-action combination. 

This is where name Q-learning comes from. This function Q is defined as  

€ 

Q : S × A→ R 

Therefore we call Q(s,a) as being Q-value for combination of state s and 

action a. At the beginning are all Q-values are set to some default, predefined 

value. In case of our use we put all values at the beginning to be zero. 

After each move to a new state the agent is rewarded by some outcome, 

which can be positive or negative. Having this reward, Q-values are 

recalculated each round and for the next decision making the agent has a new 

set of Q-values. Therefore the core of Q-learning algorithm is a simple value 

update by iteration. Update rule is given by 

  

€ 

Qt+1 s,a( )
Qt s,a( )

old value
   

+ α s,a( )
learning rate
   

× π t
profit


+ γ
discount factor


max
a'∈A

Q st ,a'( )
max future value
     

−Qt s,a( )
expected discounted reward

                

 

 
 

 

 

 
 

Qt s,a( )

 

 
  

 
 
 

€ 

if a = at,
otherwise.

 

Where 

€ 

0 <α ≤1 is learning rate and 

€ 

0 ≤ γ <1 is discount factor. As we 

can see, we update just that Q-value, which represents state-action 

combination chosen by the agent in current round t. All other Q-values remain 

the same. The new Q-value for state-action combination is made as 

conjunction of its old value and value (learning rate)x(expected discounted 

reward). 

Learning rate determines how much does the agent learn. The higher 

the learning rate is, the more attention the agent pays to the new information 

and forgets the past. The lower the learning rate is, the more the past is 

stressed and the agent tends to learn from new information less rapidly. 

Therefore, value zero of the learning factor means no learning at all, stickiness 

to the past, and not accepting anything new. Whereas value one of the 

learning factor means that the agent takes into consideration only the most 

recent information into consideration.  
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The discount factor involved in expected discounted reward determines 

how important future rewards are to the agent. Therefore we can say that the 

agent with a value of discount factor zero means that this agent just takes 

current profit into consideration, whereas the higher discount factor implies 

that the agent is more future reward driven. 
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2. Duopoly models 
 

In this chapter, we focus on theoretical foundation of well-known duopoly 

models competing on quantity – Cournot duopoly and Stackelberg duopoly. 

We also provide foundation of other theoretical concepts used in this thesis as 

collusive behaviour and endogenous timing in duopoly games. 

 

2.1 Cournot duopoly 
 

In this thesis we assume a Cournot duopoly model has the following 

conditions: 

• Firms (agents) produce single goods 

• Firms are solely choosing the quantity of produced goods 

• Both firms have same cost function with constant marginal costs 

• Price on market is determined by linear function 

Our inverse demand function is given by 

€ 

p q1 + q2( ) =max u − v q1 + q2( ),0( ) 

where 

€ 

u > 0 denotes maximum price, 

€ 

v > 0  denotes the slope of inverse 

demand function and q1,q2 denote quantities produced by firms.  

Because of the condition that both firms have the same cost function 

with constant marginal costs, the total cost for firm i is given by: 

€ 

C qi( ) = wqi  

where w is the firm’s marginal cost of production and qi is the quantity 

produced by firm i. We are able to compute the profit acquired by a firm i on 

in this model as 

€ 

π i = p q1 + q2( )qi −C qi( ) = qi u − w − v q1 + q2( ),−w( )  

Having in mind, that the agent tries to maximize its profit and we 

assume positive profit is available, we know that he will not choose quantity, 
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for which he knows he will obtain negative profit. Negative profit is defined 

for Q-learning purposes in our simulations, because for bad selection of 

quantity we have to punish the agent in order to encourage the learning 

behaviour. We can assume, purely for formal reasons that its profit is defined 

as 

€ 

π i = p q1 + q2( ) ⋅ qi −C qi( )  

An important feature in a Cournot duopoly model is that the firm 

thinks about opponent’s quantity as a fixed quantity and it tries to maximize 

its quantity with respect to opponent’s quantity. To maximize profit in a 

Cournot duopoly, we have to equal first derivation of profit with respect to 

firm’s quantity to zero. Therefore profit maximization is given by equation: 

€ 

∂π i

∂qi
= p q1 + q2( ) +

∂p q1 + q2( )
∂q1

−
∂C qi( )
∂qi

= 0  

Having these equations (for q1, q2), we can express q1 as some formula 

with q2 and vice versa. We have to realize that it basically defines the best 

response of the firm if it knows the quantity chosen by its opponent and the 

response by which the firm has to maximize its profit. We call this an 

expression reaction function. Reaction function for firm 1 dependent on firm 

2’s quantity is 

€ 

R1 q2( )  and reaction function for firm 2 dependent on firm 1’s 

quantity is 

€ 

R2 q1( ) . We can see both reaction functions on Figure 1 in the space 

of firms’ quantities q1,q2. 

Cournot equilibrium is a combination of the firms’ quantities q1,q2, for 

which each quantity is  the best response for the other. Therefore no firm 

would like to change selection of its quantity, because it would lose profit. 

According to the theory, if a Cournot duopoly game is played as sequential 

game, both firms are adjusting their quantities as reaction to the opponent’s 

quantity and selection of quantities finally converge to Cournot equilibrium. 

For one turn game is Cournot equilibrium also sustainable if we assume that 

both firms have information opponent’s reaction function and think about 

equilibrium in advance. If the firm is rational, what we presume, is it should 

predict behaviour of opponent and  choose the Cournot equilibrium right at 
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the beginning. On Figure 1 it is the intersection point of both reaction 

functions, what means that a Cournot equilibrium is when combination of 

firms’ quantities is q1*,q2*. 

What is need to mention for further use is, that the Cournot 

equilibrium as we defined is also the Nash equilibrium. Nash equilibrium is 

defined as the set of strategies, when no player can obtain higher profit by 

unilaterally changing his strategy. We can see both profit functions 

€ 

π1,π 2  as 

functions dependent on both quantities 

€ 

π1 q1,q2( ),π 2 q1,q2( ). Formally, we can 

say that for the Nash equilibrium in case of two firms playing Cournot duopoly 

game is given by: 

€ 

π1 q1
*,q2

*( ) ≥ π 2 q1,q2*( )∧π 2 q1*,q2*( ) ≥ π 2 q1*,q2( ) 

where q1*,q2* denotes both  the Cournot and Nash equilibriums. That is the 

reason why Cournot equilibrium is often called in papers Cournot – Nash 

equilibrium.
 

 

Figure 1 Reaction functions in a Cournot duopoly and quantities in a Cournot 
equilibrium. 

 

We are interested in joint profit of both firms, as we have firms which 

outcome is not firmly defined, but is dependent on probability and is therefore 
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changing each time the simulation is launched. Above conditions and 

assumptions about a simple Cournot model, they imply that the Nash 

equilibrium is given by 

€ 

qi
* =
2 u − w( )
3v

 

where all parameters refer to the parameters used above. Consequently, as we 

have equilibrium, we can compute the firm’s joint profit in the Nash 

equilibrium, which is equal to 

€ 

π* =
2 u − w( )2

9v
 

However, in the Nash equilibrium both firms maximize their own 

profit: they do not maximizing their joint profit. Firms can maximize their 

joint profit in the manner that they will together act as one monopolist and in 

that case they maximize their joint profit. Therefore quantity produced in joint 

profit will be lower than in the case of Nash equilibrium, because they try to 

increase the price of a good.  

 

2.2 Stackelberg duopoly 
 

Cournot duopoly is a game when both firms competing on quantity in one 

market choose quantities simultaneously. Stackelberg duopoly, when we 

consider just two firms in this competition, is similar to Cournot duopoly. 

