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Abstract

Ferroelectric materials exhibit electrical, mechanical and electromechanical properties that are
being intensively studied and used in wide range of applications. These characteristics influ-
enced by internal heterogeneous domain structure. Tailoring of material properties by engineer-
ing of underlying structure would enable design of devices with special functionalities. It how-
ever requires deep understanding of domain behavior. In spite of long-lasting research, there
are still many questions opened concerning domains, domain walls morphology and motion.
This work deals with investigation of ferroelectric domains in perovskite materials, particulary
in BaTiO3.

Generalized Ginzburg-Landau-Devonshire phenomenological approach together with sym-
metry analysis is used for description and analytical predictions of properties of domains and do-
main walls in ferroelectric crystals, e.g. domain wall thickness, shape and orientation. Landau,
gradient, elastic, electrostriction and long-range dipole-dipole electrostatic interaction taken
into account. Method for computations of domain wall characteristics is presented and applied
to computation of all types of domain walls, that appear in BaTiO3 ferroelectric phases.

Development and dynamics of a polarization field and formation of complicated ferroelectric
domain patterns can be too complex to enable analytical treatment. These phenomena can
be simulated numerically based on time-dependent generalized Ginzburg-Landau-Devonshire.
Computational tool was developed for simulation of evolution of domain structure in bulk
ferroelectric material designed to cover up variety of external conditions in order to enable
investigation of material under different loading and constraints (external stress, mechanical
clamping, electric field or changes of temperature). These influences are important in real
applications and the model can provide simplified insight about what is happening inside the
sample. The results of our computer program were demonstrated on several examples.
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Abstrakt

Feroelektrické materiály vykazuj́ı elektrické, mechanické a elektromechanické vlastnosti, které
jsou intenzivně studovány a využ́ıvány v množstv́ı d̊uležitých aplikaćı. Tyto vlastnosti mohou
být do značné mı́ry ovlivněny vnitřńı doménovou strukturou př́ıtomnou v materiálu. Ta také
poskytuje možnost daľśıho vylepšováńı materiálových vlastnost́ı. Zvládnut́ı př́ıpravy navržené
doménové struktury by také umožnilo konstrukci nových materiál̊u a zař́ızeńı se speciálńımi
vlastnostmi. Takový ćıl však vyžaduje hlubokou znalost a porozuměńı chováńı domén. Navz-
dory dlouhodobému úsiĺı věnovanému této problematice z̊ustává stále mnoho otázek, týkaj́ıćıch
se feroelektrických domén, doménových stěn a jejich pohybu, otevřených. Tato práce se zabývá
studiem doménových stěn analytickými a numerickými př́ıstupy. Předevš́ım se soustřed́ı na per-
ovskitové materiály, konkrétně na BaTiO3. Tyto materiály jsou aplikačně perspektivńı mimo
jiné právě d́ıky své jednoduché struktuře.

Fenomenologický Ginzburg-Landau-Devonshire model, který zahrnuje Landauovu, gradi-
entńı, elastickou, elektrostrikčńı a elektrostatickou dipól-dipólovou interakci, je využit pro popis
a analytické předpovědi vlastnost́ı domén a doménových stěn ve feroelektrických krystalech,
např́ıklad jejich tloušťky, tvaru a orientace. Model je aplikován na výpočet charakteristik všech
typ̊u doménových stěn, které se vyskytuj́ı ve feroelektrických fáźıch barium titanátu.

Formováńı a vývoj komplikované doménové struktury často neńı možné postihnout an-
alytickými př́ıstupy. Zde využ́ıváme numerických simulaćı založených na časově závislém
zobecněném Ginzburg-Landau-Devonshire modelu. Byl vyvinut program pro simulace vývoje
doménové struktury v objemovém feroelektriku perovskitové struktury, který umožňuje zahrnut́ı
nejr̊uzněǰśıch okrajových podmı́nek (vněǰśı mechanické napět́ı, deformace, elektrické pole či
změna teploty), které napodobuj́ı vlivy p̊usob́ıćı v reálných krystalech. Model může poskyt-
nout určitý náhled do proces̊u prob́ıhaj́ıćıch ve vzorku. Možnosti programu jsou demonstrovány
na několika př́ıkladech.
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Notation and symbols

Notation

In order to simplify tensorial relations we use abbreviated Voigt notation for symmetric tensor
(Sec. E.2).

Greek indexes stands for contracted indexes α ∈ {1, 2, 3, 4, 5, 6}, while Latin symbols i, j ∈
{1, 2, 3} are indexes of directions in three-dimensional space corresponding to {x, y, z}. They
are used interchangeably.

Elastically permissible non-charged domain walls in BaTiO3 are discussed in this work.
Twelve nonequivalent types of walls (three for tetragonal, five for orthorombic and four for
rhombohedral phase) are taken into account. They are addressed by names composed of a
letter denoting ferroelectric phase (T,O,R), a degree between polarization in adjacent domains
(180,120,109,90,71,60) and, if necessary, also by their Miller indices (e.g. {001}) which can
be omitted if discussed property does not depend on particular orientation of domain wall.
Sometimes, it is necessary to address charged wall; in that case subscript c is attached to the
name of the wall (e.g. T90c). Considered electrically neutral elastically permissible domain
walls are: T180{001}, T180{011}, T90, O180{11̄0}, O180{001}, O90, O120, O60, R180{11̄0},
R180{2̄11}, R109, R71.
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Symbols

Symbol Unit [SI] Meaning of the symbol Definition

F kg m2 s−2 Free energy (page 25)
fL kg m2 s−2 Landau energy density (page 26)
fG kg m2 s−2 Gradient energy density (page 31)
fC kg m2 s−2 Elastic energy density (page 28)
Fq kg m2 s−2 Electrostriction energy density (page 28)
Fdep kg m2 s−2 Dipole-dipole electrostatic energy density (page 36)
FCq kg m2 s−2 Elastostriction energy density (page 25)

f
(e)
L kg m−1 s−2 Clamped Landau energy density (page 26)

Pi C m−2 Polarization field
ui m Field of displacements
eij 1 Component of a strain tensor (page 25)
σij kg m−1 s−2 Component of a stress tensor
αi kg m3 s−2 C−2 Coefficients of Landau expansion (page 26)
αij kg m7 s−2 C−4

αijk kg m11 s−2 C−6

αijkl kg m15 s−2 C−8

Gij kg m5 s−2 C−2 Gradient constants (page 31)
qij kg m3 s−2 C−2 Electrostriction constants (page 28)
Qij m4 C−2 Electrostriction constants (page 30)
Cij kg m−1 s−2 Elastic constants (page 28)
εB 1 Background permittivity (page 36)
ε0 kg m3 s−2 C−2 Permittivity of vacuum
gα kg m−1 s−2 Electrostriction stress components (page 28)
Aρσ kg−1 m s2 Tensor of elastostriction kernels (page 35,127)
E kg m s−2 C Electric field
T K Temperature of the sample
Λ C2kg−1m−3s Kinetic coefficient in Landau-Khalatnikov Equation (page 71)
U kg m−1 s−2 Energy barrier in Euler-Lagrange potential (page 45)
A kg m−1 s−2 Depart from simple tanh profile (page 44)
Σ kg s−2 Surface energy of a domain wall (page 45)
2ξ m Domain wall thickness (page 44)
∆ m Numerical grid spacing (page 75)
τ 1 Numerical time step (page 75)
Yα C2 m−4 Component of the vector of squares of polarization (page 35)
µE m2 V−1 s−1 Mobility of a domain wall under electric field E (page 109)



Chapter 1

Introduction

1.1 Motivation and basic definitions

1.1.1 Dielectrics and ferroelectrics

An increasing number of systems utilizes internal electrical, mechanical and electromechanical
properties of dielectric materials. Telecommunication systems, detection and measurement
devices are common examples, though applications are far from being limited to this area.
Coupling in smart materials make it possible to transform electric, magnetic, thermal or other
energy fields into mechanical deformation et vice versa. Piezoelectricity and electrostriction
enables construction of various experimental and medical probes, sensors, transducers and
positioning devices with nanometric accuracy, transformers of AC voltage or active elements
for suppression of vibrations, stabilizers, or actuators e.g. Refs. [1, 2, 3]. High value and
possible tunability of a dielectric constant is appreciated in a range of microelectronic devices
and systems for electronic communication.

Dielectric materials are electrical insulators, substances highly resistant to the flow of electric
current. They are well penetrable by electric field. The lack of charge carriers causes only
partial compensation of applied electric field originating from small displacement of bound
charges. The efficiency of compensation is determined by a dielectric constant - permittivity.
In the case of ionic insulators, the polarization1 is directly bound with deformation of the
crystal grid. The strain is accessible by external electric field and a material exhibits (at least)
inverse piezoelectric effect2. Electric permittivity is frequency dependent since it is connected
with crystal lattice dynamics. Important subgroup of ionic insulators, polar dielectrics, posses
spontaneous dipole moment, which appears due to mutual shift of individual positively and
negatively charged ions with respect to one another. These materials lack center of symmetry3

and exhibit pyroelectric effect4.
Ferroelectric materials are dielectric substances that are pyroelectrics and have at least two

equivalent states that differ only in the direction of the spontaneous polarization [4], and polar-
ization can be switched5 by electric field from one state to another. Hysteresis and saturation

1Polarization is dipole moment per unit volume.
2Strain appears at applied electric field.
3There is a symmetry restriction: 20 point groups out of 32 are piezoelectric and only 10 of them are

pyroelectric.
4Variation of polarization with temperature
5Generally, substances that exhibit some property (e.g. polarization, magnetic moment, strain) which can

15



16 CHAPTER 1. INTRODUCTION

are essential properties of ferroelectrics. In ferroelectrics, additional contribution to electronic
and ionic (lattice) permittivity is possible due to motion of domain walls and reorientation of
polarization domains.

Ferroelectric materials exhibit large piezoelectric and dielectric properties6 (Fig. 1.7) and
are therefore being used in all previously mentioned devices. Ferroelectrics are closely related
to other technologically important materials like relaxor ferroelectrics7 or multiferroics8.

1.1.2 Domain formation

Typical feature of ferroelectric materials is formation of ferroelectric domains. Most ferro-
electrics have a high-temperature, high-symmetry paraelectric phase with zero spontaneous
polarization [5]. As temperature falls, the dielectric constant increases and reaches its max-
imum at the transition temperature. Material changes its symmetry and undergoes phase
transition to a non-centrosymetric ferroelectric phase. On continual cooling, down it is some-
times possible to reach another ferroelectric phases. An order parameter9 of ferroelectric phase
transition is a vector of spontaneous polarization. At least two possible equivalent directions
of spontaneous polarization give rise to ferroelectric domain structure10. Inside ferroelectric
domain the polarization is homogeneous. Domains are separated by domain walls where the
polarization vector changes between spontaneous values of polarization in adjacent domains.

Domain architecture is generally complicated and it is strongly dependent on many factors
like method of growth of the crystal, its history, external mechanical constraints, electric field,
temperature, internal defects, crystal conductivity etc. Size of a ferroelectric domain can vary
from millimeters in the case of mono-domain crystals down to nanometric dimensions. It also
strongly depends on external conditions and history of a sample.

Ferroelectrics domains in a bulk single-crystal are shown in Fig. 1.1. They were observed on
125µm-thick sample by contact scanning force microscopy technique [7]. Images show contrast
that results from crossing of internal domain structure with the surface of the crystal. Domain
size here ranges from 1 up to 10 µm. Ferroelectric are, however, used not only as single-crystals
but also in the form of powders, polycrystalline and ceramic components. Fig. 1.2 shows BaTiO3

grains mechanically strained with other grains in the ceramics. The twin structure is very fine,
domain thickness can be estimated to just about 20 nm. Fig. 1.3 reveals domain size even below
20 nm for epitaxial PbTiO3. Unit cell in these materials is almost cubic with dimension about
4 nm. The domain is only about 50 unit cells thick.

Domains represent additional degree of freedom for material to relax mechanical energy of

be switched (by means of electric field, magnetic field, stress or combination of these) from one spontaneous
orientation state to another are called ferroics [6].

6Value of dielectric constant can be strikingly high (even in orders of 1000) namely in the vicinity of a phase
transition temperature.

7Relaxors exhibit smooth and frequency dependent maximum of dielectric constant at phase transition
temperature.

8E.g. magnetoelectrics where electric polarization could be directly driven by magnetic field or vice-versa.
9Order parameter – phase transition parameter changes its property quantitatively through phase transition.

It is used to expand free energy in Landau theory (see Sec. 2). It has two basic aspects [8]. Symmetry aspect:
Phase transition parameter determines possible symmetry of low symmetry phase. Physical aspect: The crys-
tal is unstable at transition temperature with respect to phase transition parameter with all other extensive
thermodynamic parameters held constant.

10Consequently, ferroelastic domain structure may also appear in species with strong electromechanical cou-
pling.
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Figure 1.1: Contact scanning force measurements of domain distribution at ferroelectric sur-
faces in BaTiO3. (a) Out-of-plane polarization signal (bright and dark areas correspond to
polarization pointing out of and into the sample, resp. (b) In-plane polarization, bright and
dark areas correspond to polarization pointing to the up right and down left, resp. Images are
taken from Ref. [7].

external clamping. It is well known that underlying domain structure has enormous impact on
properties and response of the material. It can be stated: ”The finer the domain structure, the
higher the dielectric constant”. In Ref. [9] the authors claim that the wall motion contribution
to the dielectric constant may be up to 80% in BaTiO3 ceramics with 1 µm grain (value strongly
depends on grain size).

Effective properties of a material depend on a volume fraction of individual domains, their
ordering, dynamics, shape, density and mobility of domain walls.

1.1.3 Domain engineering

Both benefits and drawbacks resulting from domain formation lead to increasing interest in
domain structure. Formation of domain provides material engineers with another tool for
improving material properties. It is expected that with use of various techniques it could
be possible to produce engineered domain structure with desired morphology and properties
(Ref. [10, 3]). There has been attempts to control domain architecture experimentally, but
there is still lack of answers to many questions, e.g processing, design of structure with defined
behavior under external electrical or mechanical loading. Formation of domains is not always
desired11. Question arises how to avoid unwanted domains.

The concept domain engineering is mostly used in the literature for poling of ferroelectric
crystals by sufficiently large electric field applied along one of the possible polar axes of the
crystal other than zero-field polar axis [13]. Resulting domains are then equivalent with respect
to the applied field and there is no motion of domain walls. In broader sense, the concept of
domain engineering is used to denote modification of domains in material in order to produce

11Monodomain single-crystals are required for certain applications and domain formation can result in inap-
propriate change of material properties.
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Figure 1.2: (a) Transmission electron microscopy and (b) reflected light microscopy of a domain
structure in mechanically clamped grain in BaTiO3 ceramics. Micrographs taken from Ref. [72,
73].

Figure 1.3: Transmission electron microscopy of a domain structure in an epitaxial PbTiO3

(Ref. [1])
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Figure 1.4: Estimate of domain structure from surface polarization. Upper figure was cut from
Fig. 1.1 and rotated by 45 degree. Black line indicates cross section of the image bellow with the
surface of the sample. Bottom figure suggests domain structure. Direction of polarization vector
is indicated by arrows, their length is irrelevant. Color scheme used corresponds roughly to the
upper figure. If the bevel domain walls were for example inclined to the opposite direction,
they would be charged (heads of arrows will head towards each other).

desired structure or properties (Ref. [15, 16]).

It is indicated by supporting Figs. 1.1,1.2,1.3 that domain properties are strongly dependent
on size and external constraints of a material. In powders, ceramics, thin films and single-
crystals the domain structure is under different electromechanical conditions. From clamping
of grains in ceramics to perfect mechanical clamping in epitaxial thin films where the lattice
constant is adjusted to the substrate. Also resulting response is different.

1.1.4 Predictions of domain structure

In principle, although domain structure can be quite complicated, basic types and geometrical
properties of domain walls in a ferroelectric material can be usually derived from symmetry,
elastic compatibility conditions and electrostatic considerations [4, 17]. For example, this kind
of considerations allows one to predict preferred crystallographic orientations of 180 degree and
90 degree domain boundaries in tetragonal BaTiO3 that is classical model materials. Such
estimation of material domain structure is demonstrated in Fig. 1.4, where polarization inside
the sample is predicted in order to create mutually mechanically compatible domains and non-
charged domain walls.

Important tool of today physics, computer simulations are being used in ferroelectric at
different levels. Ab-initio quantum mechanic computations, computations at finite temperature
as molecular dynamics or Monte-Carlo simulations are usually limited to small number of
particles (at best thousands), and therefore are not suitable for predictions of domain structure.

In the past, phase field models using phenomenological potentials appeared in the literature
[18, 20, 21]. Phase field simulations enable not only prediction of complicated domain structure,
but also its dynamics that is critical for controlling of piezoelectric and dielectric properties of
a material.



20 CHAPTER 1. INTRODUCTION

Internal structure of materials is usually probed by spectroscopic methods. Simulations
with carefully chosen parameters can produce valuable insight into processes that take place
inside the material and are not directly accessible by experimental observations. Continuous
simulations are still, however, limited to relatively small (submicron) areas.

