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Introduction
This thesis discuss several different applications of the theory of operads in quan-
tum physics.

The theory of operads was developed to understand algebraic or topological
structures. Operads, as objects, model operations (in certain categories) with
several inputs and one output. The operations, as it is usual in a mathematical
context, could be composed and their variables could be permuted. One possible
point of view is to look at them as the directed rooted trees.

As such, they can be generalized in the context of graphs as “flowcharts” in
two possible ways. The undirected graphs with several inputs lead to the notion
of modular operads, whereas the connected directed graphs with several inputs
and several outputs lead to the notion of properads. Both of these structures
have some use in mathematical physics.

Modular operads became very useful in various string theories. To see the
basic idea of why one should use such a complicated mathematical tool let us
first look at the cases of closed and open strings.

Closed strings, i.e. strings without any loose ends, could be naively depicted
as punctures or disjoint disks embedded into Euclidean space. The interaction of
several closed strings is then interpreted as a Riemann surface with boundaries
composed of these strings. Up to a conformal transformation, this interaction
corresponds to the moduli space of a Riemann surface with several punctures
(marked points) which could be freely permuted among themselves. One could
say this space has a “trivial symmetry”. Introducing the machinery of modular
operads at this point may seem foolish and useless. So let us compare the situation
with open strings.

Open strings, i.e. each string with two loose ends, could be depicted as 1-
dimensional objects, “intervals”. Their interaction will take place again on some
Riemann surface but the string itself would be this time just a small part of some
boundary. We can talk about the marked points on the boundary or, similarly as
[41], about half-disks.1 Such punctures cannot be freely permuted, their order is
fixed by their position on the boundary. But the conformal transformations allow
us to permute them in a “cycle”. As we will show, the Quantum open modular
operad allows us to naturally capture this trivial action of cyclic permutations.

If one is interested in open-closed strings, it is easy to combine the open and
closed cases into moduli spaces of Riemann surfaces with punctures in the interior
and on the boundaries. By introducing a 2-colored modular operad we simply
get the appropriate mathematical tool to handle the non-trivial symmetry of this
case.

The modular operads are, of course, equipped with a composition. In their ge-
ometrical interpretation, these compositions can be seen as gluing two punctures

1For every puncture, there is an analytic map from {|u| ≤ 1, Im(u) ≥ 0} to the neighborhood
of the puncture such that the center of the unit disk is mapped to the puncture.
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of two distinct surfaces or gluing two punctures of a single surface.2
As we will eventually see, the algebra over the modular operad, i.e. its repre-

sentation on some differential graded vector space, can be encoded into the follow-
ing data: an anti-bracket {·, ·} derived from the composition of two surfaces, the
square-zero differential operator ∆ (in the next called Laplace operator) derived
from the self-composition, and the elements S such that the quantum master
equation is satisfied

dS + ∆S + 1
2{S, S} = 0

The resulting structure is the Batalin-Vilkovisky algebra with the “Maurer-Cartan
elements”.3 This structure will be called quantum homotopy algebras and could be
equivalently encoded as a differential operator xS = ∆ + {S, ·} such that x2

S = 0.

The combinatorial structure of compactified Riemann surfaces with punctures
within the interior or on the boundary is also encoded by properads. In this
case, the punctures are unambiguously divided into “incoming” or “outgoing”
and the composition always connects two surfaces – from one surfaces it takes
only outgoing punctures and identifies them with incoming punctures from the
second surface. Notice that this time we can compose several punctures at once.

Introduced by B. Vallette in [38], properads are a restriction to the connected
part of an even more general structure called PROPs. Despite this, the properad’s
setting is sufficient to encode important examples like Lie bialgebras or Hopf
algebras. And, unlike PROPs, it is possible to define the Koszul duality for
properads.

The well-known example of properads is a (closed) Frobenius properad. It
can be also represented as Riemann surfaces with punctures in the interior with
“commutative” gluing of the surfaces. The algebra over its cobar complex is the
minimal model thanks to Koszulness in sense of [38] and leads to the notion of
IBL∞-algebra. A newly defined example of Open Frobenius properad gives us a
similar structure that we call IBA∞-algebra.

As we will see in chapter 6, the IBL∞-algebras can be encoded as a nilpotent
differential operator d+ L.

Thus we can interpret the quantum master equation for modular operads as a
special IBL∞-algebra. But there is more we can say about the relation of modular
operads and properads. Interestingly, it is related to Kontsevich’s reformulation
of the deformation quantization problem.

The deformation quantization problem can be formalized as follows: for a
given Poisson algebra A = (C∞(M), ·, {, }) on a manifold M and a formal pa-
rameter µ, construct bidifferential µ-linear map ∗ : A[|µ|] ⊗ A[|µ|] → A[|µ|]

f ∗ g =
∞∑︂
k=0

mk(f, g)µk

2For “closed” punctures this means identification of local coordinates z and w such that
zw = 1 and for “open” punctures the identification zw = −1.

3Usually, by Maurer-Cartan elements are meant the solutions of Maure-Cartan equation.
Since the quantum master equation is the “incarnation” of the Maurer-Carten equation for
modular operads, we inaccurately call its solution also as Maurer-Cartan elements. We discuss
the various master equation in section 2.3.
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where m0(f, g) = f · g, m1(f, g) = 1
2{f, g}.

The deformations are controlled by the subcomplex of Hochschild cochains of
the polydifferential operators Dpoly(M). And the obstructions are given by the
Hochschild cohomology given as the polyvector fields Tpoly(M). In [25] Kontsevich
reformulated this problem in a homotopy algebraic set-up and constructed an
L∞-morphism between these two DGLAs

Tpoly(M) L∞−−→ Dpoly(M)

Let us consider the 2-colored modular operad and split the corresponding
Maurer-Cartan element S into a closed part Sc and open-closed part Soc = S−Sc.
Correspondingly we can split the operator ∆ and the bracket {, } and, as we
mentioned, we obtain an IBL∞-algebra determined by Sc,∆c, {, }c.

The open-closed part then determines the IBL∞-morphism to the cyclic
Hochschild complex, cyclic A∞. We can visualize the components of this mor-
phism as the corresponding Riemann surfaces. The source is given by the punc-
tures in the interior and the target by the punctures on the boundaries. The
“classical version” of this point of view formulated for 2-colored operads and the
intriguing connection with Kontsevich’s work can be found in [22] and [23].

The text of the thesis is based on two articles - Properads and Homotopy
Algebras Related to Surfaces and Quantum Homotopy Algebras and Homological
Perturbation Lemma. Part of the first one was already published as Properads
and homological differential operators related to surfaces. Part of the second one
was submitted also to Archivum Mathematicum. However, some technical details
are added and the computations are shown with all key steps (in contrast with
the very abbreviated form appearing many times in the articles).

Because some parts of the texts were taken from these articles, I decided to
write also the rest of the thesis in the “we” form. This may seem strange but I
was concerned that I would miss correcting the subject everywhere and it would
cause a distraction to the reader. Also, I hope this form would more involve the
reader.

The structure of the thesis is following:
In the first chapter, we introduce operads, modular operads, and properads.

We start with operads to demonstrate the basic principles. We present the three
main examples of operads, Ass, Com, and Lie. The first two of them will later
reappear also in the context of modular operads and properads. We also present
operads in the language of monads. In the follow-up section, we introduce modu-
lar operads. We enrich modular operads by a new graded commutative associative
product that we call connectd sum and present examples of modular operads with
connected sum – the Quantum Closed modular operad QC (as the analog of Com)
and Quantum Open modular operad QO (as the analog of Ass). We compared
connected sum with similar structures that already appeared in the literature
and present the formulation of connected sum also as an algebra over monad.
We close this chapter with properads. We present the well-known example of
Frobenius properad (the commutative case) and introduce the new example of
Open Frobenius properad (the associative case).
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In the second chapter, we first look at the Cobar complex and Feynman trans-
form from two perspectives. The first perspective gives us general outlines of the
procedure, the necessary conditions, and the form of the result. The second
part discusses the explicit construction of the relevant graph complex and of the
coboundary operator. The reason to talk about the Cobar complex (or Feynman
transform) is that it provides a quasi-free resolution of the original operad. In
some cases (e.g. quadratic Koszul operad) it is also the minimal one. In the third
part of this chapter, we recall the results of Barannikov for modular operads and
mimic them for properads. Broadly speaking the algebra over the Cobar complex
(or Feynman transform) corresponds to the solutions of some (quantum) master
equation.

The thesis at this point definitely splits into the part devoted to the modular
operads (chapters 3, 4, and 5) and to the part specified to the properads (chapter
6).

We start the third chapter by a very short adventure to the realm of physics to
motivate the following. Afterward, we introduce the Batalin-Vilkovisky algebras
and prove that the combination of the modular operad with the odd modular
operad, both equipped with the connected sum, offers us the structure of Batalin-
Vilkovisky algebra. Thanks to Barannikov’s theory we know we can encode the
algebras over Feynman transform as solutions of the quantum master equation.
And, as we show at the end of the section 3.2.1, such solutions can be expressed
also as some d + ∆ closed elements. We define the quantum homotopy algebras
as algebras over Feynman transform with such elements and introduce the space
Fun(P , V ) that can be seen as the Batalin-Vilkovisky algebra of functions with
“generalized” symmetry (given by the arbitrary modular operad P). We check
that the restriction to the commutative operad gives us the “standard” symmetric
tensor algebra. And we close this chapter with technical tools necessary for the
following chapter – namely, we recall the special deformation retracts and Hodge
decomposition.

Chapter four talks about the Homological perturbation lemma. With its help
we are able to transfer the structure of quantum homotopy algebras from the space
Fun(P , V ) to Fun(P , H(V )). One can consider two possible perturbations. The
perturbation by BV-Laplacian ∆ gives us an effective actionW on the cohomology
satisfying the appropriate master equation. And we show that the projection P2
of the second perturbation has similar properties as a path integral from the
physical motivation. At the end of this chapter, we show how looks the effective
action for space Fun(QC, V ) when one does not have any product.

Tn the follow-up chapter 5, we define the homotopy between two solutions
of quantum master equation and introduce the quantum homotopy algebra mor-
phism. This gives us three equivalent definitions of the homotopy. We also present
an example of logBer(Φ).

In chapter 6 we first recall IBL operad and its version up to “higher homo-
topy”, the IBL∞ operad. The theorem identifying the algebras over the cobar
complex of Frobenius properad with the IBL∞ algebras is then rephrased in our
convention. This is followed by the theorem for the “relatives” of the IBL∞ – we
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introduce the IBA∞-algebras for the associative version up to homotopy and the
IB-homotopy algebra for the open-closed case. As of last we sketch the idea of an
application of the Homological perturbation lemma for IB-homotopy algebras.
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List of Abbreviations
For us, the field k is always of characteristic 0. To avoid problems with duals, we
assume that all our vector spaces are Z-graded and degree-wise finite dimensional.
Unless stated otherwise we always consider their graded dual, denoted by V ∗. We
use a cohomological convention.

1. dg means differential graded

2. | · | denotes a degree of an element of a graded vector space (e.g. for differ-
ential d in the cohomological convention, |d| = 1)

3. ⊔ is a disjoint union

4. For set C and element c ∈ C we abbreviate C − c := C \ {c}

5. [n] is the set {1, 2, . . . n}

6. card(A) is the cardinality of the set A (e.g. card([n]) = n)

7. Σn denotes the symmetric group of [n]

8. κ(σ) is the Koszul sign (or parity) of a permutation σ ∈ Σn

9. For n ∈ N0 and a set {a1, a2, . . .} of natural numbers,
n+ {a1, a2, . . .} ≡ {n+ a1, n+ a2, . . .}

10. · denotes the skeletal version. For example a◦b denotes the skeletal version
of operadic composition

11. ≃−→ denotes isomorphism (or bijection between two sets)

12. ∼−→ denotes quasi-isomorphism, i.e. morphism that induces isomorphism on
(co)homology

13. ↑ is a suspension (i.e. (↑ V )i = Vi−1)

14. Vect is the category of graded vector spaces with homogenous linear maps
of arbitrary degrees

15.
∏︂⋆

i∈[n] xi = x1 ⋆ . . . ⋆ xn for ⋆-product defined in 125

Let us call Σ-module a collection of (right) Σn-modules for n ≥ 0. Similarly
Σ-bimodule is a collection of (Σm,Σn)-modules for m,n ≥ 0 which are left Σm

and right Σn and the left action commutes with the right.

We sometimes write for element ai of homogeneous basis of vector space just
(−1)i instead of (−1)|ai|. Similarly to shorten formulas, we write for the dual
basis ϕi, ϕ(aj) = δij, just (−1)i. Obviously, this doesn’t cause a problem since
|ai| = −|ϕi| and (−1)|ai| = (−1)−|ai|+2|ai|.

Sometimes the notation will unfortunately collide across the different sec-
tions.4

4Since there is only finite number of letters and possibly infinite number of concepts.
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1. Operads, Modular Operads,
and Properads
Operads are objects that model operations with several inputs and one output.
As such, they can be generalized in the context of graphs in two possible ways.
The undirected graphs with several inputs lead to the notion of cyclic or modular
operads, whereas the connected directed graphs with several inputs and several
outputs lead to the notion of properads.

The main purpose of this chapter is to introduce modular operads and prop-
erads. But before we deep dive into more complicated definitions, let us start
lightly with the classical operads. Readers already familiar with operads will find
nothing new in the section 1.1 and may skip it completely. This section only
serves as a simplified version of more complicated definitions introduced later in
sections 1.2 and 1.3.

Also let us point out that from the beginning we introduce only operads in
the category of (differential graded) vector spaces, i.e. (dg) Vect. It is possible to
define operads in any symmetric monoidal category equipped with the Cartesian
product. For instance, one can define operads in the category of sets, simplicial
sets, topological sets, etc. For the reader interested in those we recommend
section 5.3.9 in [27] as a first point where to look.

A basic references of this chapter are [27], [30], and [32].

1.1 Operads
To start with, we need to know what is an operad. We have several different
options on how to define it.

The most “compact” definition is the monoidal definition (also known as a
triple). It can be very easily generalized to any symmetric monoidal category.
But for practical computations and direct verification, it is rather inconvenient.
On the other hand, the more explicit the definition is, the more complicated the
involved axioms become when we want to generalize the definition to modular
operads or properads. We decide to choose the golden mean and, similarly as in
[9], most of the time we use the biased definition with collections P(C) indexed
by finite sets C.

To fully understand what we mean by the biased definition, we start with
the classical definition 1.1.1, where everything could be shown explicitly. Subse-
quently, we compare it with a biased definition and henceforth use the biased.

Since both operad and the connected sum can be defined as algebras over
monads, we also recall this definition in the section 1.1.2. And to see what we
mean by “generalization in the context of graphs” we also sketch the combinatorial
definition.

1.1.1 Classical definition
Although the most common definition of operads is probably the classical defini-
tion by P. May, we introduce the partial definition by M. Markl. The advantage
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of the partial definition is in the fact that we automatically have the “linearised”
version and we are immediately prepared to talk about the differential graded
operads.

Since in this definition we need to describe only how to compose two operations
to describe the whole operad, we explicitly show what we mean by associativity
and equivariance. Then we show how this definition is translated into biased
version which will be used later for modular operads and properads.

Definition 1. An operad in the category of K-modules is a collection of right
K [Σn]-modules (Σ-module) P = {P(n)}n≥0 together with K-linear maps called
operadic composition

◦i : P(m) ⊗ P(n) → P(m+ n− 1)

(where 1 ≤ i ≤ m and 0 ≤ n) such that the following two axioms are satisfied:

1. Equivariance: For each 1 ≤ i ≤ m, 0 ≤ n, π ∈ Σm and σ ∈ Σn let π ◦i σ be
the permutation where pairs

(i, π ◦i σ(i)) , (i+ 1, π ◦i σ(i+ 1)) , . . . (i+ n, π ◦i σ(i+ n))

corresponds to σ inserted on i-th place of π1. Then for p ∈ P(m), q ∈ P(n)
we require

(pπ) ◦i (qσ) =
(︂
p ◦π(i) q

)︂
(π ◦i σ)

where the action of π ∈ Σm on an element p ∈ P(m) is denoted as pπ.

p
qi

π
σ

p ◦π(i) q

π ◦i σ

Figure 1.1: Axiom of equivariance pictorially

2. Associativity: For each 1 ≤ j ≤ m, 0 ≤ n, 0 ≤ k and p ∈ P(m), q ∈ P(n),
r ∈ P(k)

(p ◦i q) ◦j r =

⎧⎪⎪⎨⎪⎪⎩
(p ◦j r) ◦i+k−1 q if 1 ≤ j < i

p ◦i (q ◦j−i+1 r) if i ≤ j < n+ i

(p ◦j−n+1 r) ◦i q if i+ n ≤ j ≤ m+ n− 1

For unital operads there is one more axiom2

1For example if we take permutation π = (4, 1, 3, 2) ∈ Σ4 and σ = (2, 1, 3) ∈ Σ3 and insert
σ as second argument of π we get π ◦2 σ = (2, 5, 4, 6, 3, 1) ∈ Σ6.

2In [32] the operads without unit are called pseudo-operad. In the following, we call as
operads also those without unit.
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p
r

q

j

i

p
r

q

j

i+k−1

k

Figure 1.2: Axiom of associativity pictorially

3. Unitality: There exists e ∈ P (1) such that p ◦i e = p for p ∈ P (m) and
1 ≤ i ≤ m, e ◦1 q = q for q ∈ P (n).

One may recognize operads as abstractions of collections of composable func-
tions. To get familiar, let us show a few examples. And let us start with the
toy-model, endomorphism operad.

Example 2. For any vector space V , the endomorphism operad is defined as
EndV (n) = HomK (V ⊗n, V ). The right action3 is defined as

(fσ) (v1, v2, . . . vn) = f
(︂
vσ−1(1), vσ−1(2), . . . vσ−1(n)

)︂
where vi ∈ V and σ ∈ Σn. The composition is defined as f ◦i g = f(1i−1

V ⊗g⊗1n−i
V )

Now, we could continue with a list of interesting and important operads. Let
us limit to three basic examples, called by B. Vallette as “the three graces of
operads”. Two of them will be important for us since we will meet their modified
versions later in the language of modular operads and properads. The notation
of the examples is adopted from [30].

Example 3. A commutative operad is a collection Com = {Com(n)}n≥1 such
that Com(n) = K with trivial Σn-action for every n.

Notice, that for a commutative operad it does not matter which index i have
been used in the operadic composition ◦i.

Example 4. An associative operad is Ass = {Ass(n)}n≥1 = {K [Σn]}n≥1. If
α denotes a generator of regular representation K[Σ2] and e = α2 is the identity
permutation. Then all elements of K[Σ3] are in the linear span of: e ◦1 e =
(123), e ◦1 α = (213), e ◦2 α = (132), α ◦1 e = (312), α ◦2 e = (231), α ◦1 α = (321)
with the relation

α ◦1 α = α ◦2 α (1.1)

as we would expect.
Notice that this operad can be nicely described also as a free operad generated

by regular representation of Σ2 (only arity 2 is nontrivial) factorized by ideal4
generated by a linear span of the relation (1.1).

3Notice that the right action on operad is induced by left action on V n.
4An ideal I in operad P is a collection I = {I(n)|I(n) ⊂ P(n)}n≥0 of Σn-invariant subspaces

such that for all f, g ∈ P, f ◦i g is in I if f ∈ I or g ∈ I.
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Example 5. A Lie operad. Let us use the handy approach from the previous
example. A Lie operad is generated by a Σ module

ELie =

⎧⎨⎩kβ if n = 2
0 if n ̸= 2

where β is signum representation of Σ2. The ideal is generated by the Jacobi
identity

β ◦1 β + (β ◦1 β)(123) + (β ◦1 β)(132) = 0

Remark 6. The first straightforward modification of definition of operad is to
consider a notion of differential graded operad (P , dP) in the category of
differential graded K-modules (i.e. dg vector spaces).

Recall, the usual action of σ ∈ Σn is

σ(v1 ⊗ . . .⊗ vn) = κ(σ) · vσ−1(1) ⊗ . . .⊗ vσ−1(n)

where κ(σ) stands for the Koszul sign.

Definition 7. Let (P , dP), (Q, dQ) be two dg operads. The homomorphism
of dg operads α : P → Q is a collection of degree 0 maps αn : P(n) → Q(n)
such that these maps are equivariant, commute with operadic composition5 and

dQ ◦ α = α ◦ dP

An algebra over P (or P-algebra) of V is a homomorphism of operads

α : P → EndV

Remark 8. One can consider algebras over an operad also as a “representations”
of the operad.

It is now easy to verify that the algebras over Com are ordinary commutative
algebras, the algebras over Ass are ordinary associative algebras and The algebras
over Lie are Lie algebras.

Also, instead of sets with fixed ordering, we can consider the “categorified
sets”. Let us first recall the invariants and coinvariants.

Definition 9. Let W be a vector space with a linear action of a finite group G.
Denote by WG the set of invariants

WG = {w ∈ W | ∀g ∈ G : g · w = w}

and WG the set of coinvariants

WG = W/{w − g ·W |w ∈ W, g ∈ G}

There are mutually inverse isomorphisms of vector spaces γG : WG → WG

and γG : WG → WG.
γG(w) = 1

|G|
[w]

for w ∈ WG ⊂ W where [w] ∈ WG denotes the equivalence class of w, and

γG([w]) =
∑︂
g∈G

g · w

5For unital operads also preserve the unit.
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Remark 10. Formally, the Σ-module P = {P(n)}n≥0 can be viewed as functor
from the groupoid of symmetric groups ΓΣ to category of Vect.

Let us extend this functor to category of finite sets and their bijections Bij to
Vect.6 For C is a finite set, card(C) = n, consider the coinvariant space

P(C) =

⎛⎜⎝ ⨁︂
f :[n]

≃−→C

P(n)

⎞⎟⎠
Σn

where the right action for p ∈ P(n) is given as σ(f, p) = (fσ, pσ)
On the other hand, ΓΣ is the skeleton of the category Bij.

Definition 11. An operad P consists of a collection {P(C) | C ∈ Bij} of dg
vector spaces and two collections of degree 0 morphisms of dg vector spaces

{P(ρ) : P(C) → P(C ′) | ρ : C → C ′ a morphism in Bij}
{ ◦a : P(C ⊔ a) ⊗ P(D) → P(C ⊔D) | C,D ∈ Bij}

These data are required to satisfy the following axioms:

1. P(1C) = 1P(C), P(ρσ) = P(σ) P(ρ)

2. P(ρ|C ⊔ σ) ◦ρ−1(a) = ◦a P(ρ) ⊗ P(σ)

3. ◦a( ◦b ⊗1) = ◦b(1 ⊗ ◦a)

(respectively ◦a( ◦b ⊗1) = ◦b( ◦a ⊗1)(1⊗τ) where τ is a monoidal symmetry
from category of vector spaces)

whenever the expressions make sense.

Remark 12. If we consider only Axiom 1., the resulting structure is called a dg
Σ-module. Obviously, by forgetting the composition map, an operad gives rise to
its underlying Σ-module.

All these notions are equivalent to their counterparts in definition 1. For
example, Axiom 1. stands for the right Σ-actions, 2. expresses the equivariance
and 3. expresses the associativity of the structure maps.

In the following, we will sometimes need a special type of permutations –
shuffles and unshuffles. This is maybe a good moment to recall their definitions.

Definition 13. A shuffle σ of type (p, q) is an element of Σp+q such that

σ(1) < σ(2) < . . . < σ(p) and σ(p+ 1) < . . . < σ(p+ q)

Similarly an unshuffle ρ of type (p, q) is an element of Σp+q such that we have
ρ(ij) = j for some i1 < i2 < . . . < ip , il+1 < . . . < ik.

Hence, ρ is an unshuffle if ρ−1 is a shuffle.
6In [27] this functor is called linear species.
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1.1.2 Monoidal definition and combinatorial definition
Monads offer remarkably economical way of formalizing the notion of various
“algebraic theories”. There are monads corresponding to the theory of rings,
theory of topological groups, etc. For more details and examples see [26]. The
convention used here comes mainly from [32].

Monad on a category C can be defined as monoid in the monoidal category of
endofunctors on C, formally:

Definition 14. Let (C,⊗, 1) be a symmetric monoidal category. A monad
in C is a triple (M,µ, η) of a functor M : C → C together with two natural
transformations µ : M ◦ M ⇒ M and η : 1C ⇒ M respecting associativity
and unitality properties, i.e. ∀x ∈ C : µx ◦ µM(x) = µx ◦ (Mµx), respective
µx ◦M(ηx) = µx ◦ ηM(x) = 1M(x).

Definition 15. An algebra (x, φ) over monad (C,⊗, 1) is an object x ∈ C
together with a map φ : M(x) → x such that φ ◦ ηx = 1x and φ ◦ µx = φ ◦ (Mφ)

As [20] advise, there are now two possible ways how to apply this abstract
definition. We can choose as a category C a category Vect, define operad P to be
a monad on this category and the P-algebra to be the algebra over this monad.
See remark 16. This is what is called the monoidal definition in [27].

Or we can choose as C a category of Σ-modules Σ-Modk and define operad as
algebra (P , ϕ) over the tree monad (T, µT , ηT ). See remark 17. This gives us a
combinatorial definition.

Remark 16. Let us consider Σ-module {P(n)}n≥0 and a generic vector space V .
Let us define

P(V ) =
⨁︂
n

P(n) ⊗Σn V
⊗n

Obviously, P is an endofunctor on the category of vector spaces Vect, known as
Schur functor. The operad is then defined as Schur functor P with the compo-
sition map7 γ : P ◦ P → P and the unit map η : I → P (where I is identity
functor) which make P into monoid. For technical details (how to compose two
Schur functors etc.) see section 5.1 in [27].

Remark 17. Choose C to be a category Σ-Modk of K[Σ]-modules. The objects
are simply collections P = {P(n)}n≥0 and the morphisms are maps α : P → Q
such that αn : P(n) → Q(n) are Σn-equivariant. For every P(n) we can consider
its categorified version (see remark 10). Let us denote the K[Σ]-module for a
general finite set A, card(A) = n, as P((A)).

Next, we need to introduce the category of graphs Treen. The object of this
category are rooted non-planar trees with n leaves. In other words, the half-edges
adjacent to every vertex could be split by their orientation. Exactly one of them

7It is important to note that here one must use May’s definition of operad. May’s definition
of the composition γ(i1, . . . in) : P(n) ⊗ P(i1) ⊗ . . . P(in) → P(i1 + . . . in) may be recovered
from the partial composition as

γ(i1, . . . in) = (− ◦1(· · · (− ◦n−1(− ◦n −))·))
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is “outgoing” and the rest is “incoming”. Let us call the adjacent half-edges of
every vertex as legs and denote by iLeg the incoming legs.

The outgoing half-edge of the whole graph is called root and the set of in-
coming half-edges of the graph are called leaves. The non-planarity means there
is no specific embedding of the tree into the plane given (i.e. there is no specific
ordering of incoming half-edges). The morphisms in this category preserve the
labeling of the leaves. For a graph Γ in this category, we denote by V ert(Γ) a set
of its vertices.

Finally, we can define the endofunctor T : Σ-Modk → Σ-Modk as

(TP)(n) = colim
Γ∈IsoTreen

⨂︂
v∈V ert(Γ)

P((iLeg(v))),

where iLeg(v) denotes the set of incoming half-edges of vertex v, IsoTreen is a
subcategory of Treen where all morphisms are isomorphisms, i.e. core of Treen.

This endofunctor carries the structure of monad.8 The proof could be found
in [27] as Lemma 5.6.2.

Remark 18. Few additional remarks. We called the structure maps in defini-
tion 1 “operadic composition” to distinguish it from the classical composition of
functors. In the next, we sometimes omit the word ‘operadic’.

Notice, that for any Σ-module P , T (P) is a free operad. Any operad could
be defined as a quotient of free operad by operadic ideal. In fact, the free operad
functor F : Σ-Modk → Operad is a left adjoint to the forgetful functor Operad →
Σ-Modk. In general, any pair of adjoint functors give rise to a monad9 and the
composition of these two functors allows one to define the underlying monad of
the combinatorial definition.

Taking operads in the same way as associative algebras, but in the different
monoidal category, allows one to translate many of the constructions for associa-
tive algebras to operads. This applies to, for example, Koszul duality.

1.2 Modular operads
As we have seen in the previous section, operads can be defined as algebras over
tree monad. Let us replace the trees by graphs without orientation but with
possible loops.

Since modular operads were introduced in [15], we use many of their argu-
ments. Nevertheless, the convention and notation are mostly taken from [9].

Definition 19. Denote Cor the category of stable corollas: the objects are
pairs (C,G) with C a finite set and G a non-negative integer such that the
stability condition is satisfied:

2(G− 1) + card(C) > 0.

A morphism (C,G) → (D,G′) is defined only if G = G′ and it is just a bijection
C

≃−→ D.
8Roughly speaking - natural transformation µ is given by replacing vertices of a given tree

by another trees with matching number of incoming half-edges. The natural transformation η
is given by maping Σn-modules to tree with only one vertex and appropriate number of leaves.

9But not every monad is given by a pair of adjoint functors.
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Remark 20. The condition of stability, introduced in [15], has its name from
the theory of moduli spaces of curves. A completely analogous condition could
be found there.

At first, this condition may seem a bit artificial for our purposes. One possible
motivation could be found in physics. As we will see later, the stability condition
could be understood as looking only on the interaction part of kinetic energy and
ignoring the free part of the actional functional.

Our motivation is more technical. The analogous arguments to those in re-
mark 92 show that we need to “reduce” the category of modular operads to be
able to define the Feynman transform in 2.2.2.

Definition 21. A modular operad P consists of a collection

{P(C,G) | (C,G) ∈ Cor}

of dg vector spaces and three collections

{P(ρ) : P(C,G) → P(D,G) | ρ : (C,G) → (D,G) a morphism in Cor}
{ a◦b : P(C1 ⊔ {a}, G1) ⊗ P(C2 ⊔ {b}, G2)→P(C1 ⊔ C2, G1 +G2) |

(C1, G1),(C2, G2) ∈ Cor}
{ ◦ab : P(C ⊔ {a, b}, G) → P(C,G+ 1) | (C,G) ∈ Cor} .

of degree 0 morphisms of dg vector spaces. These data are required to satisfy
axioms

1. a◦b(x⊗ y) = (−1)|x||y|
b◦a(y ⊗ x)

for any x ∈ P(C1 ⊔ {a}, G1), y ∈ P(C2 ⊔ {b}, G2),

2. P(1C) = 1P(C), P(ρσ) = P(ρ) P(σ)
for any morphisms ρ, σ in Cor,

3. (P(ρ|C1 ⊔ σ|C2)) a◦b = ρ(a)◦σ(b) (P(ρ) ⊗ P(σ))

4. P(ρ|C) ◦ab = ◦ρ(a)ρ(b) P(ρ)

5. ◦ab ◦cd = ◦cd ◦ab

6. ◦ab c◦d = ◦cd a◦b

7. a◦b ( ◦cd ⊗1) = ◦cd a◦b

8. a◦b (1 ⊗ c◦d) = c◦d ( a◦b ⊗1)

whenever the expressions make sense.

Remark 22. As before, Axiom 2. stands for Σ-action, 3., 4. express the equiv-
ariance and 5., 6., 7. and 8. the associativity.

We show some examples of modular operads in the next section 1.2.1 when
we introduce a connected sum. Now, let us make few remarks.
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c◦d

◦ab

◦cd

a◦b

Figure 1.3: Axiom 6. pictorially

Remark 23. We assume for simplicity that all spaces P(C,G) are finite dimen-
sional in each degree.

In the chapter 2 we want to define the Feynman transform of modular operads.
As was explained in [15] it is necessary to introduce a certain twist. For this reason
we, similarly as in [9], consider also a special case of twisted modular operads, an
odd modular operad. For the definition and more details about the twisting
see section 2.2.2. The operadic compositions of twisted modular operad, denoted
by a• b and • ab, have degree 1 and the axioms 5.-8. are changed accordingly

5. • ab • cd = − • cd • ab

6. • ab c• d = − • cd a• b

7. a• b ( • cd ⊗1) = − • cd a• b

8. a• b (1 ⊗ c• d) = − c• d ( a• b ⊗1)

We will also sometimes need a skeletal version of (odd) modular operad,
P . The definition can be obtained be restriction of the underlying category
Cor to corollas of the form ([n], G) (as we mentioned in remark 10). We will
also write just P(n,G) (instead of P([n], G)). The explicit formulas of operadic
compositions and corresponding axioms are inconveniently complicated, so we
restrain from their explicit formulation (for more details see Section D in [9]).

1.2.1 Connected sum and examples of modular operads
We “enhance” the modular operads by a connected sum. This gives us a graded
commutative associative product. The elegant geometrical interpretation in terms
of moduli spaces of bordered Riemann surfaces from [41] will be still preserved
as we will see in examples 27 and 30.