Only exception is that instead of choosing quantities simultaneously firms 

choose sequentially. As reader surely knows, the firm that has an advantage of 

choosing quantity as first is called Stackelberg leader. On the other hand, the 

firm that choose quantity as second is called Stackelberg follower. 

We assume conditions same as in Cournot duopoly mentioned above: 

• Firms (agents) produce single goods 

• Firms are choosing  the quantity of produced goods 

• Both firms have same cost function with constant marginal costs 
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• Price on market is determined by linear function 

Inverse demand function, total costs and profit remain the same as in 

Cournot duopoly, so it means, inverse function is given by 

€ 

p qL + qF( ) =max u − v qL + qF( ),0( ) 

where qL, respectively qF  is quantity of Stackelberg leader, respectively 

Stackelberg follower. These terms are explained below. Total costs for firm i 

are given by 

€ 

C qL( ) = wqL ,C qF( ) = wqF  

Profits for purposes of simulations are given by 

€ 

π L = p qL + qF( )qL −C qL( ) = qL u − w − v qL + qF( ),−w( )  

€ 

π F = p qL + qF( )qF −C qF( ) = qF u − w − v qL + qF( ),−w( )  

When 

€ 

π L , respectively 

€ 

π F  is the profit of Stackelberg leader, 

respectively Stackelberg follower. Profits for purposes of analysis are given by 

€ 

π L = p qL + qF( ) ⋅ qL −C qL( )  

€ 

π F = p qL + qF( ) ⋅ qF −C qF( )  

Condition, which Stackelberg originally assumed to assure that one of 

firms, can be Stackelberg, or market leader is an information asymmetry. 

However, we assume this by a firm’s commitment to some quantity. 

Therefore, Stackelberg followers know, that if he chooses any quantity, The 

Stackelberg leader is not able to react to his selection and cannot change his 

quantity. 

Knowing this, the Stackelberg leader has a significant advantage, 

because he knows that Stackelberg follower will react on his quantity with 

quantity, which is the best response on follower’s quantity. Thus, Stackelberg 

leader can obtain at least same profit as in Cournot equilibrium or better. But 

still must be fulfil important condition of quantity commitment, because if 

Stackelberg leader can change his selection of quantity, Stackelberg follower 
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can through choosing quantities not maximizing its profit push Stackelberg 

leader to Cournot equilibrium. 

We can compute Stackelberg equilibrium. Stackelberg follower simply 

reacts to Stackelberg leader’s quantity, so he is using reaction function as we 

know from Cournot duopoly. This reaction function is 

€ 

RF qL( )  and is derived 

from the equation 

 

€ 

∂π F

∂qF
= p qF + qL( ) +

∂p qF + qL( )
∂qF

−
∂C qF( )
∂qF

= 0  

Stackelberg leader’s profit is therefore given by 

€ 

π L = p qL + RF qL( )( ) ⋅ qL −C qL( )  

So we have to find a maximum of 

€ 

π L  with respect to qL, it means that 

we have to derive 

€ 

π L  with respect to qL and equal it to zero for maximization 

€ 

∂π L

∂qL
=
∂p qL + qF( )

∂qF
⋅
∂RF qL( )
∂qL

+ p qL + RF qL( )( ) − ∂C qL( )
∂qL

= 0  

If we compute quantity chosen by Stackelberg leader with parameters 

from our model, we obtain that quantity of Stackelberg leader in equilibrium 

of Stackelberg duopoly for two firms is given by 

€ 

qL
* =

u − w
2v

 

Quantity chosen by Stackelberg follower in equilibrium of Stackelberg 

duopoly for two firms is given by 

€ 

qF
* =

u − w
4v

 

Similarly, as in Cournot duopoly, we are interested if collusive 

behaviour emerges in case of sequential selection of quantities or joint profit 

of firms will be on the level of Stackelberg duopoly’s equilibrium. Therefore, 

when we put chosen quantities in equilibrium of Stackelberg duopoly into 
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corresponding profit functions, we obtain joint profit of firms in Stackelberg 

duopoly’s equilibrium as 

€ 

π * =
3 u − w( )2

16v
 

 

2.4 Collusive behaviour 
 

Collusive behaviour is a situation in which firm in oligopoly or duopoly make 

an agreement, either through some communication channel or tacitly about 

prices, produced quantities or division of markets. We call pure collusive 

behaviour when firms instead of maximizing their individual profit maximize 

their joint profit, therefore they act as a single monopolist. 

For a Cournot duopoly model, as we have here joint production of both 

firms in collusive behaviour is equal to 

€ 

u − w
2v

 and joint profit is equal to 

€ 

u − w( )2

4v
.  While both firms can increase their own profit by producing more in 

respect to its goal to maximize their profit, this collusive equilibrium is not 

stable by the theory, because in collusive behaviour can the agent always 

improve its profit by producing more and thus push equilibrium into the 

Cournot equilibrium. 

Things can be changed, if we realise that we will try to simulate a 

Cournot duopoly as a repeated game. If we have agents with the ability to 

remember outcomes of their previous actions and can be looking at the future 

expected reward, some interesting results could arise. An important thing to 

remember is that in case if firms’ joint production is higher than the joint 

production in the Nash equilibrium, it is a sign of a collusive behaviour. 
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2.5 Endogenous timing in duopoly games 
 

In the real world situations simultaneous actions of both firms are observed 

uniquely. It is simply the consequence of the fact that it is extremely difficult 

to match the action movement and make it happens at the same time. 

However, many economic models, same as for a Cournot duopoly game, 

assume that production and action taking is made at the same time. Whereas 

other models, such as a Stackelberg duopoly game (which is quite similar to a 

Cournot duopoly game), work with the assumption that firms are not moving 

simultaneously but rather sequentially.  

As Hamilton and Slutsky [5] observed, much of the traditional analysis 

premise that either game is simultaneous (it develops into a Cournot game) or 

it is sequential (it develop into a Stackelberg game), is supposed to be set from 

the external environment, so it is exogenously given. They remarked that 

there is a recent recognition that “whether duopolists play a simultaneous or a 

sequential move game should not be exogenous but should result from the 

firm’s decision”. 

Therefore, they suggest distinguishing all duopoly models according to 

these two conditions: 

1. Both firms are moving simultaneously. 

2. Firms are moving sequentially, the first mover is called leader and the 

second mover is called follower. 

They were interested in the question of endogenous determining which 

firm moves first. Therefore they constructed two different extended models, 

on which they tried to figure out, what position a firm would prefer – being a 

Stackelberg leader, being a Stackelberg follower or to move simultaneously as 

in a Cournot game. They developed two games which extended basic models 

and claimed them to be the most suitable for studying timing of choosing 

actions: 

• Extended game with observable delay – firms announce at which time 

they will choose an action and they are committed to do so. They do not 
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have to choose an action in the first period. After this first period we 

have got either Cournot simultaneous game or a Stackelberg leader and 

follower.  

• Extended game of action commitment – if the firm chooses to be a 

leader, it must announce an action as a leader and then it is committed 

to fulfil this action. If the firm chooses to be a follower, it can change its 

action after learning its rival’s decision. 

In both cases is the basic duopoly game extended by having both firms 

choose a quantity as in the basic game and then a time when to produce this 

quantity.  