1.1.5 Ginzburg-Landau-Devonshire theory and bulk simulation

In this thesis a continuous generalized Ginzburg-Landau-Devonshire (GGLD) phenomenolog-
ical model is used to deal with domains and domain walls in bulk ferroelectric perovskite
material. A free energy functional is constructed in term of powers of polarization components,
its derivatives and components of strain tensor. Polarization and strain are taken as primary
and secondary order parameter. Landau potential, exchange gradient, elastic, electrostriction
and electrostatic dipole-dipole energy are taken into account in the model.

Time-dependent Landau-Khalatnikov equation governs evolution of polarization field in
numerical simulations. Similar phase-field models are used e.g. in simulation of precipitation
in alloys, twinning in martensites or ferromagnetics with their own specifics. Assumption of
periodicity of polarization and strain fields enable computations Fourier space. Careful choice of
mechanical boundary conditions also enables simulation of behavior of a sample under various
conditions. Ferroelectric thin films and small grains will be different compared to bulk samples,
because there are additional problems concerning e.g. surfaces or substrate clamping (Ref. [1]),
but the model can also account for some features of these systems.

Full understanding of evolution of domain structure, response to temperature changes and
applied external electric field or stress would require to take into account all features of ma-
terials, e.g. influence of internal conductivity (that is small but not always negligible), defects
(vacancies, impurities, dopants etc.) or layers at grain boundaries with different chemical
composition which can drastically decrease dielectric properties. Although there were several
attempts to introduce effects of imperfections into the model (e.g. in Ref. [22, 23, 24]), it is still
heuristic approach.

In this work, this defects, imperfections and other random fields are not taken into account
unless explicitly stated.

In this work only simple models of defects are used in several simulations.

Important representant of perovskite family of ferroelectrics, BaTiO3, will be discussed.
Model can be, after few marginal modifications, also used for description of other perovskites.
Due to technological progress in manufacturing higher quality materials and continuing minia-
turization of devices this model can produce valuable information in spite of previously de-
scribed simplifications. Model is very sensitive to correct determination of involved constants.
Parameters for barium titanate used in simulations was determined and discussed in [13, 26, 20].
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Table 1.1: Sequence of ferroelectric phase transitions in BaTiO3. The symbol of phase transition
species is according to [29]. A name consists of three parts. First is a paraelectric point group.
Second part indicates orientation of spontaneous polarization with respect to symmetry element
(DX(m) and AX(m) means parallel and perpendicular to the X-fold axis (plane), resp). In the
end there appears symbol of ferroelectric point group preceded by F (for ferroelectric).

Phase transition Temperature (K) Transition species
cubic → tetragonal 398 m3mD4F4mm
tetragonal → orthorombic 281 m3mD2Fmm2
orthorombic → rhombohedral 202 m3mD3F3m

1.2 BaTiO3

BaTiO3 is a typical ferroelectric material and representant of family of perovskites12. High
temperature paraelectric (with zero spontaneous polarization) phase is cubic. In the corners
of the cube there are barium ions, the titanium ions at the body center and oxygen ions
at face centers. On cooling down, individual ions slightly shift with respect to one another,
electrical dipole is created or changes its orientation and a material undergoes ferroelectric phase
transition. In BaTiO3, there is sequence of phase transitions from high-temperature paraelectric
cubic Rm3̄m (O1

h) (ITA 221) to ferroelectric tetragonal P4mm (C1
4v) (ITA 99)13, orthorombic

Amm2 (C14
2v ) (ITA 38) and rhombohedral R3m (C5

3v) (ITA 160) phase. Complete list of phase
transition species in BaTiO3 is given in Tab. 1.1. All these phase transitions exhibit peak of
dielectric constant. BaTiO3 is therefore a proper ferroelectric material according to classification
[8]. First-order character (according to the Ehrenfest classification) of all ferroelectric phase
transitions is indicated by discontinuity in physical properties corresponding to the first and
higher derivatives of the thermodynamic potential.

BaTiO3 is good insulator with resistivity about 1010 Ω m at 100 kV m−1 [30] for as-grown
crystal or ceramics (strongly dependent on purity of material, dopants, electrodes etc.). Elec-
trical conductivity is therefore neglected. Lattice constant is a = 3.996 Å [30]. It is almost the
same in all ferroelectric phases (mechanical strain is up to 1% in all phases).

Example of temperature dependence of dielectric constant for BaTiO3 ceramics with various
grain size is given in Fig. 1.7.

1.3 Related works

Analytical computation of shapes of domain walls follows the works of W. Cao and L.E. Cross
[33]. The authors derived analytical solution for 90 degree and 180 degree domain wall in

12Perovskites are relatively simple technologically important compounds with a structure of CaTiO3. Chem-
ical formula is ABO3. Crystal structure is a primitive cubic with A-cation in the middle, B-cation in the corner
and oxygens in the center of edges. Perovskite materials are e.g. ferroelectric BaTiO3, PbTiO3, KNbO3, incip-
ient ferroelectric SrTiO3 and other substances with variety of phase transitions (ferroelectric, anti-ferroelectric,
ferroelastic) like CaTiO3, NaNbO3, PbZrO3, BaZrO3.

13Space group number (Ref. [50]).
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Figure 1.5: Unit cell of BaTiO3 with the position of atoms of barium, titanium and oxygen.

Figure 1.6: Values of spontaneous polarization for (a) tetragonal, (b) orthogonal and (c) rhom-
bohedral symmetry. ”0” indicates chosen value of polarization in one side of domain wall, other
directions of spontaneous polarization are denoted by the angle between these polarization
states.
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Figure 1.7: Real part of dielectric constant in BaTiO3 ceramics. Size of grain is indicated in
nanometers after short-hand BT standing for barium titanate. Symbols and lines represent data
from reflectivity fit and dielectric measurements, resp. The discrepancy between data was as-
cribed to contribution from domain walls, which are included in static dielectric measurements,
but not in reflectivity measurements. Figure was taken from Ref. [9].

tetragonal phase. Similar work of X. R. Huang and coauthors [34] deals with 90, 180 and
120 degree domain walls in orthorombic phase. S-wall was discussed in papers published by
Janovec, Fousek and Erhart [17, 4, 35].

Simulation of domain structures in ferroelectric perovskites were performed by several
groups:

S. Nambu and D. A. Sagala in the article [18] described Ginzburg-Landau-Devonshire model
for simulation of evolution of domains. Model is defined in terms of polarization and defor-
mation, which is further eliminated with use of mechanical equilibrium conditions (which was
originaly suggested A.G. Khachaturyan [31]). They propose computation in direct space with
use of integration kernel for long-range interactions. Electrostatic interaction is, however, not
included.

H. L. Hu and L. Q. Chen [19, 20] made use of the method presented in [18]. Electrostatic
dipole-dipole interaction is taken into account. Computation on mechanically clamped crystal
is performed in Fourier space with use of semi-implicit method [32] that enables considerable
increase of time-step.

Similar procedure was used by R. Ahluwaalia [21] to obtain hysteretic behavior under varying
external electric field.

W. Zhang and K. Bhattacharya [24, 25] performed simulation in real space for polarization.
Elastic field was treated separately and mechanical equilibrium conditions were obtained in
each step by separate solving of elastic problem with use of FEM method. Local electric field
is obtained by explicit solving of Poisson equation. This approach avoid transformation to
Fourier space and therefore does not require periodicity of boundary conditions. Influence of
nucleation on the shape of hysteresis curves was tested. Hysteresis of polarization and strain
versus electric field is provided for material under different level of external stress.
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1.4 Scope and brief overview of the thesis

The main objective of this work is to contribute to knowledge about domain walls and domain
formation in ferroelectric material. Firstly, domain walls were inspected using analytical ap-
proach and symmetry considerations. Moreover, computational tool for numerical simulations
of domain evolution in perovskite ferroelectric material was developed. Individual parts of the
thesis were arranged into following chapters:

Introduction: Introduction and scope of the thesis, brief review of related works.

Generalized Ginzburg-Landau-Devonshire model: Definition and description of the model,
parameters used in numerical and analytical computations. Elimination of heterogeneous
part of the elastic field from the model.

Charge-free elastically compatible domain walls: Analytical description of domain wall
profile and other properties. It is assumed that domain wall is of Ising type, charge-free
and elastically compatible. Then it is possible to treat it within one-dimensional model
which is solvable analytically. Mutually comparison of the walls is possible. Legitimacy
of assumptions is discussed.

Dynamics of polarization field: Dynamics of polarization put together with lattice vibra-
tions of optic modes. Soft mode concept is introduced.

Landau-Khalatnikov equation: Time dependent Landau-Khalatnikov equation that gov-
erns evolution of polarization is introduced. Variations of the free energy functional that
appears at the right hand side of the equation are computed.

Implementation details of computer programs: Used numerical schemes are described.
Description of the program for computation of evolution of polarization field are given.
Possible configurations are described together with advantages and disadvantages of com-
putation in Fourier space.

Examples of simulations: Several applications of developed program for computation of evo-
lution of domain structure in ferroelectric material are described and discussed.

Conclusions: Conclusions and main results of the thesis.

Future work: Possible directions of future work.

Appendices: Additional information and algebraic calculations used in the thesis are pro-
vided. Fourier transform, variation of the free energy, elastostriction kernels, tensors and
transformation of coordinates, compatibility relations, point groups.



Chapter 2

Generalized
Ginzburg-Landau-Devonshire model

Continuous model is based on a definition of relevant thermodynamic potential. Important
features of ferroelectrics – hysteresis (polarization vs. electric field), electrostriction, coupling
of polarization and mechanical deformation in BaTiO3 – require introduction of nonlinear terms
to the thermodynamic potential [36, 5]. Following several preceding works [37, 18, 19, 20, 21],
the excess1 free energy is expanded in terms of powers of polarization components Pi, its

derivatives Pi,j and components of strain tensor eij = 1
2

(
∂ui

∂xj
+

∂uj

∂xi

)
. Polarization and strain

were taken as primary and secondary order parameters, respectively. This approach was firstly
demonstrated on BaTiO3 by Devonshire in [37]. The free energy

F [{Pi, Pi,j, eij}] = F
(e)
LG [{Pi, Pi,j}] + FCq [{Pi, eij}] + Fdep [{Pi}] (2.1)

consists of three parts: Ginzburg-Landau, Elastostriction and electrostatic part. Polarization
is considered to be position-dependent Pi = Pi(r). Ginzburg-Landau part

F
(e)
LG [{Pi, Pi,j}] =

∫
dr

[
f

(e)
L [{Pi}] + fG [{Pi,j}]

]
(2.2)

represents mechanically clamped potential (denoted by superscript e – see Sec. 2.1) together
with Ginzburg gradient part for energy increase due to variation of polarization. Elastostriction
part

FCq [{Pi, eij}] =

∫
dr [fC [{Pi, eij}] + fq [{Pi, eij}]] (2.3)

stands for linear elastic and electrostriction energy as introduced by Devonshire in [37, 5].
Heterogeneous part of the elastic strain field can be eliminated assuming that its relaxation
towards mechanical equilibrium is much faster then evolution of the polarization field [19] –
heterogeneous strain can be determined from local mechanical equilibrium conditions given by
Euler-Lagrange equation for deformation. Elimination of the heterogeneous strain is conve-
niently done in Fourier space by the procedure described for example in Sec. 2.3, where Ref. [18]

1The free energy is assumed to consist of two parts: energy of hypothetical cubic state, and energy arising
from nonzero order parameters [26].

25
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is followed. Finally, the contribution of electrostatic dipole-dipole interaction Fdep [{Pi}] to the
free energy is taken into account in the form

Fdep [{Pi}] = −1

2

∫
dr [Edep(r) ·P(r)] , (2.4)

where Edep is local electric field that consists of contribution from dipoles in the system, external
electric field and free charges at the electrodes. (Edep is referred to as depolarization field,
because electric field originating from surface dipoles can cause decrease of polarization in a
sample).

We considered the material as strained cubic in all phases, because depart of lattice param-
eters in tetragonal, orthorombic and rhombohedral phases are reasonably small and there is
a group-subgroup relation between high paraelectric cubic and each ferroelectric point group.
On the contrary, there is no such relation between individual ferroelectric point groups. Cubic
symmetry of parent parelectric phase considerably simplifies involved tensors and constructed
potential2.

2.1 Landau-Devonshire potential

The Landau free energy functional is systematic expansion of local energy in terms of polariza-
tion components. First-order character of phase transitions in BaTiO3 implies the expansion
at least up to sixth3 order in polarization

f
(e)
L [{Pi}] = α1

(
P 2

1 + P 2
2 + P 2

3

)

+α
(e)
11

(
P 4

1 + P 4
2 + P 4

3

)

+α
(e)
12

(
P 2

1 P 2
2 + P 2

2 P 2
3 + P 2

1 P 2
3

)

+α111

(
P 6

1 + P 6
2 + P 6

3

)

+α112

(
P 4

1 (P 2
2 + P 2

3 ) + P 4
2 (P 2

1 + P 2
3 ) + P 4

3 (P 2
1 + P 2

2 )
)

+α123P
2
1 P 2

2 P 2
3 . (2.6)

Coefficient α1(T ) is reciprocal susceptibility for zero polarization and is linearly temperature
dependent in accordance with Curie-Weiss law which states that temperature dependence of

2For particular materials it is necessary to choose appropriate terms of the free energy functional according
to the substance under consideration. For example the electristriction is important in ferroelectrics, while
magnetostriction in ferromagnetic materials can be negligible. Electrostatic interaction would be suppressed by
the presence of free charge carriers that screen local electric fields.

3Landau potential is also expanded up to higher orders in order to obtain realistic phase diagram, especially
for big strains. Eight order terms in polarization are added to Eqn. 2.6

+α1111

(
P 8

1 + P 8
2 + P 8

3

)

+α1112

(
P 6

1 (P 2
2 + P 2

3 ) + P 6
2 (P 2

1 + P 2
3 ) + P 6

3 (P 2
1 + P 2

2 )
)

+α1122

(
P 4

1 P 4
2 + P 4

2 P 4
3 + P 4

1 P 4
3

)

+α1123

(
P 4

1 P 2
2 P 2

3 + P 4
2 P 2

1 P 2
3 + P 4

3 P 2
1 P 2

2

)
.

(2.5)

Recently, there have been published stress-free Landau expansion coefficients up to eighth order for BaTiO3 [12]
rendered out of phase diagram of the material under large compressive strain. The only temperature-dependent
coefficient is α1(T ).
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Figure 2.1: (a) Hysteresis in one-dimensional Landau potential constructed for P2 = 0, P3 =
0 with electric field applied along x-direction. (b) Values of minima for tetragonal (black),
orthogonal (blue) and rhombohedral (green) phase. Temperature of phase transition is indicated
by vertical lines. (c) Value of spontaneous polarization in individual phases. (d) Relative
increase of volume in individual phases. Parameters are taken from parameter set ”A” in
Tab. 2.2.

the susceptibility above the transition point (in cubic state) is χ = χ0 + C
T−Tc

. In the field
of ferroelectrics, where dielectric constant can reach extremely high values, relatively small
constant χ0 coming from electronic polarizability is omitted. Other coefficients can, but might
not be temperature dependent.

Sequence of phase transitions in the crystal is given by changes of a position of the abso-
lute minima of the corresponding Landau potential. The Landau energy expansion for cubic
symmetry of parent4 paralelectric phase reads5:

Sixth-order expansion (given by the parameter set ”A” in Tab. 2.1) is used in analytical and
numerical computations in this thesis. Detailed discussion of the shape of sixth-order stress-
free Landau potential was given in [13] together with temperature versus electric field phase
diagrams. The authors found α1(T ), α11(T ) and α111(T ) dependence on temperature in the
form

α1(T ) = 3.34× 105 (T − 381)

4Tetragonal (C4v), orthorombic (C2v) and rhombohedral (C3v) point groups are subgroups of cubic (Oh)
group. However, group subgroup relation does not appear between any two of C4v, C2v and C3v point groups.

5In literature, there also appears Landau potential with isotropic coefficient α11.
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α11(T ) = 4.69× 106 (T − 393)− 2.02× 108

α111(T ) = −5.52× 107 (T − 393) + 2.76× 109 . (2.7)

There are six equivalent states of spontaneous polarization in tetragonal phase, twelve in or-
thorombic and eight in rhombohedral. They are indicated schematically in Fig. 1.6(a,b,c).
Phase transitions are of first-order, therefore minima for a given phase survive even below
and above phase transition. Range of existence of minima of all phases in stress-free Landau
potential (inspected by negative definitivity of the hessian matrix) are plotted in Fig. 2.1(c).
Minima corresponding to tetragonal phase exist for given Landau potential approximately be-
tween 237 K and 393 K, orthorombic phase between 104 K and 303 K and rhombohedral phase
between 0 K and 256 K. Transition temperatures for this potential are approximately 392 K
(C→T), 283 K (T→O) and 202 K (O→R).

