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Abstract (in English) 
A large number of biological processes depends on dynamics of protein structure and 

specific protein-protein and protein-ligand interactions occurring under specific native 

conditions in or outside of cells. Standard methods for protein structure analysis like x-ray 

crystallography, nuclear magnetic resonance or cryo-EM are able to obtain important atomic 

or near- atomic resolution protein structures, however these are usually a static snapshot of 

protein locked in a specific conformation and mostly in non-native conditions. 

 Structural mass spectrometry on the other hand, allows to describe protein structure 

dynamics, protein-protein and protein-ligand interactions and obtain inter- and intraprotein 

distance constraints between amino acid residues, all while working with proteins in their 

native conditions and needing only a fraction of sample.  

 In this work, hydrogen/deuterium exchange mass spectrometry (HDX-MS) and classical 

proteomic approaches were used together with other methods to analyse biotechnologically 

important proteins of fungal cellulolytic system lytic polysaccharide monooxygenase 

(LPMO) and cellobiose dehydrogenase (CDH) as well as plant-derived photosensitizer 

protein LOV2 with potential use in biologically targeted photodynamic therapy. 

 These methods allowed us to follow cellulolytic reaction of reduced LPMO even in 

heterogeneous solution of crystalline cellulose, obtaining insights into structural changes 

accompanying LPMO catalysis, mainly its notorious instability which was determined to be 

caused by oxidative modification of the protein, as well as verifying and structurally 

describing previously reported stabilisation of LPMO by suitable substrate. The recently 

speculated role of hydrogen peroxide as true LPMO cosubstrate was also confirmed. 

 Analysis of LOV2 protein then explained previously reported gradually increasing 

production of singlet oxygen upon protein irradiation as caused by a release of flavin cofactor 

into the solution, with interesting implications for biologically targeted photosensitizers.  

 

 

Keywords: Structural mass spectrometry, hydrogen/deuterium exchange mass spectrometry 

(HDX-MS), lytic polysaccharide monooxygenase (LPMO), cellobiose dehydrogenase (CDH), 

oxidative modification, cellulose degradation, turbidimetry, photosensitizer, light oxygen and 

voltage sensing domain (LOV) 
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Abstrakt (in Czech) 

Velké množství biologických procesů je závislé na strukturní dynamice proteinů a 

specifických protein-proteinových, nebo protein-ligandových interakcích závislých na 

specifických podmínkách uvnitř, či vně buněk. Analýza struktury proteinů klasickými 

metodami jako je rentgenová krystalografie, NMR, nebo nově cryo-EM poskytuje důležité 

struktury s atomárním rozlišením, avšak většinou ukazuje pouze statický obrázek bez detailů 

o dynamice, nebo transientních interakcích, a navíc často v nenativních podmínkách.  

 Tyto detaily může doplnit strukturní hmotnostní spektrometrie, která umí poskytnout 

informace o proteinové dynamice, interakcích proteinů s jinými molekulami a také o 

specifických meziatomových vzdálenostech v samotných proteinech, nebo mez 

interakčními partnery, to vše při relativně nativních podmínkách.  

 V této práci byla použita vodík/deuteriová výměna spojená s hmotnostní spektrometrií 

(HDX-MS), klasická proteomická analýza a turbidimetrie ke studiu biotechnologicky 

užitečných proteinů houbového celulolytického systému lytické polysacharidové 

monooxygenasy (LPMO) a celobiosadehydrogenasy (CDH) a rovněž fotosensitivní domény 

LOV2 pocházející z rostlinného fototropinu využitelné při fotodynamické terapii. 

 Pomocí těchto metod byla sledována celulolytická reakce katalyzovaná redukovaným 

enzymem LPMO v heterogenním roztoku mikrokrystalické celulosy a byly získány 

poznatky o změnách a dynamice struktury LPMO během reakce. Podstata destabilizace 

enzymu byla určena jako oxidativní degradace způsobená vedlejší reakcí hydroxidových 

radikálů generovaných aktivním centrem enzymu a byla rovněž strukturně popsána a 

vysvětlena stabilizace enzymu polysacharidovým substrátem. Byla rovněž potvrzena 

spekulovaná role H2O2 jako pravého kosubstrátu LPMO.  

 Analýza LOV2 pomohla vysvětlit dříve publikované zvýšení produkce singletového 

kyslíku (1O2) při dlouhodobém ozáření, které je způsobené uvolněním FMN kofaktoru 

s vysokou efektivitou produkce 1O2 do roztoku po oxidativní modifikaci cysteinu v blízkosti 

kofaktoru v molekule proteinu. 

  

Klíčová slova: strukturní hmotnostní spektrometrie, vodík deuteriová výměna, lytická 

polysacharidová monooxygenasa (LPMO), cellobiosa dehydrogenasa (CDH), oxidativní 

modifikace, rozklad cellulosy, turbidimetrie, fotosenzitivní protein, light oxygen and voltage 

sensing domain (LOV)  
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Abbreviations 
CDH     cellobiose dehydrogenase 

NcCDH     cellobiose dehydrogenase from Neurospora crassa 

ChCDH     cellobiose dehydrogenase from Crassicarpon hotsonii 

LPMO     lytic polysaccharide monooxygenase 

NcLPMO    lytic polysaccharide monooxygenase from Neurospora crassa 

CYT    N-terminal cytochrome domain from cellobiose dehydrogenase 

DH    C-terminal dehydrogenase domain from cellobiose dehydrogenase 

GOX    glucose oxidase 

PASC    phosphoric acid swollen cellulose 

GH61    glycosyl hydrolase family protein 61 

ROS     reactive oxygen species 

FAD     flavin adenine dinucleotide 

FMN    flavin mononucleotide 

IDET    interdomain electron transfer 

IPET    interprotein electron transfer 

PS     photosensitizer 

LOV2    light, oxygen and voltage sensing domain 2   

HDX-MS   hydrogen/deuterium exchange mass coupled with spectrometry 

PTM    posttranslational modification 

cryo-EM    cryogenic electron microscopy 

LC     liquid chromatography 

MS    mass spectrometry 

ES     electrospray ionisation 

MALDI    matrix-assisted laser desorption ionisation 

FT-ICR    Fourier transform ion cyclotron resonance mass analyser 

TOF    time-of-flight mass analyser 

CCS    collisional cross-section 

TWIM    traveling-wave ion mobility analyser 

TIM    trapped ion mobility analyser 

DTIM    drift-tube type ion mobility analyser 

MS/MS    tandem mass spectrometry 

ECD    electron-capture dissociation 

ETD    electron-transfer dissociation 

UVPD    ultraviolet photodissociation 

TCEP     Tris(2-carboxyethyl)phosphine  
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  Introduction 

1.1.   Protein Structure 
To perform the variety of tasks proteins evolved to do, they come in myriad of shapes, sizes 

and functions. From functioning as a skeleton of a cell in the form of microtubule and 

microfibril network, or allowing photosynthetic organisms to consume and store solar 

energy and transform it into chemical bonds of hydrocarbons formed of CO2, to forming 

complex protein machinery for copying and translating DNA, proteins play a crucial role in 

virtually every process in living organisms. The seeming omnipotence of proteins is a factor 

of combinatorics, since proteins are composed of 22 different amino acids, bearing hydroxyl, 

carboxyl, thiol, thioester, amide and other basic functional groups, linked by peptide bonds 

in a sequence encoded in genetic information of each cell (although only 20 are in fact 

specifically coded in DNA, two additional are incorporated by additional translation 

mechanisms). The different sequence of amino acids with different chemical properties in a 

polypeptide chain called primary structure is the main driving force behind protein shape 

and function and the amount of possible proteins allowed by 22 different amino acids is 

theoretically 22n where n is the number of amino acid residues forming the protein. While 

this number is in reality substantially lower, since conserved or similar sequences often 

repeat throughout the evolution tree1, it still allows for untold variety.  

 Suitable amino acids in a row can create a network of hydrogen bonds between carbonyl 

and secondary amino groups in peptide backbone, twisting the initial chain of amino acids 

into folded β-sheets (formed of individual β-strands), α-helixes and various turns, also 

assisted by side chain interactions and van der Waals forces (Figure 1, page 10)2. These 

more organized structures are called secondary structure and form basic elements of which 

the proteins are formed. The reduction in outward polarity often causes these secondary 

structures to form hydrophobic core of the enzyme while allowing more polar free strands 

to form the surface of the protein. The respective positioning and interactions of secondary 

structure elements manifests as the overall fold of the protein monomer called tertiary 

structure, turning the protein into shapes of globules, fibrils, or any other. These monomers 

formed of single polypeptide chain can in turn form complexes with themselves or with other 

proteins, with the resulting structure designated as quaternary structure, that often necessary 

for protein to be able to perform their complicated functions. 
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 The function of the protein is tightly bound to its structure. Interactions of specific amino 

acid residues in a protein can form enzymatic active site, enabling the protein to catalyse 

chemical reactions using amino acid side chains as catalysts and several possible protein 

conformations may serve as functional switches. These function related structural changes 

may be induced by specific ligands or allosteric modulators and may involve discreet 

changes in specific region of protein, such as changes to the active site during catalysis or 

allosteric modulation activating or inhibiting enzymatic activity, or more profound changes 

to secondary or tertiary structure as for example in protein channels and transporters. The 

changes may also involve relative movements of whole domains as in fungal cellobiose 

dehydrogenase3 or combination of many different changes.  

Figure 1: Various levels of protein structure shown on deoxy haemoglobin tetramer 
(using structure 1A3N on PDB2). 
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 Because structure of the protein is key to its function, random changes to protein structure 

can also easily cause deadly pathophysiology in what is called a proteinopathy. Single point 

mutations in proteins can lead to complete loss of function as is demonstrated in sickle-cell 

anemia4. Even wrong folding may by itself cause proteins to become toxic, as is the case in 

prion diseases, where misfolded version of naturally occurring protein aggregates and 

becomes toxic, while serving as a template for misfolding of other molecules5,6. In fact, other 

more common neurodegenerative diseases such as Alzheimer’s disease can be considered a 

prion disease due to misfolding of tau protein7 or amyloid peptides8 also having templating 

properties9. These are not infectious however as the initial cause of misfolding is usually 

genetic in nature10. Understanding the function of a protein requires not only knowledge of 

precise three-dimensional structure of the protein but also of the dynamic structural changes 

occurring during protein function and interactions with other proteins or ligands.  

1.2.   Methods for Studying Protein Structure 
In order to study molecules so diverse as proteins, plethora of methods was developed, that 

utilizes various physical and chemical properties of proteins. Some of the most commonly 

used are described in the following chapters, with a special focus on structural mass 

spectrometry, which is utilized in the experimental part of this thesis. The individual 

methodological approaches capture different views/snapshots of protein structure and 

dynamics and the recent trend lies in a combination of several techniques, called “integrative 

structural biology” which provides higher confidence in the postulated mechanisms and 

helps to sort out possible ambiguities. Here, structural mass spectrometry plays increasingly 

important role as it may complement the high-resolution snapshots by analysis of the 

dynamics and solution state of the protein(s) under investigation. 

1.2.1. X-ray Crystallography 
The X-ray crystallography is a high-resolution diffraction-based method capable of 

determining exact electron density and subsequently structure of a protein down to a 

resolution of 1Å. With the current number of protein crystal structures obtained by X-ray 

crystallography at PDB (http://www.rcsb.org/) standing well over 135 000, it is by far the 

most commonly used approach to elucidate protein structure11. Since the first protein 

structure obtained by X-ray crystallography was that of a sperm whale myoglobin published 

http://www.rcsb.org/
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already in 195812 at a resolution of 6Å, the method had a lot of time to mature. The basic 

concept of X-ray crystallography is obtaining a diffraction image of elastically scattering 

photons after they hit electrons of the crystallized sample with a wavelength close to the 

inter-atom distances in the sample13. While diffraction caused by single atoms is marginal, 

at specific angles, the atoms in crystal align and a constructive interference of diffracting 

photons creates characteristic patterns of black spots at a sensor. These spots are then 

analysed to reconstruct the electron density map of the sample, with the spatial distribution 

of the signals corresponding to shape and symmetry of sample crystal unit cell, and their 

intensities correspond to positions of individual atoms in the cell. Since all signal intensities 

are influenced by all atoms in the unit cell, it’s not possible to solve only part of the 

structure13. The resulting electron density map is then refined by computational iteration to 

best fit the diffraction data14 and interpreted in terms of individual atoms. 

 Although the exact structure of a protein is a crucial information when explaining its 

biological function and X-ray crystallography is a powerful tool for its determination, any 

protein crystallography is limited by its core premise, the need of a crystal of the examined 

molecule. The ability to crystallize depends on protein fold and flexible proteins with low 

amount of secondary structuralizing tend to crystalize poorly. Membrane proteins which 

need the lipidic phases to retain their correct biologically relevant structure15 are problematic 

as well. While high-throughput methods for protein crystallization, including methods such 

as lipidic cubic phase for membrane proteins16, has been developed, significant number of 

proteins still elude proper crystallization. Another factor that needs to be taken into account 

when interpreting crystal structure is the fact that a dynamic molecule is presented as a static 

object with the relative amount of dynamics in various regions of the protein only vaguely 

described by an atomic mean-square displacement (B factor)17.  

 Very high protein concentration necessary for the crystallization as well as non-optimal 

pH and presence of additives and precipitants may also introduce non-native conformations 

and artefacts in the data, as well as being restrictive for proteins unable to be produced in 

such quantity or unstable at such concentrations18,19. New possibilities to look at protein 

dynamics emerged with the development of femtosecond X-ray free electron lasers (XFEL), 

which use highly brilliant photons produced by accelerators with magnetic oscillators to get 

a diffraction snapshot of analysed molecule before its vaporization due to the amount of 

energy absorbed. In this way, very small crystals or even single molecules can be analyzed20. 
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1.2.2. Nuclear Magnetic Resonance 
Nuclear magnetic resonance (NMR) is with more than 11 000 solved structures on PDB the 

second most commonly used high-resolution method for precise 3D structure determination 

of macromolecules21. NMR utilizes strong magnets to align spin-non-even nuclei of sample 

atoms (1H, 13C, 15N and 31P), which are then split between those aligning in the direction of 

the field (lower energy spin state) and those aligning against the field (higher energy spin 

state). The sample is subsequently irradiated with an electromagnetic radiation in radio range 

and this energy is absorbed at a specific resonant frequency by nuclei occupying lower spin 

state to excite to the higher spin state. The exact frequency absorbed, which corresponds to 

the precession frequency of a magnetic field created by nucleus spin called “Larmor 

frequency”, depends on type of atom as well as its chemical surroundings, as electrons in 

the vicinity of the nucleus affect the energy gap between the spin states and this phenomenon 

is called “chemical shift”. The chemical shift of each atom thus carries the information about 

neighbouring atoms and can be used to reconstruct the structure of the sample molecule. 

Because chemical shift causes the resonant frequency to change by only a very low margin 

in the range of ppm, having stronger magnetic field and thus energy gap between the spin 

states increases sensitivity significantly. 

Modern instruments utilize pulsed Fourier transform NMR22. In this method, a very brief 

pulse of wider range high-power radio radiation, usually in specially devised sequences, is 

applied to the sample to excite all the nuclei of a given atom type. By aligning together, the 

precessing magnetic fields of nuclei sum up and create a net magnetization of a sample 

oscillating at specific Larmor frequencies of each atom type in the sample. This total 

oscillation is detected as an “echo”, a decaying signal on a coil originally used to transmit 

the radio pulse. Fourier transform is subsequently used to separate individual frequencies 

from the compound waveform to create a spectrum.  

Contrary to X-ray crystallography, NMR is analysing proteins in a solution and is able to 

describe their dynamics and interactions as well, albeit with some limitations23. First limiting 

factor is a protein size. With increasing protein size, broadening of spectral peaks and signal 

overlaps occur. Traditionally, NMR experiments were limited to 30-40 kDa proteins due to 

these reasons and while methods have been developed for analysis of larger proteins24 

enabling structural characterization of proteins and their complexes up to a size of  

1 million Da25, these require isotopic labelling of the sample protein and thus are not a 
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routine. Second limiting factor is protein concentration, solubility and stability requirements. 

NMR experiments often take days and require concentrations of 0.5 to 1 mM to obtain high 

quality spectra. Many proteins are not stable at such high concentration and need to be 

supplemented with higher ionic strengths or organic solvents. Taking all these facts into 

account, while NMR is considered more native than crystallographic approaches regarding 

protein conditions during analysis and is able to observe protein dynamics and specific 

structural changes it can still be complemented by analyses in more native conditions. 

1.2.3. Cryogenic Electron Microscopy  
Cryogenic electron microscopy (or Cryo-EM) is a type of transmission electron microscopy 

that utilizes vitrification - rapid freezing of sample in aqueous solution resulting in 

amorphous ice formation - to allow scanning of individual biological molecules, which 

would otherwise be destroyed by vacuum and radiation damage in the instrument26. It is an 

improvement over older three-dimensional reconstruction from electron microscopy (3D-

EM), that utilizes 2D crystals, helical arrays or icosahedral viruses to provide rough 3D 

structure of their assembly, but is very limited in terms of resolution due to the need to stain 

and dehydrate the samples to withstand the conditions of the analysis and gain contrast27.  

 Cryo-EM (and 3D-EM generally) generates 3D structures computationally from large 

number of 2D images corresponding to a projection of differently oriented molecule in the 

direction of the electron path. It has recently gathered a lot of attention with dramatic 

advancement in direct electron detectors and image processing algorithms leading to 

increase of resolution of obtained structures to less than 2Å28,29 with ever smaller molecules 

being able to be observed. The method has been successfully used in structure or structural 

dynamics characterization of large ensembles like eukaryotic ribosome at 3Å resolution30 

and complexes of histone H1 and nucleosomes during the formation of chromatin fibres at 

resolution of 11Å31, but also of relatively small multimeric proteins like TRPV1 ion channel 

at 3.4Å resolution32, β-galactosidase at 2.2Å resolution33. Cryo-EM is still not able to 

identify more transient interactions and structures of small biomolecules, but recent sub  

82 kDa structure of alcohol dehydrogenase at 2.7Å resolution proves, that the method is still 

developing and became now also usable in drug-target interaction identification34. 
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1.2.4. Structural Mass Spectrometry  
Structural mass spectrometry (MS) has seen rapid growth in recent years and became a 

hallmark of integrative structural biology. Structural MS is able to rapidly provide complex 

information about protein structure, from primary to tertiary, about protein dynamics, post-

translational modifications (PTMs) and protein-protein and protein-ligand interactions. 

Importantly, while not able to provide complete 3D models of proteins, structural MS 

techniques work with much more “native” states of proteins compared to higher resolution 

techniques like x-ray crystallography or NMR, including working with heterogenous 

solutions, complex mixtures of proteins and their ligands all the while needing only a fraction 

of protein amount for analysis35. They thus complement high-resolution methods to provide 

additional dimension of information to static 3D structures. 

1.2.4.1. Structural MS Principles  
Mass spectrometry allows to measure exact mass of ionized analyte in the form of mass to 

charge ratio (m/z). While originally used mainly analytically for atoms and small molecules 

due to difficulties in creating gas-phase ions of larger mass, with the advent of “soft” 

ionization techniques, mainly electrospray ionization (ESI) coupled to liquid 

chromatography and matrix assisted laser desorption ionization (MALDI) more than two 

decades ago, analysis of larger biomolecules became possible. Both these techniques paved 

the way of classical proteomics into an invaluable tool of contemporary molecular biology, 

biochemistry and medicinally oriented research. However, the structural mass spectrometry 

relies mostly on ESI as it features more “gentle” ionization and can be readily coupled with 

separation techniques. ESI allows to transfer biomolecules from a solution to a gas phase in 

the form of rapidly evaporating droplets emitted by a highly charged capillary forming a 

characteristic Taylor cone, while giving them charge dependant on the size of the molecule 

without breaking their structure36,37. The dispersion is facilitated by droplets approaching 

Rayleigh limit, the maximum amount of charge a droplet of a certain size and composition 

can contain while still being stable, as they evaporate38,39.  

 Two main protocols for protein structure analysis by mass spectrometry exist. The first 

one is “bottom-up” or “peptide-centric” approach, characterized by analysis of individual 

peptides from proteins of interest, usually from a solution, and obtaining information about 

protein primary structure and PTMs40,41. Techniques like covalent labelling, chemical cross-
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linking and hydrogen-deuterium exchange allow to obtain a breath of additional information 

about protein structure and interactions from bottom-up analysis. The second one is “top-

down” or “protein-centric” approach. This protocol is characterized by transferring the 

whole ionized proteins or their mixtures to the gas-phase, retaining their individual 

proteoform characteristics42 and thus deducing information about their PTM heterogeneity43, 

subunit composition and complex formation. This can be further combined with ion-mobility 

measurements to obtain collision cross sections of studied proteins or their complexes. 

1.2.4.2. Native Mass Spectrometry and Ion Mobility  
Native mass spectrometry allows for mass measurement of intact proteins and protein 

complexes with retained non-covalent interaction and PTMs upon their transfer from sample 

solution to vacuum of mass spectrometer. This is enabled first and foremost by precise tuning 

of instrument ion transfer, buffers and conditions of ESI to facilitate the most “gentle” 

ionization possible in order to not disrupt any quaternary structure of analysed proteins44–46. 

This also includes utilizing heated desolvation gas, accelerated voltage throughout the 

instrument and mild collisions with background gas to maintain the initial internal energy of 

ions and prevent their uncontrolled adiabatic expansion and subsequent freezing, when 

crossing from atmospheric pressure to vacuum in the instrument47. Modified ESI in the form 

of nanoflow electrospray ionization (nESI) proves especially useful in this regard, allowing 

better dispersion of the sample liquid, reduced sample flow and reducing the necessity of 

using non-native volatile compounds in buffers to assist evaporation48 (Figure 2, page 17).  

 By adding additional energy to ions in the form of increased collisions in gas phase, either 

by increasing gas pressure or collision voltage throughout the ion transfer in the instrument, 

it is possible to observe selective dissociation or unfolding of proteins or protein complexes 

and in this way deduce more information about their structure and stability49. 
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 Ion mobility adds another dimension to native mass spectrometric analysis. In its simplest 

setup, ion mobility analyser consists of linear drift tube where ions are propelled by electric 

field against a flow or area of static inert gas50. Molecules drifting through the analyser 

separate according to their size and charge, as larger molecules undergo more collisions with 

the gas and are slowed down, while smaller or higher charged molecules drifting faster48. 

The parameter describing the ease with which the ion travels through the drift tube is referred 

to as “mobility” K0 and is given by Mason-Schamp equation50:  

K0 =  
3ze

16NΩ 
(

2π

μkbT
)

1
2
 

where z is charge of analyte, N the number density of the drift gas, Ω the collisional cross 

section (CCS), µ the reduced mass of the ion, kb the Boltzmann constant and T the 

temperature. Since the ion mobility drift tube is followed by mass spectrometric analyser, 

charge state and mass of each particle is measured and therefore CCS can be determined for 

each ion species. Improvements on the basic drift tube analyser include traveling wave ion 

mobility analyser (TWIM) and trapped ion mobility analyser (TIM)51 (Figure 3, page 18). 

Figure 2: Schematic representation of nESI ionization process. Adapted from 
Konijnenberg et al. (2013). 
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 Because molecules in the drift tube tumble freely, the resulting CCS corresponds to 

orientation-averaged area interacting with the drift gas52 and can be compared to theoretical 

models or known structures53. Combination of native MS and ion mobility can be used to 

elucidate heterogeneity, conformation stability, ligand binding strength or assembly 

pathways of protein multimers54, complexes of proteins and nucleic acid such as 

CRISPR/Cas55 and molecules as large as viral capsids56,57 or ribosomes58. 

1.2.4.3. Covalent Labelling 
Covalent labelling (CL) probes solvent accessible and reactive regions in proteins and 

through localized changes in extent of modification when comparing several protein states, 

deduces information about protein-protein or protein-ligand interactions or structural 

dynamics. The key feature is that these labels covalently modify amino acid side chains, 

creating irreversible mass changes which are then analysed usually by proteolytic digestion 

and LC-MS/MS analysis59. Since large number of protein complexes are mediated primarily 

by amino acid side chain interactions, covalent labelling can be very sensitive method for 

elucidation of these interactions. Additionally, utilizing very fast reaction kinetics of 

Figure 3: Ion Mobility Mass Spectrometer Layout: A - overview of an ion mobility-mass 
spectrometry instrument. Ba - drift-tube type ion mobility analyser (DTIM) with constant gas flow 
and uniform electric field, Bb - Travelling wave ion mobility (TWIM) analyser with travelling 
potential wave helping to separating analyte ions, Bc - Trapped Ion Mobility analyser (TIM) 
separating ions by selectively propelling them from an equilibrium state with electrostatic force in 
one direction and buffer gas flow in the opposite direction by gradual changes to the strength of 
applied electric field. Adapted from Kalenius et al. (2019). 



 

- 19 - 
 

 

hydroxyl or carbene radicals, CL can also be used to study protein folding reaction occurring 

on µsec timescales if performed properly60,61. 

 Labelling reagents can be both specific to a given amino acid side chain or functional 

group, or non-specific, able to modify broader set of residues62. Specific reagents consist of 

large variety of chemicals with unique mechanisms of action for any given residue or 

functional group. Most common residue targets are those with carboxylic group63, arginine64, 

cysteine65, histidine66, lysine67, tryptophan68 or tyrosine69. Among the most commonly used 

non-specific reagents are hydroxyl radicals (•OH) produced usually by H2O2 photolysis or 

radiolysis of water70,71 and targeting oxidizable amino acids like Cys, Met, Trp, Tyr and Phe, 

singlet carbenes produced by photolysis of precursors like 3-trifluromethyl-3-

phenyldiarizine72 and trifluoromethyl radicals (•CF3) produced by laser photolysis of 

triflinate73, both of these able to insert into X-H bond (where X is C, O, N, or S)  or 

diethylpyrocarbonate (DEPC) modifying nucleophilic amino acid side chains74.  

1.2.4.4. Chemical Cross-linking  
Being technically a type of covalent labelling method, chemical cross-linking is a structural 

mass spectrometry method capable of obtaining distance constraints between various parts 

of protein, or between different proteins during their interaction. It is based on covalently 

labelling amino acid side chains with bifunctional reagents separated by a linker of a defined 

length. The labelling of two residues by the reagent will only occur if amino acid side chains 

in question are at any time during the reaction separated by a specific distance given by the 

linker length75. Thus by detecting the cross-linking products by a bottom-up analysis, it is 

possible to reconstruct these distances and utilize them for protein model refinement19, for 

analysis of protein conformation and its changes76 or to detect previously unknown 

interactions between analysed proteins77.The most commonly used cross-linkers and amino-

acid residues they react with are shown in Table 1 on page 2078.  
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CROSS-LINKER SPACER LENGTH RESIDUE REACTIVITY 

BS3/DSS 11.4 Å K, S, T, Y or N terminus to K, S, T, Y, or N terminus 

DSSO 10.3 Å K, S, T, Y or N terminus to K, S, T, Y, or N terminus 

EDC 0 Å D or E to K, S, T, Y or N terminus 

DMTMM  Depends on variable 

dihydrazine spacer 

D or E to D or E 

SDA 3.4 Å K, S, T, Y or N terminus to any amino acid residue 

 

 

 However, not all cross-linkers necessarily happen to bind with both reactive groups to 

residues of interest. When we consider cross-linking a mixture of two presumably interacting 

proteins for a defined amount of time and then quenching the reaction, four possible cross-

linking products may arise (Figure 4, page 21).  

 Type 0 (or Dead-end) cross-links are formed by binding of cross-linker to one residue 

while having the second functional group hydrolysed. This would be detected as a 

characteristic increase in mass of the peptide.  

 Type 1 (Intrapeptide or “Loop”) cross-links are formed when two reactive residues are 

cross-linked by the reagent within one peptide. This would also be detected as a 

characteristic increase in mass of the peptide, different to the increase caused by dead-end 

cross-link due to the additional covalent bond.  

 Type 2 (Interpeptide) cross-links are formed when cross-linking reagent connects 

residues of two different peptides that can originate both from the same protein or from 

different proteins. Type 2 cross-links are detected as a mass signal corresponding to the sum 

of mass of two different peptides and a cross-linking reagent.  

 Type 0 cross-links only yield information about reactivity of residue to which cross-linker 

is bound and is therefore effectively serving only as a standard covalent label discussed in 

chapter 1.2.4.3. Type 1 and Type 2 cross-links provide distance constraints, either within 

one protein, or between different proteins, and can be used for protein model refinement, to 

detect changes to protein conformation under various conditions or provide information 

about protein-protein interaction and probable interaction interfaces. 
 

Table 1: Overview of most commonly used cross-linkers. Spacer length and 
reactivity is also shown. Adapted from O’Reilly and Rappsilber (2019). 
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 To simplify detection of cross-linked peptides during LC-MS/MS analysis, which 

requires significant computing power due to the number of possible combinations of mass 

that need to be verified, isotopically labelled cross-linking reagents were developed. By 

incubating the sample with a mixture of “heavy” deuterium labelled and “light” cross-linker, 

each cross-linking product carrying the reagent will appear as a double peak in MS spectra 

with a characteristic difference that can be searched for79. Another improvement in cross-

link detection are “MS-cleavable” cross-linkers, which yield characteristic product ions and 

constant mass changes during collision-induced dissociation in tandem MS analysis, further 

simplifying search for cross-link signals and their analysis in mass spectra80. 

 The use isotopically labelled cross-linkers can also be used to conduct a quantitative 

analysis and compare two (or possibly more) protein states. Different samples are incubated 

with different isotopic variant of cross-linker and their proteolytic digests are mixed and 

analysed together. The characteristic double peaks indicating successful cross-linking are 

then still present and ratio of the two signals gives relative abundance of given cross-link 

formation in given sample. Information about differences in protein structure or different 

interaction kinetics can be obtained in this way81.  

 In-vivo cross-linking presents the latest advancement82, however problems with 

permeation of cross-linkers through cell plasmatic membrane and low abundancy of formed 

cross-links still make this approach inconvenient, although ingenious methods like 

genetically-encoded photoactivatable amino acid based cross-linkers are promising83,84. 

Table 4: Overview of possible forms of cross-linking product. Type 0 - dead-
end cross-link, Type 1- intrapeptide cross-link, Type 2a - interpeptide cross-
link with both peptides originating from the same protein, Type 2b - interpeptide 
cross-link with each peptide originating from a different protein. 
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1.2.4.5. Hydrogen/deuterium exchange  
Hydrogen/deuterium exchange coupled with mass spectrometry (HDX-MS) is a non-

covalent labelling method capable of providing information about protein structure, its 

dynamics or interactions with other molecules. The method is based on the exchange of 

hydrogens in a protein for deuterium from solvent D2O, and subsequent mass spectrometric 

analysis which detects increase in mass associated with the exchange. The rate of exchange 

is influenced by solvent accessibility of exchanging hydrogens and their possible hydrogen 

bonding and local conformational dynamics85. In folded proteins, the exchange can thus 

wary wildly on the timescales from minutes to months86. The measured rate of exchange in 

specific parts of protein over a time period can yield information about anything from protein 

structure and its dynamics87 to protein-protein88,89or protein-ligand interactions90. The 

analysed sample can in principle be labelled in any ESI compatible solvent and even in 

heterogenic solution91, giving the HDX-MS the advantage of using much more native 

conditions than higher-resolution structural methods like X-ray crystallography or NMR. 

This makes HDX-MS able to complement these methods and provide additional layer of 

information about dynamics and function of studied proteins. Since HDX-MS was used in 

this work, more details were included in this chapter compared to other structural mass 

spectrometry methods.  

1.2.4.5.1. Hydrogen exchange in proteins - principles 
The phenomenon of hydrogen/deuterium exchange in proteins was first described in 195492 

when it was found, that hydrogens atoms in proteins can freely exchange for hydrogens from 

solution, detected by retention of deuterium on protein after incubation in D2O. Different 

type of hydrogens in protein structure exchange at a different rate. Side chain hydrogens in 

carboxyl, hydroxyl, sulfhydryl and primary amine groups exchange rapidly, while 

hydrogens bonded to carbon atoms do not exchange at all. The middle ground are amide 

hydrogens of polypeptide backbone, which exchange at a convenient rate due to their 

involvement in structural hydrogen bonding, and their rate of exchange can be followed 

using suitable analytical methods (Figure 5, page 23). 
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 The rate constant for exchange of fully solvent-exposed backbone amide hydrogens is 

referred to as kch (“chemical” rate constant) and depends on neighbouring amino acid side 

chains, temperature and pH. The exchange of these hydrogens can be catalysed by both OH- 

and H3O+ ions depending on pH of the solution. In aquatic solution, OH- catalysed exchange 

dominates down to the pH of around 2.5, where H3O+ catalysis becomes higher due to 

protonation of the peptide group being the rate-limiting step of acidic catalysis93. The pH 

profile therefore shows a local minimum with OH- catalysis in pH higher than at the rate 

minimum and H3O+ catalysis in pH lower (Figure 6, page 24)94,95.  

 The influence of neighbouring amino acid side chains is mainly due to polar side chains 

rendering amide hydrogens more acidic and thus increasing OH- catalysis rate involving 

proton abstraction while limiting H+ catalysis dependent on protonation96, however in 

common protein sequences, these sequence dependent changes to exchange kinetics are 

within a factor of 10 and therefore generally do not mask changes in exchange dependent on 

protein structure or hydrogen bonding97.  

 Since hydrogens are exchanged for deuterium in HDX-MS experiments, the kinetics of 

exchange also differs slightly from pure hydrogen exchange mainly because of solvent 

kinetic isotope effect. This effect is caused by different effectivity of catalysis by either OH- 

or OD- due to each having a different basicity. The same effect also applies to acidic catalysis 

by H3O+ and D3O+98. The temperature affects the exchange rate according to traditional 

Figure 5: Different hydrogens in protein and their relative rate of exchange. 
Exchange of hydrogens in orange is usually too fast to be measurable. Exchange of 
amide hydrogens at the peptide bond in blue is happening on timescales of  seconds 
to days and thus detectable. Adapted from Oganesyan et al. (2018). 
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Arrhenius equation, but it also influences protein fold and thus can change activation energy 

of the exchange at specific parts of the protein. This makes the effect of temperature on 

exchange rate non-logarithmic86. 

 Usually though, hydrogens are not fully solvent-accessible and can also be involved in 

hydrogen bonding. Both factors contribute to a protection from exchange of the given amide 

hydrogen and a corresponding protection factor P = kch/kHDX was defined with kHDX being 

the overall rate constant of deuteration reaction. The protection from exchange significantly 

affects the overall exchange rate as the P can be in the range of 106 in natively folded 

proteins86. That means the exchange events of these hydrogens are effectively dependent on 

conformational fluctuations of the protein, which make these hydrogens temporarily more 

prone to exchange, either by making them more accessible, or disrupting their hydrogen 

bonding. Some hydrogens are unable to exchange at all, until global unfolding of the protein 

occurs99. With the time period when hydrogen is exchangeable or unexchangeable denoted 

as “open” state and “closed” state respectively, following equation can be constructed for 

hydrogen/deuterium exchange100: 

Figure 6: Dependance of rate of exchange of different hydrogens in protein on pH. 
Hydrogens bonded directly to carbon atoms are now shown, as those do not exchange 
under normal conditions. Adapted from Morgan & Engen (2009).  
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where kop signifies the rate of opening and kcl the rate of closing. When kcl >> kch, there is 

only a small chance hydrogen will be exchanged with each opening and the increase in 

deuteration in the region of protein displaying this behaviour will be gradual with rate 

limiting step being the chemical rate of exchange. This seemingly bimolecular reaction 

kinetics was termed EX2 kinetics. On the other hand, when kcl << kch, for each opening there 

is a high chance hydrogen will be exchanged. This effectively makes the deuteration profile 

non-gradual, with hydrogens displaying this behaviour being split into a population of 

hydrogens yet unexchanged and a second population which has already undergone the 

opening and became fully exchanged. This seemingly unimolecular reaction kinetics not 

dependent on rate of catalysis is termed EX1 kinetics99,101 (Figure 7)102. 

  

The EX2 kinetics is more common and is typically observed in structured regions of proteins. 

Changes in the gradual increase in deuteration also usually accompany transient and 

reversible protein-protein and protein-ligand interactions. EX1 kinetics on the other hand 

reveals alternate protein states or sudden structural changes like irreversible thermal 

unfolding or protein degradation, with a population of protein suddenly undergoing 

extensive deuteration. The type of kinetics observed can thus also give information about 

the structural dynamics of given region of protein. 

Figure 7: Schema of EX1 and EX2 deuteration kinetics. Adapted from Engen et al. 
(2013). 



 

- 26 - 
 

 

1.2.4.5.2. HDX-MS workflow and analysis 
Most HDX-MS experiments are done in continuous labelling mode (Figure 8)103, where 

protein sample is incubated in typically 80-90% D2O for various time intervals. The 

continuous increase in deuteration is observed and changes to the exchange under different 

conditions or in presence of different other molecules are detected. Time intervals can vary 

from seconds to days and the time of incubation is only limited by protein stability. After a 

set incubation time, the exchange reaction is “quenched” by adjusting pH to around 2.5 

where the exchange is minimal and usually also rapidly frozen in liquid nitrogen to stop the 

exchange and avoid back-exchange of deuterium for hydrogen during subsequent 

analysis103.  

 

  

 

Figure 8: Schema of the common “bottom -up” HDX experiment. Sample is incubated in 
D2O and aliquots are taken at specific incubation times. Deuteration is stopped by lowering 
pH and temperature. Samples are subsequently analyzed by LC-MS after proteolytic cleavage, 
often done “online” with protease columns connected to LC-MS setup. Rate of deuteration is 
calculated from the average mass change of any given peptide. Adapted from (104). 
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 Another approach is pulsed labelling, in which unstable or conformation changing protein 

is incubated in H2O based solvent for various time intervals and only labelled for a same 

short time period afterwards. This approach can give information about various protein states 

that occur during the incubation timeframe104. While the experiments are usually performed 

manually requiring significant time and labour investment, pipetting robots specially 

designed for HDX have been developed streamlining the process and increasing the 

reproducibility of deuteration significantly105. Even with pipetting robots however, the 

shortest possible deuteration times remained at around 10 seconds, where very dynamic and 

flexible regions of proteins already undergo full deuteration. Therefore, quench-flow 

systems were developed with D2O dilution and subsequent quenching performed in a flow 

system enabling sub-second deuteration times106 with recent advances also including 3D 

printed microfluidic chips107.  