 

2.5.1 Extended game with observable delay 
 

We keep formal definitions of extended game with observable delay same as it 

is defined in original paper of Slutsky and Hamilton [5]. Formally, we define 

the extended game with observable delay as 

€ 

Γ1 = N,S1,P1( ). We define N to be 

the set of both firms 

€ 

N = A,B{ }  and 

€ 

α , respectively 

€ 

β  to be a compact, convex 

intervals in 

€ 

R1, from whose firm A, respectively firm B chooses possible 

quantities to produce. Profit depends on combination of both firm’s quantities 

and payoff functions are defined to be 

€ 

a :α ×β → R1 for firm A and 

€ 

b :α ×β → R1 for firm B. The set of possible timing, either firm chooses to be 

first or second which can be defined to be 

€ 

T = F,S{ }. We call 

€ 

SA
1 = {F,S}×ΦA  to 

be the set of strategies of firm A. We use 

€ 

ΦA  , what is the set of functions, 

whose map the set 

€ 

F,F( ), F,S( ), S,F( ) ×β, S,S( ){ } into interval of all possible 

quantities 

€ 

α . Similarly we define 

€ 

SB
1 = {F,S}×ΦB  to be the set of strategies for 

firm B and 

€ 

ΦB  to be the set of functions, whose map the set 

€ 

F,F( ), F,S( ), S,F( ) ×α, S,S( ){ }  into interval of all possible quantities of firm B 

€ 

β . 

Define 

€ 

sA = c,φA( )∈ SA , where c is firm A’s selection of the timing and 

€ 

φA ∈ ΦA

. Similarly 

€ 

sB = d,φB( )∈ SB , where d is firm B’s selection of the timing and 
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€ 

φB ∈ ΦB . Having defined state of both firms, we can define payoff functions 

for current state as 

€ 

pA s( ) =

a φA c,d( ),φB c,d( )( ) if c,d( )∈ F,F( ), S,S( ){ }
a φA F,S( ),φB F,S,φA F,S( )( )( ) if c,d( ) = F,S( )
a φA S,F,φB S,F( )( ),φB S,F( )( ) if c,d( ) = F,S( )

 

 
 

 
 

 

and 

€ 

pB s( ) =

a φA c,d( ),φB c,d( )( ) if c,d( )∈ F,F( ), S,S( ){ }
a φA F,S( ),φB F,S,φA F,S( )( )( ) if c,d( ) = F,S( )
a φA S,F,φB S,F( )( ),φB S,F( )( ) if c,d( ) = F,S( )

 

 
 

 
 

 

Figure 2 displays how is process of endogenous timing made. We can 

see, that first two links are just means how to decide whether play 

simultaneous Cournot game or sequential Stackelberg duopoly. We start to 

play the basic game on the nodes d1 to d4, when we already know what game 

do we play. 

 

Figure 2 Extended game with observable delay [5]. 
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2.5.2 Extended game of action commitment 
 

Similarly, as in the case above, we do not change the formal definitions of the 

extended game of action commitment against original paper of Slutsky and 

Hamilton [5]. We call 

€ 

Γ2 = N,S2,P 2( )  to be extended game of action 

commitment. The set of both firms 

€ 

N = A,B{ }  remains the same so as

€ 

α , 

respectively

€ 

β , a compact, convex intervals in 

€ 

R1, from whose firm A, 

respectively firm B chooses possible quantities to produce.  

What we have in this new game a process of action commitment. 

Define W to be the action of waiting until the second period to choose an 

action from 

€ 

α , respectively 

€ 

β . The set 

€ 

SA
2 = α i,W ×ψA β i( ){ } is the set of firm 

A’s strategies, where 

€ 

α i ∈ α  is a selection of quantity from all firm A’s possible 

quantities and 

€ 

ψA  denotes the set of functions that project 

€ 

W ∪β  into the 

interval 

€ 

α . Similarly, firm B’s set of strategies is defined as 

€ 

SB
2 = β i,W ×ψB α i( ){ }, where 

€ 

βi ∈ β  is a selection of quantity from all firm B’s 

possible quantities and 

€ 

ψB  denotes the set of functions that project 

€ 

W ∪α  into 

the interval 

€ 

β . 

We use the above definition of payoff functions in the extended game 

with observable delay. Define strategies chosen by firm A and firm B as 

€ 

sA ∈ SA
2  and

€ 

sB ∈ SB
2 ; denote

€ 

s = sA ,sB( ) . Define a selection of quantities for firm 

A to be 

€ 

ˆ α i =
α i if sA =α i

ψA β i( ) if sA =W ×ψA β i( ),ψA ∈ ΨA

 
 
 

 

and similarly define a selection of quantities for firm B to be 

€ 

ˆ β i =
β i if sB = β i

ψB α i( ) if sB =W ×ψB α i( ),ψB ∈ ΨB

 
 
 

 

Having defined a selection of quantities for both firms, in which is 

included waiting in the case of choosing second period, we can define now 

payoffs using payoff functions from the case of  the extended game with 
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observable delay and define firm A’s payoff as

€ 

pA s( ) = a ˆ α i, ˆ β i( )  and firm B’s 

payoff as 

€ 

pB s( ) = b ˆ α i, ˆ β i( ). 

Figure 3 displays how the extended game with action commitment 

differs from the extended game with observable delay displayed on Figure 2 

Instead of two links from nodes, when firms decide whether choose first or 

second period, we have one additional link of an waiting action in the tree of 

extended game with action commitment. While white nodes stand for timing 

and quantity choosing decisions, basic games of Cournot doupoly or 

Stackelberg duopoly start in the black nodes. 

 

Figure 3 Extended game with action commitment [5]. 

 

2.5.3 Conclusion of their research 
 

As a conclusion of their research, they found out that in case of extended game 

of action commitment “both sequential play subgames are outcomes in 

undominated strategies; the simultaneous play subgame uses dominated 

strategies” [5]. So they proved, that if the game is constructed as an extended 
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game of action commitment, there is equilibrium in using simultaneous 

moves. 

When it comes to the extended game with observable delay, their 

conclusion was that “either the simultaneous play subgame is an outcome of 

the unique equilibrium in the extended game or one of the sequential play 

subgames is the unique outcome of the extended game” [5]. While there are 

no analytical results of how equilibrium is determined in such game, we can 

use agent-based computational economics to try to simulate this game and 

look what kind of outcome we will obtain. 

By the combination of two different questions which arose above, we 

can be interested in following topics: 

• Will the result of ACE simulation of a Cournot game rather be collusive 

behaviour or a Nash equilibrium? And if it will be collusive behaviour, 

what are factors in our model that influence such behaviour and when 

is joint profit of such behaviour maximized? 

• What will be the result of the extended game with observable delay in 

our case, when the agent can choose between producing in the first or 

in the second period? And if a result of such a game will be 

Stackelberg’s sequential game, will there be collusive behaviour or not? 

To answer these questions we modelled two types of markets. The first 

type is the market with one period which successfully simulate a Cournot 

duopoly game, in which both agents choose quantities they produce 

simultaneously. Secondly, we provided a model of the market with two 

periods in one turn, which successfully simulates the extended game with 

observable delay and can thus lead to either a Cournot duopoly game or a 

Stackelberg duopoly game. 
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3. The market with one period 
 

We got the following assumptions about the market and agents acting on this 

market: 

• Each round of the market has only one period 

• Number of agents acting on the market is fixed to 2 

• Both agents produce a homogenous product 

• Both agents have market power, therefore each agent’s output decision 

affects price of good on the market 

• Price of good is estimated every round by inverse demand function 

• Agents compete in quantities and there is only one market period, these 

quantities are chosen simultaneously 

• There is no exogenous agreement about collusion of agents 

• Agents are economically rational and try to maximize their profit 

As we have previous assumptions, we achieve a definition of Cournot 

duopoly, which is defined by exactly these conditions. Assumption of one 

period in each market round is extremely important, because having more 

periods there arise lot of other problems. For example, having two periods we 

can successfully duplicate Stackelberg duopoly, where one of agents can be the 

quantity leader and another can be the quantity follower. 