Definition 24. A modular operad with connected sum is a modular operad
P equipped with a collection of degree 0 chain maps called connected sum defined
on two components as

#2 : P(C,G) ⊗ P(C ′, G′) → P(C ⊔ C ′, G+G′ + 1) (1.2)

and on one component as

#1 : P(C,G) → P(C,G+ 2) (1.3)

such that
(CS1) (σ ⊔ σ′)#2 = #2(σ ⊗ σ′) for all bijections σ : C → D, σ′ : C ′ → D′,
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(CS2) #2τ = #2, where τ is monoidal symmetry (from category of vector spaces),
(CS3) #2(1 ⊗ #2) = #2(#2 ⊗ 1),
(CS4) As maps P(C,G) → P(C − {i, j}, G+ 3)

◦ij #1 = #1 ◦ij

(CS5a) As maps P(C,G) ⊗ P(C ′, G′) → P(C ⊔ C ′ − {i, j}, G+G′ + 2),

◦ij #2 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
#2( ◦ij ⊗1) . . . i, j ∈ C

#2(1 ⊗ ◦ij) . . . i, j ∈ C ′

#1 i◦j . . . i ∈ C, j ∈ C ′

#1 j◦i . . . j ∈ C, i ∈ C ′

(CS5b) As maps P(C,G) ⊗ P(C ′, G′) → P(C ⊔ C ′ − {i, j}, G+G′ + 2),

i◦j(#1 ⊗ 1) = #1 i◦j . . . i ∈ C, j ∈ C ′

(CS6) As maps P(C,G) ⊗ P(C ′, G′) ⊗ P(C ′′, G′′) → P(C ⊔C ′ ⊔C ′′ − {i, j}, G+
G′ +G′′ + 1),

i◦j(1 ⊗ #2) =

⎧⎨⎩#2( i◦j ⊗1) . . . j ∈ C ′

#2(1 ⊗ i◦j)(τ ⊗ 1) . . . j ∈ C ′′

where the map (τ⊗1) : P(C,G)⊗P(C ′, G′)⊗P(C ′′, G′′) → P(C ′, G′)⊗P(C,G)⊗
P(C ′′, G′′) switches the first two tensor factors, and i ∈ C.

Remark 25. The connected sum for twisted modular operad is defined precisely
as in the normal, i.e. untwisted case. # is again a degree 0 operation. To make
the distinction between twisted and untwisted case more explicit, we write the
axioms (CS5a) and (CS6) evaluated on elements for our case, i.e. for odd modular
operad.

If p ∈ P(C,G), p′ ∈ P(C ′, G′) and p′′ ∈ P(C ′′, G′′), then in the untwisted case
(CS5a)

◦ij(p#2 p
′) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
( ◦ij p) #2 p

′ . . . i, j ∈ C

p#2 ( ◦ij p′) . . . i, j ∈ C ′

#1 (p i◦j p′) . . . i ∈ C, j ∈ C ′

#1 (p j◦i p′) . . . j ∈ C, i ∈ C ′

and in the odd case

• ij(p#2 p
′) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
( • ij p) #2 p

′ . . . i, j ∈ C

p#2 ( • ij p
′)(−1)|p| . . . i, j ∈ C ′

#1 (p i• j p
′) . . . i ∈ C, j ∈ C ′

#1 (p j• i p
′) . . . j ∈ C, i ∈ C ′

And (CS6) in untwisted case

p a◦b(p′ #2 p
′′) =

⎧⎨⎩(p a◦b p′) #2 p
′′ . . . b ∈ C ′

p′ #2 (p a◦b p′′) . . . b ∈ C ′′
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and in the odd case

p • ab(p′ #2 p
′′) =

⎧⎨⎩(p a• b p
′) #2 p

′′ . . . b ∈ C ′

(−1)|p||p′|+|p′|p′ #2 (p a• b p
′′) . . . b ∈ C ′′

Definition 26. The skeletal version

#2 : P(n1, G1) ⊗ P(n2, G2) → P(n1 + n2, G1 +G2 + 1)

of connected sum #2 is defined as

#2 ≡ (θ1 ⊔ θ2
′)−1#2(θ1 ⊗ θ2),

where θ1 : C1 → [n1] and θ2 : C2 → [n2] are arbitrary bijections and θ2
′ is a

composition of θ2 followed by order preserving map [n2] → n1 + [n2].
One easily verifies that the definition of #2 is independent of the choice of θ1

and θ2. The skeletal version of #1 is defined trivially as

#1(P(n,G)) = P(n,G+ 1)

The following two examples are taken from [9]. For a fuller treatment we
refer the reader to ibid. Let us here just recall some of the basic properties, the
geometrical interpretation and their newly introduced connected sum.

Example 27. The Quantum Closed operad QC. The components are given as
one dimensional spaces QC(C,G) := Spank{CG}, where CG is a symbol of degree

0 and G satisfy that G2 − card(C)
4 + 1

2 is integer. The connected sum is defined
simply as

CG1
1 #2 C

G2
2 = (C1 ⊔ C2)G1+G2+1

#1
(︂
CG

)︂
= CG+2

In its geometrical interpretation, each component is a homeomorphism class of a
connected compact orientable surface of genus g and set C of punctures in the
interior, s.t. G = 2g + card(C)

2 − 1 is half-integer.10 Obviously, we can permute
the punctures freely among themselves. This operad would be also sometimes
incorrectly called commutative since QC is the modular envelope of the cyclic
operad Com.

The operadic composition i◦j corresponds to “sewing” the i-th puncture of
one surface with the j-th puncture of the second surface. In the same manner,
operadic self-composition ◦ij corresponds to sewing the i-th puncture with the
j-th puncture of the same surface.

The connected sum #2 corresponds to gluing a new “handle” between two
surfaces. If we consider a surface with genus g1 and punctures C1 (in the compo-
nent QC(C1, G1)) and a surface with genus g2, and punctures C2 (in QC(C2, G2)),
then the resulting surface has

G = 2(g1 + g2) + card(C1) + card(C2)
2 − 1

10In our definition, the components of an operad were indexed by integer. In general, we
need just something isomorphic with integers.
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◦ij
i◦j

Figure 1.4: Operadic composition on Quantum closed operad

In other words, the new surface is in the component QC(C1 ⊔ C2, G1 +G2 + 1).
And similarly, the connected sum #1 corresponds in this geometrical interpre-

tation to gluing a new handle on one surface. The geometrical genus of the surface
increase by one, i.e. the G of the new surface is given as 2(g+ 1) + card(C)

2 − 1.

#2 #1

Figure 1.5: Connected sum on Quantum closed operad

Remark 28. There is another possible definition of the Quantum Closed operad.
In that case the components are simply given as QC(C,G) := Spank{CG} without
any restriction on G. The connected sum could be again defined, but we don’t
have its nice geometrical interpretation.

Nevertheless, as algebras both cases looks the same. The reason will be obvi-
ous from the definition of endomorphism modular operad (in section 1.2.3).

Before we give the next example, let us introduce a notion of a cycle.

Definition 29. The cycle in a set C is an equivalence class ((x1, . . . , xn)) of an
n-tuple (x1, . . . , xn) of several distinct elements of C under the equivalence

(x1, . . . , xn) ∼ σ(x1, . . . , xn)

where σ ∈ Σn is the cyclic permutation σ(i) = i + 1 for 1 ≤ i ≤ n − 1 and
σ(n) = 1. In other words,

((x1, . . . , xn)) = · · · = ((xn−i+1, . . . , xn, x1, . . . , xn−i)) = · · · = ((x2, . . . , xn, x1)) .

We call n the length of the cycle. We also admit the empty cycle (()), which is a
cycle in any set.
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For a bijection ρ : C ≃−→ D and a cycle ((x1, . . . , xn)) in C, define a cycle in D:

ρ ((x1, . . . , xn)) := ((ρ(x1), . . . , ρ(xn))) .

Example 30. The Quantum Open operad QO. The components are given as

QO(O,G) := Spank{{o1, . . .ob}g | b, g ∈ N0,oi cycle in O,
b⨆︂
i=1

oi = O,

G = 2g + b− 1}

The connected sum is defined in this case as

{o1, . . .ob1}g1 #2 {o′
1, . . .o′

b2}g2 = {o1, . . .ob1 ,o′
1 . . .o′

b2}g1+g2

#1 ({o1, . . .ob}g) = {o1, . . .ob}g+1

In geometrical interpretation, each element of QO is a homeomorphism class of a
connected compact orientable surface with genus g, b boundaries and punctures
O distributed on the boundaries according to the cycle-structure. The operadic
composition i◦j and self-composition ◦ij are again defined as sewing punctures.
Of course, only sewings resulting in orientable surfaces are allowed.

The connected sum again corresponds two gluing a new handle.
o1

o2

o3 o4

Figure 1.6: Element of QO(O,G) with b = 4 and g = 1

Remark 31. Notice that the operadic structure of QO is not commutative but
is (strictly) associative.

Remark 32. With the example of QO in the mind, we can give a nice justification
for the shifts of the G-grading in the definition of the connected sum (1.2) and
(1.3).

The operadic self-composition ◦ab of quantum open part QO could be acting
on elements on two different boundaries and so raise the geometrical genus of the
surface by one. But it could also act on two elements on the same boundary,
in which case the geometrical genus doesn’t change but the number of bound-
aries increase by one. To keep our geometrical interpretation of QO, we simply
introduce the grading by G = 2g + b− 1.

But for the Quantum closed modular operad, the output of the connected sum
#2 on P(C,G) ⊗ P(C ′, G′) with G = 2g1 + b1 − 1, G′ = 2g2 + b2 − 1 is a Riemann
surface in P(C ⊔ C ′, G′′) with G′′ = 2(g1 + g2) + (b1 + b2) − 1 = G+G′ + 1.

From the axioms of connected sum, the map ◦ab #2 should be equivalent to
#1 a◦b for a ∈ C, b ∈ C ′. The first map will obviously raise the grading in G
by two from the definition of the modular operad and previous argument. Hence
the map #1 also must raise the index by two.
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Remark 33. After these two examples, one may get a misleading impression,
that this geometrical interpretation of connected sum always work. In general,
the connected sum of two components should be seen more like a tensor product
with special behaviour with respect to the G-grading.

In section 1.2.4 we show the appropriate combinatorial object on which the
connected sum is based.

Example 34. These two examples can be easily combined into the third example
a 2-coloured modular operad QOC introduced in [9].

It is necessary to first replace the category Cor by Cor2 where the objects are
triples (O,C,G) with O,C finite sets and G non-negative half-integer such that

2(G− 1) + card(C) + card(O) > 0

Morphisms (O,C,G) → (O′, C ′, G′) are given by a pair of bijections O → O′,
C → C ′ such that G = G′.

All other definitions now adapt in obvious sense. For example components of
the QOC operad are given by

QOC(O,C,G) := Spank{{o1, . . .ob}gC | b, g ∈ N0,oi cycle in O,
b⨆︂
i=1

oi = O,

G = 2g + b+ card(C)
2 − 1}

For details about the composition see section 6.2 in [9].

Let us make a few remarks to compare our approach with others in the liter-
ature.

Remark 35. Note that when restricting to the QC we are in the case of [10].
In the commutative case, both G and g are preserved by i◦j and the structure

map ◦ij raises them both by one. Therefore in [10], they could choose the grading
by g. In their case, the grading is “recorded” by exponents of formal parameter ℏ,
and the stability condition, imposed in our case by the definition of the modular
operad, is forced by the weight grading w = 2g + n > 0.

If we restrict ourselves to the trivial case of QC, then connected sum #2 in (1.2)
could be interpreted as the usual symmetric tensor product.11 The connected sum
#1 in (1.3) raise the genus g by one in the “geometrical” case and we can interpret
it as multiplying by ℏ.

But for general operad, we required the consistent shifts in grading so we need
to introduce the grading by G.

Remark 36. After the previous remark, the structure defined in [37] may resem-
ble the modular operads with connected sum we just defined.

The structure MO defined there is “almost equivalent” to the notion of mod-
ular operads. The operation σ(m) : Pm → Pm−2 corresponds to our ◦ij and
one can define for appropriate permutations ρ ∈ Σm, τ ∈ Σn the composition
σ(m+n) ◦ (ρ, τ) ◦ νm,n : Pm × Pn → Pm+n−2 to be equivalent to our i◦j. The
parallels could be found also in similar geometrical motivation (moduli spaces of

11Mentioned later in remark 123.
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Riemann surfaces of all genera). Although one subtle difference is, that instead
of grading by geometrical genus g, [37] use the grading by Euler characteristic
χ = 2g + card(C) − 2.

Nevertheless, there are substantial differences. The most distinct is the ab-
sence of the map #1. Next, the map νm,n : Pm × Pn → Pm+n correspond to the
tensor product and does not change the grading in G.

Remark 37. A parallel can be found also in [24]. But again, the structure
defined there resembles the tensor product since it does not affect the grading by
G and the map #1 is missing.

For the reader interested in the explicit comparison we recommend to see
remark 52 with the monoidal definition of connected sum since the horizontal
composition of [24] is also given as a monad.

1.2.2 Unordered tensor product
Before we pay attention to the most important example of modular operads –
the endomorphism modular operad, let us make a few technical observations,
which will be useful for both endomorphism modular operad and endomorphism
properad.

In the next, we want to define a tensor product of collection {Vc}C of graded
vector spaces indexed by some set C. Since C is not ordered by default12, we
want also a tensor product that would not depend on any chosen order.

Definition 38. For any set C, card(C) = n and the vector space V we define
the unordered tensor product as

⨂︂
C

V =
⎛⎝ ⨁︂
ψ:C→[n]

V ⊗n

⎞⎠
Σn

the identifications are given as

(ψ, v1 ⊗ . . .⊗ vn)σ = (σψ, κ(σ)vσ−1(1) ⊗ . . .⊗ vσ−1(n))

where σ ∈ Σn and κ(σ) is a Koszul sign of the permutation σ.
We denote by iψ : V ⊗n ↪→ ⨁︁

ψ:C→[n] V
⊗n the canonical inclusion into the ψ-th

summand.

Let us recall few useful lemmas about the unordered tensor product from [29].

Lemma 39. Let f : C → D be an isomorphism of finite sets, ψ : C → [n],
{Vc}c∈C and {Wd}d∈D collections of graded vector spaces, Vc = Wd = V for all
c ∈ C, d ∈ D. Then the assignment⨂︂

c∈C
Vc ∋

[︂
vψ−1(1) ⊗ · · · ⊗ vψ−1(n)

]︂
↦−→

[︂
wfψ−1(1) ⊗ · · · ⊗ wfψ−1(n)

]︂
∈
⨂︂
d∈D

Vd

with wfψ−1(i) = vψ−1(i) ∈ Vfψ−1(i), 1 ≤ i ≤ n, defines a natural map

F :
⨂︂
c∈C

Vc →
⨂︂
d∈D

Vd

of unordered products
12As we have seen in remark 10.
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Proof. A direct verification.

Lemma 40. For disjoint finite sets C1, C2, one has a canonical isomorphism⨂︂
c∈C1

Vc ⊗
⨂︂
c∈C2

Vc ∼=
⨂︂

c∈C1⊔C2

Vc.

Proof. Each ψ1 : C1
≃−→ [n] and ψ2 : C2

≃−→ [m] determine an isomorphism

ψ1 ⊔ ψ2 : C1 ⊔ C2
≃−→ [n+m]

by the formula

(ψ1 ⊔ ψ2)−1(i) :=

⎧⎨⎩ψ
−1
1 (i), if 1 ≤ i ≤ n

ψ−1
2 (i− n), if n < i ≤ n+m

The isomorphism of the lemma is then given by the assignment

[vψ−1
1 (1) ⊗ · · · ⊗ vψ−1

1 (n)] ⊗ [vψ−1
2 (1) ⊗ · · · ⊗ vψ−1

2 (m)]
↦→ [v(ψ1⊔ψ2)−1(1) ⊗ · · · ⊗ v(ψ1⊔ψ2)−1(n+m)]

Example 41. Let C = {c1, . . . , cn}. By iterating Lemma 40 one obtains a
canonical isomorphism ⨂︂

c∈C
Vc ∼= Vc1 ⊗ · · · ⊗ Vcn

which, crucially, depends on the order of elements of C. In particular, for C = [n],
Vc = V , c ∈ C, we have an isomorphism iψ : V ⊗n → ⨂︁

[n] V for every permutation
ψ. In particular, we have the isomorphism in := i1[n] corresponding to the natural
ordering on the set [n].

1.2.3 Twisted endomorphism modular operad
Without endomorphism modular operad one is not able to talk about algebra
over the modular operad. However, our motivation to introduce algebras over
modular operads is that we will be able to talk about algebras over the Feynman
transform. But as we show later in the section 2.2.2, Feynman transform produces
twisted modular operads. Therefore we also need to introduce the twisted endo-
morphism modular operad. However, for our purposes it is enough to introduce
the endomorphism odd modular operad.

Before we give its definition, let us recall some properties of symplectic vector
space and introduce some notation to shorten the formulas.

Definition 42. Let (V, d) be a dg vector space which is degre-wise finite. An
odd symplectic form ω : V ⊗ V → k of degree −1 is a nondegenerate graded-
antisymmetric bilinear map13. If d(ω) = 0, in other words

ω(d⊗ 1V + 1V ⊗ d) = 0

we call (V, d, ω) a dg symplectic vector space.
13Note, that this means ω(u, v) ̸= 0 implies |u| + |v| = 1 and ω(v, u) = (−1)|v|·|u|+1ω(u, v).
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Remark 43. The condition d(ω) = ω(d ⊗ 1V + 1V ⊗ d) = 0 ensures that coho-
mology of d inherits a symplectic structure (used later in remark 149).

If {al} is a homogeneous basis of V , define

bk =
∑︂
l

(−1)|al|ωklal =
∑︂
l

(−1)|al|(ω(ak, al))−1al (1.4)

The fact that ω is degree −1 gives |bk| = 1 − |ak|. The basis {ϕk} of graded dual
vector space V ∗, dual to {ak}, is defined by ϕk(al) = δkl .

Remark 44. In finite dimensional vector spaces the non-degeneracy of ω gives
an isomorphism X : V → V ∗, a ↦→ ω(a, ·). From this isomorphism, it is possible
to define ω∗ : V ∗ ⊗ V ∗ → K, ω∗(α, β) = ω(X−1(α), X−1(β)) such that matrix of
ω∗ is the inverse matrix of ω, i.e. ωij · ωjk = δki .

In the infinite-dimensional case, this became a bit more complicated since ω∗

is, in general, an element of (V ⊗V )∗∗ – a space that is much “bigger” than V ⊗V .
But thanks to our assumption, we can guess the inverse of ω.

First, let us fix the basis of V = ⨁︁
i Vi. Since each Vi is finite-dimensional,

we can order the basis of V as {{ai}0, {ai}1, {ai}−1, . . . {ai}k, {ai}−k, . . .} where
{ai}k is a basis of Vk and each of these basis can be picked in such a way that ω
has a form ⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 A1 0 0 . . .
−AT1 0 0 0

0 0 0 A2
0 0 −AT2 0
... . . .

⎞⎟⎟⎟⎟⎟⎟⎟⎠
where Ak is the regular matrix corresponding to the (non-degenerate) pairings of
elements from Vk with elements from V−k+1.

Therefore ωij as the components of the matrix inverse of ωij = ω(ai, aj) are
well-defined. So, as it is usual in the mathematical physics, we can consider
instead of ω∗ an element s ∈ V ⊗ V such that ω(s) = 1.

Remark 45. Let us introduce a convenient notation. Recall the canonical inclu-
sion iψ : V ⊗n ↪→ ⨁︁

ψ:C→[n] V
⊗n into the ψ-th summand.

Let Iψ : V ⊗n → ⨂︁
C V denote the inclusion iψ followed by the natural projec-

tion. For F ∈ ⨂︁
C V

∗ ⊆ (⨂︁C V )∗ we denote the “ψ”-th component as

(F )ψ = F ◦ Iψ : V ⊗n → k⊗n ∼= k.

Hence (F )ψ = (F )σψ ◦ σ for any σ ∈ Σn.

Definition 46. The endomorphism odd modular operad EV is a collection
of dg vector spaces

EV (C,G) =
⨂︂
C

V ∗

with Σ-module structure EV (ρ) : EV (C,G) → EV (D,G) defined for any bijection
ρ : C → D and an element f ∈ EV (C,G) as (EV (ρ)(f))ψ = (f)ψρ where we have
the bijection ψ : D → [card(D)].
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Let us define the operadic composition: For any sets C1, C2, card(C1) = n1,
card(C2) = n2, let f ∈ EV (C1 ⊔ {i}, G1) ∼=

⨂︁
C1⊔{i} V

∗, g ∈ EV (C2 ⊔ {j}, G2) and
ψ : C1 ⊔ C2 → [n1 + n2]. Then

(f i• j g)ψ =
∑︂
k

(−1)|f |+|g|((f)ψ1 · (g)ψ2) Ψ−1(1⊗n1+n2 ⊗ ak ⊗ bk)

(the symbol · denotes the concatenation product) where we first consider an
extension of ψ as ψ̃ : C1 ⊔ C2 ⊔ {i, j} → [n1 + n2 + 2], ψ̃(c) = ψ(c) for any
c ∈ C1 ⊔ C2 and ψ̃(i) = n1 + n2 + 1, ψ̃(j) = n1 + n2 + 2.

Then we define shuffle14 Ψ ∈ Sh(n1 + 1, n2 + 1) as

Ψ|[n1] = ψ̃
⃓⃓⃓
C1
, Ψ(n1+1) = ψ̃(i) and Ψ|n1+1+[n2] = ψ̃

⃓⃓⃓
C2
, Ψ(n1+n2+2) = ψ̃(j)

Finally, define ψ1, ψ2 as compositions

ψ1 : C1
ψ̃|

C1−−−→ ψ(C1)
o.p.−−→ [n1 + 1] and ψ2 : C2

ψ̃|
C2−−−→ ψ(C2)

o.p.−−→ [n2 + 1]

where “o.p.” means order preserving. Similarly, operadic self-composition for
f ∈ ⨂︁

C⊔{i,j} V
∗, card(C) = n and ψ : C → [n] is defined as

( • ij f)ψ =
∑︂
k

(−1)|f |(f)ψ̃(1⊗n ⊗ ak ⊗ bk)

where ψ̃ is an extension defined as ψ̃(c) = ψ(c) for all c ∈ C, ψ̃(i) = n + 1,
ψ̃(j) = n+ 2.

This operad is equipped with differential given for f ∈ ⨂︁
C V

∗, card(C) = n
by

(df)ψ =
n∑︂
i=0

(−1)|f |(f)ψ(1⊗i ⊗ d⊗ 1n−i−1)

Remark 47. There is a simple trick

ω(x, y) = (−1)|x|B(x, y)

how to get from antisymmetric bilinear form ω a symmetric form B.
Let f ∈ ⨂︁

[n+2] V
∗, ψ(i) = i for i = 1, . . . n. Then from (1.4) we trivially have∑︂

k

f(· · · ⊗ ak ⊗ bk) =
∑︂
k

f(· · · ⊗ ak ⊗ al)(−1)|ak|ωkl =

=
∑︂
l

f(· · · ⊗ ak ⊗ al)(−1)|ak|ωlk(−1)|ak|·|al|+1 =
∑︂
l

f(· · · ⊗ bl ⊗ al)(−1)|ak|·|al|

So although we introduced antisymmetric form, we are in fact “twisting” with
the symmetric form. This remark will be useful later in section 2.3.2.

Definition 48. Let P be a twisted modular operad. An algebra over twisted
modular operad P on a dg symplectic vector space V is a twisted modular
operad morphism α : P → EV , i.e. it is a collection

{α(C,G) : P(C,G) → EV (C,G)|(C,G) ∈ DCor}

of dg vector space morphisms such that (in the sequel, we drop the notation
(C,G) at α(C,G) for brevity)

14See definition 13.
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1. α ◦ P(ρ) = EV (ρ) ◦ α for any bijection ρ

2. α ◦ ( a◦b)P = ( a◦b)EV
◦ (α⊗ α)

3. α ◦ ( ◦ab)P = ( ◦ab)EV
◦ α

Remark 49. As was pointed in [29], there exist two monoidal structures on
Vect-enriched categories. For homogenous maps f : V1 → V2, g : W1 → W2 and
homogenous elements v ∈ V1, w ∈ W1 one defines

(f ⊗ g)(v ⊗ w) = (−1)Xf(v) ⊗ g(w)

where X equals to |g| · |v| or |f | · |w| (follow from the Koszul sign rule if we are
applying the morphisms from the left or right). The first option is considered as
the standard monoidal structure.

We use here a little modified definition of endomorphism operad then it is
usual. The natural question is, whether we still have the standard monoidal
structure.

As we mentioned in remark 44, we can consider instead of ω an element
s ∈ V ⊗ V , |s| = 1. In [29] the operadic composition in twisted modular operad
is converted to “expanding indexes” using s. The interpretation, which leads to
standard monoidal structure uses the surprising inclusion V ∗ ⊗W ∗ ↪→ (V ⊗W )∗.

Let us apply this in our modified version of endomorphism operad. In other
words, a• b-composition of f ∈ ⨂︁

S1⊔{a} V
∗, g ∈ ⨂︁

S2⊔{b} V
∗ is in our case, thanks

to lemmas 39 and 40, given by composition⨂︂
S1⊔{a}

V ∗ ⊗
⨂︂

S2⊔{b}
V ∗ ≃−→

⨂︂
S1

V ∗ ⊗
⨂︂
{a,b}

V ∗ ⊗
⨂︂
S2

V ∗ ↪→

↪→
⨂︂
S1

V ∗ ⊗

⎛⎝⨂︂
{a,b}

V

⎞⎠∗

⊗
⨂︂
S2

V ∗ 1⊗s∗⊗1−−−−→
⨂︂
S1

V ∗ ⊗
⨂︂
S2

V ∗

Therefore f a• b g = (1 ⊗ s∗ ⊗ 1)(f ⊗ g) and similarly • ab f = (1 ⊗ s∗)f
The evaluation of, for example, a• b(1 ⊗ c• d) + c• d( a• b ⊗1) on arbitrary

elements x⊗ y ⊗ z is then

(−1)|x|x a• b(y c• d z) + (x a• b y) c• d z

The motivation for our convention is that we later want to encode our “Quan-
tum homotopy algebras”, similarly as Barannikov in [3], as solutions S of the
quantum master equation. In [3] these solutions encode the algebra over the
Feynman transform such that the components (n,G) of the endomorphism op-
erad are given by the finite tensor product. In the same time, we want to interpret
these solutions S as the action. Therefore the solutions should be defined with
elements of the dual space V ∗.

Hence instead of (⨂︁C V )∗ = Homk(V ⊗C ,k) we choose to define the compo-
nents as EV (C,G) = ⨂︁

C V
∗. It is fortunate that this choice also leads to the

standard monoidal structure of the composition of morphisms as we already dis-
cussed above.

In classical definition one puts EV (C,G) = ⨂︁
C V but this leads to “non-

standard” monoidal structure of composition of morphisms (see [29]). In mathe-
matical physics, on the other hand, endomorphism operad is given by EV (C,G) =
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(⨂︁C V )∗. But even if V is a degree-wise finite-dimensional space, the components
of EV (C,G) would be in general infinite-dimensional.

Finally, the connected sum for endomorphism operad.

Theorem 50. Let f ∈ EV (C1, G1) ∼=
⨂︁

C1 V
∗, g ∈ EV (C2, G2) ∼=

⨂︁
C2 V

∗, where
n1 = card(C1), n2 = card(C2) and ψ : C1 ⊔ C2 → [n1 + n2]. Then

(f#2 g)ψ = ((f)ψ1 · (g)ψ2)Ψ−1 (1.5)

where Ψ ∈ Sh(n1, n2) is defined as

Ψ|[n1] = ψ|C1
and Ψ|n1+[n2] = ψ|C2

and ψ1, ψ2 as compositions

ψ1 : C1
ψ|C1−−−→ ψ(C1)

o.p.−−→ [n1] and ψ2 : C2
ψ|C2−−−→ ψ(C2)

o.p.−−→ [n2]

where “o.p.” means order preserving. Then EV with the above defined operation
#2 is odd modular operad with connected sum.

Proof. The proof itself is technical and rather tedious so we restrain from it and
just mention two observations. First, it is not necessary to define (#1 f)ψ for
f ∈ ⨂︁

C since #1 in doesn’t change the set C, only rise the G by two.
Second, it may seems that connected sum defined in (1.5) is not commutative

as in definition 24 in (CS2). But notice that here we are using shuffle Ψ ∈
Sh(n1, n2). For (−1)|f |·|g|(g#2 f)ψ we would use shuffle Ψ′ ∈ Sh(n2, n1) defined
as

Ψ′|[n2] = ψ|C2
and Ψ′|n2+[n1] = ψ|C1

The sign (−1)|f |·|g| from monoidal symmetry will be canceled out by the Koszul
signs of the shuffles and the choosen monoidal structure discussed in remark 49.

We introduce skeletal version of twisted endomorphism modular operad later
in section 3.3.1.

1.2.4 Connected sum as algebra over monad
Modular operads can be also defined as algebras over some monads. While the
“combinatorial” structure of operads is captured by oriented trees, for modular
operads it is given by a stable graphs. The following paragraphs are written
in the same spirit as the remark 17 and again use the notation and convention
introduced in [32].

Remark 51. Let Σ-MModk denote a category of modular stable Σ-modules. The
objects are collections P = {P(n,G)}, where P(n,G) are k-modules with a right
Σn-action and satisfy P(n,G) = 0 if 2G+n−2 ≤ 0, and the morphisms are maps
α : P → Q such that α(n,G) : P(n,G) → Q(n,G) are Σn-equivariant.

With a small subtlety we can again define for every Σn-module P(n,G) a right
Aut(C)-module with action of automorphisms of general finite set C, card(C) =
n. We will denote such modules as P((C,G)).
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Now, let us introduce the category MGr(n,G) of stable graphs. For the defi-
nition of stability we assign to every vertex v a non-negative integer G(v). Graph
Γ is then stable if for every vertex v holds

2(G(v) − 1) + card(leg(v)) > 0

where leg(v) is a set of half-edges adjacent to vertex v. A genus of the graph
Γ is defined as

G(Γ) := dimQH1(Γ,Q) +
∑︂

v∈V ert(Γ)
G(v),

where V ert(Γ) is a set of vertices. Objects in the category MGr(n,G) are stable
graphs of genus G with n legs and morphisms preserve the labeling of the legs.

Finally, we can define the endofunctor T : Σ-MModk → Σ-MModk as

(TP)(n,G) = colim
Γ∈IsoMGr(n,G)

⨂︂
v∈V ert(Γ)

P ((leg(v), G(v))),

where IsoMGr(n,G) is a subcategory of MGr(n,G) where all of its morphisms
are isomorphisms, i.e. core of MGr(n,G), and we used the previously mentioned
categorification of sets. This functor carries also a monad structure which we
will shortly denote as (T, µT , ηT ). The construction and the proof could be found
in [15] or with even more technical details in section 5.3 of [32]. The modular
operads are algebras (P , ϕ) over this monad.

Having this example in a mind we see, we can define the connected sum also
as the algebra over some particular monad.

Remark 52. Let us define ColMGr(n,G) a category of collections of stable one-
vertex graphs. The object Λ is a collection

Λ = {Γ1, . . . ,Γk | Γi ∈ MGr(ni, Gi); n1 + . . .+ nk = n;
G1 + . . . Gk = G− k − 2s+ 1, s ∈ N0}

Morphisms of ColMGr(n,G) are generated by two types of maps that preserve
the labeling of the legs. The first type identifies the vertex vi of Γi with vertex vj
of Γj of the collection Λ such that the new vertex has a genus G(vi) +G(vj) + 1
and so consequently this map lowers the number of graphs in the collection Λ.
The second type of maps raises by two the genus of the vertex in one graph of
the collection.15

As we can see the stability condition necessitates the finiteness of the collec-
tions for every (n,G). It also ensures there are only finitely many isomorphism
classes of the collections. And similarly as before, we can define an endofunctor
S : Σ-MModk → Σ-MModk as

(SP)(n,G) = colim
Λ∈IsoColMGr(n,G)

⨂︂
Γi

P(ni, Gi)

where IsoColMGr(n,G) denotes the subcategory of isomorphism of ColMGr(n,G).
This functor carries the monad structure (S, µS, ηS). To prove it, one should anal-
ogously as in the construction in [15] use the nerve of the category ColMGr(n,G).

15Basically, this is exactly what the connected sum in (1.2) and (1.3) in the definition 24 do.
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The natural transformations µS and ηS are again induced by the face functor
∂1 : Nerve1(ColMGr(n,G)) → Nerve0(ColMGr(n,G)) and by the inclusion of
the terminal object (modular corolla of genus G with n legs but no edges) into
(SP)(n,G).

Algebra (P , ψ) over this monad is then algebra equipped with connected sum
satisfying axioms (CS1), (CS2), and (CS3) from definition 24.