 The analysis of deuterated samples is usually done using a “bottom up” approach 

characterized by protease digestion of the sample and subsequent HPLC-ESI-MS. The 

deuteration is calculated from mass increase of peptides and spatial resolution therefore 

depends on proteolysis. Because the digestion needs to be performed under low pH, typical 

protease used is pepsin, which also has the advantage or relatively low specificity, creating 

overlapping peptides that enable to further increase the resolution by calculating deuteration 

of overlapping regions108.  

A range of alternative proteases was also developed specifically to allow digestion under 

HDX quench conditions109,110. To avoid using proteases altogether, an effort has also been 

made to adapt top-down mass spectrometry with ECD, ETD and UVPD111 fragmentation 

techniques for analysis of deuterated proteins, with the advantage of limited hydrogen back-

exchange and potentially higher spatial resolution112,113. 
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1.3.   Fungal Cellulolytic System – LPMO and CDH 
The global rise in energy consumption, inevitable oil shortage and concerns regarding carbon 

dioxide production and its role in climate change all contribute to the effort to find alternative 

sources of both energy, and important chemicals that do not contribute to carbon dioxide 

production and are renewable. Since one of the perspective ways to obtain “clean” energy is 

the utilization of vast solar energy collector that is plant biomass, research into efficient 

saccharification of lignocellulosic matter is currently one of hot biotechnological topics.  

Through photosynthesis and plant growth, around 56.4 petagrams (1015 g) of carbon are 

annually siphoned from atmosphere and bound mainly in the form of polysaccharides 

composing wood114. However, wood is exceptionally resistant to biological degradation, 

which is currently the main bottleneck of utilization of wood for biofuel production115,116. 

 Wood comprises of three main components: cellulose (40-45% of dry weight), 

hemicellulose (20-30% of dry weight) and lignin (15-25% of dry weight)117. Cellulose, while 

being a polysaccharide composed of β-(1→4) linked D-glucopyranose units and thus 

theoretically susceptible to hydrolases, displays remarkable resistance to biodegradation 

mostly due to its complex structure115,118. Two forms of cellulose exist, amorphous with 

tightly packed fibres forming parallel strands held together by hydrogen bonding, that 

aggregate into larger microfibrils, resulting in crystalline-like structures with flat surfaces 

completely inaccessible by standard hydrolytic enzymes dependant on binding of 

polysaccharide fibre into an active site cleft of the enzyme115,118. This recalcitrance of 

cellulose is largely assisted by hemicellulose, mainly xylan fibres. Xylan is a polymer 

composed of repeating β-(1→4) linked xylose units modified with acetyl and glucuronic 

acid side groups119. These fibres are responsible for both cross-linking of separate cellulose 

microfibrils, but also run along these microfibrils adding additional sterical protection to 

cellulose while being harder to degrade due to extensive modification of their surface120,121. 

Finally, additional structural integrity of wood is given by lignin, which is a cross-linked 

phenolic polymer biosynthesized by radical-catalysed polymerization with the assistance of 

various oxidative enzymes122. In contrast to other biopolymers such as proteins, saccharides 

or nucleic acids, lignin is undegradable by hydrolysis and boasts a densely packed structure 

sterically inaccessible by most enzymes, which makes it very resistant to biodegradation.  

 In order to efficiently process such biomass into simple saccharides or fuel, all these 

components must be degraded. In nature, wood decaying fungi belonging mainly to 
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Basidiomycetes and Ascomycetes are the primary contributors to degradation of wood and 

they employ specialized cellulolytic enzymatic systems to degrade and consume 

lignocellulose118. These specialized enzymes and their unique mode of action is now being 

heavily researched and used in biorefineries. Two of them are lytic polysaccharide 

monooxygenase (LPMO) and cellobiose dehydrogenase (CDH) (Figure 9). Structural 

aspects of these enzymes and their activity was studied in this work and represent good 

example of proteins, in which the dynamics of their structure heavily impact their function, 

and thus structural mass spectrometry is a suitable method for their study.  

 

1.3.1. Lytic Polysaccharide Monooxygenase 
Lytic polysaccharide monooxygenases are cellulolytic copper-dependent redox enzymes, 

found mainly in bacteria123 and fungi124 but also in several other organisms125,126, having 

their cellulose degradation enhancing properties first identified in 2010. Formerly an 

enigmatic enzyme family wrongly classified as glycosyl hydrolase family GH61, they were 

found to boost the effectivity of pre-treated corn stover hydrolysis by T. reesei cellulases127. 

Their mechanism of action was quickly found to be oxidative in nature and based on Fenton 

chemistry revolving around reduction of the active site copper ion, which subsequently binds 

Figure 9: Schematic representation of fungal cellulolytic system employing CDH and LPMO. 
Amorphous cellulose structures (a) are easily accessible by endo- and exocellulases and 
therefore are readily broken down into mono- and disaccharides. Crystalline cellulose (b) is 
however sterically hardly accessible and LPMO enzymes with flat catalytic sites are needed to 
oxidatively cleave these parts of cellulose to make them accessible (c). 
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O2 (or H2O2) to produce reactive oxygen species breaking down glycosidic bonds in 

polysaccharides and in light of this, they were reclassified as lytic polysaccharide 

monooxygenases128–133. The previous evidence for extracellular reactive oxygen species 

(ROS) production in fungi suspected to be connected to cellulose degradation was thus 

confirmed134. 

 The LPMO active site is located on the flat surface of the protein and contains Cu+2 ion 

coordinated by histidines usually assisted by tyrosine in a conserved structural motif called 

histidine brace135,136. The flat surface enables the enzyme to bind on the surface of 

recalcitrant crystalline polysaccharide structures, which are otherwise inaccessible by 

standard exo- and endohydrolases137. Some LPMOs also carry carbohydrate binding 

modules (CBMs) on a flexible linker, which assist in substrate binding138.  When reduced 

from Cu+2 to Cu+1 by either small-molecular reductants or its redox partner enzyme 

cellobiose dehydrogenase (chapter 1.2.3.2), LPMOs affinity to polysaccharide substrate, 

mediated by several aromatic residues surrounding the active site139, is increased140 and 

reduced copper ion binds either oxygen141,142 or hydrogen peroxide143,144 to produce ROS. 

These radicals are directed at either C1 or C4 position of β-(1→4) glycosidic bonds of 

polysaccharides, depending on the type of LPMO, causing oxidative cleavage of the 

bond130,145. If the cleavage happens close to the end of polysaccharide chain, oxidized 

oligosaccharides are released to the solution and if they are long enough, can be bound and 

cleaved by LPMO further146. As more examples of these enzymes were found, they were 

classified as Auxiliary Activity (AA) by CAZy database of carbohydrate active enzymes147. 

LPMOs were eventually found degrading chitin (AA11)123,148, starch (AA13)149, and various 

hemicelluloses (AA14-16)150,151, giving them a broad substrate specifity in regards to 

lignocellulose depolymerisation.  

 While these enzymes are already utilized biotechnologically, they have a serious 

limitation in the form or low stability during catalysis and their application is challenging to 

optimize due to plethora of possible reactions occurring when mixing reductants, oxygen, 

hydrogen peroxide and not necessarily “clean” and precisely defined insoluble substrate152. 

This low stability was not researched thoroughly yet with only a handful of studies 

concerning thermal stability and possible structural changes during catalysis140,153, however 

oxidative damage due to off-pathway catalytic processes is suspected to be involved143.  

 The nature of the cosubstrate is also a topic of heated discussion, with increasing number 
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of reports stating that H2O2 is in fact the true cosubstrate and O2 is only an intermediate, 

which would in fact make the enzyme peroxygenase and not monooxygenase139,143,144,154,155. 

This is in contrast to previous belief of O2 being the polysaccharide substrate oxidizing 

cosubstrate of LPMO enzymes directly3,142,156. Thus, study of structural dynamics of LPMOs 

during catalysis and the nature of its cosubstrate are currently both an important topic to 

tackle.  

 

1.3.2. Cellobiose Dehydrogenase 
Cellobiose dehydrogenase (CDH; EC 1.1.99.18) is so far the only identified extracellular 

flavocytochrome157. It is composed of two functional domains: N-terminal cytochrome 

domain (CYT) harbouring heme b and C-terminal dehydrogenase domain (DH) containing 

flavin adenine dinucleotide (FAD) cofactor with a flexible linker connecting the two 

domains3,158 and CDHIIA variants also containing family 1 CBM159. These enzymes are 

expressed in fungi alongside LPMOs and can form more than 2% of secreted cellulases in 

fungal secretomes160. Cellobiose or other small sugars including lactose and glucose161 can 

be oxidized at the DH domain while reducing the FAD cofactor to FADH2. Electrons from 

FADH2 are then channelled in two one-electron steps to CYT domain via direct interdomain 

electron transfer (IET). Once at the CYT domain, electrons can be transferred to terminal 

acceptor, which is usually LPMOs active-site copper ion, reduction of which starts LPMOs 

oxidative depolarization of cellulose3.  

 The IET is the crucial step in CDH function and dictates the rate at which CDH supplies 

electrons to other molecules162. It was found, that this transfer is occurring as a flip-flop 

mechanism during which CDHs separate domains alternate between a “closed” to “open” 

conformation using the flexible linker as a separator158. In closed conformation, domains get 

close enough for electron transfer to happen between FAD and heme b, which is followed 

by domain separation which positions CDH in an open conformation, where CYT domains 

heme b is facing away from CDH molecule and is free to pass the obtained electron3. 

Importantly, the electron can be transferred not only to LPMO molecule, but to any other 

molecule with suitable redox potential and even to the surface of electrode161. This has been 

utilized in the production of CDH based biosensors in the form of electrodes covered in 

immobilized CDH, which is able to detect selected saccharides and directly produce 
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electrical current proportional to the amount of saccharide present in the solution, albeit not 

linearly. The extent to which domains interact is largely governed by distribution of 

electrostatic charges on the interaction interfaces of the domains giving the protein specific 

pH optimum when domain repulsion is lowest163–165.  

 Current research into CDH mostly revolves around study of interdomain electron transfer 

and rational engineering of the enzyme to modulate its pH optimum and other parameters to 

increase its viability in industrial biomass degradation and biosensor design166–169. 

1.4.   Biological Photosensitisers  
Photosensitizers (PS) are light absorbing compounds that produce specific reactive oxygen 

species (ROS) from oxygen upon irradiation with light of specific wavelength. They have 

found use in antimicrobial photodynamic inactivation (aPDI)170, photodynamic therapy 

(PDT)171 cancer treatment or in the study of cellular ROS mediated signalling172. Upon light 

irradiation, PS undergoes a transition to a singlet excited state and subsequently triplet 

excited state through intersystem crossing. Triplet state has relatively long lifetime and 

enables the PS to transfer energy to O2 to produce singlet oxygen 1O2 (so called type-II 

mechanism), or superoxide radical anion (O2•
−) with the help of electron transfer from 

suitable neighbouring molecule (so called type-I mechanism). Superoxide anion can then 

undergo series of redox reaction and generate other ROS such as hydrogen peroxide (H2O2) 

or hydroxyl radical (OH•). Majority of photosensitisers are not selective to just one 

mechanism and produce a mixture of type-I and type-II products, with the ratio being 

influenced by PSs micro-environment.  

 Produced radicals, especially 1O2 are highly reactive and induce oxidative modification 

of various macromolecules leading to cell death173. Using exogenous dyes as PS for PDT is 

not effective, due to inability to effectively target specific cells, general toxicity and limited 

pharmacokinetics. To address this issue, genetically encoded PS were developed. Majority 

of currently used and studied genetically encodable PSs are flavoproteins carrying FMN or 

FAD and derived from microbial and plant “light, oxygen and voltage sensing” (LOV) 

photoreceptor domains of phototropin174.  

 The LOV photoreceptors, occurring in archaea, bacteria, fungi and plants are responsible 

for phototropism, chloroplast movement, circadian rhythms or general stress response, all of 

these physiological responses being driven by light or reactive oxygen species stimuli175. 
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During the photocycle of LOV, the signal is transduced as a structural rearrangement of the 

domain following a formation of a covalent bond between conserved Cys residue in the 

active site of the protein and C4a atom of the present flavin isoalloxazine ring upon 

irradiation of FMN or FAD by blue light. Importantly, cysteine devoid variants were also 

reported showing higher levels of flavin radical species detected upon irradiation. 

 These proteins can also be fused to targeting sequences or antibodies, to direct them to 

specific cell compartments or cell types171. However, protein scaffold holding FMN limits 

the ROS production, so special proteins like miniSOG (mini Singlet Oxygen Generator) are 

engineered to increase the quantum yield of the ROS production176. Exact knowledge of 

protein structure and mechanistic details of ROS generation in natural photosensitizing 

domains are crucial for effective development of new photosensitizers and part of this thesis 

is aimed at structural and functional study of one such domain from Avena sativa – 

AsLOV2177. 
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 Aims of the Thesis  
The aim of this thesis was to explore structural aspects of different functional states of fungal 

enzymes CDH and LPMO involved in cellulose degradation and changes accompanying 

singlet oxygen generation by LOV2, using structural mass spectrometry methods. 

 

The specific goals were: 

• To characterize the interaction of cellobiose dehydrogenase and lytic polysaccharide 

monooxygenase 

• To characterize structural stability of LPMO and structural changes accompanying 

LPMO inactivation during catalysis 

• To obtain information about the nature of LPMO co-substrate 

• To characterize changes occurring on AsLOV2 during its light irradiation and 

production of reactive oxygen species 

  



 

- 35 - 
 

 

 Methods  
The publications included in this Ph.D. thesis provide a full description of all methods and 

experimental procedures used together with details necessary for their reproduction. 

Therefore, this chapter serves only to list experimental techniques used throughout the thesis. 

 

List of used research methods: 

• Protein sample preparation for MS analysis including enzymatic deglycosylation 

• MS-based analysis of protein primary structure and post-translational modifications 

(MALDI-TOF, ESI-FTICR directly or in LC-MS and LC-MS/MS setup) 

• MS analysis of oligosaccharides (MALDI-TOF) 

• Hydrogen / deuterium exchange mass spectrometry 

• Turbidimetric measurement of LPMO cellulolytic activity 
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  Results and Discussion 
The aim of this work was to analyse biotechnologically and medicinally important enzymes 

through the use of structural mass spectrometry. Three distinct enzymes were studied, lytic 

polysaccharide monooxygenase and cellobiose dehydrogenase, both part of the fungal 

extracellular cellulolytic system and AsLOV2, plant derived photosensitizer. This section 

will thus be separated into two parts, first encompassing Publication I, II and III regarding 

CDH and LPMO and second, concerning AsLOV2 and Publication IV. 

4.1.   Study of fungal cellulolytic enzymes LPMO and CDH 
Fungal cellulolytic enzymes LPMO and CDH are heavily studied proteins, mainly due to 

their potential use in saccharification of lignocellulosic biomass and for biosensor production 

respectively. Current understanding of their activity is still insufficient mainly due to the 

complexity of the system involving ROS and insoluble substrates. Interaction of these 

enzymes occurring during the electron transfer from CDH to LPMO has remained rather 

elusive as well, mainly due to its transient nature. Moreover, LPMO is notoriously unstable, 

limiting its wider industrial use and research possibilities in its active reduced form. The 

exact aspects of this degradation/loss of activity have not been thoroughly examined either, 

with previous reports mainly focusing on structural differences between LPMO apo- and 

holoform and LPMO’s overall thermal stability in relation to presence of cofactor and 

substrate140,153, with only relatively brief mention of ROS induced damage143. The more 

structure-oriented studies were predominantly using X-ray crystallography or NMR and 

while providing excellent spatial resolution and describing the side chain mediated binding 

of polysaccharide substrate to LPMO, they do not provide information about structural 

aspects of its catalysis178,179.  

 Structural mass spectrometry, and especially hydrogen/deuterium exchange can, 

however, analyse dynamics of protein structure even under such conditions and provide 

snapshots into effects occurring at various times of incubation, even though being lower 

resolution methods compared to X-ray crystallography or NMR. In this work, HDX-MS was 

utilized to shed more light on the interaction of CDH with LPMO, on structural changes 

occurring on the proteins during protein catalysis on a native substrate and explain its low 

stability in reducing conditions. 
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 First step was the optimization of HDX protocol for these enzymes and exploring the 

interaction interface of LPMO and CDH, which was a matter of debate for some time. The 

main point of optimization was the selection of suitable protease for online digestion during 

LC-MS analysis and quench buffer composition, which both influence resulting sequence 

coverage. Mixed sample of deglycosylated Neurospora crassa LPMO9C (NcLPMO9C) and 

Neurospora crassa CDH (NcCDH-IIA) was analysed by LC-MS/MS after being processed 

as a standard HDX sample (with the difference of being dissolved in H2O based buffer 

instead of D2O) with different protease columns and varying composition of quench buffer 

used. Different Guanidine/Urea (denaturant) and TCEP (disulphide bond reduction) 

concentrations were tested. Final conditions with best sequence coverage were found to be 

a combination of immobilized Nepenthesin I and Rhizopuspepsin with a flow of 200 ul/min 

kept at 0 °C on a sample containing 4M Urea and 100 mM TCEP after quenching. 

 After the initial optimization, series of HDX-MS experiments utilizing mixtures of 

LPMO, CDH, cellobiose and cellulose were conducted, with the aim of detecting the 

interaction interfaces of CDH and LPMO during electron transfer from CDH to LPMO. Here 

several effects were observed, however none of them was clearly pointing to a defined 

interaction interface between CDH and LPMO. Quite encouragingly, weak signs of 

interaction under oxidized conditions when CDH and LPMO were mixed in the absence of 

substrate or reducing agents were found in the form of very decent structural relaxation 

around the LPMO’s active site. However, no signs of similar effect or protection was 

observed on CDH. As the functional state, in which CDH is reduced after oxidizing its 

substrate, is expected to promote more frequent protein-protein contacts between CDH and 

LPMO, the conditions with cellulose or lactose added were followed. Unfortunately, even 

repeated experiments found only profound structural effects on both CDH cofactors arising 

from their reduction and no reliable additional interaction interface could be discerned. 

Nevertheless, these effects indicated that interdomain electron transfer is occurring and FAD 

is being reduced influencing the local structure (Figure 10, page 38). On the LPMO side, no 

additional protection was observed either and quite contrary, extensive increase in 

deuteration together with protein degradation was detected, which was studied further in 

Publication I.   
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 Part of these results was utilized in Publication III which is discussed below and then 

concentrated on the structural dynamics of both enzymes separately. The CDH-LPMO cross-

talk was further studied by collaborators using computational approaches combined with 

mutagenesis and enzyme assays and was recently published in ACS Catalysis180. 

 The recent study published by Kádek et al. was also extended by a detailed analysis of 

wild-type and mutant CDH from Crassicarpon hotsonii. The mutations replaced four 

carboxylic residues on interdomain contact interface, which cause charge repulsion at higher 

pH in wild-type protein effectively eliminating IDET and thus enzyme activity, by lysine 

residues. This mutation causes shift in pH optimum and retained activity at higher pH. HDX-

MS experiments with both glycosylated and deglycosylated ChCDH were performed, 

showing that lower deuteration was present on interaction interfaces of the two domains 

when IDET was occurring, both in WT CDH at its optimal pH 5.4 and in the mutated 

“variant” CDH at pH 7.4, indicating domain contact. In samples of WT CDH at pH 5.4, only 

protection around the flavin cofactor was detected, pointing to the effect of reduction of DH 

domain without the effect of IDET. The hypothesis, that charge repulsion of the domains 

causes open-conformation state to be preferred and decreased IDET and enzyme activity, 

was thus confirmed. Interestingly, deglycosylated WT CDH also manifested some decrease 

in deuteration on the interaction interfaces indicating possibly retained activity at pH 7.4. 

Figure 10: Effect of reduction of CDH by cellobiose measured by HDX-MS. Protection 
from deuteration is apparent on the interaction interfaces of cytochrome and 
dehydrogenase domains. Black parts of the protein were not covered. 
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Since some of the glycosylation sites are close to the interaction interfaces of the two 

domains, this effect can be explained as some measure of interdomain contact regained even 

with charge repulsion, when steric hindrance caused by glycans is removed. These data are 

now being complemented with functional enzyme kinetic analyses and will form the basis 

of another publication. 

4.1.1. Publication I 
While studies on CDH-LPMO interaction at reducing conditions provided no decisive 

protein-protein interaction induced effects, massive increase in deuteration was detected for 

LPMO molecule at longer exchange times. It was hypothesized that this might be linked to 

previously suggested LPMO degradation by reactive oxygen species181, therefore analysis 

of LPMO in this direction was conducted. Structural changes induced in LPMO upon 

reduction by ascorbic acid and in presence of polysaccharide substrate as well as changes 

resulting from the removal of copper ion, were observed under different temperatures to 

capture the progress of changes, occurring at different rate in different parts of protein. 

 Reduction of LPMO visualized by HDX-MS revealed two distinct effects. First one was 

manifesting as decrease in deuteration on peptides around the copper active site occurring at 

the very short time points. This effect is presumed to be connected to structural changes 

caused by reduction of copper ion, as similar effect was observed previously using circular 

dichroism140. The second effect was an extensive increase in deuteration progressing with 

time, starting at peptides around the active site and progressing to the rest of the molecule. 

This effect is probably the result of structural perturbation and subsequent unfolding caused 

by oxidative damage by ROS produced at the active site. A number of oxidative 

modifications predominantly on peptides around the active site, including oxidative peptide 

cleavages (Figure 11, page 40), was identified using LC-MS/MS analysis after incubating 

LPMO at the conditions of the HDX experiment. Significant (up to 10-fold) decrease in 

intensities of unmodified forms of affected peptide ions was also observed during the 

incubation of LPMO with ascorbate in the HDX-MS experiment. 
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It was previously reported, that cellulosic substrate increases thermal stability of 

LPMO140. To further probe the effect of substrate on the stability of LPMO, another HDX-

MS experiment, now with increased temporal resolution, including LPMO with ascorbic 

acid and crystalline cellulose was performed (Figure 12, page 41). To remove the insoluble 

polysaccharide substrate from the reaction mixture before LC-MS analysis with as little 

hydrogen back exchange as possible, fast spin filtration step was added in-between 

quenching and freezing. This must be done thoroughly, since residue particles could clog 

and damage the HPLC-MS system with pressure sensitive protease column. As the sample 

is quenched by low-pH solution containing denaturants (0.5 M glycine pH 2.3, 4M Urea, 

200 mM TCEP), the release of proteins from cellulosic substrate is also facilitated.  The 

selection and testing of compatible spin filter chemistry was necessary as it was for example 

found that nylon based centrifugal filters leech a significant amount of contaminants to the 

sample and seriously affect the LC-MS analysis, which was later confirmed in the 

literature182. Polyvinylidene fluoride (PVDF) filters with pore diameter of 0.22 µM were 

found to be effective and inert and were used throughout the experiments. 

Figure 11. Monitoring kinetics of LPMO oxidative modifications by mass spectrometry. 
Extracted ion chromatograms for the N-terminal LPMO peptide (1–12) that contains His1 residue 
involved in copper ion binding. LPMO were incubated (A) alone for 30 min, or with 5 mM ascorbic 
acid for (B) 10 min, (C) 20 min, (D) 30 min. Subsequently, it was digested with Asp-N and analyzed 
by LC-MS/MS. Chromatographic traces show a signal for unmodified (green), oxidized (+O1; red) 
and oxidatively cleaved (−His, +C1O1-H2; black) peptides. Localization of the peptide and the 
His residue is shown on a structure in (E). Copper ion is shown as green ball. 
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 In these experiments with cellulosic substrate included, the increase in deuteration upon 

LPMO reduction manifested on the same peptides as without cellulose, however the 

presence of substrate slowed down the onset of deuteration increase globally. It seems that, 

that the presence of suitable amount of cellulose substrate limits the oxidative damage 

incurred by the enzyme by absorbing bulk of the radicals created. Similar results obtained 

Figure 12: HDX-MS experiment featuring LPMO, ascorbic acid and crystalline 
cellulose. Timepoints are 3, 5, 10, 15, 20, 25, 30, 35, 40 and 45 minutes and correspond 
to the colours starting at purple and ending with red according to sequence of colours 
in the visible light spectrum. 
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with a different methodology were reported during preparation of manuscript 139. 

 In order to dissect the contribution of different effects in the above described experiments, 

experiments with apo form of LPMO were conducted to address the stabilization of the 

overall fold by active site copper ion and the effects of its removal, as active site copper loss 

may occur upon oxidative damage. These experiments and recent publication, however, 

showed that the copper remains bound for tens of minutes even at elevated temperature 

showing strong affinity to the protein140. The absence of copper ion was found to lower the 

overall thermal stability of LPMO, with the strongest effect centred at peptides immediately 

surrounding the active site. It can be concluded, that active-site copper ion is largely 

influencing the active site conformation, which is in line with its reported strong binding 

affinity. Within this study, new workflow based on HDX-MS that can be further used to 

study the effects of various LPMO reducing agents and substrates as well as mutant versions 

of LPMO with enhanced stability or catalytic properties was introduced. 

4.1.2. Publication II 
Our next effort went into gaining more information about the nature of LPMO cosubstrate, 

more precisely to confirm, whether H2O2 reported recently143,154 is indeed a cosubstrate to 

LPMO or not, as the nature of the cosubstrate is currently a subject of heated discussion. 

Turbidimetry has been recently used to observe the cleavage of cellulosic substrate by 

LPMO183. During a stay in laboratory of Roland Ludwig in Vienna, this turbidimetric 

workflow was modified to a continuous measurement in a tempered spectrophotometer with 

a magnetic stirrer. In this way, it was possible to measure LPMO activity under various 

conditions in real time. While ascorbic acid is widely used as a reductant in LPMO activity 

assays, it also slowly produces H2O2. The activity of LPMO with an increasing concentration 

of ascorbic acid, all of which are presumed to be saturating, was examined. The increase in 

activity proportional to the amount of ascorbic acid present was observed and when catalase 

was also present, binding of LPMO to cellulose was retained (reduction dependant), but the 

cellulolytic activity was severely limited (Figure 13A, page 43). Interestingly, catalase also 

reduced LPMO activity when its natural redox partner CDH was employed as a reductant 

showing a role of H2O2 in native conditions. 



 

- 43 - 
 

 

 

  

 To test the LPMO activity upon addition of raw H2O2 into the reaction, glucose oxidase 

(GOX) was employed as a source of gradually generated H2O2 (Figure 13B). The activity 

was found to be proportional to the amount of GOX added and levelled off with very high 

amount of GOX. That is probably due to oxidative damage incurred by LPMO, as was 

observed in Publication I. There were some concerns, whether H2O2 doesn’t facilitate a 

different mechanism of action from O2-based cellulose degradation by LPMO. To verify that 

oxidative oligosaccharide products are indeed formed, MALDI-MS measurements of 

desalted reaction mixtures were performed on FT-ICR mass spectrometer in Prague. These 

have shown that oxidized oligosaccharides with the length of 3 to 6 are produced in larger 

quantity when H2O2 is added to the reaction. 

Electrochemical measurements of H2O2 consumption were also performed (Figure 4 – 

Publication II) and showed that H2O2 is only consumed when reduced LPMO is present in 

the reaction mixture and no consumption was detected with unreduced LPMO or with 

cellulosic substrate alone.  

  

Figure 13: Turbidimetry measurement of LPMO activity with various concentrations of 
ascorbic acid or GOX. A) Ascorbic acid addition. Time of addition of ascorbic acid is 
indicated by black arrow. Initial increase in absorbance is caused by binding of LPMO to the 
substrate. Gradual decrease of absorbance from that point corresponds to the activity of 
LPMO. Dashed lines represent identical reactions with the addition of 2000 U/ml catalase. 
B) GOX addition. Time of addition of GOX is indicated by black arrow. Reduction is 
facilitated by small amount (0.5 µM) CDH. 
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4.1.3. Publication III 
The focus of this work, currently under review in ASC Catalysis, is the investigation of the 

two electron transfer steps in Neurospora crassa CDH, interdomain electron transfer (IDET) 

between CYT domain and DH domain and interprotein electron transfer (IPET) from CYT 

domain to the final electron acceptor. The driving force of IDET is the redox potential 

between heme b of the CYT domain and FAD of DH domain. High variability observed in 

CYT domains and linkers compared to DH domains in various CDH proteins suggested an 

evolutionary adaptation to various redox partners with the universal DH domain electron 

source. To study the effect of various CYT domains and linkers on IDET and IPET, chimeric 

proteins consisting of various swapped domains from NcCDHIIA and NcCDHIIB were 

produced and their properties were analysed electrochemically, by molecular docking.  

 Kinetic measurements showed, that there are differences in presteady-state reduction 

rates of FAD by cellobiose between the different DH domains, but no additional effect was 

observed by CYT domain swapping. Chimeric CDH proteins showed shifted pH optimum 

(Figure 15) and reduced IDET rates and modelling of domain contact showed that domain 

edge-to-edge distance is the key factor in effective IDET, and low-surface complementarity 

and longer linker causes the protein to prefer open conformation with domains further apart. 

Thus, it can be concluded, that the rate of IDET is less dependent on electrochemical 

potential between the cofactors and more dependent on the structural dynamics of respective 

CYT and DH domains. 

 

Figure 15: Effects of domain swapping on IDET. A, pH optima of cytochrome c turnover 
numbers for wild-type and chimeric CDHs with DH domain from NcCDHIIA. B, pH optima 
of cytochrome c turnover numbers for wild-type and chimeric CDHs with DH domain from 
NcCDHIIB. 
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 Data from previous HDX-MS measurements of the interaction of non-chimeric 

NcCDHIIA with NcLPMO9C was utilized in this study and it shows (Figure 16), that the 

interaction is only affecting peptides in the vicinity of the active site, disproving previous 

theory of interaction occurring on the opposite side of the protein on a conserved129.   

  

Measurement of the IPET rate between WT and chimeric CDH and NcLPMO9C was also 

performed and showed that just as for IDET, the rate determining step for IPET is not the 

redox potential difference between LPMO and CYT, but rather the rate at which CDH forms 

the open conformation with reduced CYT ready to transfer electrons to the acceptor as 

chimeric CDH proteins more prone to being in the open conformation showed higher IPET 

rates over wild-type CDHs. 

 

4.1.4. Summary of LPMO and CDH studies 
From all the results obtained in Publication I, II and III it can be concluded, that H2O2 is 

indeed needed for the cellulose breakdown by LPMO to occur and O2, previously thought 

as being prime cosubstrate of LPMO, is probably just an intermediate, that needs to be first 

reduced to H2O2 to be utilized by LPMO. Probable mechanism of such LPMO reaction was 

published very recently139,148,155 and correlates well with findings both from Publication I 

and Publication II. According to this mechanism, LPMO is first reduced in a “priming 

reduction”. Reduced LPMO is able to bind both O2 and H2O2. When O2 is bound by reduced 

Figure 16: HDX-MS of interaction of NcCDHIIA and NcLPMO9C. The interaction was 
observed in oxidized state due to protein degradation occurring in reducing conditions. 
Structural perturbance was detected on the LPMO in the vicinity of the active site copper ion, 
indicating direct contact of active sites of CDH and LPMO. No other effect was observed 
anywhere on the protein. 
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LPMO, it is transformed to H2O2 and released while LPMO is oxidized during and unable 

to further utilize it. Another reduced LPMO molecule can, however, bind this H2O2 and 

break it down to form hydroxyl radicals (OH•) in the same manner as was demonstrated 

before for proteins and solutions containing copper ions184,185. When these hydroxyl radicals 

are formed on LPMO bound to cellulosic substrate, they attack nearby glycosidic bond and 

facilitate oxidative cellulose breakdown. When these radicals are formed on LPMO not 

bound to substrate, they react with the enzyme itself, causing oxidative damage and 

inactivation, both by oxidizing key amino acid side chains facilitating substrate binding139, 

and by causing oxidative peptide bond cleavages (Figure 5, Publication I). For effective 

industrial utilization of LPMO, it is therefore crucial to carefully maintain saturation of 

LPMO with substrate to eliminate futile side reaction causing protein degradation, while 

keeping suitable amount of H2O2 present to increase the rate of cellulose breakdown in 

comparison to only using O2.  

 Results from Publication III then show, that main factors influencing both the IDET and 

IPET are relative domain flexibility and domain surface complementarity, as CDH variants 

with longer linkers and lower surface complementarity show increased IPET rate at the 

expense of IDET rate and vice-versa. The recent data on the mutant version of CDH (not 

published yet) showed way toward enzyme that can exert its electron transfer activity even 

at physiological pH and that it functions more efficiently if the aberrant hyperglycosylation 

is removed. Therefore, there are now experiments underway aiming at the production of 

these enzymes in other producing cells than Pichia. 

 These findings show, how the function of CDH depends on its structure and its dynamics 

and are important for engineering of CDH proteins with desired characteristics for biosensor 

production or industrial cellulose saccharification. 

4.2.   Study of oxidative processes on AsLOV2 
LOV2 domain from Avena sativa phototropin 1 protein (AsLOV2) is a photosensitizer 

containing FMN and producing reactive singlet oxygen (1O2) upon light irradiation. It has 

been found for similar photosensitizer miniSOG (80% primary structure identity), that 

continuous irradiation gradually increases the quantum yield of 1O2 production, while 

causing oxidative modification of amino acid residues surrounding the FMN. The increase 

in quantum yield is however not fully explained. Study of this gradual quantum yield 
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increase was thus conducted with AsLOV2 as model protein. This work was done in 

collaboration with the group of assoc. prof. Erik Sedlák from the Center for Interdisciplinary 

Biosciences in Košice. 

4.2.1. Publication IV 
To study the production of 1O2 by AsLOV2, wild-type and variant with conserved active-

site cysteine C450 replaced by alanine, resulting in limited photoswitching ability and 

presumably higher flavin radical generation, was used.  

 The measurement of 1O2 phosphorescence showed gradual increase in 1O2 production 

upon irradiation of both AsLOV2 wt and AsLOV2 C450A. Complementary measurement of 

FMN fluorescence then showed both shift in wavelength and increase in fluorescence upon 

protein irradiation indicating release of FMN from the protein to the solution. This effect 

was more prominent in wild-type protein, with ~1.6-fold increase in FMN fluorescence 

Table 2: List of oxidation products and their extent of oxidation (intensity of oxidatively modified 
peptide) in all studied protein forms – wild-type (wt) and C450A (mut) before (N) and after (I) 
irradiation. Column Mod shows the elemental composition of the modification (oxidation: +O1, 
+O2 or +O3; Trp to kynurenine: -C1+O1; Pro to pyrrolidone: -C1O1). When it was not possible 
to clearly assign oxidation to one specific residue, two possibly affected residues are listed in the 
first column. The last column highlights the fold change in oxidation between C450A and wt forms. 
In case of C450 oxidation (marked in the last column with an asterisk) such comparisons were not 
possible due to generation of different peptides upon oxidation and due to mutation. The intensity of 
oxidized form was indirectly deduced from intensity decrease of the intact, unoxidized Asp-N 
generated peptide. 
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detected for AsLOV2 C450A variant and ~2.6-fold increase detected for AsLOV2 wt. Since 

the protein matrix surrounding the FMN decreases the quantum yield of FMN 1O2 production 

by quenching the excited triplet state of FMN and restricting the oxygen diffusion to the 

isoalloxazine ring, release of FMN from the protein would explain the increased 1O2 

production detected by 1O2 phosphorescence. To help explain the release of FMN from the 

protein, both bottom-up (Table 2) and top-down (Figure 17) mass spectrometry was 

employed to analyse structural changes to AsLOV2 wt and AsLOV2 C450A variant upon 

irradiation. A range of oxidative modifications was found on the protein with more extensive 

modification globally was detected in AsLOV2 wt protein, with highest increase in mutant 

form concentrated in the area close to the FMN (F452, P456). Cystein 450 of AsLOV2 wt 

was also found to be extensively oxidized upon irradiation, but the extent of modification 

could not be compared as it is missing in the mutant form. Overall, the same residues are 

generally modified in both AsLOV2 wt and AsLOV2 C450A, with the AsLOV2 C450A 

having higher extent of oxidation.  

Figure 17: Analysis of intact proteins by nESI-FT-ICR MS. A – from top to bottom - broad 
band spectra of wild-type AsLOV2 before (black) and after (red) irradiation and of C450A 
form before (blue) and after (green) irradiation. Panel B with zoom on the charge state 19+ 
demonstrates much higher modification extent in the C450A variant than in the wild-type 
AsLOV2.  
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 Overall, the results point to a higher release of FMN from AsLOV2 wt upon irradiation, 

which increases the overall production of 1O2 over time. Seemingly contrary to the increase 

in ROS generated, higher extent of oxidation was detected in C450A form. However, while 

free FMN in solution shows higher quantum yield, the FMN retained on protein in C450A 

generates radicals located directly next to the detected modified residues which could 

increase their extent of oxidation. Simulation of the modification of C450 then shows, that 

transformation of -SH functional group to -SO2 which was detected in wt protein by mass 

spectrometry, creates sterical clash, that forces the FMN out of the protein (Figure 18). This 

explains the lower release of FMN to the solution in mutant form, where this cysteine is 

missing.  

These details of AsLOV2 1O2 production and release of FMN to the solution may be 

utilized to design more efficient genetically encoded photosensitizers based on LOV 

domains. The addition of suitable oxidizable amino acids like methionine or cysteine close 

to the FMN can facilitate its release upon irradiation, while the protein scaffold can be 

modified to target specific tissues or cells for photodynamic therapy. 