The contribution of the elastic field to the free energy is introduced through linear elastic
energy

fC [{eij}] =
1

2
eρCρσeσ

=
1

2
C11(e

2
11 + e2

22 + e2
33)

+C12(e22e33 + e11e33 + e11e22)

+2C44(e
2
23 + e2

13 + e2
12) . (2.8)

Electrostriction energy reads

fq [{Pi, eij}] = −qijkleijPkPl

= −q11(e11P
2
1 + e22P

2
2 + e33P

2
3 )

−q12(e11(P
2
2 + P 2

3 ) + e22(P
2
1 + P 2

3 ) + e33(P
2
1 + P 2

2 ))

−2q44(e12P1P2 + e13P1P3 + e23P2P3)

= −
6∑

ρ=1

eρgρ . (2.9)

Here Cαβ and qαβ are components of elastic and electrostriction tensor in Voigt notation, C11 =
C1111, C12 = C1122 ,C44 = C1212, q11 = q1111, a12 = q1122, but q44 = 2q1122. Electrostriction stress
components gρ are defined

g1 = q11P
2
1 + q12P

2
2 + q12P

2
3

g2 = q12P
2
1 + q11P

2
2 + q12P

2
3

g3 = q12P
2
1 + q12P

2
2 + q11P

2
3

g4 = q44P2P3

g5 = q44P1P3

g6 = q44P1P2 . (2.10)

The equilibrium elastic homogeneous state in applied homogeneous stress σ and local elec-
tric field E(r) is obtained by minimization of the free energy functional with respect to the
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Table 2.1: Complete sets of parameters used in the phenomenological GGLD model for BaTiO3.
Set ”A” was derived in Ref. [26], and is used for computations throughout this thesis. Set ”B” is
the same except for Landau coefficients, which are taken from Ref. [12]. Set ”C” corresponds to
parameters use in H.-L. Hu and L.-Q. Chen [20] for three-dimensional numerical simulations (†
the coefficient α11 was repaired in order to reach spontaneous value of polarization given in cited
article). Set ”D” are coefficients from W. Zhang and K. Bhattacharya [24]. Electrostriction
coefficients Qij are not independent and can be evaluated using Eqn. 2.14.

Parameter A B C D Unit [SI]
α1 −2.772 −3.712 −3.712 −5.178 107 J m C−2

α11 −6.476 −2.097 −2.790† 4.924 108 J m5 C−4

α
(e)
11 1.701 6.079 −2.745 − 108 J m5 C−4

α12 3.230 7.974 49.45 19.695 108 J m5 C−4

α
(e)
12 −3.441 1.303 49.41 − 108 J m5 C−4

α111 8.004 1.294 6.497 14.081 109 J m9 C−6

α112 4.470 −1.950 32.48 − 109 J m9 C−6

α123 4.910 −2.500 8.121 − 109 J m9 C−6

α1111 − 3.863 − − 1010 J m13 C−8

α1112 − 2.529 − − 1010 J m13 C−8

α1122 − 1.637 − 5985.810 1010 J m13 C−8

α1123 − 1.367 − − 1010 J m13 C−8

G11 51 51 51 51 10−11 J m3 C−2

G14 0 0 0 0 10−11 J m3 C−2

G44 2 2 51 51 10−11 J m3 C−2

q11 14.20 14.20 0.00527 10.56 109 J m C−2

q12 −0.74 −0.74 −0.000275 −1.37 109 J m C−2

q44 1.57 1.57 0.000582 5.97 109 J m C−2

C11 27.50 27.50 0.000690 185 1010 J m−3

C12 17.90 17.90 0.000449 111 1010 J m−3

C44 5.43 5.43 0.000135 37 1010 J m−3

εB 7.35 7.35 1 1

Q11 0.1104 0.1104 0.1104 0.0114 m4 C−2

Q12 −0.0452 −0.0452 −0.0452 −0.0047 m4 C−2

Q44 0.0289 0.0289 0.0289 0.0016 m4 C−2
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Table 2.2: List of parameters of sixth-order Landau potential for characteristic temperatures of
individual ferroelectric phases in BaTiO3. Set ”B” is derived by Bell in [13]. Temperature de-

pendent coefficients are given in Eqn. 2.7. α
(e)
11 and α

(e)
12 are renormalized according to Eqn. 2.16

and Eqn. 2.17, resp.

Landau coefficient 298 K 208 K 118 K Unit [SI]
α1 −2.772 −5.778 −8.784 107 J m C−2

α11 −6.476 −10.697 −14.918 108 J m5 C−4

α
(e)
11 1.701 −2.520 −6.741 108 J m5 C−4

α12 3.230 3.230 3.230 108 J m5 C−4

α
(e)
12 −3.441 −3.441 −3.441 108 J m5 C−4

α111 8.004 12.972 17.940 109 J m9 C−6

α112 4.470 4.470 4.470 109 J m9 C−6

α123 4.910 4.910 4.910 109 J m9 C−6

polarization and strain components [26]

∂

∂Pi

(
f

(e)
L + fC + fq − σ · e− E ·P

)
= 0 (2.11)

∂

∂eij

(
f

(e)
L + fC + fq − σ · e− E ·P

)
= 0 . (2.12)

The convention is that negative values means pressure, and positive values stand for traction.
Similarly for strain tensor e, negative and positive values represent compression and expansion,
respectively. Equation for stress-free (σ = 0) deformation at zero electric field for homogeneous
sample follows immediately from Eqn. 2.12

e1 = Q11P
2
1 + Q12P

2
2 + Q12P

2
3

e2 = Q12P
2
1 + Q11P

2
2 + Q12P

2
3

e3 = Q12P
2
1 + Q12P

2
2 + Q11P

2
3

e4 = Q44P2P3

e5 = Q44P1P3

e6 = Q44P1P2 . (2.13)

Mechanical deformation is proportional to square of polarization. Components of electrostric-
tion tensor Qαβ are defined as

Q11 =
1

3

[
q̂11

Ĉ11

+ 2
q̂22

Ĉ22

]
=

C11q11 + C12q11 − 2C12q12

(C11 − C12)(C11 + 2C12)

Q12 =
1

3

[
q̂11

Ĉ11

− q̂22

Ĉ22

]
=

C11q12 − C12q11

(C11 − C12)(C11 + 2C12)

Q44 =
q44

C44

(2.14)
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with constants

Ĉ11 = C11 + 2C12

Ĉ11 = C11 − C12

q̂11 = q11 + 2q12

q̂11 = q11 − q12 . (2.15)

Substitution Eqn. 2.13 into FL [{Pi}] + FCq [{Pi, eij}] leads to the expression for the free energy
of homogeneous sample dependent only on polarization. It has the same form as FL with
coefficients α

(e)
11 , α

(e)
12 instead of α11, α12, resp. The renormalization has the form [18, 37]

α11 = α
(e)
11 −

1

6

[
q̂2
11

Ĉ11

+ 2
q̂2
22

Ĉ22

]

= α
(e)
11 −

c12q11(q11 − 4q12) + c11(q
2
11 + 2q2

12)

2(C11 − C12)(C11 + 2C12)
(2.16)

α12 = α
(e)
12 −

1

6

[
2

q̂2
11

Ĉ11

− 2
q̂2
22

Ĉ22

+ 3
q2
44

C44

]

= α
(e)
12 −

[
C11q12(2q11 + q12) + c12(q

2
11 + 2q2

12)

2(C11 − C12)(C11 + 2C12)
+

1

2

q2
44

C44

]
. (2.17)

Coefficients α11 and α12 are Landau coefficients for stress-free crystal presented in Ref. [13, 12].

We use them to get constants for mechanically clamped crystal α
(e)
11 and α

(e)
12 . Shapes of clamped

and stress-free crystal can differ significantly. In Fig. 2.2 there are printed clamped and stress-
free potentials for Pz = 0. Stress-free potential minimum is tetragonal as expected, but clamped
potential has its minimum at orthorombic positions.

2.2 Ginzburg gradient contribution to the free energy

Generally, the polarization varies with position in space, P = P(r). We assume that polarization
components P1(r), P2(r), P3(r) are differentiable functions of position up to second derivatives.
Ginzburg contribution to the energy functional from weakly nonlocal interaction is given by
quadratic form in polarization gradients for cubic symmetry

fG [{Pi,j}] =
1

2
GijklPi,jPk,l

=
1

2
G11(P

2
1,1 + P 2

2,2 + P 2
3,3)

+G14(P1,1P2,2 + P2,2P3,3 + P1,1P3,3)

+
1

2
G44

(
P 2

1,2 + P 2
2,1 + P 2

2,3 + P 2
3,2 + P 2

3,1 + P 2
1,3

)
. (2.18)

The tensorial expression was introduced and explained in Ref. [26]. For cubic symmetry G11 =
G1111, G12 = G1122 and G44 = G1212. Tensorial form proves useful for transformation of tensor
components into new coordinate systems: Gijkl has the same transformation properties as
tensor of elastic constants Cijkl in Eqn. E.5).
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Figure 2.2: Negative values of Landau potential with coefficients according to parameter set
”A” from Tab. 2.2 for 298 K. (a) Stress-free Landau potential in tetragonal phase. (b) Clamped
Landau potential in tetragonal phase phase has orthorombic minima. Contours are distributed
linearly.

It it worth noting that expression for gradient energy appears in several equivalent forms in
literature. Most common forms are

fG [{Pi,j}] =
1

2
G11(P

2
1,1 + P 2

2,2 + P 2
3,3)

+G12(P1,1P2,2 + P2,2P3,3 + P1,1P3,3)

+
1

2
G44

(
(P1,2 + P2,1)

2 + (P2,3 + P3,2)
2 + (P3,1 + P1,3)

2) , (2.19)

where G14 = G12 + G44, and

fG [{Pi,j}] =
1

2
G11(P

2
1,1 + P 2

2,2 + P 2
3,3)

+H12(P1,1P2,2 + P2,2P3,3 + P1,1P3,3)

+
1

2
H44

(
(P1,2 + P2,1)

2 + (P2,3 + P3,2)
2 + (P3,1 + P1,3)

2)

+
1

2
H ′

44

(
(P1,2 − P2,1)

2 + (P2,3 − P3,2)
2 + (P3,1 − P1,3)

2) . (2.20)

Here G44 = H44 + H ′
44 and G14 = H12 + H44 − H ′

44. Previous relations hold thanks to the
equality of volume integrals P1,2P2,1 and P1,1P2,2 in infinite or periodic sample. The former is
case of analytic considerations, the latter holds in simulations in periodic space.

It is usually taken for granted [20, 24] that the gradient energy is isotropic6. However, in
Ref. [26] there was shown that the anisotropy of gradient energy play crucial role in domain
formation and evolution process in perovskites.

6Gradient energy is isotropic if the coefficients fulfil following condition: G14 = 0 and G44 = G11.



2.3. ELASTIC LONG-RANGE INTERACTION 33

Even if the gradient energy is isotropic, there can be certain direction of domain walls
selected by elastic compatibility conditions. Elastically permissible orientations of walls are
discussed in Sec. 3.1).

The gradient energy acts only on inhomogeneous part of polarization and is zero for uniform
polarization field.

2.3 Elastic long-range interaction

Ginzburg-Landau-Devonshire potential introduced by the Eqn. 2.1 is defined in terms polariza-
tion and strain field. Strain can be split into two parts: homogeneous macroscopic strain eij

and heterogeneous strain with zero spatial average δeij(r) which satisfies

∫
dr δeij(r) = 0 . (2.21)

Homogeneous strain eij is defined by the condition

eij(r) = eij + δeij(r) (2.22)

and is controlled by macroscopic boundary conditions discussed in Sec. 2.4.
The heterogeneous part of the elastic strain field can be usually eliminated assuming that its

relaxation towards mechanical equilibrium is much faster then evolution of the inhomogeneities
of the polarization field [19, 18]. In this case, heterogeneous strain is determined from local
mechanical equilibrium conditions given by Euler-Lagrange equation

3∑
j=1

∂σij

∂xj

=
3∑

j=1

∂

∂xj

(
∂fCq

∂uij

)
= 0 . (2.23)

Elimination can be conveniently done using the Fourier transform (defined by relations in (B.1))
of the displacement field components ui(r) and electrostriction stress components gij(r).

ui(k) =

∫
dr ui(r)e

−ikr

gij(k) =

∫
dr gij(r)e

−ikr (2.24)

Fourier components of the instantaneous equilibrium strain field are expressed in terms of gij(k)

and the directional cosines k̂ = k/|k| as follows:

uj(k) = − i

k

[
Gj(k)

dj

− D(k̂)H(k)k̂j

dj

]
, (2.25)

where

Gi(k) =
3∑

j=1

k̂jgij(k) (2.26)
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H(k) =
3∑

i=1

k̂iGi(k)/di (2.27)

D(k̂) = (C12 + C44)/(1 + (C12 + C44) χ(k̂)) (2.28)

χ(k̂) =
∑

i

k̂2
i /di (2.29)

di(k̂) = C44

(
1 + ξk̂2

i

)
(2.30)

ξ = (C11 − C12 − 2C44)/C44 . (2.31)

After the substitution of the backward-Fourier-transformed elastic displacement field into the
expression for electrostriction and elastic energies we finally get an elastostriction energy (with-
out explicit dependence on elastic field)

F ′
Cq [{Pi}] = F ′

C [{Pi}] + F ′
q [{Pi}] = −1

2

1

(2π)3

∑
ρ

∑
σ

∫
dk

[
Bρσ(k̂)gρ(k)gσ(−k)

]
. (2.32)

The matrix B(k̂) reads

Bρσ(k̂) = βρσ(k̂)−D(k̂)θρ(k̂)θσ(k̂) , (2.33)

and its components βρσ and θσ(k̂) depend on directional cosines only (see also Ref. [38]).

β =




k̂2
x/dx 0 0 0 k̂xk̂z/dx k̂xk̂y/dx

0 k̂2
y/dy 0 k̂yk̂z/dy 0 k̂xk̂y/dy

0 0 k̂2
z/dz k̂yk̂z/dz k̂xk̂z/dz 0

0 k̂yk̂z/dy k̂yk̂z/dz k̂2
y/dz + k̂2

z/dy k̂xk̂y/dz k̂xk̂z/dy

k̂xk̂z/dx 0 k̂xk̂z/dz k̂xk̂y/dz k̂2
x/dz + k̂2

z/dx k̂yk̂z/dx

k̂xk̂y/dx k̂xk̂y/dy 0 k̂xk̂z/dy k̂yk̂z/dx k̂2
x/dy + k̂2

y/dx




θ1 = k̂2
x/dx

θ2 = k̂2
y/dy

θ3 = k̂2
z/dz

θ4 = k̂yk̂z (1/dy + 1/dz)

θ5 = k̂xk̂z (1/dx + 1/dz)

θ6 = k̂xk̂y (1/dx + 1/dy) . (2.34)

Once the FC [{eij}] + Fq [{Pi, eij}] terms in the Ginzburg-Landau-Devonshire free energy func-
tional are replaced by the above expression for quasi-equilibrium elastostriction energy F ′

Cq [{Pi}],
the total Free energy depends on polarization field only:

F ′ = F ′ [{Pi, Pi,j}] . (2.35)

Long-range nature of elastostriction interaction appears after transformation from Fourier to
the direct space [18]

F ′
Cq [{Pi}] = −1

2

∫∫
drds

6∑
ρ=1

6∑
σ=1

Ψρσ(r− s)Yρ(s)Yσ(r) , (2.36)
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where

Ψρσ(R) =
1

(2π)3

∫
dk Aρσ(k̂)exp (−ik ·R) (2.37)

is backward Fourier transform of kernels Aρσ(k̂), which are linear combinations of Bρσ(k̂) (def-

initions of Aρσ(k̂) are given in Sec.D), and the vector Y is defined as

Y =
[
P 2

1 , P 2
2 , P 2

3 , P2P3, P1P3, P1P2

]
. (2.38)

in reciprocal as well as in direct space.

2.4 Homogeneous strain and stress

The model enables to control mechanical boundary conditions of the sample in two ways: either
by mechanical clamping (where the homogeneous part of elastic deformation is fixed), or by
external mechanical stress. Although perfect mechanical clamping is never available in real
experiments, it can still be pertinent approximation of external conditions in some cases.

Homogeneous stress σ consists of two contributions: external stress and internal homoge-
neous stress rising from electromechanical coupling in the sample

σij = σext
ij + σint

ij . (2.39)

Internal stress is attained according to Hook’s law

σint
ij = Cijkle

int
kl , (2.40)

where homogeneous strain comes from average squared polarization

eint
ii = Q11P 2

i + Q12P 2
j + Q12P 2

k for i 6= j 6= k

eint
ij = 1

2
Q44|Pi| |Pj| for i 6= j .

(2.41)

Crystal, loaded by stress σ, changes macroscopically its shape according to the inverse Hook’s
law. Note that strain in principal axes as well as shear strain is possible.