Remark 53. Intuitively, we can understand applying functor T on Σ-module P
as creating all possible graphs which are connected by at least one edge and their
vertices are decorated by elements from appropriate component of P .16

Applying functor S could be similarly seen as making all possible collections
of decorated graphs with no edges between the components of the collection. We
will denote these collections in the following pictures by circles.17

The circles will be marked with an index s. For one-component collection
with s = 0 the natural morphism ψ corresponds to the identity morphism in the
category ColMGr(n,G). If s > 0 then ψ could be identified with applying s-times
morphisms of the two types of maps of the category ColMGr(n,G) described in
more detail in remark 52.

The natural question which arises is whether there is the compatibility re-
quired by the rest of the axioms in definition 24 between modular operad struc-
ture and the connected sum. In other words, since we have two possible options
on how to compose functors T and S one may ask if there is any natural trans-
formation between these compositions.

Let us consider a natural transformation α(P) : ST (P) → TS(P) which
corresponds to pulling the edges of the graphs out of the circle. And similarly
natural transformation β(P) : TS(P) → ST (P) that corresponds to joining the
disjoint circles with markings s1, s2, . . . , sk together into one circle and putting
all edges inside the new circle with a marking s1 + s2 + . . .+ sk.

Lemma 54. Let (P , ϕ) be an algebra over monad (T, µT , ηT ) defined in remark
51, and (P , ψ) algebra over monad (S, µS, ηS) defined in remark 52. And let α
and β be natural transformations described in remark 53. Then commutativity
of two pentagons in the following diagram is equivalent to the compatibility of
connected sum and operadic compositions given by axioms in definition 24.

ST (P)
α

→→

S(ϕ)

↙↙

TS(P)
T (ψ)

↘↘
β

←←

S(P)
ψ

→→

T (P)
ϕ

←←P

Proof. Obviously for any map f : P → Q in Σ-MModk, i.e. collection of equivari-
ant maps fn,G : P(n,G) → Q(n,G), both ST (f) and TS(f) correspond to change
of decoration for every vertex from pi ∈ P(n,G) to f(pi) ∈ Q(n,G). Therefore
both α, β formally satisfy conditions for natural transformation.

16For vertex of genus G with n legs we use some element from component P(n, G).
17The connected component inside the circle is one component of the collection.
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The only nontrivial part is to show that the commutativity of the diagram
is equivalent to the axioms (CS4), (CS5a), (CS5b), and (CS6). To illustrate the
arguments of the proof we demonstrate them separately on the simplest examples.
The general case will be then just a combination of these three.

s=1

a

s=1

aα

s=1

◦ij a

S(ϕ)

ψ

#1a

T (ψ)

ϕ

#1 ◦ij a = ◦ij #1 a

Figure 1.7: Commutativity of the diagram with α(P) : ST (P)(n,G + 3) →
TS(P)(n,G + 3) for graph with one vertex and one edge is equivalent to axiom
(CS4).

• Axiom (CS4): For an element of ST (P)(n,G + 3) think of a collection
which consist of one-vertex graph of MGr(n,G) with one edge and vertex
decorated by a ∈ P(n + 2, G). The natural transformation S(ϕ) gives us
collection of one one-vertex graph without any edges, decorated by element
◦ij a ∈ P(n,G + 1). Consequently ψ gives us one-vertex graph decorated
by #1 ◦ij a ∈ P(n,G+ 1 + 2).

The natural transformation α(P) gives us element of TS(P)(n,G+3) which
is a collection of one one-vertex graph decorated by a ∈ P(n+2, G) with one
edge attached to this collection. Application of the natural transformation
T (ψ) gives us one-vertex graph with one edge, decorated by element #1a ∈
P(n + 2, G + 2). Finally, applying ϕ gives us one-vertex graph decorated
by element ◦ij #1a ∈ P(n,G+ 2 + 1) which is equivalent to #1 ◦ij a under
the axiom (CS4).

• Axiom (CS5a): For an element of ST (P)(n1 + n2, G1 + G2 + 2) think of a
graph of MGr(n,G) with two vertices connected by one edge and decorated
by a ∈ P(n1 + 1, G1), b ∈ P(n2 + 1, G2). Natural transformation S(ϕ) gives
us one-vertex graph decorated by a i◦j b ∈ P(n1 + n2, G1 +G2) and ψ gives
us one-vertex graph decorated by #1(a i◦j b) ∈ P(n1 + n2, G1 +G2 + 2).

α(P) gives us an element of TS(P)(n1+n2, G1+G2+2) which is a collection
of two one-vertex graphs and there is one edge attached to this collection.
Natural transformation T (ψ) gives us one-vertex graph with one edge. The
vertex is decorated by a#2 b ∈ P(n1+n2+2, G1+G2+1). Finally, applying ϕ
gives us one-vertex graph decorated by element ◦ij(a#2 b) ∈ P(n1+n2, G1+
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s=1

a b

s=1

a b
α

s=1

a i◦j b

S(ϕ)

ψ

a#2b

T (ψ)

ϕ

#1(a i◦j b) = ◦ij(a#2 b)

Figure 1.8: Commutativity of the diagram with α(P) : ST (P)(n,G + 2) →
TS(P)(n,G+ 2) for graph with two vertices connected by one edge is equivalent
to axiom (CS5a).

G2 + 2) which is equivalent to #1(a i◦j b) under the axiom (CS5a).18

s=1

a b
s=1 s=0

a bβ

s=1

a i◦j b

S(ϕ)

ψ

#1a b

T (ψ)

ϕ

#1(a i◦j b) = (#1 a) ◦ij b

Figure 1.9: Commutativity of the diagram with β(P) : TS(P)(n,G + 2) →
ST (P)(n,G+ 2) for graph with two vertices connected by one edge is equivalent
to axiom (CS5b).

• Axiom (CS5b): For an element of TS(P)(n1 +n2, G1 +G2 +2) think of two
collections connected by one edge. In both collection is just one one-vertex
graph with vertex decorated by a ∈ P(n1 + 1, G1), and b ∈ P(n2 + 1, G2),
respectively. The natural transformation T (ψ) gives us one graph with two
vertices connected by one edge and decorated by #1 a ∈ P(n1 + 1, G1 + 2)
and b. The natural transformation ϕ gives us one-vertex graph decorated
by (#1 a) i◦j b.

18The rest of the cases of (CS5a) are done similarly. For example, ( ◦ij a)#2 b = ◦ij(a#2 b)
is given by the commutativity of the diagram for a collection of two one-vertex graphs such
that one of them has one edge.
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Natural transformation β(P) gives us element of ST (P)(n1+n2, G1+G2+2)
that is a collection of a graph with two vertices connected by one egde. The
vertices are decorated again by a, b. S(ϕ) gives us a collection of one-vertex
graph decorated by a i◦j b. Finally, applying ψ gives us one-vertex graph
decorated by #1(a i◦j b) ∈ P(n1 + n2, G1 + G2 + 2) which is equivalent to
(#1 a) i◦j b under the axiom (CS5b).

s=1

a b c

s=1
s=0

a b cβ

s=1

a b i◦j c

S(ϕ)

ψ

a#b c

T (ψ)

ϕ

a#2(b i◦j c) = (a#2 b) i◦j c

Figure 1.10: Commutativity of the diagram with β(P) : TS(P)(n,G + 1) →
ST (P)(n,G + 1) for graph with three vertices, two of them connected by one
edge, is equivalent to axiom (CS6).

• Axiom (CS6): For an element of TS(P)(n1 + n2 + n3, G1 + G2 + G3 + 1)
think of two collections connected by one edge. In the first collection are
two one-vertex graphs with vertices decorated by a ∈ P(n1, G1) and b ∈
P(n2 + 1, G2). In the second collection is just one one-vertex graph with
decoration c ∈ P(n3 +1, G3). The natural transformation T (ψ) gives us one
graph with two vertices connected by one edge and decorated by (a#2 b) ∈
P(n1 +n2 +1, G1 +G2 +1) and c ∈ P(n3 +1, G3). Upon this, ϕ gives us one-
vertex graph decorated by (a#2 b) i◦j c ∈ P(n1 +n2 +n3, G1 +G2 +G3 +1).
Natural transformation β(P) gives us element of ST (P)(n1 +n2 +n3, G1 +
G2 + G3 + 1) which is a collection of two graphs, one of them one-vertex
decorated by a ∈ P(n1, G1) and the other two vertices connected by one
edge and decorated by b ∈ P(n2 + 1, G2), c ∈ P(n3 + 1, G3). S(ϕ) gives us
a collection of two one-vertex graphs decorated by a and b i◦j c ∈ P(n2 +
n3, G2 + G3). Finally, applying ψ gives us one-vertex graph decorated by
a#2(b i◦j c) ∈ P(n1 + n2 + n3, G1 + G2 + G3 + 1) which is equivalent to
(a#2 b) i◦j c under the axiom (CS6).

1.3 Properads
The framework of operads (or modular operads) is too narrow to treat structures
like bialgebras, Hopf algebras, or Lie bialgebras. To model the operations with
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several inputs and several outputs one needs to introduce a more general object,
PROP.

The algebras over PROPs then also accommodate the “coproduct-like” oper-
ations and the operads can be seen as just a special kind of PROP. We say a bit
more about PROPs in the last section, 1.3.4. But for our purposes is sufficient
to restrict ourselves to the “connected part” of PROP introduced in [38] under
the name properad.

In the case of properads, we formulate only the biased definition. It is possible
to state also the definition with monad (called in section 1.1.2 as the combinatorial
definition), but the “strategy” of the definition would be basically the same as in
the case of operads – we have to define the appropriate category of graphs with
morphisms preserving the labeling of the external half-edges, and then fix the
value of Σ-bimodule on each graph. So the obvious missing piece, one needs for
the combinatorial definition, is to specify the type of graphs. We do this in the
section 2.2.1 when discussing the cobar complex of properads. We don’t specify
the rest of the details since we will not use the combinatorial definition in the
next.

We want to use the results from [38]. But our notation and convention some-
times slightly differ. For example, we use the biased definition in the convention,
which is closest to the one in [19].

Definition 55. Denote by DCor := Cor × Cor the category of directed corollas:
the objects are pairs (C,D) with C and D finite sets which are called the outputs
and inputs.

A morphism (ρ, σ) : (C,D) → (C ′, D′) is a pair of bijections ρ : C ≃−→ C ′,
σ : D ≃−→ D′.

Definition 56. A properad P consists of a collection

{P(C,D) | (C,D) ∈ DCor}

of dg vector spaces and two collections of degree 0 morphisms of dg vector spaces

{P(ρ, σ) : P(C,D) → P(C ′, D′) | (ρ, σ) : (C,D) → (C ′, D′)}{︂ η
B◦A: P(C1, D1 ⊔B) ⊗ P(C2 ⊔ A,D2)→P(C1 ⊔ C2, D1 ⊔D2) | η : B ≃−→ A

}︂
where A,B are arbitrary isomorphic finite nonempty sets. These data are required
to satisfy the following axioms:

1. P((1C , 1D)) = 1P(C,D), P((ρρ′, σ′σ)) = P((ρ, σ)) P((ρ′, σ′))

2. (P((ρ1 ⊔ ρ2|C2 , σ1|D1 ⊔ σ2))
η

B◦A=
ρ2ησ

−1
1

σ1(B)◦ρ2(A) (P((ρ1, σ1)) ⊗ P((ρ2, σ2))

3. ϵ
B2⊔B3◦A2⊔A3 ( η̃

B1◦A1 ⊗1) = η
B1⊔B3◦A1⊔A3 (1⊗ ϵ̃

B2◦A2)
where η̃, ϵ̃ are restrictions of η, ϵ to the pairs of nonempty sets A1, B1 and
A2, B2, respectively.
For A1, B1 empty sets,

η
B3◦A3 (1⊗ ϵ̃

B2◦A2) = ϵ̃
B2◦A2 (1⊗ η

B3◦A3)(τ ⊗ 1).
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For A2, B2 empty sets,
ϵ

B3◦A3 ( η̃
B1◦A1 ⊗1) = η̃

B1◦A1 ( ϵ
B3◦A3 ⊗1)(1 ⊗ τ).

where τ is the monoidal symmetry.
Whenever the expressions make sense.
By PrDCor we will denote the category of properads with the obvious mor-

phisms.

B1 A2

B3

A1 B2

A3

Figure 1.11: Axiom 3. pictorially

Remark 57. If we consider only Axiom 1., the resulting structure is called a
Σ-bimodule. Obviously, by forgetting the composition map, a properad gives rise
to its underlying Σ-module.

All these notions are equivalent to their usual counterparts in [38]. For ex-
ample, Axiom 1. stands for the left and right Σ-actions on C,D respectively,
2. expresses the equivariance and 3. expresses the associativity of the operadic
composition.

Remark 58. Without any additional filtration, the components P(C,D) for a
fixed card(C), card(D) would be huge. For a simple illustrative example of
the possible problem, one can think of arbitrary bialgebra with product and co-
product. The appropriate properad contains infinitely many different elements in
P(C,D) for card(C) = 1 = card(D) given by series of compositions of “product-
coproduct-product-. . . ” elements.

Therefore similarly as in the case of modular operads we consider only prop-
erads such that the dg vector spaces P(C,D) have an additional N0 grading by
a degree which will be denoted by G.

The differential and both left and right Σ-actions are assumed to preserve
the degree G-components P(C,D,G). For operations η

B◦A, we assume that they
map the components with respective degrees G1 and G2 into the component of
the degree G(G1, G2, A,B, η) which is determined, in general, by the degrees G1,
G2, by the sets A, B and their identification η. This choice might seem surprising
at this moment, so let us show a few examples to illustrate how the G of the new
component depend on the composition.

Remark 59. Similarly as before in definition 19 we will assume, unless explicitly
mentioned otherwise, the stability condition

2(G− 1) + card(C) + card(D) > 0

In particular, this means that for G = 0, card(C) + card(D) ≥ 3 and for G = 1,
card(C) + card(D) ≥ 1. For G > 1, there is no restriction on the number of
inputs and outputs.
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Here we should mention that we use slightly different conventions then [38],
where it is assumed that the sets C and D are always non-empty, i.e., there is
always at least one input and one output. Also, in [38], one input and one output
are allowed for G = 0. We will comment on this further when describing the
cobar complex and algebras over it.

1.3.1 Examples of properads
Our two main examples can be again interpreted in terms of 2-dimensional Rie-
mann surfaces, with boundaries and punctures.

Example 60. The (closed) Frobenius properad F . For each (C,D) ∈ DCor and
G s.t. the condition of stability is satisfied, put F(C,D,G) = k, i.e., the linear
span on one generator pC,D,G in degree zero. The differential is trivial, as well as
the Σ-bimodule structure. The operations η

B◦A do not depend on sets A,B and
η,

η
B◦A: pC1,D1⊔B,G1 ⊗ pC2⊔A,D2,G2 ↦→ pC1⊔C2,D1⊔D2,G.

where G = G1 +G2 + card(A) − 1.
Geometrically, this properad consists of homeomorphism classes of 2-dimen-

sional compact oriented surfaces with two kinds of labeled boundary components,
the inputs and outputs. Here, G = g, is the geometric genus of the surface.
Bijections act by relabeling the inputs and outputs independently. The operation
η

B◦A for a non-trivial pair of sets (A,B) consists of gluing surfaces along the inputs
in B and outputs in A identified according to η.

C1 a1

a2

b1

b2

D1

C2

D2

Figure 1.12: η
B◦A, where A = {a1, a2}, B = {b1, b2} and η(b1) = a1, η(b2) = a2

Remark 61. This example motivates us to introduce the Euler characteristic19

χ = 2G− 2 + |C| + |D|

The stability condition then simply says χ > 0.
Consider two elements pC1,D1⊔B,G1 and pC2⊔A,D2,G2 of Frobenius properad F .

The operation η
B◦A gives us a surface with Euler characteristic

χ = 2(g1+g2+|A|−1)−2+card(C1)+card(C2)+card(D1)+card(D2) = χ1+χ2

19We define the Euler characteristic with the opposite sign than it is usual to shorter later
formulas of ubiquitous signs.
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Hence, the Euler characteristic χ is additive for the Frobenius properad F .
Obviously we can switch to grading by χ and use the notation P(C,D, χ) for

P(C,D,G) with 2G = χ− |C| − |D| + 2 ≥ 0. In the next, we prefer the grading
by χ despite the fact, that it is not additive for arbitrary properad as we will see
in the next example.

Example 62. The open Frobenius properad OF .

OF(C,D, χ) := SpanK {{c1, c2, . . . cp,d1,d2 . . . ,dq}g | p, q ∈ N, g ∈ N0} ,

where ci,dj are cycles20 in C and D, respectively, ⨆︁pi=1 ci = C,
⨆︁q
j=1 dj = D,

and the components are stable. Also, {c1, c2, . . . cp,d1,d2 . . . ,dq}g is a symbol of
degree 0, formally being a pair consisting of g ∈ N0 and a set of cycles in (C,D)
with the above properties.21

For a pair of bijections (ρ, σ) : (C,D) ≃−→ (C ′, D′), let

OF(ρ, σ))({c1, c2, . . . cp,d1,d2 . . . ,dq}g) :=
= {ρ(c1), . . . ρ(cp), σ−1(d1), . . . σ−1(dq)}g.

Although this example is the first time defined by us, the formal definition of
the operations η

B◦A is very clumsy, so we refrain from it. Instead, we illustrate it
on the geometric interpretation.

The component OF(C,D, χ) of the properad is spanned by homeomorphism
classes of 2-dimensional compact oriented stable surfaces with genus g, p output
boundaries and q input boundaries. The input boundaries can be permuted freely
among themselves, as well as the output boundaries. We put χ = 2(2g+ b− 1) +
card(C) + card(D) − 2, i.e, G = 2g + b− 1, with b = p+ q.

d1

d2

d3

c1

c2

Figure 1.13: Element of OF(C,D, χ) with p = 2, q = 3 and g = 3 (arrows
indicate the orientations of the boundaries).

The result of η
B◦A is obtained in two steps. The first step is the (orientation

preserving) gluing of two surfaces along the inputs inB and outputs inA identified
according to η. Such a gluing creates a new surface which might contain mixed
cycles, i.e., cycles containing both inputs and outputs. Such mixed cycles are
subsequently split, within the resulting surface (and in an orientation preserving
way), into pairs of cycles containing either inputs or outputs only.

20As in definition 29.
21Trivially: ci ∩ dj = ∅, ci ∩ cj = ∅ and di ∩ dj = ∅ for all i, j.
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Such general description wouldn’t be enough to fully understood the “defi-
nition” of η

B◦A. Let us, therefore, show it for two cases – first for a case when
card(A) = 1 and then for the case card(A) > 1. To elucidate the second case,
we show it also on explicit an example.

We start with the simplest example of gluing two surfaces along one output
and one input. We want to glue together an output puncture x of the cycle
ci = ((x, x1, x2, . . . xn)) of the boundary bi together with an input puncture y
of the cycle dj̃ = ((y1, y2, . . . ym, y)) of the boundary bj̃.22 Obviously, we can
consider only boundaries on which the punctures (that we are gluing together)
are positioned and ignore the rest.

According to the above description, there are two steps. In the first step, a new
mixed cycle ((y1, y2, . . . ym, x1, x2, . . . xn)) is created. This new cycle is obtained by
identifying of x with y, removing the resulting point, and joining the remaining
parts of the original cycles, so that the resulting orientation is still compatible
with the induced orientation of the boundaries.

However, we want to get again boundaries with inputs or outputs only. This
leads to the second step, where we split the new cycle into two cycles of just
outputs ((x1, x2, . . . xn)) and inputs ((y1, y2, . . . ym)).23

dj̃

yyyyy

y1

y2

ym−1

ym

xxxxxx

xn−1

xn

x1
x2

x3

ci

Figure 1.14: Connecting a puncture x from boundary bi with a puncture y from
boundary bj̃. The output punctures are depicted as black circles and the input
punctures as white circles.

Let us now turn our attention to the general case, when on each of the two
surfaces there are several punctures on several boundaries that have to be glued
together. Obviously, the formal description, as in the previous case, would be
this time too complicated. In the sake of simplicity, let us instead describe in
words a simple algorithm how to glue the punctures in order to obtain the mixed
cycles (composed of both inputs and outputs), i.e., the “new cycles” from step 1
above.

We can choose an arbitrary puncture of one of these boundaries which has to
be glued.24 Following the orientation of its cycle, we write down the punctures
of this cycle until we meet another puncture which has to be glued to another
puncture of a boundary on the other surface. We do not write down this puncture

22Note, that using the cyclic symmetry of the cycles, we can always move the punctures x
and y to these positions within the respective cycles.

23This step may look bit trivial in this case but it gives a nontrivial result in the general
case.

24It can be either an input or output puncture.
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nor its “glued partner”, but instead we move to this partner along the gluing and
continue in recording the punctures according to the orientation of the partner’s
cycle. We continue this procedure until we get back to the point where we started.
The recorded sequence gives a mixed cycle, the “new cycle”. To find all these
mixed cycles, we choose another puncture which wasn’t written yet and start the
procedure again.25

This gives us cycles with mixed outputs and inputs, but all of them could be
split again into cycles of inputs and of outputs only by omitting the punctures
of the other type. We should be cautious with the following: if in course of this
procedure an empty cycle arises, we have to split it too into an “output” and an
“input” cycle.

An illustrative example could be gluing together punctures x2 with y6, x3 with
z1 and x7 with y4 of cycle ((x1, x2, . . . x8)) of output punctures of one surface and
of cycles ((y1, y2, . . . y6)) , ((z1, z2, . . . z4)) of input punctures of an another one.

Let us choose one arbitrary puncture, for example y1. Following the orienta-
tion we write in a sequence y1, y2, y3. The following puncture y4 is glued so we
do not write it nor its glued partner x7 but we continue from the position of x7
according to orientation, i.e., with x8, x1. Then again, x2 is glued with y6 so we
move to position of y6 without recording this glued couple and continue according
orientation. By this we get again into the position of y1 where we started. One
of the mixed cycles is therefore ((y1, y2, y3, x8, x1)).

To obtain another mixed cycle we choose, for example, x4 and by following the
orientation we get a beginning of the sequence x4, x5, x6 which eventually gives
us a mixed cycle ((x4, x5, x6, y5, z2, z3, z4)).

These two mixed cycles are later split into cycles ((x8, x1)), ((x4, x5, x6)) of input
punctures and into cycles ((y1, y2)), ((y5, z2, z3, z4)) of output punctures.

y4

y6

z1

x3

x7

x2

Figure 1.15: Connecting punctures x2 with y6, x3 with z1 and x7 with y4.

Remark 63. One can check that the above algorithm is independent of the
choices we made.

But now, the Euler characteristic, in contrary to the closed Frobenius prop-
erad, is not additive anymore. Concerning the genus of the resulting surface, it
is given by a sum of genera of the original surfaces and the number of distinct

25Now already within the newly created surface.

41



pairs of boundaries which were “glued together”. For instance, in the last illus-
trative example, there are only two distinct pairs of boundaries which were glued
together although we glued together three pairs of punctures.

Despite this, we stick with Euler characteristics since in the case of Frobenius
properad the results can be used without crucial modification.

Finally, we can combine the above two properads in a rather simple way to
obtain a 2-colored properad OCF , which we call open-closed Frobenius properad.

Definition 64. Let DCor2 be the category of 2-colored directed corollas. The
objects are pairs ((O1, O2, )(C1, C2), G), where (O1, O2) and (C1, C2) are pairs of
finite sets and G is a non-negative half-integer, i.e. of the form G = N

2 for a
non-negative integer N . Elements of O are called open, elements of C are called
closed.

A morphism ((O1, O2), (C1, C2), G) → ((O′
1, O

′
2), (C ′

1, C
′
2), G′) is defined only

for G = G′ and it is a quadruple of bijections O1
≃−→ O′

1, O2
≃−→ O′

2, C1
≃−→ C ′

1 and
C2

≃−→ C ′
2.

To define a 2-colored properad, we replace in Definition 56 the category DCor
by DCor2, the characteristic χ is now

χ = 2G+ card(O1) + card(O2) + card(C1) + card(C2) − 2

and also we consider only operations of form

(ηo,ηc)
(Bo,Bc)◦(Ao,Ac):

((O1, O2 ⊔Bo), (C1, C2 ⊔Bc), χ1) ⊗ ((O′
1 ⊔ Ao, O

′
2), (C ′

1 ⊔ Ac, C
′
2), χ2)

→ ((O1 ⊔O′
1, O2 ⊔O′

2), (C1 ⊔ C ′
1, C2 ⊔ C ′

2), χ),

for bijections ηo : Bo
≃−→ Ao and ηc : Bc

≃−→ Ac.26 The modification of axioms is
obvious, we leave it to the reader to fill in the details.

Example 65. The open-closed Frobenius properad OCF . For the 2-colored
properad OCF , the degree 0 vector space OCF((O1, O2), (C1, C2), G) is generated
by homeomorphism classes of 2-dimensional compact oriented stable surfaces with
genus g, card(O1) open outputs and card(O2) open inputs distributed over b1
and b2 open boundaries respectively and card(C1) closed outputs and card(C2)
closed inputs in the interior, G = 2g + b + (card(C1) + card(C2))/2 − 1 with
b = b1 + b2. The Σ-action preserves the colors and the operations are defined by
gluing open/closed inputs into open/closed outputs.

Remark 66. A small sidenote. So far, we discussed only linear properads, i.e.,
properads in the category of (differential graded) vector spaces Vect. It follows
from the definitions that all our examples discussed so far are linearizations of
properads in sets. For example, the (closed) Frobenius properad F is a lineariza-
tion of the terminal Set-properad. This can be compared to the modular operad
Mod(Com), the modular envelope of the cyclic operad Com. This modular operad
is a linearization of Mod(∗C)27, the terminal modular operad in Set [28]. In [28],

26Subscripts o and c again correspond to open and closed, respectively.
27The modular envelope of the terminal cyclic operad ∗C in Set
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Markl also formulates the following Terminality principle:

For a large class of geometric objects there exists a version of modular operads
such that the set of isomorphism classes of these objects is the terminal modular
Set-operad of a given type.

It could be interesting to formulate a similar principle also in the world of prop-
erads.

1.3.2 Skeletal version of properads
The biased definition is easier to formulate. But for explicit computation is many
times clumsy. It will prove useful to consider the skeletal version of properads.

Definition 67. Σ is the skeleton of category DCor consisting of corollas of the
form ([m], [n]), m,n ∈ N0. Σ-bimodule is a functor from Σ to dg vector spaces.

Before giving the following definitions, let us introduce the following conve-
nient notation “how to shift a subset by a fixed number”.

For n ∈ N0 and a set {a1, a2, . . .} of natural numbers, define

n+ {a1, a2, . . .} := {n+ a1, n+ a2, . . .}.

Given N ⊂ [n1 + card(N)], and M ⊂ [m2 + card(M)] define bijections

ρn2 : [n1 + card(N)] −N → n2 + [n1],

ρm1 : [m2 + card(M)] −M → m1 + [m2]
by requiring them to be increasing.28

[n1 + card(N)] −N [n1 + card(N)]

n2 + [n1][n2]

Figure 1.16: Bijection ρn2.

Definition 68. Given a properad P with structure morphisms η
B◦A, define P̄ to

consist of a collection {︂
P̄(m,n) | ([m], [n]) ∈ DCor

}︂
of dg Σm × Σn-bimodules and a collection

{
ξ

N◦M̄ : P̄(m1, n1 + card(N)) ⊗ P̄(m2 + card(M), n2) → P̄(m1 +m2, n1 + n2) |
ξ : N ≃−→ M}

28n2, m1 correspond in the following definition to card(D2), card(C1), respectively.
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of a degree 0 morphisms of dg vector spaces determined by formulas

P̄(m,n) := P([m], [n])

ξ

N◦M̄ := P(κ−1
1 ⊔ ρm1κ

−1
2 |C2 , ρn2λ

−1
1 |D1 ⊔ λ−1

2 ) η
B◦A (P(κ1, λ1) ⊗ P(κ2, λ2)),

where κ1 : [m1] → C1, λ1 : [n1+card(B)] → D1⊔B, κ2 : [m2+card(A)] → C2⊔A
and λ2 : [n2] → D2 are arbitrary bijections such that C1 ∩C2 = D1 ∩D2 = ∅ and
ξ = κ−1

2 ηλ1. Also, M = κ−1
2 A and N = λ−1

1 B.

Remark 69. Obviously, the definition of
ξ

N◦M̄ doesn’t depend on bijections
κ1, λ1, κ2, λ2. Hence, sometimes, it might be useful, to make some simplifying
choices of these. If, e.g., C1∪C2 = [m], D1∪D2 = [n], κ1, λ2 as well as λ1|[n1+|B|]−B
and κ2|[m2+|A|]−A are increasing, then (κ−1

1 ⊔ ρMκ−1
2 |C2) and (ρNλ−1

1 |D1 ⊔ λ−1
2 ) are

(m1,m2) and (n2, n1)-unshuffles, respectively.

The operations
ξ

N◦M̄ satisfy properties analogous to the axioms of Definition
56. Hence, we can introduce a new category of Σ-bimodules with operations

ξ

N◦M̄ . Obviously, categories PrDCor and are equivalent. Although the axioms for
operations

ξ

N◦M̄ in is a way too complicated for practical purposes. Nevertheless,
as we will see, the description of endomorphism properads EV in the category is
nice and simple.

1.3.3 Endomorphism properad
In the following, we again use the observations about the unordered tensor prod-
uct we made in section 1.2.2.

Definition 70. For (C,D) ∈ DCor, χ > 0 define

EV (C,D, χ) := Homk(
⨂︂
D

V,
⨂︂
C

V ).

Let f̄ ∈ Homk(Vd1 ⊗ · · · ⊗ Vdn , Vc1 ⊗ · · · ⊗ Vcm) correspond to an element
f ∈ Homk(

⨂︁
D V,

⨂︁
C V ), under the above isomorphism in Example 41. Then

the differential on EV is given, by abuse of notation, as

d(f̄) =
m−1∑︂
i=0

(1⊗i ⊗ d⊗ 1⊗m−i−1)f̄ − (−1)|f̄ |
n−1∑︂
i=0

f̄(1⊗i ⊗ d⊗ 1⊗n−i−1) (1.6)

Given a morphism (ρ, σ) : (C,D) → (C ′, D′) in DCor, define

EV (ρ, σ) : EV (C,D, χ) → EV (C ′, D′, χ)
f ↦→ ρ f σ,

for f ∈ Homk(
⨂︁

D V,
⨂︁

C V ) ∈ EV (C,D, χ) and ρ, σ as in Lemma 39.
For f ∈ EV

(︂
C2 ⊔ A,D2, χ2

)︂
and g ∈ EV

(︂
C1, D1 ⊔B,χ1

)︂
let

g
η

B◦A f ∈ EV
(︂
C1 ⊔ C2, D1 ⊔D2, χ

)︂
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be the composition⨂︂
d∈D1⊔ D2

Vd
≃−→

⨂︂
d∈D1

Vd ⊗
⨂︂
d′∈D2

Vd′
1⊗f−−→

⨂︂
d∈D1

Vd ⊗
⨂︂

c∈C2⊔A
Vc

≃−→
⨂︂
d∈D1

Vd ⊗
⨂︂
a∈A

Va ⊗
⨂︂
c∈C2

Vc
1⊗η−1⊗1−−−−−→

⨂︂
d∈D1

Vd ⊗
⨂︂
b∈B

Vb ⊗
⨂︂
c∈C2

Vc

≃−→
⨂︂

d∈D1⊔B
Vd ⊗

⨂︂
c∈C2

Vc
g⊗1−−→

⨂︂
c∈C1

Vc ⊗
⨂︂
c′∈C2

Vc′
≃−→

⨂︂
c∈C1⊔ C2

Vc

in which the isomorphisms are easily identified with those of Lemma 40.
It follows that the collection

EV = {EV (C,D, χ)|(C,D) ∈ DCor, χ > 0}

with the above operations is a properad.

It is now straightforward to describe the skeletal version ĒV of the endomor-
phism properad EV

ĒV (m,n, χ) = Homk(V ⊗n, V ⊗m) ∼= V ⊗m ⊗ (V ∗)⊗n,

where the last isomorphism is explicitly for

v1 ⊗ . . .⊗ vm ⊗ α1 ⊗ . . .⊗ αn ∈ V ⊗m ⊗ (V ∗)⊗n

given as

v1 ⊗ . . .⊗ vm ⊗ α1 ⊗ . . .⊗ αn : wn ⊗ . . .⊗ w1 ↦→ α1(w1) . . . αn(wn)v1 ⊗ . . .⊗ vm

The Σ-bimodule structure for (ρ, σ) ∈ Σm × Σn,

(ρ, σ) : v1 ⊗ . . .⊗vm⊗α1 ⊗ . . .⊗αn ↦→ ± vρ−1(1) ⊗ . . .⊗vρ−1(m) ⊗ασ(1) ⊗ . . .⊗ασ(n),

where ± is the product of the respective Koszul signs corresponding to permuta-
tions ρ and σ.