 

  

Figure 18: A) Superposition of PDB ID: 2w0u (FMN with green carbons) and PDB ID: 2v0w 
(FMN bound to Cys450 with grey-coloured carbons). B) -SH to -SO2

– substitution in C450 
with marked atomic clash of the generated structure. 
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   Summary  
 

The goal of this thesis was to contribute to the research of medicinally and 

biotechnologically important enzymes using methods of structural mass spectrometry. 

Following results, included in three publications and two manuscripts, were obtained during 

the study of fungal cellulolytic enzymes lytic polysaccharide monooxygenase and cellobiose 

dehydrogenase and natural photosensitizer AsLOV2: 

 
• Structural changes to NcLPMO9c during its catalysis, namely reduction of its active 

site copper ion and subsequent degradation, were observed using HDX-MS 

• Primary cause of the loss of activity and degradation of NcLPMO9c during catalysis 

was identified as oxidative modification and peptide bond cleavage using standard 

proteomics and peptide intensity observation during HDX-MS 

• Protective effect of substrate on NcLPMO9c was detected using HDX-MS in 

heterogenous mixture of NcLPMO9c and crystalline cellulose 

• Hydrogen peroxide was confirmed as a cosubstrate to NcLPMO9c using 

turbidimetric and chronoamperometric measurements of reaction mixtures 

containing NcLPMO9c, phosphoric acid swollen cellulose and various hydrogen 

peroxide generation systems, as all reaction were inhibited by catalase and activity 

was proportional to the amount of hydrogen peroxide added 

• The rate of IDET and IPET in CDH was found to be strongly dependant on relative 

movement of CYT and DH domains of CDH and their structural complementarity. 

CDHs with less compatible domain interaction interfaces and longer linker resulting 

in higher preference for open conformation show higher IPET and lower IDET rates 

and vice versa. 

• Oxidative modification of C450 in AsLOV2 was found to be responsible for release 

of FMN to the solution upon extended protein irradiation, causing increase in the 

production of singlet oxygen  
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Abstract: Lytic polysaccharide monooxygenases (LPMOs) are industrially important 
oxidoreductases employed in lignocellulose saccharification. Using advanced time-resolved mass 
spectrometric techniques, we elucidated the structural determinants for substrate-mediated 
stabilization of the fungal LPMO9C from Neurospora crassa during catalysis. LPMOs require a 
reduction in the active-site copper for catalytic activity. We show that copper reduction in 
NcLPMO9C leads to structural rearrangements and compaction around the active site. However, 
longer exposure to the reducing agent ascorbic acid also initiated an uncoupling reaction of the 
bound oxygen species, leading to oxidative damage, partial unfolding, and even fragmentation of 
NcLPMO9C. Interestingly, no changes in the hydrogen/deuterium exchange rate were detected 
upon incubation of oxidized or reduced LPMO with crystalline cellulose, indicating that the LPMO-
substrate interactions are mainly side-chain mediated and neither affect intraprotein hydrogen 
bonding nor induce significant shielding of the protein surface. On the other hand, we observed a 
protective effect of the substrate, which slowed down the autooxidative damage induced by the 
uncoupling reaction. These observations further complement the picture of structural changes 
during LPMO catalysis. 

Keywords: lytic polysaccharide monooxygenase; lignocellulose degradation; hydrogen/deuterium 
exchange mass spectrometry; oxidative amino acid modification; peptide bond cleavage; reactive 
oxygen species 

 

1. Introduction 

Plant-biomass is a major source of renewable energy in the form of biofuels and bio-produced 
chemicals, but the recalcitrance of lignocellulose is a major obstacle to cost-effective saccharification. 
Fungal copper-dependent lytic polysaccharide monooxygenases (LPMOs, EC 1.14.99.53, - 56) have 
been found to boost the overall effectiveness of lignocellulolytic secretomes in the decomposition of 
insoluble recalcitrant polysaccharide structures [1]. Initially described in bacteria in 2010 [2], LPMOs 
have since been identified in fungi and insects and have been classified by the curators of the 
carbohydrate-active enzyme (CAZy) database (www.cazy.org) into several auxiliary activity (AA) 
families [3]. Fungal LPMOs have so far been classified as AA9 (activity on soluble and insoluble beta-
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glucans), AA11 (chitin-active), AA13 (starch-active) [4], AA14 (xylan-active) [5], AA15, and AA16 [6]. 
LPMOs differ from common endo- and exo-glycosyl hydrolases by employing an oxidative 
mechanism to cleave glycosidic bonds in polysaccharides, such as cellulose, hemicellulose, starch or 
chitin, to produce access points for exo-acting hydrolases. After prolonged incubation, they also 
release soluble oligosaccharide products [7–10]. The ability to cleave polymers is enabled by a 
characteristic, flat binding-site consisting of aromatic and hydrophilic amino acids for the interaction 
with sugar moieties. An exposed active-site copper is held in place by a conserved, “histidine brace” 
motif [11–13]. These structural features enable LPMOs to attack polysaccharide surfaces inaccessible 
to hydrolases [13,14]. 

The catalytic mechanism of LPMOs is still under investigation, but several cornerstones of 
LPMO catalysis have been elucidated. The first step in the catalytic cycle is the reduction of the Cu(II) 
in the catalytic site to Cu(I), either by small molecular reductants [15–17], such as ascorbic acid (Asc) 
or gallic acid or by the fungal redox enzyme cellobiose dehydrogenase (CDH) [18]. CDH most likely 
requires the dissociation of LPMO from the substrate in order to contact the otherwise buried copper 
center of LPMO [19]. The reduction of the copper ion is also accompanied by a conformational change 
in LPMO, as was observed by using NMR [20] or electronic circular dichroism [21], and it also 
increases the affinity to its carbohydrate substrate [21,22]. As co-substrate for the LPMO reaction, 
either O2 [23] or H2O2 [24] have been suggested. Whether the binding and reduction in an oxygen 
species happen preferentially in the free or substrate-bound state is not settled, but a recent 
publication suggests that hydrogen peroxide can access the active side of substrate-bound LPMO 
[25]. The catalytically competent LPMO abstracts hydrogens from its polysaccharide substrate and 
thereby breaks the glycosidic bond [23,26,27]. Oxidation on both C1 and C4 positions of the 
polysaccharide substrate was reported, with different resulting products. C1 oxidation leads to the 
formation of a lactone which spontaneously hydrolyzes into gluconic acid, while C4 oxidation forms 
a C4 ketone that hydrolyzes into a gemdiol in aqueous solution [7,27,28]. Several studies have shown 
that H2O2 increased the reaction rate relative to O2 by an order of magnitude [24,29,30] while the 
measured affinity of LPMO for H2O2 was in the micromolar range [24,29]. The proposed reaction 
mechanism based on H2O2 as cosubstrate would also require only one electron to initiate the catalytic 
reaction, which aligns well with CDH’s capability of transferring single electrons via its cytochrome 
domain. Several studies reported that the presence of H2O2-scavengers, such as peroxidase or 
catalase, inhibited the LPMO reaction, which implies that H2O2 is required for the LPMO reaction 
[21,24,30]. By providing a mix of different H2O2 and O2 isotopes, Bissaro et al. showed that the oxygen 
atom inserted into the LPMO reaction products originated from the H2O2 [24]. A recent paper showed 
that potentially both O2 and H2O2 can serve as co-substrates for LPMO, resulting in polysaccharide 
oxidative cleavage, but concluded that different molecular mechanisms are probably employed [30]. 

LPMOs were reported to be notoriously unstable under non-optimal reaction conditions. 
Especially, the observed higher catalytic rates in the presence of H2O2 were accompanied by a rapid 
inactivation of LPMO [30]. Employing LPMO in a commercial cellulase cocktail using industrially 
relevant substrates, therefore, requires fine-tuning of the reaction rate by controlling the H2O2 supply 
[31]. The observed instability was mainly attributed to autoxidative damage caused by oxygen 
radicals released from the active site, which lead to the oxidation of amino acids surrounding and 
forming the active site of LPMO [21,24,32]. The apparent Tm of the fungal LPMO9C from Neurospora 
crassa decreased from 61.5 ± 0.4 °C to 48.8 ± 1.1 °C when the active site copper was reduced by Asc. 
Under these conditions, H2O2 accumulates via the oxidation of O2 by Asc [33,34]. In addition, the 
reduced LPMO may also generate low amounts of H2O2 through an uncoupling reaction [35]. In the 
presence of suitable substrates, however, the apparent Tm of NcLPMO9C remained relatively 
unchanged at 60.4 ± 0.5 °C [21]. The stabilization of reduced LPMO by the substrate can be explained 
by the prevention of freely diffusing oxygen radicals due to the catalytic reaction [36], which may 
also consume the generated H2O2. 

In addition to autooxidative damage, another form of destabilization was observed upon 
removal of the active site copper, e.g., by incubation of LPMO with an excess of the metal chelator - 
ethylenediaminetetraacetic acid (EDTA) [21,37]. Several studies showed reduced temperature 
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stability of copper-depleted LPMOs [21,38]. For example, removal of copper reduced the apparent 
Tm of NcLPMO9C from 61.5 to 52.7 °C [21], which indicates that the histidine brace motif and the 
presence of the copper ion stabilize the overall protein fold. The thermal stability of the apoenzyme 
was unaffected by the presence of reducing agents and substrates, showing that an intact active site 
is required for substrate recognition and catalysis. While it is possible that the loss of the active-site 
copper ion contributes to the initial LPMO destabilization following active-site reduction and 
subsequent oxidation, it was demonstrated that the vast majority of LPMO molecules retained the 
copper ion upon unfolding. 

In this work, we study the destabilizing effect of reducing agent and copper ion removal on 
NcLPMO9C in temporal and structural detail by hydrogen/deuterium exchange mass spectrometry 
(HDX-MS). We also investigate the stabilizing effect of carbohydrate substrates during catalysis. The 
employed HDX-MS methods are well suited for the detection of structural changes involving the 
rearrangement of hydrogen bonds and changes in solvent accessibility in proteins, and they allow 
studying heterogeneous reactions with insoluble components, as long as they can be quickly removed 
before MS analysis. This is crucial for studying LPMOs, as their typical natural substrates, e.g., 
cellulose, are inherently insoluble. We observed a significant increase in peptide solvent accessibility 
throughout the LPMO molecule when incubated with a reducing agent, starting at peptides close to 
the copper ion active site and then propagating further. This effect was found to be slowed down in 
the presence of cellulose. Removal of the active site copper ion caused a temperature-induced 
unfolding beginning at lower temperatures, which affected the histidine brace peptides first and then 
propagated to the rest of the molecule upon longer incubation times. 

Thus far, amino acid modifications resulting from autooxidative damage of LPMOs have only 
been reported in bacterial LPMOs [24]. We, therefore, aimed to verify that the same modifications 
occur in fungal LPMOs. Using LC-MS/MS analysis, we show that various oxidative alterations of 
peptides located around the copper active site occurred in a fungal LPMO. Oxidative peptide bond 
cleavages and, thus, direct degradation of the protein was detected for the first time in a fungal 
LPMO. The peptide signal intensity observed in our HDX-MS experiments provides a measure of the 
given peptide abundance. We observed a decrease in the intensity for unmodified peptides located 
in the vicinity of the active-site, indicating their cleavage or modification. 

2. Materials and Methods 

2.1. Protein Samples 

Expression and purification of Neurospora crassa LPMO9C (NcLPMO9C) were performed 
according to a published protocol [35]. NcLPMO9C was recombinantly expressed in Pichia pastoris X-
33 cells under control of the methanol-dependent alcohol oxidase (AOX) promoter and 
chromatographically purified to homogeneity. Specific activity of 5.50 U g−1 was determined by using 
the Amplex Red assay [35], with the total protein concentration being determined by the Bradford 
protein assay. This value is close to the reported specific activity of NcLPMO9C of 5.57 U g−1 [35]. 

2.2. Hydrogen/Deuterium Exchange Mass Spectrometry (HDX-MS) 

NcLPMO9C (“holo”, 2 µM) or NcLPMO9C copper-depleted by overnight incubation with 10 
mM EDTA (“apo”, 2 µM) was pre-incubated at 35, 50, or 65 °C in 50 mM sodium acetate buffer, pH 
6.0. Dilution into D2O deuteration buffer (50 mM sodium acetate, pD 6.0) was done 10-fold, and 
aliquots containing 100 pmol of NcLPMO9C were removed at different time points. Deuteration of 
NcLPMO9C alone or in the presence of 5 mM Asc, 4 mg mL−1 microcrystalline cellulose, or both Asc 
and microcrystalline cellulose was performed. These additives were added to the deuteration buffer 
prior to mixing with the LPMO sample. The microcrystalline cellulose was centrifuged and washed 
several times with a deuterated buffer to remove H2O and soluble oligosaccharides prior to use. 
Deuterium exchange in aliquoted samples was immediately stopped by mixing the sample 1:1 with 
quenching solution (200 mM tris (2-carboxyethyl) phosphine (TCEP), 8 M urea, 1 M glycine, pH 2.3). 
The sample was subsequently flash-filtered for 20 s using spin filter tubes (Ultrafree-MC GV, 
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polyvinylidene fluoride (PVDF) 0.22 µm, Merck, Darmstadt, Germany) to remove insoluble cellulose 
fibers and then rapidly frozen in liquid nitrogen. Sampling, filtering, and freezing took precisely 90 s 
for every sample. For the peptide mapping of non-deuterated control samples, the same protocol was 
used with the difference of using H2O-based buffer instead of a D2O-based buffer. 

2.3. HPLC/ESI-FT-ICR-MS Analysis of HDX Samples 

Samples were stored at −80 °C, quickly thawed before the LC-MS analysis, and then injected into 
an in-house build LC system maintained at a stable temperature of 0 °C to minimize the deuterium 
back-exchange. The digestion took place on columns with immobilized proteases (rhizopuspepsin, 
nepenthesin I, made in-house [39,40]) using 0.4% formic acid (FA) in water as an eluent at a flow-rate 
of 200 µL min−1 (LC-20AD HPLC pump, Shimadzu, Tokyo, Japan). The resulting peptides were 
subsequently trapped and desalted on a peptide microtrap (Optimize Technologies, Oregon City, 
OR, USA). The whole digestion and desalting procedure took precisely 3 min. Desalted peptides were 
eluted with an acetonitrile gradient (HPLC system Agilent 1200, Agilent Technologies, Waldbronn, 
Germany) on a reversed-phase analytical column (ZORBAX 300SB-C18, 0.5 × 35 mm, 3.5 µm, Agilent 
Technologies, Waldbronn, Germany) where they were further separated. The eluting gradient from 
5–35% B lasted for 5 min and was followed by a quick change to 95% B and subsequent column re-
equilibration. Solvents were A: 0.4% FA, 2% acetonitrile (ACN) in water, and B: 0.4% FA, 95% ACN 
in water. The flow through the column was kept at 20 µL min−1. The column was interfaced with an 
electrospray ionization (ESI) source of the Fourier transform ion cyclotron resonance mass 
spectrometer (15T-solariX XR FT-ICR, Bruker Daltonics, Bremen, Germany). Peptide mapping was 
performed in a positive data-dependent MS/MS broadband mode, where each MS scan was followed 
by six MS/MS scans of the most abundant peptides found in the previous MS scan, which underwent 
collision-induced fragmentation. Deuterated samples were analyzed in the LC-MS mode. 

2.4. Oxidative Modification Analysis 

NcLPMO9C was incubated at 50 °C in 50 mM sodium acetate buffer, pH 6.0, alone, or in 
combination with 5 mM Asc. Samples were taken in 10-min intervals for up to 30 min. The reaction 
was stopped by the addition of EDTA (10 mM final concentration) to chelate LPMO’s copper ion. 
Methionine (25 mM final concentration) was added to scavenge existing ROS. Protein samples were 
digested using trypsin or AspN proteases after pH adjustment to 8.8 with TRIS buffer (80 mM final 
concentration). Trypsin was added in a 1:100 ratio (protease:LPMO; w:w), AspN was added in a 1:300 
ratio (protease:LPMO; w:w). Disulfide bonds in the samples were reduced by a 30-min incubation 
with 5 mM TCEP and alkylated by a 30 min incubation with 10 mM iodoacetamide in the dark at 22 
°C. The pH of the samples was adjusted to acidic pH (< 2) by adding 4% trifluoroacetic acid (TFA) to 
stop the protease reaction. Subsequently, the samples were analyzed using HPLC/ESI-FT-ICR-MS 
using binding and elution solutions A and B (A: 0.1% FA, 2% ACN in water, B: 0.1% FA, 95% ACN 
in water) at a constant flow rate of 10 µL min−1, with online desalting on a reversed-phase trap column 
(ZORBAX 300SB-C18 5 µm, 0.3 × 5 mm, Agilent Technologies, Santa Clara, CA, USA), separation on 
an analytical column (ZORBAX 300SB-C18, 0.3 × 150 mm, 3.5 µm, Agilent Technologies, Santa Clara, 
CA, USA ) and elution during a 15 min linear gradient to 25% solution B. 

2.5. Data Processing 

Obtained LC-MS/MS data were processed by DataAnalysis 4.1 (Bruker Daltonics, Billerica, MA, 
USA) and then searched by MASCOT (Matrix Science, London, UK) in ProteinScape 4 (Bruker 
Daltonics, Billerica, MA, USA) against a database containing the NcLPMO9C sequence as well as 
sequences of rhizopuspepsin and nepenthesin-1 as false positives/controls. Data processing 
combined approaches described previously [41,42]. For HDX-MS peptide mapping the no-enzyme 
search with no modification included was performed. Two search rounds were done—one with 
precursor and fragment accuracies 3 ppm and 0.05 Da, respectively. Another one, where the parent 
ion mass accuracy window was wider—1000 ppm and the results with errors above 3 ppm were 
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discarded. Hits with ion scores below 20 were checked manually for fragment ion assignments and 
also for mass uniqueness within the NcLPMO9c sequence and for isotope pattern fit. Oxidation data 
were also searched with multiple rounds of searches. PEAKS algorithm (Bioinformatics Solutions, 
Waterloo, ON, Canada) was used first to asses all possible modifications and then the data were re-
searched using MASCOT. Here, the search employed small errors (3 ppm and 0.05 Da for precursor 
and fragments, respectively) and enzyme specificity (trypsin or Asp-N). Cys carbamidomethylation 
was set as fixed modification. Variable modifications were selected on the basis of PEAKS searches 
and included: single (+15.995) and double (+31.999) oxidation of Met, Trp, His, Tyr, Pro; His->Asp 
oxidative breakdown (− 22.032); oxidative peptide bond cleavage (−0.985/+25.979). All assignments 
were verified manually to double-check the site of oxidation. Protein purity was assessed by 
searching the LC-MS/MS from HDX-MS mapping and unmodified samples from oxidation analysis 
against NCBInr database. HDX-MS data were plotted using the DrawMap script, part of MSTools 
[43]. LC-MS HDX data were processed by using the in-house software DeutEx (unpublished). 
Deuteration levels of individual peptides at each time point were calculated. Peptides with 
overlapping regions were used to calculate the number of exchanged deuterium atoms to increase 
spatial resolution. This software was also used to calculate the peptide abundance changes as changes 
in MS intensity under various conditions. Data were modeled on the known crystal structure of the 
catalytic domain of NcLPMO9C [44]. 

3. Results 

A recent report from Kracher et al. described the interaction of the fungal NcLPMO9C with 
various substrates, the enhancement of substrate binding upon active-site copper reduction, and the 
protective/stabilizing role of substrates on LPMO under reducing conditions. Spectroscopic 
techniques, such as circular dichroism, indicated conformational changes in the LPMO upon active-
site copper reduction and copper depletion but did not provide insight into the structural details of 
the various NcLPMO9C states [38,45]. In order to gain accurate structurally resolved answers 
underlying these phenomena, we performed a systematic hydrogen/deuterium (H/D) exchange 
study, which allowed us to extend the previous conclusions. 

In the first step, we optimized the HDX-MS workflow, which included tuning of digestion 
conditions and rapid separation of proteins from the insoluble substrate during the post-labeling 
step. In our previous studies, which focused on cellobiose dehydrogenase, an enzyme closely 
cooperating with LPMO during the cellulolytic activity, we showed that strong reducing and 
denaturing conditions are required for efficient digestion. As these enzymes are adapted to a harsh 
extracellular environment, it is not surprising that LPMO digestion required denaturation. However, 
in contrast to the previously used guanidine hydrochloride, we switched to urea, which provided 
similar sequence coverage but avoided adverse effects on LC analysis. In addition, from the studies 
published so far, it is evident that in contrast to guanidine hydrochloride, even a high concentration 
of urea has much less deleterious or even enhancing effects on the protease activity [46–48]. We also 
tested various proteolytic setups (protease columns, flow rates) with serial coupling of nepenthesin-
1 and rhizopuspepsin columns operated at 200 µL min−1, providing the best sequence coverage and 
spatial resolution. Finally, we had to cope with the heterogeneous, insoluble substrate 
(microcrystalline cellulose) present in the sample. We found the use of 0.45 µm spin filters as an 
optimal solution, adding approximately 50 s to the sample processing time while ensuring complete 
removal of insoluble matter. The harsh denaturing conditions also prevented possible adherence of 
LPMO to the substrate via its interaction surface and/or carbohydrate-binding module (CBM). The 
additional post-quench time of 90 s was also required to achieve the reduction in the disulfide bonds 
in NcLPMO9C. We observed that raising the TCEP concentration or prolonging the incubation time 
did not lead to more efficient digestion and, therefore, we used the lowest possible TCEP 
concentration and reduction time. As a result, we fully covered the catalytic domain (except for 
residues 41–44) and the CBM. The linker peptide connecting the catalytic domain to the CBM 
(residues 225–309) could not be resolved due to its high and heterogeneous O-glycosylation (Figure 
S1). 
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With the optimized workflow, we performed an initial set of HDX-MS measurements in which 
we focused on several factors. First, building upon the data from Kracher et al., we looked at the effect 
of high temperature on the free, oxidized LPMO and its apo form prepared by EDTA treatment. Here, 
the exchange was followed at 35, 50, and 65 °C, and the HDX kinetics covered time points at 0.33, 2, 
20, 120, and 360 min. A summary of selected HDX data is provided in the protection plots in Figure 
1. While this presentation focuses on the catalytic domain and representative exchange times only, 
we provide full data covering the whole LPMO sequence, including the CBM and all exchange times 
in the form of mirror plots (Figure S2) [43]. Peptides in mirror plots are represented on the X-axis by 
their “midpoint” value, which is calculated as an average value between the N- and C- terminal 
residue sequence position of a given peptide and thus allows for easy and reproducible sorting of the 
overlapping peptides generated and analyzed in the HDX-MS experiment. 

Figure 1. Selected hydrogen/deuterium (H/D) exchange kinetic profiles of holo- and apo-NcLPMO9C 
at three different temperatures. Protection plots showing deuteration of NcLPMO9C apo- (red tones) 
and holoenzyme (blue tones) at (A) 35 °C, (B) 50 °C, and (C) 65 °C and at two exchange times of 20 s 
(dark colors) and 2 h (light colors). Secondary structure elements and positions of loops are shown on 
the top of each graph. Shaded boxes illustrate gaps in the sequence coverage. The visualization covers 
the catalytic domain and part of the linker connecting the catalytic domain to the CBM. Asterisk 
denotes positions of the histidine brace residues (His1, His88, and Tyr166). 

Since we observed no difference induced by cofactor absence or active site copper reduction at 
the CBM (Figure S2) and we missed a large part of the linker, we avoided these structural features in 
Figures 1 and 2. It should be stressed that the intrinsic exchange rate was influenced by the 
temperature and, thus, the data acquired at different temperatures are not directly comparable. We, 
therefore, plotted these data separately (Figure 1A–C). However, normalization using correction 
factors calculated based on the Arrhenius equation can be applied to compensate for the different 
exchange rates. The exchange rate at 50 °C was multiplied by a factor of 3.628 and those at 65 °C by 
11.739, which led to normalization to the lowest temperature of the dataset (35 °C). How this affects 
the data interpretation is shown in several selected deuterium uptake curves (Figure S3). From these 
graphs, it can be inferred that the deuterium uptake curves of the LPMO holoenzyme obtained at 35 
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°C and at 50 °C were either fully or partially overlapping for the whole protein and differences 
between these two temperatures could be seen only after longer exchange times ( > 20 min). The main 
differences were observed in peptides covering the histidine brace residues (His1, His88, and Tyr166) 
or the closely neighboring regions. This shows that even at 50 °C, the structural integrity of 
NcLPMO9C was well preserved, and only weak destabilization occurred around the active site. In 
contrast, at 65 °C, the majority of the uptake curves had a much steeper slope, reaching equilibrium 
deuteration already after 2 min of exchange, except for unstructured and freely accessible regions 
(regions/peptides 92–104, 174–185, 201–224. and the CBM: 310–343). These observations clearly show 
that structural destabilization at 65 °C was strongly accelerated when compared with the lower 
temperatures. These trends were further amplified (Figure S2) when the copper was removed from 
the active site using EDTA treatment. When incubating the apoprotein at 35 °C, the LPMO was 
slightly perturbed around the active site as the deuteration increase could be observed for the 
peptides covering the copper-binding residues (Figures 1A and S3). Interestingly, virtually no 
difference was detected for the region around Tyr166 (see peptides 152–165 and 166–173 in Figure 
S3—black and grey curves). The importance of the copper ion on the overall structure stabilization is 
demonstrated by a significant structure opening at elevated temperatures. At 50 °C, the apo-protein 
was much more accessible for deuteration (Figures 1B and S3), and this was further enhanced at the 
highest temperature monitored (65 °C) where the protein was readily deuterated even after 20 s of 
deuteration (Figures 1C, S2C, and S3). To position these effects onto the structure, we colored the 
LPMO structure using the difference in HDX between the apo- and holoenzyme (Figure S4), which 
illustrates the destabilization of the protein core upon copper ion removal. 

Next, we performed HDX experiments targeting effects induced by ascorbic acid (Asc). To allow 
for time-resolved analysis of the effect of LPMO reduction, we added Asc at the same time when the 
deuteration was started. To be able to compare the results to holo- and apo-form experiments, the 
reduction by Asc was also followed at three different temperatures (35, 50, and 65 °C). Key data are 
shown in the form of protection plots in Figure 2, while the whole dataset was visualized using mirror 
plots (Figure S5). The most obvious change observed at 35 °C was a generally higher deuteration of 
the reduced LPMO at longer incubation times (> 2 h, Figure 2A—the lightest colors). This was 
observed for peptides covering β1 (including the N-terminus with His1), loop L2, β2, β3-α2 linker (in 
L3), β5, α3 in LS, β6, β7, β8 (including Tyr166), and the middle part of loop LC. Interestingly, no such 
effects were detected for peptides covering the third His brace residue, His83. The protection plots 
showed that the peptides covering His83 were slightly less deuterated in the presence of Asc and at 
longer incubation times. Besides the above-described effects detected at longer time scales (> 2 h), 
there were also indications of lower deuteration of the reduced enzyme at earlier time points (Figure 
2A-light and dark colors). However, these differences were small and cannot be considered as 
significant without further supporting observations. Such additional validation was obtained 
through inspection of data acquired at 50 °C (Figures 2B and S5B). Here, the lower deuteration at 20 
s and 2 min in the presence of Asc was more obvious and manifested through the peptides covering 
the His brace residues, including His83. Lower deuteration was also observed in neighboring 
peptides (e.g., L2, LS with α3, N-term part of β6, β7) or parts distant from the active site (e.g., β2, β4- 
β5, N-term part of LC) of NcLPMO9C. On the other hand, the destabilizing effect of Asc was observed 
as a much higher deuteration occurring already after 20 min of exchange/reduction. Intriguingly, we 
observed a significant decrease in deuteration at longer incubation times beyond 2 h, which was 
specific for certain peptides, including the His brace residues (Figures S5 and S6A).  

We observed such unusual effects if protein degradation or precipitation occurred during the 
H/D experiment. Indeed, an inspection of the summed up peak intensity plots of the individual 
peptides (alternative data visualization in DeutEx, Figure S6B) showed a signal decrease that 
correlated with the trend of deuteration decrease. Hence, we conclude that at 50 °C and in the 
presence of Asc, LPMO is likely oxidized and/or degraded, which leads to the signal loss. At 65 °C, 
the effects induced by copper ion reduction were fading, and the only prominent event we observed 
was degradation after longer reduction/deuteration times (Figures 2C and S5C). This is likely due to 
the destabilization of LPMO at this temperature, which we also detected for oxidized LPMO. 
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However, considering that we still detected signal loss on peptides close to the active site even at 65 
°C (see Figure S5C), we speculate that even at this temperature, the copper ion could remain bound 
to the His brace and the enzyme at least partially exerts its activity. To put the Asc-induced effect into 
a structural perspective, the difference in deuteration between reduced and oxidized NcLPMO9C 
was plotted onto the structure (Figure S7).  

 
Figure 2. Selected H/D exchange kinetics profiles of oxidized and Asc-reduced NcLPMO9C at three 
different temperatures. Protection plots showing deuteration of the Asc-reduced (red) and the 
oxidized (blue) form of NcLPMO9C at (A) 35 °C, (B) 50 °C, and (C) 65 °C. Three exchange times of 20 
s (dark colors), 20 min (lighter colors), and 2 h (the lightest colors) are shown for 35 °C (A), whereas 
(B) and (C) display only the two shorter times (20 s and 20 min, respectively). Secondary structure 
elements and positions of loops are shown on the top of each graph. Shaded boxes illustrate gaps in 
the sequence coverage. The visualization covers the catalytic domain and part of the linker. Asterisk 
denotes positions of the histidine brace residues (His1, His88, and Tyr166). 

Based on these data, we then set up the final experiment. A temperature of 50 °C was chosen, as 
the kinetics of H/D changes were slow at 35 °C and, on the other hand, the protein was significantly 
perturbed at 65 °C. In addition, given the autooxidative damage detected in the experiments with 
Asc, the maximum exchange time was reduced to 45 min. We increased the temporal resolution of 
these experiments by collecting a higher number of samples and focused on the substrate binding 
and its protective role on the LPMO. The experimental conditions included oxidized and Asc-
reduced LPMO, either alone in solution or mixed with microcrystalline cellulose. Representative 
HDX data are shown in the form of protection plots in Figure 3, and the whole dataset is shown as 
mirror plots in Figure S8. The profile of the oxidized LPMO was virtually indistinguishable from that 
obtained in the presence of cellulose, which implies that there is no tight binding that would alter the 
H/D exchange of the protein (Figure 3: black vs. green and Figure S8A). Similar to previous 
experiments, reduction by Asc led to two distinct effects (Figure 3—black vs. red and Figure S8B). 

First, lower deuteration was detected for reduced LPMO on the peptides covering the His brace 
and the neighboring regions, mainly L2, L3, and its extension to β4, LS, and LC. This effect lasted 
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until 10–15 min of deuteration. Second, the difference in deuteration between oxidized and reduced 
LPMO vanished after 15–20 min, and the reduced LPMO became more deuterated at later time 
points. This was likely linked to the oxidation-induced LPMO damage, which, after 35 min, also led 
to an apparent decrease in the deuteration of the His brace-covering peptides. Finally, the trends 
observed for free, reduced LPMO were also observed when cellulose was added.  

 
Figure 3. Selected H/D exchange kinetics profiles of oxidized and Asc-reduced NcLPMO9C in the 
presence of microcrystalline cellulose. Protection plots showing deuteration profiles of oxidized 
(black) and Asc-reduced (red) NcLPMO9C alone or in presence of cellulose (green and purple, 
respectively) at three deuteration times—3 min (A), 10 min (B), and 30 min (C). The exchange was 
followed at 50 °C and reduction with Asc was induced at the same time as deuteration. Secondary 
structure elements and positions of loops are shown on the top of each graph. Shaded boxes illustrate 
gaps in the sequence coverage. The visualization covers the catalytic domain and part of the linker. 
Asterisk denotes positions of the histidine brace residues (His1, His88, and Tyr166). 
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Although it was shown that LPMO binds to microcrystalline cellulose under reducing 
conditions, albeit weakly compared to more amorphous phosphoric acid swollen cellulose (PASC) 
[21], we observed no decrease in deuteration in the first data points due to the presence of cellulose. 
However, the transition point at which the reduced protein switched from a more protected to a more 
deuterated state was shifted, indicating that oxidation and degradation are slowed down due to the 
protective role of the cellulose substrate. The last data points of the kinetics showed a deuteration 
decrease (described above for free reduced LPMO), which can be considered as an indicator of 
protein degradation. This effect was observed for both the free and cellulose-bound and Asc-reduced 
LPMO, which shows that the autooxidative damage at a certain point overrode the protective effect 
of the cellulose. We also observed protection from exchange on the CBM upon cellulose addition. 
This effect is not affected by the presence of Asc and justifies the binding of LPMO to the substrate. 
However, the extent of this protection was very small and at the border of significance. All these 
effects were visualized on the LPMO structure (Figure 4—selected time points and Figure S9—whole 
dataset, excluding oxidized LPMO conditions where no difference was detected).  

Figure 4. Visualization of effects exerted by Asc-reduction and cellulose binding on the structure of 
NcLPMO9C. Structure of NcLPMO9C (pdb: 4D7U) was colored according to the differences in 
deuteration. (A) Asc-reduction effects—deuteration of free reduced LPMO was subtracted from 
deuteration of the free oxidized form and the structure was colored according to these differences. (B) 
protective effect of cellulose binding/presence—deuteration levels of Asc-reduced LPMO were 
subtracted from the levels of LPMO reduced in the presence of cellulose. Two exchange times of 5 
min and 30 min (also indicated above the structures) are shown. The full dataset covering 3 min to 35 
min of incubation is shown in Figure S9. The blue-white-red gradient covers the range from –15% to 
70% with white at 0%. Histidine brace residues His1, His88 and Tyr166 are labeled and their side 
chains are shown as sticks. Active site copper ion is shown as green ball. 
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The effects of Asc reduction (protection/lower deuteration) and subsequent autooxidative 
damage to LPMO (higher deuteration) are evident from the blue-to-red transition shown in Figures 
4A and S9A. Figures 4B and S9B show that the expected tighter LPMO binding to cellulose did not 
cause detectable alterations in the HDX kinetics and that only protection from autooxidative damage 
could be captured using HDX-MS. It should be noted that this protective effect aligned well with the 
timing of increased oxidative damage (detectable after 15 min of exchange/reduction) and was 
diminished after 30 min when oxidative damage prevailed. Oxidation and/or degradation and the 
protective effect of the cellulose were also supported by the plots following signal intensity 
throughout the experiment. These are shown in Figure S10 together with the respective deuterium 
uptake plots for the peptides covering the His brace and several representative parts of the protein 
structure. It is evident that in cases where the deuteration drop occurred during the last time points, 
the signal intensity also decreased (Figure S10A,B). The protective effect of the cellulose substrate 
under reducing conditions then manifested as slower deuteration, and it also slowed-down the 
degradation. The structural and spatial dependences of these effects could be deduced from the 
localization of the peptides on the NcLPMO9C structure. Here, it is evident that the proximity of 
peptides to the catalytic center was the major factor behind the signal loss (amino acid oxidation 
extent, Figure S10C). 

In order to verify that the mechanism underlying signal loss and deuteration decrease is indeed 
protein oxidation caused by reactive oxygen species generated by the reduced LPMO, we searched 
for oxidized versions of the peptides detected in HDX-MS. However, this approach was largely 
unsuccessful, with only a few significant hits. This can be demonstrated by peptide 1–6 (Figure S11) 
for which the singly oxidized version (oxidation of His1, part of the His brace) was found. The 
deuterium uptake (Figure S11A) had a different shape when compared with the unmodified peptide 
and increased rapidly starting from the early time-points on. In addition, the time-dependent signal 
intensity (Figure S11B) showed the opposite trend. While the unmodified peptide vanished, the 
intensity of the oxidized peptide increased, showing that the oxidation was ongoing throughout the 
experiment. 

A detailed description of oxidative modifications in LPMO was done using a classical proteomic 
bottom-up approach based on the digestion of the protein with specific proteases. NcLPMO9C was 
subjected to reduction using Asc, and protein samples were taken at different incubation times and 
digested using Trypsin or Asp-N proteases. The breakdown products were analyzed by LC-MS/MS, 
followed by a database search and manual validation. Due to the sheer amount of variability in 
oxidative modifications present, we only focused on the most abundant peptide forms, which yielded 
intense fragment spectra of sufficient quality to verify the modification type and residue position. An 
overview of the identified oxidative modifications is provided in Table S1. The analysis confirmed 
that similar to a previous report on ScLPMOC [24], NcLPMO9C underwent extensive autocatalyzed 
oxidation in the presence of Asc. When searching our dataset, we found not only known oxidative 
modifications of amino acid side chains but also generally overlooked peptide bond cleavages [49,50]. 
These peptide bond cleavages result in either +25,980 Da or -1,030 Da mass changes in the N-terminus 
of resulting shorter cleaved peptides and -30,010 Da or -0,985 Da mass change in the C-terminus, 
depending on the cleavage mechanism. An example shown in Figure 5 shows the extracted ion 
chromatograms of various forms of the N-terminal peptide bearing His1 (part of His brace), which 
belongs to a group of rapidly oxidized regions undergoing further oxidation-induced events, such as 
oxidative cleavage.  
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Figure 5. Monitoring kinetics of LPMO oxidative modifications by mass spectrometry. Extracted ion 
chromatograms for the N-terminal LPMO peptide (1–12) that contains His1 residue involved in 
copper ion binding. LPMO were incubated (A) alone for 30 min, or with 5 mM ascorbic acid for (B) 
10 min, (C) 20 min, (D) 30 min. Subsequently, it was digested with Asp-N and analyzed by LC-
MS/MS. Chromatographic traces show a signal for unmodified (green), oxidized (+O1; red) and 
oxidatively cleaved (−His, +C1O1-H2; black) peptides. The data clearly shows how the relative 
amount of the singly oxidized form increases, followed by oxidative cleavage, while the relative 
intensity of the unmodified peptide is decreasing. Localization of the peptide and the His residue is 
shown on a structure in (E). Copper ion is shown as green ball. 