Equilibrium is given by Eqn. 2.12, where σ is not necessarily zero. Strain is expressed
in terms of polarization and homogeneous stress and substituted back into the free energy
functional. During derivation of these dependencies there appear additional contributions to
the free energy.
Firstly, coefficient α1 is renormalized and turns anisotropic

α1x = α1 − (Q11σxx + Q12(σyy + σzz))

α1y = α1 − (Q11σyy + Q12(σxx + σzz))

α1z = α1 − (Q11σzz + Q12(σxx + σyy)) . (2.42)

Secondly, there appear new expressions connected with shear stress, that were originally for-
bidden in cubic Landau expansion.

f
(e)′
L [{Pi}] = f

(e)
L [{Pi}] + βxP2P3 + βyP1P3 + βzP1P2 , (2.43)
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where anisotropic βx, βy and βx are

βx = −q44σ23

C44

βy = −q44σ13

C44

βz = −q44σ12

C44

(2.44)

In addition, there also appears renormalization of coefficients α11 and α12 given by Eqn. 2.16
and Eqn. 2.17, which was already discussed in Sec. 2.1.

Finally, there appears term that originates from increase of stored energy due to external
stress. It only shifts the zero energy. It is not taken into account, since it does not influence the
variations of the free energy functional which are responsible for the evolution of polarization
in the model.

If homogeneous mechanical deformation free e is prescribed instead of homogeneous stress
σ, the procedure is similar. Total stress is computed with use of Hook’s law. Internal stress
is then obtained from Eqn. 2.40. Finally the external stress σext

ij is computed from Eqn. 2.39
which must be applied in order to fix the deformation of the sample. This stress is then virtually
applied to the sample, thus reproducing the clamping of the sample.

2.5 Electrostatic long-range interaction

To describe electrostatic effects, it is necessary to include additional, strongly nonlocal term
describing long-range interaction of individual dipoles with electric field of all other dipoles.
Electrostatic local electric field from dipoles is possible to write in the form

Edep(r) = − 1

4πεBε0

∫
ds

[
P(s)

|R|3 −
3(P(s) ·R)R

|R|5
]

(2.45)

with R = r− s, and energy increase due to this field is

Fdep [{Pi}] =
1

8πε0εB

∫∫
drds

[
P(r) ·P(s)

|R|3 − 3(P(r) ·R)(P(s) ·R)

|R|5
]

. (2.46)

Here εB stands for relative permittivity of background, coming from electron polarizability and
from contributions of higher frequency polar phonon modes7.

Polarization can be split into two parts, homogeneous and inhomogeneous:

P(r) = P + δP(r) . (2.47)

For inhomogeneous part it holds

∫
dr δP(r) = 0 (2.48)

7The dynamics of polarization field is bound to the ”soft mode”: a polar mode with lower frequency (see
Sec. 4).
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Depolarization energy as compound of three terms then reads

Fdep [{Pi}] = F het
dep[{δPi}] + F cross

dep [{Pi, δPi}] + F hom
dep [{Pi}] . (2.49)

First contribution, F het
dep[{δPi}], comes from the spatially dependent, inhomogeneous part of

polarization. In Fourier space, it has the form (see Sec. C.4)

Fdep[{δPi}] =
1

2εBε0

1

(2π)3

∫
dk
|δP(k) · k|2

k2
. (2.50)

with P(k) is zero for k = 0.
The fact, that P(k) is zero, together with P(k) nonzero (and not well defined) only in point

k = 0 implies that the cross term F cross
dep [{Pi, δPi}] vanish.

Finally, the last part, the contribution of homogeneous part of polarization, reads (see
Eqn. 2.4):

F hom
dep [{Pi}] = −1

2

∫
dr E ·P = −1

2

∫
dr

(
− P

2εBε0

)
·P =

(
P ·P)

V

2εBε0

, (2.51)

where V is the volume of integration area. It is zero in the case of infinite sample, periodic
sample or for sample with ideal compensation of surface charges8.
Generally, the depolarization field can be evaluated from the equation

div Edep(r) = − 1

εBε0

div P(r) . (2.52)

8For example by short-cut metallic electrodes.
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Chapter 3

Charge-free elastically compatible
domain walls

Systematic study of elastically compatible domain walls in all ferroelectric phases of BaTiO3

within charge-free assumption div P = 0 is given in the framework of phenomenological GGLD
model. Profiles of domain walls are computed analytically for Ising-type1 domain walls. We
give quantitative estimation of thickness and planar energy density of different walls present in
BaTiO3 in the whole temperature range of ferroelectric phases.

Study of domain wall provides information about domain wall energy density, mobility,
intrinsic pinning or may show limits for modeling particular wall within continuous theory.

GGLD model was previously used for analytical study of domain walls in BaTiO3 and other
perovskites materials in tetragonal and orthorombic phase [33, 39, 26, 34]. Ferroelastic S-wall
was recently studied for ferroelastic transition m3̄m → mmm [35].

In this section we consider single infinite domain wall in a perfect infinite mechanically free
crystal, which separates two elastically compatible domain states. Components of polarization
and elastic tensor can vary across the domain wall, but introducing several simplifications
enables analytical computations.

Firstly, we restrict investigation to head-to-tail arrangement that is strongly preferred by
electrostatic dipole-dipole interaction in non-conductive crystal. But even in head-to-tail ar-
rangement there can be charges in domain wall arising from variation of polarization component
perpendicular to the wall. In [26] it was shown, that the presence of a dipole-dipole interac-
tion in ideally insulating crystal result in almost perfectly constant component of polarization
perpendicular to the domain wall (here shown for T90 wall in Sec. 3.5). Therefore only ideally
non-charged (div P = 0) domain walls will be taken into account here.

Second assumption is that there is only one component of polarization that changes through
the domain wall. One dimensional problem has analytical solution and allows for comparison
of complete set of walls in BaTiO3.

1Ising domain wall has just one component of polarization changing through domain wall. This component
is in the plane of the wall

39
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3.1 Domain walls

Complete list of permissible ferroelastic domain walls can be obtained from symmetry. Relevant
considerations are to be found in Fousek [17], Fousek and Janovec [4] and Janovec [40]. Possible
types of domain wall in each of ferroelectric species are discussed. Crystal is considered to be
perfect, infinite, composed of two adjacent domains with deformation characterized by two
different strain tensors. Domains are separated by a wall of zero thickness. Appearance of
spontaneous polarization is always accompanied by occurrence of spontaneous deformation
thanks to the electromechanical coupling.

An elastically permissible (or elastically compatible) domain wall with normal [hkl] separat-
ing two adjacent domains characterized by strain tensor 1eij,

2eij obeys for any in-plane vector
ds (h ds1 + k ds2 + l ds3 = 0) relation (Ref. [4])

3∑

k,l=1

∆kldskdsl = 0 , (3.1)

where ∆kl = 1ekl − 2ekl is the difference between components of strain tensor in adjacent
domains. Elastically permissible domain walls can be infinitely large. They separates domains
which mechanically fits each other. There are no dislocations and in-plane tensions between
adjacent domains.

From symmetry considerations it follows [17], that there are only three possibilities for the
number N of domain wall separating two domains:

1. N=0: No mechanically compatible wall exists.

2. N=2: Two mutually perpendicular domain walls exist. Each of them is either Wf -type
wall or S-type wall. Wf wall have its orientation fixed with respect to symmetry elements
of parent phase while orientation of S-wall is determined only by the value of strain
tensor components of incident domains and it can therefore vary with temperature. In
the case of polar dielectric one wall of the pair is head-to-tail, the second is head-to-head,
as indicated in Fig. 3.1.

3. N=∞: Arbitrary oriented wall is possible (W∞ wall). Particular orientation of W∞
domain wall, which were determined from point compatibility considerations might be
preffered by anisotropy in domain wall energies.

In a real crystal a wall can be disoriented with respect to obtained directions, if the increase of
elastic energy is small.

BaTiO3 with its four ferroelectric phases offers wide variety of elastically permissible domain
walls [17]:

In the tetragonal phase there exist 180 degree W∞ domain wall (T180) and 90 degree (T90)
Wf domain walls. Each of them can be either charged or not charged. 90 degree charged and
charge-free walls create pairs as discussed for the case N = 2.

In the orthogonal phase the situation is more complicated. There is again W∞ 180 degree
domain wall (O180) and 90 degree Wf domain wall (O90) with the same properties as in
tetragonal phase. In the case of 60 degree angle between adjacent polarization direction, there
exist pairs of mutually perpendicular walls created by one head-to-tail Wf wall and one head-
to-head S-type wall. In the case of 120 degree angle the situation is the same but S walls are
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Table 3.1: List of conjugate Wf -type and S-type domain walls in orthorombic phase. Chosen
direction of spontaneous polarization is [110] (”0” in Fig. 1.6). Subscript c denotes charged
domain wall. The constant B stands for 2et

ea−ec
. Domain walls that are plotted in Fig. 3.1 are

indicated by boldfaced angle.

Conjugate vector Wf -wall S-wall Angle
[011] [101̄]c [1B1] 60
[101] [01̄1]c [B11] 60
[011̄] [101]c [1B1̄] 60
[101̄] [011]c [B11̄] 60
[01̄1] [101] [1B1̄]c 120
[1̄01] [011] [B11̄]c 120
[011] [101̄] [1B1]c 120
[101] [011̄] [B11]c 120

charged. As only non-charged walls are discussed here, S-type domain wall will be referred to
as O60 and its conjugate Wf wall as O120. Complete list of 60 and 120 degree domain walls
for all combination of spontaneous states is given in Tab. 3.1.

In the rhombohedral phase, there exist W∞ 180 degree domain wall (R180) and pairs of
charged and non-charged Wf -type domain walls with mutual angle of polarization being either
109 or 71 degree (R109 and R71 walls).

These domain walls are also schematically depicted in Fig. 3.1.

If necessary, nonequivalent domain walls are further distinguished by their normal (e.g.
T180{001}, T180{011}). Possible elastically permissible electrically neutral Wf -type and S-
type domain walls and important orientations of 180 degree domain walls are plotted in Fig. 3.1.
For completeness, charged Wf -type and S-type domain walls are plotted in Fig. 3.2.

3.2 One-dimensional approximation

Two elastically compatible spontaneous states are chosen and the orientation of the wall is
determined. Spontaneous polarization corresponds to boundary values of polarization in infinite
distance from the wall. Spontaneous strain in the infinity is computed from Eqn. 2.13. External
stress is zero.

New coordinate system is chosen with base vectors r, s, t so that Pr component of polariza-
tion vector P changes its sign through the wall, s is the normal to the wall and t component
complements orthonormal coordinate system. New coordinate system will be denoted by primes
and transformed energy functionals, tensors and vectors will be referred to as primed quanti-
ties or denoted by corresponding (r,s,t) indices. Complete set of transformation matrices for
elastically permissible domain walls in BaTiO3 is given in Sec. E.3.

All quantities in this approximation vary only along normal to the wall s. Polarization
vector and strain tensor are assumed in to have the form P′ = [Pr(s), Ps(±∞), Pt(±∞)] and
e′ = [err(±∞), ess(s), ett(±∞), 2est(s), 2ert(±∞), 2ers(s)]

T , respectively. The form of the po-
larization corresponds to the previously mentioned simplifications (div P = 0 implies constant
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Figure 3.1: Possible non-charged domain walls in BaTiO3 ferroelectric phases. Arrows corre-
sponds to spontaneous polarization values. If it is possible (if domain wall is not 180 degree),
the head of the first arrow touch the tail of the second arrow, thus indicating the head-to-tail
character of the wall.
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Figure 3.2: Charged Wf -type and S-type domain walls in BaTiO3 ferroelectric phases.

normal component of polarization to the domain wall and only Ising walls with single chang-
ing component are taken into account). The form of the strain tensor follows directly from
mechanical compatibility and boundary conditions.

Remaining s-dependent components of strain tensor are then computed from Euler-Lagrange
mechanical equilibrium condition

3∑
j=1

∂σ′ij
∂x′j

=
3∑

j=1

∂

∂x′j

(
∂f ′Cq

∂e′ij

)
= 0 , (3.2)

where f ′ = f ′ [Pr, Pr,s, ess, est, ers] = f (e)′ [Pr] + f ′G [Pr,s] + f ′Cq [Pr, ess, est, ers] is transformed free
energy. From boundary conditions for stress and the fact, that only variation is along s direction
we get

∂f ′Cq

∂e′ij
+ Cij = 0 (3.3)

for ij ∈ {ss, rs, st} with the integration constant Cij to be determined from boundary condi-
tions. Boundary conditions for all elastically permissible domain walls in BaTiO3 are given in
Tab. 3.2. We finally get dependence of transformed strain tensor component on polarization

ess = ess(Pr(s))

ers = ers(Pr(s))

est = est(Pr(s)) . (3.4)
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Euler-Lagrange equation for polarization

3∑
j=1

∂

∂x′j

∂f ′

∂P ′
i,j

− ∂f ′

∂P ′
i

= 0 (3.5)

reduces to

∂

∂s

∂f ′

∂Pr,s

− ∂f ′

∂Pr

= 0 . (3.6)

Obtained strain components Eqn. 3.4 are substituted into Eqn. 3.6. It is possible now to rewrite
the Euler-Lagrange equation for polarization in the form

g
d2p(s)

ds2
= 2a1p(s) + 4a11p

3(s) + 6a111p
5(s) , (3.7)

where p(s) stands for Pr(s). Euler-Lagrange potential fEL is obtained by integration2:

g

2

(
∂p

∂s

)2

= fEL(p) (3.8)

with

fEL(p) = a1p
2(s) + a11p

4(s) + a111p
6(s) . (3.9)

Coefficients a1, a11 and a111 include elastic and electrostriction interaction. Euler-Lagrange
potential is a double-well potential with two minima given by

p2
∞ =

−a11 +
√

a2
11 − 3a111a1

3a111

(3.10)

such that p∞ = |Pr(∞)| = |Pr(−∞)|. Following procedure is based on [27]. The differential
equation (3.7) has analytical solution

p(s) = p∞
sinh(s/ξ′)√

A + sinh2(s/ξ′)
, (3.11)

where

ξ′ =
ξ√
A

(3.12)

is determined using the depart from simple tanh profile

A =
3a111P

2
∞ + a11

2a111P 2∞ + a11

. (3.13)

Domain wall thickness is defined (Fig. 3.3) as

2ξ = p∞

√
2g

U
(3.14)
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Figure 3.3: Analytical profile of domain wall (Eqn. 3.11). Two domain walls are indicated,
continuous line for shape factor A = 1, broken line for A = 3. Both profiles have the same
derivative for s/2ξ = 0 and therefore also the same thickness (Eqn. 3.14) that is indicated by
vertical lines.

with U being the corresponding energy barrier in Euler-Lagrange potential fEL(0)− fEL(p∞)

U = 2a111p
6
∞ + a11p

4
∞ (3.15)

The surface energy density of such domain wall is

Σ =
4

3
p∞

√
2gU

[
A5/2I(A)

]
, (3.16)

where

I(A) =
3

4

∫ ∞

−∞

cosh2(t)dt

(A + cosh2(t)− 1)3
. (3.17)

It has a property I(1) = 1. Contribution from the shape correction factor A5/2I(A) is plotted
in Fig. 3.4.

2It is also possible to obtain coefficients a1, a11 and a111 by simple substitution of strain tensor components
from Eqn. 3.3 into transformed free energy f ′.
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Figure 3.4: Almost linear dependence of correction factor in the expression for domain wall
energy density as a function of the shape coefficient A (Eqn. 3.13).
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3.3 Results

We applied previously described model to all non-charged elastically compatible domain wall in
BaTiO3. Numerical values were taken from Tab. 2.1 set ”A”. Boundary conditions are provided
in Tab. 3.2. Used parameters {a1, a11, a111, g} and resulting wall characteristics are given in
Tab. 3.3. Finally, plots of domain wall thicknesses and energies (for all considered walls, in the
whole temperature) range are given in Fig. 3.9.

Profiles of polarization are plotted in original coordinate system. Profiles of strain tensor
components through a domain wall was obtained by substitution of Pr(s) = p(s) into Eqn. 3.4
and back transformation into original coordinate system.

3.3.1 T180{001} domain wall

Parameters computed from Tab. 2.1 for tetragonal phase (298 K) have numerical values P0 =
0.265, e‖ = Q11P

2
0 = 7.77× 10−3 and e⊥ = Q12P

2
0 = −3.18× 10−3.

Procedure described above lead to the equation (3.7) with coefficients

p∞ = P0

g = G44

a1 = α1 − e‖q11 − 2e⊥q12 +
q2
12P

2
0

C11

a11 = α
(e)
11 −

1

2

q2
12

C11

a111 = α111 . (3.18)

From discussion in Sec. 3.4 it follows that these expressions holds for both T180{001} and
T180{011} domain wall.