The differential d is given by the natural extension of d on V , as a degree one
derivation, to V ⊗m ⊗ (V ∗)⊗n.29

Finally, the properadic compositions
ξ

N◦M̄ are described as follows. Let N be
a set N = n1 + [card(N)] ⊂ [n1 + card(N)], M = [card(N)] ⊂ [m2 + card(N)]
and ξ a bijection ξ(n1 + card(N) − i+ 1) = i for i = 1, . . . card(N) then

ξ

N◦M̄ is
defined by the following assignment:

ξ

N◦M̄ : (v1 ⊗. . . vm1 ⊗ α1 ⊗. . . αn1+card(N)) ⊗ (w1 ⊗. . . wm2+card(N) ⊗ β1 ⊗. . . βn2)

↦→ ±
card(N)∏︂
i=1

αn1+card(N)−i+1(wi) · v1 ⊗. . .⊗ vm1 ⊗ wcard(N)+1⊗. . .⊗ wm2+card(N)⊗

⊗ α1 ⊗ . . .⊗ αn1 ⊗ β1 ⊗ . . .⊗ βn2

where ± is the Koszul sign, coming from commuting consecutively the vectors
wcard(N)+1 ⊗ . . . ⊗ wm2+card(N) trough the one-forms αn1 ⊗ . . . ⊗ α1. The general

case is then easily determined by the equivariance of the operations
ξ

N◦M̄ .
29Recall, (dα)(v) = (−1)|α|α(dv).
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Remark 71. The above introduced skeletal version of the endomorphism prop-
erad is equivalent to the one which uses unordered tensor products ⊗[n]V instead
of ordinary ones V ⊗n. This is possible due to Example 41 according to which
we have the canonical isomorphism ⊗[n]V ∼= V ⊗n corresponding to the natural
ordering on [n].

Finally, we briefly discuss the 2-colored version of the endomorphism properad.

Definition 72. Let EVo⊕Vc be an abbreviation for the direct sum of dg vector
spaces (Vo, do) and (Vc, dc). Let

EVo⊕Vc((O1, O2), (C1, C2), χ) := Homk(
⨂︂
O2

Vo ⊗
⨂︂
C2

Vc,
⨂︂
O1

Vo ⊗
⨂︂
C1

Vc).

The Σ-action and the operations are defined analogously to the 1-colored case.

Definition 73. Let P be a properad. An algebra over properad P on a dg
vector space V is a properad morphism

α : P → V,

i.e. it is a collection of dg vector space morphisms

{α(C,D, χ) : P(C,D, χ) → V (C,D, χ) | (C,D) ∈ DCor, χ > 0}

such that (in the sequel, we drop the notation (C,D, χ) at α(C,D, χ), for brevity)

1. α ◦ P(ρ, σ) = V (ρ, σ) ◦ α

for any morphism (ρ, σ) in DCor

2. α ◦( η
B◦A)P = ( η

B◦A)V ◦(αα)

Algebra over a 2-colored properad is again defined by replacing DCor by
DCor2.

In practice, however, one is rather interested in skeletal version of α’s, i.e.,
Σm × Σn-equivariant maps

α(m,n, χ) : P̄(m,n, χ) → ĒV (m,n, χ)

intertwining between the respective
ξ

N◦M̄ operations.

Remark 74. Note that the above formula 2. is compatible with any composition
law for the degree G, or equivalently for the Euler characteristic χ. This is
because, for fixed values ofm and n, the vector spaces EV (m,n, χ) are independent
of the actual value of χ. So we always can choose the composition law for χ in
the endomorphism properad EV so that it respects the one for P .
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1.3.4 PROPs
Similarly as in the case of modular operads, one may wish to introduce some
product for properads P to make sense of elements ep for p ∈ P . It turns out
such a structure already exists inside the notion of PROPs.

Roughly speaking we can say, that one adds a tensor product called as hori-
zontal product to our properads and allows also the non-connected components.30

The following definition is taken from [30].

Definition 75. A (k-linear) PROP is a symmetric strict monoidal category
P = (P ,⊙, S, 1) enriched over Modk such that

• the objects are indexed by (or identified with) the set N of natural numbers

• the product ⊙ satisfies m⊙ n = m+ n

Remark 76. The foregoing composition ◦ is called vertical and the monoidal
product ⊙ induces a horizontal composition

⊗ : P(m1, n1) ⊗ . . .⊗ P(mk, nk) → P(m1 + . . .+mk, n1 + . . .+ nk)

Remark 77. As we will see in the next chapter, the Koszul duality theory is
essential in some constructions, for us namely for the construction of minimal
resolutions given by the cobar complex construction. Although there have been
some works trying to generalize Koszul duality theory (for 1

2-PROPs and diop-
erads), the consistent work was done only for properads in [38].

Therefore we set aside some of the ideas.

Remark 78. One possible modification of the problem is to restrict the vertical
composition to just one edge and add the horizontal composition. This approach
was done in [24].

30At this moment, our choice of the orientation of pictures (so they better fit on the paper)
may cause a bit of confusion.
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2. Cobar complex, Feynman
transform and master equations
As we have seen in section 1.1.2 (monoidal definition) the operads can be defined
as monad in certain linear category, category Vect. The advantage of this ap-
proach is that one can hope to extend the notion of bar and cobar construction
from algebras to operads.

After introducing the cobar complex for operads we show its simple generaliza-
tion to properads and analogical construction of Feynman transform for modular
operads. We can formulate here the “contours” of this general principle and then
clarify aspects of our approach.

A lot of details will be missed – among others, we skip introducing the twisting
morphisms and Koszul morphisms, many examples of twisting coboundaries will
be missed, etc. We cherry-pick here only the necessary terms and notions. For
full treatment, we refer the reader to sections 6.4 – 6.7 in [27] as the main source
of this chapter. A nice summary could be also found in [34]. The “pedestrian
way” is taken from [32] and for modular operads we draw from [3]. For us, the
inspiring material is also [24] because of its nice unifying point of view.

Afterward, we comment on the particular aspects for the cobar complex for
properads and the analog of cobar complex for the modular operads, the Feynman
transform.

2.1 Very abstract point of view
Remark 79. In the following, we will be mentioning the term cooperad. Rough-
ly speaking, cooperad C is a dual notion to the operad with the decomposition
map ∆ : C → C ⊗ C and the counit map ϵ : C → I. Although we should define it
more properly, we will show in the following that in the end, it is not necessary
to consider it in our construction of cobar complex.

Remark 80. Let us remind the combinatorial definition from remark 17. There
we constructed the endofunctor T : Σ-Modk → Σ-Modk. T (P) for any Σ-module
P is a free operad.

Let us define the weight grading of the free operad T (P)(w) as the number
w of generating operations needed in the construction of a given element of the
free operad. In the language of trees, this corresponds to the number of vertices
in the tree.

Definition 81. An augmented dg operad is a dg operad P equipped with a
morphism ϵ : P → I of dg operads. In this case P = P ⊕ I.

Similarly dg cooperad C is coaugmented if there is a morphism of dg coop-
erads η : I → C and C = C ⊕ I.

Similarly as in the setting of algebras and coalgebras, there is a pair of adjoint
functors, bar B and cobar Ω

{aug. dg operads} {coaug. dg cooperads}
B

Ω
(2.1)

49



between augmented dg operads and coaugmented dg cooperads. Since we are
used to working with operads, we point out to the counit of the adjunction (2.1).
It is an operad morphism ΩB(P) → P .

From fundamental theorem of operadic twisting morphism (theorem 6.6.2 in
[27]) follows that the counit is in fact a quasi-isomorphism ΩB(P) ∼−→ P . Let us
now recall from [27] just the necessary facts about the cobar complex.
Remark 82. The cobar complex ΩC is an augmented dg operad defined as the
free operad T (↑ C) over the suspension of C. Therefore the elements of this free
operad can be represented by trees with vertices “decorated” by elements of ↑ C.

The differential of this operad is given as d = d1+d2 where d1 is the differential
induced from the differential dC of the dg cooperad C and d2 is induced by ∆1
on ↑ C.1 The differential d is completely characterized by the image of the
generators. Notice that as a graded object2, this operad is free but as a differential
graded object it is not. Such operads are called quasi-free.

Hence the counit of the adjunction provides a resolution of dg operads. It
is quasi-free resolution (cofibrant replacement) but it is not minimal in general.
This object is in fact “huge”. Similarly as Ω(C) is free operad, B(P) is a free
cooperad.3 The elements in ΩB(P) therefore can be perceived as trees composed
of trees.

We would like to find an object, which would be minimal in the sense that all
other quasi-free objects quasi-isomorphic to P will factorize through it. In other
words, we are looking for a minimal model in the model category of dg operads.
Remark 83. By definition, a minimal operad is a quasi-free operad (T (E), d)
whose differential is decomposable, i.e. d : E → T (E)(≥2), and the generating
graded Σ-module E admits a decomposition into E = ⨁︁

k≥1 E
(k) satisfying

d
(︂
E(k+1)

)︂
⊂ T

(︄
k⨁︂
i=1

E(i)
)︄

A minimal model for the dg operad P is the minimal operad (T (E), d) with
quasi-isomorphism of dg operads (T (E), d) ∼

↠ P

It turns out that for a special class of operads, quadratic Koszul operads, we
are able to construct the minimal model explicitly.
Definition 84. An operad P is quadratic if it has a presentation P = T (E)/(R),
where the ideal R ⊆ T (E)(2). In other words, P is universal among the quotients
of T (E) such that the composite

R ↪→ T (E) ↠ P

is zero. Let us denote the data as P(E,R).
Similarly quadratic cooperad C(E,R) is a sub-cooperad of the cofree co-

operad T c(E) which is universal such that the composite

C ↪→ T c(E) ↠ T c(E)(2)/R

is zero.
1Thanks to the suspension, the differential is truly of degree 1.
2i.e. forgetting the differential
3See definition 5.8.7 in [27] for details.
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Remark 85. We already have seen examples of quadratic operads. All Com,
Ass, and Lie are quadratic.

The presentation of operad Com is given by ECom = K · µ (trivial representa-
tion of Σ2) with RCom = SpanK{µ ◦1 µ−µ ◦2 µ}. The presentation of operad Ass
is given in example 3 by Σ-module EAss = K · Σ2 (regular presentation of Σ2 with
generator α) and the ideal generated by relations RAss = SpanK{α ◦1 α−α ◦2 α}.
The presentation of Lie is written explicitly in the example 4.

Definition 86. By definition, Koszul dual cooperad of the quadratic operad
P(E,R) is the quadratic cooperad P ¡ = C(↑ E, ↑2 R).

Finally:

Definition 87. A quadratic operad P is quadratic Koszul operad if there is
a quasi-isomorphism Ω(P ¡) ∼−→ P of dg operads.

Let us make few final remarks to this very abstract point of view.

Remark 88. Since algebras over cofibrant operads are homotopy invariant, the
algebras over the minimal model of the operad P are called the strongly homotopy
P-algebras, shortly P∞-algebras. For example Ω(Ass¡) → EV corresponds to A∞-
algebra and Ω(Com¡) → EV corresponds to L∞-algebra.

Remark 89. By proposition 10.1.3 in [27], the P∞-algebras, i.e. operad mor-
phisms Hom(Ω(P ¡), EV ), are in bijection with Σ-module morphisms α : P ¡ → EV ,
|α| = 1 such that α(1) = dV (where 1 is in the image of coaugmentation map η)
and α ⋆ α = 0 with the convolution product

α1 ⋆ α2 = ◦1(α1 ⊗ α2)∆1 (2.2)

where ∆1 is the decomposition map in P ¡ and ◦1 is the composition map in EV .4
The space HomΣ(P ¡, EV ) can be equipped with differential

d(α) = dV ◦ α− (−1)|α|α ◦ dP ¡

and we can introduce the bracket {f ⋆ g} = f ⋆ g − (−1)|f |·|g|g ⋆ f .
Then P∞-algebra can be encoded as looking for elements α ∈ HomΣ(P ¡, EV ),

|α| = 1 such that they solve the Maurer-Cartan equation

d(α) + α ⋆ α = d(α) + 1
2{α ⋆ α} = 0 (2.3)

Remark 90. Looking at ∞-algebras as dg operad morphism from Ω(C) to P
serves well when we want to define the ∞-algebra. The definition via degree
1 morphism α : P ¡ → EV becomes handy for a deformation theory. For ∞-
morphism of ∞-algebras best suits the definition via codifferential, see “Rosetta
stone” in [39].

Remark 91. Now, we already mentioned three equivalent ways how to define
the ∞-algebras. There is one more which is missing and it uses the other side of
the adjunction – we can define the ∞-algebras as dg cooperad morphisms from

4Maps α are in fact the twisting morphisms.
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C to B(EV ). This definition is the most suitable for extracting the Homotopy
Transfer Theorem (for the details see again [39]): Let P is a Koszul operad,
chain complex (H, dH) is a homotopy retract5 of (A, dA)

(A, dA) (H, dH)
p

k
i

idA − i ◦ p = dA ◦ k + k ◦ dA i is quasi − isomorphism

Then any P∞-algebra structure on A can be transferred into P∞-algebra struc-
ture on H such that it extends to an ∞-quasi-isomorphism.

A first example, that may come to one’s mind, is the case when A is dg asso-
ciative algebra (trivial case of A∞-algebra) and H = H(A, dA) is a (co)homology
of A. In that case, H(A) is also A∞-algebra with a trivial differential, dH = 0.

In the following we don’t want to talk about the minimality in the sense of
model categories. But inspired by the previous example, we “content” ourselves
with a minimality in the sense of the decomposition theorem, see [21]: We call
P∞-algebra minimal if the differential is trivial, i.e. m1 = 0 and contractible
if all higher operations are trivial, i.e. mk = 0 for k ≥ 2. Any A∞-algebra is ∞-
isomorphic to the direct sum of a minimal A∞-algebra and a linear contractible
A∞-algebra.

The minimal model theorem follows from the decomposition theorem, al-
though the form of the minimal model is not explicit.

Later, in a similar fashion, we will call algebras over the cofibrant replacement
of modular operads as “quantum homotopy algebras” and consider the structure
transferred to cohomology as their minimal model.

The homological perturbation lemma, introduced in chapter 4, is then a set of
techniques convenient to transfer the structures from the decomposable object to
its minimal part up to homotopy.

2.2 Pedestrian way to cobar complex
In the previous section, we defined the cobar complex as the functor Ω from
cooperads to operads. In this sections, we show that under some assumptions we
can define cobar complex as a functor C from operads to operads which moreover
gives us a minimal model.

The glimpses of the idea were already seen in the remark 82. We can think
about the cobar complex as graph complex and the cooperadic decomposition
as a coboundary map “expanding” a vertex into an edge.6 This approach was
developed in [16] where the notion of graph complex was generalized to the case
of an arbitrary operad P and called the cobar complex C(P).

We follow here [16], sometimes with slight changes similar to [32]. Some de-
tails are also influenced by [3] and [24] since we later want to compare the cobar
complex construction with the analogous one for the modular operads. In remark

5Defined in 146.
6Or several edges in the case of properads.
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108 we show how both constructions can be made in the same spirit.

The underlying idea is this: if one considers a graded dual of P , then the dual
maps ( ◦i)∗ define a collection of dg maps

( ◦i)∗ : P(n)∗ −→
∑︂

k+l=n+1
P(k)∗ ⊗ P(l)∗

that have the same properties as we need from the decomposition map in coop-
erads (i.e. Σ-equivariance and coassociativity).

It reminds us of the coboundary map, but to define the graph complex prop-
erly, this map should be of degree 1. So similarly as in the remark 82 and definition
86 we need to “shift the degree” of the components. Instead of suspending the
vector spaces P(n)∗ we use the determinant cocycle, see definition 94.

The operad C(P) itself is then a collection of trees with vertices vi decorated
by elements p ⊗ ↑ vi where p ∈ P (n)∗ (for vertex vi with n incoming half-edges)
and ↑ vi is a formal element of degree 1. The operadic composition is defined as
grafting the trees (according to the orientation of half-edges).

Remark 92. Obviously, this construction can be made only under some assump-
tion:

We consider only operads P such that all components P(n) are finite dimen-
sional vector spaces. Obviously then there is no problem with considering the
linear dual P(n)∗.

Similarly as in [16] we reduce to the operads P such that P(0) = P(1) = 0. It
is necessary to ensure that the free operad is still composed only of the connected
trees (triviality of P(0)) and that there is no ambiguity caused by identification of
trees with a different number of vertices and therefore different degrees (triviality
of P(1)).7

Remark 93. Later we want to adapt this approach also to properads and mod-
ular operads. Notice that we already prepared in the case of modular operads by
assuming finiteness of components P(C,G) in 23 and stability condition in 19.

In the case of properads we also assume the stability condition, see 59. To
avoid problems with duals, we assume that the dg vector space P(C,D, χ) is
finite dimensional for any triple (C,D, χ) whenever CP appears.

Definition 94. The determinant. For I a finite set, define

Det(I) =
⋀︂
i∈I

(↑ Ki)

And with notation from [32]:

Definition 95. The cobar complex of operad P is a dg Σ-module C(P) with
differential dC(P)

P(n)∗ dC(P)−→ colim
V ert(Γ)=1

P (Γ)∗ ⊗Det(V ert(Γ))
dC(P)−→ . . .

. . .
dC(P)−→ colim

V ert(Γ)=n−1
P (Γ)∗ ⊗Det(V ert(Γ))

7It would be sufficient to consider absence of the unit. But in our examples the component
P(1) contains only unit.
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where Γ ∈ IsoTreen is implicit in all colimits and the differential is given as sum

dC(P) = dP∗ ⊗ 1 +
∑︂

Γ1,Γ2
Γ1 ◦i Γ2

( ◦i)∗ ⊗ (↑ v ∧ −)

(Γ1 ◦i Γ2 is short for grafting tree Γ2 into i-th leaf of tree Γ1).

Remark 96. Notice that the cobar complex is a double complex with grading
from P and the “tree degree” given by the number of vertices.

One usually consider the cobar complex of operad with the trivial internal
differential, i.e. dP∗ = 0.

2.2.1 Cobar complex of properads
Since operads are just special cases of properads the generalization of the cobar
complex will be pretty straightforward in this case.

The cobar complex of a properad P is a properad denoted by CP . It is the
free properad generated by the suspended dual of P , with the differential induced
by the duals of structure maps. As we have seen in previous sections, the cobar
complex of a properad P is in fact a double complex with the differentials being
the two terms in the formula (2.4). Each component CP(C,D, χ) is given by
a colimit of (⋀︁ni=1 ↑ Vi) ⊗ P(C,D, χ) over all isomorphism classes of directed
connected graphs Γ with n vertices with card(D) inputs and card(C) outputs.

Roughly speaking, CP is spanned by directed graphs with no directed circuits
and its vertices are decorated with elements of P∗.

To ensure the following will be unambiguous and to pay off a debt of the
missing combinatorial definition of properads, let us first specify the “underlying”
category of graphs.8

Definition 97. A graph Γ consists of vertices and half-edges. Exactly one end
of every half-edge is attached to a vertex. The other end is either unattached
(such a half-edge is called a leg) or attached to the end of another half-edge (in
that case, these two half-edges form an edge). Every end is attached to at most
one vertex/end. The half-edge structure for vertex V1 of the graph Γ is indicated
on the following picture on the left.

Definition 98. In a directed graph, every half-edge has assigned an orientation
such that two half-edges composing one edge have the same orientation. The
half-edges attached to each vertex are partitioned into incoming and outgoing
half-edges.

A directed circuit in such graph is a set of edges such that we can go along
them following their orientation and get back to the point where we started.

We require that to every vertex Vi a nonnegative integer Gi is assigned. We
define

G := dimH1(Γ,Q) +
∑︂
i

Gi

to be the genus of the graph. The stable graphs then fulfill the condition

χi = 2(Gi − 1) + card(Ci) + card(Di) > 0,
8In e.g. [24] these graphs are called connected directed graphs without wheels.
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for every vertex Vi, where card(Ci) and card(Di) denotes the number of outgoing
resp. incoming half-edges attached to Vi.

Consider a finite directed graph Γ with no directed circuits and with integers
Gi assigned to each vertex as is indicated on the picture on the right.

V1 V2

l3

l2

l4

V3

h1=l1

h2

h3

h4

G1 G2

l3

l2

l4

G3

h1=l1

h2

h3

h4

Figure 2.1: Half-edge structure of a graph and a directed graph with assigned Gi

Finally, we require that the incoming legs of Γ are in bijection with the set D
and outgoing legs with C.9 The graph Γ is “decorated” by an element

(↑V1 ∧ · · · ∧ ↑Vn) ⊗ (P1 ⊗ · · · ⊗ Pn),

where V1, . . . Vn are all vertices of Γ, ↑ Vi’s are formal elements of degree +1, ∧
stands for the graded symmetric tensor product and Pi ∈ P(Ci, Di, χi)∗, for every
vertex Vi.

Then the isomorphism class of Γ together with (↑V1∧· · · ∧ ↑Vn)⊗(P1⊗· · ·⊗Pn)
is an actual element of CP(C,D, χ).

The operation ( η
B◦A)CP is defined by grafting of graphs, attaching together

card(A) pairs of incoming and outgoing legs with a suitable orientation so that
no directed circuits are formed.

The differential dCP on CP is the sum of the differential dP ∗ and of the
differential given by the dual of ( η

B◦A) which adds one vertex V , card(A) edges
attached to it and modifies the decoration of Γ. For an explicit formula, it is
enough to consider a graph Γ with one vertex. On such a graph we have

dCP = dP∗ ⊗ 1 + (2.4)

+
∑︂

C1⊔C2=C
D1⊔D2=D

χ=χ(χ1,χ2,A,B,η)
χ1,χ2>0

1
card(A)!(

(C1,D1⊔B,χ1) η (C2⊔A,D2,χ2)
B◦A )∗

P ⊗ (↑ V ∧ ·)

where

(
(C1,D1⊔B,χ1) η (C2⊔A,D2,χ2)

B◦A )∗
P : P(C,D, χ)∗

(2.5)
→ P(C1, D1 ⊔B,χ1)∗ ⊗ P (C2 ⊔ A,D2, χ2)∗

9In [15], it is shown that the number of isomorphism classes of (ordinary) stable graphs
with legs labeled by the set [n] and with the fixed genus G is finite. The additional conditions
on graphs, i.e. being directed with no directed circuits, will obviously not change this.
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for stable vertices (C1, D1 ⊔ B,χ1) and (C2 ⊔ A,D2, χ2). For a general stable
graph, the differential extends by the Leibniz rule.

Remark 99. Here we should clarify the used notation. The sum is over pairs of
sets C1, C2 and D1, D2 as indicated and also over characteristics χ1, χ2 and the
bijection 10 η such that χ1, χ2 > 0 and the result of

(C1,D1⊔B,χ1) η (C2⊔A,D2,χ2)
B◦A gives

a component of the given characteristic χ. Such sum is obviously finite.
For example, in the case of closed Frobenius properad where the Euler charac-

teristic is additive, the sum is just over G1, G2, η such that 1 ≤ card(A) ≤ G+ 1,
G1 +G2 + card(A) − 1 = G for a given G.

We will use this shortened notation also in the following.

Remark 100. In the above formula, we should make a choice of the “new vertex”
V out of the two vertices created by the splitting of the original one. Since
we consider only connected directed graphs with no directed circuits, the new
card(A) edges in the resulting graph will necessarily start in one vertex and end
in the other one.

We can choose any of them as the new one but once the choice is made, we
have stick to it consistently when extending the differential using the Leibniz
rule. The decoration by graded symmetric product of degree-one elements then
ensures that the dCP is really a differential.

Remark 101. The notion of cobar complex of a 2-colored properad is defined
using a suitable definition of 2-colored directed graphs. We leave it to the reader
to fill in the details.

2.2.2 Feynman transform
At first sight, the definition of graph complex for Feynman transform F differs
from the definition of cobar complex C for properads. The reason is given by
different structure maps. In the case of properads, the maps ( A◦B)∗ add several
edges but exactly one vertex. Therefore the degree of the elements in the free
operad C(P) must be tied to the number of vertices. Whereas in the case of
modular operads, both ( i◦j)∗ and ( ◦ij)∗ add exactly one edge but in the latter
case no vertex. Therefore we must use a “different cocycle”.

We start by clarifying what is the cocycle and what we mean by a twist. We
follow here [3], respective [15]. Then the Feynman transform is introduced with
the possible unifying point of view of [24].

Remark 102. The graded vector space V is invertible, if there exist another
graded vector space V −1 such that V ⊗ V −1 ∼= K.

Obviously V is invertible if and only if it is of the form ↑n K for some n ∈ Z.
Then V −1 =↓n K.

Definition 103. A cocycle is a functor D : MGr(n, g) → gVect which assigns to
a stable graph Γ a graded one-dimensional vector space D(Γ) that is invertible,
and to any morphism of stable graphs f : Γ0 → Γ1 the linear isomorphism

D(f) : D(Γ1) ⊗
⨂︂

v∈V ert(Γ1)
D(f−1(v)) −→ D(Γ0)

10Notice, that by giving η we also identify the sets A, B and their size.
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satisfying the natural associativity condition, see 4.1.3 in [15].
Moreover, we assume D maps the graphs with only one vertex and no edges,

i.e. corollas Γ = ∗n,g, to K.11

Example 104. An important example of cocycle is

K(Γ) = Det(Edge(Γ))

where Edge(Γ) is the unordered set of egdes of graph Γ. In [15] named as the
dualizing cocycle, in [24] as the twist.

Let s be an Σ-module such that each object s(n,G) is invertible. Then s
defines a natural structure of cocycle

Ds(Γ) = s(n,G) ⊗
⨂︂

v∈V ert(Γ)
s−1((leg(v), G(v))

called coboundary of s. Notice that tensoring with s defines a functor on Σ-
modules.

Definition 105. Let modular operad P be an algebra over the monad (T, µ, η).
The twisted modular D-operad is an alegbra PD over the twisted monad
(TD, µD, ηD)

(TDP)(n, g) = colim
Γ∈IsoMGr(n,g)

P∗(Γ) ⊗D(Γ) =

= colim
Γ∈IsoMGr(n,g)

⨂︂
v∈V ert(Γ)

P∗((leg(v), g(v))) ⊗D(Γ)

The unit ηD of this monad is defined by D(∗n,g) ∼= K and the identification
of P∗(n, g) with P∗(∗n,g) (graphs with no edges). The natural transformation
µD : TD ◦ TD → TD is given by the identity

(T 2
DP)(n, g) = colim

[Γ0
f−→Γ1]∈IsoMGr(n,g)

P∗(Γ0) ⊗D(Γ1) ⊗
⨂︂

v∈V ert(Γ1)
D(f−1(v))

and the associativity of composition given by the definition of cocycle.

Remark 106. The odd modular operad is a modular operad twisted by K(Γ)
from example 104.

Now we can explain the need for “mysterious” signs in the definition of odd
modular operad 23. In the odd version of modular operads, each edge gets weight
1 and so permutations of the edges give rise to signs.

If s defines the coboundary, then tensoring the underlying Σ-module with s
defines equivalence of the category of algebras over monad TD and over monad
s◦TD ◦ s−1 ∼= TD⊗Ds . For more details about coboundaries see section 4.4 in [15].

Definition 107. The Feynman transform of modular operad P is the free
twisted modular K-operad F (P). As Σ-module (forgetting the differential) F (P)
is a free modular K-operad generated by stable Σ-modules {P(n,G)∗}.

11The terminal object of MGr(n, g) is mapped to the unit object of gVect.
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The differential dF (P) is the sum of the differential dP and of the differential
given by the dual of the structure maps. For an explicit formula, it is enough to
consider a stable graph Γ with one vertex. On such a graph we have

dF (P) = dP∗+ (2.6)

+

⎛⎜⎜⎝ ∑︂
G3+1=G

(
(C⊔{i,j},G3)

◦ij )∗
P + 1

2
∑︂

C1⊔C2=C
G1+G2=G

(
(C1⊔{i},G1) (C2⊔{j},G2)

i◦j )∗
P

⎞⎟⎟⎠⊗ (↑ e ∧ ·)

where

(
(C1⊔{i},G1) (C2⊔{j},G2)

i◦j )∗
P : P(C,G)∗ → P(C1 ⊔ {i}, G1)∗ ⊗ P(C2 ⊔ {j}, G2)∗

(
(C⊔{i,j},G3)

◦ij )∗
P : P(C,G)∗ → P(C ⊔ {i, j}, G− 1)∗ (2.7)

↑ e ∈ Det({e}) and the factor 1
2 appears since the edges are not oriented.

Let us make few remarks about possible generalizations.

Remark 108. In [3] the Feynman transform is presented in more general form
for any twisted modular D-operad. In that case, the Feynman transform pro-
duces twisted modular KD−1-operad.

If we consider the modified definition of properads mentioned in remark 78,
then all “operad-like structures” have composition maps contracting each time
exactly one edge. Let us fix monad T encoding the operad-like structure (i.e. op-
erad, modular operad, “[24]-version” of properad, PROP, ...).

Then, in the fashion of [24], we see that Feynman transform is more general,
unifying notion. The Feynman transform is a functor

F : T−algebras −→ TK−algebras

such that as Σ-module F (P) is defined by the free algebra over twisted monad
TK with Σ-module given by the graded linear dual of P . The differential is again
given by the sum of the internal differential and from the duals of composition
maps.

This agrees with cobar complex defined above “modulo coboundaries” from
example 104.

Remark 109. One detail we need to fill in is the question of Koszulness of
modular operads. Although it is not obvious what quadratic means in the context
of modular operads – see for example discussion in [42], in [40] is shown that
modular operads are Koszul.

2.3 Algebras over the transforms, Barannikov’s
theory

The mantra of this section can be summarized in the following:
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There is a natural bijective correspondence between the algebra over
“the transform” and the solutions of the “equation”.

By transform we mean here the cobar complex or the Feynman transform.
As we have seen in the previous sections, they have many properties in com-
mon. Therefore it would be convenient to formulate the general strategy in some
universal language so we wouldn’t have to repeat it twice.

By “equation” we mean its various incarnations that appear under different
names

{S, S} = 0 dS + 1
2{S, S} = 0 dS + ∆(S) + 1

2{S, S} = 0

Master eq. Maurer − Cartan eq. Quantum Master eq.

(where one always has to specify where S lives and what are the definitions of ∆
and {−,−}).

For (ordinary) operads this mantra is a classical result. In, for example, [22]
is shown how multilinear maps encoding Maurer-Cartan equation from (2.3) for
A∞ can be nicely packed into a coderivation m ∈ CoderT cV on tensor coalgebra
such that [m,m] = 0 (section 2.2) or similarly L∞ as l ∈ ScV , a coderivation
differential on graded symmetric (sub)coalgebra (section 2.5).

The case of the modular operads was done by Barannikov in [3]. Since we
follow his construction closely also in the case of properads, we decided to call
this technical procedure as the “Barannikov’s theory”. We first phrase all the
statements as the algebras over Feynman transform F (P) and later we adapt the
notation for the case of properads but the underlying idea will be the same.

2.3.1 Algebra over Feynman transform
The following arguments can be found in [3] in section 4.

The algebra on V over Feynman transform is by definition a morphism of
twisted modular operads

α : F (P) → EV

Since as a graded object (forgetting the differential) F (P) is free as operad gen-
erated by stable Σ-module {P(n,G)∗}, the F (P)-algebra structure on V is de-
termined by the Σn-equivariant degree 0 maps αn,G : F (P)(n,G) → EV (n,G).
Trivially we can extend this into collection of maps αC,G for arbitrary finite set
C, card(C) = n.

From construction of F (P), the elements of F (P)(C,G) correspond to one-
vertex graphs of genus G with set C of legs. An arbitrary element of the free
operad F (P) is then a result of composition maps (grafting of stable graphs)
acting on elements of the form colim

Γ∈IsoMGr(n,g)
P∗(Γ) ⊗D(Γ).

For α to be truly a morphism of twisted modular operads, it is necessary

dEV
◦ α = α ◦ dF (P) (2.8)

Since both differentials are compatible with composition maps, it is sufficient to
check condition (2.8) on the generators (elements of F (P)(C,G)). The condition
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(2.8) is thanks to the explicit formula in (2.6) equivalent to

dEV (n,G) ◦ αn,G = αn,G ◦ dP∗ +
∑︂

G3+1=G
( ◦ij)EV

◦ α(C ⊔ {i, j}, G3) ◦ ( ◦ij)∗
P (2.9)

+
∑︂

C1⊔C2=C
G1+G2=G

( i◦j)EV
◦ (α(C1 ⊔ {i}, G1) ⊗ α(C2 ⊔ {j}, G2)) ◦ ( i◦j)∗

P+

with ( i◦j)∗
P , ( ◦ij)∗

P given by (2.7).