Generally, the extent and kinetics of oxidation depended on the proximity of the peptide to the 
catalytic center and on the amino-acid composition of the peptide, as shown in Figure S12. It is 
apparent from both Figures S10 and S12 that residues close to the active site were oxidized faster than 
those located on the opposite side of the protein. 

4. Discussion 

Previous reports described thermal aspects of LPMO stability in relation to its cofactor and 
substrates [21,45]. Other publications focused on the structural differences between the apo- and the 
holoenzyme and substrate binding effects. These employed protein X-ray crystallography or NMR 
providing excellent spatial resolution and detailed answers about key amino acids and their side 
chains involved in these interactions. Here, we employed hydrogen/deuterium exchange, which is a 
lower-resolution structural biology method but offers a more detailed view on the dynamics of 
thermal- and ROS-induced destabilization of proteins. It also complements the crystallography and 
NMR data by allowing the monitoring of different conditions not easily amenable by either of the 
two classical techniques. We also employed hydrogen/deuterium exchange to follow the deactivation 
of reduced LPMO in a time-dependent manner. Thereby, we shed light on the nature of the 
destabilization, which is important in the context of effective industrial utilization of LPMOs. 

Our first experiment aimed to elucidate the structural differences between the apo- and holo-
forms of NcLPMO9C and their stability at different temperatures. A previous NMR study followed 
the titration of the apoLPMO by Cu2+ and provided evidence about changes mainly at the copper 
coordinating residues and their surroundings [20]. Other studies based on thermal unfolding assays 
then showed that the absence of the copper ion results in structural unfolding occurring at lower 
temperatures when compared to the holo form [21–38]. Using HDX-MS, we further extended these 
findings by providing spatially resolved data on NcLPMO9C. We selected three temperatures 
representing important points on the NcLPMO9C unfolding pathway. At 35 °C, a very mild structure 
perturbation was detected (Figures 1A and S4A). Slightly higher deuteration of the apo form was 
detected for peptides covering His1, His83, and Tyr166 after 2 h of incubation. Kinetics of deuteration 
varied between the individual amino acids forming the His brace. Changes in His83 manifested 
mostly between 2 and 20 min of deuteration, while changes in His1 and Tyr166 were observed only 
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at longer deuteration times between 2 and 6 h (Figure S3). This is likely related to the location of these 
residues in the protein structure. His1 and Tyr166 are both linked to the core beta-sandwich, which 
could result in slower deuteration despite the fact that both amino acids are solvent-exposed. In 
contrast, His83 is positioned in the loop L3 connecting helices 3 and 4 and is thus less protected from 
an exchange. At 50 °C, the crucial role of the copper ion in the stabilization of the overall protein fold 
manifested (Figures 1B and S4B). Detected deuteration differences were similar to those at 35 °C, 
albeit much more pronounced, mainly in regions covering the histidine brace residues (especially 
His1 and Tyr166) but also for regions 61–66, 120–125, and 146–151. These segments are either forming 
the beta-sandwich core (146–151) or are positioned close to the catalytic center (61–66, 120–125). 
Interestingly, the region 105–111, which is distant from the catalytic center, showed a high degree of 
perturbation as well, which suggests the overall “disassembly” of the LPMO core upon removal of 
the copper ion. Finally, we observed that the highest employed temperature of 65 °C leads to very 
rapid deuteration of both LPMO states with slower kinetics present in the holo-form (Figures 1C and 
S3). This indicates that the copper ion was probably still bound to the enzyme, as was previously 
observed for fungal and bacterial LPMOs [21,38]. 

The function of LPMOs depends on the reduction state of their active-site metal ion. The 
reduction and subsequent catalytic activity, however, leads to rapid inactivation of the enzyme in the 
absence of suitable substrates. This inactivation was attributed to the formation of oxygen radicals 
and subsequent oxidative modifications of amino acid residues lining the active site [19,22,28]. Here, 
the accompanying structural changes were investigated through another set of HDX-MS 
experiments, and the oxidation pathways were further explored by LC-MS/MS analyses. Among the 
three temperatures followed in this experiment, 50 °C was the most informative temperature since 
the differences at 35 °C were only observable after long incubation times and both states (oxidized 
and reduced) were highly perturbed at a higher temperature of 65 °C (Figures 2 and S5). Two types 
of changes in the Asc-reduced LPMO structure could be observed at 50 °C (Figures 2 and S6). At short 
incubation times, we observed a low deuteration of peptides covering the histidine brace motif and 
of some of the loops surrounding the active site (Figure S7). This change in structure could be 
responsible for the increased affinity of the reduced LPMO to the polysaccharide substrate [21]. 
Similar loops were also found to be responsible for substrate binding of a bacterial LPMO [20] and 
could correspond to structural changes observed in NcLPMO9C using circular dichroism [21]. A 
second important observation was an extensive increase in deuteration of reduced NcLPMO9C at 
longer incubation times. Deuteration started on peptides bearing the histidine brace residues and 
propagated to the rest of the molecule during the incubation time. At a temperature of 50 °C, even 
the innermost parts of the protein were highly deuterated after 30 min, clearly showing enzyme 
unfolding and probably partial protein degradation. Therefore, we concluded that the optimal 
conditions to follow the Asc-induced reduction and LPMO substrate binding are best represented by 
50 °C and shorter incubation/deuteration times, likely not exceeding 1 hr. 

Based on these findings, we set up the final experiment in which the protein was followed in its 
oxidized and reduced state either in solution or bound to a substrate. Finer sampling clearly 
supported the conclusions of the previous experiment, which showed that Asc reduction (Figures 
4A, S9A and S10) caused a lower deuteration at shorter incubation times, transitioning towards 
increased deuteration at longer incubation times. Finally, we observed signal loss events in amino 
acids localized mostly around the histidine brace. Inclusion of microcrystalline cellulose as a 
substrate showed no deuteration effects under oxidizing conditions, which agrees well with the 
previous findings [21]. However, when the cellulose was added to the reduced LPMO, a protective 
effect was detected via slower deuteration. As can be seen in Figures 3C, S9A and S10, the substrate 
failed to stop the destructive pathways at some point (time > 35min), and the oxidation-driven LPMO 
damage overrode the protective abilities of the cellulose. This can likely be attributed to the weaker 
binding of NcLPMO9C to crystalline cellulose when compared to amorphous substrates, such as 
PASC [21]. However, it should be noted that our initial trials with PASC provided poorly 
reproducible results (data not shown) and, thus, we switched to crystalline cellulose. Interestingly, 
we failed to observe any further decrease in deuteration induced by substrate binding. This can be 
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again attributed to the weaker binding of the LPMO to microcrystalline cellulose. However, another 
and more likely reason might be the inability of the H/D exchange approach to capture these 
interactions since they are side chain mediated, and the HDX targets back-bone amides only [51,52]. 
The same reasoning could explain the negligible effect of crystalline cellulose on CBM. It is known 
from the literature that CBM binding to cellulose surface is mediated via side chains of aromatic 
residues [53,54]. Since the overall fold of CBM is highly compact, it is not likely that side-chain 
mediated cellulose-binding may induce significant changes in CBM hydrogen bonding or solvent 
protection detectable by HDX-MS. Hence, while we repeatedly detected Asc-independent protection 
of the CBM in the presence of cellulose, the effect was at the level of insignificance. Nevertheless, our 
experiments clearly demonstrate that the substrate protects the enzyme from degradation and that 
this protective effect correlates well with the mechanism through which the enzyme is structurally 
perturbed in its free, Asc-reduced form (compare Figure S9A,B). This protection can be due to either 
scavenging of the reactive species, LPMO reoxidation, or active-site protection due to substrate 
binding. 

An additional effect we observed throughout the experiments with Asc-reduced LPMO was a 
time-dependent decrease in signal intensity for peptides around the active site or nearby loops. Loss 
of peptide signal intensity can result from the modification of some of its amino acids, leading to 
mass shifts and, thus, to the vanishing of the peptide from HDX-MS analysis. Such effects were used 
as an indirect measure of oxidative peptide modification by Loose at al. [34]. In addition to the signal 
intensity loss, we here attempted to identify increases in signal intensity of oxidatively modified 
peptides. This approach was largely unsuccessful with the reported example (Figure S11) being the 
only unambiguous one. It should be stressed that looking for oxidatively modified peptides in HDX-
MS data is not ideal for several reasons. First, the nonspecific proteases (here a combination of 
nepenthesin I and rhizopuspepsin) create many overlapping peptides that cause signal intensity 
splitting. Second, oxidative modifications are often heterogeneous and create a variety of subsequent 
reaction products adding variations to the multiple peptides covering each region. Finally, the signal 
intensity is further decreased due to deuteration, which usually widens the isotopic structure of the 
peptide ions. These combined effects make all but the most common peptide forms undetectable. We, 
therefore, used a separate LC-MS/MS analysis step to obtain detailed information about protein 
modifications occurring in Asc-treated LPMO digested by either trypsin or Asp-N. This approach 
also helped to verify that the introduced oxidative modifications caused the observed decrease in 
signal intensity. However, in contrast to results obtained with ScLPMO10C by Bissaro et al., we were 
not able to get a comprehensive list of all modifications, since NcLPMO9C was not amenable by any 
typical proteomic-based proteolysis approach [24]. Even the use of two different proteases (trypsin 
and Asp-N) failed to provide fragments of reasonable size covering the entire protein sequence or at 
least the catalytic unit. Instead of relying on a pure search engine scoring, we performed manual 
validation of the MS/MS assignments and listed only those modifications where the exact oxidation 
position could be deciphered. This may also lead to a shortening of the list of modified residues. 
However, even with a less comprehensive listing, we provide clear proof that the NcLPMO9C is 
extensively oxidized on many sites (Table S1). Besides the oxidations and the known subsequent 
products of the oxidation pathways, we also found prominent oxidation leading to peptide bond 
cleavages. These were mainly located on amino acids close to the active site (Table S1). These peptide 
cleavages have been identified before in other proteins [32,33], but are not very well-known and have 
not been connected to LPMO oxidative damage so far. Using extracted ion chromatograms from our 
LC-MS/MS data, we also followed the abundance of oxidatively modified peptides during incubation 
of LPMO with ascorbic acid (Figures 5 and S12). These data show a clear increase in the level of 
protein oxidation over time, resulting also in peptide bond cleavages, as illustrated by peptide H1-
A12 in Figure 5. In addition, there is a clear dependency between the level of oxidation at particular 
sites and their proximity to the active site. We highlight this in Figure S12, where side chains 
containing amino acids prone to oxidation are shown as sticks. Considering their surface accessibility 
and the rate of oxidation, which can be inferred from the extracted ion chromatograms, it is clear that 
the driving factor affecting the extent of oxidation in Asc-reduced LPMO is the proximity to the active 
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center, specifically the involvement in copper ion binding (compare peptides. 94–109 and 22–45 
versus 58–84). 

5. Conclusions 

Our results describe the degradation of LPMO in structural detail and confirm that the increase 
in stability of LPMO caused by the presence of substrate is based on the decrease in oxidative damage 
incurred to the enzyme over time. The developed methodological setup marks the way towards more 
systematic structural studies, in which the stabilizing or destabilizing effects of larger sets of 
substrates, reductants, and cosubstrates can be effectively probed. Such studies may help to guide 
the rational design of cellulose-active enzymes leading to more efficient substrate binding to increase 
the lifetime of enzymes used in industrial settings. 

Supplementary Materials: The following are available online at www.mdpi.com/xxx/s1. Figure S1: Peptide map 
showing the sequence coverage of NcLPMO9C after serial nepenthesin-1 / rhizopuspepsin digestion, Figure S2: 
NcLPMO9C structural changes induced by the temperature, Figure S3: Selected examples of deuterium uptake 
curves for holo-/apo- NcLPMO9C after temperature correction, Figure S4: Destabilization of the NcLPMO9C by 
active site copper removal as observed by HDX-MS comparison of holo- and apoenzymes, Figure S5: 
NcLPMO9C structural changes induced by reduction with ascorbic acid at different temperatures, Figure S6: 
Ascorbic acid reduction causes a range of effects in HDX kinetics and a signal loss, Figure S7: The effect of 
ascorbic acid-mediated copper ion reduction mapped on the structure of NcLPMO9C, Figure S8: The effects of 
the reduction of NcLPMO9C by Asc and cellulose-binding in the oxidized and Asc-reduced states, Figure S9: 
The effects of NcLPMO9C ascorbic acid reduction and cellulose-binding of the Asc-reduced LPMO visualized 
on the protein structure, Figure S10: Detailed monitoring of ascorbic acid reduction and its effects on HDX 
kinetics and signal loss, Figure S11: Oxidation induced by copper ion reduction detected in the HDX dataset, 
Figure S12: Monitoring of the signal intensity increase of modified peptides. Table S1: Manually verified 
modifications and cleavages on amino acids in LPMO recorded by MS/MS. 
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Abstract 

Background:  Lytic polysaccharide monooxygenases (LPMOs) are copper-dependent redox enzymes that cleave 
recalcitrant biopolymers such as cellulose, chitin, starch and hemicelluloses. Although LPMOs receive ample interest 
in industry and academia, their reaction mechanism is not yet fully understood. Recent studies showed that H2O2 is 
a more efficient cosubstrate for the enzyme than O2, which could greatly affect the utilization of LPMOs in industrial 
settings.

Results:  We probe the reactivity of LPMO9C from the cellulose-degrading fungus Neurospora crassa with a turbidi-
metric assay using phosphoric acid-swollen cellulose (PASC) as substrate and H2O2 as a cosubstrate. The measure-
ments were also followed by continuous electrochemical H2O2 detection and LPMO reaction products were analysed 
by mass spectrometry. Different systems for the in situ generation of H2O2 and for the reduction of LPMO’s active-site 
copper were employed, including glucose oxidase, cellobiose dehydrogenase, and the routinely used reductant 
ascorbate.

Conclusions:  We found for all systems that the supply of H2O2 limited LPMO’s cellulose depolymerization activity, 
which supports the function of H2O2 as the relevant cosubstrate. The turbidimetric assay allowed rapid determination 
of LPMO activity on a cellulosic substrate without the need for time-consuming and instrumentally elaborate analysis 
methods.

Keywords:  Lytic polysaccharide monooxygenase, Cellobiose dehydrogenase, Glucose oxidase, Hydrogen peroxide, 
Cellulose, Neurospora crassa
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Background
LPMOs (CAZy AA9–11, 13–16) are copper-dependent 
redox enzymes that employ a redox reaction to cleave 
and decrystallize recalcitrant biopolymers [1, 2]. LPMO 
activity has been demonstrated in biomass-degrading 
bacteria [3], fungi [4] and, as of recently, also in fire-
brat (Thermobia domestica) [5], insect poxvirus [6] and 

the fern Tectaria macrodonta [7]. The substrate scope 
of LPMOs includes cellulose [8], in some cases soluble 
cello-oligosaccharides [9], chitin [3], starch [10] and vari-
ous hemicelluloses [9, 11–13].

Since their discovery in 2010 [3], LPMOs have received 
ample attention in basic and applied research due to their 
synergistic interaction with hydrolytic enzymes [14, 15]. 
However, the insoluble nature of their substrates com-
plicates the use of routine biochemical analysis methods, 
which typically require homogenous conditions. Further-
more, LPMOs depend on a steady supply of electrons and 
a cosubstrate while generating a complex array of oxida-
tion products that necessitate specialized equipment for 
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analysis. As a result, key questions on the LPMO catalytic 
cycle and kinetics, including the cosubstrate preference, 
await experimental clarification [16].

Despite their widespread distribution and their diverse 
substrate specificities, all known LPMOs share a highly 
conserved active site which includes a dyad of histidines 
coordinating a single Cu(II) atom [4, 17]. LPMO requires 
an external electron donor and an oxygen-containing 
cosubstrate for catalysis [16]. In fungi, electron-donating 
systems for LPMOs include a variety of phenols released 
during lignocellulose degradation [18, 19]. The fungal fla-
vocytochrome cellobiose dehydrogenase (CDH) directly 
reduces the copper centre of LPMOs [20, 21]. Synergies 
with other fungal redox enzymes such as polyphenol oxi-
dases [22], laccases [23] or oxidoreductases of the GMC-
oxidoreductase family [24] were previously shown to 
provide a range of potential electron-donating systems 
for LPMOs through the release or recycling of phenolic 
lignin breakdown products. Potential electron-donating 
systems in other organisms, e.g. in bacteria or insects, 
await identification.

Reduced LPMOs are reported to utilize either O2 [3, 
25] or H2O2 [26] as a cosubstrate, resulting in a monoox-
ygenase or peroxygenase reaction, respectively. The out-
come of both reactions is the regioselective insertion of 
an oxygen atom at the C1 [4] or C4 [9] carbon of the gly-
cosidic linkage, which destabilizes and breaks the bond 
[17, 27]. Recent kinetic studies of bacterial [26, 28] and 
fungal LPMOs [29] showed that turnover numbers with 
H2O2 as cosubstrate exceeded those obtained with O2 by 
two orders of magnitude. A drawback of the peroxyge-
nase reaction is the susceptibility of LPMOs for oxidative 
damage in the absence of substrate, or at high H2O2 con-
centrations [26, 30]. It was argued that the lower turnover 
with O2 could protect LPMO from such oxidation reac-
tions and thus extend the operational stability to longer 
time-scales [29]. Despite several studies [4, 25, 26, 28, 
29], it is still disputed whether O2 or H2O2 is preferred 
as cosubstrate in a natural environment. Here, it is worth 
noting that a number of GMC-oxidoreductases secreted 
by fungi also provide a steady H2O2 supply required for 
peroxidases involved in biomass degradation [31]. This 
includes CDH, which was shown to possess a weak oxi-
dase activity [32] that can provide sufficient amounts of 
H2O2 for LPMO catalysis [33].

Typically, activity measurements for LPMOs rely on 
the identification of soluble, oxidized oligosaccharides, 
which are liberated by the LPMO [34]. Such studies are 
complicated by the array of possible oxidation prod-
ucts and the lack of suitable standards (e.g. C4-oxidized 
oligosaccharides). If C4-oxidizing LPMOs are used in 
combination with CDH, also doubly oxidized products 
occur, since CDH efficiently oxidizes the reducing end of 

soluble oligosaccharides [9]. Such analyses also miss the 
introduced carboxylic groups, resulting in aldonic acids 
in the insoluble fraction of the substrate, which make 
up a considerable fraction of the total reaction prod-
ucts (see e.g. [33]). Kuusk et al. [28] previously reported 
a detailed kinetic analysis of the chitin-active, bacterial 
LPMO CBP21 using 14C-labelled chitin. This procedure 
allowed for the sensitive detection of reaction products 
independent of their oxidation. A recently introduced 
activity assay for LPMOs is based on the colourimetric  
detection of a pyrocatechol violet–Ni2+ complex, which 
enabled quantifying the number of aldonic acids on 
the substrate generated by LPMO [35]. A drawback of 
this procedure is the inability to detect the activity of 
C4-oxidizing LPMOs, which do not introduce aldonic 
acids into the substrate. In homogenous solution, LPMO 
activity can be readily detected based on the quantifica-
tion of H2O2 released in a futile side reaction that occurs 
in the absence of substrate [9, 36]. LPMOs also oxidize 
2,6-dimethoxyphenol in the presence of peroxide and 
reducing equivalents, which results in the formation of 
the dimerization product coerulignone that can be quan-
tified spectroscopically [37]. While these homogeneous 
assays may be used as a proxy for LPMO activity, they 
do not allow analysing reaction kinetics with native, het-
erogeneous LPMO substrates. To date, there is still the 
need for universal and easy-to-apply methods that enable 
measuring the time-dependent LPMO activity without 
specialized equipment.

Here, we employ a turbidimetric assay using a cellu-
lose solution to examine the peroxygenase activity of the  
fungal, C4-oxidizing LPMO9C from the model fungus 
Neurospora crassa.

Results
LPMO activity monitored by a turbidimetric assay
Turbidimetry has been recently employed to screen the 
cellulolytic activity of a fungal LPMO towards phos-
phoric acid-swollen cellulose (PASC), which represents 
a disordered, amorphous form of cellulose. This screen-
ing assay measured the decrease in the optical density of 
the substrate after a defined incubation time of 360 min 
at 50 °C in microwell plates [38]. Here, we adapt this pro-
cedure into a continuous, turbidimetric assay to measure 
the time-dependent conversion of PASC by a cellulose-
active LPMO.

Initially, we established the relation between PASC con-
centration and the loss of transmitted light intensity. The 
optical attenuation was linear up to a concentration of 
1.4 mg mL−1 PASC (Fig. 1a). These measurements were 
performed under constant stirring to prevent the settling 
of particles in the suspension. In the standard assay, we 
employed a concentration of PASC (0.8  mg  mL−1) that 
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provided a stable baseline and a low background signal 
from the light scattering of larger substrate particles in 
the suspension. The molar concentration of PASC was 
24.7 µM assuming an average chain length of 200 glucose 
units [39]. However, the particle distribution of PASC 
is not homogenous, which affects the depolymerization 
kinetics as discussed later. The reaction was started by 
injecting an LPMO-containing stock solution, which also 
contained the reducing agent. In experiments using H2O2 
as the cosubstrate, the stock solution was added before 

addition of the H2O2. The optical density of the PASC 
suspension was continuously monitored at a wavelength 
of 620 nm, which was previously used for the turbidimet-
ric measurement of cellulase activity [40].

Binding of LPMO to PASC
In the following experiments, we employed LPMO9C 
from Neurospora crassa (NcLPMO9C; UniProt acces-
sion number Q7SHI8), which is active on cellulose, 
hemicelluloses and soluble oligosaccharides [9, 11, 41]. 

Fig. 1  Activity of LPMO with ascorbate as reductant. a Calibration curve showing the relation between PASC concentration and the turbidity. 
Assays were performed in 50 mM sodium phosphate buffer, pH 6.0, at 30 °C. The equation for the linear range (0–1.4 mg mL−1 PASC) is given. b 
Time-dependent turbidity changes of a 0.8 mg mL−1 PASC solution incubated with various LPMO concentrations in the presence (solid lines) and 
absence (dashed lines) of 1 mM ascorbate. LPMO concentrations are specified above the traces. LPMO and ascorbate were added simultaneously 
to the assay (black arrows). Traces are vertically shifted by the same increment for better visibility. The extent of the catalytic reaction is indicated by 
an arrow above the graphs. c Absorbance changes observed in b upon titration of LPMO to PASC in the presence (blue triangles) or absence (black 
circles) of ascorbate. Dashed lines indicate the addition of LPMO to a buffer solution without PASC in the presence (blue triangles) or absence (black 
circles) of 1 mM ascorbate. Note that the curves coincide because no apparent changes in optical density were observed. d Degradation of PASC 
by LPMO measured in an anaerobic glove box. PASC (0.6 mg mL−1) was mixed with 3 µM NcLPMO9C in the absence (green curve) or presence of 
2 mM ascorbate (dark and light red curves). For comparison, the experiment was performed under the same conditions (3 µM LPMO and 2 mM 
ascorbate) under aerobic conditions (dark and light blue curves). A control containing only PASC (0.6 mg mL−1) is shown as a black curve. Note 
that for technical reasons a different photometer had to be used for this experiment. The equation for the linear range of the calibration curve 
(0–1 mg mL−1 PASC) was 1.16x + 0.03. The black arrow indicates the addition of LPMO and/or ascorbate. e Reaction rates determined from the 
initial slopes of the reactions shown in b (blue triangles) and f (black circles). f Reaction of LPMO (3 µM) with various concentrations of ascorbate 
(solid lines). The arrows indicate the addition of LPMO and ascorbate concentrations are specified above the traces. Identical reactions carried out in 
the presence of catalase (2000 U mL−1) are indicated as colour-coded dashed lines
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This LPMO contains a family 1 carbohydrate-binding 
module (CBM1) which is fused to the catalytic domain 
via a lengthy linker peptide of 82 amino acids. In the 
first set of experiments, we employed 1  mM ascorbate, 
which is a commonly used concentration in LPMO con-
version assays. The assay was started after 240  s by the 
addition of a relatively high concentration of LPMO 
(3 µM) to achieve a fast assay. Unexpectedly, this led to 
an instant increase in optical density within the mixing 
time (Fig.  1b). For both the reduced and the oxidized 
NcLPMO9C, the optical density increased linearly with 
the enzyme concentration, but the observed increase 
was approximately three times higher for the reduced 
LPMO (Fig.  1c). The same increase in optical density 
was also observed when mixing ascorbate and LPMO 
under anaerobic conditions, demonstrating that this 
phase represents a non-catalytic reaction (Fig. 1d). Con-
trol experiments in the absence of PASC did not show 
detectable absorbance changes for all employed LPMO 
concentrations.

The fact that the reduced LPMO showed a higher 
increase in optical density than its oxidized form under 
both aerobic and anaerobic conditions suggests that the 
rapid initial increase in optical density is due to improved 
substrate binding. Previous binding experiments demon-
strated a higher substrate affinity of NcLPMO9C to PASC 
when the active site was in the reduced state [42]. In this 
study, the presence of ascorbate increased both the bind-
ing affinity and the binding capacity to PASC approxi-
mately twice [42]. A similar observation was made for the 
binding of LPMO9E from Myceliophthora thermophila 
to soluble oligosaccharides [43]. The binding of different 
substrate chains by the catalytic domain and the CBM1 
under reducing conditions may lead to a “cross-linking” 
of PASC fibres and may thereby increase the optical 
density.

Ascorbate‑driven LPMO activity
Following the initial, very rapid increase in optical den-
sity, a second phase showing an attenuation of the signal 
was observed in assays containing LPMO and ascor-
bate (Fig.  1b). The decrease in optical density indicates 
the degradation of the PASC by the LPMO. To confirm 
catalysis, we mixed NcLPMO9C with ascorbate in an 
anaerobic glove box (Fig. 1d) in the absence of any oxy-
gen species. We observed the first phase of the reaction 
(binding of the LPMO to PASC), but found that the sec-
ond, catalytic phase was completely suppressed. In the 
following, LPMO activity is expressed as the relative 
change in optical density per min. The rates were cal-
culated from the linear slopes of the catalytic phase to 
avoid substrate depletion at the end of the experiment. 
An important and unexpected observation from these 

experiments is that almost similar reaction rates were 
obtained for different LPMO concentrations (Fig. 1e, blue 
triangles). The observed uncoupling of catalyst concen-
tration and reaction rate—a fourfold increase of enzyme 
concentration correlated to a 25% increase of the activ-
ity—points towards a rate-limiting factor in the over-
all reaction. One reason could be the concentration of 
the reductant ascorbate, which was applied in a 1  mM 
concentration. We, therefore, varied the ascorbate con-
centration for 3  µM NcLPMO9C (Fig.  1f ). Initial rates 
calculated from these batch conversions demonstrated 
a strong correlation between activity and ascorbate con-
centration (Fig.  1e, black circles). A previous study that 
employed the bacterial SmLPMO10A and chitin as the 
substrate showed a clear dependency of the LPMO reac-
tion rate on the reductant concentration, with an appar-
ent KM for ascorbate of 2  µM [44]. However, it is also 
well documented that ascorbate can reduce O2 to H2O2 
under commonly employed reaction conditions [24, 28]. 
Thus, providing a higher ascorbate concentration in the 
assays is likely to release higher amounts of H2O2, which 
can act as a cosubstrate for LPMO. To test whether the 
availability of H2O2 was the rate-limiting factor in the 
measurements, we replicated the activity assays in the 
presence of catalase (final concentration: 2000 U mL−1 at 
pH 6) to scavenge most of the formed H2O2. Under these 
conditions, we still observed the initial increase in opti-
cal density upon addition of LPMO, indicating that sub-
strate binding of the LPMO was not compromised by the 
catalase. However, the subsequent catalytic reaction was 
clearly, but not fully suppressed in the presence of cata-
lase (Fig. 1f, dashed lines).

Interaction of NcLPMO9C with NcCDHIIA
We also initiated LPMO activity with cellobiose dehy-
drogenase (CDH), which is a proposed native interac-
tion partner of LPMOs in wood-decaying fungi [20, 24]. 
CDHs oxidize cellobiose or soluble cello-oligosaccharides 
in an FAD-dependent reaction and reduce the LPMO 
active site via a dedicated, flexible cytochrome domain 
[21]. Reduced CDHs also have a low, FAD-dependent 
oxidase activity [45, 46], which can support LPMO activ-
ity through the slow release of H2O2 [33]. We used NcC-
DHIIA (UniProt accession number Q7RXM0), the main 
secreted CDH in N. crassa [47], to activate NcLPMO9C 
in the PASC turbidity assays (Fig.  2a). The activity of 
LPMO in this reaction setup was strictly dependent on 
the presence of cellobiose as CDH substrate (Additional 
file  1: Figure S1). NcCDHIIA in combination with cel-
lobiose induced moderate LPMO activity, which was 
dependent on the applied NcCDHIIA concentration. 
The observed rates were approximately one order of 
magnitude lower than those obtained with ascorbate as 
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LPMO-reductant (Figs. 2b vs 1e). Catalase (2000 U mL−1) 
completely inhibited the reaction at a low, 0.5  µM con-
centration of NcCDHIIA, while at higher concentrations 
a weak LPMO activity was observed, possibly reflect-
ing the incomplete H2O2 removal by the catalase. The 
obvious inhibition of the turbidimetric PASC assay by 
catalase at low CDH concentrations indicates that H2O2 
was predominantly used as cosubstrate by NcLPMO9C. 
Since both NcLPMO9C and NcCDHIIA feature a CBM1 
that binds to cellulose, the spatial proximity of the two 
enzymes during catalysis, which is required for the elec-
tron transfer between both enzymes, may also provide 
a locally increased H2O2 concentration in the vicinity of 
the heterogeneous substrate.

To further probe the effect of H2O2 on CDH-driven 
LPMO activity, we used commercial glucose oxidase 
(GOX) from Aspergillus niger for the in situ generation of 
H2O2. GOX in combination with glucose and LPMO did 
not lead to changes in the optical density (Fig. 2c), dem-
onstrating that an LPMO-specific reductant is required 
to induce activity. For LPMO reduction a low, 0.5  µM 
concentration of NcCDHIIA in combination with 10 mM 
cellobiose was added. Under these conditions, the addi-
tion of GOX led to a rate enhancement that depended 
on the applied GOX activity and, therefore, also on the 
amount of produced H2O2. At high GOX activities, a fast, 
initial attenuation of the optical density was followed 
by a slower phase of signal decay. This indicates a rapid 
deactivation of NcLPMO9C at high GOX concentrations, 
possibly due to H2O2-induced oxidation of the copper-
coordinating amino acids [26]. Such deactivation effects 

were recently observed for a bacterial LPMO, which was 
rapidly deactivated when the H2O2 supply exceeded the 
enzyme’s capability to convert the cosubstrate [33]. The 
pronounced rate acceleration upon addition of GOX 
in the presence of a low, 0.5  µM concentration of NcC-
DHIIA indicated that not the availability of reducing 
equivalents, but the H2O2 concentration was the rate-
limiting factor in these reactions.

To verify that the observed increase in activity upon 
H2O2 addition detected by turbidimetry corresponds 
to the formation of oxidized oligosaccharide products, 
MALDI-MS measurements were performed on the sol-
uble fraction of the reaction mixtures. The formation of 
products was followed in reactions containing PASC, 
LPMO, CDH and lactose and in related reactions 
spiked several times with H2O2 during the course of 
the incubation (Fig. 3). C4 oxidized products, which are 
typical products of the NcLPMO9C reaction [9], were 
detected in the form of sodium adducts of C4 ketones 
and geminal diols. Small amounts of native (unoxi-
dized) oligosaccharides, e.g. Glc3, Glc4 and Glc5, were 
also present in control samples containing only PASC, 
CDH and lactose. Such products may also occur during 
the LPMO action due to a weak hydrolytic background 
[48]. While absolute quantitation cannot be achieved 
by MALDI-MS, the changes in the ratio of unoxidized 
and oxidized oligosaccharides between the individual 
conditions clearly indicated the boosting effect of H2O2 
on the action of NcLPMO9C (Fig. 3b–d).

The high resolving power and high mass accuracy of 
the FT-ICR MS allowed us to unambiguously assign 

Fig. 2  LPMO activity in the presence of CDH and glucose oxidase. a Solid lines indicate the time-dependent absorbance changes of a 0.8 mg mL−1 
PASC solution in presence of 3 µM LPMO and 0.5, 1.0 or 3.0 µM NcCDHIIA. Reactions were carried out in 50 mM potassium phosphate buffer, 
pH 6.0. The same reactions were carried out in presence of 2000 U mL−1 catalase (colour-coded dashed lines). Traces were vertically shifted for 
better visibility. b Reaction rates of PASC degradation of the reactions shown in a. c LPMO activity in the presence of 0.5 µM NcCDHIIA and various 
indicated activities of glucose oxidase (GOX). The volumetric activity of GOX was determined as described in the “Methods” section. All samples 
contained 10 mM glucose and 10 mM lactose as a substrate for GOX and CDH, respectively, and were carried out at 30 °C in 50 mM sodium 
phosphate buffer, pH 6.0. In control experiments, NcCDHIIA (grey dashed line) or GOX (black line) were avoided
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different carbohydrate molecules and their adduct 
state. For example, we were able to clearly distinguish 
between Glc(n)(K+) and Glc(n)Gemdiol(Na+) adducts, 
which differ only by 0.02  Da. The mass measurements 
can also provide indirect proof whether the LPMO gen-
erates C1 or C4 oxidized products. C1 oxidation leads 
to the formation of sugar lactones, which undergo con-
version into aldonic acids. The acidic products are then 
preferentially detected in the form of salt (sodium or 
potassium), charged by an additional alkali metal cation 
(Na+ or K+) [27, 34]. On the other hand, C4 oxidizing 
LPMOs create keto/gemdiol forms, which are not form-
ing salts and are present only as single alkali metal cat-
ion charged masses. Since we have not detected aldonic 

acids in any of the reaction mixtures and only detected 
gemdiols, we can conclude that the NcLPMO9C indeed 
generated C4 oxidation products.

The peroxygenase reactivity of LPMO
To determine the H2O2 consumption rate by LPMO, we 
tested the reactivity of NcLPMO9C with H2O2 by titrat-
ing aliquots of H2O2 to reactions containing 0.8 mg mL−1 
PASC, 3 µM LPMO and 2 mM ascorbate. In these experi-
ments, H2O2 was added to the reaction every 90 s using 
three different concentrations (20, 40 or 80 µM per addi-
tion). The total change in the reaction volume due to 
the addition of H2O2 was less than 3% in all assays. The 
addition of H2O2 to reduced LPMO caused an immediate 

Fig. 3  MALDI-MS analysis of oxidized oligosaccharide products. Reactions containing 10 mg mL−1 PASC, 3 µM LPMO, 0.1 µM CDH, 1 mM lactose 
and H2O2 (120 µM final concentration added in four batches of 30 µM over 30 min) were analysed under different conditions using MALDI-MS. 
a Overview of selected parts of the MALDI-MS spectra obtained from samples containing all components (PASC, CDH, lactose, LPMO and H2O2) 
showing various oligosaccharide products. b–d Details of selected product spectra under four conditions: PASC with oxidized LPMO (black 
line), PASC with oxidized LPMO and H2O2 (blue line), PASC with CDH, lactose and LPMO (green line) and PASC with CDH, lactose, LPMO and 
H2O2 (red line). Addition of H2O2 led to a notable, relative increase in C4-oxidized products compared to the unoxidized forms of the analysed 
oligosaccharides. All oligosaccharides and their oxidized products were detected as sodium or potassium adducts. Shown are also the theoretical 
monoisotopic masses of all analysed reaction products. Peaks with no labels are matrix adducts or other, non-carbohydrate based, background 
signals



Page 7 of 13Filandr et al. Biotechnol Biofuels           (2020) 13:37 	

decrease in optical density, which points towards a fast 
consumption of H2O2. This reaction was much faster 
than the reference reaction without H2O2 (Fig.  4a). The 
substrate conversion rate could not be determined 
because it was as fast or faster than the mixing time of 
the cuvette (ca. 10 s). However, doubling the amount of 
added H2O2 also doubled the observed change in optical 
density. For all titrations, approximately 350–400 µM of 
H2O2 was required to reach maximal observable changes, 
corresponding to approximately 0.2 units of optical den-
sity. Addition of H2O2 or LPMO beyond this lower limit 
did not induce further changes in the optical density of 
the PASC suspension. Control experiments in which 
either LPMO or reductant were omitted did not show 
any changes in the optical density of the PASC suspen-
sion (Additional file 1: Figure S2). Likewise, the titration 
of H2O2 to oxidized NcLPMO9C had no observable effect 
on the optical density of the PASC (Additional file 1: Fig-
ure S2).