3.3.2 T180{011} domain wall

Coefficients of the equation (3.7) are

p∞ = P0

g = G44

a1 = α1 − e‖q11 +
2C12e‖ − 4C44e⊥

C ′
11

a11 = α
(e)
11 −

1

2

q2
12

C ′
11

a111 = α111 , (3.19)

where C ′
11 is defined in (3.22). Values of coefficients a1, a11 for T180{001} and T180{011} are

numerically very close, a1, and g are equal. Both domain walls have similar profile in primed
coordinates.
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3.3.3 T90 domain wall

Coefficients of the equation (3.7) are

p∞ =
P0√

2

g =
(G11 −G12)

2

a1 = αr
1 + αsr

12

P 2
0

2
+ α′112

P 4
0

4

a11 = αr
11 + α′112

P 2
0

2
a111 = α′111 (3.20)

with

ar
1 = α1 −

[
1

3

q̂2
11

Ĉ11

+
1

6

q̂2
22

Ĉ22

− (q11 + q12)q
′
12

2C ′
11

]
P 2

0

ar
11 =

α
(e)
11

2
+

α
(e)
12

4
− q′212

2C ′
11

ars
12 = 3α

(e)
11 −

α
(e)
12

2
− q′11q

′
12

C ′
11

− q̂2
22

2Ĉ22

a′111 =
1

4
(α111 + α112)

a′112 =
1

4
(15α111 − α112) (3.21)

derived in [26]. Primes denotes transformed components of elastic and electrostriction tensor.

C ′
11 =

C11 + C12 + 2C44

2

C ′
12 =

C11 + C12 − 2C44

2

C ′
66 =

C11 − C12

2

q′11 =
q11 + q12 + q44

2

q′12 =
q11 + q12 − q44

2
q′66 = q11 − q12 . (3.22)

T90 wall is approximately 5 times thicker than T180 wall mainly due to anisotropy of gradient
terms and low energy barrier. Their energies are comparable.
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Figure 3.5: Analytical profiles of polarization and strain components inside the T180{001},
T180{011} and T90 wall.
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3.3.4 O180{11̄0} domain wall

Numerical values of spontaneous polarization and strain for orthorombic phase (208 K) is P0 =
0.331, ea = Q11+Q12

2
P 2

0 = 3.58×10−3, ec = Q12P
2
0 = −4.96×10−3 and eb = Q44

4
P 2

0 = 0.79×10−3.

Resulting coefficients are

p∞ = P0

g =
G11 −G12

2

a1 = α1 − eb(q
′
11 − q′12)− ecq12 − ea(q

′
11 + q′12) +

q′212

C ′
11

P 2
0

a11 =
α

(e)
11

2
+

α
(e)
12

4
− q′212

2C ′
11

a111 =
1

4
(α111 + α112) (3.23)

with the same primed components of tensors as in Eqn. 3.22.

3.3.5 O180{001} domain wall

Coefficients are

p∞ = P0

g = G44

a1 = α1 − ea(q11 + q12)− ebq44 + 2eaq12
C12

C11

a11 =
α

(e)
11

2
+

α
(e)
12

4
− q2

12

2C11

a111 =
1

4
(α111 + α112) . (3.24)

Primed components of tensors are again the same as in Eqn. 3.22.
This domain wall is potentially not stable with respect to deviation of t-component of

polarization. Ising assumption may not be correct. Domain wall of Bloch type may appear,
instead (see Sec. 3.6 and appropriate graph of numerical solution in Fig. 3.14).

3.3.6 O90 domain wall

It leads to coefficients

p∞ =
P0√

2
g = G44

a1 = α1 + α
(e)
12

P 2
0

2
+ α112

P 4
0

4
+

(
q2
12

2C11

− q2
44

4C44

)
P 2

0

−ea(q11 + q12)− ecq12



52 CHAPTER 3. CHARGE-FREE ELASTICALLY COMPATIBLE DOMAIN WALLS

a11 = α
(e)
11 +

1

2

(
α112P

2
0 −

q2
12

C11

)

a111 = α111 (3.25)

3.3.7 O60 domain wall

S-type domain walls were reported in Ref. [4, 17]. Its orientation does not generally coincide
with any crystallographic direction. Orientation of S-type wall is only dependent on strain
tensor components and therefore will depend on temperature through temperature dependence
of spontaneous polarization and eventually elastic and electrostriction coefficients.

rO60 =

(
1√
2
, 0,

1√
2

)

sO60 =

(
ea − ec√

2(ea − ec)2 + 4e2
b

,
2eb√

2(ea − ec)2 + 4e2
b

,
ec − ea√

2(ea − ec)2 + 4e2
b

)

tO60 =

(
−eb√

(ea − ec)2 + 2e2
b

,
ea − ec√

(ea − ec)2 + 2e2
b

,
eb√

(ea − ec)2 + 2e2
b

)
. (3.26)

Numerical values of the vectors for temperature 208 K are

rO60 = (0.707, 0, 0.707)

sO60 = (0.701, 0.130,−0.701)

tO60 = (−0.092, 0.991, 0.092) . (3.27)

Due to complicated transformation the whole computation was performed numerically and
therefore analytical expression for coefficients of Euler-Lagrange potential are not provided.
Profiles of components polarization and strain for this wall are plotted in Fig. 3.6.

3.3.8 O120 domain wall

Parameters of the one-dimensional Euler-Lagrange equation are p∞ =
√

3
2

P0, g = G11−G12+4G44

6
.

Expressions for individual parameters of one-dimensional model are too complex to be given
explicitly, numerical values of parameters of Eqn.3.7 are given in Tab. 3.3.

This domain wall is potentially not stable with respect to deviation of t-component of
polarization. Ising assumption may not be correct. Domain wall of Bloch type may appear,
instead (see Sec. 3.6 and appropriate graph of numerical solution in Fig. 3.14).
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Figure 3.6: Analytical profiles of polarization and strain components inside the O180{11̄0}
O180{001} and O90 walls.
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Figure 3.7: Analytical profiles of polarization and strain components inside the O60 and O120
walls.
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3.3.9 R180{11̄0} domain wall

Numerical values of spontaneous polarization and spontaneous strain components for rhom-
bohedral phase (118 K) are: P0 = 0.381, ea = Q11+2Q12

3
P 2

0 = 0.97 × 10−3 and eb = Q44

4
P 2

0 =
0.70× 10−3.

Coefficients of the one-dimensional model are

p∞ = P0

g =
G11 −G12 + G44

3

a1 = α1 +
1

6C ′
33

[C12(ea(q11 + 2q12 − 4q44)− 6ebq44)

−C11(6ebq44 + 3eaq
′
11)

−2C44(3ea(q11 + 2q12) + 6ebq
′
11)]

a11 =
α

(e)
11 + α

(e)
12

3
− q′213

2C ′
33

a111 =
3α111 + 6α112 + α123

27
(3.28)

where

C ′
33 =

C11 + C12 + 2C44

2

q′11 =
q11 + 2q12 + 2q44

3

q′13 =
q11 + 2q12 − q44

3
(3.29)

This domain wall is potentially not stable with respect to deviation of t-component of
polarization. Ising assumption may not be correct. Domain wall of Bloch type may appear,
instead (see Sec. 3.6 and appropriate graph of numerical solution in Fig. 3.14).

3.3.10 R180{2̄11} domain wall

The analytical expressions for a1, a11, a111 and g are not given for this wall. They are too
complicated due to complex transformation of coordinates.

This domain wall is potentially not stable with respect to deviation of t-component of
polarization. Ising assumption may not be correct. Domain wall of Bloch type may appear,
instead (see Sec. 3.6 and appropriate graph of numerical solution in Fig. 3.14).

The additional minimum (on the contrary to other Ising walls that are unstable) is not
rhombohedral. It is orthorombic minimum of Euler-Lagrange potential. For lower temperature
this minimum does not exist and the domain wall isstable with respect to a change of t-
component (The Ising assumption is correct).

3.3.11 R109 domain wall

p∞ =
P0√

3
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g = G44

a1 = α1 +
α

(e)
12 P 2

0

3
+

α112P
4
0

9
+

2q2
12P

2
0

3C11

− q2
44P

2
0

6C44

−ea(q11 + 2q12)− ebq44

a11 =
α

(e)
11

2
+

α
(e)
12

4
+

1

12

[
(2α112 + α123)P

2
0 −

6q2
12

C11

]

a111 =
α111 + α112

4
(3.30)

This domain wall is potentially not stable with respect to deviation of t-component of
polarization. Ising assumption may not be correct. Domain wall of Bloch type may appear,
instead (see Sec. 3.6 and appropriate graph of numerical solution in Fig. 3.14).

3.3.12 R71 domain wall

p∞ =
P0√

3
g = G44

a1 = α1 +
2α

(e)
12 P 2

0

3
+

2α112P
4
0

9
+

α123P
4
0

9

−ea(q11 + 2q12) +
q2
12P

2
0

3C ′
33

− q2
44P

2
0

3C44

a11 = α
(e)
11 +

2α112P
2
0

3
− q2

12

2C ′
33

a111 = α111 (3.31)

with C ′
33 same as in Eqn. 3.29.
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Figure 3.8: Analytical profiles of polarization and strain components inside the R180{11̄0},
R{2̄11}, R109 and R71 walls.
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Figure 3.9: (a) Temperature dependence of domain wall energy per unit area. (b) Temper-
ature dependence of domain wall thickness. Both pairs, (O180{001}, O90) and (T180{001},
T180{011}), have similar thickness in wide temperature range and almost merge. Thick lines
indicates temperature wall thickness in the range of temperatures that are appropriate for given
phase. Thin lines stands for temperature range where boundary states are in local, not global
minima it the Euler-Lagrange potential.
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Table 3.4: Range of variation of coefficients of W∞ walls. The wall was rotated along the
direction of spontaneous polarization in the whole range of angles. Coefficient a111 does not
change. Minimum value, maximum value and their difference is given in the table.

Coefficient Minimum Maximum Difference Unit [SI]

T180 (298 K)
a1 −14.2619 −14.2615 0.0004 107 J m C−2

a11 1.69068 1.69090 0.00022 108 J m5 C−4

g 2.0 2.0 0.0 10−11 J m3 C−2

O180 (208 K)
a1 −11.07 −8.32 2.75 107 J m C−2

a11 −3.38 −2.13 12.54 108 J m5 C−4

g 2.0 26.5 24.5 10−11 J m3 C−2

R180 (118 K)
a1 −9.53 −9.53 0 107 J m C−2

a11 −3.63985 −3.63970 0.00015 108 J m5 C−4

g 18.3 18.3 0.0 10−11 J m3 C−2

3.4 Angle dependence of W∞ wall thickness

Thickness of domain walls is predominantly determined by the value of gradient coefficient g.
Fig. 3.9 shows that the most narrower walls are R71, R109, O90, O180{001}, T180{001} and
T180{011}. All of them have g = 2 × 10−11. Thickness of walls increase with increasing g.
Equation (3.14) also implies thicker domain walls for materials with larger value of p∞ (e.g.
PbTiO3).

In tetragonal phase, 90 degree domain wall is much thicket than 180 degree wall (3.59 nm
compared to 0.63 nm). On the contrary, in orthorombic phase the domain wall O180[1-10] is
almost four times thicker than 90 degree domain wall.

Summary of results is given in Tab. 3.3. Temperature dependence of thickness and energy for
all domain walls are plotted in Fig. 3.9(a) and Fig. 3.9(b), resp. Energy of increases and thickness
decrease with decreasing temperature. This is consequence of relations (3.16),(3.15),(3.14) and
increasing value of p∞ with decreasing temperature as shown in Fig. 2.1(c).

Non-ferroelastic 180 degree domain wall is not limited to any crystallographic direction.
Generally, angular dependent coefficients g and also coefficients a1, a11 and a111 can (if suffi-
ciently anisotropic) cause change of domain wall thickness and energy. Gradient coefficient is
not dependent on angle in tetragonal and rhombohedral phase and variation of Landau expan-
sion coefficients is also insignificantly small (Tab. 3.4). On the contrary, in orthorombic phase
there is a strong angular dependence of g and Euler-Lagrange coefficients leading to angular
dependence of wall thickness as shown in Fig. 3.10. O180{11̄0} domain wall is almost four times
thicker compared to thickness of O180{001} wall.
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Figure 3.10: Angular dependence of 180 degree domain wall thickness in orthorombic phase
phase. α = 0 and α = π

2
corresponds to O180{11̄0} and O180{001} wall, resp.

3.5 Discussion of the charge-free assumption

Assumption that Ps is constant may seem rather strong. In this paragraph we show for
T90 domain wall that it is reasonable premise. The polarization is assumed in the form
P = [Pr(s), Ps(s), Pt(±∞)]. Fixation of Pt will be explained in Sec. 3.6, it is no additional
assumption. Two coupled Euler-Lagrange equations are obtained from mechanical equilibrium
conditions (3.2) and Euler-Lagrange equation for polarization (3.5)

G′
66Pr,ss = 2ar
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with the same coefficients as derived in Eqn. 3.21 and additional two
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Integration of both equations leads to an Euler-Lagrange potential

f ′EL[Pr, Ps] = ar
1P

2
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s ) , (3.34)

which is plotted in the Fig. 3.11(a). Electrostatic interaction is taken into account by including
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Figure 3.11: Euler-Lagrange potential for T90 wall in BaTiO3; (a) Without depolarization
field; (b) With depolarization field. From (a), it is clear that head-to-tail (HT) domain wall
is not equivalent with head-to-head (HH) domain wall even without depolarization field (see
Ref. [26]). With depolarization field included in (b), there remains only head-to-tail domain
wall connecting potential wells II. and III. Contours are distributed linearly.

effect of depolarization electric field. It is computed from Eqn. 2.52 as

Edep =

[
0,

1

εBε0

(−Ps + Cdep), 0

]
. (3.35)

Integration constant is computed (from condition Edep(±∞) = 0) as Cdep = P0/
√

2. Electric
field is added to Landau potential and the integration is performed. Resulting Euler-Lagrange
potential differs only in additional parabolic term in Ps

f ′ELdep[Pr, Ps] = f ′EL[Pr, Ps] +
1

2εBε0

P 2
s −

1

εBε0

P0√
2
Ps (3.36)

that, however, totally changes the shape of potential (cross sections of original and changed
potential for Pr = 0 is shown in Fig. 3.12. Without electrostatic dipole-dipole interaction
there are all tetragonal minima present in the Euler-Lagrange potential, but with electrostatic
interaction taken into account there persist only minima corresponding to head-to-tail wall.
Positions of tetragonal minima remains the same. Least energy path from one minima to the
second exhibits almost no variation in Ps. It justifies our restriction to ideally charge-free wall
with Ps constant.

3.6 Discussion of the Ising assumption

Assumption div P = 0 and just one varying component of polarization through domain wall
implies Pr = Pr(s), Ps = Ps(±∞) and Pt = Pt(±∞).
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Figure 3.12: (a) Cross section of Euler-Lagrange potential (from Fig. 3.11) for Pr = 0. Dashed
and full line stands for potential with and without depolarization field, resp. (b) Detail taken
from the left plot. Minimum is still slightly shifted from Ps = Ps/

√
2 (value for charge-free

domain wall) that is indicated by vertical line.

In fact, there is no reason for Pt to stay constant. Legitimacy of this assumption was there-
fore examined. The premise of constant Ps remains. Cross-section of Euler-Lagrange3 potential
is plotted in the Fig. 3.13 for temperature corresponding to given ferroelectric phase. Minima of
the potential for [Pr = Pr(+∞), Pt = 0] and [Pr = Pr(−∞), Pt = 0] correspond to polarization
boundary conditions. The only exception is the O60 domain wall, where the boundary val-
ues for Pt are non-zero and positive (for boundary conditions consult Tab. 3.2 and appropriate
transformation matrices in Sec. E.3). Minima of the Euler-Lagrange potential corresponding to
boundary values of polarization are global minima. All minima in the potential corresponds to
appropriate phase (e.g. for orthorombic wall there are only orthorombic minima, etc.) with the
only exception: side minima in the case of R180{2̄11} wall are orthorombic minima. Poten-
tial takes into account Landau, elastic and electrostriction contributions, dipole-dipole is taken
into account by constant Ps. Components Pr and Pt of polarization find appropriate trajec-
tory in order to minimize simultaneously energy from Euler-Lagrange potential and gradient
interaction.

From Fig. 3.13, it is clear that T180, T90, O180{11̄0}, O90, O60 and R71 domain walls have
unique trajectory from one boundary minimum to the second. One-dimensional assumption is
appropriate in these cases and Pt = Pt(±∞).

In the case of O60 domain wall the variation of Pt will be very small and therefore it is
reasonable to assume it constant.

For O180{001}, O120, R180{11̄0}, R180{2̄11} and R109 wall, the situation is different.
Straight connection of boundary minima (through the paraelectric state) is energetically de-
manding and the polarization in the wall can tend to go around the energy maximum in the
middle of the potential. It would decrease Euler-Lagrange energy (at the expense of increase of
gradient energy). Therefore Pt = Pt(s) and the wall may be Bloch-like4. Another point is that
all these walls have relatively high energy (see Fig. 3.9(a)) and therefore lower-energy Bloch
variant of the particular wall may be suspected to appear.

3Landau potential renormalized by elastic and electrostriction interaction assuming mechanical equilibrium.
4Bloch wall exhibits two-dimensional variation of polarization through a domain wall: Polarization rotates

in the plane of the wall while normal component to the wall remains zero.