Remark 110. We can recognize in the maps ( i◦j)EV
and ( i◦j)∗

P of (2.9) analogs
of the operadic composition ◦1 and cooperadic decomposition ∆1 from remark
89. Therefore the sum can be understood as the convolution product (2.2).

2.3.2 Barannikov’s theory for modular operads
In [3] the results are stated in full generality. But our aim is only to work with
a special case of twisted modular operads – the modular operads twisted by the
“determinant-of-edges” coefficient system (as in [9]).

We already optimized our definition 107 to this case. In section 1.2.3 we in-
troduced the endomorphism odd modular operad EV with odd symplectic form
ω. Also, let us recall our earlier remark 47 where we observed we are twisting by
the symmetric inner product. Therefore we can apply results of section 3.2 of [3].

There is an isomorphism

HomΣn(P(n,G)∗, EV (n,G))
∼=−→ (P(n,G), EV (n,G))Σn

αn,G ↦→
∑︂
i

pi ⊗ αn,G(p∗
i )

Let us denote the elements of ∏︁n,G (P(n,G), EV (n,G))Σn corresponding to the
collection of αn,G under this isomorphism as SGn .

The equation (4.8) of [3] then says

(dP ⊗ 1 − 1 ⊗ dEV
)SGn + (( ◦ij)P ⊗ ( • ij)EV

)SG−1
n+2 +

+1
2

∑︂
G1+G2=G
C1⊔C2=[n]

(( i◦j)P ⊗ ( i• j)EV
)SG1

C1⊔{i} ⊗ SG2
C2⊔{j} = 0

The section 6 ibid shows how to equivalently state this equation in terms of degree
1 differential ∆ and degree 1 bracket {·, ·}, combining all the pieces of knowledge
in the following theorem:

Theorem 1, [3]. The modular F (P)-algebra structure on chain complex V
with antisymmetric inner product ω of degree −1 where P is arbitrary modular
operad are in one-to-one correspondence with solutions of the quantum master
equation

dS + ∆S + 1
2{S, S} = 0

in the space ∏︁n,G (P(n,G) ⊗ V ∗)Σn

We will see more on this in section 3.2.

60



2.3.3 Algebra over the cobar complex of properad
The following theorem is essentially the only thing we need from the theory of
the cobar transform for properads. The term algebra over the cobar complex of
properad appeared already in [38] under the name P-gebra up to homotopy at the
end of 8-th section. Thanks to the explicit construction of cobar complex C(P)
we can give also explicit formulation of algebra over cobar complex.

In order to describe an algebra over the cobar complex, it is enough to consider
graphs with one vertex.

Theorem 111. An algebra over the cobar complex CP of a properad P on a dg
vector space V is uniquely determined by a collection of degree 1 linear maps

{α(C,D, χ) : P(C,D, χ)∗ → EV (C,D, χ) | (C,D) ∈ DCor, χ > 0} ,

(no compatibility with differential on P(C,D, χ)∗!) such that

EV (ρ, σ) ◦ α(C,D, χ) = α(C ′, D′, χ) ◦ P(ρ−1, σ−1)∗

for any pair of bijections (ρ, σ) : (C,D) ∼−→ (C ′, D′) and

d ◦ α(C,D, χ) = α(C,D, χ) ◦ dP∗ + (2.10)

+
∑︂

C1⊔C2=C
D1⊔D2=D

χ=χ(χ1,χ2,A,B,η)
χ1,χ2>0

1
|A|! (

η
B◦A)EV

◦ (α(C1, D1 ⊔B,χ1) ⊗ α(C2 ⊔ A,D2, χ2)) ◦ ( η
B◦A)∗

P

where ( η
B◦A)∗

P is a shorthand notation for (
(C1,D1⊔B,χ1) η (C2⊔A,D2,χ2)

B◦A )∗
P from (2.5)

( η
B◦A)∗

P : P(C,D, χ)∗ → P(C1, D1 ⊔B,χ1)∗ ⊗ P(C2, D2 ⊔ A,χ2)∗.

The arguments are the same as in the section 2.3.1.

It will also be useful to have the skeletal version of the above theorem.

Lemma 112. Algebra over the cobar complex CP of a properad P on a dg vector
space V is uniquely determined by a collection{︂

ᾱ(m,n, χ) : P̄(m,n, χ)∗ → ĒV (m,n, χ) | ([n], [m]) ∈ DCor
}︂

of degree 1 linear maps (no compatibility with differential on P̄(m,n, χ)∗!) such
that12

ĒV (ρ, σ)ᾱ = ᾱP̄(ρ−1, σ−1)∗

for any pair (ρ, σ) ∈ Σm × Σn and

dᾱ = ᾱdP̄∗ +
∑︂

C1⊔C2=[m]
D1⊔D2=[n]

χ=χ(χ1,χ2,A,B,η)
χ1,χ2>0

EV (κ1⊔ κ2ρ
−1
A , λ1ρ

−1
B ⊔ λ2)(

κ−1
2 ηλ1

λ−1
1 (B)◦κ−1

2 (A)¯ )EV
(ᾱ⊗ ᾱ)

(P(κ1, λ1)∗⊗P(κ2, λ2)∗) ( η
B◦A)∗

P̄ (2.11)
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κ1 : [card(C1)] ∼−→ C1 κ2 : [card(C2) + card(A)] ∼−→ C2 ⊔ A

λ1 : [card(D1) + card(B)] ∼−→ D1 ⊔B λ2 : [card(D2)] ∼−→ D2

ρA : [card(C2) + card(A)] − A
∼−→ card(C1) + [card(C2)]

ρB : [card(D1) + card(B)] −B
∼−→ card(D2) + [card(D1)]

where
are arbitrary bijections.

Remark 113. The above discussion straightforwardly carries over to the 2-
colored case, the reader can easily fill in the details.

2.3.4 Barannikov’s theory for properads
As we have seen in section 2.3.2 the algebra over the Feynman transform of
modular operad P is equivalently described as a solution of a certain master
equation in an algebra succinctly defined in terms of P , cf. also Theorem 20 in
[9].

In [31] was given similar result for wheeled PROP in theorem 3.4.3. Here, we
formulate the corresponding theorem for properads in our formalism and then
adapt it to our applications.

Assume C1, D1, C2, D2, κ1, λ1, κ2, λ2 are given as in lemma 112.

Definition 114. For a properad P , define

P(m,n, χ) := Σm (P([m], [n], χ) ⊗ EV ([m], [n], χ))Σn

P :=
∏︂

n≥0,m≥0
χ>0

P(m,n, χ)

with P(m,n, χ) being the space of invariants under the diagonal Σm × Σn action
on the tensor product.

Let P be equipped with a differential, given for f ∈ P(m,n, χ), by

d(f) :=
(︂
dP([m],[n],χ) ⊗ 1EV ([m],[n],χ) − 1P([m],[n],χ) ⊗ dEV ([m],[n],χ)

)︂
(f), (2.12)

The composition ◦ is described as follows: Assume g ∈ P(m1, n1 + card(B), χ1),
h ∈ P(m2 + card(A), n2, χ2) and card(A) = card(B), then the component (m =
m1 +m2, n = n1 + n2, χ = χ(χ1, χ2, A,B, η)) of the composition g ◦ h is given by
∑︂(︂

( η
B◦A)P ⊗ ( η

B◦A)EV

)︂
σ23(P(κ1, λ1)⊗EV (κ1, λ1)⊗P(κ2, λ2)⊗EV (κ2, λ2))(g⊗h).

The differential and the composition are extended by infinite linearity to the
whole P. Here the sum is over C1 ⊔ C2 = [m], D1 ⊔ D2 = [n], card(C1) = m1,
card(C2) = m2, card(D1) = n1, card(D2) = n2 and σ23 is the flip excahning the
two middle factors. Recall that κ1, κ2, λ1, λ2 depend on C1, C2, D1, D2.

12In the sequel, we simplify the notation a bit further: the (m, n, χ) at ᾱ(m, n, χ) is usually
omitted and so is the symbol ◦ for composition of maps.
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Remark 115. Since the above definition of the composition ◦ doesn’t depend on
the choice of maps κ1, κ2, λ1, λ2 it might be sometimes useful to make a convenient
choice of these.

Without loss of generality we can assume A ⊂ [m2 + card(A)] and B ⊂
[n1 + card(B)] and hence relabel them as M and N respectively, just to follow
our conventions from remark 69. Let κ1, λ2 be increasing as well as λ1 when
restricted to [n1 + card(N)] −N and κ2 when restricted to [m2 + card(M)] −M .
Then the (m = m1 +m2, n = n1 +n2, χ(χ1, χ2,M,N, ξ)) component of the above
composition g ◦ h can be rewritten as

∑︂
(P(ρ, σ) ⊗ EV (ρ, σ))

(︄
(

ξ

N◦M̄ )P ⊗ (
ξ

N◦M̄ )EV

)︄
σ23(g ⊗ h), (2.13)

with the sum running over all (m1,m2)-shuffles ρ and (n2, n1)-shuffles σ.

Theorem 116. Algebra over the cobar complex CP on a dg vector space V is
equivalently given by a degree 1 element L ∈ P satisfying the master equation

d(L) + L ◦ L = 0. (2.14)

Sketch of proof. Consider the isomorphism

HomΣC×ΣD
(P(C,D, χ)∗, EV (C,D, χ))

∼=−→ ΣC (P(C,D, χ) ⊗ EV (C,D, χ))ΣD

α ↦→
∑︂
i

pi ⊗ α(p∗
i ) (2.15)

where {pi} is a k-basis of P(C,D, χ) and {p∗
i } is its dual basis. Under this

isomorphism, (2.11) becomes the (χ,m, n)-component of the master equation of
this theorem.

By (2.15), any L ∈ P can be written in the form

L =
∑︂
n,m,χ

Lm,n,χ =
∑︂
n,m,χ

∑︂
i

pi ⊗ α(p∗
i )

for some collection α of Σm × Σn-equivariant maps of degree 1

α([m], [n], χ) : P([m], [n], χ)∗ → EV ([m], [n], χ).

Let pi be a basis of P([m], [n], χ) and p∗
i the dual one. Put fpi

:= ᾱ(p∗
i ) :

V ⊗n → V ⊗m. Also, pick a homogeneous basis {ai} of V and denote fJpiI
the

respective coordinates of fpi
, where I := (i1, . . . , in) and J := (j1, . . . , jm) are

multi-indices in [dim V ]×n and in [dim V ]×m, respectively.
Hence, we have an isomorphism Y :

Y : Σm (P([m], [n]χ) ⊗ EV ([m], [n], χ))Σn ∼= P([m], [n], χ)Σm ⊗Σn (V ⊗m ⊗ (V ∗)⊗n)∑︂
i

pi ⊗ α(p∗
i ) ↦→ 1

m! · n!
∑︂
i,I,J

fJpiI
(pi Σm ⊗Σn (aJ ⊗ ϕI))

(2.16)
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and the right hand side is the space of coinvariants with respect to the diagonal
Σn × Σm action on the tensor product. Here, {ϕi} is the basis dual to {ai}. The
coefficient 1

n!m! is purely conventional. In particular, we have

L =
∑︂
n,m,χ

1
m!n!

∑︂
i,I,J

fJpiI
(pi Σm ⊗Σn (aJ ⊗ ϕI)) (2.17)

The obvious inverse Y −1 is

Y −1 : p Σm ⊗Σn (aJ ⊗ ϕI) ↦→
∑︂

(ρ,σ)∈Σm⊗Σn

P(ρ, σ)(p) ⊗ EV (ρ, σ)(aJ ⊗ ϕI).

Denote

P̃(m,n, χ) :=
(︂
P([m], [n], χ) Σm ⊗Σn (V ⊗m ⊗ (V ∗)⊗n

)︂
(2.18)

P̃ :=
∏︂
m,n,χ

P̃(m,n, χ). (2.19)

Then P ∼= P̃ and we can transfer the operations d and ◦ from P to P̃. We start
with the differential d̃ on P̃, which is obvious

d̃
(︂
p Σm ⊗Σn (aJ ⊗ ϕI)

)︂
= dP(p) Σm ⊗Σn (aJ ⊗ ϕI) − (−1)|p|p Σm ⊗Σn dEV

(aJ ⊗ ϕI)
(2.20)

Concerning the composition ◦̃, this is a bit more complicated, but also straight-
forward.

P ⊗ P P̃ ⊗ P̃

P P̃

∼=

Y ⊗ Y

◦ ◦̃

Y

∼=

Chasing the above commutative diagram, we obtain:(︂
p1 Σm1

⊗Σn1
(aJ1 ⊗ ϕI1)

)︂
◦̃
(︂
p2 Σm2

⊗Σn2
(aJ2 ⊗ ϕI2)

)︂
= (2.21)

=
∑︂
M,N,ξ

(︄
(

ξ

N◦M̄ )P(p1 ⊗ p2)
)︄

Σm1+m2−|M|⊗Σn1+n2−|M|(︄
(

ξ

N◦M̄ )EV
(aJ1 ⊗ ϕI1) ⊗ (aJ2 ⊗ ϕI2)

)︄
,

where the sum runs over all pairs of nonempty subsets M ⊂ [m2], N ⊂ [n1] with
card(M) = card(N) ≤ min{m2, n1} and all isomorphisms ξ between N and M .

Remark 117. Let us denote by (x ◦̃ y) ◦̃ z the sum of all possible compositions
of three elements in P̃ spanned by graphs on picture 2.2. Let us denote by
x◦̃(y, z) the summands spanned by the first graph on picture 2.2. In this notation
x ◦̃ (y, z) = x ◦̃ (z, y).

Similarly, x ◦̃ (y ◦̃ z) is spanned by graphs on picture 2.3 and let us denote by
(x, y) ◦̃ z the summands spanned by the first graph. Obviously

(x ◦̃ y) ◦̃ z − x ◦̃ (y ◦̃ z) = x ◦̃ (y, z) − (x, y) ◦̃ z (2.22)
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Figure 2.2: Compositions (x ◦̃ y) ◦̃ z in P̃
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Figure 2.3: Compositions x ◦̃ (y ◦̃ z) in P̃

Lemma 118. (P̃, ◦̃) forms a Lie-admissible algebra.

Proof. Let us recall what means Lie-admissible: A graded vector space A with a
binary product ◦ is Lie-admissible algebra if one has the associator As(·, ·, ·)
such that ∑︂

σ∈Σ3

sgn(σ)As(·, ·, ·)σ = 0

where, for instance, As(x, y, z)σ for σ = (23) is (−1)|y|·|z|((x◦z)◦y)− (x◦ (z ◦y)).
Similarly as in Proposition 4 in [38] let us consider two subgroups H =

{id, (23)}, K = {id, (12)} of Σ3. Trivially from (2.22) we get∑︂
σ∈Σ3

sgn(σ)As(·, ·, ·)σ =
∑︂
σ∈Σ3

sgn(σ) (((· ◦̃ ·) ◦̃ ·)σ − (· ◦̃ (· ◦̃ ·))σ) =

=
∑︂
τ∈Σ3
τH=Σ3

sgn(τ)
(︂
(· ◦̃ (·, ·))τ − (· ◦̃ (·, ·))τ(23)

)︂
⏞ ⏟⏟ ⏞

0

−
∑︂
ρ∈Σ3
ρK=Σ3

sgn(ρ)
(︂
((·, ·) ◦̃ ·))ρ − ((·, ·) ◦̃ ·)ρ(12)

)︂
⏞ ⏟⏟ ⏞

0

= 0

Let us assume that for each object ([m], [n]) ∈ DCor there is a basis {pi} of
P([m], [n], χ) which is preserved by the Σm × Σn-action and the operations η

B◦A.
This is obviously satisfied, e.g., for the closed Frobenius properad considered in
60. With these choices, the coordinates fJpiI

have the following simple invariance
property

fJpiI
= ±fρ(J)

P(ρ,σ)(pi)σ−1(I),

where ± is product of respective Koszul signs corresponding to ρ(J) and σ(I).
We can decompose {pi} into Σm × Σn-orbits indexed by r and choose a rep-

resentative pr for each r. Denote O(pr) := Σm × Σm/Stab(pr) and also fix a
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section Σm × Σn/Stab(pr) ↪→ Σm × Σn of the natural projection, thus view-
ing O(pr) as a subset of Σm × Σn. Hence the orbit of pr in P([m], [n], χ) is
{P(ρ, σ)pr | (ρ, σ) ∈ O(pr)} and it has |O(pr)| = n!m!

|Stab(pr)| elements. Hence, we
can get an expression for elements of P̃ involving pr’s only:

1
m!n!

∑︂
i,I,J

fJpiI
(pi Σm ⊗Σn (aJ ⊗ ϕI)) = (2.23)

=
∑︂
r

1
|Stab(pr)|

∑︂
I,J

fJprI(pr Σm ⊗Σn (aJ ⊗ ϕI))

Thus the generating operator L ∈ P̃ can be expressed as

L =
∑︂
m,n,χ

∑︂
r,I,J

1
|Stab(pr)|

fJprI (pr Σm ⊗Σn (aJ ⊗ ϕI)). (2.24)

2.3.5 Master equation of properads as homological differ-
ential operators

It can be useful to have the following interpretation of the operation ◦̃. Here
we shall assume the our corollas have always at least one input and one output,
i.e. we assume P(C,D, χ) to be nontrivial only if both C and D are non-empty
and m+ n > 2, for G = 0. In this case, we introduce, similarly to [9], positional
derivations

∂(k)

∂aj
(ai1 ⊗ . . .⊗ aim) = (−1)|aj |(|ai1 |+...|aik−1 |) δikj (ai1 ⊗ . . .⊗ ˆ︂aik ⊗ . . .⊗ aim)

(2.25)
and for sets J = {j1, . . . j|N |} and K = {k1, . . . k|N |}

∂(K)

∂aJ
= ∂(k1)

∂aj1
. . .

∂(k|N|)

∂aj|N|

.

Although the formula defining the positional derivative might seem obscure at
the first sight, its usefulness will be obvious from the forthcoming formula (2.26).

The meaning of the positional derivative ∂(k)

∂aj
is simple. Applied to a tensor

product like ai1 ⊗ . . .⊗ aim it is zero unless there is a tensor factor aj at the k-th
position, in which case it cancels this factor and produces the relevant Koszul sign.
We have introduced it because, in contrary to the left derivative familiar from
the supersymmetry literature, here we do not have a rule how to commute the
tensor factor aj to the left. The “inputs” from (V ∗)⊗n1 in equation (2.21) can then
be interpreted as the partial derivations acting on the “outputs” from V ⊗m2 , and
hence we can interpret elements of P̃ = ∏︁

m,n,χ P̃(m,n, χ) as differential operators
acting on P̃+ := ∏︁

k P̃(k, 0, χ) as

p1 Σm1
⊗Σn1

(aJ1 ⊗ ϕI1) : p2 Σm2
⊗ aJ2 ↦→ (2.26)

±
∑︂
M,N,ξ

∂ξ(N)

∂aN
(aM) (

ξ

N◦M̄ )P(p1 ⊗ p2) Σm1+m2−|M| ⊗Σn1−|M| aJ1aJ2−M ,
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where the sign ± is given as in (2.25). Hence, in the master equation d̃L̃+L̃◦̃L̃ = 0
where L̃ = Y (L) with Y being the isomorphism (2.16), the operation ◦̃ becomes
the composition of differential operators. For this, recall that L̃ is of degree 1 so
we can write L̃ ◦̃ L̃ = 1

2 [L̃ ◦̃, L̃] as the graded commutator.
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3. Batalin-Vilkovisky algebras
A Batalin-Vilkovisky algebra (BV-algebra for short) is a graded commutative
algebra equipped with a second-order odd differential operator that squares to
zero. In this chapter, we show that modular operads with the connected sum (we
defined in 24) form the BV-algebra.

And since BV-algebras appear in various contexts as algebraic topology or
differential geometry, but most importantly, in mathematical physics, let us start
with a small “motivation” from physics.

3.1 Motivation from physics
This short preview is by no means complete and serves only to motivate the way
we choose some of the conditions.1 Most of it was taken from [1].

Similarly as in [14] let us start with a problem familiar to all mathematicians:
to evaluate the line integral of an analytic function over a closed curve we employ
the residues theorem. The strategy can be rephrased as the following steps:

1. We want to compute
∫︁
M Φ where M is an n-dimensional manifold and Φ is

a top form on M .

2. We embed M into 2n-dimensional manifold N and extend Φ to a closed
n-form Ω.

3. Since Ω is closed, we can choose to integrate Ω over another cycle M0 that
is in the same homology class as M .

4. The cycle M0 is chosen in such a way that Ω has a power series expansion
in a neighborhood of M0.

The physicist would call the condition dΩ = 0 as gauge invariance, the embed-
ding of M as gauge fixing, and the change of M to M0 as change of gauge. The
basic idea behind BV-formalism would be the same.

Let us think of the “toy model” of finite-dimensional configuration space that
has a structure of finite-dimensional manifold M . The dynamics are described
by a set of equations encoded into action S0. The solutions of the equations of
motion determine a subspace of the configuration space, E ⊂ M . If the system
has gauge symmetries, i.e. there exist, one-parameter groups of transformations
of solutions, these solutions are mapped to new solutions. In other words, these
transformations correspond to vector fields P ⊂ Γ(TM).

The observables are elements f ∈ C∞(E). If the system has some symme-
tries, we should not be able to distinguish between solutions on the same orbit,
i.e. X(f) = 0 for X ∈ P . Quantization of the theory then means calculating the
formal path-integral

< f >=
∫︁
M f eiS0/ℏΩ0∫︁
M eiS0/ℏΩ0

1E.g. our different definition of endomorphism modular operad.
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where Ω0 is a formal measure that respects the symmetry, i.e. divΩ0X = 0 for all
X ∈ P . Due to gauge symmetry both of the integrals may diverge and one needs
to replace it by a gauge-fixed version.

If the infinitesimal local gauge symmetries do not form a Lie algebra, one
needs a help of BV method.2 Let us extend M to a graded manifold M by
adding auxiliary even and odd fields, the so-called ghosts, as dictated by the
symmetry P . Let us denote the coordinates on M as zi.

Next we enlarge the space even more by introducing an antifield z†
i for every

field (including ghosts). These fields are of the opposite statistics.3 In other
words, we extended M to its odd cotangent bundle E = ΠT ∗M π0−→ M . This
bundle is naturally equipped with the odd symplectic structure ω = dzi ∧ dz†

i .
The gauge-fixing is then given by the choice of suitable Lagrangian subman-

ifold L (in general (k,m − k)-dimensional). In order to define the expectation
value < f > we need to find a suitable semidensity [s] on E , where semidensities
are, roughly speaking, cohomology classes of (ω ∧ ·). For f ∈ C∞(M) then

< f >= Z−1
∫︂

L
π∗

0f · [s] where Z =
∫︂

L
[s]

The semidensity is chosen to be of a form

[s] = [exp
(︃
i

ℏ
S
)︃

Ω]

where Ω is a pull-back of measure on E and S is an extension of S0:

S = S0 + ℏ · “ghost terms′′ + “higher terms of ℏ′′

and its “suitability” is equivalent to the condition

1
2{S, S} − iℏ∆S = 0

According to theorem 2.9 of [1], the value < f > is gauge-invariant (i.e. invariant
under Hamiltonian variations of L) if ({S, ·} − iℏ∆)(π∗

0f) = 0.

Let us make a few remarks linking this physical motivation with the following.

Remark 119. We denote the space of fields and antifields as V and assume it
decomposes into V = V ′ ⊕ V ′′ as well as ω = ω′ ⊗ ω′′. Then we integrate out the
fields in V ′′ by chosing Lagrangian subspace L′′ ⊂ V ′′.

Our assumption that in each degree dim(Vi) < ∞ encodes the fact, that we
consider only space-time composed of “few” points (0-dimensional spaces).

In the following, we drop the factor i to simplify the formulas. The role of ℏ
will be played by κ as we will see in lemma 131.

The effective action is defined as

eW/κ =
∫︂
L′′
eS/κ

and satisfies the master equation in the BV-algebra of Fun(P , V ′).
2Although it is possible to employ BV also in the case when they do form a Lie algebra.
3In our language, of the opposite degree.

70



In the graded geometry, linear transformations are given by supermatrices.
Therefore one needs the generalization of the determinant – a superdeterminant
also known as Berezinian. The semidensities then transform with a square root
of Berezinian. We don’t want to go much into details so we only show a special
case in remark 183.

3.2 Definition of BV-algebras and generalized
BV-algebras

Definition 120. A BV algebra is a graded commutative associative algebra on
graded vector space F with a bracket {, } : F⊗2 → F of degree 1 that satisfies

{X, Y } = −(−1)(|X|+1)(|Y |+1){Y,X} ,
{X, {Y, Z}} = {{X, Y }, Z} + (−1)(|X|+1)(|Y |+1){Y, {X,Z}} , (3.1)

{X, Y Z} = {X, Y }Z + (−1)(|X|+1)|Y |Y {X,Z}

and a square zero operator called BV Laplacian ∆ : F → F of degree 1 such that

∆(XY ) = (∆X)Y + (−1)|X|X∆Y + (−1)|X|{X, Y } . (3.2)

For algebras with unit 1, we will require ∆(1) = 0.

Remark 121. The conditions ∆2 = 0 and (3.2) give us the compatibility between
∆ and {, }

∆{X, Y } = {∆X, Y } + (−1)|X|+1{X,∆Y }

Remark 122. It is possible to consider a case of graded vector space with bracket
and Laplacian defined as in definition 120 but without associative algebra struc-
ture. In this way, we obtain what will be referred to as generalized BV algebra.

Besides preserving graded Jacobi identity and ∆2 = 0 it also preserves the
compatibility shown in the previous remark 121.

But for the case with associative algebra structure, the condition (3.2) tells
us we need to define the bracket in some specific way. This could be seen later
in the section 3.2.1.

Remark 123. As will be easily see in a moment, if we consider symmetric tensor
algebra Sym(V ∗) with symmetric tensor product defined as

ϕi1 ⊙ . . .⊙ ϕin = 1
n!

∑︂
σ∈Σn

σ(ϕi1 ⊗ . . .⊗ ϕin)

of dg symplectic vector space V , both bracket, and BV Laplacian can be defined
directly from the symplectic form. This is the underlying idea of [10].

Therefore for the quantum closed operad QC, i.e modular envelope of a cyclic
operad, it is not necessary to introduce the connected sum to define the BV alge-
bra. One may ask if the results are therefore the same as ours when introducing
the connected sum. We look closely at this in section 3.3.2.
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Our goal now is to use the properties of twisted endomorphism modular op-
erad, to define bracket and BV Laplacian also for a vector space with an arbitrary
symmetry (given by modular operad P).

Let us consider the skeletal version and modular operads P , Q such that P is
a dg modular operad and Q an odd dg modular operad, both of finite type.4 Let
us define

Con(P ,Q)(n,G) = (P(n,G) ⊗ Q(n,G))Σn

Con(P ,Q) =
∏︂
n≥0

∏︂
G≥0

Con(P ,Q)(n,G)

There are operations

d : Con(P ,Q)(n,G) → Con(P ,Q)(n,G)
∆ : Con(P ,Q)(n+ 2, G) → Con(P ,Q)(n,G+ 1)

{−,−} : Con(P ,Q)(n1 + 1, G1) ⊗ Con(P ,Q)(n2 + 1, G2)
→ Con(P ,Q)(n1 + n2, G1 +G2)

of degrees 1, 1 and 0, respectively, defined by

d = dP ⊗ 1 − 1 ⊗ dQ (3.3)
∆ = ( ◦ij ⊗ • ij)(θ ⊗ θ) (3.4)

for arbitrary bijection θ : [n] ⊔ {i, j} ∼−→ [n+ 2], and

{X, Y } = (−1)|X| · 2
∑︂
C1,C2

( i◦j ⊗ i• j)(θ1 ⊗ θ2 ⊗ θ1 ⊗ θ2)(1 ⊗ τ ⊗ 1)(X ⊗ Y ) (3.5)

where τ is the monoidal symmetry and we sum over all disjoint decompositions
[n1 + n2] = C1 ⊔ C2, such that card(C1) = n1, card(C2) = n2, the bijections5

θ1 : C1 ⊔ {i} ∼−→ [n1 + 1], θ2 : C2 ⊔ {j} ∼−→ [n2 + 1] are chosen arbitrarily.
These operations extend in the usual way to Con(P ,Q) → Con(P ,Q) or

Con(P ,Q) ⊗ Con(P ,Q) → Con(P ,Q).

Remark 124. The compatibility properties of d,∆ and {, } were proven in [9]
in theorem 206:

d2 = 0
d{, } + {, }(d⊗ 1 + 1 ⊗ d) = 0

∆2 = 0
∆{, } + {, }(∆ ⊗ 1 + 1 ⊗ ∆) = 0

∆d+ d∆ = 0

and the Jacobi identity

{f, {g, h}} = {{f, g}, h} + (−1)(|f |+1)(|g|+1){g, {f, h}}

We obtain what is referred to as generalized Batalin-Vilkovisky algebra in [9].
4i.e. P(n, G), Q(n, G) are finite dimensional vector spaces for all n.
5No summation over those.
6In a bit different sign convention.
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3.2.1 BV-algebras for modular operads with connected
sum

Let us provide the missing piece – the graded commutative associative product.

Definition 125. Let P and Q be a dg modular operad defined as above, both
with connected sum.

A product

⋆ : Con(P ,Q)(n1, G1) ⊗ Con(P ,Q)(n2, G2) → Con(P ,Q)(n1 + n2, G1 +G2 + 1)

is defined as

⋆ =
∑︂
C1,C2

(#2 ⊗ #2)(θ1 ⊗ θ2 ⊗ θ1 ⊗ θ2)(1 ⊗ τ ⊗ 1) (3.6)

where, as before, τ is the monoidal symmetry, the sum runs over all disjoint
decompositions C1 ⊔ C2 = [n1 + n2], such that card(C1) = n1, card(C2) = n2,
the bijections θ1 : C1

∼−→ [n1], θ2 : C2
∼−→ [n2] are chosen arbitrarily.

An operator ♯ : Con(P ,Q)(n,G) → Con(P ,Q)(n,G+ 2) is defined as

♯ = #1 ⊗ #1 (3.7)

Lemma 126. The definition of the product ⋆ in (3.6) doesn’t depend on the
choice of θ1, θ2.

Proof. Every θ1 : C1
∼−→ [n1] corresponds to composition θ1 = θ1̃ ◦ ψ|C1

where
ψ ∈ UnSh(n1, n2) is an unshuffle and θ̃1 ∈ Σn1 . Since Con(P ,Q)(n1, G1) is a
space of invariants under the action of Σn1 , the premutation θ̃1 won’t play any
role. Similarly for θ2. Therefore we sum only over decompositions C1 ⊔ C2.

Theorem 127. If P is dg modular operad with the connected sum, and Q an
odd dg modular operad with the connected sum, then Con(P ,Q) with operations
d,∆, {−,−} and ⋆ from definition 125 is a BV algebra as in definition 120, i.e.