To correlate the observed substrate degradation with 
the cosubstrate consumption, we followed the deple-
tion of H2O2 using electrochemical detection of H2O2 
(Fig. 4b). These assays were carried out at a larger volume 
of 12 mL in a stirred electrochemical cell to avoid exceed-
ing consumption of H2O2 by the electrode. Titration of 
40 µM H2O2 to reactions containing only PASC or only 
LPMO showed a stable, H2O2 concentration-dependent 
decrease of the measured current. The addition of H2O2 
to oxidized LPMO resulted in slightly lower currents, 

indicating H2O2 depletion through a background reac-
tion. Under these conditions, no turbidimetric changes 
of PASC were observed (Additional file  1: Figure S2) 
showing that this futile reaction did not induce observ-
able catalytic events. The addition of H2O2 to reactions 
containing 2  mM ascorbate (Fig.  4b, magenta line) led 
to a slow depletion of H2O2, possibly via reduction of 
the H2O2 [49, 50]. Upon titration of H2O2 to a reaction 
containing ascorbate, LPMO and PASC, no detectable 
increase in the H2O2 concentration was observed, show-
ing that H2O2 was rapidly consumed in this experiment 
(Fig. 4b, red line). This is a clear indication that the con-
sumption of the cosubstrate by the system occurred 
within the response time of the electrochemical sensor, 
which was approximately 3  s. After 9 H2O2 additions, 
corresponding to a total added H2O2 concentration of 
360 µM, a built-up of H2O2 was observed. This concen-
tration coincides with the required H2O2 concentra-
tion that induced maximal changes in optical density of 
PASC in degradation assays carried out under compara-
ble conditions (Fig. 4a, red line). Doubling the concentra-
tion of added H2O2 to 80 µM per addition (Fig. 4b, blue 
line) resulted in notable signal spikes after 4–5 additions 
(320–400 µM), which compares well to the experiments 
shown in Fig.  4a which employed the same H2O2 addi-
tion rate. Taken together, these experiments demon-
strate fast consumption of H2O2 by an LPMO-dependent 
reaction and connect the observed absorbance changes 
to the consumption of H2O2. The visual change that 

Fig. 4  Effect of H2O2 on the degradation of PASC by LPMO. a Sequential titration of 20 µM (green line), 40 µM (red line) or 80 µM (blue line) H2O2 
to a solution containing 0.8 mg mL−1 PASC, 3 µM LPMO and 2 mM ascorbate. The background reaction of LPMO in the presence (black line) or 
absence (grey line) of 2 mM ascorbate. b Time-dependent, electrochemical measurement of H2O2. All reactions were carried out at a volume of 
12 mL under constant stirring at 30 °C and contained 0.8 mg mL−1 PASC in 50 mM sodium phosphate buffer, pH 6.0. Vertical dotted lines indicate 
the addition of fresh H2O2 which was added approximately every 90 s in aliquots of 40 µM. Shown is the addition of H2O2 to PASC (black line); 
PASC and 3 µM LPMO (green line); PASC and 2 mM ascorbate (magenta line); PASC, 2 mM ascorbate and 3 µM LPMO (red line). In an additional 
experiment, PASC, 2 mM ascorbate and 3 µM LPMO was supplemented with 80 µM H2O2 per addition (blue line). c Degradation of 0.8 mg mL−1 
PASC by 3 µL LPMO. H2O2 (40 µM) was sequentially added to the samples every 90 s in presence or absence of 2 mM ascorbate. The total amount of 
added H2O2 was 400 µM
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accompanied the degradation of PASC by LPMO upon 
titration with 40 µM H2O2 is shown in Fig. 4c. The images 
suggest that, to a large extent, NcLPMO9C preferentially 
targeted finely dispersed, amorphous PASC while bigger 
particles remained largely intact at the end of the reac-
tion. The heterogeneity of the substrate may also explain 
why the reaction levelled off at a certain optical density.

Substrate binding of LPMO during H2O2‑mediated PASC 
degradation
To gain further insight into the binding of LPMO to 
PASC, we monitored the fraction of free NcLPMO9C 
during the titration of reduced LPMO with 10 aliquots 
of 40  µM H2O2. Samples of 50  µL were regularly with-
drawn from this reaction and the supernatants analysed 
by SDS-PAGE after centrifugation (Fig.  5a). Incubation 
of LPMO with PASC in absence of reductant reduced 
the concentration of soluble LPMO by 50%, indicating 
binding of the other 50% of LPMO to the substrate. Addi-
tion of ascorbate to this reaction instantly increased the 
fraction of bound enzyme to 71%. This compares well to 
the observed changes in optical density in Fig. 1b, which 
showed a higher signal change for the reduced LPMO 
when compared to the oxidized enzyme. The fraction 
of free enzyme gradually increased upon titration with 
H2O2 (Fig.  5a). Quantitative assessment of PASC by 
weight determination (Fig. 5b) showed that notable sub-
strate degradation occurred only in samples containing 
ascorbate together with LPMO. Addition of H2O2 to this 
mixture led to a notably higher PASC degradation than 
observed in the presence of ascorbate alone. In this reac-
tion, approximately 20% of the PASC initially present in 
the assay was solubilized by the LPMO. In the same reac-
tion, the optical density of PASC decreased by ca. 45% 
(from 0.47 to 0.21 optical density at 620 nm). Thus, part 
of the observed absorbance changes may be a result of 
PASC modification rather than solubilization, e.g. via the 
introduction of oxidized ends, or the release of insolu-
ble oligomers. Results obtained from bacterial or fun-
gal LPMOs previously showed that only approximately 
50% of the total introduced oxidized ends were found 
on soluble oligomers, while the remaining modifications 
occurred on the insoluble fraction [33].

Discussion
A growing body of evidence demonstrates that LPMOs 
use H2O2 as cosubstrate with a much higher catalytic 
efficiency than O2 [26, 28, 44, 51]. While the cosubstrate 
preference of LPMOs in their native environments is still 
debated [29] the efficient peroxygenase reactivity may be 
beneficial in industrial settings to achieve faster biomass 
depolymerization [52].

Fig. 5  Binding of NcLPMO9C to PASC and substrate degradation 
during H2O2-mediated PASC degradation. a SDS-PAGE analysis 
of supernatants obtained from titration of reduced NcLPMO9C 
with aliquots of 40 µM H2O2 (Fig. 4a, red line). Three µM LPMO was 
incubated for 10 min in buffer solution (“-PASC”) or together with 
0.8 mg mL−1 PASC (“+PASC”). To the latter reaction mix, ascorbate 
was added to a final concentration of 2 mM (“+PASC/AscA”), and 
titration with H2O2 in aliquots of 40 µM was performed. The intensity 
(in %) denotes the intensities of the bands relative to those of 
NcLPMO9C incubated in buffer solution. Intensities were calculated 
with the Image Lab Software Suite (BioRad). All reactions were carried 
out in 50 mM potassium phosphate buffer, pH 6.0. The SDS-PAGE 
analysis was repeated twice with the error being within 5%. b Weight 
determination of PASC in different control experiments. The total 
concentration of H2O2 added to the samples was 400 µM, which was 
added in aliquots of 40 µM every 90 s (as shown in Fig. 4a, red line). 
All assays were performed in 3 mL quartz cuvettes at 30 °C and under 
constant stirring. For each data point shown, 2 reactions containing 
2.5 mL of sample solution were pooled, centrifuged and washed 
twice with deionized water. The dry weight of PASC in each reaction 
mix was determined after drying the sample at 55 °C to a constant 
weight (ca. 16 h of incubation)
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The activity of LPMOs is typically assessed in the pres-
ence of an about 1 mM concentration of ascorbate, which 
reduces the active-site copper and initiates the oxidative 
degradation of the substrate. Several recent publications, 
however, raised the question whether the observed activ-
ity is due to an O2-dependent monooxygenase reaction, 
or, at least partially, depends on the H2O2 that is slowly 
released by the reaction of oxygen with the reductant 
ascorbate [26, 31, 44]. In addition, reduced LPMOs in 
solution may also release low H2O2 concentrations via 
an uncoupling reaction [36]. Results obtained with the 
turbidimetric assay support an H2O2-dependent LPMO 
activity. First, we observed that the rate of NcLPMO9C 
increased linearly with the concentration of ascorbate. 
While we cannot exclude experimentally that the assays 
may not have been carried out under saturating ascorbate 
concentrations, a recent study showed that the bacterial 
LPMO10A from Serratia marcescens had an apparent 
KM-value of 2 µM for ascorbate [44]. Even if the KM-value 
of NcLPMO9C for ascorbate would be 50-times higher, 
the high 0.5–6  mM ascorbate concentration present in 
our assays should still provide sufficiently saturating con-
ditions to achieve maximal turnover. The reduction of 
the active site by ascorbate is not the rate-limiting step 
in the overall LPMO reaction at high ascorbate concen-
trations [53] and providing more reducing equivalents 
should not exert a boosting effect on the LPMO cataly-
sis. From experiments with the H2O2 scavenger catalase, 
we conclude that the H2O2 generated from the oxida-
tion reaction of O2 by ascorbate is preferentially used as 
cosubstrate by the NcLPMO9C for the degradation of 
the cellulose substrate. Stability measurements of ascor-
bate conducted under the same reaction conditions used 
in this study (50 mM phosphate buffer, pH 6, and 30 °C) 
showed that a concentration of 1 mM ascorbate depleted 
within 100  min of incubation (Figure S10 in Ref. [24]), 
forming H2O2 and dehydroascorbic acid as the degrada-
tion products.

We also found that the reaction of LPMO with 
the native electron donor cellobiose dehydrogenase 
depended on the presence of H2O2. The CDH/LPMO 
system was sensitive to the presence of catalase, which is 
in good agreement with a previous report showing that a 
CDH variant with enhanced oxygen reactivity was more 
efficient in initiating the activity of a bacterial LPMO 
[33]. In this study, the measured LPMO reaction rates 
corresponded to the rate of H2O2 formation by CDH, 
while the electron transfer from CDH to LPMO was not 
rate-limiting. Here, we confirm and extend this observa-
tion by demonstrating that the same effects occur when 
using a CDH together with an LPMO from the same 

organism (N. crassa) during the degradation of a cellu-
losic substrate. Experiments using a low amount (0.5 µM) 
of CDH showed that the LPMO reaction rate could be 
tuned by the addition of glucose oxidase/glucose, indicat-
ing that reductive activation of the LPMO by CDH was 
not rate-limiting.

Also, it should be noted that the high CDH concen-
trations (0.5–3  µM) employed in our assays aimed at 
visualizing degradation effects within the assay time of 
~ 30  min, but may not reflect conditions encountered 
in vivo. Quantitative secretome analysis of the fungus N. 
crassa previously showed that NcCDHIIA constituted 
only a minor fraction of the proteins detected under cel-
lulolytic conditions (2.4% or 0.28  µmol  g−1 secretome) 
[54]. In comparison, the 3 LPMOs identified in this study 
together made up 14.6% of the total secretome, corre-
sponding to 5.23 µmol g−1 secretome. This indicates that 
a 15- to 20-fold lower concentration of CDH is used by 
the fungus to support LPMO activity.

Overall, the herein used assay procedure allows a rapid 
determination of LPMO activity under heterogeneous 
conditions. We reason that the limits of our assay were 
largely determined by substrate depletion due to the 
modification or depolymerization of PASC. Conversion 
experiments carried out at different H2O2 feeding rates 
all converged at a similar optical density (Fig. 4a). How-
ever, the addition of fresh PASC, ascorbate or H2O2 at the 
end of the assays (after addition of 400 µM H2O2) did not 
induce notable absorbance changes of the PASC solution 
(Additional file 1: Figure S3). We, therefore, conclude that 
a limitation of binding sites on PASC and oxidative dam-
age of the unbound LPMO [26] are the limiting factors of 
this assay procedure.

Conclusions
Lytic polysaccharide monooxygenases employ a unique 
redox mechanism to degrade recalcitrant polysaccha-
rides. To date, there is still an ongoing dispute whether 
O2 or H2O2 is the preferred cosubstrate of the enzyme. 
Using different reducing systems, including the native 
reductase cellobiose dehydrogenase, we here show 
that the depolymerization of a cellulosic substrate by  
NcLPMO9C depends on the supply of H2O2. Further-
more, we introduce an easy-to-apply assay for lytic poly-
saccharide monooxygenases that employs an insoluble 
cellulose substrate.

Methods
Enzymes and chemicals
Cellobiose dehydrogenase IIA (CDHIIA) and lytic 
polysaccharide monooxygenase 9C (LPMO9C) from  
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N. crassa were recombinantly produced in Pichia pas-
toris X-33 cells as previously reported [55]. Purifica-
tion was done by sequential hydrophobic interaction 
chromatography (HIC) and anion exchange chroma-
tography (AIEX) [36, 55]. The purity of the enzymes 
was verified by SDS-PAGE and activity assays.

CDH activity was measured spectrophotometrically 
by monitoring the reduction of the FAD-dependent 
electron acceptor dichlorophenol indophenol (DCIP, 
ε520 = 6.8 mM−1 cm−1) or the heme b-dependent chro-
mogen cytochrome c (cyt c, ε550 = 19.6  mM−1  cm−1). 
Assays had a total volume of 1  mL and contained 
30  mM lactose as CDH substrate along with 300  µM 
DCIP or 20 µM cyt c in 50 mM potassium phosphate 
buffer, pH 6.0. One unit of CDH activity was defined 
as the amount of enzyme that reduced 1  µmol of the 
electron acceptor per min under the given assay 
conditions.

Catalase from Corynebacterium glutamicum and 
FAD-dependent glucose oxidase from A. niger were 
obtained from Sigma Aldrich and used without addi-
tional purification. Catalase activity was assayed by 
monitoring the decrease of 40  mM H2O2 at a wave-
length of 240  nm (ε240 = 43.6  M−1  cm−1 [56]). Assays 
had a total volume of 1  mL and were performed at 
30  °C in 50  mM potassium phosphate buffer, pH 6.0. 
One unit of catalase activity was defined as the amount 
of enzyme consuming 1 μmol H2O2 per min.

Glucose oxidase activity was assayed with a peroxi-
dase-coupled assay using ABTS [2,2′-azinobis(3-eth-
ylbenzthiazolinesulfonic acid)] (ɛ420 = 36  mM−1  cm−1) 
as the chromogenic substrate. Assays had a total vol-
ume of 1  mL and contained 10  mM glucose, 10  mM 
ABTS and 7 U mL−1 horseradish peroxidase II (Sigma 
Aldrich) in 50  mM potassium phosphate buffer, pH 
6.0. One unit of glucose oxidase activity was defined as 
the amount of enzyme necessary for the generation of 
1 μmol of H2O2 per min.

Preparation of phosphoric acid‑swollen cellulose (PASC)
Phosphoric acid-swollen cellulose (PASC) was prepared 
by dissolving 8  g of microcrystalline cellulose (20–
160  µm) in 200  mL of ice-cold 85% (v/v) phosphoric 
acid. The solution was stirred for 1  h at 4  °C. After 
removing undissolved cellulose, 1.8  L of ice-cold HQ-
water was added to induce the precipitation of PASC. 
The precipitate was washed on a vacuum pump with 
deionized water (ca. 2.0  L), with 2  L of a 2  M sodium 
bicarbonate solution and finally with 50  mM potas-
sium phosphate buffer, pH 6.0, until a constant pH was 
measured. Before utilization, PASC was homogenized 
with a disperser (Ultra Turrax, Ika).

Turbidimetric measurement of PASC and determination 
of LPMO activity
LPMO activity was measured based on the decrease of 
the optical density of a PASC suspension upon degrada-
tion [40]. The optical density of PASC was determined 
at 620  nm using a temperature-controlled, single-beam 
UV–visible spectrophotometer (U-3000, Hitachi) with 
a built-in magnetic stirrer. The measurement setup con-
sisted of a quartz cuvette with 3  mL volume contain-
ing a 6  mm cross-shaped magnetic stirrer. The cuvette 
was filled with 2.5 mL of the PASC suspension and was 
placed in a temperature-controlled UV–Vis spectrom-
eter (Hitachi U-3000). The stirrer speed was set to an 
angular frequency of approximately 50  rad  s−1 and the 
PASC suspension was equilibrated within the instru-
ment for 10  min at 30  °C. The time to achieve uniform 
mixing in the cuvette was approximately 10  s. The lin-
ear relation between the PASC concentration and its 
optical density at 620  nm was verified between 0 and 
1.4 mg PASC mL−1 (Fig. 1a). Standard activity assays con-
tained 0.8 mg mL−1 PASC and 3 µM of LPMO. Reducing 
agents for LPMO were ascorbate, or NcCDHIIA together 
with 10  mM cellobiose. All assays were performed at 
30 °C unless stated otherwise. Control experiments were 
performed by adding only ascorbate or NcLPMO9C to 
PASC. The activity was assessed based on the initial, lin-
ear decrease in optical density by fitting the data to a lin-
ear equation. PASC degradation experiments in absence 
of oxygen were performed in an anaerobic glove box 
(Whitley DG250, Don Whitley Scientific) which was 
continuously flushed with a nitrogen/hydrogen mixture 
(99:1). Residual oxygen traces were removed by a palla-
dium catalyst and the generated water vapour captured 
by silica gel. Measurements were performed on an Agi-
lent 8453 UV–visible spectrophotometer equipped with 
a magnetic stirrer. During all measurements, the temper-
ature inside the glove box was maintained at 25 ± 1 °C by 
an external thermostat.

Matrix‑assisted laser desorption/ionization mass 
spectrometry (MALDI‑MS) analysis
MALDI-MS analysis was performed on a Bruker SolariX 
15T FT-ICR mass spectrometer. PASC was washed 
two times with 250  mM sodium acetate, centrifuged at 
2000×g for three minutes, and resuspended in 25  mM 
TRIS, pH 6.0, at a concentration of 10  mg  mL−1. NcC-
DHIIA (0.1 µM), lactose (1 mM) and NcLPMO9C (3 µM) 
were added to a total reaction volume of 500  µL. The 
reaction mixture was incubated for 30 min at 30 °C under 
constant shaking. H2O2 was added to a concentration of 
30 µM (5 µL of a 3 mM H2O2 stock solution) at the start 
of the incubation and after 10, 20 and 30  min resulting 



Page 11 of 13Filandr et al. Biotechnol Biofuels           (2020) 13:37 	

in a total added concentration of 120  µM H2O2 at the 
end of the experiment. Samples were taken at the end of 
the incubation, desalted using a porous graphitic carbon 
resin (HyperCarb, Thermo Fisher Scientific) in a pipette 
tip (washed with water and eluted with 50% ACN) and 
were spotted (1.5 µL) on a MALDI plate in a 10, 20 and 
60 µg µL−1 DHB matrix in 30% ACN (1.5 µL). Measured 
values are a sum of 1500 laser shots randomly distrib-
uted across the sample spot. Results are only shown for 
20 µg µL−1 matrix that yielded the highest intensities of 
the products.

Electrochemical measurements
Chronoamperometric measurements were performed in 
a water-jacketed electrochemical cell filled with 12 mL of 
sample solution connected to a water bath (Julabo F12, 
Germany) using an Autolab PGSTAT204 potentiostat 
(Metrohm, Netherlands). A standard three-electrode 
configuration employed a platinum disk microelectrode 
with a diameter of 100 μm as the working electrode, an 
Ag/AgCl electrode as the reference electrode and a plati-
num coiled wire as the auxiliary electrode (BAS Inc.). 
Prior to all measurements, the phosphate buffer solu-
tion (50  mM, pH 6.0) containing 0.8  mg  mL−1 PASC, 
2  mM ascorbate and 3  µM NcLPMO9C was degassed 
by bubbling with nitrogen for 20  min and subsequently 
protected by applying a nitrogen atmosphere during the 
whole measurements. A potential of − 0.15 V was applied 
to detect H2O2. When the background current reached 
a stable signal, the freshly prepared and degassed H2O2 
sample was injected into the PASC suspension through 
an FEP tube (diameter 0.15  mm) connected to a 1-mL 
syringe (SGE Analytical Science). All measurements were 
conducted at 30.0 ± 0.2  °C and a magnetic stirrer oper-
ated at an angular frequency of approximately 50 rad s−1 
provided convective transport. The data were collected at 
0.5 s−1 and corrected for the background current.

Supplementary information
Supplementary information accompanies this paper at https​://doi.
org/10.1186/s1306​8-020-01673​-4.

Additional file 1: Figure S1. Incubation of 3 µM LPMO and 0.8 mg mL−1 
PASC with CDH at concentrations of 0.5 µM (red) 1 µM (blue) or 3 µM 
(green) in absence of cellobiose. Black line: 3 µM CDH and 10 mM cel-
lobiose in absence of LPMO. All reactions were carried out under constant 
stirring at 30 °C in 50 mM sodium phosphate buffer, pH 6.0. Figure S2. 
Titration of oxidized LPMO (3 µM) and 0.8 mg mL−1 PASC with 20 µM 
(green), 40 µM (red) or 80 µM (blue) H2O2 (solid lines). Dashed, coloured 
lines show the titration of 2 mM ascorbate and 0.8 mg mL−1 PASC with 
20 µM (green), 40 µM (red) or 80 µM (blue) H2O2. The vertical dashed lines 
indicate the addition of H2O2. The arrow indicates the addition of LPMO 
(solid lines) or 2 mM ascorbate (dashed lines). All reactions were carried 
out under constant stirring at 30 °C in 50 mM sodium phosphate buffer, 
pH 6.0. Figure S3. Titration of LPMO (3 µM) and 0.8 mg mL−1 PASC with 
40 µM H2O2. The vertical dashed lines indicate the addition of H2O2. The 

arrow indicates the addition of fresh PASC which was either added alone 
(green line) or simultaneously with 1 mM ascorbate (AscA, black line). The 
blue line indicates the addition of ascorbate (1 mM). All reactions were 
carried out under constant stirring at 30 °C in 50 mM sodium phosphate 
buffer, pH 6.0.

Abbreviations
LPMO: Lytic polysaccharide monooxygenase; CDH: Cellobiose dehydrogenase; 
CBM: Carbohydrate-binding module; PASC: Phosphoric acid-swollen cellulose; 
ANS: 8-Anilinonaphthalene-1-sulfonic acid; EDTA: Ethylenediaminetetraacetic 
acid; DHB: 2,5-Dihydroxybenzoic acid; TCEP: Tris(2-carboxyethyl)phosphine; 
MC: Microcrystalline cellulose; ECD: Electronic circular dichroism; MS: Mass 
spectrometry; MALDI: Matrix-assisted laser desorption/ionization; FT-ICR: 
Fourier-transform ion cyclotron resonance.

Acknowledgements
The authors thank E. Breslmayr for valuable discussions and input.

Authors’ contributions
DK conceptualised the study; FF and DK performed the turbidimetric assays; 
HC performed electrochemical measurements; FF, PM and PH performed mass 
spectrometry; DK, RL, PM, FF and PH interpreted and analysed experimental 
data; RL and DK wrote the final version of the manuscript. All authors read and 
approved the final manuscript.

Funding
The project was supported by the Austrian Science Fund FWF through grants 
J4154 (D.K.), I2385‐N28 (R.L.), the ERC Consolidator Grant OXIDISE (grant 
agreement Nr. 726396, R.L.) and the Czech Science Foundation through grant 
16-34818L (P.H.). MS instrument access was enabled through EU/MEYS fund-
ing: CZ.1.05/1.1.00.02.0109 and LM2015043 CIISB.

Availability of data and materials
The datasets used and/or analysed during the current study are available from 
the corresponding author on reasonable request.

Ethics approval and consent to participate
Not applicable.

Consent for publication
All authors have seen and approved the manuscript before submission to 
Biotechnology for Biofuels.

Competing interests
The authors declare that they have no competing interests.

Author details
1 BioCeV‑Institute of Microbiology, The Czech Academy of Sciences, 
Prumyslova 595, 252 50 Vestec, Czech Republic. 2 Faculty of Science, Charles 
University, Hlavova 2030/8, 128 43 Prague 2, Czech Republic. 3 Biocatalysis 
and Biosensing Research Group, Department of Food Science and Technol-
ogy, BOKU-University of Natural Resources and Life Sciences, Muthgasse 18, 
1190 Vienna, Austria. 4 The University of Manchester, Manchester Institute 
of Biotechnology, Manchester M1 7DN, UK. 

Received: 12 December 2019   Accepted: 1 February 2020

References
	1.	 Johansen KS. Discovery and industrial applications of lytic polysaccha-

ride mono-oxygenases. Biochem Soc Trans. 2016;44:143–9. https​://doi.
org/10.1042/BST20​15020​4.

	2.	 Müller G, Várnai A, Johansen KS, et al. Harnessing the potential of 
LPMO-containing cellulase cocktails poses new demands on processing 
conditions. Biotechnol Biofuels. 2015;8:187. https​://doi.org/10.1186/s1306​
8-015-0376-y.

https://doi.org/10.1186/s13068-020-01673-4
https://doi.org/10.1186/s13068-020-01673-4
https://doi.org/10.1042/BST20150204
https://doi.org/10.1042/BST20150204
https://doi.org/10.1186/s13068-015-0376-y
https://doi.org/10.1186/s13068-015-0376-y


Page 12 of 13Filandr et al. Biotechnol Biofuels           (2020) 13:37 

	3.	 Vaaje-Kolstad G, Westereng B, Horn SJ, et al. An oxidative enzyme 
boosting the enzymatic conversion of recalcitrant polysaccharides. 
Science (80). 2010;330:219–22. https​://doi.org/10.1126/scien​ce.11922​
31.

	4.	 Quinlan RJ, Sweeney MD, Lo Leggio L, et al. Insights into the oxidative 
degradation of cellulose by a copper metalloenzyme that exploits 
biomass components. Proc Natl Acad Sci. 2011;108:15079–84. https​://
doi.org/10.1073/pnas.11057​76108​.

	5.	 Sabbadin F, Hemsworth GR, Ciano L, et al. An ancient family of lytic 
polysaccharide monooxygenases with roles in arthropod development 
and biomass digestion. Nat Commun. 2018. https​://doi.org/10.1038/
s4146​7-018-03142​-x.

	6.	 Chiu E, Hijnen M, Bunker RD, et al. Structural basis for the enhance-
ment of virulence by viral spindles and their in vivo crystallization. Proc 
Natl Acad Sci. 2015;112:3973–8. https​://doi.org/10.1073/pnas.14187​
98112​.

	7.	 Yadav SK, Archana, Singh R, et al. Insecticidal fern protein Tma12 is pos-
sibly a lytic polysaccharide monooxygenase. Planta. 2019;249:1987–96. 
https​://doi.org/10.1007/s0042​5-019-03135​-0.

	8.	 Forsberg Z, Vaaje-kolstad G, Westereng B, et al. Cleavage of cellulose by 
a cbm33 protein. Protein Sci. 2011;20:1479–83. https​://doi.org/10.1002/
pro.689.

	9.	 Isaksen T, Westereng B, Aachmann FL, et al. A C4-oxidizing lytic polysac-
charide monooxygenase cleaving both cellulose and cello-oligosac-
charides. J Biol Chem. 2014;289:2632–42. https​://doi.org/10.1074/jbc.
M113.53019​6.

	10.	 Vu VV, Beeson WT, Span EA, et al. A family of starch-active polysaccharide 
monooxygenases. Proc Natl Acad Sci. 2014;111:13822–7. https​://doi.
org/10.1073/pnas.14080​90111​.

	11.	 Agger JW, Isaksen T, Varnai A, et al. Discovery of LPMO activity on 
hemicelluloses shows the importance of oxidative processes in plant 
cell wall degradation. Proc Natl Acad Sci. 2014;111:6287–92. https​://doi.
org/10.1073/pnas.13236​29111​.

	12.	 Frommhagen M, Sforza S, Westphal AH, et al. Discovery of the combined 
oxidative cleavage of plant xylan and cellulose by a new fungal polysac-
charide monooxygenase. Biotechnol Biofuels. 2015;8:101. https​://doi.
org/10.1186/s1306​8-015-0284-1.

	13.	 Couturier M, Ladevèze S, Sulzenbacher G, et al. Lytic xylan oxidases 
from wood-decay fungi unlock biomass degradation. Nat Chem Biol. 
2018;14:306–10. https​://doi.org/10.1038/nchem​bio.2558.

	14.	 Harris PV, Welner D, McFarland KC, et al. Stimulation of lignocellulosic 
biomass hydrolysis by proteins of glycoside hydrolase family 61: structure 
and function of a large, enigmatic family. Biochemistry. 2010;49:3305–16. 
https​://doi.org/10.1021/bi100​009p.

	15.	 Langston JA, Shaghasi T, Abbate E, et al. Oxidoreductive cellulose depo-
lymerization by the enzymes cellobiose dehydrogenase and glycoside 
hydrolase 61. Appl Environ Microbiol. 2011;77:7007–15. https​://doi.
org/10.1128/AEM.05815​-11.

	16.	 Meier KK, Jones SM, Kaper T, et al. Oxygen activation by Cu LPMOs in 
recalcitrant carbohydrate polysaccharide conversion to monomer sugars. 
Chem Rev. 2018;118:2593–635. https​://doi.org/10.1021/acs.chemr​
ev.7b004​21.

	17.	 Walton PH, Davies GJ. On the catalytic mechanisms of lytic polysaccha-
ride monooxygenases. Curr Opin Chem Biol. 2016;31:195–207. https​://
doi.org/10.1016/j.cbpa.2016.04.001.

	18.	 Westereng B, Cannella D, Wittrup Agger J, et al. Enzymatic cellulose 
oxidation is linked to lignin by long-range electron transfer. Sci Rep. 
2016;5:18561. https​://doi.org/10.1038/srep1​8561.

	19.	 Martinez AT. How to break down crystalline cellulose. Science (80). 
2016;352:1050–1. https​://doi.org/10.1126/scien​ce.aaf89​20.

	20.	 Phillips CM, Beeson WT, Cate JH, et al. Cellobiose dehydrogenase and a 
copper-dependent polysaccharide monooxygenase potentiate cellulose 
degradation by Neurospora crassa. ACS Chem Biol. 2011;6:1399–406. https​
://doi.org/10.1021/cb200​351.

	21.	 Tan T-C, Kracher D, Gandini R, et al. Structural basis for cellobiose dehy-
drogenase action during oxidative cellulose degradation. Nat Commun. 
2015;6:7542. https​://doi.org/10.1038/ncomm​s8542​.

	22.	 Frommhagen M, Mutte SK, Westphal AH, et al. Boosting LPMO-driven lig-
nocellulose degradation by polyphenol oxidase-activated lignin building 
blocks. Biotechnol Biofuels. 2017;10:121. https​://doi.org/10.1186/s1306​
8-017-0810-4.

	23.	 Brenelli L, Squina FM, Felby C, et al. Laccase-derived lignin compounds 
boost cellulose oxidative enzymes AA9. Biotechnol Biofuels. 2018;11:10. 
https​://doi.org/10.1186/s1306​8-017-0985-8.

	24.	 Kracher D, Scheiblbrandner S, Felice AKG, et al. Extracellular electron 
transfer systems fuel cellulose oxidative degradation. Science (80). 
2016;352:1098–101. https​://doi.org/10.1126/scien​ce.aaf31​65.

	25.	 Kjaergaard CH, Qayyum MF, Wong SD, et al. Spectroscopic and com-
putational insight into the activation of O2 by the mononuclear Cu 
center in polysaccharide monooxygenases. Proc Natl Acad Sci U S A. 
2014;111:8797–802. https​://doi.org/10.1073/pnas.14081​15111​.

	26.	 Bissaro B, Røhr ÅK, Müller G, et al. Oxidative cleavage of polysaccha-
rides by monocopper enzymes depends on H2O2. Nat Chem Biol. 
2017;13:1123–8. https​://doi.org/10.1038/nchem​bio.2470.

	27.	 Forsberg Z, Sørlie M, Petrović D, et al. Polysaccharide degradation by lytic 
polysaccharide monooxygenases. Curr Opin Struct Biol. 2019;59:54–64. 
https​://doi.org/10.1016/j.sbi.2019.02.015.

	28.	 Kuusk S, Bissaro B, Kuusk P, et al. Kinetics of H2O2-driven degradation of 
chitin by a bacterial lytic polysaccharide monooxygenase. J Biol Chem. 
2018;293:523–31. https​://doi.org/10.1074/jbc.M117.81759​3.

	29.	 Hangasky JA, Iavarone AT, Marletta MA. Reactivity of O2 versus H2O2 
with polysaccharide monooxygenases. Proc Natl Acad Sci U S A. 
2018;115:4915–20. https​://doi.org/10.1073/pnas.18011​53115​.

	30.	 Petrović DM, Bissaro B, Chylenski P, et al. Methylation of the N-terminal 
histidine protects a lytic polysaccharide monooxygenase from auto-oxi-
dative inactivation. Protein Sci. 2018;27:1636–50. https​://doi.org/10.1002/
pro.3451.

	31.	 Bissaro B, Várnai A, Røhr ÅK, et al. Oxidoreductases and reactive oxygen 
species in conversion of lignocellulosic biomass. Microbiol Mol Biol Rev. 
2018. https​://doi.org/10.1128/mmbr.00029​-18.

	32.	 Sygmund C, Santner P, Krondorfer I, et al. Semi-rational engineering of 
cellobiose dehydrogenase for improved hydrogen peroxide production. 
Microb Cell Fact. 2013;12:38. https​://doi.org/10.1186/1475-2859-12-38.

	33.	 Kracher D, Forsberg Z, Bissaro B, et al. Polysaccharide oxidation by lytic 
polysaccharide monooxygenase is enhanced by engineered cellobiose 
dehydrogenase. FEBS J. 2019. https​://doi.org/10.1111/febs.15067​.

	34.	 Westereng B, Arntzen M, Agger JW, et al. Analyzing activities of lytic 
polysaccharide monooxygenases by liquid chromatography and mass 
spectrometry. Methods in molecular biology. New York: Humana press; 
2017. p. 71–92. https​://doi.org/10.1007/978-1-4939-6899-2_7.

	35.	 Wang D, Li J, Wong ACYY, et al. A colorimetric assay to rapidly determine 
the activities of lytic polysaccharide monooxygenases. Biotechnol Biofu-
els. 2018;11:215. https​://doi.org/10.1186/s1306​8-018-1211-z.

	36.	 Kittl R, Kracher D, Burgstaller D, et al. Production of four Neurospora 
crassa lytic polysaccharide monooxygenases in Pichia pastoris moni-
tored by a fluorimetric assay. Biotechnol Biofuels. 2012;5:79. https​://doi.
org/10.1186/1754-6834-5-79.

	37.	 Breslmayr E, Hanžek M, Hanrahan A, et al. A fast and sensitive activity 
assay for lytic polysaccharide monooxygenase. Biotechnol Biofuels. 
2018;11:1–13. https​://doi.org/10.1186/s1306​8-018-1063-6.

	38.	 Hansson H, Karkehabadi S, Mikkelsen N, et al. High-resolution structure 
of a lytic polysaccharide monooxygenase from Hypocrea jecorina reveals 
a predicted linker as an integral part of the catalytic domain. J Biol Chem. 
2017;292:19099–109. https​://doi.org/10.1074/jbc.M117.79976​7.

	39.	 Zhang YHP, Lynd LR. Determination of the number-average degree 
of polymerization of cellodextrins and cellulose with application to 
enzymatic hydrolysis. Biomacromolecules. 2005;6:1510–5. https​://doi.
org/10.1021/bm049​235j.

	40.	 Enari T-M, Niku-Paavola M-L. Nephelometric and turbidometric assay for 
cellulase. Methods in enzymology. New York: Academic Press; 1988. p. 
117–26.

	41.	 Borisova AS, Isaksen T, Dimarogona M, et al. Structural and functional 
characterization of a lytic polysaccharide monooxygenase with broad 
substrate specificity. J Biol Chem. 2015;290:22955–69. https​://doi.
org/10.1074/jbc.M115.66018​3.

	42.	 Kracher D, Andlar M, Furtmüller PG, et al. Active-site copper reduction 
promotes substrate binding of fungal lytic polysaccharide monooxyge-
nase and reduces stability. J Biol Chem. 2018;293:1676–87. https​://doi.
org/10.1074/jbc.RA117​.00010​9.

	43.	 Hangasky JA, Marletta MA. A random-sequential kinetic mechanism for 
polysaccharide monooxygenases. Biochemistry. 2018;57:3191–9. https​://
doi.org/10.1021/acs.bioch​em.8b001​29.

https://doi.org/10.1126/science.1192231
https://doi.org/10.1126/science.1192231
https://doi.org/10.1073/pnas.1105776108
https://doi.org/10.1073/pnas.1105776108
https://doi.org/10.1038/s41467-018-03142-x
https://doi.org/10.1038/s41467-018-03142-x
https://doi.org/10.1073/pnas.1418798112
https://doi.org/10.1073/pnas.1418798112
https://doi.org/10.1007/s00425-019-03135-0
https://doi.org/10.1002/pro.689
https://doi.org/10.1002/pro.689
https://doi.org/10.1074/jbc.M113.530196
https://doi.org/10.1074/jbc.M113.530196
https://doi.org/10.1073/pnas.1408090111
https://doi.org/10.1073/pnas.1408090111
https://doi.org/10.1073/pnas.1323629111
https://doi.org/10.1073/pnas.1323629111
https://doi.org/10.1186/s13068-015-0284-1
https://doi.org/10.1186/s13068-015-0284-1
https://doi.org/10.1038/nchembio.2558
https://doi.org/10.1021/bi100009p
https://doi.org/10.1128/AEM.05815-11
https://doi.org/10.1128/AEM.05815-11
https://doi.org/10.1021/acs.chemrev.7b00421
https://doi.org/10.1021/acs.chemrev.7b00421
https://doi.org/10.1016/j.cbpa.2016.04.001
https://doi.org/10.1016/j.cbpa.2016.04.001
https://doi.org/10.1038/srep18561
https://doi.org/10.1126/science.aaf8920
https://doi.org/10.1021/cb200351
https://doi.org/10.1021/cb200351
https://doi.org/10.1038/ncomms8542
https://doi.org/10.1186/s13068-017-0810-4
https://doi.org/10.1186/s13068-017-0810-4
https://doi.org/10.1186/s13068-017-0985-8
https://doi.org/10.1126/science.aaf3165
https://doi.org/10.1073/pnas.1408115111
https://doi.org/10.1038/nchembio.2470
https://doi.org/10.1016/j.sbi.2019.02.015
https://doi.org/10.1074/jbc.M117.817593
https://doi.org/10.1073/pnas.1801153115
https://doi.org/10.1002/pro.3451
https://doi.org/10.1002/pro.3451
https://doi.org/10.1128/mmbr.00029-18
https://doi.org/10.1186/1475-2859-12-38
https://doi.org/10.1111/febs.15067
https://doi.org/10.1007/978-1-4939-6899-2_7
https://doi.org/10.1186/s13068-018-1211-z
https://doi.org/10.1186/1754-6834-5-79
https://doi.org/10.1186/1754-6834-5-79
https://doi.org/10.1186/s13068-018-1063-6
https://doi.org/10.1074/jbc.M117.799767
https://doi.org/10.1021/bm049235j
https://doi.org/10.1021/bm049235j
https://doi.org/10.1074/jbc.M115.660183
https://doi.org/10.1074/jbc.M115.660183
https://doi.org/10.1074/jbc.RA117.000109
https://doi.org/10.1074/jbc.RA117.000109
https://doi.org/10.1021/acs.biochem.8b00129
https://doi.org/10.1021/acs.biochem.8b00129


Page 13 of 13Filandr et al. Biotechnol Biofuels           (2020) 13:37 	

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your research ?  Choose BMC and benefit from: 

	44.	 Kuusk S, Kont R, Kuusk P, et al. Kinetic insights into the role of the reduct-
ant in H2O2-driven degradation of chitin by a bacterial lytic polysac-
charide monooxygenase. J Biol Chem. 2019;294:1516–28. https​://doi.
org/10.1074/jbc.RA118​.00619​6.