As we mentioned, the price is estimated every round and is derived 

from inverse demand function. We use following formula to estimate the price 

[9]: 

€ 

price =max u − v q1 + q2( ),0( )  

where u > 0 denotes maximum price, v > 0  denotes slope of inverse demand 

function and q1,q2 denote quantities produced by agents.  

Then profit for agent i is derived from the formula given by: 

€ 

profiti =max qi ⋅ price − cost i( ),−qi ⋅ cost i( )  
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where price is the price estimated on market for current round and cost is the 

agent’s constant marginal cost. 

3.1 Setup of computer simulation 
 

While we have provided all formulas, we are using for the estimation of 

market price and the agent’s profit on market, we have not provided constants 

that we used for market simulation. For estimating the price we used the same 

constants as were used in the computer simulation paper by Waltmam and 

Kaymak [9]. Constants for price calculation are following: 

• u = 40 – denotes maximum possible price 

• v = 1 – denotes slope of inverse demand function 

• w = 4 – denotes firm’s marginal cost 

With these constants we can calculate the joint profit of firms in a Nash 

equilibrium, which was said to be given by 

€ 

π* =
2 u − w( )2

9v  

thus the joint profit of firms in a Nash equilibrium for our model is 288.  Once 

again it is important to say, that any joint profit of firms above this joint profit 

is an evidence of collusive behaviour. 

We can also calculate the joint profit of firms in a Stackelberg 

equilibrium, which was said to be given by 

€ 

π * =
3 u − w( )2

16v
 

thus the join profit of firms in a Stackelberg duopoly equilibrium for our 

model is 243.  Please note that in case of choosing not simultaneous, but 

sequential timing, every joint profit higher than 243 means collusive 

behaviour in a Stackelberg duopoly. 

Similarly, as we computed joint profits for agents in a Nash equilibrium 

and a Stackelberg duopoly equilibrium for parameters which characterize 



  27 

setup of market, we should compute joint profit arisen in the case of pure 

collusive behaviour. This happens when both agents are trying to instead of 

maximization of their own profit maximize joint profit they can obtain. Thus 

they behave as a single entity – monopolist on a market. As we mentioned 

before, their joint profit for collusive behaviour is given by 

€ 

u − w( )2

4v  

what gives us joint profit of 324 for setup of the market we used for 

simulations. 

As agents try to fulfil their own goal which is to maximize their 

individual profit, some kind of collusion would be interesting result. We can 

talk about inclination to collusive behaviour when joint profit of agents is 

somewhere between 288 and 324. 

 

3.2 Application of Q-learning 
 

Q-learning is applied to agents as follows. We are playing repeated game on a 

market. During each market round the agent must choose the quantity he is 

going to produce. At the beginning of each round the agent is in some state st. 

The agent appeared in this state by taking into account his and his opponent’s 

actions in a previous round 

€ 

t −1. Being in state st the agent has to choose some 

action at from the set of all available actions. This choice depends on his state 

and is made probabilistically based on his Q-values for the state he is in. 

Choosing action at, the agent obtains some profit 

€ 

π t , which is dependent on 

the market price and he moves from a state st to a new state st+1. Then the 

agent updates appropriate Q-values using information about profit 

€ 

π t , chosen 

action at and last state st. Which means he actually modifies the way how he 

chooses actions in next rounds. 

Formally, denote value Q(s, a), where 

€ 

s∈ S  is the state of the agent in 

round t and 

€ 

a∈ A is the action chosen in round t-1, as an agent’s Q-value for 
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that combination of state and action (s,a). Lets clarify, that S is a finite set of 

all possible states of the agent and A is a finite set of all possible actions of the 

agent. The Q-value for certain combination of state and action can help us 

decide which action we choose next time. The higher the Q-value is, the higher 

the probability of choosing that action. Formally, there is a probability 

assigned to each Q-value and the probability that the agent chooses action a in 

the current state is given by the following formula: 

€ 

Pr(a) =
exp Qt st ,a( ) −max

a'∈A
Qt (st ,a')( ) /β( )

exp Qt st ,a'( ) −max
a ''∈A

Qt (st ,a' ')( ) /β( )
a'∈A
∑

 

In this formula st denotes the agent’s state at the beginning of round t. 

Parameter 

€ 

β > 0 denotes experimentation tendency. The higher parameter 

€ 

β  

is, the higher is probability that the agent chooses to experiment, what means 

not to choose an action that has the highest Q-value. Whereas, closer 

parameter 

€ 

β  is to zero, the more probable it is that the agent chooses an 

action with the highest Q-value. 

Action choosing, as we introduced here, is known in literature as the 

Boltzmann exploration strategy.  We use it to model agent’s action choice 

behaviour, because it corresponds to the logit model, which is widely used in 

economic applications.  

As we know, a high value of parameter 

€ 

β  means experimentation and a 

small value of parameter 

€ 

β  means choosing action with the highest Q-value. 

Therefore, we need 

€ 

β  to be large at the beginning and converges to zero at the 

end. We used the function for 

€ 

β  estimation proposed in Waltman and 

Kaymak [9] and it is given by the formula: 

€ 

β =1000 ⋅ 0,99999t  

where t denotes the current round number. It is obvious, that 

€ 

β  converges to 

zero for t converging to the positive infinity. 



  29 

The question is: How exactly are the agent’s Q-values updated? There is 

a different method to do it for the agent with a memory than for the agent a 

without memory. 

 

3.3 The agent with a memory 
 

All we have mentioned above is applicable to the agent with a memory.  

Although we have to clarify what exactly does state of agent in this particular 

case means exactly. We call state s to be a pair (my quantity, opponent’s 

quantity), where my quantity is a quantity chosen in the last round by an 

agent, who this state belongs to and opponent’s quantity is a quantity chosen 

in the last round by his opponent. Therefore, we formally use state s, but be 

aware, that it is a symbol for a pair (my quantity, opponent’s quantity). 

  What we have to specify now is the way how to update Q-values. In our 

simulations Q-values are updated according to 

€ 

Qt+1(s,a) =
1−α( )Qt s,a( ) +α π t + γmax

a '∈A
Qt s,a'( )( )

Qt s,a( )

if s = st  and a = at ,
otherwise.

 
 
 

  
 

where 

€ 

0 <α ≤1 is learning rate, 

€ 

0 ≤ γ <1 is the discount factor and 

€ 

π t  stands 

for the profit obtained in round t on a market. The learning rate in this 

formula establishes how quick the agent learns or better said, how much does 

the agent cares for new obtained profit compared to recent history, which is 

codified in Q-value. While the learning rate concerns about history, discount 

factor focuses on the future on the other hand, as it determines the 

importance of the future choice. If we have discount a factor of the zero value, 

the agent becomes “opportunistic” and is just focused on the current profit. 

Whereas, having the discount factor close to the value one the agent is focused 

on obtaining long-term high profit. 

As mentioned in Waltman and Kaymak [9] above update rule “has the 

appealing property that when there is only one learning agent (either 

because there is only one agent or because all other agents use fixed 
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strategies), the update rule allows the agent, under certain conditions, to 

learn to behave optimally”. 

 

3.3.1 Result of the computer simulations 
 

As we tried to achieve accurate and plausible results, every simulation of the 

market and therefore convergence to some joint profit was the result of one 

million turns in one market simulation. The same number was used by in 

Waltman and Kaymak [9] their simulation and in respect of specified values, it 

is a sufficient number as far as last 100 000 turns the joint profit of firms 

changes very gently if even at all.  Finally, we made a final joint profit as an 

average of the last 10 000 turns of joint profit for each simulation, what we 

consider to be sufficient number. 