(1) ⋆ is a commutative associative product, i.e. on elements:

X ⋆ Y = (−1)|X|·|Y |Y ⋆ X and (X ⋆ Y ) ⋆ Z = X ⋆ (Y ⋆ Z) (3.8)

(2) ∆⋆ = ⋆(∆ ⊗ 1) + ⋆(1 ⊗ ∆) + ♯{−,−}, i.e. on elements:

∆(X ⋆ Y ) = (∆X) ⋆ Y + (−1)|X|X ⋆ (∆Y ) + (−1)|X|♯{X, Y } (3.9)

(3) {−,−}(1 ⊗ ⋆) = ⋆({−,−, } ⊗ 1) + ⋆(1 ⊗ {−,−, })(τ ⊗ 1), i.e. on elements:

{X, Y ⋆ Z} = {X, Y } ⋆ Z + (−1)|X|·|Y |+|Y |Y ⋆ {X,Z} (3.10)

Proof. Let us consider X = ∑︁
i x

i
P ⊗xiQ ∈ Con(P ,Q), where xiP ∈ P(nx, Gx) and

xiQ ∈ Q(nx, Gx). In sake of brevity, we will omit the summation over i (including
the index) from the notation. Hence we will write X = xP ⊗ xQ. Similarly,
we have Y = ∑︁

i y
i
P ⊗ yiQ = yP ⊗ yQ and Z = ∑︁

i z
i
P ⊗ ziQ = zP ⊗ zQ where

yiP ∈ P(ny, Gy) etc. The calculations are straightforward.
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(1) follows from (CS1), (CS2) and (CS3). For commutativity:

X ⋆ Y =
∑︂
C1,C2

(−1)|xQ|·|yP |(θ1xP#2 θ2yP) ⊗ (θ1xQ#2 θ2yQ)

Y ⋆ X =
∑︂
C1,C2

(−1)|xP |·|yQ|(θ1yP#2 θ2xP) ⊗ (θ1yQ#2 θ2xQ) =

(CS2)=
∑︂
C1,C2

(−1)|xP ||yQ|+|xP ||yP |+|xQ||yQ|(θ2xP#2 θ1yP) ⊗ (θ2xQ#2 θ1yQ) =

= (−1)|X|·|Y |X ⋆ Y

And associativity:

(X ⋆ Y ) ⋆ Z =
∑︂
C3,C4

(−1)|xQ|·|yP | ((θ3xP#2 θ4yP) ⊗ (θ3xQ#2 θ4yQ)) ⋆ Z =

=
∑︂
C1,C2,
C3,C4

(−1)(|(xQ|+|yQ|)·|zP |(−1)|xQ|·|yP |

·(θ1(θ3xP#2 θ4yP)#2 θ2zP) ⊗ (θ1(θ3xQ#2 θ4yQ)#2 θ2zQ)

where C1 ⊔ C2 = [nx + ny + nz] and C3 ⊔ C4 = [nx + ny], θ1 : C1
∼−→ [nx + ny],

θ2 : C2
∼−→ [nz], θ3 : C3

∼−→ [nx], θ4 : C4
∼−→ [ny] are chosen arbitrarily. From (CS1)

(with convention as in definition 26) we get

θ1(θ3xP#2 θ4yP) = θ1(θ3 ⊔ θ4)(xP#2 yP)

where (θ3 ⊔θ4) : C3 ⊔C4 = [nx+ny] ∼−→ [nx]⊔(nx+[ny]) and similarly for Q-part.7
Therefore we can rewrite the sums over decompositions C1 ⊔C2 and C3 ⊔C4 and
actions of θ’s as∑︂
E1⊔E2⊔E3

(−1)A(ψ1 ⊔ ψ2 ⊔ ψ3)((xP#2 yP)#2 zP) ⊗

⊗ (ψ1 ⊔ ψ2 ⊔ ψ3)((xQ#2 yQ)#2 zQ)

where A = (|(xQ| + |yQ|) · |zP | + |xQ| · |yP | and ψ1 : E1
∼−→ [nx], ψ2 : E2

∼−→ [ny],
ψ3 : E3

∼−→ [nz] and we are using notation as in definition 26. Similarly one gets

X ⋆ (Y ⋆ Z) =
∑︂
D3,D4

(−1)|yQ|·|zP | (X ⋆ (ϕ3yP#2 ϕ4zP) ⊗ (ϕ3yQ#2 ϕ4zQ)) =

=
∑︂

D1,D2,
D3,D4

(−1)|xQ|·(|yP |+|zP |)(−1)|yQ|·|zP |

·(ϕ1xP#2 ϕ2(ϕ3yP#2 ϕ4zP) ⊗ (ϕ1xQ#2 ϕ2(ϕ3yQ#2 ϕ4zQ))

7It may seem strange that the action of θ3 ⊔ θ4 : C3 ⊔ C4
∼−→ [nx] ⊔ (nx + [ny]) is followed

by action of θ1 : C1
∼−→ [nx + ny]. But if we choose as Q the odd modular operad EV and then

evaluate the functions on vector vi1 ⊗ . . . ⊗ vinx+ny
where i1, . . . inx+ny

∈ C1 we get

θ1(θ3 ⊔ θ4)(xQ#2 yQ)(vi1 ⊗ . . . ⊗ vinx+ny
) = (xQ#2 yQ)(θ3 ⊔ θ4)−1θ−1

1 (vi1 ⊗ . . . ⊗ vinx+ny
) =

= (xQ#2 yQ)(v(θ3⊔θ4)θ1(i1) ⊗ . . . ⊗ v(θ3⊔θ4)θ1(inx+ny ))

and this is formally correct.
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where ϕ1 : D1
∼−→ [nx], ϕ2 : D2

∼−→ [ny + nz], ϕ3 : D3
∼−→ [ny], ϕ4 : D4

∼−→ [nz]. And
after analogical adjustments we get∑︂
E1⊔E2⊔E3

(−1)A(ψ1 ⊔ ψ2 ⊔ ψ3)(xP#2 (yP#2 zP)) ⊗ (ψ1 ⊔ ψ2 ⊔ ψ3)(xQ#2 (yQ#2 zQ))

And by (CS3) we finally get (X ⋆ Y ) ⋆ Z = X ⋆ (Y ⋆ Z).

(2) follows from (CS5a). The left side of the required equality is:

∆(X ⋆ Y ) =
∑︂
C1,C2

◦ij ϕ(θ1xP#2 θ2yP) ⊗ • ij ϕ(θ1xQ#2 θ2yQ)(−1)B

where B = |xQ||yP |+|xP |+|yP |, C1⊔C2 = [nx+ny] and we can choose ϕ = 1[nx+ny ]
(i.e. i = nx + ny − 1, j = nx + ny). Now we split the sum by distinguishing four
cases according to position of i, j in the decomposition C1 ⊔ C2 (as in axiom
(CS5a)):

∆(X ⋆ Y ) =
∑︂
C1,C2
i,j∈C1

(−1)B ( ◦ij θ1xP)#2 θ2yP ⊗ ( • ij θ1xQ)#2 θ2yQ +

+
∑︂
C1,C2
i,j∈C2

(−1)B+|xQ| θ1xP#2 ( ◦ij θ2yP) ⊗ θ1xQ#2 ( • ij θ2yQ) +

+
∑︂
C1,C2

i∈C1,j∈C2

(−1)B #1 (θ1xP i◦j θ2yP) ⊗ #1 (θ1xQ i• j θ2yQ) +

+
∑︂
C1,C2

i∈C2,j∈C1

(−1)B #1 (θ1xP j◦i θ2yP) ⊗ #1 (θ1xQ j• i θ2yQ)

It is easy to verify that the third and fourth lines give the same result. We
compare the previous calculation with

(∆X) ⋆ Y =
∑︂
C1,C2

(θ1 ◦ij ϕxP)#2 θ2yP ⊗ (θ1 • ij ϕxQ)#2 θ2yQ (−1)|xP |+(1+|xQ|)|yP |

where C1 ⊔C2 = [nx +ny − 2] and we can choose ϕ = 1[nx] and i = nx − 1, j = nx.

(−1)|X|X ⋆ (∆Y ) =
∑︂
C1,C2

(−1)B+|xQ| θ1xP#2 θ2( ◦ij ϕyP) ⊗ θ1xQ#2 θ2( • ij ϕyQ)

where we can choose ϕ = 1[ny ] and i = ny − 1, j = ny, and

(−1)|X|♯{X, Y } = 2
∑︂
C1,C2

(−1)B #1 (θ1xP i◦j θ2yP) ⊗ #1 (θ1xQ i• j θ2yQ)

It is now easy to see that required equality holds.

(3) follows from (CS1) and (CS6). First observe that:

{X, Y ⋆ Z} =
= 2

∑︂
C1,C2
D1,D2

(−1)E (ϕ1xP i◦j ϕ2(θ1yP#2 θ2zP)) ⊗ (ϕ1xQ i• j ϕ2(θ1yQ#2 θ2zQ))
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where E = |yQ| · |zP | + |xQ| · (|yP | + |zP |) + |xP | + |yP | + |zP | + |X|, the sum is
over all decompositions C1 ⊔ C2 = [nx + ny], D1 ⊔ D2 = [nx + ny + nz − 2], and
θ1 : C1

∼−→ [ny], θ2 : C2
∼−→ [nz], ϕ1 : D1 ⊔ {i} ∼−→ [nx], ϕ2 : D2 ⊔ {j} ∼−→ [ny + nz]

are arbitrary bijections. We split the sum into two according to the position
of j (inaccurately, if j ∈ ϕ2(C1) or j ∈ ϕ2(C2)) and compare to the following
calculations:

{X, Y } ⋆ Z =
= 2

∑︂
(−1)F (θ1(ϕ1xP i◦j ϕ2yP)#2 θ2zP) ⊗ (θ1(ϕ1xQ i• j ϕ2yQ)#2 θ2zQ)

where F = |xQ| · |yP | + |xP | + |yP | + |zP | · (|xQ| + |yQ| + 1) + |X| and we sum
over all decompositions C1 ⊔ C2 = [nx + ny + nz − 2], D1 ⊔ D2 = [nx + ny] and
ϕ1 : D1

∼−→ [nx], ϕ2 : D2
∼−→ [ny], θ1 : C1

∼−→ [nx + ny − 2], θ2 : C2
∼−→ [nz]

are arbitrary bijections, and i, j are arbitrary integers (so that expression makes
sense).

(−1)|X|·|Y |+|Y |Y ⋆ {X,Z} =
= 2

∑︂
(−1)G (θ1yP#2 θ2(ϕ1xP i◦j ϕ2zP)) ⊗ (θ1yQ#2 θ2(ϕ1xQ i• j ϕ2zQ))

where G = |X| · |Y | + |Y | + |xQ| · |zP | + |xP | + |zP | + |yQ| · (|xP | + |zP |) + |X| and
we sum over all decompositions C1 ⊔C2 = [nx +ny +nz − 2], D1 ⊔D2 = [nx +nz]
and ϕ1 : D1

∼−→ [nx], ϕ2 : D2
∼−→ [nz], θ1 : C1

∼−→ [ny], θ2 : C2
∼−→ [nx + nz − 2] are

arbitrary bijections, and i, j arbitrary integers (so that expression makes sense).
Using (CS1) and (CS6)8, it is easy to see that

{X, Y ⋆ Z} = {X, Y } ⋆ Z + (−1)|X|·|Y |+|Y |Y ⋆ {X,Z}

Let us make a few remarks to the convention at this place.

Remark 128. As first, note that we constructed a non-unital BV algebra. How-
ever in the following we define the exponential of A ∈ Con(P ,Q) as

exp (A) =
∞∑︂
n=0

1
n! A ⋆ . . . ⋆ A⏞ ⏟⏟ ⏞

n−times

= 1 ⊗ 1⏞ ⏟⏟ ⏞
in k⊗k

+A+
∞∑︂
n=2

1
n!A ⋆ . . . ⋆ A⏞ ⏟⏟ ⏞

in Con(P,Q)

where k ⊗ k is a tensor product of two 1-dimensional vector spaces. The space
k⊗ k is not a subspace of Con(P ,Q) but we can define 1 ⊗ 1 to be an element of
Con(0,−1) and to play the role of unit, i.e. for any element A ∈ Con(P ,Q)(n,G),
the element A ⋆ (1 ⊗ 1) ∈ Con(P ,Q)(n,G). We can extend the maps d and ∆
naturally to Con(P ,Q) ⊕ (k ⊗ k) as d(1 ⊗ 1) = 0 and ∆(1 ⊗ 1) = 0.

Element 1 ⊗ 1 has moreover a nice geometrical interpretation for both closed
and open modular operad – it corresponds to the surface without any punctures
or boundaries and geometrical genus g = 0, the sphere.

Remark 129. The bracket defined in (3.5) could seem bit strange at first but
now wee see the factor (−1)|X| · 2 ensures the required compatibility in (3.9). The
BV-algebra we constructed is a bit different from the one defined in [10]. The
role of the operator ♯ will be explained at the moment.

8We have to be careful about the signs.
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Remark 130. In the next, we will sometimes omit the symbol ⋆ from the cal-
culations as it is usual with the normal product. We will use it explicitly only in
the situations when we want to stress that we defined the product with a special
property of raising G by 1.

Also let us denote
A ⋆ . . . ⋆ A⏞ ⏟⏟ ⏞
n−times

=
∏︂⋆

n

A

to distinguish it from the direct sum.
Lemma 131. Let us introduce the space

Conκ(P ,Q) =
∏︂

n≥0,G≥0
(k((κ)) ⊗ Con(P ,Q)(n,G))

/︄
∼

where ((κ)) are formal Laurent series and the equivalence ∼ is given by for any
element Conκ(P ,Q) as

♯f ∼ κf (3.11)
If S is a degree 0 element of Conκ(P ,Q), then

(d+ ∆) exp
(︃
S

κ

)︃
= 1

κ

(︃
dS + ∆S + 1

2{S, S}
)︃

exp
(︃
S

κ

)︃
Proof. The arguments are the same as in [10]. It is a simple consequence of
equations (3.9) and (3.10) that

∆Sn = nSn−1∆S + n(n− 1)
2 ♯{S, S}Sn−2

Thus for a power series f(S) = ∑︁
n≥0 fnS

n, we have after identification

∆(f(S)) =
∑︂
n≥0

fn

(︄
nSn−1∆S + n(n− 1)

2 κ{S, S}Sn−2
)︄

=

= f ′(S)∆S + 1
2f

′′(S)κ{S, S}

Remark 132. In section 2.3.2 we recall the results of [3] that every dg operad
morphism from Feynman transform of P to Q, i.e. F (P) → Q, is equivalently
given by a degree 0 solution S ∈ Con(P ,Q) of the quantum master equation

dS + ∆S + 1
2{S, S} = 0 (3.12)

If we look closely on the case Q = EV , the equation (4.8) in [3] is9

(dP + dV )SGn + ∆SG−1
n+2 + 1

2
∑︂

G1+G2=G
I1⊔I2=[n]

{SG1
I1⊔{i}, S

G2
I2⊔{j}} = 0

where SGn ∈ Con(P ,Q)(n,G). Thanks to the modified definition of BV-algebra
in (3.9) where we used the operator ♯ we get the same terms with respect to the
G-grading.

Therefore having algebra over Feynman transform of P is equivalent with the
condition that exp

(︃
S

κ

)︃
is (d+ ∆)-closed in the space Conκ(P , EV ).

9Up to a sign convention.
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Remark 133. We will call algebras over Feynman transform of modular op-
erads (with connected sum) with the element S satisfying (3.12) as quantum
homotopy algebras.

Since d is a proper differential and the quantum master equation doesn’t
contain any “0-ary” operation, we will call these algebras flat.10

3.3 Space of formal functions Fun(P , V )
In the following, we will specialize to the case Q = EV and we identify

Con(P , EV )(n,G) = (P(n,G) ⊗ (V ∗)⊗n)Σn

Let us fix this convention in the following definition.

Definition 134. The space of formal functions on V is a space of invariants
under the diagonal action

Fun(P , V ) =
∏︂
n≥1

∏︂
G≥0

(P(n,G) ⊗ (V ∗)⊗n)Σn (3.13)

where P(n,G) is a component of an operad P .
The number n is usually called the polynomial degree. Similarly as in lemma

131 we also define the space Fun(P , V )κ.

Remark 135. Notice the space Fun(P , V ) has three different gradings corre-
sponding to cohomological grading, grading by n, and grading by G.

We can equivalently define the formal functions as coinvariants since there are
mutually inverse isomorphisms between the space of invariants and coinvariants
(see definition 9). Coinvariants better capture the idea of commuting variables.
However, operad theory produces invariants so we stick to them.

It is convenient to introduce positional derivations and positional multiplica-
tions.

Definition 136. The positional derivation of ϕI1...In ∈ (V ∗)⊗n is

∂(i)

∂ϕIi
ϕI1...In = κϕI1...Iî...In

where κ is a Koszul sign of permutation transforming ϕI1...Ii...In to ϕIiI1......In .
The positional multiplication of ϕk and ϕI1...In ∈ (V ∗)⊗n is

ϕk(i)ϕ
I1...In = κϕI1...Ii−1kIi...In

where κ is a Koszul sign of permutation transforming ϕk ·ϕI1...In to ϕI1...Ii−1kIi...In .
10The term flatness is motivated from geometry, where the master equation of the form

dΘ + 1
2[Θ, Θ] = 0

expresses the flatness of a principal connection Θ.
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3.3.1 Skeletal version of twisted endomorphism modular
operad

Before we start comparing our results with the results in [10], let us introduce the
skeletal version of the twisted modular operad. We slightly change the convention
from [9] to ensure the same sign convention and coefficients as in [10].

Definition 137. The skeletal version of odd endomorphism operad is dg
vector space

EV (n,G) = (V ∗)⊗n

with operadic composition, self-composition, Σ-action by ρ ∈ Σn, and the differ-
ential defined after an identification f ∈ EV (n,G) = ⨂︁

[n] V
∗ with (f)1[n] as

i•j(f ⊗ g) := −1
2
∑︂
k

(−1)|f ||bk|f(· · · ⊗ ak⏞⏟⏟⏞
i-th

⊗ · · · ) · g(· · · ⊗ bk⏞⏟⏟⏞
j-th

⊗ · · · )

•ij(f) := −1
2
∑︂
k

f(· · · ⊗ ak⏞⏟⏟⏞
i-th

⊗ · · · ⊗ bk⏞⏟⏟⏞
j-th

⊗ · · · )

EV (ρ)(f) = f ◦ ρ−1

d(f) ≡ (−1)|f |f ◦ dV ⊗n =
n∑︂
i=1

(−1)|f |f(. . .⊗ d⊗ . . .)

where again bk = ∑︁
l(−1)|al|ωklal

Now we give a simple formula for skeletal version of connected sum #2.

Lemma 138. Let f ∈ EV (n1, G1) ∼=
⨂︁

[n1] V
∗, g ∈ EV (n2, G2) ∼=

⨂︁
[n2] V

∗. Then

f#2 g = (f#2 g)1[n1+n2] = (f)1[n1] · (g)1[n2]

Proof. In definition 26 we defined for f ∈ P(n1, G1), g ∈ P(n2, G2)

f#2 g =
(︂
(θ1 ⊔ θ2

′)−1#2 (θ1 ⊗ θ2)
)︂

(f ⊗ g) = ((f ◦ θ−1
1 )#2 (g ◦ θ−1

2 ))(θ1 ⊔ θ2
′)

Let us choose C1 = [n1], C2 = n1 + [n2], θ1 = 1[n1], θ2 = 1[n2]. Then θ1 ⊔ θ2
′ =

1[n1+n2] and
f#2 g = (f#2 g) ◦ 1[n1+n2] = (f#2 g)1[n1+n2]

Using (1.5) with ψ1 = θ1, ψ2 = θ2 and ψ = 1[n1+n2] leads to desired formula.

Remark 139. To be more precise, we should distinguish F ∈ EV ([n]) = ⨂︁
[n] V

∗

and f ∈ (V ∗)⊗n which represents F , i.e. (F )1[n] = f . We denote both by the same
symbol for simplicity. In this condensed notation, the above lemma reads simply
f#2 g = f · g.
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3.3.2 BV-algebra for Quantum closed modular operad
In 138 we will show that the connected sum for commutative operad corresponds
to the symmetric tensor product and, after small change in the convention in
endomorphism operad, we show the equivalence of BV-Laplacian and BV-bracket
in remarks 143 and 145.

Remark 140. In (3.4) we defined BV Laplace as ∆ = ( ◦ij ⊗ • ij)(θ ⊗ θ). The
numerous discussions in [9] in section 3.8 about the choice of arbitrary bijections
θ and indices show that we can choose some fixed indices. Lemma 19 ibid says we
can even choose the indices in bracket differently for each shuffle π in the formula
(3.17) for BV-bracket.

We make the choice i = 1, j = 2 to better handle the signs which can possibly
arise.

Remark 141. Let us recall we denote by {al} a homogeneous basis of V and
{ϕk} a dual basis. Remember also, we write for better readability (−1)m instead
of (−1)|am| for elements of basis of V (and similarly for elements of the dual basis).

The symbol κσ in the following computation is a Koszul sing of permutation
σ (taking monomial ϕi1 ⊗ . . . ⊗ ϕin to ϕiσ−1(1) ⊗ . . . ⊗ ϕiσ−1(n)) and I denotes a
multi-index. we denote by card(I) = n the length of the multi-index.

Example 142. Let us consider an element of (P(n,G) ⊗ (V ∗)⊗n)Σn

X = 1
n!

∑︂
σ∈Σn

σp⊗ σ(ϕI) = 1
n!

∑︂
σ∈Σn

σp⊗ σ(ϕi1 ⊗ . . .⊗ ϕin)

Then BV-Laplacian ∆ evaluated on this element is

∆(X) = ∆
⎛⎝ 1
n!

∑︂
σ∈Σn

σp⊗ σ(ϕI)
⎞⎠ =

= (−1)|p|

n!
∑︂
σ∈Σn

( ◦12 σp) ⊗ κσ •12(ϕiσ−1(1) ⊗ . . .⊗ ϕiσ−1(n)) = (−1)|p|

n!
∑︂
σ∈Σn

( ◦12 σp)⊗

⊗

⎛⎝κσ−1
2
∑︂
k,l

ϕiσ−1(1)(ak)ϕiσ−1(2)((−1)lωklal)ϕiσ−1(3) ⊗ . . . ϕiσ−1(n)

⎞⎠
If we use the positional derivation we can make the following interpretation11

ϕiσ−1(1)(ak) ⊗ ϕiσ−1(2)(al) ⊗ ϕiσ−1(3) ⊗ . . .⊗ ϕiσ−1(n) =

= (−1)k·l ∂
(1)

∂ϕk
∂(2)

∂ϕl
(ϕiσ−1(1) ⊗ . . .⊗ ϕiσ−1(n))

ωkl is non-zero only for |ak| + |al| = 1, therefore (−1)k·l = 1 and we get

∆(X) =
⎛⎝ ◦12 ⊗

∑︂
k,l

(−1)k
2 ωkl

∂(1)

∂ϕk
∂(2)

∂ϕl

⎞⎠ (X) (3.14)

11To be precise, the self-composition •12 not only “erase” ϕiσ−1(1) , ϕiσ−1(2) but also map
the element ϕI to the component with higher G. The positional derivations lack this kind of
information but for general case we keep the track of this information in the self-composition
on the P-part.
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Remark 143. Let us compare this with the results of [10]. Their results are in
the language of coinvariants so let us first recall the pair of isomorphism between
them

(P(n,G) ⊗ (V ∗)⊗n)Σn ∼= P(n,G) ⊗Σn (V ∗)⊗n∑︂
i

pi ⊗ ϕIi ↦−→ 1
n!
∑︂
i,J

pi ⊗Σn ϕ
Ii(aJ)ϕJ

∑︂
σ∈Σn

σp⊗ σ(ϕI) p⊗Σn ϕ
I

where aJ = aj1 ⊗ . . .⊗ ajn ∈ V ⊗n and {ai} is a basis dual to {ϕi}.
The results of [10] are considered only for commutative operad, so let us

also restrict to that case, and the results in [10] are formulated in terms of left
derivation, so let us remind it. The left derivation is defined as

∂L
∂ϕk

ϕI =
card(I)∑︂
i=1

∂(i)

∂ϕk
ϕI (3.15)

Now we need two key observation.
The positional derivation on invariants corresponds (thanks to mutual iso-

morphisms) to the left derivation on coinvariants.∑︁
ρ∈Σn

ρϕI

↓↓

ϕI←←

↓↓
∂(1)

∂ϕk
∑︁
ρ∈Σn

ρϕI →→ ∂L
∂ϕk

ϕI

The positional derivation on invariants corresponds to
∑︂
ρ∈Σn

∂(1)

∂ϕk
ρϕI =

∑︂
ρ∈Σn

ρ̃
∂ρ

−1(1)

∂ϕk
ϕI =

∑︂
σ∈Σn−1

σ

(︄
n∑︂
i=1

∂(i)

∂ϕk
ϕI
)︄

=
∑︂

σ∈Σn−1

σ
∂L
∂ϕk

ϕI (3.16)

where ρ̃ is ρ restricted to [n] − {ρ−1(1)}. Now this element is mapped by lower
horizontal arrow in the diagram back to coinvariants as

1
(n− 1)!

∑︂
J

card(J)=n−1

⎛⎝ ∑︂
σ∈Σn−1

σ
∂L
∂ϕk

ϕI

⎞⎠ (aJ)ϕJ = 1
(n− 1)!

∑︂
σ∈Σn−1

∑︂
J

∂L
∂ϕk

ϕI (aJ)ϕJ

Notice that all the sumands do not depend on the permutation σ and there are
exactly (n− 1)! permutations in Σn−1.

Repeating this argument with appropriate coefficients will give us

1
(n− 2)!

∑︂
J

card(J)=n−2

⎛⎝∑︂
ρ∈Σn

∑︂
k,l

(−1)k
2 ωkl

∂(1)

∂ϕk
∂(2)

∂ϕl
(ρϕI)

⎞⎠ (aJ)ϕJ =

=
∑︂
k,l

(−1)k
2 ωkl

∂L
∂ϕk

∂L
∂ϕl

ϕI

Therefore after changing the sign convention and coefficients in definition 137 we
get the same expression of ∆ as in the setting of coinvariants in [10] in the case
of commutative operad.
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Example 144. Similarly we want to express the BV-bracket. First note that
the sum over decompositions C1 ⊔ C2 = [n + m] in the definition of bracket in
(3.5) corresponds to the sum over all shuffles π ∈ Sh(n − 1,m − 1). Evaluated
on elements we get

{X, Y } = { 1
n!

∑︂
σ∈Σn

σp⊗ σ(ϕI), 1
m!

∑︂
ρ∈Σm

ρq ⊗ ρ(ϕJ)} = (3.17)

=(−1)|p|+I · (−1)|q|·I+|p|+|q| · 2
n! ·m!

∑︂
σ∈Σn
ρ∈Σm

π∈Sh(n−1,m−1)

π(σp 1◦1 ρq) ⊗ π(σϕI 1•1 ρϕ
J) =

=(−1)|X| ∑︂
π∈Sh(n−1,m−1)

⎛⎝π( 1◦1) ⊗
∑︂
k,l

(−1)kωklπ
(︄
∂(1)

∂ϕk
⊗ ∂(1)

∂ϕl

)︄⎞⎠ (1 ⊗ τ ⊗ 1)(X ⊗ Y )

Remark 145. Similarly as in remark 143 let us restrict to commutative operad.

{ 1
n!

∑︂
σ∈Σn

σ(ϕI), 1
m!

∑︂
ρ∈Σm

ρ(ϕJ)} =

= (−1)I
n!m!

∑︂
σ∈Σn
ρ∈Σm

π∈Sh(n−1,m−1)

∑︂
k,l

(−1)k+I·lωklπ

(︄
∂(1)

∂ϕk
σϕI ⊗ ∂(1)

∂ϕl
ρϕJ

)︄
=

= (−1)I
n!m!

∑︂
π∈Σn+m−2

∑︂
k,l

(−1)k+I·lωklπ

(︄
∂Lϕ

I

∂ϕk
· ∂Lϕ

J

∂ϕl

)︄

where we used (3.16) and the fact that all possible permutations σ, ρ on two

components ∂Lϕ
I

∂ϕk
,
∂Lϕ

J

∂ϕl
followed by all possible shuffles π between these two

components are exactly all possible permutations.
To compare with results of [10] let us recall the right derivation

∂R
∂ϕk

ϕI = (−1)k·(I+1) ∂L
∂ϕk

ϕI

and since ω is odd symplectic form (−1)I · (−1)k+I·l · (−1)k·(I+1) = 1. By similar
arguments as before we get

1
(n+m− 2)!

∑︂
K,card(K)=n+m−2

π∈Σn+m−2

∑︂
k,l

ωklπ

(︄
∂Rϕ

I

∂ϕk
· ∂Lϕ

J

∂ϕl

)︄
(aK)ϕK =

=
∑︂
k,l

ωkl
∂Rϕ

I

∂ϕk
· ∂Lϕ

J

∂ϕl

This agree with the BV-bracket in [10].

3.3.3 Special deformation retracts
Definition 146. A special deformation retract (SDR) is a pair (V, d) and
(W, e) of dg vector spaces, a pair p and i of their morphisms and a homotopy
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k : V → V between ip and 1V

(V, d) (W, e)
p

k
i

d2 = 0, e2 = 0, |d| = |e| = 1, . . . differentials
pd = ep, ie = di, |p| = |i| = 0, . . . chain maps
ip− idV = kd+ dk, |k| = −1, . . . homotopy map
pi− idW = 0, . . . deformation retract
pk = 0, ki = 0, k2 = 0 . . . special deformation retract.

Remark 147. It is possible to consider only the first three conditions, i.e. chain
maps i, p between chain complexes (V, d), (W, e) with homotopy k. In that case,
one gets the so-called standard situation. When considering also the fourth con-
dition one gets the deformation retract. But in the next, we will always consider
the SDR.

Starting with SDR on a chain complex, there is a process inducing the SDR on
its tensor powers. The original construction was made in [12]. Here we rephrase
it in our conventions for the tensor product of two chain complexes. The general
tensor power can be then defined by the iteration of this process.

Lemma 148. (Tensor trick) Given two SDR

(V1, d1) (W1, e1) (V2, d2) (W2, e2)
p1

k1
i1

p2
k2

i2

(3.18)

then there is a SDR on their tensor product, i.e.

(V1 ⊗ V2, d̃) (W1 ⊗W2, ẽ)
p̃

k̃

ĩ

where ĩ = i1 ⊗ i2, p̃ = p1 ⊗ p2, d̃ = d1 ⊗ id + id ⊗ d2, ẽ = e1 ⊗ id + id ⊗ e2, and
k̃ = id ⊗ k2 + k1 ⊗ i2p2.

Proof. From the observation |ki| = −1 and |di| = 1 we see that, for example, the
member given as (id ⊗ d2) ◦ (k1 ⊗ i2p2) = −k1 ⊗ d2i2p2 has the opposite sign as
the one given by (k1 ⊗ i2p2) ◦ (1 ⊗ d2). The rest of the proof is straightforward
computation.

Notice that k̃ can be defined both as k̃ = id ⊗ k2 + k1 ⊗ i2p2 or as k̃ =
k1 ⊗ id + i1p1 ⊗ k2.

Remark 149. For any dg vector space (V, d) it is possible to construct SDR
since there is always a decomposition

V ∼= H(V ) ⊕ Im(d) ⊕W
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Such decomposition is known as harmonious Hodge decomposition. The homotopy
map k is defined as follows

k|H(V )⊕W = 0 k|Im(d) = (d|W )−1

As was shown in [6], in case we have the symplectic form on V , it is possible
to choose the decomposition compatible with this form.

Also, since we have a field of characteristic not dividing the order of Σn for
any n, by Maschke’s theorem we can choose decomposition that is compatible
with Σn-action.

One may asks if this decomposition could be also made on every component
P(n,G) of operad P so it will be compatible with operad structure maps a◦b
and ◦ab. Obviously modular operads with trivial differential are examples satis-
fying the required condition. Unfortunately, we are not aware of any non-trivial
examples.

3.3.4 Cohomology of formal functions
In the following, we want to consider the perturbation of the space of generalized
formal functions. A natural question that arises is if the cohomology of gener-
alized formal functions is equal to generalized formal functions on cohomology,
i.e. H(Fun(P , V )) = Fun(H(P), H(V )). Thanks to remark 149 we can rephrase
this in the terms of SDR.

In general, the differential on the space Fun(P , V ) is given as a sum of the
differential on P and dual of differential on V . Since in most of the examples is
the first one trivial, i.e. dP = 0, we first solve this case in the following lemma
and devote the subsequent remark 152 to the case with nontrivial dP .

Lemma 150. Let P be operad with trivial differential. If

(V, d) (H(V ), 0)
p

k
i

is a SDR, then

(Fun(P , V ), D) (Fun(P , H(V )), 0)
P

K

I
(3.19)

is SDR, where

D =
∑︂
n≥1

n∑︂
i=1

idP ⊗ (id⊗i−1 ⊗ d∗ ⊗ id⊗n−i),

I =
∑︂
n≥1

idP ⊗ (p∗)⊗n, P =
∑︂
n≥1

idP ⊗ (i∗)⊗n,

K =
∑︂
n≥1

∑︂
σ∈Σn

n∑︂
i=1

σ

n! idP ⊗ (id⊗i−1 ⊗ k∗ ⊗ (p∗i∗)⊗n−i). (3.20)

Proof. The only nontrivial identity from definition 146 to verify is KD +DK =
IP − 1Fun(P,V ).

To simplify the computation let us consider just the invariants of the form
(πj ⊗ ϕIj ) where πj ∈ P(n,G) with G fixed and ϕIj are monomials in (V ∗)⊗n,
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where we use the standard abbreviation ϕIj = ϕi1 ⊗ · · · ⊗ ϕin for any multiindex
Ij = (i1, . . . in). The operator K restricted to this space could be written as

K|(P(n,G)⊗(V ∗)⊗n)Σn =
∑︂
σ∈Σn

σ

n!⏞ ⏟⏟ ⏞
Sn,G

idP ⊗
n∑︂
i=1

(id⊗i−1 ⊗ k∗ ⊗ (p∗i∗)⊗n−i)⏞ ⏟⏟ ⏞
Kn,G

Similarly denote the restrictions of D, I, and P on this space as idP ⊗ Dn,G,
idP ⊗In,G, and idP ⊗Pn,G, respectively. It turns out, to prove the desired identity
we need to show

Sn,G(idP ⊗Kn,GDn,G) + (idP ⊗Dn,G)Sn,G(idP ⊗Kn,G) = idP ⊗ In,GPn,G − id

We want to know if we can interchange the permutation σ ∈ Σn and the operator
Dn,G.12 The following observation is a key to prove this identity, unfortunately,
it is rather technical and bit messy in the notation of indices.