	45.	 Pricelius S, Ludwig R, Lant NJ, et al. In situ generation of hydrogen perox-
ide by carbohydrate oxidase and cellobiose dehydrogenase for bleach-
ing purposes. Biotechnol J. 2011;6:224–30. https​://doi.org/10.1002/
biot.20100​0246.

	46.	 Wilson MT, Hogg N, Jones GD. Reactions of reduced cellobiose oxidase 
with oxygen. Is cellobiose oxidase primarily an oxidase? Biochem J. 
1990;270:265–7. https​://doi.org/10.1042/bj270​0265.

	47.	 Znameroski EA, Coradetti ST, Roche CM, et al. Induction of lignocellulose-
degrading enzymes in Neurospora crassa by cellodextrins. Proc Natl Acad 
Sci. 2012;109:6012–7. https​://doi.org/10.1073/pnas.11184​40109​.

	48.	 Westereng B, Agger JW, Horn SJ, et al. Efficient separation of oxidized 
cello-oligosaccharides generated by cellulose degrading lytic polysac-
charide monooxygenases. J Chromatogr A. 2013;1271:144–52. https​://
doi.org/10.1016/j.chrom​a.2012.11.048.

	49.	 Lowry JP, O’Neill RD. Homogeneous mechanism of ascorbic acid interfer-
ence in hydrogen peroxide detection at enzyme-modified electrodes. 
Anal Chem. 1992;64:453–6. https​://doi.org/10.1021/ac000​28a02​2.

	50.	 Deutsch JC. Ascorbic acid oxidation by hydrogen peroxide. Anal Bio-
chem. 1998;255:1–7. https​://doi.org/10.1006/ABIO.1997.2293.

	51.	 Müller G, Chylenski P, Bissaro B, et al. The impact of hydrogen peroxide 
supply on LPMO activity and overall saccharification efficiency of a 

commercial cellulase cocktail. Biotechnol Biofuels. 2018;11:209. https​://
doi.org/10.1186/s1306​8-018-1199-4.

	52.	 Chylenski P, Bissaro B, Sørlie M, et al. Lytic polysaccharide monooxyge-
nases in enzymatic processing of lignocellulosic biomass. ACS Catal. 
2019;9:4970–91. https​://doi.org/10.1021/acsca​tal.9b002​46.

	53.	 Bissaro B, Streit B, Isaksen I, et al. Molecular mechanism of the chitinolytic 
peroxygenase reaction. Proc Natl Acad Sci. 2020. https​://doi.org/10.1073/
pnas.19048​89117​.

	54.	 Phillips CM, Iavarone AT, Marletta MA. Quantitative proteomic approach 
for cellulose degradation by Neurospora crassa. J Proteome Res. 
2011;10:4177–85. https​://doi.org/10.1021/pr200​329b.

	55.	 Sygmund C, Kracher D, Scheiblbrandner S, et al. Characterization of the 
two Neurospora crassa cellobiose dehydrogenases and their connection 
to oxidative cellulose degradation. Appl Environ Microbiol. 2012;78:6161–
71. https​://doi.org/10.1128/AEM.01503​-12.

	56.	 Beers RF, Sizer IW. A spectrophotometric method for measur-
ing the breakdown of hydrogen peroxide by catalase. J Biol Chem. 
1952;195:133–40.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://doi.org/10.1074/jbc.RA118.006196
https://doi.org/10.1074/jbc.RA118.006196
https://doi.org/10.1002/biot.201000246
https://doi.org/10.1002/biot.201000246
https://doi.org/10.1042/bj2700265
https://doi.org/10.1073/pnas.1118440109
https://doi.org/10.1016/j.chroma.2012.11.048
https://doi.org/10.1016/j.chroma.2012.11.048
https://doi.org/10.1021/ac00028a022
https://doi.org/10.1006/ABIO.1997.2293
https://doi.org/10.1186/s13068-018-1199-4
https://doi.org/10.1186/s13068-018-1199-4
https://doi.org/10.1021/acscatal.9b00246
https://doi.org/10.1073/pnas.1904889117
https://doi.org/10.1073/pnas.1904889117
https://doi.org/10.1021/pr200329b
https://doi.org/10.1128/AEM.01503-12


 

- 3 - 
 

 

 

 

 

 

 

ARTICLE III 
 

Felice A.K.G., Schuster C., Kadek, A., Filandr F., Laurent, C.V.F.P., 

Scheiblbrandner, S., Schwaiger, L., Schachinger, F., Kracher, D., Sygmund, C., 

Man, P., Halada, P., Oostenbrink, C. & Ludwig, R. 
 
Chimeric cellobiose dehydrogenases reveal the function of cytochrome 

domain mobility for the electron transfer to lytic polysaccharide 

monooxygenase  
 
ACS Catal., under review. 
 

My contribution: conducting experiments (HDX-MS), data analysis & interpretation, 

figure design 

  



 CDH – LPMO interaction and electron transfer 

 

1 

 

Chimeric cellobiose dehydrogenases reveal the function 

of cytochrome domain mobility for the electron transfer 

to lytic polysaccharide monooxygenase  

Alfons K.G. Felice1, Christian Schuster1, Alan Kadek2,3, Frantisek Filandr2,3, Christophe 

V.F.P. Laurent1,4, Stefan Scheiblbrandner1, Lorenz Schwaiger1, Franziska Schachinger1, 

Daniel Kracher1, Christoph Sygmund1, Petr Man2,3, Petr Halada2, Chris Oostenbrink4 and 

Roland Ludwig1 

1 Biocatalysis and Biosensing Research Group, Department of Food Science and Technology, 

BOKU – University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, 

Austria 

2 BIOCEV - Institute of Microbiology, The Czech Academy of Sciences, Prumyslova 595,  

252 50 Vestec, Czech Republic 

3 Department of Biochemistry, Faculty of Science, Charles University in Prague, Hlavova 8, 

128 43 Prague, Czech Republic 

4 Department of Material Sciences and Process Engineering, BOKU – University of Natural 

Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria  

Keywords: cellobiose dehydrogenase, chimeric enzyme, domain swapping, electron transfer, 

lytic polysaccharide monooxygenase 



 CDH – LPMO interaction and electron transfer 

 

2 

 

 

ABSTRACT 

The natural function of cellobiose dehydrogenase (CDH) to donate electrons from its catalytic 

flavodehydrogenase (DH) domain via its cytochrome (CYT) domain to lytic polysaccharide 

monooxygenase (LPMO) is an example of a highly efficient extracellular electron transfer 

chain. To investigate the function of CYT domain movement in the two occurring electron 

transfer steps, two CDHs from the ascomycete Neurospora crassa (NcCDHIIA and 

NcCDHIIB) and four chimeric CDH enzymes created by domain swapping were studied in 

combination with the fungus’ own LPMOs (NcLPMO9C and NcLPMO9F). Kinetic and 

electrochemical methods as well as hydrogen/deuterium exchange mass spectrometry were 

used to study the domain movement, interaction and electron transfer kinetics. Molecular 

docking provided insight into the protein-protein interface, orientation of domains and binding 

energies. We find that the first, interdomain electron transfer step (IDET) from the catalytic 

site in the DH domain to the CYT domain depends on steric and electrostatic interface 

complementarity and the length of the protein linker between both domains, but not on the 

redox potential difference between the FAD and heme b cofactors. After CYT reduction, a 

conformational change of CDH from its closed-state to an open-state allows the second, 

interprotein electron transfer step (IPET) from CYT to LPMO to occur by direct interaction of 

the b-type heme and the type-2 copper center. Chimeric CDH enzymes favor the open-state 

and achieve higher IPET rates by presenting the heme b cofactor to LPMO. The IPET, which 

is influenced by interface complementarity and the heme b redox potential, is very efficient 

with bimolecular rates between 2.9 – 8.8 105 M-1 s-1. 
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INTRODUCTION 

The catalytic activity of LPMO and its interaction with CDH has been reported to increase 

the rate of hydrolysis of cellulose from recalcitrant biomass and to increase the overall 

efficiency of enzymatic cocktails 1–4. Compared with electron donating, low molecular weight 

reductants of LPMO such as gallate or ascorbate, CDH is specific for LPMO and shows a fast 

electron transfer at physiological concentrations 5,6. CDH is an extracellular flavocytochrome 

and contains FAD and a b-type heme in the DH and CYT domains, respectively, which are 

connected via a flexible linker. The electron transfer between the domains is pH-dependent 

and has been studied by Igarashi and coworkers in detail 7. Recently, the structure of the full 

length protein has been elucidated and two conformations (closed- and open-state) of the 

CYT domain were observed, which are supposed to play a role in IDET and IPET 8. 

LPMO activation by CDH comprises three steps: (i) catalytic cellobiose oxidation in the 

DH active-site leads to the formation of the reduced FADH2 cofactor, (ii) interaction of CYT 

with DH in the closed-state results in the subsequent one-electron IDET, and (iii) interaction 

of CYT in the open-state with LPMO results in the one electron IPET. In the closed-state of 

CDH the FAD and heme b cofactors are in close proximity (~9 Å), which should favor IDET, 

whereas IPET depends on the interaction of the heme b with LPMO 8, which should be 

favored in the open-state. The structure of the linker in the open- or closed-state could not be 

fully determined in crystal structures, which indicates its high flexibility.  

The two CDHs encoded in the genome of N. crassa provide a good basis to study the 

influence of the CYT mobility on electron transfer due to several reasons. First, the structure 

of NcCDHIIA has been elucidated (PDB ID: 4QI7) and second, a comparison of the steady-

state kinetic constants of the two CDHs in a previous study found a 3.5-fold faster IDET rate 

for NcCDHIIA at pH 6.0 compared to NcCDHIIB despite the ~50 mV lower redox potential 

of its heme b cofactor than in NcCDHIIB. The independence of the IDET rate from the 
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driving force suggests a different function of both enzymes’ CYT domains, possibly an 

adaptation to the copper center redox potentials of different LPMOs 6. Structural features of 

the domains and surface charge distribution have been shown to influence the CDH domain 

interaction kinetics 9,10. SAXS and SANS studies showed that the oxidized form of CDH 

populates a variety of conformational states between closed- and fully open state and that pH, 

presence of divalent cations and the presence of LPMO modulate occupation of the closed- 

and open-state 11,12. Fast scanning AFM studies showed a preference of the open-state in the 

reduced form of CDH 13. These observations raise the question of how CYT interacts with 

either DH or LPMO and which structural and kinetic determinants govern the interaction. 

Based on sequence alignment and the elucidated crystal structures we created chimeric 

CDH enzymes by exchanging linker, CYT, and DH domains of the two NcCDHs to study the 

role of the CYT-DH interface, the effect of different cofactor redox potentials, and the 

influence of the linker length on the protein-protein interaction and IDET. CYT-LPMO 

interaction was also studied by hydrogen/deuterium exchange mass spectrometry (HDX-MS) 

measurements and transient-state kinetics to determine the interaction site of CDH-LPMO 

and evaluate its structural and kinetic determinants to verify recent results obtained by 

Courtade et al. who showed binding of CDH and CYT to the LPMO active-site by means of 

15N-HSQC and 13C-aromatic-HSQC 14 and of Laurent et al. who modelled the interaction 

between both enzymes 15.  

To study the effect of (i) the surface complementarity at the protein-protein interface, (ii) 

differences in the redox potentials of the cofactors, and (iii) the linker length on the domain 

interaction and the electron transfer rate, a domain swapping strategy was applied to create 

chimeric enzymes of the two N. crassa CDHs by exchanging CYT and linkers with different 

structural and physical properties. Chimeric CDHs were studied by steady-state and 
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presteady-state kinetics, electrochemical methods and molecular modelling in combination 

with two N. crassa LPMOs. 

 

RESULTS 

Construction and properties of chimeric CDH variants— 

A domain swapping strategy was applied to exchange linkers and CYT domains of the two 

N. crassa CDHs (Fig. 1A). The sequence alignment of NcCDHIIA (UniProt: Q7RXM0) with 

NcCDHIIB (UniProt: Q7S0Y1) gives a sequence identity of 53% and was used together with 

the crystal structure of NcCDHIIA (PBD: 4QI7) and a homology model of NcCDHIIB to 

define the individual CDH domains. The end of the N-terminal CYT domain is defined by a 

cysteine residue forming a disulfide bond (CYTA: Q1–C211, CYTB: Q1–C216, for brevity we 

denote the domains and the linker of NcCDHIIA by A and NcCDHIIB by B). This disulfide 

bond in CYT is found in several CDHs and possibly evolved to stabilize the C-terminus from 

mechanical stress exerted by the linker. After this cysteine the linker sequence follows 

(LinkerA: S212–S229, LinkerB: S217–T250). The DH domain starts with the first amino acid 

firmly connected with DH and ends with the C-terminus (DHA: F230–V772, DHB: Y251–

R805). The C-terminus of NcCDHIIA features an additional family 1 carbohydrate binding 

module (P773–V806), which is not present in NcCDHIIB. The sequence identities of 

individual linkers, CYT and DH domains deviate considerably from the global sequence 

identity (Fig. 1B). The catalytically active DH domains are most conserved, the linkers least. 

The linkers of both enzymes are rich in serine, threonine, and proline, but differ substantially 

in length. LinkerA consists of 18 amino acids, while LinkerB is twice as long and consists of 

34 amino acids. The evolutionary divergence of the CYT domains and linkers points towards 

different mechanistic properties, physiological functions, and interacting LPMOs.   
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Production and purification of enzymes— 

Wild-type N. crassa CDHs (NcCDHIIA denoted as CDHAAA and NcCDHIIB denoted as 

CDHBBB) and four chimeric CDHs (CDHAAB, CDHABB, CDHBBA, and CDHBAA) were 

recombinantly produced in Pichia pastoris and chromatographically purified (Fig. S1, Table 

S1). LPMO9F and LPMO9F from N. crassa were also produced in P. pastoris and 

chromatographically purified. The molecular weight of the individual domains and linkers 

can be calculated from the amino acid sequence and summed up to obtain molecular weights 

for full-length CDHs (Fig. 1C). Close molecular weights for the two wild-type enzymes 

CDHAAA and CDHBBB are predicted and also between the smallest and biggest chimeric 

enzymes (CDHAAB and CDHBBA, respectively) the mass difference is only 4484 Da. The 

molecular weights of the six purified CDHs determined by SDS-PAGE differ from the 

calculated values. The observed molecular weights are 12–39% larger and a result of 

posttranslational N-glycosylation 16 and O-glycosylation38 . Considerable differences in the 

glycosylation, even between closely composed chimeric CDHBBA and CDHBAA, point 

towards batch-to-batch variations between fermentations or differences in the post-

translational processing of the chimeric CDHs. UV-Vis spectra of the oxidized and reduced 

chimeric CDHs reveal that the FAD and heme b cofactors are properly incorporated (Fig. 

S2).   

 

Catalytic performance of DH domains in chimeric CDH— 

In the reductive half-reaction, the oxidation of cellobiose in the active site of the DH 

domain results in the formation of cellobiono--lactone and the reduced cofactor. In the 

oxidative half-reaction, the two electrons stored at the FADH2 are then transferred to the 

heme b cofactor in the CYT domain in two separate, one-electron transfer steps to provide 



 CDH – LPMO interaction and electron transfer 

 

7 

 

electrons for LPMO reduction6. Alternatively, the electrons can be transferred from FADH2 

to a two-electron acceptor such as 2,6-dichloroindophenol, which allows the assessment of 

catalysis without contribution of the subsequent electron transfer step to the CYT domain. To 

investigate if the exchange of the CYT domain influences catalysis in the DH domain, we 

determined the pH optima, steady-state catalytic constants, and presteady-state rates for the 

two wild-type CDHs and the four chimeric CDHs. The pH optimum of the catalytic reaction 

with cellobiose and 2,6-dichloroindophenol resulted in bell-shaped pH profiles with optima 

between 4.5–5.5 (Figs. 2A,B). In comparison with the wild-type enzymes, the chimeric 

CDHs show a slight shift of the pH optimum, narrower peaks, and a reduced activity above 

pH 7. The presence of CYTB in chimeric enzymes based on DHA lowers the pH optimum, 

whereas the presence of CYTA increases the pH optimum of DHB-based chimeric enzymes. 

The catalytic constants and presteady-state rates were determined at pH 6.0 (Fig. 2C, Table 

1). At this pH optimal CDH-LPMO interaction was observed 5, which is important for later 

experiments. The determined KM and kcat of CDHAAA for cellobiose are both about four times 

higher than that of CDHBBB, which results in the same catalytic efficiency. In the presence of 

CYTB the KM and kcat of DHA are slightly lower compared to CDHAAA, whereas the presence 

of CYTA has no significant effect on the KM and kcat of DHB compared to CDHBBB. The 

catalytic efficiencies at pH 6.0 are similar for all wild-type and chimeric CDHs, which 

renders this pH suitable for studying the subsequent IDET and IPET steps. The presteady-

state reduction rates of FAD at 449 nm (Fig. 2C, kobs
449) and the thereof extrapolated limiting 

rates for infinite substrate concentration (Table 1, klim
449) show that enzymes with a DHA 

domain oxidized cellobiose ~2.5 times faster than enzymes with a DHB domain, but no 

influence of the swapped CYT domains is observed. The kobs
449 plotted vs. the cellobiose 

concentration indicates a higher substrate affinity of the DHB active site, which is in 

agreement with the results from steady-state analysis. The performed experiments show that 
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the reductive-half reaction of DH is not affected by a swap in the cytochrome domain, but in 

the oxidative-half reaction the activity with the electron acceptor 2,6-dichloroindophenol is 

slightly influenced by the swap of the CYT domain.    

 

Cofactor redox potentials in chimeric CDH— 

The FAD and heme b cofactor in CDH make close contact (~9 Å edge-to-edge distance) in 

the enzyme’s closed-state. To determine if a domain swap influences the cofactor redox 

potentials the midpoint redox potentials of FAD (Table 1) and heme b (Table 2) for the wild-

type and chimeric CDHs were determined to identify possible differences, which could 

influence IDET and IPET rates. However, no significant change was found. The midpoint 

redox potentials of FAD in all CDHs were between 24–43 mV vs. . standard hydrogen 

electrode (SHE). The spectroelectrochemical measurement of the relatively low FAD 

absorbance in the presence of the strong CYT Soret-band resulted in bigger errors for enzyme 

solutions with a lower enzyme concentration. The low amount of purified CDHAAB did not 

allow the determination of its FAD redox potential. In contrast to the similar redox potential 

of FAD in DHA and DHB, the heme b redox potential in the CYT domains differs by about 60 

mV. While CYTA showed little modulation of its redox potential in wild-type and chimeric 

CDHs (~97–103 mV vs. SHE), the CYTB redox potentials were slightly increased (169 and 

172 mV vs. SHE) in the chimeric CDHs compared to wild-type CDHBBB (158 mV vs. SHE). 

 

Interdomain electron transfer in chimeric CDHs— 

Cellobiose oxidation in the DH domain is followed by IDET from the FADH2 or FADH• 

semiquinone to the oxidized heme b. Steady-state kinetic measurements with cellobiose and 

the one-electron acceptor cytochrome c, which interacts only with CYT but not with the DH 

domain, were used to compare wild-type and chimeric CDHs (Fig. 3A, Table 2). The 
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cytochrome c turnover number (TN) of CDHAAA was about 3.5-fold higher than that of 

CDHBBB, which corresponds to the faster catalytic turnover found for DHA. All chimeric 

CDHs exhibit lower cytochrome c TNs than the wild-type CDHs, but it is surprising that for 

three out of the four the reduction is only 4–12-fold and not an almost complete shut-down of 

the IDET (~150-fold reduction) as for CDHBBA. This indicates two points: (i) a relatively 

good compatibility of the unfamiliar CYT domain despite their low sequence identity of 42% 

and (ii) the influence of the linker on the CYT-DH interaction, which is demonstrated by the 

reduced IDET of chimeric CDHs featuring the longer LinkerB.  The pH optimum of the IDET 

was partially influenced by domain swapping. The wild-type CDHBBB has a lower pH 

optimum (4.5) than CDHAAA, but exhibits a plateau until pH 8.0. The pH optimum of 

chimeric CDHs is identical or close to that of the respective DH domain, which can be 

explained by the isoelectric points of CYT and DH domains in CDH. The CYT domain in 

CDHs has typically a very low pI of ~3, whereas the DH domains have a pI of ~5 43. The 

deprotonation of acidic amino acid residues on the DH domain close to the CYT-DH 

interface generates electrostatic repulsion of the strongly negatively charged CYT domain. 

Interestingly, the for CDHBBB observed plateau of IDET is also found in CDHBBA and 

CDHBAA and thus seems to be a feature of CYTB. 

Although the interprotein electron transfer (IPET) between CYT and cytochrome c is very 

fast 17–19, it could still influence the observed IDET rate. Therefore, we measured also the 

transient reduction rate of the heme b cofactor to avoid a possibly rate-limiting step. This 

direct measurement of IDET in CDH was performed by stopped-flow spectrophotometry at 

563 nm to observe the reduction of the heme b α-peak (Figs. 3B, 3C, Table 2). The observed 

transient rates show exactly the same trends as the steady-state rates ensuring that the 

cytochrome c assay provides a good estimation for the IDET rate in CDH. As expected, the 

IDET rate (kobs
563) of all CDHs is slower than the respective FAD reduction rate (kobs

449). 
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However, in case of CDHAAA, kobs
563 is 50 s-1 and very close to kobs

449 (80 s-1). In this case a 

limitation of the IDET at low cellobiose concentrations (<1 mM) was observed. For CDHBBB 

and all chimeric CDHs a much slower IDET was observed and therefore limitation was found 

for substrate concentrations down to 50 µM. Taking into account that the redox potential 

difference between CYTA and DHA (~102 mV) is lower than for CYTB and DHA or DHB 

(~158 mV), the thermodynamic driving force between the cofactors obviously plays no role 

for the IDET rate. This exciting observation was further investigated by calculating of the 

electron transfer rate based on the Marcus theory of electron tunneling. A modified version 

used by Dutton and coworkers 20,21 was applied using reported maximum, average, and 

minimum values for the quantum mechanical constants (, B, E) for the calculation of the 

corresponding distance-dependent electron transfer rates. The edge-to-edge distance between 

the FAD and the heme b propionate A in docking models of CDHAAA and CDHBBB is 0.8 and 

0.9 nm, respectively (Fig. 4). This corresponds to theoretical IDET rates in the order of 105–

106 s-1, which are at least four orders of magnitude faster than the measured IDET rates.  

Considering the observed mobility of the linker and CYT domain in CDH we postulate that 

this large difference between the calculated and the measured rates is due conformational 

changes: the transition between the open- and closed-state of the CYT domain. The optimal, 

closest possible distance between the FAD and heme b cofactors depends on the correct 

orientation of the CYT domain at its DH domain interface. The open-state distance between 

the cofactors can easily exceed 1.5 nm and shut-down IDET. With IDET depending on the 

closed-state, or at least a very close proximity between DH and CYT, a steric mismatch 

between the domain surfaces, repulsive electrostatic interactions, or a linker that provides too 

much mobility will reduce IDET. This is verified by inspection of the kobs
563 rates for both 

evolved wild-type CDHs and the chimeric CDHs (Table 2). The IPET for the constructed 
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chimeric enzymes decreased by one order of magnitude for CDHAAB, CDHABB, and CDHBAA 

and two orders of magnitude for CDHBBA.  

Based on the steady-state catalytic constants and kobs
563, a limiting substrate concentration 

above which the IDET limits the catalytic rate can be calculated. For the naturally occurring 

NcCDHAAA and NcCDHBBB already low cellobiose concentrations (55 and 35 µM, 

respectively) ensure that both CDHs reach their maximum IDET rate, which is the 

prerequisite of efficient LPMO reduction.  

 

Evaluation of the DH-CYT interaction site by docking— 

The program HADDOCK 22,23 was used to determine the interface of the four possible 

CYT-DH combinations found in the wild-type and chimeric enzymes by ambiguous restraint 

driven docking. A sample size of 200 docking poses for each CYT-DH pair was used for 

analysis. A “rotation” angle is used to define the rotation of CYT around a defined 

interdomain axis (Fig. 5A, Table S2) in regard to DH, relative to the corresponding angle 

observed in the closed-state Myriococcum thermophilum CDH structure (PDB: 4QI6). 

Similarly, we used the terms “declination” to describe the vertical offset angle, and 

“inclination” to describe the horizontal offset angle of the docked CYT domain relative to the 

DH domain. The feasibility of docking poses was further assessed by considering the 

maximal extension of LinkerA and LinkerB, which was estimated to be 6 and 11 nm, 

respectively. By using the distance field reaction coordinate as implemented in the 

GROMOS++ software 24,25, the shortest curved distance between the C-terminus of the CYT 

domain and the N-terminus of the DH domain, not passing through the protein was 

computed. Docking poses in which this distance was longer than the maximal extension of 

the linker were excluded from subsequent analysis (Fig. 5B, grey squares). The pH dependent 

surface charges of the domains were calculated from pH 4–8 (Fig. S3) and the protonation 
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states corresponding to pH 6.0 were used for the docking. For this pH, the contribution of the 

van-der-Waals energy to the protein-protein interaction (-158.14 ± 62.2 kJ.mol-1) is generally 

4–5 times higher than the electrostatic energy (-36.79 ± 20.9 kJ.mol-1), which indicates the 

importance of structurally complementary domain surfaces. A comparison of CDHAAA and 

CDHBBB shows that the declination and inclination angles of the 200 docking positions are 

narrower for CDHAAA which is indicative of a sterically more defined CYT-DH interaction. 

In CDHAAA the CYT rotation around the rotation axis is well-defined by two groups with 

angles at -5 ± 15° and 25 ± 15°. The rotational position at 19.5° is preferred, since it exhibits 

the strongest van-der-Waals and electrostatic interaction energies. In CDHBBB the docked 

rotational positions fall further apart (40±50°, 110±20°) indicating a less directed interaction 

and a lower complementarity of the domain surfaces. The interaction energies are less 

favorable than in CDHAAA. Interestingly, the energetically most favorable docking position of 

CYT and DH at in CDHBBB is not feasible due to the restricting length of the linker. This 

particular position with a rotation angle of –144.5° corresponds to an almost 180° rotation of 

the allowed rotational position with the second lowest van-der-Waals energy. 

In chimeric CDHs the linker plays an important role. The shorter LinkerA restricts the 

angular CYT orientation in CDHBAA and CDHAAB much more than the longer LinkerB in 

CDHBBA and CDHABB. Only one angular orientation at 45±25° is allowed by the length of 

LinkerA, while the longer LinkerB allows for rotational positions between 45±25° and 

110±40°. In case of CDHBBA (kobs
563 = 0.04 s-1), the rotational orientation of CYTB against 

DHA at 126.3° is strongly preferred in terms of interaction energies (EvdW: -300.7 kJ.mol-1; 

EElec -40.4 kJ.mol-1) over rotational position at 32.7° (which is the IDET competent 

orientation in CDHBAA), which has less favorable interaction energies (EvdW: -176.8 kJ.mol-1; 

EElec: -22.8 kJ.mol-1). The steric restriction provided by LinkerA prevents the CYT in 

CDHBAA to bind in a noncompetent position and thereby increases IDET (kobs
563 = 0.4 s-1). 
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The average contact surface area for all possible complexes was calculated and averaged 

for each CYT-DH combination as well as the binding affinity, which was calculated with 

PRODIGY 26–28 (Table S3). The averaged contact surface areas correspond to ~4% of the 

total DH surface area and ~9% of the total CYT surface area. The small interaction site and 

low calculated affinities of the CYT-DH complexes (KD = 3.2–47 µM) suggest a relatively 

transient and reversible interaction when compared to other redox proteins 29.  

  

Interaction site of CYT with LPMO— 

Two interaction sites CDH’s CYT domain with LPMO have been proposed in literature 

based on computational docking. One potential interaction site has been proposed to be 

opposite to LPMO’s type-2 copper center around a conserved Pro-Gly-Pro patch, which 

requires long range electron transfer through LPMO, but would allow the reduction of the 

substrate bound LPMO. Another study suggested a direct interaction of heme b in CYT with 

the copper center of LPMO, which would necessitate the desorption of LPMO from its 

polymeric substrate. This mode would require no long range electron transfer through the 

LPMO molecule 8. To experimentally determine the protein-protein interaction site of CDH 

and LPMO in solution, hydrogen/deuterium exchange kinetics were followed by mass 

spectrometry for CDHAAA and N. crassa LPMO9F. This particular LPMO is well suited for 

such an analysis since it is a small LPMO (24.8 kDa) lacking N-glycosylation, a C-terminal 

CBM1, and linker region which is often heavily O-glycosylated 30.  

Both proteins alone or in a mixture were subjected to H/D exchange followed by online 

digestion with pepsin and the resulting fragments were analyzed as described previously29. 

No detectable difference in the deuteration was observed on CDHAAA. This could be caused 

by a combination of several factors: (i) a very short-lived or weak interaction of both 

enzymes, (ii) the protruding heme propionate-A group being the most prominent interaction 
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partner leading to little involvement of other CYT residues, or (iii) the subsequent CYT-DH 

interaction interfering with the CYT deuteration. 

For LPMO9F on the other hand, protein backbone deprotection was observed in several 

peptide fragments when CDH was present in the solution. Visualization on the crystal 

structure (4QI8)8 shows that the perturbed protein regions occur in three loops surrounding 

the active site copper center (Fig. 6). Although deprotection by interaction is not the most 

common scenario in hydrogen/deuterium exchange, it has been recognized as one of the 

possible biologically relevant outcomes 31–33. In the case of CDH-LPMO interaction it likely 

reflects the transient nature of the complex, where a short-lived interaction with the heme b in 

CYT leads to the local loosening of the structure around the copper center of LPMO and/or 

destabilization of the hydrogen bonding network in this region. Finally, no deuteration 

changes of any kind were observed around the conserved patch 207Pro-Gly-Pro209 (Fig. 6) 

close to the C-terminus.  

 

Heterogenous electron transfer– 

CDH is recognized for its ability to directly transfer electrons to electrode surfaces via its 

CYT domain 34. The heterogeneous electron transfer of wild-type and chimeric CDHs to a 

self-assembled monolayer (SAM) of thioglycerol on gold electrodes 6 was investigated for 

two reasons: (i) to verify that all produced enzymes and their domains are in their native, 

electron transfer competent conformation and (ii) to study the effect of swapped linkers and 

CYT domains on the direct electron transfer to an electrode. Unfortunately, CDHBBA was not 

available in sufficient amounts for these experiments. In presence of 20 mM cellobiose 

catalytic currents were observed for all variants (Fig. S4). The onset potentials of the anodic 

waves correlate well with the corresponding, spectroelectrochemically determined CYT 

redox potentials. Current densities were extracted at an overpotential of 200 mV above the 
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midpoint potential of the CYT domain (CYTA at 300 mV, CYTB at 360 mV vs. SHE) and a 

scan rate of 15 mV s-1. The highest current density was found for CDHAAA (11.3 ± 1.8 µA 

cm-2), followed by CDHABB (3.7 ± 1.5 µA cm-2), CDHBBB (2.6 ± 1.7 µA cm-2), CDHBBAA 

(1.9 ± 0.3 µA cm-2), and CDHAAB (1.2 ± 1.0 µA cm-2). Every CDH clearly showed direct 

electron transfer to the electrode and thereby verified the integrity of the electron transfer 

route.  

Anodic and cathodic peak currents were obtained for all CDHs over a range of scan rates 

(3–150 mV s-1). The plot of the peak currents vs. the square root of the scan rates is linear for 

all enzymes and indicate a freely diffusing redox species and no adsorption onto the electrode 

(Fig. S5). The peak separation of the anodic and cathodic peak increased with increasing 

scan-rates (Fig. S6). The heterogeneous electron transfer is reversible at very low scan rates 

and quasi-reversible at scan rates above 5 mV s-1 pointing towards a fast electron transfer 

compared to mass transport. This allows the calculation of the heterogeneous electron 

transfer constant (k0) according to the method of Nicholson and Shain for the quasi-reversible 

electron transfer regime 35. All wild-type and chimeric CDHs show a similar k0 between  2.6–

5.2 10-4 cm s-1 at the most relevant scan speed for comparison (50 mV s-1, Fig. 7), which 

demonstrates that there is no restrained interaction of any CYT with the thioglycerol 

monolayer on the gold electrode and all CDHs are functional. This is comparable with an k0 

of ca. 10-3–10-4 for cytochrome c on gold electrodes 36. CDHBBB with the lowest k0 has the 

least efficient electron transfer of its CYT domain with the electrode.   

 

Interprotein electron transfer kinetics— 

After verifying that the wild-type and chimeric CDHs are all similarly electron transfer 

competent we investigated the final electron transfer from CYT to LPMO (IPET). In 

sequential stopped-flow experiments, CDHs were pre-reduced by a stoichiometric amount of 
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cellobiose. After 90 s in the aging loop, oxygen had fully reoxidized FADH2, which was 

necessary to prevent any interfering IDET to CYT. Then the CDH with the reduced CYT was 

shot against an equimolar, 3, 10, and 50-fold molar ratio of NcLPMO9C to measure the IPET 

rate. A linear dependence of kobs
563 on LPMO concentrations was found (Fig. 8), which 

indicates that the electron transfer between both enzymes is fast enough to show no saturation 

even for the highest measured LPMO concentration 18. The bimolecular IPET rate was 

calculated from the slope of kobs
563 versus the LPMO concentration. The determined rates are 

all within the same order of magnitude, which indicates that the interaction mechanism is not 

evolved to recognize and favor specific CDH/LPMO combinations, but is based on a 

universal recognition mechanism which depends little on surface complementarity. 

Nevertheless, significant differences in IPET were observed. CYTB, which is present in three 

measured CDHs, generally exhibits a two-times faster bimolecular rate with NcLPMO9C 

(7.4–8.8 105 M-1 s-1) than CDHs with CYTA (2.9–5.1 105 M-1 s-1). CDHAAA with the fastest 

IDET exhibits the slowest IPET, because of a preferentially closed-state conformation. 

CDHBBA, which cannot easily achieve an IDET competent closed-state conformation exhibits 

the fasted IPET, because of a preferential open-state conformation.  

The redox potential difference between the cofactors correlates negatively with the IPET 

rate. CYTB with its higher midpoint potential compared to CYTA has a comparatively lower 

driving force for electron transfer between the heme b and the type-2 copper, but shows the 

higher IPET rates. This indicates that CYT/DH combinations of poor surface 

complementarity or with an unsuitable linker preferably populate the IPET competent open-

state conformation. We conclude that the closed- and open-state distribution of CDH 

populations define the electron transfer rates of CYT in IDET and IPET.  
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DISCUSSION 

The two-domain structure of CDH has been recognized soon after its discovery by 

observing the spectral features of its two cofactors, proteolytic cleavage into the separated 

domains, and distinct catalytic properties of the full-length CDH and its DH domain. The 

domain organization became evident with the first isolated CDH sequence of Phanerochaete 

chrysosporium 37, but the purpose of the CYT domain remained unknown. Crystallization 

experiments in which only the separated, proteolytically generated CYT and DH domains 

formed crystals indicated the high mobility of the linker and CYT domain 38,39. At the same 

time Igarashi et al. investigated the pH-dependence of the IDET between the DH and CYT 

domain of P. chrysosporium CDH in a presteady-state kinetic study and determined the redox 

potential of the heme b and FAD cofactor, which is the driving force of IDET 9.  

However, the physiological function of the CYT domain and the highly variable length of 

the linker in CDHs (16–40 amino acids) remained enigmatic. Also the considerable length of  

LinkerB in comparison to other flavocytochromes, e.g. flavocytochrome b2’s hinge (linker) 

region consists of only of 15 amino acids 40, is unusual. In the two CDHs from N. crassa 

LinkerB is almost twice as long as LinkerA and both have the lowest sequence identity (29%) 

of CDH’s structural elements despite sharing two common features: a high percentage of 

serine, threonine and proline residues and a conserved Pro-Val-Pro motif. Likewise, the 

sequence identity of the CYT domain (43%) is low compared to that of the DH domains 

(60%). This higher diversity of linker and CYT sequences is observed for all CDHs and 

suggests an evolutionary adaptation to contact redox partner proteins while the DH domain 

serves as a source of electrons. 

With the discovery of LPMO in 2010 4, the physiological redox partner of CDH was finally 

discovered, which gives us the opportunity to study the CYT domain’s IDET and IPET 

mechanism as part of a natural, extracellular electron transfer chain. This framework supports 
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the testing of hypotheses on CDH’s molecular, catalytic, and electron transfer properties.  

Swapping domains between the structurally, catalytically and electrochemically different 

CDHs of one organism was chosen to differentiate the function of the involved domains and 

linker in the electron transfer route from CDH’s FADH2 to LPMO’s type-2 copper center. 

Fortunately, all wild-type and chimeric CDHs could be recombinantly expressed in P. 

pastoris and all enzymes except CDHAAB could be produced in sufficient quantity. The 

determined specific activities of the purified chimeric enzymes and their absorption spectra 

exhibit a similar activity and spectral properties compared to the wild-type CDHs and are 

therefore properly folded. However, a difference in the extent of glycosylation of the wild-

type and chimeric CDHs was found. This variation is inevitable with the chosen yeast 

expression system, which is known to produce various glycoforms. However, the N-

glycosylation sites are not located at the DH-CYT interface and thus should not affect the 

performed experiments. O-glycosylation of the linker was previously reported 41, but we 

lacked the resources to determine if this minor fraction of glycosides varied between the 

produced CDHs. The determined heterogeneous electron transfer rates for all CDHs were 

relatively similar and indicated no significant influence of the glycosylation on the interaction 

with the thioglycerol-modified gold electrode. 