As we have two different parameters to examine, we had to make a 

market simulation for each combination of pair (learning rate, discount 

factor). We wanted to provide credible and significant results, so for every 

pair combination we ran 100 market simulations.  

Having pair (learning rate, discount factor) and increment for each 

value is 0,1, so as we started at value 0,05 and finished at value 0,95, it is 10 

values for each parameter, what give us together 100 combinations of pair 

(learning rate, discount factor).  It would not be good for anything to put here 

all 100 values in a table, as we would have too big table and the amount of 

data would be overwhelming. So we decided to display all these values in a 

graphical way. However, we provided all generated data for every combination 

of pair (learning rate, discount factor) and you can find this values on 

attached CD. 

We can notice on Chart 1, we can say that in general increasing of the 

learning rate and decreasing of the discount factor leads to increasing of joint 

profit, so it means increases collusive behaviour of both agents. As we will see 

for the agent without a memory, increasing of the learning rate will also 
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emerge in amplification of collusive behaviour. Moreover, we are dealing with 

the discount factor.  

Generally, we can say that for all levels of the learning rate we can see 

significant improvement of joint profit at the moment of movement from the 

point when joint profit of agents shows the worst performance. From the 

generated data we can see, that for the pair (learning rate, discount factor) 

from set {[0,05;0,95], [0,05;0,85], [0,15;0,95], [0,15;0,85], [0,25;0,95]} is joint 

profit either equal or slightly less than a joint profit in Nash equilibrium. As 

we will see below, for the agent without memory, when we are changing just 

learning rate, there will not arise situation when average agents’ joint profit 

will be less than joint profit of agents in Nash equilibrium. 

 

The discount factor says determines how important is maximal future 

value important for agent, so as how he is focused on a long-term profit in 

comparison with short term profit. The agent who prefers rather long-term 

profit is characterized by value of the discount factor close to 1 and the agent 

Chart 1 Joint profit of agents with a memory in the one turn market. 
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who prefers rather short-term is characterized by value of discount factor 

close to 0. According to Chart 1 we might do the conclusion, that combination 

of the low learning rate and high preference on long-term profit does not lead 

to collusive behaviour in the interaction of two agents. Even more, we can say, 

that it did not result in an average joint profit at the level of joint profit of 

agents in Nash equilibrium. If we consider the value from opposite side of a 

scale, value of discount factor 0, we will obtain quite similar results as for the 

agent without a memory. 

In the average we obtain collusive behaviour, if we have joint profit 

between joint profit of agents in Nash equilibrium and joint profit of agents in 

pure collusive behaviour, what is in our case 288, respectively 324. Even 

thought we found in every 100 market rounds at least one occurrence of pure 

collusive behaviour, so that joint profit of agents was 324, we did not approach 

to this joint profit in average for any combination of parameters.  We can 

easily see from the Chart 1 that significant majority of final joint profits are 

higher than 288 and are somewhere between 304 and 316. Therefore, we can 

consider it to be as collusive behaviour and since average of 288 and 324 is 306, 

we can say that for chosen parameters and model agents more tend to 

collusive behaviour.  

 

3.4 The agent without a memory 
 

We denote the agent to be an agent without memory in the case that his 

decision process about which action should be chosen is based only on the 

knowledge of the Q-values for each action, but does not depend on the state he 

is currently in. So instead of having the Q-value Qt(s, a) dependent on both 

state s and action a, the Q-value for the agent without memory depends only 

on action, and is therefore reduced to Qt(a). In a previous case, s was a symbol 

for pair (my quantity, opponent’s quantity); in this case s is symbol for (null), 

as there is not any memory. 
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The reason for having the agent without a memory is that most of the 

reinforcement learning models studied in economic literature do not have a 

possibility of remembering things. So we examine both; the agent with and the 

agent without a memory. Having the agent without a memory, the formula of 

choosing certain Q-value is changed to: 

€ 

Pr(a) =
exp Qt a( ) −max

a ''∈A
Qt a' '( )( ) /β( )

exp Qt a'( ) −max
a''∈A

Qt a' '( )( ) /β( )
a'∈A
∑

 

We have a quite good idea how the market where are simulations are 

being executed, looks like. We need to take a closer look at the updating 

process of the Q-values. The formula for updating the Q-values is given by: 

€ 

Qt+1 a( ) =
1−α( )Qt a( ) +απ t

Qt a( )
if a = at ,

otherwise.
 
 
 

 

We can see, that compared to the update rule applied to the agent with 

a memory, we are missing the discount factor. According to the Waltman and 

Kaymak [9] this is because “an agent without a memory cannot take into 

account the consequences of the action plays in the current stage game on the 

payoffs it obtains in future state games. For such an agent, the discount 

factor must therefore equal zero.” 

 

3.4.1 Result of the computer simulations 
 

Similarly, as with the simulation of the agent with a memory, we made 

simulation of 1 000 000 turns for every simulation of the market. We did 100 

market simulations for every fixed value of the learning rate. As argued above, 

this number is sufficient, because joint profit of last 100 000 turns is 

fluctuating just mildly, therefore we are able to obtain quite stable average. 

Then result joint profit for one market simulation was created as an average of 

last 10 000 joint profits of agents. 
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While we have only one parameter, which can be changed in case of the 

market with one period and the agent with a memory, our analysis will be 

concerned about changing this parameter and will analyse results that we 

obtained by simulations. As we have 1 000 000 turns in one market simulation, 

we decided to run 100 of this market simulations to ensure higher credibility 

of results and avoid some random effects, as we are dealing with probabilistic 

model of decision-making of agents in ACE and results of simulations are 

dependent on random numbers that are used. So for every setup of parameter 

we provide 100 market simulations. 

We can see in Table 1 results of this simulations, where by the result we 

mean average of 100 joint profits, whose are results of a market simulation for 

one fixed value. The corresponding standard deviation for each set of 100 

market simulations is provided in parentheses. There is also provided a joint 

profit of firms whose are in a Nash equilibrium, which we have calculated to 

be 288 for our setup of market model. 

Learning 
rate Nash α = 0,05 α = 0,15 α = 0,25 α = 0,35 α = 0,45 

Joint 
Profit 

288 300,6 
(10,6) 

306,6 
(12,8) 

310,3 
(12,3) 

312,3  
(9,4) 

313,7 
(7,4) 

Max 
Profit 

 324 324 324 324 324 

Learning 
rate 

α = 0,55 α = 0,65 α = 0,75 α = 0,85 α = 0,95  

Joint 
Profit 

312,9  
(8,1) 

314,5  
(6,9) 

314,6  
(6,8) 

315,5  
(6,0) 

314,6  
(6,3) 

 

 324 324 324 324 324  
Table 1 Joint profit of agents without a memory in one turn market according to the 

learning rate. 

Looking to the Table 1 we can say, that even for the lowest value of the 

learning rate there is collusive behaviour emerging. This is really interesting 

result, because it can give us insight into the problem, why is collusive 

behaviour emerging also on the market with firm, whose do not communicate 

with each other. As agent has only goal to maximize its profit, as it is a 

common situation observed in a real world, because all entities on the market 

are driven by self-interest as had already noted Smith in 1776 in his The 

Wealth of Nations. 
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We also know, that only information the agent has from external 

environment is profit he obtains every round and his decision-making about 

choosing proper action in a future is changed and evaluated just according the 

information about the profit. 

We can better see the mean how is joint profit dependent on the 

learning rate, if we put results we obtained in the chart as we did in Chart 2. 

 

Chart 2 Joint profit of agents without a memory in the one turn market. 