Consider a monomial ϕI = ϕi1 ⊗ . . . ϕin . For every k = 1, . . . n we can write
it as ϕI = ϕI1ϕikϕI2 where I1, I2 are the corresponding multiindices such that
I = (I1, ik, I2) is a multiindex. Applying permutation σ on monomial ϕI we can
rewrite as

σ(ϕI) = (−1)ik(J1+J2) · σ1(ϕI1−J1ϕJ2)ϕikσ2(ϕJ1ϕI2−J2)

Then

σ
(︂
Dn,G(ϕI)

)︂
=

= σ
(︂
Dn1,G(ϕI1)ϕikϕI2 + (−1)I1ϕI1d∗(ϕik)ϕI2 + (−1)I1+ikϕI1ϕikDn2,G(ϕI2)

)︂
where for short D1,G = d∗ and n1 = card(I1), n2 = card(I2). So the only element
with d∗(ϕik) is

(−1)I1 · (−1)(J1+J2)·(ik+1)σ1(ϕI1−J1ϕJ2) · d∗(ϕik) · σ2(ϕJ1ϕI2−J2)

On the other hand

Dn,G(σ(ϕI)) = (−1)ik(J1+J2) ·
(︂
Dn3,G(σ1(ϕI1−J1ϕJ2)) ⊗ ϕikσ2(ϕJ1ϕI2−J2)

)︂
+

+(−1)ik(J1+J2)+(I1−J1+J2) ·
(︂
σ1(ϕI1−J1ϕJ2) ⊗ d∗(ϕik) ⊗ σ2(ϕJ1ϕI2−J2)

)︂
+

+(−1)ik(J1+J2)+(I1−J1+J2+ik) ·
(︂
σ1(ϕI1−J1ϕJ2)ϕik ⊗Dn4,G(σ2(ϕJ1ϕI2−J2))

)︂
where n3 = card(I1)−card(J1)+card(J2) and n4 = n−n3 −1. It is evident both
of the expressions contain the same term with d∗(ϕik). Repeating this argument
for all indices k = 1, . . . n we get the required identity

(idP ⊗Dn,G)Sn,G = Sn,G(idP ⊗Dn,G)

Finally, we need to show Sn,G(idP ⊗ Kn,GDn,G + idP ⊗ Dn,GKn,G) = idP ⊗
In,GPn,G − id but this follows from the tensor trick introduced in lemma 148 and
the fact that right hand side is invariant under the action of Sn,G.

12Obviously, up to the sign this is true. But we want equality even with the sign.
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Remark 151. Let us note that for the unit we “artificially” added in remark 128
we set

D(1 ⊗ 1) = 0 K(1 ⊗ 1) = 0
I(1 ⊗ 1) = 1 ⊗ 1 P (1 ⊗ 1) = 1 ⊗ 1

Obviously, the condition IP − 1 = KD + DK is satisfied also for the element
1 ⊗ 1.
Remark 152. To our question about nontrivial differential on P . Following the
remark 149, we can construct SDR for any component (n,G). From two SDR’s

(P(n,G), dP ) (H(P(n,G)), 0)
pP

kP

iP

and

((V ∗)⊗n, dV ) (H(V ∗)⊗n), 0)
pV

kV

iV

we obtain by lemma 148 the following SDR

(P(n,G) ⊗ (V ∗)⊗n, dP ⊗ id + id ⊗ dV )

(H(P(n,G)) ⊗H(V ∗)⊗n, 0)

pP ⊗pV

1⊗kV +kP ⊗iV pV

iP ⊗iV

Our aim is to find cohomology of formal functions Fun(P , V ). To do this we first
need to restrict ourselves to the subset of invariants.

From the second part of remark 149 we can choose decomposition of every
component P(n,G) (that is finite dimensional from the assumption) in such a
way that pP , iP and kP are equivariant.

When we restrict ourselves to the subset of invariants πi ⊗ ϕIi ∈ (P(n,G) ⊗
(V ∗)⊗n)Σn we get for arbitrary σ ∈ Σn

(dP ⊗ id + 1 ⊗ dV )(πi ⊗ ϕIi) = (dP ⊗ id + 1 ⊗ dV )(σπi ⊗ σϕIi) =
= dPσπi ⊗ σϕIi + (−1)|πi|σπi ⊗ dV σϕ

Ii = σdPπi ⊗ σϕIi + (−1)|πi|σπi ⊗ σdV ϕ
Ii =

= (σ ⊗ σ)(dP ⊗ id + 1 ⊗ dV )(πi ⊗ ϕIi)

thanks to the equivariance of differential dP and from the technical part of the
previous lemma. Hence dP ⊗ id + 1 ⊗ dV goes from invariants to invariants.
Similarly, thanks to equivariance of pP , pV , iP , iV clearly pP ⊗pV and iP ⊗ iV map
invariants to invariants.

To make the homotopy map going also to invariants, we need to modify it a
bit as in previous lemma∑︂

ρ∈Σn

ρ

n! (1 ⊗ kV ) + kP ⊗ iV pV = K + kp ⊗ iV pV

where K is defined in 3.20. One can easily check that subspaces of invariants
together with these maps give SDR. In other words

(H(P(n,G)) ⊗H(V ∗)⊗n)Σn = H((P(n,G) ⊗ (V ∗)⊗n)Σn)

Extending this linearly we get required equivalence

H(Fun(P , V )) = Fun(H(P), H(V ))
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3.3.5 Hodge decomposition of Fun(P , V )
Consider the symplectit Hodge decomposition of remark 149 and its graded dual.
Let us show the explicit form of the maps D, I, P and K.

Lemma 153. There is a SDR

(Fun(P , V ), D) (Fun(P , H(V )), 0)
P

K

I
(3.21)

and a basis {αk} of H(V )∗, a basis {βk} of (Imd)∗ and a basis {γk} of W ∗ such
that in these bases d∗(βl) = −∑︁

kD
l
kγ

k and the maps are of the form

I =
∑︂
n≥1

idP ⊗ (p∗)⊗n P =
∑︂
n≥1

idP ⊗ (i∗)⊗n

and for X ∈ (P(n,G) ⊗ (V ∗)⊗n)Σn ⊂ Fun(P , V )

D(X) = −

⎛⎝idP ⊗
n∑︂
i=1

∑︂
k,l

Dl
kγ

k
(i)
∂(i)

∂βl

⎞⎠ (X)

where we use the positional derivation and positional multiplication introduced
in definition 136. And if X = 1

n!
∑︁
ρ∈Σn

ρp⊗ ρ(ϕI)

K(X) = 1
ηβ,γ(X)

⎛⎝1P ⊗
n∑︂
i=1

∑︂
k,l

(D−1)kl βl(i)
∂(i)

∂γk

⎞⎠ (X) (3.22)

where the symbol ηβ,γ(X) denotes the number of occurrences of βk and γk in ϕI .
When ηβ,γ(X) = 0 then K(X) = 0.

Proof. Again, we only need to check KD+DK = IP −1Fun(P,V ). The right hand
side of this equation could be expressed on the element X = 1

n!
∑︁
ρ∈Σn

ρp⊗ ρ(ϕI)
as

(IP − 1Fun(P,V ))X = (1P ⊗ ((p∗i∗)n − 1n))X
Obviously, if ϕI = ϕi1 ⊗ · · · ⊗ ϕin contains only αk then (p∗i∗)nϕI = ϕI .

On the other hand, if for some i, ϕi = βk or ϕi = γk then (p∗i∗)nϕI = 0.
Therefore the right hand side corresponds to

(IP − 1Fun(P,V ))X = 1
n!

∑︂
ρ∈Σn

ρp⊗ −1
ηβ,γ(X)

n∑︂
i=1

∑︂
k

(︄
βk(i)

∂(i)

∂βk
+ γk(i)

∂(i)

∂γk

)︄
ρϕI

Using a technical observation we can rewrite the left hand side as

(KD +DK)X =

=
∑︂
σ∈Σn
ρ∈Σn

σ

n! · n!
∑︂

1≤i≤n
1≤j≤n

ρp ⊗
(︂
(1j−1 ⊗ k∗ ⊗ (p∗i∗)n−j)(1i−1 ⊗ d∗ ⊗ 1n−i)

)︂
ρ(ϕI)+

+
∑︂
σ∈Σn
ρ∈Σn

σ

n! · n!
∑︂

1≤i≤n
1≤j≤n

ρp ⊗
(︂
(1i−1 ⊗ d∗ ⊗ 1n−i)(1j−1 ⊗ k∗ ⊗ (p∗i∗)n−j)

)︂
ρ(ϕI)
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By closer look, we see we can separate this into three types of terms.
If i < j then we always get two terms of the form∑︂
σ∈Σn
ρ∈Σn

σ

n! · n!
∑︂

1≤i<j≤n
ρp⊗

(︂
1i−1 ⊗ d∗ ⊗ 1 ⊗ . . .⊗ 1 ⊗ k∗ ⊗ (p∗i∗)n−j

)︂
ρ(ϕI)

but with the signs +1 and (−1)|d∗|·|k∗|. So they canceled out.
If i > j then we always get two terms of the form∑︂
σ∈Σn
ρ∈Σn

σ

n! · n!
∑︂

1≤j<i≤n
ρp⊗

(︂
1j−1 ⊗ k∗ ⊗ (p∗i∗) ⊗ . . .⊗ d∗(p∗i∗) ⊗ (p∗i∗)n−i

)︂

and since d∗ on Im(p∗) is always 0, we again get zero. The last type are the terms
of the form∑︂

σ∈Σn
ρ∈Σn

σ

n! · n!
∑︂

1≤j≤n
ρp⊗

(︂
1j−1 ⊗ (k∗d∗ + d∗k∗) ⊗ (p∗i∗)n−j

)︂
ρ(ϕI) =

=
∑︂
σ∈Σn
ρ∈Σn

σ

n! · n!
∑︂

1≤j≤n
ρp⊗

(︂
1j−1 ⊗ (p∗i∗ − 1) ⊗ (p∗i∗)n−j

)︂
ρ(ϕI)

The only non-zero ρ(ϕI) for this map are of the form
n−1∑︂
j=1

∑︂
kj ,...kn

ϕiρ−1(1) ⊗ . . . ϕiρ−1(j) ⊗ βkj ⊗ αkj+1 ⊗ . . . αkn

and
n−1∑︂
j=1

∑︂
kj ,...kn

ϕiρ−1(1) ⊗ . . . ϕiρ−1(j) ⊗ γkj ⊗ αkj+1 ⊗ . . . αkn

Therefore if ϕI contains only αk also KD + DK gives zero. From d∗(βl) =
−∑︁

kD
l
kγ

k we trivially get

D|(P(n,G)⊗(V ∗)⊗n)Σn =
n∑︂
i=1

idP ⊗ (id⊗i−1 ⊗ d∗ ⊗ id⊗n−i) = −idP ⊗
n∑︂
i=1

∑︂
k,l

Dl
k γ

k
(i)
∂(i)

∂βl

From this we finally see the form of K is as in equation (3.22).

Remark 154. The decomposition of vector space V = H(V ) ⊕ (Im(d) ⊕ W )
as in remark 149 and the explicit form of ∆ in (3.14) allow us to do the same
decomposition ∆ = ∆α+∆βγ of BV Laplacian on Fun(P , V ) as in [10] in Lemma
5.

We split the symplectic form in the basis {{ai}, {bi}, {ci}} ofH(V )⊕Im(d)⊕W
to ω′ = (ai, aj) and ω′′ = (bi, cj). Then in the dual basis {{αi}, {βi}, {γi}} of
H(V )∗ ⊕ (Im(d))∗ ⊕W ∗

∆α = 1
2

⎛⎝ ◦12 ⊗
∑︂
k,l

(−1)k(ω′)kl ∂
(1)

∂αk
∂(2)

∂αl

⎞⎠
∆βγ = 1

2

⎛⎝ ◦12 ⊗
∑︂
k,l

(−1)k(ω′′)kl(∂
(1)

∂βk
∂(2)

∂γl
+ ∂(1)

∂γk
∂(2)

∂βl
)
⎞⎠
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And similarly from (3.17) we get {·, ·} = {·, ·}α + {·, ·}βγ where

{X, Y }α = (−1)|X|∑︂
Sh

⎛⎝π( 1◦1) ⊗
∑︂
k,l

(−1)k(ω′)klπ
(︄
∂(1)

∂αk
⊗ ∂(1)

∂αl

)︄⎞⎠ τ (X ⊗ Y )

{X, Y }βγ =

= (−1)|X|

2
∑︂
Sh

⎛⎝π( 1◦1) ⊗
∑︂
k,l

(−1)k(ω′′)klπ
(︄
∂(1)

∂βk
⊗ ∂(1)

∂γl
+ ∂(1)

∂γk
⊗ ∂(1)

∂βl

)︄⎞⎠ τ (X ⊗ Y )

where Sh is a shorthand notation for all relevant shuffles and τ denotes the
monomial symmetry (p⊗ ϕI ⊗ q ⊗ ϕJ → (−1)|q|·Ip⊗ q ⊗ ϕI ⊗ ϕJ).

89



90



4. Homological perturbation
lemma
Definition 155. Let (V, d) be a dg vector space. A perturbation δ : V → V
of the differential d is a linear map of degree 1 such that

(d+ δ)2 = 0
Equivalently,

δ2 + δd+ dδ = 0
Theorem 156 (Perturbation lemma). Consider

(V, d) (W, e)
p

k
i

(4.1)

Let δ be a perturbation of d which is small in the sense that

(1 − δk)−1 ≡
∞∑︂
i=0

(δk)i

is a well defined linear map V → V . Denote A ≡ (1 − δk)−1δ and

d′ ≡ d+ δ,

e′ ≡ e+ pAi = e+ p(1 − δk)−1δi,

i′ ≡ i+ kAi = i+ k(1 − δk)−1δi,

p′ ≡ p+ pAk = p(1 − δk)−1,

k′ ≡ k + kAk = k(1 − δk)−1, (4.2)

(V, d′) (W, e′) .
p′

k′

i′

Then if (4.1) is an SDR, then (4.2) is an SDR.
We now apply this theorem to our situation. Consider the SDR of theorem

150

(Funκ(P , V ), D) (Funκ(P , H(V )), 0)
P

K

I

In this case, there are two possible perturbations we can consider:
• A perturbation by δ1 = ∆

• A perturbation by δ2 = κ∆ + {S,−}
The first one can be considered only in the case when we have defined graded
commutative associative algebra on Funκ(P , V ), as we did in the definition 125.
The second one can be considered also in the cases, when we don’t have any such
product. We discuss this “subcase” in section 4.3.
Remark 157. One may ask if the perturbation by δ1 + δ2 gives the same result
as consecutive perturbation of δ1 followed by perturbation by δ2. The answer is
positive and the detailed computation can be found in section 2.5 of [13].
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4.1 Perturbation by ∆ of (Funκ(P , V ), ⋆)
Remark 158. Thanks to the explicit formula for the map K in (3.22) and to
the decomposition of ∆ in remark 154 we can make two helpful observations:

K∆I = 0 and P (∆αK)i = 0 (4.3)

and rearrange the perturbed maps as

D1 = D + ∆
E1 = ∆α

I1 = I

P1 = P
∑︂
i≥0

(∆βγK)i = P + P (∆βγK) + P (∆βγK)2 + . . .

K1 = K
∑︂
i≥0

(∆βγK)i = K +K(∆βγK) +K(∆βγK)2 + . . .

Since K2 = 0, ∆2 = 0 and PK = 0, we can also consider the forms

P1 = P
∑︂
i≥0

([∆βγ, K])i

K1 = K
∑︂
i≥0

([∆βγ, K])i

Remark 159. Notice, that K always “makes” one β out of one γ and ∆βγ acts
on a pair of β and γ. Since P projects all β to zero, to have no nontrivial result
we have to start with monomials generated only by α’s and even number of γ’s.

Moreover, thanks to 1
ηβ,γ(X) in the map K we get for each K a numerical

factor
1

2n · (2n− 2) . . . 2 = 1
2n · n!

In the next we will write K(X) = 1
ηβ,γ(X) ·K0(X) where

K0(X) =
⎛⎝1P ⊗

n∑︂
i=1

∑︂
k,l

(D−1)kl βl(i)
∂(i)

∂γk

⎞⎠ (X)

And to shorten the formulas: ∂K = [∆βγ, K0].
Definition 160. The effective action W is defined by

exp
(︃
W

κ

)︃
= P1

(︃
exp

(︃
S

κ

)︃)︃
(4.4)

where S ∈ Funκ(P , V ) is the solution of quantum master equation from remark
132.
Remark 161. We define the logarithm for A ∈ Fun(P , V ) (or Funκ(P , V )) as

log(1 ⊗ 1 + A) =
∞∑︂
n=1

(−1)n+1

n
A ⋆ . . . ⋆ A⏞ ⏟⏟ ⏞
n−times

(4.5)

Obviously the condition log(exp (A)) = A is still satisfied. Also logP (1⊗1+A) ∈
Fun(P , V ) for A ∈ Fun(P , V ) is well-defined.
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Theorem 162. (Transfer theorem) The effective action W is a well-defined ele-
ment of Fun(P , H(V )).

Moreover, W satisfies the master equation on Fun(P , H(V ))

∆αW + 1
2{W,W}α = 0.

Proof. The technical observations from remark 159 help us to to rearrange the
right hand side of (4.4) as

P1

(︃
exp

(︃
S

κ

)︃)︃
= P

∑︂
i≥0

1
i!

(︄
∂K
2

)︄i
exp

(︃
S

κ

)︃
= P exp

(︄
∂K
2

)︄
exp

(︃
S

κ

)︃

Using this form of P1 we can use a standard arguments of Quantum Field the-
ory. In the following, we will be therefore inaccurately talking about elements of
Fun(P , V ) as of stable graphs with legs labelled by elements of V ∗. The argu-
ments are similar as in the beginning of section 3 in [8].

Since S = ∑︁
n,G
stable

SGn we can write

exp
(︃
S

κ

)︃
= exp

⎛⎜⎜⎝ ∞∑︂
n=1

∑︂
G≥0,

2G+n>2

SGn
κ

⎞⎟⎟⎠ = 1 ⊗ 1 +
∑︂
−→u G

n

∏︂
n,G

stable

(︄
SGn
κ

)︄uG
n

· 1
uGn !

where uGn of −→u G
n tells us how many SGn appear in one component of exp (S/κ).1

Looking at one term of this sum with 2m γ’s, we need to act with the term

P
(∂K)m
2m ·m! of P1. In P

(∂K)m
2m ·m!

∏︁
n,G

stable

(︄
SGn
κ

)︄lGn 1
uGn ! the operator ∂mK gives (2m)!

different terms corresponding to all possible permutations of γ’s (since it acts as
second-order differential operator).

Since elements SGn ∈ Fun(P , V )(n,G) can be described by a stable one-vertex

graphs with labelled legs, the terms in P (∂K)m∏︁ n,G
stable

(︄
SGn
κ

)︄lGn 1
uGn ! are stable

graphs with labelled legs, where the edge composed of two legs means ∂K acts on
the corresponding indices of SGn . Of these, 2mm! are equal because 2m choices of
“orientation” of edges and m! “labelings” of edges give the same result.2

Let us denote by µP
Γ : P(Γ) → P(n,G) the composition in P . In particular if

Γ′ has two vertices – the first vertex with set of legs I1 ⊔ {i} and genus G1, the
second vertex with set of legs I2 ⊔ {j} and genus G2 and the edge is composed of
legs i, j. Then

µP
Γ′ : P((I1 ⊔ {i})) ⊗ P((I2 ⊔ {j})) → P(card(I1) + card(I2), G1 +G2)

corresponds to our usual i◦j-composition. So we can associate to a stable graph
Γ a map

µP
Γ :

⨂︂
v∈V ert(Γ)

P((leg(v), G(v))) → P(n,G)

1If we think of lG
n as an entry on the position n, G of some infinite matrix, then we can form

a vector by (for example) zig-zag walking through this matrix.
2This follows from the symmetry of ∂K and the axioms of the modular operad.
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Moreover, when connecting two vertices by ∂K which were already “con-
nected” by ⋆, we get the operator ♯ acting on the result.3

Thus we get

P
(∂K)m
2m ·m!

∏︂
n,G

stable

(︄
SGn
κ

)︄uG
n

· 1
uGn ! =

= P

⎛⎜⎜⎜⎜⎜⎝
∑︂

Γ stable
graphs with
labelled legs

NΓ∏︁
uGn !

∏︂⋆

connected
comp. Γc

of Γ

♯vert(Γc)−1

κvert(Γc) (µP
Γc

⊗ µEv
Γc

)
⎛⎝ ⨂︂
v∈V ert(Γ)

SGn

⎞⎠
⎞⎟⎟⎟⎟⎟⎠

where NΓ is the number of stable graphs with labelled legs and vertices giving
the same graph without labelled vertices, i.e.

NΓ∏︁
uGn ! = |OrbitG(Γ)(Γ)|

|G(Γ)| = 1
|Aut(Γ)|

with G(Γ) = Σ
u

G1
n1

× Σ
u

G2
n2

× . . . × ΣuGv
nv

acting by permuting the vertices of the
same “type”. It follows that W = κ logP1e

S/κ can be written as a sum over
connected graphs without any powers of κ.

For the second part, note that

0 = P1(D + ∆)
(︃

exp
(︃
S

κ

)︃)︃
= P1D1

(︃
exp

(︃
S

κ

)︃)︃
= E1P1

(︃
exp

(︃
S

κ

)︃)︃
=

= ∆αP1

(︃
exp

(︃
S

κ

)︃)︃
= ∆α

(︃
exp

(︃
W

κ

)︃)︃

since exp
(︃
S

κ

)︃
is (D+∆)-closed and after perturbation we still have SDR. Similar

arguments to those in 131 give us

∆α(exp
(︃
W

κ

)︃
) = (∆αW + 1

2{W,W}α) exp
(︃
W

κ

)︃
.

4.2 Perturbation by ∆ + {S,−} of (Fun(P , V ), ⋆)
The case without the product will be considered in the next section, 4.3.

3We are very vaguely talking about the last term on the right hand side of:

∂K(A ⋆ B) = ∂K(A) ⋆ B + A ⋆ ∂K(B) ± K0A ⋆ ∆βγB ± ∆βγA ⋆ K0B ± ♯ ({K0A, B} + {A, K0B})
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The perturbed maps are

D2 = D + δ2 = D + ∆ + {S,−} (4.6)
E2 = P

∑︂
i≥0

(δ2K)iδ2I (4.7)

I2 = I +K
∑︂
i≥0

(δ2K)iδ2I =
∑︂
i≥0

(Kδ2)iI (4.8)

P2 = P
∑︂
i≥0

(δ2K)i (4.9)

K2 = K
∑︂
i≥0

(δ2K)i (4.10)

Remark 163. From section 3.3.5 we know the explicit form of the map K

K(X) = 1
ηβ,γ(X)

⎛⎝1P ⊗
n∑︂
i=1

∑︂
k,l

(D−1)kl βl(i)
∂(i)

∂γk

⎞⎠ (X)

Let us consider elements f = ∑︁
j pj ⊗ ϕIj ∈ Fun(P , V ) where ϕIj are monomials

in variables α, β and γ. Obviously the map K will add one variable β. Therefore
K2(f) will have at least one variable β.
Theorem 164. Let us define a map Z : Fun(P , V ) → Fun(P , H(V )) called a
path integral as

Z(f) = exp
(︃−W

κ

)︃
· P1

(︃
exp

(︃
S

κ

)︃
· f
)︃

This map is equal to P2, i.e.

exp
(︃−W

κ

)︃
· P

∑︂
i

(∆βγK)i
(︃

exp
(︃
S

κ

)︃
· f
)︃

= P
∑︂
i

((∆ + {S,−})K)i f

Proof. The same reasoning as in [10] applies here – to prove this theorem we
make three observations.

As first, let us consider the arguments from remark 159. Both P1(f) and
P1(exp (S/κ) · f) are zero if f = pj ⊗ ϕIj where ϕIj are monomials containing at
least on β. Trivially also Z(f) = 0 if ϕIj are monomials containing at least on β.

For the second observation, if one considers f = ∑︁
j pj ⊗ ϕIj ∈ Fun(P , H(V ))

then I(f) has still no variables β or γ. So ∆βγK does not act on it. Thus

P (∆βγK)i
(︃

exp
(︃
S

κ

)︃
· I(f)

)︃
= P (∆βγK)i

(︃
exp

(︃
S

κ

)︃)︃
· PI(f)

and

Z(I(f)) =exp
(︃−W

κ

)︃
·
∑︂
i≥0

P (∆βγK)i
(︃

exp
(︃
S

κ

)︃)︃
· PI(f) =

=exp
(︃−W

κ

)︃
· exp

(︃
W

κ

)︃
· f = f

As third, let us look closely on ZD2(f).

ZD2(f) = exp
(︃−W

κ

)︃
· P1

(︃
exp

(︃
S

κ

)︃
·D2f

)︃
= (4.11)

= exp
(︃−W

κ

)︃
· P1

(︃
exp

(︃
S

κ

)︃
· (Df + ∆f + {S, f})

)︃
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The right hand side evokes an idea. From (3.10) we know that

{S
k

k! , f} = 1
k

(︄
Sk−1

(k − 1)! · {S, f} + { Sk−1

(k − 1)! , f} · S
)︄

= Sk−1

(k − 1)! · {S, f}

therefore
{exp

(︃
S

κ

)︃
, f} = exp

(︃
S

κ

)︃
· {S

κ
, f} (4.12)

Combining

(D + ∆)
(︃

exp
(︃
S

κ

)︃
· f
)︃

=

= (D + ∆)
(︃

exp
(︃
S

κ

)︃)︃
· f + exp

(︃
S

κ

)︃
·
(︃
Df + ∆f + κ{S

κ
, f}

)︃
with the quantum master equation (3.12) we get

(D + ∆)
(︃

exp
(︃
S

κ

)︃
· f
)︃

= exp
(︃
S

κ

)︃
· (Df + ∆f + {S, f})

and that is exactly on the right hand side of (4.11). Therefore

ZD2(f) =exp
(︃−W

κ

)︃
· P1

(︃
D1

(︃
exp

(︃
S

κ

)︃
· f
)︃)︃

=

=exp
(︃−W

κ

)︃
· E1

(︃
P1

(︃
exp

(︃
S

κ

)︃
· f
)︃)︃

where

P1

(︃
exp

(︃
S

κ

)︃
· f
)︃

= exp
(︃
W

κ

)︃
· exp

(︃−W
κ

)︃
· P1

(︃
exp

(︃
S

κ

)︃
· f
)︃

= exp
(︃
W

κ

)︃
· Z(f)

together

ZD2(f) = exp
(︃−W

κ

)︃
· ∆α

(︃
exp

(︃
W

κ

)︃
· Z(f)

)︃
(4.13)

Finally, let us apply the map Z on the equality I2P2 − 1 = K2D2 +D2K2 and
evaluate it on f ∈ Fun(P , V )

ZI2P2(f) − Z(f) = ZK2D2(f) + ZD2K2(f)

From the arguments in the remark 163 we know that K2D2(f) contains at least
one β and the observation from the first step of this proof give us ZK2D2(f) =
0. By similar argument about adding β and the second observation we get
ZI2P2(f) = ZIP2(f) = P2(f). And once again since K2 adds at least one β
we have thanks to first observation of this proof.

ZD2K2(f) = exp
(︃−W

κ

)︃
· ∆α

(︃
exp

(︃
W

κ

)︃
· ZK2(f)

)︃
= 0

This finishes the proof.

Theorem 165.
E2 = ∆α + {W,−}α
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Proof. We already did most of the work. Let us look closely on the right hand
side of (4.13)

∆α

(︃
exp

(︃
W

κ

)︃
· Z(f)

)︃
=

= ∆α

(︃
exp

(︃
W

κ

)︃)︃
· Z(f) + exp

(︃
W

κ

)︃
· ∆α(Z(f)) + κ{exp

(︃
W

κ

)︃
, Z(f)}

First term on the right hand side is zero from master equation on Fun(P , H(V ))
and on the third term we can use (4.12) and get

∆α

(︃
exp

(︃
W

κ

)︃
· Z(f)

)︃
= exp

(︃
W

κ

)︃
· (∆αZ(f) + {W,Z(f)}α)

Therefore

ZD2(f) = exp
(︃−W

κ

)︃
· exp

(︃
W

κ

)︃
· (∆αZ(f) + {W,Z(f)}α)

By previous theorem ZD2 = P2D2, from homological perturbation lemma P2D2 =
E2P2, and from surjectivity of P2 the proof is complete.

4.3 Perturbation by ∆+{S,−} of Fun(P , V ) with-
out connected sum

The perturbed maps are the same as in (4.6). But without a definition of the
product, we cannot introduce the exponential of any element. Surprisingly in
the commutative case, it is possible to introduce another formula for W . Its
generalization to the non-commutative case, unfortunately, isn’t successful.

Remark 166. Let us start with some very trivial observation to simplify the next.
In this section we should write, for example, S ∈ Fun(P , V ) as S = ∑︁

n,G S(n,G),
S(n,G) = ∑︁

i si ⊗ ϕIi where ϕIi are some monomials. But without the connected
sum the individual components of S(n,G) can’t affect the rest. Therefore we can
move the sum over n,G, i, in front and work with the summands individually.
We thus take the liberty to simplify the formulas and write just S.

Remark 167. The perturbation lemma 156 yields

E2 = P (1 − δ2K)−1δ2I =
∞∑︂
m=0

P (δ2K)m(∆α + ∆βγ + {S,−}α + {S,−}βγ)I

from remark 154 we see
∆βγI = 0 = {S,−}βγI

together with K∆I = 0 we get

E2 = P∆αI +
∞∑︂
m=0

P (δ2K)m{S,−}αI

Let us consider elements ∑︁j ϕ
Ij ∈ Fun(QC, H(V )) where ϕIj are monomials in

variables α. Since the map P projects all β to 0, a term P (δ2K)m{S, I(∑︁j ϕ
Ij )}α
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can be nonzero only if every β added by K is removed by some δ2. Obviously
only the part ∆βγ + {S,−}βγ remove β. Let us denote it as

δβγ = ∆βγ + {S,−}βγ

Hence
E2 = P∆αI +

∞∑︂
m=0

P (δβγK)m{S, I(−)}α (4.14)

To further simplify the formulas, let us denote in the computations

∞∑︂
m=0

P (δβγK)m∂
(1)S

∂αk
= W k

where W k are elements of degree 1 + |αl| = −|αk|.

Lemma 168.(︄
∂(a)

∂αp
∑︂
m

P (δβγK)m∂
(1)S

∂αq
⊗ −

)︄
= (−1)p·q

(︄
∂(a)

∂αq
∑︂
m

P (δβγK)m∂
(1)S

∂αp
⊗ −

)︄

where (−1)p·q denotes (−1)|αp|·|αq |.

Proof. Let X ∈ Fun(QC, V ). From (E2)2 = 0 we get

0 =0 + 1
2P

∑︂
π∈Sh

∑︂
i,j
k,l

(−1)i+k(ω′)ij(ω′)kl∂
(1)

∂αi
∂(2)

∂αj
π

(︄
W k ⊗ ∂(c)

∂αl
X

)︄
+ (4.15)

+1
2P

∑︂
π∈Sh

∑︂
i,j
k,l

(−1)i+k(ω′)ij(ω′)klπ
(︄
W k ⊗ ∂(1)

∂αl

(︄
∂(1)

∂αi
∂(2)

∂αj
X

)︄)︄
+

+P
∑︂

π,π̃∈Sh

∑︂
i,j
k,l

(−1)i+k(ω′)ij(ω′)klπ
(︄
W k ⊗ ∂(1)

∂αl
π̃

(︄
W i ⊗ ∂(d)

∂αj
X

)︄)︄

where we used observations from remark 140 to choose some arbitrary indices
c, d. Let us look closely on the second term on the right hand side.4 There will
be four kinds of shuffles π:

• π−1(1), π−1(2) both originally from W k . . . denote π1

• π−1(1), π−1(2) both originally from ∂(c)

∂αl
X . . . denote π2

• π−1(1) from W k, π−1(2) from ∂(c)

∂αl
XI . . . denote π3

• π−1(1) from ∂(c)

∂αl
X, π−1(2) from W k . . . denote π4

4The only non-trivial on the first line of (4.15).
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For the kind π2 of shuffles let a = π−1
2 (1), b = π−1

2 (2)

∂(a)

∂αi
∂(b)

∂αj

(︄
W k ⊗ ∂(c)

∂αl
X

)︄
= (−1)(i+j)·(k+l)W k ⊗ ∂(c)

∂αl
∂(a)

∂αi
∂(b)

∂αj
X

where |αi| + |αj| = −1 = |αk| + |αl|. We see that the second kind of shuffles
cancels out with the second term of (4.15).

By technical observation we can see that π3 and π4 give us in fact the same
terms.5

Now let us focus on the last term of (4.15). There are two kinds of shuffles π̃.