Kinetic studies of the catalytic reaction of the DH domain showed no change in the 

reductive half-reaction in chimeric CDHs, but showed an effect of the swapped CYT domains 

on the oxidative half-reaction by shifting the pH optima for the two-electron acceptor 2,6-

dichloroindophenol. Since the pH optimum of the catalytic reaction in CDH depends on the 

electron acceptor 42,43 this clearly indicates the CYT domain’s influence on the oxidative 

catalytic half-reaction. The pH optima of CDHAAA and CDHBBB are identical to previous data 

6. These results support the previously observed effect of the CYT domain influencing on the 

catalytic step in the DH domain of M. thermophilum CDH 10. At pH 6.0, which is also the pH 
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optimum of the CDH-LPMO interaction 5, only small differences between the catalytic 

efficiency were observed between the wild-type and chimeric CDHs. This pH turned out to 

be suitable to study the subsequent electron transfer steps. The presteady-state reduction rates 

of FAD by cellobiose at 449 nm (kobs
449) show a clear separation between enzymes with a 

DHA domain (80–82 s-1) and a DHB domain (30–33 s-1), but no effect on a CYT swap on the 

rate of the reductive-half reaction.  

While the effects of the domain swap on the catalysis of the chimeric enzymes was 

moderate, the IDET between DH and CYT was strongly affected. Steady-state experiments 

showed different pH optima and a 4–12 times (with the exception of CDHBBA) reduced TN of 

the chimeric CDHs with cytochrome c. These findings were corroborated by transient-state 

findings. The highest IDET rates were measured by stopped-flow spectroscopy for wild-type 

enzymes, which had a 125 times (CDHAAA) or 10 times (CDHBBB) higher IDET rate than the 

successive chimeric enzyme. Modelling studies showed the importance of surface 

complementarity and the degree of orientational freedom provided by the linker. Given the 

length of LinkerA (7 nm) and LinkerB (11 nm) it can be expected that in the open-state the 

distance limit for a reasonable fast electron transfer (~1.5 nm) between CYT and DH is often 

exceeded. It was also found that the redox potential difference between CYT and DH is not 

the dominant driving force for IDET, since CDHs with a CYTA have a lower E (64–104 

mV) between the cofactors than CYTB carrying CDHs (158–172 mV), but similar or faster 

IDET rates. The reason is the close edge-to-edge distance between the FAD and heme. For 

the typical distance of ~0.9 nm in N. crassa CDH’s closed-state, the electron transfer rates are 

105 times higher than the measured rates. This means that the mobility of the CYT domain 

between closed- and open-state conformation is the rate-limiting factor of IDET and not the 

electron transfer event itself. A shorter linker (LinkerA) and a higher complementarity at the 

CYT-DH interface increases IDET by supporting the closed-state of the CDH. 



 CDH – LPMO interaction and electron transfer 

 

20 

 

The efficiency of the subsequent electron transfer step from CYT to LPMO, the IPET, is 

most important for the overall rate of the process and determines the rate of the oxidative 

depolymerization of polysaccharides. A specific and fast IPET saves valuable resources for 

the metabolism of the cellulolytic organism (less enzymatic consumption of cellobiose, less 

secreted CDH needed) and prevents futile electron transfer to other molecules which reduces 

not only the efficiency of the extracellular electron transfer system, but could also produce 

degradation products detrimental to the organism’s growth. The performed HDX-MS 

experiments also indicated the interaction of CYT and LPMO to happen via a direct contact 

between their active centers. The observed interaction is relatively weak and brief, 

underlining a flexible and transient complex formation, which fits well with the necessity of 

LPMO to detach and reattach to cellulose in order to get reduced. The apparent transient 

interaction also complements all previous findings hinting at a very dynamic system which 

depends on interplay between electrostatic forces of cofactors and thermodynamic forces 

governing domain movements. 

The IPET rates all have the same order of magnitude, which indicates that the interaction 

mechanism is not evolved to recognize and favor specific CDH/LPMO combinations, but is 

based on a universal recognition mechanism between the heme b propionate A and the copper 

center, which depends little on surface complementarity 15. This is corroborated by reports on 

the interaction of different CDHs and LPMOs from N. crassa 5, CDH and LPMO from 

different fungi 1,2 and even from fungal CDH to bacterial LPMOs 44. The measured 

bimolecular rates for the final electron transfer step from CYT to LPMO were found to be 

very fast with values between 2.9–8.8 105 M-1 s-1. A similar rates was also found for the very 

fast CYT-cytochrome c interaction (106 M-1 s-1)18. We can conclude that the rate determining 

driving force for IPET is not the redox potential difference between LPMO and CYT, since 

CDHs with a CYTB have a lower E to LPMO but exhibit higher rates. The linker length 
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plays also no detectable role. However, the higher IPET rates obtained for all CDHs with a 

CYTB (1.5–3 times faster than CYTA rates) suggest that it is better adapted for the interaction 

with NcLPMO9C than CYTA although only a very small surface area of the proteins is 

involved in the interaction 15. The higher IPET of the chimeric CDHs over the wild-type 

CDHs points towards a higher preference of the open-state conformation. 
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EXPERIMENTAL PROCEDURES 

Molecular biology, expression and purification  

Genetic constructs of cdhIIA (NCU00206) and cdhIIB (NCU05923) were described 

previously 6 and used for this study. A silent mutation (C456T) was introduced to the gene 

NCU05923 to delete the BstBI (Bsp119I) restriction site. Alignments using MEGA 6 45 

applying the BLOSSOM 62 algorithm together with 3D structure analysis of NCU00206 

(PDB 4QIU7) were applied to define exact borders of the individual domains (Table S4). 

Fragments of the individual domains were generated and joined to generate four chimeric 

constructs by overlap extension PCR. The genetic integrity of the amplicons encoding 

chimeric CDHs was checked by DNA sequencing at Microsynth (Wolfurt, Austria). 

Following established methods 46 the constructs were expressed in a Pichia pastoris 

expression system (KM71H, Invitrogen). Best producing variants were preselected (Weis et 

al.) cultivated in 500 mL scale fermentation (Fig. S1) and purified by hydrophobic interaction 

(PHE-Sepharose Fast Flow, GE Healthcare) and anion exchange chromatography 

(Qsource15, GE Healthcare). Two chimeric CDHs (CDHAAB and CDHBBA), still containing 

minor impurities after these two steps, were subjected to additional size exclusion 

chromatography (Superdex 75). SDS-PAGE analysis of all preparations used in this study is 

displayed in Fig. 1.  

 

Enzyme activity assays and protein quantitation 

The activity of CDHs was determined in 1 mL assays by following the reduction of either 

0.3 mM 2,6-dichloroindophenol (DCIP, ε520 = 6.8 mM-1 cm-1) or 50 µM cytochrome c from 

equine heart (ε550 = 19.6 mM-1 cm-1). Assays were buffered with 100 mM sodium citrate-

phosphate buffer according to 47 at the indicated pH. The pH dependent activity was 
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measured with 30 mM lactose as saturating substrate. Assay reactions were monitored for 

180 s at 30 °C at the indicated absorption maxima wavelengths in a Lambda 35 UV-visible 

(UV-Vis) spectrophotometer equipped with a temperature-controlled 8-cell changer (Perkin-

Elmer). The protein concentration of wild-type and chimeric CDHs was determined via the 

absorbance at 280 nm and the theoretical molar absorption coefficient ε280 calculated with the 

Expasy Prot-Param program (http://web.expasy.org/protparam/) using the mature amino acid 

sequence.  

 

Spectroelectrochemistry 

Spectroelectrochemical experiments were done using 500 µL samples containing around 50 

µM wild-type or chimeric CDH, 100 mM KCl, 100 mM potassium phosphate buffer pH 6.0, 

and a redox mediator mixture comprising anthraquinone-1,5-disulfonate, 2-hydroxy-1,4-

naphtoquinone, indigo carmine, indigotrisulfonate, duroquinone, methylene blue, phenazine 

methosulfate, 1,2-naphtoquinone and N,N,N’,N’-tetramethyl-p-phenylenediamine (all 3 µM), 

and methyl viologen (150 µM). All experiments were carried out under anaerobic conditions 

at 30 °C in a thin layer (d = 0.05 mm) spectroelectrochemical cell (BASi, West Lafayette, IN; 

USA) with a standard three – electrode setup comprising a Ag|AgCl – reference electrode 

(BASi), a platinum gauze (Goodfellow Cambridge Ltd., Huntington, England, UK) as 

working electrode, and a platinum wire (Goodfellow Cambridge Ltd.) as auxiliary electrode. 

A Whitley DG 250 Anaerobic Workstation (Don Whitley Scientific Ltd., Shipley, England, 

UK) was used to work under oxygen free conditions. The reference electrode was calibrated 

against a saturated calomel electrode. All potentials are reported relative to the standard 

hydrogen electrode (SHE).  Nernst plots consisted of at least 5 data points, showed linear 

behavior and were consistent with a one-electron redox process in case of the heme b, and a 

two-electron process in case of the FAD. 
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Voltammetry 

Preparation of enzyme modified electrodes started with the cleaning of gold disk-electrodes 

(d = 1.6 mm, BASi, West Lafayette, IN, USA) by dipping in acidic Piranha solution 

(H2SO4:H2O2 = 3:1 (V/V)) for 5 min, cycling in 0.1 M NaOH (-0.205 to -1.205 V vs. AgAgCl, 

10 cycles, 100 mV s-1), polishing to mirror finish with aqueous alumina particles (0.05 µm) on 

a MicroCloth (Buehler, Lake Bluff, IL, USA), ultrasonication to get rid of residual polishing 

particles and cycling in 0.5 M H2SO4 (-0.205 to +1.705 V vs. AgAgCl, 20 cycles, 200 mV s-

1). After rinsing with ultrapure water and drying with nitrogen gas the electrodes were 

immersed overnight in 10 mM 1-thioglycerol dissolved in absolute ethanol for SAM formation. 

The electrodes were then washed with 20% ethanol to remove unbound thioglycerol, ultrapure 

water and dried over a stream of nitrogen gas. A custom-made Teflon holder was put over the 

electrode surface, leaving a cylindrical cavity with a volume of ~20 µL above the thioglycerol-

modified gold surface. Then, a 100 µM CDH solution in 100 mM McIlvaine buffer, pH 6.0, 

was applied to the cavity. The assembly was covered with a dialysis membrane (45 kDa cut-

off) held in place via a rubber O-ring. 

Electrochemical experiments were carried out using a PGSTAT204 potentiostat/galvanostat 

(Metrohm Inula GmbH, Vienna, Austria) with a standard three-electrode setup comprising the 

enzyme-modified gold electrode as working electrode, a platinum wire as counter electrode, 

and an AgAgCl electrode as reference electrode. The 100 mM McIlvaine buffer, pH 6.0 

contained 0.1 M KCl as supporting electrolyte. A typical set of experiments comprised cyclic 

voltammetry of the thioglycerol-modified electrode (blank), the enzyme-modified 

thioglycerol-electrode, the enzyme-modified thioglycerol-electrode in presence of 20 mM 

cellobiose, and the enzyme-modified thioglycerol-electrode in presence of 20 mM cellobiose 
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and 50 µM ferrocenemethanol. The applied potential window ranged from 5–550 mV vs. SHE. 

Scan rates were varied from 3–500 mV s-1. Before the start of the experiment the 

electrochemical cell containing buffer and the electrode setup was deoxygenated by purging 

with argon gas for 15 min. The bulk solution was not agitated during the measurement which 

was performed at 30 °C. 

Cyclic voltammograms were analyzed using the NOVA software (Metrohm) and Microsoft 

Excel. The evaluation whether freely diffusing or adsorbed CDH species dominate the 

electrochemical process was done by assessing the linearity of plots of peak current vs. the 

square root of the scan rate. Reversibility, quasi-reversibility, or irreversibility of the electron 

transfer process was assessed by the shape of the voltammograms and the peak-to-peak 

separation. Standard heterogeneous electron transfer rate constants k0 were calculated using 

the model for quasi-reversible processes described by 48 Nicholson & Shain and 49 Matsuda & 

Ayabe with a transfer coefficient of α = 0.5 and interpolated values (Ψ =1/(-2.46+0.041*dEp) 

of the kinetic parameter Ψ for the scan rate dependent peak potential separation. Diffusion 

coefficients for CDH were calculated from the slope of the linear correlation of the anodic or 

cathodic peak currents, the square root of the scan rate, the active electrode surface area (A = 

0.0177 cm2), and an enzyme concentration of 100 µM (10-7 mol cm-3) applying the Randles-

Sevcik equation 50,51. Peak currents were assessed by applying Nicholson’s empiric equation 

Ipa/Ipc = (Ipa)0/Ipc+0.485(Isp)0/Ipc+0.086 35. 

 

Presteady-state kinetic studies 

The rapid spectral changes induced by substrate oxidation and resulting change of redox 

state of the CDH cofactors were followed with an SX 20 stopped-flow instrument (Applied 

Photophysics, Leatherhead, UK) equipped with a photomultiplier tube (AP/PMT.R928). The 
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redox state of the FAD cofactor was monitored at the appropriate isosbestic point (449 nm) of 

the heme cofactor which itself was monitored at 563 nm. Observed rates (kobs) for the 

indicated cellobiose concentrations were estimated by fitting the data to a single exponential 

curve. The reduction of NcLPMO9C by CDH was studied using a UV-Vis photodiode array 

detector (AP/SXPDAUV) and sequential mixing mode. CDH was reduced in a first step by 

mixing with an appropriate concentration of cellobiose. Upon depletion of electrons from the 

FAD by means of oxygen reactivity, in a sequential step, CDH was rapidly mixed with 

NcLPMO9C. The observed rates of transfer were estimated by following the redox state of 

the cytochrome domain of CDH and fitting the data of A563 to a single exponential curve. All 

presteady-state experiments were performed in 100 mM sodium citrate-phosphate buffer, pH 

6.0 at 30 °C. 

 

Modelling of CDH chimeras 

SWISS-MODEL 52–54 was used to generate homology models for the cytochrome (CYT) 

and dehydrogenase (DH) domains of NcCDHIIB (ORF: NCU05923), considering the crystal 

structure of NcCDHIIA (PDB: 4QI7) 55 as template. Steepest descent energy minimization 

with 2500 steps (initial step size of 0.1 nm) was performed with the GROMOS software 

package for molecular simulation 56 using the 54a7 force field 57,58 as a further refinement for 

the resulting homology models. Subsequently, the complexes CYTA-DHA, CYTA-DHB, 

CYTB-DHA, and CYTB-DHB have been modelled using HADDOCK 2.2 22,23 with interaction 

restraints between heme b and the Arg697 and Arg719 for NcCDHIIA and NcCDHIIB, 

respectively. The number of starting structures was set to 1000 and refined to 200 structures. 

Non-bonded energy values (i.e. van der Waals and electrostatic energies) were taken from the 

HADDOCK output and the angles of the CYT domain relative to the DH domain around 

three axes defined by two (virtual) atoms j and k, was measured by computing the dihedral 
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angle i – j – k – l, with the (virtual) atoms defined in Table S2. The distance-field reaction 

coordinate 25 was used to estimate the shortest distance between the linker anchor points, 

along a path that does not pass through the protein domains. Electrostatic surface 

representations as well as protonation states were computed with PROPKA 3.1 59,60, 

PDB2PQR 61 and the PyMOL APBS plug-in 62–66. Binding affinities were predicted with 

PRODIGY 67–69. 

 

Hydrogen/deuterium exchange mass spectrometry 

Prior to the mass spectrometric analyses, NcCDHIIA was deglycosylated under non-

denaturing conditions as utilized previously for the analyses of CDH from M. thermophilum 

31. CDH was incubated overnight with 15 U Endo Hf (New England Biolabs, USA) per 1 µg 

protein at 37 °C in 50 mM sodium acetate buffer pH 5.75 to detach the N-glycans. The 

deglycosylated CDH was preincubated alone or in a mixture with NcLPMO9F (1:3 and 3:1 

molar ratios) in H2O-based 50 mM sodium acetate buffer pH 5.75 for 30 minutes. After 

preincubation, the deuterium labeling was started by a 10-fold dilution of the protein samples 

into deuterated buffer (50 mM sodium acetate pD 5.75). The final protein concentration 

during the labeling was 5 µM for the examined protein and 15 µM for the interaction partner. 

The deuteration reaction proceeded at 21 °C and 50 µl aliquots were removed after 0.33, 1, 3, 

10, 30, 60, 180 and 300 minutes. The rest of the HDX-MS workflow including the stopping 

of the exchange in the aliquots, denaturation of samples and their online enzymatic digestion 

by immobilized porcine pepsin, LC-MS analysis by Fourier transform ion cyclotron 

resonance mass spectrometer and data processing was performed exactly as optimized for M. 

thermophilum CDH and described elsewhere 31.  
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ABBREVIATIONS 

The following abbreviations are used: AFM, atomic force microscopy; CDH, cellobiose 

dehydrogenase; CYT, cytochrome domain; DCIP, 2,6-dichloroindophenol; DH, 

dehydrogenase domain; FAD, flavin adenine dinucleotide; HDX, hydrogen/deuterium 

exchange; IDET, interdomain electron transfer; IPET, interprotein electron transfer; LPMO, 

lytic polysaccharide monooxygenase; MS, mass spectrometry; SAM, self-assembled 

monolayer; SANS, small-angle neutron scattering; SAXS, small-angle X-ray scattering; SHE, 

standard hydrogen electrode; TN, turnover number 
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FIGURES  

FIGURE 1. Properties of chimeric enzymes. A, Domain architecture. The two N. crassa 

wild-type CDHs (CDHIIA denoted as CDHAAA and CDHIIB denoted as CDHBBB) consist of 

an N-terminal CYT domain, C-terminal DH domain and protein linker connecting the two 

domains. Four chimeric CDHs (CDHBBA, CDHBAA, CDHAAB, and CDHABB) were created by 

domain swapping. B, Linker sequence and position in CDH. The alignment shows sequence 

identities and the N- and C-terminal ends of the linkers. C, Purified wild-type and chimeric 

CDHs. The measured and calculated molecular weights differ due to glycosylation. 
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FIGURE 2. Effects of domain swapping on catalytic rates in the DH domain. A, pH Optima 

of cellobiose conversion in CDHs with a DHA when using the two-electron acceptor 2,6-

dichloroindophenol. B, pH Optima of CDHs with a DHB using the same substrate and 

cosubstrate as in (A). C, FAD reduction rate in all CDHs measured at 449 nm (kobs
449) for 

increasing cellobiose concentrations. 
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FIGURE 3. Effects of domain swapping on IDET. A, pH optima of cytochrome c turnover 

numbers for wild-type and chimeric CDHs. B, IDET rates (kobs
563) of DHA to different CYT 

domains measured for increasing cellobiose concentrations. C, IDET rates of DHB to different 

CYT domains measured for increasing cellobiose concentrations.  
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FIGURE 4. Electron transfer in CDH (IDET). A, Detail of the crystal structure of 

MtCDHIIA (PDB:4QI6) featuring the closed-state conformation. The edge-to-edge distance 

between the FAD and heme cofactors is 0.9 nm. B, The electron transfer rate plotted against 

cofactor distance for CDH (lower and upper limit, solid lines; most probable parameters, 

dashed line). The bars at the bottom indicate the observed IDET rates and edge-to-edge 

distances for CDHAAA and CDHBBB in docking calculations.  
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FIGURE 5. Orientation of CYT to DH in docking poses. From a total of 200 docking poses 

for each CYT-linker-DH pair the angle of rotation, declination and inclination were measured 

in regard to its deviation from the crystal structure of the closed-state conformation of M. 

thermophilum CDH (PDB: 4QI6). The electrostatic (red) and van-der-Waals (blue) binding 

energies for each pose are given in kJ mol-1. A, docking poses in wild-type CDHAAA. B, docking 

poses in wild-type CDHBBB. C, docking poses in wild-type CDHBAA. D, docking poses in wild-

type CDHABB. E, docking poses in wild-type CDHBBA. F, docking poses in wild-type CDHAAB.  
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FIGURE 6. Structure changes arising from N. crassa LPMO9f and CDHAAA interaction 

detected by H/D exchange. Structural differences between free LPMO and LPMO in the 

presence of CDHAAA were visualized using difference heat map (A) 

(http://peterslab.org/MSTools/). Deuteration levels of the protein alone were subtracted from 

those observed for the protein in the presence of CDHAAA. Increased deuteration (deprotection) 

upon interaction is shown by red colors while protection is in blue (scale bar is at the bottom 

of the panel). Secondary structure elements, loops and copper coordinating residues (green) 

and ProGlyPro patch (orange) are depicted above the heat map. Individual exchange times are 

show on the right. Two selected time points (30m and 3 h, indicated by arrowhead) were 

visualized on the LPMO structure (PDB: 4QI8) (B). The coloring scale follows the one in panel 

A. The central copper atom is shown in green and the side chains of the histidine brace residues 

and Pro-Gly-Pro patch are shown as sticks. Structure on the left visualizes histidine brace 

(green) and Pro-Gly-Pro patch (orange) residues. 
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FIGURE 7. Heterologous electron transfer rates (k0). k0 was calculated from the peak 

separation of the anodic and cathodic wave observed from cyclic voltammograms measured at 

different scan-rates (3–50 mV s-1) according to Nicholson-Shain. Data from scan-rates above 

50 mV s-1 could not be used, because the increased capacitive current did not allow the exact 

determination of the peak maxima. The data (peak separation vs. scan rate) are given in Fig. 

S6. 
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FIGURE 8. Effects of domain swapping on IPET. Stopped-flow measurements of the 

electron transfer from pre-reduced CYT to LPMO at 563 nm at for increasing LPMO 

concentrations show a linear relation from which bimolecular rates were calculated. 
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Table 1: Catalytic constants, transient rates and FAD redox potentials of CDHs.  

 

The steady-state catalytic constants of the DH domains in wild-type and chimeric CDHs were 

determined for cellobiose as substrate and 2,6-dichloroindophenol as saturating cosubstrate. 

Transient FAD reduction rates (kobs
449) measured in a stopped-flow spectrophotometer at 

different cellobiose concentrations were used to extrapolate the maximal reduction rate of FAD 

in presence of an infinite cellobiose concentration (klim
449). The midpoint redox potentials (E1/2) 

of the FAD cofactor in regard to the standard hydrogen electrode (SHE) was determined in a 

spectroelectrochemical cell is given in the last column. All measurements were performed at 

pH 6.0. n.d.: not determined 
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Table 2: Steady-state and transient-state IDET rates and heme b redox potentials.  

Comparison of cytochrome c reduction rates given as turnover numbers (TN) as an indicator 

of IDET with transient kobs
563 rates. The heme b midpoint redox potentials and the potential 

difference to the FAD in the wild-type DH domain is given. All measurements were performed 

at pH 6.0. 

 

 

 

 

 

 

 

 

Enzyme pH ΔE 
Opt [mV]

CDH AAA 6.0 6.14 ± 0.12 50.00 ± 0.10 102 ± 4 69
CDH BAA 6.0 0.50 ± 0.03 0.40 ± 0.02 172 ± 5 148
CDH BBA 5.0 0.04 ± 0.01 0.02 ± 0.02 169 ± 5 138

CDH BBB 4.5 1.93 ± 0.03 4.00 ± 0.01 158 ± 2 115
CDH ABB 4.5 0.48 ± 0.01 0.40 ± 0.01 97 ± 4 64
CDH AAB 5.0 0.52 ± 0.01 0.40 ± 0.02 103 ± 4 104

E vs. SHEIDET
[mV][s-1 ]

TN @ pH 6
 [s-1 ]
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Photoinduced damage of AsLOV2 
domain is accompanied by increased 
singlet oxygen production due to 
flavin dissociation
Martina Petrenčáková1,6, František Filandr2,6, Andrej Hovan1,6, Ghazaleh Yassaghi2, 
Petr Man2, Tibor Kožár3, Marc-Simon Schwer4, Daniel Jancura1,3, Andreas Plückthun4, 
Petr Novák2, Pavol Miškovský3,5, Gregor Bánó1,3* & Erik Sedlák3*

Flavin mononucleotide (FMN) belongs to the group of very efficient endogenous photosensitizers 
producing singlet oxygen, 1O2, but with limited ability to be targeted. On the other hand, in genetically-
encoded photosensitizers, which can be targeted by means of various tags, the efficiency of FMN to 
produce 1O2 is significantly diminished due to its interactions with surrounding amino acid residues. 
Recently, an increase of 1O2 production yield by FMN buried in a protein matrix was achieved by a 
decrease of quenching of the cofactor excited states by weakening of the protein-FMN interactions 
while still forming a complex. Here, we suggest an alternative approach which relies on the blue light 
irradiation-induced dissociation of FMN to solvent. This dissociation unlocks the full capacity of FMN as 
1O2 producer. Our suggestion is based on the study of an irradiation effect on two variants of the LOV2 
domain from Avena sativa; wild type, AsLOV2 wt, and the variant with a replaced cysteine residue, 
AsLOV2 C450A. We detected irradiation-induced conformational changes as well as oxidation of several 
amino acids in both AsLOV2 variants. Detailed analysis of these observations indicates that irradiation-
induced increase in 1O2 production is caused by a release of FMN from the protein. Moreover, an 
increased FMN dissociation from AsLOV2 wt in comparison with AsLOV2 C450A points to a role of C450 
oxidation in repelling the cofactor from the protein.

Flavin mononucleotide (FMN) belongs to a group of efficient endogenous photosensitizers in cells with rather 
high singlet oxygen, 1O2, quantum yield (ΦΔ) within the range 0.51–0.651,2. Depending on FMN concentrations 
and concentrations of available oxygen, the flavin(s) can be even more effective 1O2 generators than exogenous 
porphyrins used for cell killing in photodynamic therapy (PDT). To minimize the potential deleterious effect of 
flavins to cells, the isoalloxazine moiety of flavin cofactors is typically deeply buried in the protein core of flavo-
enzymes3 or storage proteins4.

Singlet oxygen, the lowest energy excited electronic state of molecular oxygen, belongs to the group of reactive 
oxygen species (ROS), which includes superoxide anion (O2

•−), hydrogen peroxide (H2O2), and hydroxyl radi-
cal (HO•), enabling to oxidize and/or oxygenate many biologically relevant molecules5,6. Singlet oxygen can be 
produced in a variety of ways by physical mechanisms, including energy transfer from the excited triplet states of 
particular chromophores to molecular oxygen7, or by chemical mechanisms as one of the products of peroxidase 
enzymes8. In biological systems, 1O2 is usually generated by electronic energy transfer from an excited state of a 
photosensitive molecule, so-called photosensitizer (PS), to ground state O2

6. The high reactivity of singlet oxy-
gen towards biological molecules is relevant in the context of PDT9 and chromophore-assisted laser inactivation 
(CALI) of proteins and cells10,11.
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Studies addressing the behavior and action of 1O2 have been performed for decades, but there is still a limited 
knowledge on the spatially- and temporally-dependent 1O2-induced cell signaling processes12,13. An encapsula-
tion of a photosensitizer in a protein matrix, thus forming a genetically-encoded photosensitizer, facilitates ROS 
production with (i) molecular level spatial control via protein targeting, and (ii) temporal and dose control by the 
incident light2,13,14.

On the other hand, the improved control regarding 1O2 production by using genetically-encoded photosensi-
tizers leads to attempts to utilize them as antimicrobial agents15,16 or in PDT17. Up to now, more than 400 individ-
ual compounds have been recognized as possible candidates for use as PSs9. However, a large fraction of the small 
organic PSs has unsuitable physico-chemical properties such as low solubility and stability in aqueous solvents, 
and inherent low specificity for targeted diseased tissue. Consequently, such compounds exhibit a certain toxicity 
to other, healthy tissues18,19. Alternatively, the use of proteins as genetically encoded 1O2 generators offers new 
ways of designing, synthesizing, and targeting of biomacromolecules containing PS20.

Recently, significant efforts have been invested into the design of protein PSs containing FMN due to its high 
value of ΦΔ

15,21–23. On the other hand, genetically encoded fluorescent tags have inherently very low efficiency of 
1O2 production (ΦΔ < 0.09)15,20,24,25. These observations point to a strong effect of the surrounding protein matrix 
on 1O2 production efficiency by the chromophore21.

Two major ways how the protein environment diminishes the yield of 1O2 production have been identified: 
(i) inefficient diffusion of molecular oxygen through the protein scaffold to the site of PS localization and (ii) 
quenching of the excited state of PS, e.g. FMN triplet state, by the protein environment23. In fact, efficiency of 
the 1O2 production in miniSOG (mini-singlet oxygen generator; ΦΔ = 0.03–0.05)21,26, engineered from the 
FMN-containing LOV2 domain of Arabidopsis thaliana phototropin 227, upon chemical denaturation increased 
over 10-fold in comparison with its native form21. Consequently, these observations led to efforts to develop pro-
tein PSs with improved 1O2 production, such as SOPP (singlet oxygen photosensitizing protein; ΦΔ = 0.19–0.26)26 
and particularly SOPP3 with ΦΔ = 0.60, comparable to that of free FMN23. These improved variants of miniSOG 
were obtained by identification and replacement of amino acids responsible for: (i) steric barriers for oxygen 
diffusion toward the PS, (ii) quenching of FMN triplet state by electron transfer, and (iii) quenching of produced 
1O2 by chemical reactions23,26.

In line with these observations is a finding of ~10-fold increase of the ΦΔ value in miniSOG after its irradia-
tion23. This finding was explained as the result of progressive photoinactivation of certain amino acids, such as 
His, Met, Phe, Trp, and Tyr, that are responsible for 1O2 quenching5,8,28 and/or the buildup of FMN photoprod-
ucts21. Indeed, very recently Torra et al.29 showed that the irradiation of miniSOG leads not only to oxidation of 
several residues, which are possible electron donors to FMN, but also to phototransformation of FMN to lumi-
chrome, which results in facilitation of the access of molecular oxygen to the isoalloxazine ring of FMN.

In this work, we present detailed analysis of cumulative irradiation of two forms of LOV2 domain of phototro-
pin 1 from Avena sativa (AsLOV2), wild type (wt) and its variant with replaced cysteine 450 (the numbering cor-
respond to the original sequence of the LOV domain in phototropin 1) for alanine (C450A). These two variants 
differ by an ability of light-induced conformational change, which is induced by covalent bond forming between 
the thiol group of C450 and C(4a) on the isoalloxazine ring. While AsLOV2 is able of photoswitching, the variant 
C450A, due to removing of the thiol, has lost this property. The AsLOV2 primary structure is more than 80% 
identical with miniSOG. Our results clearly show different kinetics of FMN triplet states of the AsLOV2 and its 
variant, increased efficiency of 1O2 production as a function of irradiation time as well as oxidative modification 
of both proteins. Based on these observations, we conclude that the irradiation-induced increase of 1O2 produc-
tion in the AsLOV2 variants is due to a release of FMN to solvent as a result of oxidative modification of certain 
amino acids in the AsLOV2 structure. Our results suggest a new approach towards designing an efficient protein 
photosensitizer as a carrier of a chromophore that can be subsequently released by irradiation of the protein at 
the site of its action.

Experimental methods
Cloning, expression and purification of the AsLOV2 domain.  Wild type AsLOV2 as well as variant 
AsLOV2-C450A were expressed in E. coli strain BL21(DE3). The bacterial cells were grown at 37 °C in ampicillin 
containing (100 µg/ml) TB medium until they reached OD600 ~0.6–0.8. Protein expression was induced by adding 
isopropyl β-D-galactopyranoside (100 µM final concentration) following a temperature downshift from 37 °C 
to 25 °C. Expression was carried out in darkness overnight at 25 °C. The proteins were purified using metal ion 
affinity chromatography (Ni-NTA Superflow, Qiagen). The sequence of the final construct of AsLOV2 contains 
an N-terminal His10-tag, followed by amino acids 404–547 of AsLOV2 according the original numbering of pho-
totropin 1. After IMAC purification they were run on a Superdex 75 Increase, 10/300 GL, size exclusion column 
and concentrated in 20 mM TrisHCl buffer, pH 7.8. All steps were performed in darkness. The ratio of absorbance 
at 280 nm/477 nm of the final protein was ~2.5, suggesting the absence of AsLOV2 apoform30.

Sample irradiation (by laser) and singlet oxygen phosphorescence.  Samples (1.2 ml) containing 
25 μM protein were placed in a 10 × 10 × 40 mm quartz cuvette equipped with an overhead-type glass stirrer and 
kept at ~30 °C. A laser system consisting of a pulsed optical parametric oscillator (OPO) (GWU basiScan-M) 
pumped with the third harmonic of a Nd:YAG laser (Spectra-Physics, Quanta-Ray, INDI-HG-10S) was used to 
excite the samples. The OPO wavelength was tuned to 475 nm matching the absorption maximum of the AsLOV2 
protein. The repetition rate of the 5–7 ns long laser pulses was set to 10 Hz. The 3 mm diameter laser beam was 
focused to the cuvette by means of a 200 mm lens. The average laser power on the sample was 0.9 mW. The phos-
phorescence signal of singlet oxygen passed through a 1250–1300 nm band-pass filter and was detected with a 
photomultiplier tube (Hamamatsu H10330A-75) operated in photon counting mode. A multichannel scaler PCI 
card (Becker & Hickl, MSA-300) was used to acquire the phosphorescence time course. In order to suppress the 
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background signal originating from the optical components, the emission signal was measured with two addi-
tional band-pass filters, in the 1200–1250 nm and the 1300–1350 nm spectral regions. The background signal 
was assumed to have a slowly varying wavelength dependence in the covered spectral range. The resulting singlet 
oxygen phosphorescence was calculated by subtracting the average of the two auxiliary measurements (acquired 
in the adjacent spectral regions) from the signal measured in the 1250–1300 nm spectral range. The background 
was efficiently suppressed this way. Throughout the experiments an average of 2500 laser pulses was detected with 
each filter consecutively. The time needed for a single measurement set (three band-pass filters) was 12.5 min. The 
total irradiation time was 75 min.

Measurements of FMN triplet state lifetime.  An additional 633 nm cw laser was added to the optical 
setup to monitor the FMN triplet state lifetime in a flash-photolysis experiment31. The polarization of the cw laser 
was oriented at the magic angle with respect to the excitation beam polarization. The laser beam was passing 
through the sample area excited with the pulsed laser. The time-resolved absorption at 633 nm was measured 
with an avalanche photodiode (Thorlabs, APD110A2) connected to a digitizing oscilloscope (Tektronix, DPO 
7254). The average signal of 2500 laser pulses was acquired consecutively throughout the irradiation experiment. 
Eighteen decay curves were measured during the 75 minutes interval. The protein concentration was 25 µM.

Determination of a light-induced released of FMN.  Relative amounts of released FMN from AsLOV2 
wt and AsLOV C450A were determined by FMN fluorescence after filtration using 10 kDa cut-off filter tubes. 
Each sample, i.e. non-illuminated and illuminated AsLOV2 wt and AsLOV2 C450A, 900 µl of 10 µM protein, was 
loaded into Amicon Ultra Centrifugal filter tube and centrifuged for 5 min at 7500 g. After the spin, the collected 
flow-through of each sample was measured for FMN fluorescence.

Spectral analysis.  Different spectroscopic techniques have been used to follow the structural changes 
of AsLOV2 wild type and variant C450A after irradiation with blue light. All spectra were recorded at room 
temperature.

Ultraviolet and visible absorption spectra were obtained with a UV-2401PC UV-Vis spectrophotometer 
(Shimadzu). Protein concentrations were calculated by using an extinction coefficient of ε447 = 13800 M−1·cm−1 
for oxidized FMN32. The measurements were performed in quartz cuvettes with 1 cm pathlength. The protein 
concentration was 25 µM.

Fluorescence emission spectra were recorded with a RF-5301PC spectrofluorophoto-meter (Shimadzu). The 
emission spectra of FMN and tryptophan were measured by using excitation wavelengths at 445 nm and 295 nm, 
respectively. For obtaining fluorescence spectra, a protein concentration of 10 µM was used.

Circular dichroism spectra measurements were performed by Jasco 810 (Jasco). The protein concentration 
used in CD measurements was 10 µM. The measurements in the far-UV and the near-UV spectral regions were 
performed in quartz cuvette with 1 mm and 1 cm pathlengths, respectively.

Adduct decay kinetics measurements.  For light-induced adduct formation accompanied by absorb-
ance changes in the spectral region 425–520 nm, we used a photographic flash (Canon) as a light source. Adduct 
decay kinetics were measured by following absorbance at 447 nm in quartz cuvettes with 1 cm pathlength. A 
UV-2401PC UV-Vis recording spectrophotometer (Shimadzu) was used. In all measurements, the protein con-
centration was 25 µM.

Molecular modeling.  The Maestro/Desmond33,34 combination of programs has been used for model build-
ing, energy minimization, MD simulations and analysis of simulation results. The OPLS-2005 force field (the 
up-to-date version of the OPLS force field family35–42) was used to carry out the simulation studies. The two 
AsLOV2 protein structures (PDB ID: 2v0u and 2v0w) were downloaded from the Protein Data Bank, updated 
in Maestro using the “Protein Preparation Wizard”. The proteins were solvated (SPC water model43; the water 
molecules were added within 1 nm buffer around the protein, creating thus a 6 × 6 × 7 nm sized solvent box) and 
the resulting structures were then minimized. The final structures were equilibrated and submitted for 5 ns NPT 
(pressure at 1.01325 bar) simulations with the Desmond program at 300 K. Molecular geometries resulting from 
simulations were saved at 0.5 ps intervals and were visualized within the Maestro and VMD44 programs and were 
used for further analysis. The cystine thiol of C450 of AsLOV wt (PDB ID: 2v0u) was oxidized to SOO− and the 
resulting structures were also solvated, and NPT simulated for 5 ns in Desmond as described above. Comparative 
simulations were then performed for the C450A-mutated AsLOV2 domain.

The Caver 3.0 program45 has been used for analysis of possible transport tunnels in all protein structures 
downloaded from the RCSB protein database as well as all structures saved from MD simulations.