We can see, that we have evidence of collusive behaviour throughout 

the whole interval of possible values that the learning rate can have. However, 

we can see, that there with an increasing learning rate is also increasing joint 

profit, what means increasing collusive behaviour of agents. Even for the 

lowest learning rate we ran our simulations for, is collusive behaviour quite 

obvious since joint profit of agents in a Nash equilibrium is 288 and average 

joint profit for the learning rate α = 0,05 is 300,6. 

There is a significant increase in joint profit of agents when increasing 

the learning rate. We can observe difference of value 6 between the agent with 

the learning rate α = 0,05 and α = 0,15. The difference of value 4 is between the 

agent with the learning rate α = 0,15 and α = 0,25. There are some remarkable 
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differences when we move between learning rates from α = 0,25 to α = 0,35 

and α = 0,35 to α = 0,45. After this is the joint profit more less stable with some 

error variance, which is evocated by use of random numbers and probabilistic 

model of decision making. 

However we obtained the maximal value for collusive behaviour of 324 

in every set of 100 simulations for fixed learning rate, we did not experience 

the average joint profit to be as high as in a pure collusion. Therefore we can 

say, that there is not a pure collusion of agents in average. 

The learning rate in the Q-learning reinforcement model expresses how 

much is new information obtained from the market relevant in comparison 

with current Q-value, which as we know contains the performance of state-

action combination in past turns. Therefore with increasing learning rate we 

put more stress on current profit.  

In our model is joint profit of agents approximately same from the 

learning rate of value 0,45 and basically not changed to the value 0,95. Thus 

our conclusion in a case of interaction of two agents without a memory in the 

market with one round is that collusive behaviour emerges as soon as agents 

have possibility to learn from the external environment. Although joint profit 

in this collusive behaviour is higher than the joint profit in Nash equilibrium, 

it is not that high as it is in a pure collusion. Full ability to maximize joint 

profit and therefore maximal value of collusion is reached for the learning rate 

higher than 0,45. We can conclude that if the agent puts weigh current profit 

more than on 45%, there is an evidence of maximal collusive behaviour in our 

examined case. 
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4 The market with two periods 
 

Having a market with two periods we need to change our model a little bit. 

Firstly, we have to consider that instead of just one possible way of choosing 

quantities, we have three different situations to choose from: 

• Both agents choose to produce in a first period. 

• The agents choose to produce in different periods. 

• Both agents choose to produce in a second period. 

The expansion of the previous model brings us more information that 

agents can obtain. Generally, they obtain information about the opponent’s 

choice of pair (period, quantity). Therefore, agents can obtain the following 

information about opponent’s choice: 

• (null, null) – in the case, when the agent chooses to produce in the first 

period, he does not know the opponent’s choice of either period or 

quantity. 

• (period, quantity) – in the case, when the agent chooses to produce in 

the second period and the opponent chooses to produce in the first 

period. As we do not demand commitment to produce quantity in 

advance, the agent, who chooses the second period, is able to observe 

the quantity produced by his opponent. 

• (period, null) – in the case, when both agents choose to produce in the 

second period. Although both agents are able to observe that the 

opponent did not produce in the first period, they are not able to 

observe the opponent’s choice, as they have to choose and produce the 

quantity simultaneously. 

There are more differences of this model in following models of agents 

either with or without memory. 
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4.1 The agent without a memory 
 

There is no different logic in evaluating probabilities, however we make them 

clear to create order. The probability for choosing a period is given by the 

following formula: 

€ 

Pr(p) =
exp Qt (p) −maxp''∈P

Qt (p' ')
 
 
  

 
 /β 

 
 

 
 
 

exp Qt (p') −maxp ''∈P
Qt (p' ')

 
 
  

 
 /β 

 
 

 
 
 

p'∈P
∑

 

where p is a period, 

€ 

Qt p( )  is the Q-value for period p in turn t, and 

€ 

β  is an 

experimentation tendency as we know it. Symbol P stands for finite set of all 

possible periods, which is two in our case.  

Similarly, as we had state of the agent being (null) for the agent without 

a memory in case of a market with one period, now we have the state of the 

agent being (null) in a case of a market with two periods. However, we should 

realize and keep in mind, that there are two different sets of Q-values.  

One set of Q-values is needed in case if the agent chooses in the first 

period and the other one set is needed in case if the agent chooses in the 

second period. This distinction is particularly important, as choosing in the 

second period means to obtain some additional information about the 

opponent’s choice, therefore we have a pair (period, quantity) or 

(period,null). While choosing in the first period do not bring us any additional 

information. 

Formally, we say that the Q-values for quantities are defined as: 

€ 

Qt (o,a) =
Qt ,1(a)
Qt ,2(po,qo,a)

for first period,
for second period.

 
 
 

 

where o is the opponent’s choice for the current period and it is a pair (period, 

quantity). For choosing the first period we will obtain a pair (null, null) for the 

opponent’s choice. Therefore the Q-value in round t 

€ 

Qt o,a( ) =Qt null,null( ),a( ) 

is reduced to 

€ 

Qt,1 a( ),

€ 

a∈ A, where A is a finite set of all possible actions of the 

agent. As far as the second period is concerned, the Q-value in round t is 
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€ 

Qt o,a( ) =Qt,2 po,qo,a( ) , 

€ 

po ∈ P . The symbol P stands for a finite set of all 

possible periods, 

€ 

qo ∈ Q∪ null{ } where Q is a finite set of all possible 

quantities which the opponent can choose and also null value in case the 

opponent’s period is unknown. 

According to this definition, the probabilities are given by: 

€ 

Pr Qt o,a( )( ) =
exp Qt o,a( ) −max

a''∈A
Qt o,a' '( )( ) /β( )

exp Qt o,a'( ) −max
a ''∈A

Qt o,a' '( )( ) /β( )
a '∈A
∑

 

The update rule for Q-values for quantities is given by: 

€ 

Qt+1 o,a( ) =
1−α( )Qt o,a( ) +απ t

Qt o,a( )
if a = at ,
otherwise.

 
 
 

 

However, we got a different update rule for Q-values in round t for 

periods: 

€ 

Qt+1 o,a( ) =
1−α( )Qt o,a( ) +αγmax

a'∈A
Qt o,a'( )( )

Qt o,a( )
if a = at ,
otherwise.

 
 
 

 

where 

€ 

0 ≤α <1, 0 < γ ≤1 is the learning rate and the discount factor 

respectively. Both these variables have been explained above. 

 

4.1.1 Result of the computer simulations 
 

As we tried to achieve accurate and plausible results, every simulation of the 

market and therefore convergence to some joint profit was the result of one 

million turns in one market simulation. It is a sufficient number as far as last 

100 000 turns the joint profit of firms changes does not change too much.  

Finally, we made a final joint profit as an average of the last  10 000 turns of 

joint profit for each simulation, what we consider to be sufficient number. 

As we have two different parameters to examine, we had to make a 

market simulation for each combination of pair (learning rate, discount 
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factor). We wanted to provide credible and significant results, so for every 

pair combination we ran 100 market simulations.  

Having pair (learning rate, discount factor) and increment for each 

value is 0,1, so as we started at value 0,05 and finished at value 0,95, it is 10 

values for each parameter, what give us together 100 combinations of pair 

(learning rate, discount factor). As above, we decided to display all these 

values in a graphical way. However, we provided all generated data for every 

combination of pair (learning rate, discount factor) and you can find this 

values on attached CD. 

 

Chart 3 Joint profit of agents without a memory in the market with two turns. 

It is obvious, that in case of agents without a memory, which operate on 

the market with two turns is seen significant joint profit increase with increase 

of both parameters. The higher learning rate we have, the higher average joint 

profit we obtain and this holds for the discount factor as well. 