• π̃−1(1) is from W i . . . denote π̃1

• π̃−1(1) is from ∂(1)

∂αj
σϕI . . . denote π̃2

For the second one denote e = π̃−1
2 (1)

∑︂
π,π̃2

∑︂
i,j
k,l

(−1)i+k+l·i(ω′)ij(ω′)klπ(1 ⊗ π̃2)
(︄
W k ⊗W i ⊗ ∂(e)

∂αl
∂(d)

∂αj
X

)︄
(4.16)

Notice that π(1 ⊗ π̃2) is a shuffle of type (card(W k), card(W i), card(X) − 2).6
Since we sum over π, π̃2 we get all possible shuffles of this type. Notice that (4.16)
is equivalent to sum over all π̈ ∈ Sh(card(W i), card(W k), card(X) − 2)

∑︂
π̈

∑︂
i,j
k,l

(−1)i+k+l·i+i·k+j·l(ω′)ij(ω′)klπ̈
(︄
W i ⊗W k ⊗ ∂(d)

∂αj
∂(e)

∂αl
X

)︄

Now let us switch the labels of the indices and positions7 as j ↔ l, i ↔ k, and
d ↔ e:

∑︂
π̈

∑︂
i,j
k,l

(−1)i+k+j·k+k·i+l·j(ω′)ij(ω′)klπ̈
(︄
W k ⊗W i ⊗ ∂(e)

∂αl
∂(d)

∂αj
X

)︄

This is exactly the term in (4.16) but with opposite sign. Therefore the term in
(4.16) must be zero.

Finally, let us look on what we know about the (4.15).

0 = terms of π1 + 2 · terms of π3 + terms of π̃1

Notice that both “terms of π1” and “terms of π̃1” are first-order differential opera-
tors acting on X and the “terms of π3” are second order. Since this identity holds

5After the switch of the labels i, j of indices we use the fact that ωji = (−1)ij+1ωij .
6A shuffle σ of type (p1, . . . , pn) is an element of Σp1+...+pn

such that σ(1) < . . .< σ(p1),
σ(p1 + 1) < . . . < σ(p2), . . . σ(pn−1 + 1) < . . . < σ(pn).

7We also use the fact, that X ∈ Fun(QC, V ) is an invariant. Therefore the choice of position
e, d was arbitrary.
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for all X, we get two separate identities (for first and for second-order differential
operators). Obviously the second-order differential operator has to be zero.

0 =
∑︂
π2

∑︂
i,j
k,l

(−1)i+k(ω′)ij(ω′)kl∂
(1)

∂αi
∂(2)

∂αj
π

(︄
W k ⊗ ∂(c)

∂αl
X

)︄
= (4.17)

=
∑︂
π2

∑︂
i,j
k,l

(−1)i+k+k·j(ω′)ij(ω′)klπ
(︄
∂(a)

∂αi
W k ⊗ ∂(b)

∂αj
∂(c)

∂αl
X

)︄

where a = π−1(1), b = π−1(2). Obviously from (4.17)

∑︂
π2

∑︂
i,j
k,l

(−1)i+k+k·j(ω′)ij(ω′)klπ
(︄
∂(a)

∂αi
W k ⊗ ∂(b)

∂αj
∂(c)

∂αl
X

)︄
=

=
∑︂
π2

∑︂
i,j
k,l

(−1)i+k+k·j+l·j(ω′)ij(ω′)klπ
(︄
∂(a)

∂αi
W k ⊗ ∂(c)

∂αl
∂(b)

∂αj
X

)︄
=

=
∑︂
π2

∑︂
i,j
k,l

(−1)i+k+l(ω′)il(ω′)kjπ
(︄
∂(a)

∂αi
W k ⊗ ∂(b)

∂αj
∂(c)

∂αl
X

)︄

where we first switch the order of the positional derivations and then we switched
the labels of indices l ↔ j and positions c ↔ b. Since (4.17) is zero, we can take
it twice and contract both sums with (ω′)jp, (ω′)lq

∑︂
π∈Sh

∑︂
i,j
k,l

(︂
(−1)i+k+k·jδipδ

k
q + (−1)i+k+k·l+l·jδiqδ

k
p

)︂
π

(︄
∂(a)

∂αi
W k ⊗ ∂(b)

∂αj
∂(c)

∂αl
X

)︄
= 0

where δ is Kronecker delta. This gives the required identity.

Remark 169. The same way as we introduced ηβγ(X) in (3.22) for elements of
the form X = 1

n!
∑︁
σ∈Σn

σp ⊗ σ(ϕI) we can introduce ηα(X) as the number of
occurences of α’s in ϕI . We can express it for ϕI ∈ (V ∗)⊗n also as

ηα(X) ·X =
(︄

1 ⊗
n∑︂
t=1

∑︂
h

αh(t)
∂(t)

∂αh

)︄
(X)

Obviously it still holds that ηα(X) = 0 if ϕI doesn’t contain any α. If ηα(X) is
0, we define 1

ηα(X) also to be 0. Let us denote ηα(X) ·X, respective 1
ηα(X) ·X

shortly by ηαX, respective 1
ηα
X.

Definition 170. We define effective action W̃ ∈ Fun(P , H(V )) (without con-
nected sum) as

W̃ =
∞∑︂
m=0

1
ηα

(P (δβγK)mηαS) =
∞∑︂
m=0

1
ηα

(P ((∆βγ + {S,−}βγ)K)mηαS) (4.18)
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Remark 171. Obviously {I(W̃ ), F} = {I(W̃ ), F}α for any F ∈ Fun(P , V ).
Since |δβγ| = 1, |K| = −1 we easily get |W̃ | = 0.

To avoid confusion let us remind that 1
ηα

takes as an argument the whole

term (P ((∆βγ + {S,−}βγ)K)nηαS). Notice that we can’t simply cancel 1
ηα

with
ηα because {S,−}βγ possibly changed the number of occurrences of α.

Theorem 172. P{I(W̃ ),−} has the same form as ∑︁∞
m=0 P (δβγK)m{S, I(−)}α.

Proof. In the commutative case, we can omit the part corresponding to P . Also
let us denote shortly I(Q) = Q.

{W̃ ,Q} = {W̃ ,Q}α =
∑︂
π∈Sh

∑︂
k,l

(−1)k(ω′)klπ
(︄
∂(a)

∂αk
⊗ ∂(1)

∂αl

)︄(︂
W̃ ⊗Q

)︂

Obviously the positional derivation ∂(a)

∂αk
lower the number of occurrences of α in

W by 1:

∑︂
π∈Sh

1
ηα + 1π

⎛⎝∑︂
k,l

(−1)kωkl ∂
(a)

∂αk

(︄∑︂
m

P (δβγK)m
∑︂
h

αh(t)
∂(t)

∂αh
S

)︄
⊗ ∂(1)Q

∂αl

⎞⎠
If K or δβγ act on position where is αh(t), we trivially get zero. So the only way
these maps can possibly influence αh(t) is a change of its position (by the shuffles
from {S,−}βγ). Let us denote the position of αh(t) after ∑︁m P (δβγK)m as u.8

Now, ∂
(a)

∂αk
will either act on αh(u) and we get condition h = k. Or the positional

derivation acts on the rest. But since a is arbitrary position, we can always choose
a = u+ 1.

{W̃ ,Q}α =
∑︂
π∈Sh

∑︂
k,l

(−1)kωkl
ηα + 1 δhkπ

(︄∑︂
m

P (δβγK)m∂
(t)S

∂αk
⊗ ∂(1)Q

∂αl

)︄
+

+
∑︂
π∈Sh

∑︂
t,h

∑︂
k,l

(−1)k+h·kωkl

ηα + 1 π

(︄
αh(u)

∂(u)

∂αk
∑︂
m

P (δβγK)m∂
(t)S

∂αh
⊗ ∂(1)Q

∂αl

)︄

Now we can use the result of lemma 168 and get

{W̃ ,Q}α =
∑︂
π∈Sh

∑︂
h

∑︂
k,l

(−1)kωkl
ηα + 1 π

(︄
(ηα + 1)

∑︂
m

P (δβγK)m∂
(t)S

∂αh
⊗ ∂(1)Q

∂αl

)︄

8The position u still depends on t.
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5. Homotopies
Most of the arguments in this section are the same as in the [10].

Definition 173. By Ω([0, 1]) we mean the algebra of smooth differential forms
on the unit interval [0, 1]. Elements of this algebra can be written as f(t)+g(t)dt,
the differential ddR sends such element to ∂

∂t
f(t)dt.

The tensor product Fun(P , V ) ⊗ Ω([0, 1]) is defined as

Fun ⊗ Ω([0, 1]) =
∏︂
n≥1

∏︂
G≥0

(︂
(P(n,G) ⊗ (V ∗)⊗n)Σn

)︂
⊗ Ω([0, 1])

Definition 174. We say that (A(t) +B(t)dt)/κ ∈ Fun(P , V ) ⊗ Ω([0, 1]) is a
homotopy between A(0) and A(1) if A(t) is of degree 0, B(t) is of degree −1
and

(D + ∆ + ddR)
(︄

exp
(︄
A(t) +B(t)dt

κ

)︄)︄
= 0 (5.1)

This is equivalent to saying that A(t) solves the quantum master equation for
every t and that

dA(t)
dt +D(B(t)) + {A(t), B(t)} + ∆B(t) = 0 (5.2)

Theorem 175. Let us take two action S0, S1 ∈ Fun(P , V ). Then the following
are equivalent:

1. There exists a homotopy in the sense of definition 174 connecting S0 and
S1.

2. There exists F ∈ Fun(P , V ) such that

exp
(︃
S0

κ

)︃
− exp

(︃
S1

κ

)︃
= (D + ∆)F

Proof. The implication 1. ⇒ 2. is simple. Equation (5.1) says that

∂

∂t

(︄
exp

(︄
A(t)
κ

)︄)︄
dt = −(D + ∆)

(︄
exp

(︄
A(t) +B(t)dt

κ

)︄)︄

Since A(t) solves quantum master equation we get

∂

∂t

(︄
exp

(︄
A(t)
κ

)︄)︄
= −(D + ∆)

(︄
exp

(︄
A(t)
κ

)︄
· B(t)

κ

)︄

i.e. the required F is

F = exp
(︄
A(t)
κ

)︄
· B(t)

κ
The implication 2. ⇒ 1. From the two given actions we can define exp (A(t)/κ)

as their convex combination

exp
(︄
A(t)
κ

)︄
= (1 − t) · exp

(︃
S0

κ

)︃
+ t · exp

(︃
S1

κ

)︃
(5.3)
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A(t) are well defined since the right hand side of (5.3) starts with 1. Obviously
A(t) solves the quantum master equation. Define B(t) as

B(t) = κ · exp
(︄

−A(t)
κ

)︄
· F

Obviously B(t) is still an element of Fun(P , v). Since both S0, S1 are of degree 0
and using the fact that

0 = (D + ∆)(1) = (D + ∆)
(︄

exp
(︄

−A(t)
κ

)︄
· exp

(︄
A(t)
κ

)︄)︄
=

= (D + ∆)
(︄

exp
(︄

−A(t)
κ

)︄)︄
· exp

(︄
A(t)
κ

)︄
− 1

κ
{A(t), A(t)}

there is not any problem to directly verify that equation (5.2) holds:

dA(t)
dt + (D + ∆)(B(t)) + {A(t), B(t)} =

=
κ
(︂
eS0/κ − eS1/κ

)︂
(1 − t) · eS0/κ + t · eS1/κ

+ κ(D + ∆)
(︂
e−A(t)/κF

)︂
+ κ{A(t), e−A(t)/κF} =

= κ
(︂
(D + ∆)e−A(t)/κ

)︂
· F − {A(t), A(t)} · e−A(t)/κ · F

Remark 176. From this theorem, one can easily see that

exp
(︃
W0

κ

)︃
− exp

(︃
W1

κ

)︃
= P1

(︃
exp

(︃
S0

κ

)︃
− exp

(︃
S1

κ

)︃)︃
=

= P1(D + ∆)F = E1P1F = ∆αP1F

i.e. homotopic solutions S0, S1 of quantum master equation on Fun(P , V ) give
homotopic effective actions W0,W1.

Remark 177. Now we are able to construct a homtopy between eW/κ and eS/κ.
From SDR in the first perturbation we have

I1P1

(︃
exp

(︃
S

κ

)︃)︃
− exp

(︃
S

κ

)︃
= K1(D + ∆)exp

(︃
S

κ

)︃
+ (D + ∆)K1exp

(︃
S

κ

)︃

using quantum master equation and the definition of effective action (4.4)

exp
(︄
I(W )
κ

)︄
− exp

(︃
S

κ

)︃
= (D + ∆)K1exp

(︃
S

κ

)︃

The second condition of theorem 175 tells us

F = K1exp
(︃
S

κ

)︃

and so we have a homotopy connecting I(W ) and S.
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5.1 Morphisms
Remark 178. We want to define a morphism between two quantum homotopy
algebras. As we mentioned in the remark 133 our quantum homotopy algebras
do not contain any curvature element m0 (i.e. deviation of m1 = d to be a
differential). However, the triviality of the curvature elements does not imply
triviality of the “curved quantum homotopy algebra morphisms”.

In the following definition , we refer to triviality of the 0-ary component of
the morphism as fixing the origin.

Definition 179. Given two symplectic vector spaces (U, ωU), (V, ωV ) and solu-
tions of master equations SU ∈ Fun(P , U), SV ∈ Fun(P , V ), we say that a map
Φ : Fun(P , U) → Fun(P , V ) fixing the origin is a quantum homotopy algebra
morphism if it is a Poisson map, i.e.

{Φ(f),Φ(g)}Fun(P,V ) = Φ ◦ {f, g}Fun(P,U)

for any f, g ∈ Fun(P , U), and if

Φ ◦ (∆Fun(P,U)f + {SU , f}Fun(P,U)) = ∆Fun(P,V )(Φf) + {SV ,Φf}Fun(P,V ) (5.4)

for any f ∈ Fun(P , U).

Remark 180. Let us consider homotopy between S0 and S1. Similarly as in [8]
let

X(t) = {−B(t),−}
be a one-parameter family of Hamiltonian vector fields associated to the func-
tionals B(t)

d
dtΦt(f) = −X(t)Φt(f) = {B(t),Φt(f)} (5.5)

where the flow Φt of this Hamiltonian vector field is an automorphism of the
space Fun(P , V ) with Φt ∈ C∞(R,End(Fun(P , V ))).

Then we get a third condition for theorem 175.

Lemma 181. Let M ∈ Fun(P , V ) be such that exp ({M, ·}) = Φ1 is a Poisson
map. Φ1 is a quantum homotopy algebra isomorphism between (Fun(P , V ), S0)
and (Fun(P , V ), S1) if and only if there exists a homotopy between S0 and S1.

Proof. Let Φ1 be a quantum homotopy algebra isomorphism (in the connected
component of identity). Let X be the generating vector field, Φt = exp (tX), and
the corresponding Hamiltonian B, X = {B,−}, is defined up to a constant.

Differentiating

c(t) = Φt∆Φ−t(g) + {Φt(S0), g} − ∆(g)

with respect to t gives

d
dtc(t) =

(︄
d
dtΦt

)︄
∆Φ−tg + Φt∆

(︄
d
dtΦ−t

)︄
g + { d

dtΦt(S0), g} =

={ d
dtΦt(S0) − Φt∆Φ−tB, g}
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Thus c(t) = {Ã(t),−} where Ã(t) is unique up to some K(t) ∈ Fun(P , V )(0, G).
Now consider

d
dtΦt (Df + ∆f + {S0, f}) = {B,Φt (Df + ∆f + {S0, f})} (5.6)

From properties of Φt, the right hand side is equal to

{B,DΦt(f) + ∆Φt(f) + {Ã(t),Φt(f)}}

and the left hand side to

d
dt
(︂
DΦtf + ∆Φtf + {Ã(t),Φtf}

)︂
=

=
(︂
D + ∆ + {Ã(t),−}

)︂(︄ d
dtΦtf

)︄
+ { d

dtÃ(t),Φtf} =

=
(︂
D + ∆ + {Ã(t),−}

)︂
({B,Φtf}) + { d

dtÃ(t),Φtf} =

= {(D + ∆)B,Φtf} + {Ã(t), {B,Φt}} + {B, (D + ∆)Φtf} + { d
dtÃ(t),Φtf} =

= {(D + ∆)B + d
dtÃ(t),Φtf} + {{Ã(t), B},Φtf} + {B, {A(t),Φtf} + (D + ∆)Φtf}

Comparing the left hand side with ride hand side we get

0 = {(D + ∆)B + d
dtÃ(t) + {Ã(t), },Φtf} (5.7)

This implies

K̃(t) = (D + ∆)B(t) + d
dtÃ(t) + {Ã(t), B(t)}

where K̃(t) ∈ Fun(P , V )(0, G). Let us choose K(t) such that

d
dtK(t) = K̃(t)

This gives A(t) up to constant, fixed by A(0) = S0. Since A(0) is a a solution of
quantum master equation, from definition of Φt also all A(t) are solutions. And
we proved A(t) +B(t)dt is homotopy.

For the opposite implication let A(t) + B(t)dt be a homotopy and let Φt be
a flow of {B(t),−}. As above, we define c(t) = Φt∆Φ−t(g) + {Φt(S0), g} − ∆(g)
and we differentiate c(t) with respect to t. Hence there is Ã(t) such that c(t) =
{Ã(t),−} and Ã(0) = S0. By the same arguments as above we get (5.7) and the
freedom in Ã(t) can be use to

0 = (D + ∆)B(t) + d
dtÃ(t) + {Ã(t), B(t)}

Since A(t) and Ã(t) solve the same differential equation with the same initial
condition, we get A(t) = Ã(t).
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Remark 182. To integrate flow between (Fun(P , V ), S0) and (Fun(P , V ), S1) we
can use Magnus expansion (see section 3.4.1 in [4]) which gives

Φt = exp ({M(t),−})

where M(t) = ∑︁∞
i=1 Mi is degree -1 element of Fun(P , V ) ⊗ Ω([0, 1]). The first

term of this sum is given as

M1(t) = −
∫︂ t

0
B(t)dt = −

∫︂ t

0
κ · exp

(︄
−A(t)
κ

)︄
· F dt =

= −κ
∫︂ t

0

1
eS0/κ + t(eS1/κ − eS0/κ)dt · F =

= κ
eS0/κ − eS1/κ

· log
(︂
1 + t(e(S1−S0)/κ − 1)

)︂
· F

Remark 183. Equation (5.4) for flow Φt applied on element f = Φt(g) gives us

Φt∆Φ−t = ∆ + {A(t) − Φt(S0), } (5.8)

We want to interpret A(t) − Φt(S0) as special case of logBer(Φt). Thanks to
remark 182

Φt∆Φ−t = exp ({M(t),−}) ∆exp (−{M(t),−})

and with help of Baker–Campbell–Hausdorff formula we get

Φt∆Φ−t = ∆ − {∆M(t),−}+

+1
2{{∆M(t),M(t)},−} − 1

3!{{{∆M(t),M(t)},M(t)},−} + . . .

where we use

∆{M(t), Y } = {∆M(t), Y } + (−1)|M(t)|+1{M(t),∆Y }

(where |M(t)| = −1) and

{F, {M(t), Y }} = {{F,M(t)}, Y } + (−1)(|F |+1)(|M(t)|+1){M(t), {F, Y }}

Together it gives us

logBer(Φt) =
∞∑︂
n=1

(−1)n
n! {{· · · {∆M(t),M(t)}, · · ·M(t)⏞ ⏟⏟ ⏞

n−times

},−}
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6. IBL∞-algebras and their
cousins
Many bialgebras satisfy a condition called involutivity.

A properad IBL of involutive Lie bialgebras will capture the involutive rela-
tion for elements p ∈ IBL(1, 2, 0), q ∈ IBL(2, 1, 0) as

0 = p 1,2◦1,2 q ∈ IBL(1, 1, 1)

Besides this condition, the IBL properad will be also defined by the relations of
graded commutativity and cocomutativity, Jacobi and coJacobi identity, and the
5-term identity for elements of IBL(2, 2, 0). For more details see example 2.2 in
[5].

For a very basic example of algebra over such properad, one may think of
cyclic words on vector space V equipped with a skew-symmetric pairing that ad-
mits a canonical involutive Lie bialgebra structure. See section 4 in [17].

In [5] was proven that the Frobenius properad is Koszul. Its minimal reso-
lutions is particularly nice and can be done explicitly. This gives us a minimal
model (as disscused in section 2.1). It turns out that the algebras over the cobar
complex of Frobenius properad are then the involutive Lie bialgebras up to homo-
topy, shortly IBL∞-algebras. The relation of involutivity holds up to homotopy
as we will see in the explicit description of corresponding properad, the IBL∞
properad.

6.1 IBL∞-algebras
Let us first recall the notion of IBL∞-properad.1

Definition 184. A properad IBL∞ is a properad generated by degree 1 elements
p ∈ IBL∞(1, 2, 0), q ∈ IBL∞(2, 1, 0) such that

(1, σ) p = −p, (σ, 1) q = −q
p 1◦1 p = −p 2◦1 p q 1◦1 q = −q 1◦2 q (6.1)

q 1◦1 p = −p 2◦1 q

where we use for the Σ2×Σ1 and Σ1×Σ2 actions the permutations 1 and σ = (12).

Remark 185. The first two relations in (6.1) can be seen as a modification
of commutativity, the next two relations as a modification of associativity and
coassociativity. The last one is pictorially on 6.1.

Thanks to these relations, any element of IBL∞(k, l, n) is of the form

(q 1◦1 (q 1◦1 . . . (q 1◦1 q)))⏞ ⏟⏟ ⏞
k−1

1◦1 (p 1,2◦1,2 q)n 1◦1 (((p 1◦1 p) 1◦1 . . . p) 1◦1 p)⏞ ⏟⏟ ⏞
l−1

where n correspond to the G degree of the element.
1Note that our conventions are slightly different. Usually, for IBL-algebras one assumes

that n ≥ 1, m ≥ 1, G ≥ 0. We will comment on this later.
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Figure 6.1: Relation q 1◦1 p = −p 2◦1 q of IBL∞ operad

The following statement appeared in [11], cf. also [7].

Theorem 186. The algebras over the cobar complex CF of the (closed) Frobenius
properad are IBL∞-algebras.

Proof. To prove it, recall the definition of the Frobenius properad F from example
60. Each stable F̄(m,n, χ) is a trivial Σm×Σn-bimodule spanned on one generator
pm,n,χ. Hence,

F̄(m,n, χ) Σm ⊗Σn (V ⊗m ⊗ V ∗⊗n) ∼= Sm(V ) ⊗ Sn(V ∗)

is the tensor product of the respective symmetric powers. It follows that formula
(2.24) for the generating operator L ∈ P̃ is simplified to the form2

L =
∑︂
m,n,χ

∑︂
I,J

1
m!n!f

χ,J
I (aJ ⊗ ϕI)

where fχ,JI = (ᾱ(p∗
m,n,χ))JI .

Further, the algebra over cobar complex CF is given by (2.11). The differential
dP∗ is for Frobenius properad trivial and the differential on V is given by (1.6).
What is left is to exhibit the second term of the right hand side of (2.11).

As in formula (2.11), assume A ⊂ [m2 +card(A)], B ⊂ [n1 +card(B)], relabel
them as M and N respectively, and assume N = {n1 + 1, . . . , n1 + card(N)},
M = {1, . . . , card(N)}, ξ(n1 + k) = k. The second term of the right hand side
in (2.11) evaluated on the generator pm,n,χ gives

∑︂
m1+m2=m
n1+n2=n

1
2 (χ−m−n)+2∑︂

card(N)=1

∑︂
χ1

∑︂
ρ,σ

ρ (
ξ

N◦M̄ )V (αm1,n1,χ1 ⊗ αm2,n2,χ2)σ−1,

where max{m1+n1+card(N)−2, 1} ≤ χ1 ≤ min{χ−m2−n2−card(N)+2, χ−1}
by stability condition, αm1,n1,χ1 := ᾱ(p∗

m1,n1,χ1), αm2,n2,χ2 := ᾱ(p∗
m2,n2,χ2) and the

last sum runs over shuffles ρ, σ of type (m1,m2) and (n2, n1), respectively. If we
denote the differential d of dg vector space as α1,1,0 then together we get

0 =
∑︂

m1+m2=m
n1+n2=n

1
2 (χ−m−n)+2∑︂

card(N)=1

∑︂
χ1

∑︂
ρ,σ

ρ (
ξ

N◦M̄ )V (αm1,n1,χ1 ⊗ αm2,n2,χ2)σ−1,

2Note, the invariance property fχ,J
I = ±f

χ,ρ(J)
σ−1(I), ± being the product of Koszul signs cor-

responding to permutations ρ and σ.
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where the sum over χ1 is given as m1 + n1 + card(N) − 2 ≤ χ1 ≤ χ−m2 − n2 −
card(N) + 2.3

This is one of the equivalent descriptions of an IBL∞-algebra.
In Baranikov’s formalism this equation corresponds to the master equation,

in Theorem 116, for L given above.

Remark 187. In the above theorem we allow all stable values of (m,n, χ). In
this case the corresponding IBL∞-algebras are referred to as “generalized” ones,
cf. [7]. If we assume only non-zero values of m and n and m + n > 2, for
G = 0, there is another interpretation [7], [11] of an IBL∞-algebra in terms of
a “homological differential operator”, cf. the section 2.3.5. Obviously, for the
Frobenius properad, the respective discussion simplifies a lot. The assignment
ϕi ↦→ ∂ai

,
∂ai
aj − (−1)|ai||aj |aj∂ai

= δji

turns the generating element L ∈ P̃ into a differential operator on S(V ),4

L =
∑︂
m,n,χ

∑︂
I.J

1
m!n!f

χ,J
I aJ

∂

∂aI
.

Finally note, that the differential d on S(V ) ⊗ S(V ∗) can be thought of as an
element in V ⊗ V ∗ and hence as a first order differential operator on S(V ) with
coefficients linear in ai’s. Obviously, the derivatives ∂ai

have the meaning of the
left derivatives ∂Lai

, well known from the supersymmetry literature.
All in all, on S(V ), we have a degree one differential operator d+L, squaring

to 0,
(d+ L) ◦ (d+ L) = (d+ L)2 = 0.

The last remark: For a formal definition of an IBL∞-algebra, one can simply
consider any degree one differential operator on S(V ) squaring to zero. This
would accommodate IBL∞-algebras within the framework of BV formalism [36].

6.2 IBA∞-algebras and open-closed IB-homotopy
algebras

Here we consider the cases of the open and open-closed Frobenius properads.
In view of the proof of the above Theorem 186, the following two theorems are
straightforward. Their proofs are rather technical, but can be easily reconstructed
by following the proofs of the corresponding theorems for modular operads [9].

Let us consider n inputs and m outputs distributed over b = p+ q boundaries
of a genus g 2-dimensional oriented surface.

More formally, we have a set of cycles {c1, c2, . . . , cp,d1,d2, . . . ,dq}, of respec-
tive lengths (k1, k2, . . . , kp, l1, l2, . . . lq). In [m] we have cycles c1 = ((j1 · · · jk1)),
c2 = ((jk1+1 · · · jk1+k2)), . . . , cp =

(︂(︂
jk1+...kp−1+1 · · · jm

)︂)︂
. And similarly in [n] we

have cycles d1 = ((i1 · · · il1)), d2 = ((il1+1 · · · il1+l2)) , . . .dq =
(︂(︂
il1+...lq−1+1 · · · in

)︂)︂
.

3χ2 is in this case then uniquely given from additivity of Euler characteristic.
4P+ as introduced before is only a subspace of S(V ), but there is no problem in extending

L to the whole symmetric algebra.
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Now, let each of the indices i1, . . . in and j1, . . . jm take values in the set [dimV ]
and group them into respective multi-indices

I := i1 · · · il1|il1+1 · · · il1+l2 | · · · |il1+...lq−1+1 · · · + in

J := j1 · · · jk1|jk1+1 · · · jk1+k2| · · · |jk1+...kp−1+1 · · · + jm.

We will use the following, hopefully self-explanatory, notation for these in-
dices: I = I1|I2| · · · |Iq and similarly for J .

Concerning the coinvariants (2.16), consider elements in the tensor algebra
T (V ) ⊗ T (V ∗) of the form

aJ1|J2|···|Jp ⊗ ϕI1|I2|···|Iq

where we identify, up to the corresponding Kozsul sign, tensors which differ by
cyclic permutations of outputs/inputs within the boundaries, i.e. within the in-
dividual multi-indices Ii and Jj and also under permutations of output/input
boundaries, i.e. independent permutations of multi-indices (Ii) and (Ji). We will
denote the subspace of T (V ) ⊗ T (V ∗) spanned by these elements as T cyc(V ) ⊗
T cyc(V ∗).

Further, consider coefficients f (g,p,q)J1|J2|···|Jp

I1|I2|···|Iq
possessing the corresponding in-

variance, up the Koszul sing, under cyclic permutations of outputs/inputs within
the boundaries and also under independent permutations of output/input bound-
aries.

Put,

L =
∑︂
p,q,g

∑︂
I1|I2|···|Iq

J1|J2|···|Jp

1
p!q!∏︁′

s lsks
f

(g,p,q)J1|J2|···|Jp

I1|I2|···|Iq
aJ1|J2|···|Jp ⊗ ϕI1|I2|···|Iq , (6.2)

where ∏︁′ is the product of nonzero ls’s and ks’s and where Is runs over all ele-
ments of [dimV ]×ls and similarly Js runs over all elements of [dimV ]×ks . Also, we
included the differential into L as an element corresponding to the cylinder with
one input and one output.

Theorem 188. Algebra over the cobar complex COF is described by a degree
one element L (6.2) of T cyc(V ) ⊗ T cyc(V ∗) such that L ◦ L = 0.

Remark 189. A remark completely analogous to the above Remark 187 can be
made. In particular, we can think of ϕi as being represented by a “left” derivative
∂Lai

. This is possible because in any monomial of the form aJ1|J2|···|Jp one can
always get any of the variables ajk to the left by a permutation of boundaries and
a cyclic permutation within the respective boundary. Hence, if we consider for
any collection of multi-indicies J1|J2| · · · |Jp the tensor product V ⊗J1 ⊗ . . .⊗V ⊗Jp

modulo the respective symmetry relations, on the direct product over all such
multi-indices, we have again a homological differential operator L.

Finally, let us concern the cobar complex COCF of the two-colored properad
OCF .

To describe coinvarinats, consider elements of T cyc(Vo)⊗S(Vc)⊗T cyc(V ∗
o )⊗

S(V ∗
c ) of the form aJ1|J2|···|Jp;J ⊗ ϕI1|I2|···|Iq ;I where aJ1|J2|···|Jp;J := aJ1|J2|···|Jp ⊗ aJ
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and ϕI1|I2|···|Iq ;I := ϕI1|I2|···|Iq ⊗ ϕI . Correspondingly, consider the coefficients
f

(g,p,q)J1|J2|···|Jp;J
I1|I2|···|Iq ;I with the obvious symmetry properties. Put,

L =
∑︂

m,n,p,q,g

∑︂
I1|I2|···|Iq ;I
J1|J2|···|Jp;J

1
m!n!p!q!∏︁′

s lsks
f

(g,p,q)J1|J2|···|Jp;J
I1|I2|···|Iq ;I aJ1|J2|···|Jp;J ⊗ ϕI1|I2|···|Iq ;I ,

(6.3)
where, as before, ∏︁′ is the product of nonzero ls’s and ks’s and where Is runs
over all elements of [dimVo]×ls and Js runs over all elements of [dimVo]×ks . The
closed multi-index I runs over all elements of [dimVc]×m, similarly J runs over all
elements of [dimVc]×n. Also, we included the open and closed differentials into L
as elements corresponding to the cylinder with one input and one output and to
sphere with one input and one output, respectively.

Theorem 190. Algebra over the cobar complex COCF is described by degree
one element L (6.3) of T cyc(Vo)⊗S(Vc)⊗T cyc(V ∗

o )⊗S(V ∗
c ), such that L◦L = 0.

Finally, remarks 187 and 189 apply correspondingly.

6.3 HPL for IB-homotopy algebras
In (2.18) we introduced

PV (m,n, χ) := Σm (P([m], [n], χ) ⊗ EV ([m], [n], χ))Σn

PV :=
∏︂

n≥0,m≥0
χ>0

P(m,n, χ)

We can recognize a space similar to Fun(P , V ) introduced for modular operads.
Since this space contains the element L such that

d(L) + L ◦ L = 0

we can construct a perturbed differential

(d+ L◦)2X = d2X + d(L ◦X) + L ◦ dX + L ◦ (L ◦X) =
= dL ◦X + (−1)|L|L ◦ dX + L ◦ dX + (L ◦ L) ◦X = (dL+ L ◦ L)X = 0

for homological perturbation lemma and construct SDR

(PV , d) (PH(V )), 0)
P

K

I
(6.4)

However, the construction of “effective action” as in the case of modular is not
yet possible since the exponential of the element is not well defined.
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