64 CHAPTER 3. CHARGE-FREE ELASTICALLY COMPATIBLE DOMAIN WALLS

Figure 3.13: Cross sections of Euler-Lagrange potential perpendicular to the direction of domain
walls in BaTiO3. In all cases the boundary value of Pt(±∞) is zero, the only exception is O60
degree domain wall where Pt(±∞) is positive. Exact values can be obtained from Tab.A.1Walls
O180{001}, O120, R180{11̄0}, R180{2̄11} and R109 with side minima corresponding to another
spontaneous states appropriate for give phase enables for Bloch domain wall. Side minima are
slightly more shallow than minima of boundary states. Contours are distributed linearly.
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Analytical solution for two varying components of polarization Pr(s), Pt(s) does not exist,
numerical simulation of domain wall profile was performed. Initial conditions were chosen so
that [Pr(s), Pt(s)] trajectory goes around the middle peak in energy: Pr(s) component linearly
connects values Pr(−∞) and Pr(+∞), Pt(s) is a gaussian curve (Pt(±∞) = 0) and finally Ps

is fixed to the boundary value (charge-free assumption). The system was then relaxed to the
equilibrium. Results are plotted in Fig. 3.14. Polarization component Pt changes through a
domain wall.

In the case of O180{001}, R180{11̄0}, R180{2̄11} and R109 domain wall, the Bloch-like
solution was as expected. Pt(s) starts from one boundary state, almost reach side minimum,
and continues to the second boundary state. In all these cases it seems that there exists another
solution of Euler-Lagrange equations, which goes over the potential maximum for P = 0.

O120 domain wall, on the contrary, exhibits only one solution (which reach potential max-
imum for P = 0. Pt(s) changes its sign in the middle of the domain wall for Pr = 0.

It will be necessary to check for energy of individual trajectories of in order to decide which
is absolutely stable solution of Euler-Lagrange equations.
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Figure 3.14: Bloch solution of Euler-Lagrange equation for O180{001}, O120, R180{11̄0},
R180{2̄11} and R109 domain walls. Profiles were obtained numerically. Black and green curves
represent r and t-component of polarization vector. Component s is kept constant, domain wall
is charge-free.



Chapter 4

Dynamics of polarization field

4.1 Lattice contribution to the dielectric constant in BaTiO3

There are three basic mechanisms which contributes to the dielectric constant in ferroelec-
tric material: High-frequency electronic polarizability, contribution from lattice vibrations –
phonons at approximately THz frequencies and reorientation of polarization at lowest fre-
quencies. Dynamics of polarization in BaTiO3 is determined by lattice vibrations dynamics
(especially by modes with lower frequency as is derived in following text).

Polarizability of a material can be inspected by probing of a dielectric response. Frequency-
dependent dielectric function can be evaluated from reflection spectra (Fig. 4.1 from Ref. [41]
shows reflection spectra for BaTiO3) using Fresnel equation for reflected light in the air

R(ω) =

∣∣∣∣∣

√
ε(ω)− 1√
ε(ω) + 1

∣∣∣∣∣ . (4.1)

Relation between permittivity and optic index of the material for non-magnetic materials is
n(ω) =

√
ε(ω). Imaginary part of R(ω) can be obtained from Kramers-Kronig relations.

Complex permittivity was fitted by factorized form of the dielectric function that takes into
account contributions from individual optic modes1

ε(ω) = ε∞
∏

j

Ω2
jLO − ω2 + iωγjLO

Ω2
jTO − ω2 + iωγjTO

(4.2)

involving transverse optic (TO) mode frequency ΩjTO and damping γjTO constants, longitudinal
optic (LO) mode frequency ΩjLO and damping γjLO. Dielectric strength of the j-th oscillator
is computed from fitted parameters using relation

∆εj = ε∞

(
Ω2

jLO

Ω2
jTO

− 1

)∏

k 6=j

Ω2
kLO − Ω2

jTO

Ω2
kTO − Ω2

jTO

=
Sj

Ω2
jTO

(4.3)

with oscillator strength [42]

Sj = ε∞

∏
k Ω2

kLO − Ω2
jTO∏

k 6=j Ω2
kTO − Ω2

jTO

. (4.4)

1Acoustic phonons do not contribute to the dielectric response.
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Table 4.1: Frequency, damping and dielectric strength of optic modes in tetragonal phase.
Dielectric strengths of oscillators are computed from Eqn. 4.3 with use of fitted Ωj and γj.
Data taken from Ref. [41].

Vibrational mode Ωj γj ∆εj

TO1(E) 34 100 2000
LO1(E) 80 9
TO2(E) 181.8 2.8 1.4
LO2(E) 305.6 9
TO3(E) 306 9 0.05
LO3(E) 465 5
TO4(E) 482 21 0.4
LO4(E) 706 22

Figure 4.1: Reflection spectra (circles) of BaTiO3 at room temperature (tetragonal phase). Fit
with parameters from Tab. 4.1 is indicated by solid line. Figure was taken from Ref. [41], where
the reflection data were collected from mono-domain single-crystal.

Static permittivity is expressed in terms of optic permittivity and individual contributions of
all polar modes

ε0 = ε(ω = 0) = ε∞ +
∑

j

Sj

Ω2
jTO

(4.5)

Five atoms in a primitive unit cell of BaTiO3 (Fig. 1.5) imply existence of fifteen lattice vibra-
tional modes: twelve optic and three acoustic ones. Longitudinal and transversal optic mode
frequencies, dampings and dielectric strengths as measured in tetragonal phase are plotted in
Tab. 4.1. Dynamics of polarization is governed by the dynamics of TO1(E)2 mode (so called
Slatter mode). Its dielectric strength is by far the biggest in tetragonal phase. Eigenvector of
Slatter mode for room temperature is shown in Fig. 4.2. This mode comes from splitting of
cubic Slatter mode with symmetry F1u, which is parent mode for modes with biggest dielectric
strength in the whole temperature range. Existence of the mode with low vibrational frequency

2E stands for the name of irreducible representation which determine mode transformational properties.



4.2. SOFT MODE CONCEPT 69

Figure 4.2: Slatter mode which is the soft mode for cubic-to-tetragonal phase transition in
BaTiO3.

is explained by so-called soft mode concept.

4.2 Soft mode concept

In the case of displacive phase transitions there exists a lattice vibrational mode whose frequency
decrease (softens) when approaching the phase transition temperature. The mode softens in
the middle of the Brillouin zone if the phase transition is ferrodistorsive (the case of BaTiO3)
or e.g. at the zone boundary for anti-ferrodistortive transition.

When approaching the cubic-to-tetragonal phase transition temperature from above, soft
mode frequency follows Cochran law

Ω2
s TO = A (T − Tc) , (4.6)

where Tc is the Curie temperature3. Susceptibility divergence (Curie-Weiss behavior) on cooling
at Tc is a consequence of Eqn. 4.5.

On further cooling, ω would become negative. It indicates that the system is at the potential
energy maximum with respect to the distortion of the structure with the eigenvector of the soft
mode. Mode displacement freezes(the structure relaxes), and then mode4 hardens again on
cooling down.

Existence of soft mode follows also from Lyddane-Sachs-Teller relation[45]

ε0

ε∞
=

∏

k

Ω2
k LO

Ω2
k TO

. (4.7)

Divergence of ε(ω = 0) implies existence of a transversal mode with property Ω2
s TO → 0. In

BaTiO3, the Slatter5 mode is the soft mode for cubic to tetragonal phase transition. The cubic
vibrational mode with symmetry F1u is also responsible for displacive character of tetragonal
to orthorombic and orthorombic to rhombohedral phase transitions. Other modes are almost
temperature independent.

3In the case of first-order phase transition it differs from phase transition temperature.
4The soft mode splits into two parts – longitudinal and transversal.
5Slatter mode in BaTiO3 denotes motion of titan with respect to oxygen
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Chapter 5

Landau-Khalatnikov equation

Dynamics of polarization is driven by the lattice mode with the biggest dielectric strength.
Extraordinary value of ∆εsTO in BaTiO3 compared to remaining vibrations indicates that the
dynamics of polarization is determined by the dynamics the soft mode. Frequency γsTO and
damping ΩsTO fulfill relation

γsTO > 2ΩsTO (5.1)

and the mode is therefore over-damped.
Consequently, the evolution of the system is assumed to be driven by the dissipative time-

dependent Landau-Khalatnikov equation [43]

∂

∂t
Pi(r, t) = −Λ

δF ′

δPi

(r, t) + ξi(r, t) , (5.2)

where F ′ [{Pi(r, t)}] is the free energy functional with eliminated elastic part (2.35) and ξi(r, t)
stands for random force (which is neglected in our computations). Kinetic coefficient Λ was
estimated in the Ref. [44] to about Λ = 4× 104 C2 kg−1 m−3 s.

Landau-Khalatnikov equation is an ordinary differential equation in time and can be solved
(for given initial and boundary conditions) for polarization field. Since the free energy is ob-
tained by integration over sample domain, variation of energy functional must be computed to
get generalized force at the right-hand side of Landau-Khalatnikov equation. Explicit expres-
sions for generalized force used in simulations are derived in this chapter and Sec. C.

5.1 Landau-Khalatnikov Equation in Fourier space

In principle, evolution of Pi(r) field can be calculated straightforwardly from Eqn.5.2, but in
the case of periodic boundary conditions in a bulk system, it is convenient to solve an equivalent
equation for Fourier components of Pi(r)

∂

∂t
F [Pi(r)] (k, t) = −ΛF

[
δF ′

δPi

(r)

]
(k, t) , (5.3)

since applying discrete Fourier transform greatly simplifies numerical calculations of the long-
range forces. It is also favourable from numerical point of view since spectral methods exhibits
excellent spatial convergence (perfect agreement with analytical profile even for rough grid
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spacing [46, 32]). This approach requires evaluation of Fourier transform of the functional
derivative on the right hand side of the Eqn. 5.2

F
[
δF ′

δPi

]
= F

[
δF

(e)
L

δPi

]
+ F

[
δFG

δPi

]
+ F

[
δF ′

Cq

δPi

]
+ F

[
δFdep

δPi

]
. (5.4)

Equations (5.3),(5.4) are equally valid for discrete Fourier transform. Definition of forward
and backward discrete three-dimensional Fourier transform Fd is given explicitly in Sec. B by
Eqn.B.8.

On the right hand side of the Eqn. 5.4, there are contributions to a generalized force acting
on polarization field. In a numerical approach we search for force acting on each individual
discrete point.

5.1.1 Landau energy

Variation in real space is given in Eqn.C.1. Mutual multiplications of Pi(r) in real space
corresponds to convolution of Fourier images Pi(k). Computation in reciprocal space would
lead to multiple time-demanding convolutions. Therefore, this part is evaluated in direct space
with polarization field Pi(r) = F−1 [Pi(k)]. At the end, forward Fourier transform is used to
transform Landau force into the reciprocal space.

F
[

δF
(e)
L [{Pi}]
δP1

]
= F[F−1 [P1] [2α1 + 4α11

(F−1 [P1]
)2

+ 2α12

[(F−1 [P2]
)2

+
(F−1 [P3]

)2
]

+ ...]] . (5.5)

Similar expressions hold for variation with respect to P2 and P3 components of polarization
field.

5.1.2 Gradient energy

Functional derivative of gradient energy functional in direct space is derived (Sec. C.2)

δFG [{Pi,j}]
δP1

= −G11
∂2P1

∂x2
−G14

(
∂2P2

∂x∂y
+

∂2P3

∂x∂z2

)
−G44

(
∂2P1

∂y2
+

∂2P1

∂z2

)
, (5.6)

and remaining derivatives follows simply from cyclic permutation of indexes. Since differen-
tiation in direct space correspond to multiplication by ik in Fourier space, resulting Fourier-
transformed gradient force is

F
[
δFG [{Pi,j}]

δP

]
(k) = GP(k) , (5.7)

with

G =




G11k
2
1 + G44 (k2

2 + k2
3) G14k1k2 G14k1k3

G14k1k2 G11k
2
2 + G44 (k2

1 + k2
3) G14k2k3

G14k1k3 G14k2k3 G11k
2
3 + G44 (k2

1 + k2
2)


 .

(5.8)

Gradient part of generalized force is computed as a product of P(k) with a quadratic polynomial
in ki. This is used in variants of semi-implicit numerical scheme described in Sec. 6.1.



5.1. LANDAU-KHALATNIKOV EQUATION IN FOURIER SPACE 73

5.1.3 Elastostriction energy

Calculation in reciprocal space enables computation of long-range elastostriction forces by mul-
tiplication of Pi(k) with elastostriction kernels Aρσ(k̂) defined by Eqn. 2.37 and given explicitly

in Sec.D. Symmetry of matrix of kernels Aρσ(k̂) (Aρσ(k̂) = Aσρ(k̂) - see the definition in [18])
is important for derivation (Sec. C.3) of formulas for generalized elastostriction force in Fourier
space:

F
[
δF ′

Cq [{Pi}]
δP1

]
= −1

2
F[4P1F−1

[
6∑

σ=1

A1σF [Yσ]

]
+ 2P2F−1

[
6∑

σ=1

A6σF [Yσ]

]

+2P3F−1

[
6∑

σ=1

A5σF [Yσ]

]
] (5.9)

F
[
δF ′

Cq [{Pi}]
δP2

]
= −1

2
F[4P2F−1

[
6∑

σ=1

A2σF [Yσ]

]
+ 2P3F−1

[
6∑

σ=1

A4σF [Yσ]

]

+2P1F−1

[
6∑

σ=1

A6σF [Yσ]

]
] (5.10)

F
[
δF ′

Cq [{Pi}]
δP3

]
= −1

2
F[4P3F−1

[
6∑

σ=1

A3σF [Yσ]

]
+ 2P1F−1

[
6∑

σ=1

A5σF [Yσ]

]

+2P2F−1

[
6∑

σ=1

A4σF [Yσ]

]
] . (5.11)

In two dimensions there are Aρσ(k̂) kernels nonzero where ρ, σ ∈ {1, 2, 6}, which corresponds
to nonzero positions in vector Y = [P 2

1 , P 2
2 , 0, 0, 0, P1P2].

F
[
δF ′

Cq [{Pi}]
δP1

]
= −1

2
F

[
4P1F−1

[
6∑

σ=1

A1σF [Yσ]

]
+ 2P2F−1

[
6∑

σ=1

A6σF [Yσ]

]]
, (5.12)

F
[
δF ′

Cq [{Pi}]
δP2

]
= −1

2
F

[
4P2F−1

[
6∑

σ=1

A2σF [Yσ]

]
+ 2P1F−1

[
6∑

σ=1

A6σF [Yσ]

]]
. (5.13)

Kernels Aρσ(k̂) are defined as 0 for k = 0 point of reciprocal space: elastostriction interaction
acts only on the heterogeneous part of polarization here. Forces due to heterogeneous strain
or stress are taken into account through anisotropy of coefficient α1 → (α1x, α1y, α1z) and
additional coefficients (βx, βy, βz) in Landau potential as described in Sec. 2.4.

5.1.4 Dipole-dipole electrostatic energy

Functional derivative of dipole-dipole electrostatic part of energy can be written (Eqn.C.12) as

δFdep [{Pi}]
δPi

=
2

8πε0εB

∫
ds

[
Pi(s)

|R|3 −
Ri [P(s) ·R]

|R|5
]

, (5.14)
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using R = s− r. Searched expression for variation in Fourier space is obtained as

F
[
δFdep [{Pi}]

δPi

]
=

2

8πε0εB

(P(k) · k) ki

k2
. (5.15)

The right-hand side is defined as zero for k = 0, because for periodic boundary condition there
is no force coming from homogeneous part of polarization.



Chapter 6

Implementation details of computer
programs

6.1 Numerical methods for solving Landau-Khalatnikov

equation

Landau-Khalatnikov governing equation (irrespective whether in direct or Fourier space) is
first-order ordinary differential equation of the form

∂P(x, t)

∂t
= f(P(x, t)) , (6.1)

with initial conditions P(x, t0) = g(x). Here P(x, t) is field of order parameters and f(P(x, t))
is generalized force (in our case originating from Landau, gradient, elastic, electrostriction
and dipole-dipole interaction). To solve the Eqn. 6.1 numerically, the space is equidistantly
discretized with step ∆. Time discretization is also equidistant with step τ . Computed P(x, nτ)
will be referred to as Pn and the dependence on space coordinate will not be emphasized.
Simplest explicit first-order Euler method

Pn+1 = Pn + τf(Pn)

P0 = g0 (6.2)

or second-order

Pn+1 =
1

3

[
4Pn −Pn−1 + 2τ

[
2f(Pn)− f(Pn−1)

]]

P0 = g0

P1 = g1 , (6.3)

are usually employed for solving equations of this type. g0
i and g1

i are initial conditions. In
these methods, time step is limited by space step as

τ / ∆2 . (6.4)

This holds for computation in direct as well as in reciprocal space. Space constraint and the
fact, that space grid must be chosen relatively dense to obtain profiles consistent with analytical
solution, make Euler methods unusable for simulations of long time periods.