What is more interesting in this case than joint profit is agents’ 

selection of its first period. Therefore in case of the market with two periods, 

we must provide results of agents’ selection of period in which they want to 
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produce. We decided to provide the map of agents’ selection as the reader can 

see on Chart 4 and Chart 5. 

 

  
Chart 4 Agent 1's ratio of selection the first 

period, with inverse order of the learning 

rate. 

Chart 5 Agent 2's ratio of selection the first 

period, with inverse order of the learning 

rate. 

 

We used inverse order of the learning rate for better charts’ readability. 

We can see on both charts tendency to choose period one with increase of the 

discount factor and with decrease of the learning rate. 

 

Chart 6 Ratio of simultaneous plays for agents without a memory dependent on the 

learning rate and the discount factor 
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Another interesting feature we can look at is how many times agents 

chose to produce simultaneously and how many times they decided to 

produce sequentially.  For this purpose we have Chart 6.  

If we count a ratio of values that are smaller than 0,5 we obtain ratio of 

choosing sequential play rather than simultaneous. The value higher than 0,5 

means that more than 50 percent of simulations for a fixed pair  (learning 

rate, discount factor) finished in convergence to a simultaneous play. 

Whereas, the value smaller than 0,5 means that more than 50% of simulations 

for a fixed pair  (learning rate, discount factor) finished in convergence to a 

sequential play, what is exactly what we are looking for. For this case, the ratio 

of values smaller then 0,5 is 52%.  

As a conclusion we can confirm collusive behaviour of agents without a 

memory in the market with two rounds. But result the 52% of all games 

converge into simultaneous plays implies that 48% of all games converge into 

sequential plays. As a result we have that 52% of games finish as a Cournot 

duopoly and of games 48%  finish as a Stackelberg duopoly, what means that 

neither of this two duopolies is preferred. 

 

4.2 The agent with a memory 
 

The agent with a memory differs from the agent without a memory in 

memorizing the state of the last round. It means that state s of the agent is 

four (my period, my quantity, opponent’s period, opponent’s quantity) where 

all information refer to the last round.  We know a pair (my period, my 

quantity), and we have three different general possibilities for a pair 

(opponent’s period, opponent’s quantity) as well. Denoting this four as s, then 

the Q-value is defined as 

€ 

Qt s,o,a( ), where o is the opponent’s  choice of the 

pair (opponent’s period, opponent’s quantity) for the current round.  

Similarly as in the previous case, we divide the definition of Q-values 

consequently: 
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€ 

Qt (s,o,a) =
Qt,1(s,a)
Qt,2 (s, po,qo,a)

for first period,
for second period.

 
 
 

 

where o is the opponent’s choice for the current period and it is pair (period, 

quantity). For choosing the first period, we will obtain pair (null, null) for the 

opponent’s choice. Therefore Q-value in round t is 

€ 

Qt s,o,a( ) =Qt s, null,null( ),a( ), 

which can be reduced to 

€ 

Qt,1 s,a( ),

€ 

a∈ A, where A is a finite set of all possible 

actions of the agent. As far as the second period is concerned, the Q-value in 

round t is 

€ 

Qt s,o,a( ) =Qt ,2 s, po,qo,a( ) , 

€ 

po ∈ P . The symbol P stands for a finite set 

of all possible period, 

€ 

qo ∈ Q∪ null{ } where Q is finite set of all possible 

quantities which the opponent can choose and also a null value in case we do 

not know the opponent’s period. 

Similarly, instead of 

€ 

Qt p( )  for the Q-value for period p in round t, we 

have 

€ 

Qt s, p( ). Therefore, the probabilities for the Q-values are: 

€ 

Pr(p) =
exp Qt (s, p) −maxp ''∈P

Qt (s, p' ')
 
 
  

 
 /β 

 
 

 
 
 

exp Qt (s, p') −maxp''∈P
Qt (s, p' ')

 
 
  

 
 /β 

 
 

 
 
 

p'∈P
∑

 

for period and 

€ 

Pr Qt s,o,a( )( ) =
exp Qt s,o,a( ) −max

a''∈A
Qt s,o,a' '( )( ) /β( )

exp Qt s,o,a'( ) −max
a ''∈A

Qt s,o,a' '( )( ) /β( )
a'∈A
∑

 

for quantities. 

Having covered this, we can proceed to the explanation of the updating 

process. As before, the updating process for the Q-values is different for 

quantities and periods. Therefore, the updating rule for the Q-values for 

quantities is: 

€ 

Qt+1 s,o,a( ) =
1−α( )Qt s,o,a( ) +α π t + γ1 max

a '∈A
Qt s,o,a'( )( ) if a = at ,

Qt s,o,a( ) otherwise.

 
 
 

  
 

and the updating rule for Q-values for periods is given by: 
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€ 

Qt+1 s,o,a( ) =
1−α( )Qt s,o,a( ) +αγ 2 max

a'∈A
Qt s,o,a'( ) if a = at ,

Qt s,o,a( ) otherwise.

 
 
 

 

Please note an important distinction: we have a different discount rate 

for updating quantities and for updating periods. The discount rate for 

updating quantities determines how much the agent takes into consideration 

the result of current game to the next one. Discount rate of value zero means, 

that the agent does not take into consideration the result of current game to 

the next one, whereas the discount rate close to value one means that the 

agent does. We should note that in our simulations we used same setting for 

the agent, which takes the result of current game to the next one into 

consideration, as in Waltman and Kaymak [9] for a case of simulating not 

considering agents. It means that for the not considering agent, which takes 

the result of current game to the next one into consideration, are the discount 

factors equal. Denote the agent, which takes the result of current game to the 

next one into consideration, as the considering agent and the agent, which 

does not take the result of current game to the next one into consideration, as 

not considering agent. 

 

4.2.1 Result of the computer simulations 
 

We tried to achieve accurate results, so every simulation of the market and 

therefore convergence to some joint profit was the result of one million turns 

in one market simulation. It is a sufficient number as far as last 100 000 turns 

the joint profit of firms changes does not change too much.  Finally, we made 

a final joint profit as an average of the last  10 000 turns of joint profit for each 

simulation, what we consider to be sufficient number. 

We have two different parameters to examine, thus we had to make a 

market simulation for each combination of pair (learning rate, discount 

factor). We wanted to provide credible and significant results, so for every 

pair combination we ran 100 market simulations.  
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Having pair (learning rate, discount factor) and increment for each value is 

0,1, so as we started at value 0,05 and finished at value 0,95, it is 10 values for 

each parameter, what give us together 100 combinations of pair (learning 

rate, discount factor). As above, we decided to display all these values in a 

graphical way. However, we provided all generated data for every combination 

of pair (learning rate, discount factor) and you can find this values on 

attached CD. 

Considering and not considering agent 

 

Firstly, lets have a look at the chart of joint profit for not considering and 

considering agents. This join profit is displayed on Chart 7. As we can see, we 

obtained results that are more interesting. To explain it we need to know how 

is decision, either to produce simultaneously or sequentially, dependent on 

the pair (learning rate, discount factor).  

We should say that agents do not decide whether to play 

simultaneously or sequentially, but they make decision in which period they 

want to produce. If their decision is the same period, simultaneous play 

occurs, but they cannot choose whether they want to play simultaneously or 

sequentially by any mean.  

However, we can analyze in what ratio from all market simulations 

from fixed pair (learning rate, discount factor) their decisions led to a 

simultaneous play. According to the results we obtained the considering agent 

always converges to the decision to choose the first period. Thus, we do not 

attach chart or any other table decision making of the considering agent. 

Chart 8 displays ratio of simultaneous plays for the not considering agent and 

as we can see, it is much more interesting. 