The BIOVIA Discovery Studio46 visualizer was also used for complementary visualization and analysis of the 
modeled molecular structures.

Top-down mass spectrometry.  Proteins were desalted off-line on a Protein OptiTrap (Optimize 
Technologies, Oregon City, USA) with 0.1% formic acid (FA) in water and eluted with 80% acetonitrile/0.1% FA. 
Protein concentration were adjusted to 5 µM with water and the proteins were loaded into a quartz capillary ESI 
tip and mounted onto a home-built nESI source. Data were acquired in a broad band mode (m/z 200–3000) or 
in a CASI mode (Continuous Acquisition of Selected Ions) where selected charged states (19+, 20+, 21+ and 
22+) of the protein were analyzed and fragmented simultaneously. Protein fragmentation was done through 
collision-induced dissociation in the quadrupole (front end) of 15 T FT-ICR MS (solariX XR, Bruker Daltonics, 
Bremen, Germany). Data were interpreted by a software tool developed in the laboratory and validated manually 
in Data Analysis 4.1 (Bruker Daltonics).
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Bottom-up mass spectrometry.  Samples (10 µg) of each wild-type and C450A AsLOV2, both irradi-
ated and non-irradiated, were digested using trypsin or Asp-N in 100 mM Tris-HCl pH 8.5 at 37 °C overnight. 
Subsequently, the samples were analyzed using LC-MS/MS. Peptides were injected on a reversed phase trap col-
umn (Zorbax 300SB-C18 5 μm, 0.3 × 5 mm, Agilent Technologies, USA) and desalted by 0.1% FA in water for 
3 min at flow rate of 20 µL/min. Next, the peptides were eluted and separated on an analytical column (ZORBAX 
300SB-C18, 0.3 × 150 mm, 3.5 µm, Agilent, USA) using a linear acetonitrile gradient from 5 to 35% of solvent B. 
Solvents were as follows: A: 0.1% FA in water, B: 0.1% FA, 95% ACN in water. The flow on the analytical column 
was 10 µL/min and the temperature was held at 50 °C. Eluting peptides were analyzed online with ESI-FT-ICR MS 
(15 T solariX XR, Bruker Daltonics, Germany) operating in data-dependent mode. The data were processed by 
DataAnalysis 4.1 (Bruker Daltonics, USA) and then searched by MASCOT in ProteinScape 4 (Bruker Daltonics, 
USA) against a database containing the AsLOV2 wt and C450A sequences. Various oxidative modifications of 
Met, Phe, His, Trp, Tyr, Pro and Cys were set as a variable. Parallel analysis in PEAKS X Studio was also conducted 
with automatic search for possible modifications present in the Unimod database. All found oxidized peptides 
and their non-oxidized variants were then manually searched in the data and their extracted ion chromatograms 
and highest intensity monoisotopic peaks were compared to estimate the level of oxidation. Assignment of oxida-
tive modification to specific amino acids was done based on the fragment ions in the MS/MS spectra.

Results
In this work, singlet oxygen is generated through the interaction of triplet state FMN (3FMN) with molecular 
oxygen. The kinetics of the 3FMN transient absorption signals and 1O2 phosphorescence were analyzed consid-
ering two assumptions. First, the small size of the studied AsLOV2 proteins (~3.5 nm diameter) suggests that 
1O2 diffuses out of the protein matrix relatively fast. Due to this fact, 1O2 spends most of its lifetime in the water 
environment. The justification of this assumption is given in the Supporting information.

The second assumption is related to the fact that the FMN molecule is released from the protein to solvent due 
to oxidative modifications of the protein. The FMN released to water leads to an increase of 1O2 production out-
side of the protein. The presence of FMN in the aqueous environment was also observed in the work of Westberg 
et al.23 at low irradiation. In this work, we found evidence that FMN is present in the aqueous environment and 
its amount in the solution increases with irradiation of the sample.

Determination of 3FMN lifetime.  The time-resolved 3FMN absorbance at 633 nm of the AsLOV2 C450A 
and the AsLOV2 wt are shown in insets of Fig. 1. The obtained 3FMN lifetime values for both AsLOV2 variants 
are summarized in Table 1. The black points belong to low irradiation (obtained during the first 12.5 min of the 
irradiation), while the data taken after extensive irradiation (75 min) of the samples are shown in magenta.

Singlet oxygen phosphorescence.  The experimental time-courses of the 1O2 phosphorescence signals 
are shown in Fig. 1A,B for the AsLOV2 C450A and the AsLOV2 wt, respectively. The phosphorescence kinetics 
changes dramatically upon prolonged irradiation of the samples. For both AsLOV2 variants, the intensity of the 
phosphorescence signal increased significantly after 75 min of irradiation, indicating enhanced 1O2 production. 
Analysis of the 1O2 phosphorescence signals relies on the 3FMN lifetime values, τT,i, determined in the flash pho-
tolysis experiments. For all the six irradiation levels, the time-dependence of singlet oxygen phosphorescence P(t) 
was assumed to consist of independent contributions, which correspond to different 3FMN groups:

Figure 1.  The time-course of the singlet oxygen phosphorescence signal for AsLOV2 C450A (A) and AsLOV2 
wt (B) at different irradiation levels. The six curves were fitted in a global fitting procedure; the lines represent 
the fitted results. Insets: The decay of the FMN triplet state absorbance at 633 nm following the excitation laser 
pulse as measured for AsLOV2 C450A and AsLOV2 wt. Black and magenta points correspond to low and high 
irradiation, respectively.
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where Ai is amplitude of the phosphorescence and τΔ is the lifetime of the 1O2 molecule.
In agreement with the assumption that singlet oxygen, wherever being produced, spends most of its lifetime 

in the aqueous environment, only a single lifetime of singlet oxygen, τΔ, was assigned to all the different contri-
butions. It is noted that this approximation holds true due to the relatively short singlet oxygen lifetime in water 
environment and low protein concentration.

In the following sections, detailed analyses of 3FMN lifetimes and 1O2 phosphorescence are presented for the 
AsLOV2 C450A and AsLOV2 wt.

AsLOV2 C450A. The 3FMN lifetime.  Based on the transient absorption signals measured with the 
AsLOV2 C450A, we concluded that three different FMN groups are present in the system. These groups were 
assigned to the FMN inside the intact protein, the FMN inside the oxidized protein and the FMN in the water 
environment. The corresponding 3FMN lifetimes (τT

prot, τT
prot*, and τT

water) were determined by fitting all the 18 
decay curves with triple-exponential decays using the following constrictions: τT

prot - a single fitting parameter 
used for all the decay curves; τT

prot* - no restrictions, this lifetime was allowed to evolve during the irradiation; 
τT

water - not fitted, fixed to 2.7 µs - the lifetime measured by our apparatus in aqueous solution of FMN, which is in 
agreement with previously reported value2.

The 3FMN lifetime values obtained for AsLOV2 C450A can be summarized as follows: τT
prot = 57 ± 2 µs; 

τT
prot* - gradually decreases from 32 ± 7 µs (at low-irradiation) to 23 ± 3 µs (at high-irradiation) (Figure S1). The 

decreasing τT
prot* lifetime is likely caused by the gradually increasing accessibility of the protein interior to oxygen 

due to by the irradiation-induced oxidation. The 3FMN lifetime determined for AsLOV2 C450A, τT
prot = 57 µs, is 

in accordance with the corresponding lifetime values previously reported for the C450A variant, i.e. 72 µs31 and 
98 µs47, and also with the lifetimes found in miniSOG, τT

prot = 28 µs, and SOPP, τT
prot = 79 µs at 30 oC26.

Additional information can be derived from the amplitudes Absi
0 of the triple-exponential decay curves 

(ΣiAbsi
0exp(−t/τTi)), which represents 3FMN absorption right after the excitation laser pulse (Fig. 2A). The direct 

comparison of the initial absorption amplitudes is difficult because of the unknown extinction coefficients for all 
three different 3FMN groups. Despite this drawback, the absorption amplitudes provide an important informa-
tion about the kinetics of the system evolution.

AsLOV2 C450A AsLOV2 wt

low irradiation 
(12.5 min)

high irradiation 
(75 min)

low irradiation 
(12.5 min)

high irradiation 
(75 min)

τT
prot [µs] 57 ± 2 1.5 ± 0.01

τT
prot* [µs] 32 ± 7 23 ± 3 — —

τT
water [µs] 2.7F 2.7F

τΔ [µs] 2.7 ± 0.2 3.0 ± 0.2 2.6 ± 0.2 3.3 ± 0.2

Table 1.  The lifetime values of 3FMN and 1O2 as determined by fitting the time-resolved absorbance and 
phosphorescence data. Ffixed value, not varied during the fitting procedure.

Figure 2.  The amplitudes of the exponential 3FMN absorption decays, Absi
0 (A) and the amplitudes Ai of the 

different 3FMN group contributions to the 1O2 phosphorescence signal (see Eq. 1) (B) in intact protein (red 
circles), in oxidized protein (green triangles), and in water (black squares) as a function of the irradiation time 
of AsLOV2 C450A. The solid lines represent the results of the fitting procedures.
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Based on the experimental observation, we proposed a model that schematically describes irradiation-induced 
changes in AsLOV2 C450A accompanied by FMN release (Scheme 1).

The protein oxidation is characterized by the unimolecular rate constant k1. The constant k2 represents the 
rate constant of the FMN release from the oxidized protein. For the sake of simplicity, only a single unimolecular 
rate constant k2 was used for all the proteins with different level of oxidation. Finally, the bleaching of FMN in 
the water environment (rate constant k3) was taken into account in the model. Precise description of the model 
by differential equations and the corresponding analytical solutions for different FMN groups’ concentrations 
[FMN]i are shown in Supporting information. It is noted that the values of k1, k2, and k3 depend on the irradiation 
conditions and are specific for the present experiment.

To determine the rate constant of FMN bleaching, k3, in the solution, we performed separate experiments. 
For this purpose, 25 µM FMN was mixed with 25 µM apoAsLOV2, which was prepared according to the proce-
dure of Dürr et al.48 and was irradiated in the same way as both AsLOV2 variants. Noteworthy, upon admixture of 
apoAsLOV2 and FMN, formation of holoAsLOV2 was not detected based on UV-Vis absorbance measurement. 
The apoAsLOV2 wt was used to mimic the presence of the protein in the solution. As expected, significant bleach-
ing of FMN was observed and both the production of singlet oxygen and the initial absorbance values Abs0

water 
of 3FMN decreased exponentially. The rate of the bleaching was determined as 1/k3 = 3260 s, which reflects both 
the decay of 1O2 production, and the decay of the 3FMN absorption amplitudes (Abs0

water). The 3FMN lifetime 
remained unaffected, 2.7 ± 0.1 µs, during the irradiation experiment.

The obtained kinetics of 3FMN absorption amplitudes (Fig. 2A) for AsLOV2 C450A were fitted according 
to the model shown in Scheme 1 (assuming proportionality between: (i) the concentration of FMN, (ii) the 
amount of 3FMN produced and (iii) the 3FMN absorption signal Absi

0 in each group, throughout the irradiation 
experiment). The data points of Abs0

prot were fitted by the single exponential decay (Eq. S1), from which the 
characteristic time, 1/k1 = 9000 s was obtained for the rate of protein oxidation in our system. The value of k2 was 
determined by fitting the 3FMN absorption in the oxidized protein Abs0

prot* and in the solution Abs0
water with the 

corresponding time-dependences (Eqs. S2 and S3), using the previous values of k1 and k3. The best match of the 
experimental data and the analytical curves was obtained for 1/k2 = 1000 s. Based on the fits shown in Fig. 2A, we 
can conclude that the experimental data are well described by the model.

AsLOV2 C450A. Singlet oxygen phosphorescence.  The 3FMN lifetime values (τT
prot, τT

prot*, and τT
water) 

were utilized to analyze the 1O2 phosphorescence data. The phosphorescence amplitudes Aprot, Aprot* and Awater and 
the lifetime of singlet oxygen τΔ were determined in a global fit (using all the measured curves shown in Fig. 1A). 
The lifetime of 1O2 was allowed to evolve during the irradiation. The fitted curves and the obtained amplitudes 
are shown in Figs. 1A and 2B, respectively. The evolutions of Awater and Aprot were fitted with the corresponding 
time-dependences of [FMN]water and [FMN]prot., respectively. The general shape of these curves reproduces the 
experimental data very well. Based on the proposed model, the proportionality factors of the two curves (black 
and red line in Fig. 2B) can be used to calculate the quantum yield of singlet oxygen production in the intact 
AsLOV2 C450A, using the quantum yield of 1O2 production by FMN in the solution (ΦΔ water = 0.57)2 as a refer-
ence. Taking into account the different absorbance of the two FMN groups at the excitation wavelength (475 nm) 
(Figure S2), the ΦΔ value for the intact AsLOV2 C450A equals to 0.07. The analogous quantitative analysis of the 
Aprot* data is not feasible due to the changing level of oxidation during the experiment.

AsLOV2 wt. The 3FMN lifetime.  The kinetics of 3FMN transient absorption in the AsLOV2 wt (inset 
Fig. 1B), were analyzed in analogous way as for the AsLOV2 C450A variant. In the case of the AsLOV2 wt, 
only two triplet state lifetime components were identified. Based on this observation, we concluded that FMN is 
released from the oxidized AsLOV2 wt very fast. This is in agreement with our results from molecular dynamics 
studies, which indicate a steric clash between the oxidized Cys450 and FMN (see below). The 3FMN absorption 
decays were fitted with two lifetime values (τT

prot, τT
water), assuming that these lifetimes do not change during the 

irradiation: τT
prot - a single fitting parameter used for all the decay curves; τT

water - not fitted, fixed to 2.7 µs, which 
is the lifetime measured in pure FMN solution. The global fit resulted in a value of τT

prot = 1.50 ± 0.01 µs. The low 
error indicates high-quality fits.

The obtained lifetime of the 3FMN state in AsLOV2 wt is in good agreement with the results of Swartz et al., 
τT

prot = 2 µs31 and Song et al., τT
prot = 2.2 µs49, but differs from the triplet state decay time reported by Gil et al., 

τT
prot = 9.5 µs47.

Scheme 1.  The scheme of the irradiation-induced changes in AsLOV2 C450A and FMN dissociation. C450A 
and C450A* represent the intact and the oxidized protein, respectively. FMN and FMN# represent the intact 
and the bleached flavin cofactor, respectively.
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The amplitude of the 3FMN absorption Abs0
prot indicates that the amount of 3FMN produced in the intact 

protein (Fig. 3A, red points) decreased by 50%. At the same time, there is no evidence of slowing the decrease 
down towards longer irradiations. In this case, the experimental data are better fitted with a linear decrease than 
with an exponential decay. This behavior is consistent with the assumption of the fast FMN release from the 
protein and can be rationalized as follows: the quantum yield of 1O2 production is very low for the FMN inside 
the AsLOV2 wt. Once the FMN is released from the protein, the rate of 1O2 production increases, which in turn 
enhances the rate of the protein oxidation and the rate of FMN release. In principle, the FMN release acts as an 
auto-catalyzed reaction, which explains the unusual (quasi-linear) decrease of Abs0

prot. Scheme 2 shows a model 
of irradiation-induced changes in the AsLOV wt accompanied by FMN release.

The mathematical description of this model is shown in the Supporting information. This model was used to 
fit the Absi

0 values in Fig. 3A. The curvature of the Abswater (black squares), reflecting the bleaching effect, is well 
described by the rate constant k3.

AsLOV2 wt. Singlet oxygen phosphorescence.  The procedure of the analysis of 1O2 phosphorescence 
data of the AsLOV2 wt were analogous as in the case of AsLOV2 C450A, taking into account the different model 
of irradiation-induced changes in the protein. Based on the fitting results, we conclude that the observed phos-
phorescence signal in AsLOV2 wt can be fully explained by 1O2 production in the solution and the contribution of 
the FMNprot group can be considered as negligible. The results of the phosphorescence global fits and the obtained 
amplitudes Awater are shown in Figs. 1B and 3B, respectively. The Awater values are well fitted with the [FMN]water 
time-dependence using the same value of 1/k3 = 3260 s.

The global fit (based on the developed model) allowed us to determine the dependence of 1O2 lifetime on irra-
diation time (Fig. 4). The results show than in both AsLOV2 variants the lifetime of 1O2 increases with irradiation 
time very likely as a result of progressive proteins oxidation.

Changes in AsLOV2 optical spectra induced by irradiation.  UV-VIS absorption spectros-
copy.  UV-VIS absorption spectra of the wild type and the C450A variant of AsLOV2 are almost identical in the 
spectral range 300–550 nm and correspond to the absorption of FMN (Figure S2). Both variants exhibit major 
absorption peaks at 447 nm, 473 nm, and a shoulder at ~425 nm. The difference between these two forms in the 
region 300–400 nm reflects the replacement of cysteine for alanine in position 45031,32. After blue light irradiation, 
a small spectral change in the region 400–500 nm is observed in both AsLOV2 forms, corresponding to ~12% and 

Figure 3.  The amplitudes of the exponential 3FMN absorption decays, Absi
0 (A) and the amplitudes Ai of 

the different 3FMN group contributions to the 1O2 phosphorescence signal (see Eq. 1) (B) in intact protein 
(red circles) and in water (black squares) as a function of the irradiation time of AsLOV2 wt. The solid lines 
represent the results of the fitting procedures.

Scheme 2.  The scheme of the irradiation-induced changes in AsLOV2 wt and FMN dissociation. FMN and 
FMN# represent the intact and the bleached flavin cofactor, respectively.
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~22% decrease in the absorbance at 447 nm for AsLOV2 C450A and AsLOV2 wt, respectively (Figure S3). The 
observed decrease is usually attributed to chromophore bleaching. The small increase in the absorbance in the 
region 300–400 nm has been previously interpreted as a result of tryptophan oxygenation to kynurenine50, which 
is in accordance with the results obtained by mass spectrometry (see below).

Circular dichroism.  Structural changes in AsLOV2 proteins induced by irradiation were also followed by 
circular dichroism (CD) spectroscopy in the far- and near- UV regions (Figure S4). In the far-UV region, the 
CD spectra show that both variants of AsLOV2 contain similar fractions of α-helical (~13 ± 3%) and β-sheet 
(32 ± 3%) structures (for the analysis we used two different web servers: DICHROWEB51,52 and BeStSel53). Small 
changes in the secondary structure in both variants of AsLOV2 are noticeable after the extensive laser irradiation 
(Figures S4A,C), corresponding to ~13% and ~25% decrease in ellipticity at 222 nm for AsLOV2 C450A and 
AsLOV2 wt, respectively. The extent of the changes is similar both in the far-UV and the near-UV regions to those 
observed in the corresponding UV-VIS absorption spectra. The observed changes can be attributed to a direct 
effect of ROS or can be of a secondary nature as a result of the chromophore oxygenation and/or its release54.

Fluorescence.  AsLOV2 contains two intrinsic fluorescent probes, FMN chromophore and one tryptophan resi-
due, Trp491. Comparison of the fluorescence emission spectra of the flavin chromophore located in the AsLOV2 
wt and its variant AsLOV2 C450A clearly shows significantly lower intensity of the fluorescence in the AsLOV2 
wt (Fig. 5). This is due to light-induced formation of covalent bond between flavin chromophore and the reactive 
cysteine in the AsLOV2 wt. The fluorescence maximum of the wild-type protein after irradiation is moved to 
higher wavelengths, corresponding to the peak of free FMN at 520 nm (Fig. 5A). These results suggest that part 
of the flavin chromophores are released from the binding pocket into the solvent. In fact, we fitted the fluores-
cence spectrum of AsLOV2 wt after irradiation as a combination of the fluorescence spectra of protein bound 
FMN and free FMN. The obtained fit consists of two fractions combining ~45% of the free FMN and ~55% 
protein-bound FMN (Fig. 5A). In the case of AsLOV2 C450A, the irradiation induces ~23% decrease in fluores-
cence intensity measured at 500 nm (Fig. 5B). An analogous fit for AsLOV2 C450A (Fig. 5B) led to fractions of 
free and protein-bound FMN equal to ~25% and ~75%, respectively. On the other hand, the intrinsic tryptophan 
fluorescence of AsLOV2 C450A before irradiation is ~20% higher than the fluorescence of AsLOV2 wt (insets 
Fig. 5). The irradiation induces ~1.6-fold and ~2.6-fold increase in fluorescence intensity of AsLOV2 C450A and 
AsLOV2 wt, respectively. The absence of a shift in the maximum of the tryptophan fluorescence suggests that the 
observed irradiation-induced increase is not due to a conformational change in the proteins, but rather due to 
decreased fluorescence quenching by the flavin cofactor.

To address the possibility of FMN dissociation from the protein, we performed simple filtration experiments 
in which the released cofactor passes through the filter, while the protein is retained. The outcome of these exper-
iments showed that before irradiation there was no free FMN detected in the filtrate. The irradiation-induced 
changes in the proteins led to release of FMN from both types of proteins (Fig. 6). Although this method does 
not allow quantitative determination of released FMN, it does allow a relative comparison: irradiation induced 
a release of ~1.8-fold more FMN in the case AsLOV2 wt in comparison with AsLOV2 C450A variant (Fig. 6), 
which corresponds to the ratio of  dissociated FMN from AsLOV2 wt and AsLOV2 C450A obtained from the 
analysis of the fluorescence spectra in Fig. 5.

Another way to assess the fraction of retained FMN in the protein after irradiation is to compare the ampli-
tude of the cysteinyl-FMN adduct formation in the AsLOV2 wt measured by flash-induced absorbance changes 
at 447 nm55 using samples before and after the extensive (75 min) irradiation by laser (Fig. 7). The obtained results 
suggest that after irradiation only ~40% of FMN is able to form the adduct.

Determination of irradiation-induced changes in primary structures of AsLOV2.  Light-induced 
production of 1O2 by FMN is accompanied by covalent modification of amino acids in AsLOV2, which 

Figure 4.  Dependence of the 1O2 lifetime on irradiation time in AsLOV2 C450A (red circles) and AsLOV2 wt 
(black square). The estimated error of individual data points is ±0.2 μs. The solid lines serves as an eye lead. The 
dashed line is the 1O2 lifetime in pure water70.
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localization and nature of the modification were determined. First, we measured the intact mass to verify the 
protein state and possible fragmentation. Based on these data (Figure S5A), we concluded that the irradiated 
proteins are intact, no significant fragmentation occurred but they differ in the extent of oxidative modifications, 
with C450A form being significantly more affected upon irradiation (Figure S5B).

In the bottom-up approach, the protein was digested in solution, analyzed by LC-MS/MS and the generated 
peptides were identified by database searching and automated de novo sequencing. This yielded a list of modified 
residues and allowed a direct comparison between the different AsLOV2 states regarding the extent of oxidation 
of individual amino acids (Fig. 8). By this approach, 97% coverage was achieved and only five residues (460–464) 
were missed (Figure S6). Observed oxidation of the His-tag sequence (N-terminal Met and histidines) are not 
listed among the modified residues in Fig. 8, as this part of the sequence (the first 31 amino acids) is unnatural 
for AsLOV2 (Figure S6).

In the AsLOV2 wt, di- and tri- oxidation of Cys450, (but not single oxidation) were found to be very promi-
nent modifications. While the bottom-up method targeted the whole bulk of protein populations, the top-down 
approach allowed the selection of the “first-hit”/singly oxidized species, and their subsequent fragmentation and 
assignment of modified residues based on the protein MS/MS spectra. The selection of singly oxidized protein 
forms had also another benefit as it “filtered-out” the Cys450 modification, which occurred as double and triple 

Figure 5.  Fluorescence emission spectra of FMN and intrinsic tryptophan in AsLOV2 wt and AsLOV C450A. 
The fluorescence of FMN in AsLOV2 wt (A) and in AsLOV2 C450A (B) before (black line) and after (red dots) 
illumination and the fluorescence of free FMN (green). The blue line shows the fit to FMN fluorescence after 
the illumination. The fits (blue line) consist of two fractions of fluorescence: protein-bound and free FMN. 
Insets: Intrinsic tryptophan fluorescence of the corresponding forms of AsLOV2 before (black line) and after 
illumination (red line). The concentrations of proteins and the free FMN were 10 µM in 20 mM Tris-HCl, pH 7.8.

Figure 6.  Analysis of a release of FMN from AsLOV2 wt and AsLOV2 C450A induced by blue light irradiation. 
FMN fluorescence indicates a release of FMN from its binding pocket to the bulk solvent. FMN fluorescence 
of non-irradiated AsLOV2 wt (black dashed), AsLOV2 C450A (red dashed) and irradiated AsLOV2 wt (black 
solid) and AsLOV2 C450A (red solid).
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oxidation and allowed us to focus on other residues. Unfortunately, the gas-phase fragmentation of AsLOV2 
proved to be quite inefficient as we missed fragmentation in the middle of the protein (Figure S7A). Nonetheless, 
we obtained the information supporting and complementing our bottom-up data. Based on the oxidation 
increase between the N-terminal fragment ions b26 and b47 together with the same trend observed from the 
opposite site (C-terminal fragment ions y127 and y151) we can point on Phe415 as an oxidation-sensitive amino 
acid. Furthermore, we can also conclude (based on fragment ion y36, Figure S7B), that the sequence spanning 
from Gly511 to the C-terminus is not affected by oxidative events in any of the analyzed AsLOV2 forms. This is 
at first in apparent contrast with the bottom-up data, where Met530 was found to be oxidized and where the data 
point to a significant difference between wt and C450A forms (Fig. 8). However, one should keep in mind that 
the top-down fragmentation was aimed at the first-hit oxidation and thus we can assume that Met530 oxidation 
is a secondary event. Finally, we can state that the remaining primary oxidation sites are localized between amino 
acids 420 and 511 where the majority of significantly oxidized residues were found by the bottom-up approach.

Altogether, based on the MS data it can be concluded that: (i) the modifications occurring in AsLOV2 
upon irradiation consist of various products of amino acid side chain oxidations, (ii) the modifications are 
light-dependent as the overall extent of the oxidative modifications is much higher in irradiated samples of both 

Figure 7.  Dark state recovery kinetics of non-irradiated (black) and irradiated (red) AsLOV2 wt. Experimental 
data are shown as circles and the solid lines show fits of the data by single exponential functions.

Figure 8.  List of oxidation products and their extent of oxidation (intensity of oxidatively modified peptide) 
in all studied protein forms – wild-type (wt) and C450A (mut) before (N) and after (I) irradiation. Column 
Mod shows the elemental composition of the modification (oxidation: +O1, +O2 or +O3; Trp to kynurenin: 
-C1+O1; Pro to pyrrolidone: -C1O1). When it was not possible to clearly assign oxidation to one specific 
residue, two possibly affected residues are listed in the first column. The last column highlights the fold change 
in oxidation between C450A and wt forms. In case of C450 oxidation (marked in the last column with an 
asterisk) such comparisons were not possible due to generation of different peptides upon oxidation and 
due to mutation. The intensity of oxidized form was indirectly deduced from intensity decrease of the intact, 
unoxidized Asp-N generated peptide.
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AsLOV2 wt and the AsLOV2 C450A variant, (iii) generally the same amino acids are oxidized in both AsLOV2 
variants, (iv) the extent of some oxidative modification is higher in AsLOV2 C450A compared to AsLOV2 wt.

Detection of tunnels in the structure of AsLOV2.  The unusual modification of proline residues (high-
lighted in red in Figs. 9 and S8, illustrating that P420, P423 and P426 form a cluster on the right side of the 
protein) led us to an assumption that in this part of the protein exit channel(s) may exist, connecting the source 
of the production of 1O2 with the protein surface. As a result, even prolines, which are usually resistant to redox 
reactions, are oxidized by reactive oxygen species created by FMN. Indeed, the Caver 3.045 tunnel analysis of 
AsLOV2 wt crystal structure (PDB ID: 2v0u) detected the presence of several tunnels. We have analyzed several 
AsLOV2-related protein structures: at first we considered their optimized geometries and then their geometries 
resulting from 5 ns MD simulation in water environment: (i) dark state of AsLOV2 wt (PDB ID: 2v0u), i.e. with-
out covalent bond between C450 and C4(a) of the isoalloxazine ring (Figure S8A), (ii) in silico SOO− substitution 
on C450 Sulphur (Figure S8B), (iii) light state of AsLOV2 wt (PDB ID: 2v0w), i.e. with covalent bond between 
C450 and C4(a) of the isoalloxazine ring (Figure S8C), and (iv) in silico mutated AsLOV2 C450A (Figure S8D). 
The presence of tunnels was detected in all the protein geometries (Figures S8A–D). However, the number of 
tunnel clusters, as indicated on the pie chart on Figure S8 slightly differs, related to the C450 modifications/FMN 
binding. Several tunnel clusters (channels) (Figs. 9 and S8) are believed to be lined by the above mentioned P420, 
P423 and P426 amino acids. Several other channels, as illustrated in Figs. 9 and S8 terminate in the proximity of 
the highlighted amino acids listed in Fig. 8 and are shown as CPK representation in Figure S8. Interestingly, the 
comparison of a number of channels observed in MD simulations in AsLOV2 wt and AsLOV2 C450A suggests 
that C450A exhibits slightly more tunnels and could thus suffer a larger damage by oxygen than AsLOV2 wt. The 
highest number of calculated tunnels was found in 2v0u-SOO−, which in the light of our results might point to 
increased dynamics of the protein matrix explaining thus more efficient release of FMN from the protein.

Discussion
The protein matrix surrounding FMN can efficiently decrease the ΦΔ value by quenching the excited triplet 
state of FMN and by restriction of oxygen diffusion towards the isoalloxazine ring56. This, on one side, may 
have a protective role for the photosensitizers close surrounding by preventing unwanted production of ROS 
but on the other hand, significantly limits the ROS effect on the site of an intendent action. Here, we argue that 
genetically-encoded photosensitizers may be used as a carrier of the reactive cofactor, and the release of the cofac-
tor can be modulated by an irradiation or possibly other perturbation of the protein matrix.

Primary structure modification of AsLOV2 upon irradiation.  As can be deduced from the fine 
structure of FMN absorption spectrum in the wavelength range 400–500 nm, the cofactor has no extensive 
contacts with solvent molecules57. This is also in accordance with the crystal structures of the closely related 
flavoproteins SOPP and miniSOG2. On the other hand, our in silico analysis of the AsLOV2 crystal structure58 
suggests the existence of several channels in the protein structure, connecting the reactive site C(4a) on the 
isoalloxazine ring with the protein surface (Fig. 9). This connection becomes even more obvious after molec-
ular dynamics simulation (Figure S8). The presence of channels was also identified by molecular dynamics 

Figure 9.  Discovery Studio visualization of Caver-calculated tunnels of minimized PDB ID: 2v0u structure. (A) 
Ribbon representation of the protein with color-coded amino acids (summarized in Fig. 6) shown in ball and 
stick representation. C450 is shown in grey CPK representation. The color coding of the tunnels represented as 
CPK does not correspond to the color coding of the amino acids and is for their distinction only. (B) Surface 
representation of the protein with color coding of the amino acids of interest on the surface. The yellow arrows 
highlight the tunnels reaching the protein surface. The ribityl chain of FMN structure (not shown) overlaps 
with the circled tunnel 1 (yellow semitransparent circle). Detailed information from 5 ns MD simulations is 
summarized in Figure S9.
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simulation in the case of miniSOG59. If the channels play an active role as a traffic route of molecular oxygen to 
the FMN binding site and diffusion of the 1O2 and possibly other ROS out to the protein surface, one can expect 
oxidatively modified amino acids localized close to these channels. Indeed, the localization of three modified 
prolines, Pro420, Pro423, and Pro426, at the orifice of a cluster of several channels provide an explanation of 
unexpected modification of this otherwise very oxidation-resistant amino acid (Fig. 9). Our results strongly 
support the ability of reactive oxygen species to react with proline60,61. Because some reports conclude that 
proline does not interact with 1O2 our observations suggest a production of other ROS than 1O2 by FMN when 
encapsulated in AsLOV262–64.

ROS effectively react with aromatic amino acids such as Trp and Tyr. One surprising observation regard-
ing oxidative modification of amino acids in AsLOV2 was that none of the three tyrosine residues, present 
in AsLOV2, were modified by ROS produced by FMN. There are two ROS species that can be produced by 
FMN, O2

•− and 1O2. While O2
•− is relatively unreactive and directly reacts only at a few specific protein sites65, 

1O2 reacts efficiently with five common and functionally important amino acids (Cys, His, Met, Trp, Tyr)5,8,66. 
However, our findings show that ROS produced by AsLOV2 variants, surprisingly, do not oxidize the tyrosine 
residues of AsLOV2. Noteworthy, the absence of modification of tyrosine residues by 1O2 was also noticed in 
the case of two unrelated proteins such as cytochrome c (containing 4 Tyr residues)67 and lysozyme (containing 
3 Tyr residues)68.

The absence of the irradiation-induced modification of electron rich amino acids such as Tyr and Phe in both 
variants of AsLOV2 is unexpected on chemical grounds. Kiselar et al.69 speculated that some of the oxidative 
modification of aromatic residues in general can be “transferred” to Met by radical transfer. This suggestion could 
help explain the rather significant increase in Met oxidation, but only low Tyr and Phe oxidation in C450A.

A higher number of oxidative modifications of amino acids detected in our work in comparison with a very 
recent paper by Torra et al.29 can be attributed to the differences in the solution irradiation (wavelength, power, 
etc.) and partially also to the higher sensitivity and resolution obtained by our LC-MS/MS analysis on FT-ICR MS 
and combination of proteomics approaches directed at localization of the modification sites. Our approach truly 
analyzes all protein states present in the sample and, in addition, the top-down analysis allows the identification 
of the first-hit residues. In contrast, Torra et al.29 identified the oxidized residues in the crystal structure, hence the 
possibility that they observed just the crystallization-capable population cannot be excluded.

Approaches to increase singlet oxygen production by LOV domains.  The models based on our data 
demonstrate the fact that irradiation of both AsLOV2 variants is accompanied by FMN dissociation from the protein 
matrix. However, the dissociation as well as the production of 1O2 is more efficient in AsLOV2 wt than in AsLOV2 
C450A. The observed increase in 1O2 yield is thus rather the consequence of FMN release than of the protein oxidation.

In several previous studies, the authors assumed that an increase in 1O2 production was due to blocking con-
current reactions by electron transfer from redox-active amino acids such as Tyr, Phe, Met, Trp, and Cys, which 
quench the triplet state of FMN and may thus lead to formation of O2

•−29. In fact, this assumption led to efforts to 
rationally design genetically encoded efficient flavoproteins by replacing amino acids responsible for quenching 
of the FMN triplet state23,26, allowing thus increased production of 1O2. These efforts indeed led to an increased 
ΦΔ value attained in miniSOG and SOPP without detecting a dissociation of FMN21,26. These observations suggest 
that 1O2 production in genetically-encoded photosensitizers can be achieved also without a release of the cofactor 
from the protein matrix.

Impact of mutation C450A on FMN release.  The combined analyses of the data obtained from 3FMN 
absorption experiments (Fig. 3A), from the analytical models as well as from fitting of irradiation-induced 
FMN fluorescence of the free and protein-bound FMN (Fig. 5) point to the release of approximately 48 ± 3% 
and 28 ± 4% of FMN from AsLOV2 wt and AsLOV2 C450A, respectively, after irradiation of the proteins. 
About 1.8-fold higher release of FMN from AsLOV2 wt in comparison with AsLOV2 C450A was documented 
by direct determination of relative amount of FMN released from the irradiated proteins (Fig. 6). All these 
results suggest that AsLOV2 wt is more affected by irradiation than its variant C450A. Strikingly, the amplitude 
of irradiation-induced changes in absorbance and ellipticity (Figures S3 and S4) as well as the extent of changes 
detected by mass spectrometry analysis (Figure S7) clearly show the opposite, i.e. that the variant C450A is 
more perturbed than AsLOV2 wt. In fact, the analysis of the total (integrated) 1O2 phosphorence signal in 
both variants clearly shows that AsLOV C450A produced significantly higher amount of 1O2 (Figure S10) and 
likely also other ROS during irradiation, which explains the higher oxidation damage of AsLOV2 C450A in our 
experiments.

To reconcile our observations, we hypothesize that more efficient release of FMN from AsLOV2 wt than from its 
Ala-containing variant is due to irradiation-induced oxidation of Cys450. As illustrated in Figure S9, the “brute force” 
superposition of C450 and (per)oxidized C450 results in a steric clash of modified Cys450 and FMN. Molecular geom-
etry optimization and the subsequent MD simulations can easily eliminate such inappropriate molecular contacts, but 
in real structures such intermolecular conflicts could facilitate the release of FMN from AsLOV2.

Conclusions
We show that an irradiation-induced increase of 1O2 production in the AsLOV2 variants is due to a release of 
FMN to solvent as a result of oxidative modification of certain amino acids, predominantly the reactive cysteine 
450, localized nearby the isoalloxazine ring in the AsLOV2 structure. Our findings may be utilized to design 
more efficient genetically encoded photosensitizers based on LOV domains. The protein scaffold can serve merely 
as a targetable carrier while the reactive cofactor would be released at the site of action by a suitable perturba-
tion of the protein structure. In principle, intensive blue light irradiation or combined approach including both 

https://doi.org/10.1038/s41598-020-60861-2


13Scientific Reports |         (2020) 10:4119  | https://doi.org/10.1038/s41598-020-60861-2

www.nature.com/scientificreportswww.nature.com/scientificreports/

irradiation and thermogenesis could be applied. The irradiation can be more efficient in releasing FMN, if the 
binding site of isoalloxazine ring becomes repulsive upon irradiation, either through steric clashes or through 
charge repulsion. Enhanced effect, might be achieved by placing suitable amino acids close to the isoalloxazine 
ring. These amino acids, such as cysteine or methionine, upon irradiation-induced oxidation increase their vol-
umes and form steric clashes, thereby repelling the flavin cofactor. Local thermogenesis could be an alternative 
approach that would increase FMN dissociation from AsLOV2, due to the increased dynamics of polypeptide 
chain and consequently the increase of the ΦΔ value2.
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