75
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Implementation of an implicit method would eliminate this time-step constraint. Construc-
tion of such scheme would be, however, prohibitively difficult due to non-linear Landau part at
the right-hand side of Landau-Khalatnikov equation.

Implementation of a semi-implicit scheme offers certain improvement. It was proposed for
computations in Fourier space (Refs. [20, 32]) and allows for a considerable increase of the time
step. It utilizes the fact that second derivative (present in gradient part of the free energy) is
simple multiplication of Fourier image of order parameter by parabolic kernal. Right-hand side
of Landau-Khalatnikov equation is therefore split into two parts - gradient force and the rest.
First-order Euler scheme with substitution n → n+1 to the gradient part can be schematically
written

Pn+1(k) = Pn(k) + τ
[
f̃(Pn(k))− k2Pn+1(k)

]
, (6.5)

where f̃ does not include gradient force any more. This expression can be rewritten in the form

Pn+1(k) =
1

(1 + τk2)

[
Pn(k) + τ

[
f̃(Pn(k))

]]
. (6.6)

Similarly, second and third order semi-implicit methods can be constructed

Pn+1(k) =
1

(3 + 2τk2)

[
4Pn(k)−Pn−1(k) + 2τ

[
2f̃(Pn(k))− f̃(Pn−1(k))

]]
(6.7)

P0 = g0

P1 = g1 ,

Pn+1(k) =
18Pn(k)− 9Pn−1(k) + 2Pn−2(k) + 6τ

[
3f̃(Pn(k))− 3f̃(Pn−1(k)) + f̃(Pn−2(k))

]

(11 + 6τk2)
(6.8)

P0 = g0

P1 = g1

P2 = g2 .

Semi-implicit time-step is still limited by grid spacing, but it can be now chosen considerably
greater than in the case of the Euler algorithm. In the simulations, it is most beneficial to use
semi-implicit method of the second or third order(Ref. [32]).

In three dimensions with anisotropic gradient part, the derivation of semi-implicit scheme
is slightly more difficult. Suppose that X, Y, Z are number of grid points in individual direc-
tions and ∆ is grid spacing. Equations of three-dimensional semi-implicit method with use of
Kramer’s rule reads

Pn+1
i =

3∑
j=0

Sij[18Pn
j (k)− 9Pn−1

j (k) + 2Pn−2
j (k)

+6τ
[
3fj(P

n(k))− 3fj(P
n−1(k)) + fj(P

n−2(k))
] ] (6.9)
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where matrix S with components

S11 =
1

D

[
−(6τ)2 16π4G2

14

Y 2Z2∆4
k2

2k
2
3 + R22R33

]

S22 =
1

D

[
−(6τ)2 16π4G2

14

X2Z2∆4
k2

1k
2
3 + R11R33

]

S33 =
1

D

[
−(6τ)2 16π4G2

14

X2Y 2∆4
k2

1k
2
2 + R11R22

]

S23 =
1

D

[
6τk2k3

(
6τ

16π4G2
14

X2Y Z∆4
k2

1 −
4π2G14

Y Z∆2
R11

)]

S13 =
1

D

[
6τk1k3

(
6τ

16π4G2
14

XY 2Z∆4
k2

2 −
4π2G14

XZ∆2
R22

)]

S12 =
1

D

[
6τk1k2

(
6τ

16π4G2
14

XY Z2∆4
k2

3 −
4π2G14

XY ∆2
R33

)]
(6.10)

is the inversion of the matrix R with determinant D and components

R11 = 11 + 6τ

[
4π2G11

X2∆2
k2

1 +
4π2G44

X2∆2

(
k2

2 + k2
3

)]
(6.11)

R22 = 11 + 6τ

[
4π2G11

Y 2∆2
k2

2 +
4π2G44

Y 2∆2

(
k2

1 + k2
3

)]
(6.12)

R33 = 11 + 6τ

[
4π2G11

Z2∆2
k2

3 +
4π2G44

Z2∆2

(
k2

1 + k2
2

)]
(6.13)

R23 = 6τ
4π2G14

Y Z∆2
k2k3 (6.14)

R13 = 6τ
4π2G14

Y Z∆2
k1k3 (6.15)

R12 = 6τ
4π2G14

Y Z∆2
k1k2, (6.16)

Derivatives from the matrix (5.8) were replaced by discrete derivatives in reciprocal space (see
Eqn.B.9).

Dipole-dipole interaction can be treated analogically to the gradient interaction in the
Fourier space. The variation with respect to polarization can be expressed as product of
Fourier image of polarization and a function dependent only on a direction from the origin
of the Fourier space. Method can be thus improved.

6.2 Description of programs and their parameters

The evolution of polarization field was solved numerically with use of previously described
methods. Simulations were performed for a bulk crystal of BaTiO3 from given initial state with
prescribed external electric field, external mechanical conditions (stress or strain) and tem-
perature. Resulting sequence of polarization fields was represented graphically and additional
information were extracted from polarization arrays.
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In order to keep it simple, four independent programs were designed: program ferrodo for
computation of polarization evolution, program drawarray for preparation of initial conditions,
program view for displaying images and program elast draw for displaying of elastic field.
Special format *.arr is used for storage of polarization field (Sec. 6.2.6).

The code is written in C++ programming language with use of external libraries for special
objectives. Fourier transform is computed with use of FFTW (Fastest Fourier Transform in the
West) subroutine library for computation of the discrete Fourier transform [70]. The cpgplot

variant of Fortran pgplot library [71] is used for plotting images. Finally, getopt library is
used for processing of command-line parameters.

6.2.1 Program ferrodo

Program ferrodo is designed for computation of evolution of polarization field.

The program is compiled from several source and header files: ferrodo.cpp contains main
loop of the program and computational routines, parameters ferrodo.cpp is responsible for
loading and preprocessing of parameters of the program. Finally, output ferrodo.cpp contains
mechanisms for output and saving of computed data. There is additional file utility.cpp that
contains necessary input/output and complementary routines. All routines are declared in ap-
propriate header files ferrodo.h, parameters ferrodo.h, output ferrodo.h and utility.h.
Compiled program is launched by the command

ferrodo --iterations ITERATIONS --x X --y Y --z Z --pdim PDIM --dt DT

--dx DX --steady temperature STEADY TEMPERATURE --multlandau MULTLANDAU

--multgrad MULTGRAD --multelast MULTELAST --multel MULTEL --multdipdip

MULTDIPDIP --clamped CLAMPED --palette PALETTE --save period SAVE PERIOD

--printinfo period PRINTINFO PERIOD --record period RECORD PERIOD

--model parameters landau MODEL PARAMETERS LANDAU --model parameters grad

MODEL PARAMETERS GRAD --model parameters elast MODEL PARAMETERS ELAST

--model parameters dipdip MODEL PARAMETERS DIPDIP --numerical method

NUMERICAL METHOD --initial condition file INITIAL CONDITION FILE --info filename

info FILENAME --output dirname OUTPUT DIRNAME

with following meaning of individual parameters (in parentheses, there is appropriate range of
values of a particular parameter):

--x
x-dimension of simulation area
(integer∈{1,2,4,...,2n,...})

--y
y-dimension of simulation area
(integer∈{1,2,4,...,2n,...})

--z
z-dimension of simulation area
(integer∈{1,2,4,...,2n,...})
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--iterations
Number of iterations in the main loop of the program
(integer∈{1,...})

--pdim
Dimension of polarization vector (integer∈{1..3}]). For
PDIM=1 is the polarization aligned alon x-direction, for
PDIM=2 it is restricted to xy plane

--dt

Value of time step τ (floating point number greater than
zero. It must be chosen according to the value of param-
eter --dx in order to give stable scheme)

--dx
Grid spacing ∆ (floating point number greater than
zero)

--steady temperature
Temperature of simulation (floating point number
greater than zero)

--multlandau
Multiplicative coefficient to Landau generalized force
(floating point number, no restriction on value)

--multgrad
Multiplicative coefficient to gradient generalized force
(floating point number, no restriction on value)

--multelast
Multiplicative coefficient to elastostriction generalized
force (floating point number, no restriction on value)

--multel

Multiplicative coefficient to generalized force from exter-
nal electric field (floating point number, no restriction
on value)

--multdipdip

Multiplicative coefficient to electrostatic dipole-dipole
generalized force (floating point number, no restriction
on value)

--clamped
Mechanical boundary conditions (integer:
0: Mechanically free sample in all directions
1: Mechanically clamped sample)

--palette
Number of palettes for output as in program view

(integer∈{0,1,2,3})
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--save period
Number of iterations between saving images of polariza-
tion field (integer∈{1,...})

--printinfo period
Number of iterations between printing information
about status of the program (integer∈{1,...})

--record period
Number of iterations between saving values of tracked
physical quantities (integer∈{1,...})

--model parameters landau
Specification of Landau parameters: (integer:
0: Parameters according to [12]
1: parameters according to [13])

--model parameters grad

Specification of gradient constants: (integer:
0: According Tab. 2.1A
1: According Tab. 2.1C
2: G11 = 1, G14 = 0 and G44 = 1)

--model parameters elast
Specification of elastic and electrostriction constants
(just integer=0 available corresponding to Tab. 2.1A)

--model parameters dipdip
Specification of background permittivity (just integer=0
available corresponding to Tab. 2.1A)

--numerical method

Selection from available numerical schemes (integer:
0: First-order Euler
1: Second-order Euler scheme
2: Third-order Euler scheme
3: Semi-implicit third-order scheme)

--initial condition file
Name of file with initial conditions (string with full path
to the *.arr file)

--info filename
Name of html file for recording of input parameters of
the program (string with full name of the *.html file)

--output dirname
Name of temporary directory for output (string with full
path)

Parameters are selected in order to answer basic expected usage of the program. It is, however,
obvious that given command-line parameters do not cover the whole area of functionality of
ferrodo. For example it is possible to consider more complicated dependence of temperature,
external electric field or mechanical boundary conditions on time, as shown in simulations in
following chapter. The program was also used to produce sequences of simulations e.g. when
frequency dependence of dielectric constant was simulated. These properties of the program
are accessible directly by changes in the source code, which is carefully commented in order to
enable alterations according to actual needs.
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Figure 6.1: (a) Block diagram of the core cycle of the program ferrodo. Parentheses indicate
names of subroutines, but parameters are not specified explicitly. (b) Routine Step() for
computation of generalized forces.

Program implicitly runs in three-dimensional space. It may be, however, advantageous to
decrease dimensionality of the space. It can be accomplished by setting appropriate value of Y,
Y or Z to 1. It effectively results in decreasing of dimension of the problem in that direction so
that the space is two-dimensional. One dimensional space is obtained by setting two of X, Y, Z
to 1.

The program is initiated from linux shell script with one command line parameter: the name
of output directory. The directory is created and the program is launched with all command-line
parameters specified in the script. When the program ferrodo is finished, the script continues
by copying important files from temporary to the output directory.

Basic scheme of the program is indicated in two flow graphs: Fig. 6.1(a) depicts the main
cycle of the program. Key component of the loop, the subroutine step(), is schematically
described in Fig. 6.1(b).

Command line parameters are processed by GetParameters() with use of getopt library rou-
tines immediately after start of the program and the parameters of the GGLD model are
obtained.

Allocation and initialization of appropriate structures follows. There are basically two types
of data arrays: Those which depends on a number of iterations and those which depends on
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a dimension of simulation area. Important representant of the first group is array for storing
data tracked during simulation. Arrays in the second group are intended for storing of (two
or more) polarization arrays and (one or more) arrays of generalized forces1. There are also
arrays for elastostriction kernels. Both types of fields are allocated (AllocateMemorySpace(),
AllocateMemoryTime()) and initialized (InitArraySpace(), InitArrayTime()) based on pre-
viously loaded parameters and constants from InitArrayConstants().

Fourier transform is initialized in the subroutine PlanFFT(), which tests the fastest scheme
for computation of the fast Fourier transform. This can take several minutes for large domains.

Initial polarization array is then loaded, and polarization field is transformed into reciprocal
space (InitialConditions(), TransformInitialConditions()).

The program then repeats routines in the main loop. Firstly, information about simulation
stage are written to standard output (screen) by routine PrintInfo(). They contains infor-
mation about program progress in percents, estimated time, elapsed time, actual temperature,
actual nonzero components of electric field, external stress and external strain. Polarization
array is saved and displayed by PrintPolarPoint(). Tracked quantities are then computed by
ExperimentObserver() routine and displayed by PrintExperimentObserver(). Generalized
forces in Fourier space are computed in Step(), and actual polarization field is updated with
use of selected numerical scheme in PolarizationUpdate(). Pointers that points to various
data arrays are then rotated in order to prepare for the next cycle.

At the end of the program, all fields are de-allocated with use of routines DestroyPlanFFT(),
DeallocateSpace() and DeallocateTime().

Routine Step() that computes generalized force from individual contributions to the free
energy is the core of the whole program and is described separately in Fig. 6.1(b). It starts by
transformation of polarization field into direct space. It is necessary for computation of Lan-
dau force which is preformed in direct space (Sec. 5. External stress or strain is then obtained
from boundary conditions by ExternalStress(), ExternalStrain(). Routine TotalStress()
computes value of individual components of homogeneous stress in order to keep mechani-
cal boundary conditions as discussed in Sec. 2.4. Parameters of GGLD model (e.g. coeffi-
cients of Landau potential) are then updated by UpdateParameters(). Generalized forces
originating from Landau, Electric and Elastostriction force are computed by ForceLandau(),
ForceElectric() and ForceElastostriction(), resp. Gradient and dipole-dipole electro-
static force is evaluated either in ForceGradDipdip() (if Euler numerical scheme is used) or in
ForceDipDip() (in case of semi-implicit numerical scheme). At the end of the Step() routine,
individual contributions to the generalized force are put together.

All simulations were performed on personal computer with 3GHz Pentium4 CPU and 1GB
RAM memory. It was possible to perform simulations of polarization fields about 256×256×16
with three-dimensional order parameter.

1Number of necessary field is dependent on chosen numerical scheme (see Sec. 6.1).
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6.2.2 List of outputs of the program ferrodo

graph angles.png

Only for PDIM=2: polarization vector is in plane and it
is possible to make histogram of angles of polarization
vectors in discrete points. Sequence of these histograms
provide two-dimensional graph of dependence of polar-
ization angles on time.

graph applied stress.png
Time-dependence of external stress applied to the sam-
ple. Nonzero for CLAMPED=1, zero otherwise.

graph elfield.png Dependence of external electric field on time.

graph external strain.png
Time-dependence of homogeneous deformation of the
sample.

graph maximal force.png
Time-dependence maximal value of all components of
Landau, gradient, elastostriction, dipole-dipole and to-
tal generalized force.

graph mean.png
Time-dependence of mean value of polarization and
square of polarization in the sample.

graph temperature.png Time-dependence of temperature of the sample.

info.html
Detail description of initial conditions. Exact explana-
tion is provided for every parameter.

p 0000000.arr Polarization – iteration 0: initial conditions.

p 0000000v.gif Plot of polarization – iteration 0: initial conditions.

p 0000100.arr Polarization – iteration 100.

p 0000100v.gif Plot of polarization – iteration 100.

p 0000200.arr Polarization – iteration 200.

p 0000200v.gif Plot of polarization – iteration 200.

...
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record angles.arr Data for plot graph angles.png

record all.arr

Record of tracked quantities. Data tracked by the pro-
gram are: Maximal values of Landau, gradient, elas-
tostriction, dipole-dipole and electric force across the
whole simulation area, mean value of polarization, mean
value of square of polarization, temperature, external
stress, boundary stress, external strain and external
electric field.

6.2.3 Program drawarray

Program drawarray is designed for preparation of initial polarization fields. It contains wide va-
riety of routines designed to produce particular polarization field. It is necessary to combine rou-
tines manually, recompile and run the program in order to obtain desired polarization array. Re-
sult is saved in a file with a name constructed as (DIM)d(PDIM)d (X)[ (Y)][ (Z)] array.arr.
Bracketed values are changed for appropriate numerical values of parameters with the same
meaning as that defined in Sec. 6.2.1. Polarization array is also displayed with use of the
view program. Quantities in parenthesis stand for integer numbers, dimensions brackets are
optionally used according to valueDIM. The program is launched by the command

drawarray [-output file FILE1]

with one optional parameter for name of output *.gif file.

6.2.4 Program view

Program view displays polarization array and save it to the *.gif graphical file. Several
command-line parameters can alter the functionality of the program. It is launched by the
command:

view -input file FILE1 [-output file FILE2] [-blackwhite] [-arrow] [--palette

NPALETTE]

Individual parameters have meaning:
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--input file Name of *.arr file with polarization field

[--output file]
Optional name of output *.gif file (if omitted, the name
is constructed from input name as FILE1v.gif)

[--blackwhite]
Gray-scale output, feasible e.g. for publication in jour-
nals

[--arrow]
Draw arrows (only for two-dimensional polarization ar-
rays)

[--palette]

Specification of color palette (see Fig. 6.2):
0 Combined palette
1 Tetragonal palette
2 Orthorombic palette
3 Rhombohedral palette

Graphical schemes used for decoration of ferroelectric domain structure is apparent from
Fig. 6.2.