It is useful to realize that if the considering agent converges to choose 

first period for every combination of pair (learning rate, discount factor), the 

ratio of simultaneous plays also means the ratio of choosing the first period by 

the not considering agent. 
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As we can observe, low learning rate of 0,05 with combination of the 

agent’s goal to maximize his profit and increasing discount factor lead to a 

choice to choose the first period in increasing rate with increasing discount 

factor. Therefore, we obtain simultaneous play in higher rate that in an 

average.  

 

Chart 7 Joint profit of considering and not considering agent and their dependency on the 

learning rate and the discount factor. 

Even though we have the ratio of value 1 for simultaneous plays with 

fixed combination (learning rate, discount factor) = (0.05, 0.95), result of joint 

profit displayed on Chart 7 for this pair is around the joint profit for a Nash 

equilibrium, which is 288 in our model.  

Another significant point of a simultaneous play is around pair 

(learning rate, discount factor) = (0.75, 0.45) does not achieve any significant 

level of joint profit. Whereas pair (learning rate, discount factor) = (0.95, 

0.05) is a point with value 0, what means that for this pair Stackelberg duopoly 

is always chosen. As we can see on Chart 8, there are significant tendency to 

be a Stackelberg follower for the not considering agent. Surprisingly, we can 
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observe on Chart 7, that the joint profit around point (learning rate, discount 

factor) = (0.95, 0.05) is increasing and we know that the joint profit in a 

Stackelberg duopoly for our model is 243. It is an evidence of collusive 

behaviour in a Stackelberg duopoly, because we can observe the joint profit of 

a Stackelberg leader and a Stackelberg follower to be significantly more than 

the joint profit in equilibrium of Stackelberg duopoly. Thus, it holds definition 

of collusive behaviour we wrote above. 

If we count, what is a ratio of values that are smaller than 0,5 we obtain 

ratio of choosing sequential play rather than simultaneous. The value higher 

than 0,5 means that more than 50 percent of simulations for a fixed pair  

(learning rate, discount factor) finished in convergence to a simultaneous 

play. Whereas, the value smaller than 0,5 means that more than 50% of 

simulations for a fixed pair  (learning rate, discount factor) finished in 

convergence to a sequential play, what is exactly what we are looking for. For 

this case, the ratio of values smaller then 0,5 is 80% 

 

Chart 8 Ratio of simultaneous play for not considering agent dependent on the learning 

rate and the discount factor. 

. 

In general, we can say that for considering and not considering agents 

the not considering agent tends to choose be a Stackelberg follower. The 
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considering agent always chooses the first period. However, we can conclude 

that collusion behaviour emerges in case when there is high ratio of a 

Stackelberg duopoly. When there is no clear choice of choosing either 

simultaneous or sequential play, the joint profit suffers by that situation. 

 

Two considering agents 
 

Chart 9 displays joint profit for two considering agents in the market with two 

rounds. Contrary to case of considering and not considering agents almost all 

values of joint profit are higher than joint profit of agents in Nash equilibrium. 

This is a big difference if we realize that in previous case just the highest 

values was similar to Nash equilibrium. 

In general we can say, that the learning rate is more important than the 

discount factor, because we witch changing of the discount rate we cannot see 

any significant shifts in joint profit values. Whereas, there is a significant 

dependency as far as the learning rate is concerned and we can see, that the 

highest level of joint profit is connected with the highest rate of the learning 

rate. 

From Chart 10 we can see, that whether two considering agents plays 

simultaneously or not is mainly dependent on the discount factor. The higher 

the discount factor is, the higher is ratio of simultaneous plays. We can see, 

that the learning rate also influences this ration, but not that significantly as 

the discount factor. 

If we count, what is a ratio of values that are smaller than 0,5 we obtain 

ratio of choosing sequential play rather than simultaneous. The value higher 

than 0,5 means that more than 50 percent of simulations for a fixed pair  

(learning rate, discount factor) finished in convergence to a simultaneous 

play. Whereas, the value smaller than 0,5 means that more than 50 percent of 

simulations for a fixed pair  (learning rate, discount factor) finished in 

convergence to a sequential play, what is exactly what we are looking for. For 

this case, the ratio of values smaller then 0,5 is 69%. 
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Chart 9 Joint profit of two considering agents and its dependency on the learning rate and 

the discount factor with. 

 

 
Chart 10 Ratio of simultaneous plays for two considering agents and its dependency on 

the learning rate and the discount factor 

In general we can say, that emerge of sequential game, therefore 

emerge of a Stackelberg duopoly, is more probable in the case of two 

considering agents.  
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Two not considering agents 
 

 
Chart 11 Joint profit of two not considering agents on the market with two periods 

dependent on the learning rate and discount factor. 

Chart 11 displays the joint profit of two not considering agents interacting on 

the market with two periods. As we can see, almost all joint profits are above 

Nash equilibrium. This is an implication of Chart 12, when we can see that 

both not considering agents acts quite same as agents acting on the market 

with just one period, because for the majority of pairs (learning rate, discount 

factor) emerges simultaneous play in all simulations.  

What is different in comparison with agents acting in the market with 

one period is that we have slightly different updating of the Q-values, but as 

we can see, we obtain collusive behaviour of agents as well.  

As a conclusion we can say, that two not considering agents in the 

market with two turns do not converge in a Stackelberg duopoly at all. 
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Chart 12 Ratio of simultaneous plays for two not considering agents dependent on the 

learning rate and the discount factor 
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5. Conclusion 
 

Agent-based computational economics brings us new manners how to model 

economic situations. With bottom-up modelling methodology, we can take a 

closer look on processes, which leads to some economic situations, on the 

level of each interacting entity and thus earn a better understanding. We do 

not need to understand how process works, all the modeller need to do is 

correctly simulate agent’s behaviour, e.g. profit maximization. Strict 

conditions of perfect rationality, perfect information and thus homogenity of 

economic entities substitute agent-based computational economics with more 

realistic assumptions of “bounded” rationality, imperfect information and 

heterogenity of agents. 

 One of our questions at the beginning was, whether ACE can simulate 

collusive behaviour in a Cournot duopoly. Following the example of Waltman 

and Kaymak [9] we successfully implemented model of a Cournot duopoly. 

The agent in the model followed his goal, what was profit maximization. This 

assumption corresponds with the real world indeed. We also simulated 

“bounded” rationality by using a logit model as a core of decision making 

process, through so-called Boltzman exploration strategy. Obtained profit was 

only information about the external world the agent was able to observe, so we 

simulated imperfect information. We created two different kinds of the agent 

– with and without a memory. Both kinds of agents were able to learn how to 

choose quantities and we could see the uprise of collusive behaviour, as the 

joint profit of agents was higher that the joint profit of agents in a Nash 

equilibrium. 

 We were also concerned in a question if between agents whose are 

allowed endogenously choose the period they want to produce in, arises a 

Cournot duopoly, a Stackelberg duopoly or mixture of both without any 

apparent tendency to one of them. Cournot duopoly model was extended, 

possibility to choose whether to produce in the first or the second period was 

added. Each round must agents choose period first and then quantity 
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produced. Similarly, as in a simulations of market with one period, we 

modelled the agent with and without a memory. Agent with a memory can be 

further divided into the agent who considers the current game to the next one 

and the agent who does not consider the current game to the next one.  

The heterogenity of economic entities is another hard nut to crack for 

traditional economic models, but with ACE we were able easily simulate  

interaction of considering and not considering agent. This possibility brought 

us a result that emergence of a Stackelberg duopoly was clearly present if at 

least one of the interacting agents was considering agent. 

All in all, the main goal of this thesis, to simulate collusive behaviour in 

a Cournot model and look at the emergence of a Stackelberg duopoly for 

agents with endogenous timing of production was successfully satisfied. 
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