Figure 6.2: Color palettes used for display of different directions of order parameter. (a) tetrag-
onal phase, (b) orthorombic phase, (c) rhombohedral phase, (d) all schemes mixed together.
Horizontal axis represents angle in the canvas xy plane, while vertical represents angle of a
polarization vector from the canvas.

A color is assigned to every particular direction of spontaneous polarization. Similar direc-
tion of polarization have the same color. The color does not depend on the magnitude of the
vector. If a direction of polarization is approximately in between two spontaneous values, its
color is shaded indicating smooth change from one state to another. For all ferroelectric phases
of BaTiO3 a specific color scheme is designed and used. Red, orange and yellow for tetragonal
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phase, blue and green for orthorombic phase and brown and grey for rhombohedral phase.
Appropriate color scheme corresponding to the temperature of simulation is used. It is

also possible to combine individual schemes when the temperature changes during a simulation
and pass through a transition temperature, or if one is interested in phase coexistence at
certain temperature. All schemes for individual phases are displayed in Fig. 6.2(a-c), mixed in
Fig. 6.2(d).

In the presented scheme any spontaneous direction is unambiguously determined by its
color. Color corresponding do the direction of polarization is drawn for every single point
individually. Projection of polarization to the plane of an image is also optionally indicated by
arrows. These are usually drawn only for selected points, in this work for 32× 32 grid. Arrow
does not reflect polarization in neighboring points, it simply stands for value of polarization in
which it is plotted. In the case of rhombohedral phase, where vector of spontaneous polarization
is declined either up or down with respect to canvas plane, white and black color of arrow is
used for up and down deviation, resp.

Axis orientation for two-dimensional and three-dimensional plots of polarization fields is
given in Fig. 6.3 (a) and (b), resp.

Figure 6.3: Axis orientation in two- and three-dimensional plots.

6.2.5 Program elast draw

The program is designed to compute and display field of elastic displacements and field of
components of the strain tensor.

It is launched by the command:

elast draw -input file FILE1 -x DX

File FILE1 must be a file of the type *.arr with two-dimensional polarization array. DX is grid

spacing. The program then produces following outputs:

strain xx.gif e11(x) component of the strain tensor

strain yy.gif e22(x) component of the strain tensor

strain xy.gif e12(x) component of the strain tensor

displacement.gif
Array of elastic displacements drawn as deformed rect-
angular grid
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6.2.6 Storing of polarization field

Polarization field is stored in files with suffix *.arr with purposely designed structure. First
line defines dimension of stored field
#(DIM) X [Y ][Z ](PDIM)

where DIM (standing for dimension of the simulation domain) ranges from 1 to 3. Values in
brackets are used according to the value of DIM: if DIM=1, DIM=2 or DIM=3 then X, X and Y, or
X, Y and Z must be specified.

After the first header line, there follow sequences of blocks separated by blank lines. Each
block represents data for xy plane with increasing z-coordinate. Inside each block, lines corre-
sponds to increasing x-coordinate and each line consists of a sequence of vectors (with dimension
PDIM) with increasing y-coordinate:

#(DIM) X [Y ][Z ](PDIM)

P1(1,1,1) P2(1,1,1) P3(1,1,1) ... P1(1,Y,1) P2(1,Y,1) P3(1,Y,1)

... ... ...

P1(X,1,1) P2(X,1,1) P3(X,1,1) ... P1(X,Y,1) P2(X,Y,1) P3(X,Y,1)

P1(1,1,2) P2(1,1,2) P3(1,1,2) ... P1(1,Y,2) P2(1,Y,2) P3(1,Y,2)

... ... ...

P1(X,1,2) P2(X,1,2) P3(X,1,2) ... P1(X,Y,2) P2(X,Y,2) P3(X,Y,2)

... ... ...

... ... ...

P1(1,1,Z) P2(1,1,Z) P3(1,1,Z) ... P1(1,Y,Z) P2(1,Y,Z) P3(1,Y,Z)

... ... ...

P1(X,1,Z) P2(X,1,Z) P3(X,1,Z) ... P1(X,Y,Z) P2(X,Y,Z) P3(X,Y,Z)

6.3 Simulations in one and two dimensions

All simulations are performed in three-dimensional space. Some domain arrangements can,
however, exhibit translational symmetry along one or two coordinate axes. In that case it is
possible to lower the effective dimension of simulated area (as mentioned before) and conse-
quently reduce computational demands. Consequence of such decrease of the dimension are
discussed bellow.

Two-dimensional simulations simply represent three-dimensional material with no variation
of the order parameter along third direction, say z-axis.

∂Pi

∂z
= 0 ∀i ∈ {1, 2, 3} (6.17)

Material must not have shear strain in z-component (u23 = 0, u13 = 0) in order o to fulfill
periodic boundary conditions for elastic displacement. But u33 6= 0 in general. Boundary
conditions in z-direction (external stress or clamping) are prescribed separately even for two
dimensional simulations. Fourier transform in the z-direction is trivial.
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Simulations in one-dimensional space equivalent to three-dimensional simulation with

∂Pi

∂y
= 0 ∀i ∈ {1, 2, 3}

∂Pi

∂z
= 0 ∀i ∈ {1, 2, 3} (6.18)

and shear strains u23 = 0, u13 = 0 and u12 = 0. External strain or stress is again prescribed in
all direction x, y and z separately. Fourier transform in y and z direction is trivial.

Dimension of order parameter is chosen independently on space dimensionality. Polarization
can be thus restricted to the xy plane or just to x-component. It enables study of special cases
like two dimensional ordering of polarization as in Fig. 1.1 or uniaxial ferroelectrics.

6.4 Possible domain walls in individual configurations

Various combinations of values of DIM and PDIM enables to simulate various sets of domain
walls. For example for PDIM=2 it is not possible to simulate polarization in rhombohedral
state.

Furthemore, possible domain walls are also limited by domain dimensions, which is power
of two in order to simplify computation of the Fourier transform. Domain walls O60 or O120c

have general direction and therefore their appearance will be either reduced or accompanied by
bending and artificial rotation of the wall.

Possible domain walls for individual choice of DIM and PDIM are comprehensively listed in
Tab. 6.1.

Table 6.1: Possible domain walls for various combinations of DIM and PDIM parameters.

DIM PDIM Possible walls

2D 2D
Tetragonal: T180{001},T90
Orthorombic: O180{11̄0},O180{001},O90
Rhombohedral: –

2D 3D
Tetragonal: T180{001},T180{011},T90
Orthorombic: O180{11̄0},O180{001},O90,O120
Rhombohedral: R180{11̄0},R109,R71

3D 2D
Tetragonal: T180{001},T180{011},T90
Orthorombic: O180{11̄0},O180{001},O90
Rhombohedral: –

3D 3D All considered domain walls with the exception of O60 (O120c) wall
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6.5 Advantages and disadvantages of simulation in Fourier

space

Computation in Fourier space simplifies evaluation of long-range interactions. It is fast and
enables to solve numerically Landau-Khalatnikov for large number of steps. It also exhibits
excellent spatial convergence (Ref. [46]).

On the contrary, dimension of simulation domain must equal power of two. This can be
restrictive for simulation of domain walls with special direction like S-wall in orthorombic
BaTiO3. Simulation in Fourier space also requires periodicity of boundary conditions. Model
can not be easily accommodated for study of boundary effects. Another limitation comes from
the fact that long-range kernels are defined for the whole sample. Therefore, it is impossible to
simulate material that composes of several parts with different elastic and electrostriction (or
electrical) properties.



90 CHAPTER 6. IMPLEMENTATION DETAILS OF COMPUTER PROGRAMS



Chapter 7

Examples of simulations

In this chapter, possible use of the program ferrodo is reviewed on several examples.
Presented simulations of domain structure formation are given together with complete in-

formation about parameter values. Individual plots of polarization field are also denoted by
number of iterations from the start of the program. Real time in seconds is product of step and
numerical value of τ/Λ (time-step divided by the kinetic coefficient from Landau-Khalatnikov
equation). Parameters of the GGLD model were taken from parameter set ”A” in Tab. 2.1,
otherwise it is explicitly specified.

Initial conditions are chosen purposely in order to produce desired domain structure. Exam-
ples of initial polarization fields is given in Fig. 7.1. Random field of small polarization vectors
with magnitude 0.01P0 is shown in Fig. 7.1(a). Remaining two pictures produce stripe structure
with T90 and T180{001} domain walls (Fig. 7.1(b) and Fig. 7.1(c), resp.).

Figure 7.1: Initial polarization arrays used in simulations: (a) Random field representing
quenched paraelectric cubic phase. (b) 90 degree charge-free tetragonal domain wall. (c) 180
degree charge-free tetragonal domain wall.

Time step used in simulations were tested with use of the double-step method. Testing
simulation was performed twice: at first with chosen time-step (10000 steps) and then with
time-step divided by two (20000 steps). Time step was accepted if the Euclidean norm of the
difference of resulting polarization arrays fulfilled the condition

√∑X
i

∑Y
j

∑Z
k

∑3
d [1Pd(i, j, k)−2Pd(i, j, k)]

P0

√
X × Y × Z

≤ 0.001 , (7.1)
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where 1P and 2P is result of the first and second simulation, resp. This difference was considered
for sufficiently small.

7.1 Space accuracy of numerically obtained profiles

Numerical approximation of an analytical profile was tested for 180 degree non-charged domain
wall in dependence on the size of the spatial discretization step ∆.

At first, just Landau and gradient interaction were taken into account. We set a1 = −2.77×
107, a11 = −6.48 × 108, a111 = 8.00 × 109 and g = 51 × 1011. Analytically computed profile
have thickness 2ξ = 5.5 nm. Numerical simulations were performed on one-dimensional space
array with X=256 points and ∆ ∈ {1.0 nm, 2.0 nm, 3.0 nm, 4.0 nm}. Vector of polarization
is in x-direction. Mechanically free sample relaxes from appropriate initial condition to the
equilibrium state. Results are shown in the Fig. 7.2(a). There is almost no deviation from
analytical profile for ∆ = 1.0 nm, ∆ = 2.0 nm and ∆ = 3.0 nm lattice spacing. In the case of
∆ = 4.0 nm, there is a significant discrepancy, but the derivative in the middle of the domain
wall is still well reproduced.

Secondly, elastic and electrostriction interaction were added. Landau constants for this case
were taken from Tab. 3.3 for T180{001} domain wall: a1 = −14.26 × 107, a11 = 1.69 × 108,
a111 = 8.00 × 109. Gradient constant was again g = 51 × 1011. Domain wall thickness was
computed to be 3.34 nm. It is slightly narrower than in the previous case. Therefore ∆ = 0.5 nm
was added. Results of numerical simulations are displayed in Fig. 7.2(b). Again there is perfect
agreement with theory up to ∆ = 2.0 nm. The results seems also reliable for lattice spacing
3.0 nm and 4.0 nm.

Previous results indicate that upper bound of the lattice spacing, which gives reliable results,
is slightly lower than the half of the thickness of a domain wall. In order to give good predictions
for finest structure that appears in the simulations (T180, O180{001}, O90, R109 and R71,
which are all about 0.7 nm – see Tab. 3.3), we set grid spacing ∆ = 0.4 nm in cases when these
walls are important.

7.2 Simulation of domain wall profiles

In Sec. 3, analytical computations of domain wall profiles and thickness were performed. Suffi-
cient distance between domain walls can mimic infinite boundary conditions. Resulting profiles
are expected to be the same as for analytical computations (Sec. 7.1). For narrower domains,
the profile, thickness and the value of spontaneous polarization can different in comparison with
analytical predictions.

Numerical simulations of T180{001} and T90 wall in tetragonal phase (at 298 K) with and
without dipole-dipole interaction were performed. Coefficients of the model were taken from
parameter set ”A” in Tab. 2.1. Sample was mechanically free. Initial conditions (Fig. 7.1(c) and
Fig. 7.1(b), resp.) produce stripe domain structure. The system relaxed towards equilibrium
state. Resulting profiles are plotted in Fig. 7.3 and Fig. 7.4(a,b). Data were taken along the
normal to the domain wall. In the insets, there is a schematic plot of a position of the discrete
grid with respect to the domain wall and its normal. Numerical profiles were then fitted and
a domain wall thickness was estimated from derivatives of fitting functions in the center of the
domain wall. Estimates are summarized in Tab. 7.1.
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Figure 7.2: Analytically (solid line) and numerically obtained profiles of polarization through
domain wall with various grid spacing. (a) Only Landau and gradient interactions are taken
into account. (b) Landau, gradient, elastic and electrostriction interaction included. Domain
wall thickness is indicated by vertical line. Profiles are shifted in vertical direction for better
resolution.

Figure 7.3: T180{001} domain wall in tetragonal BaTiO3 for different distances between domain
walls indicated by numbers next to arrows. Distance of walls is indicated by a number next to
the profile. Discrete points together with the center of the domain wall (red line) are indicated
in the inset.
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Figure 7.4: Simulation of profiles of T90 wall in tetragonal BaTiO3: (a) Dipole-dipole interac-
tion taken into account. Distances of individual walls are indicated by numbers next to arrows.
(b) Without dipole-dipole interaction . Distances of walls the same as in (a), all profiles merge.
Discrete points together with the center of the domain wall (red line) are indicated in the inset.
Px, Py, Pr and Ps components of polarization field are plotted.
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Table 7.1: Thicknesses of domain walls extracted from simulations of domain profiles in depen-
dence on the distance of domain walls.

Domain wall T180{001} T90 (with Fdep) T90 (without Fdep)
Walls distance (nm) 6.4 12.8 25.6 23.0 45.0 90.0 181.0 23.0, 45.0, 90.0, 181.0
Thickness (nm) 0.75 0.71 0.68 6.09 4.52 4.12 3.96 9.23

With increasing distance of walls the thickness approaches the value obtained analytically
(0.63 nm for T180{001}, 3.59 nm for T90 with electrostatic interaction and 9.18 nm for T90
without electrostatic contribution). Small discrepancy (about 0.3 nm) for T90 with dipole-
dipole interaction clearly originates from small hump in Ps component of polarization which
is suppressed in analytical computations by setting Ps constant. Profiles of T90 walls without
dipole-dipole interaction are identical irrespective on wall distance.

In the case of T90 wall with the distance of domain walls 22.6 nm, polarization in the middle
of domains differs considerably from spontaneous value. It is inclined towards the direction of
the wall normal.

Additional simulations confirmed that 90 degree domain structure in stress-free sample ex-
tinct for approximately 18 nm distance of walls. It, however, persist for clamped sample in
simulations. Such domain structure is also clearly visible in grain in Fig. 1.2(a), thus empha-
sizing the crucial importance of external clamping and stresses.

7.3 Evolution from noise

7.3.1 Tetragonal phase

Several simulations were performed in order to observe features of a structure of BaTiO3 pro-
duced by the model at room temperature. Mechanically free and mechanically clamped sample
were taken into account. Both simulations started from noise that represents quenched paraelec-
tric phase (Fig. 7.1(a)). Simulation setup: mesh 2D, 256×256 discrete points, ∆ = 0.4 nm, po-
larization 2D in-plane, τ = 2×10−10, 25000 steps, temperature 298 K. Sequences in Figs. 7.5(a,b)
give a picture of temporal evolution of both systems.

In the early stages, the development of the polarization field is governed by gradient and
Landau interaction (compare with Fig. 7.6(c)). Polarization fields apparently do not differ much
for 500 steps. For 2500 steps, there already exist T180{001} and T90 domain walls in both
cases. The difference is still negligible. In following stages, however, the evolution splits.

In stress-free sample (Fig. 7.5(a)), either vertical or horizontal orientation of polarization
gradually start prevailing at the expense of the second orientation, which is suppressed. Re-
sulting structure have just 180 degree domain walls. The sample is macroscopically expanded in
the x-direction and contracted in y and z direction. Value of spontaneous polarization reaches
the spontaneous value in the middle of every domain.

For clamped sample, the boundary conditions cause that the evolution tends to reach do-
main structure with the same volume of domains with vertical and horizontal orientation of
polarization. Resulting structure reveals system of T90 and T180{001} walls. Polarization is
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arranged along tetragonal axes, polarization domains are almost relaxed to tetragonal state.
The sample have macroscopically dimensions of original cubic sample. This arrangement was
observed experimentally [1], and was also indicated by analytical calculations where both T90
and T180{001} walls have approximately the same energy (see Fig. 3.9(a)). Elastically permis-
sible T90 and T180{001} walls are oriented in {110} and {100}, as expected in Sec. 3. All 180
degree domain walls are charge-free and also an overwhelming majority of 90 degree walls is not
charged. This is due to strong dipole-dipole electrostatic interaction. Resulting system which
is given in Fig. 7.5(b) is not in the equilibrium and will further develop.

A size of ferroelastic domains can be influenced by dimensions of simulation area. Another
computation with large sample was performed (Fig. 7.5(c)). Simulation setup: mesh 2D, 1024×
1024 points, ∆ = 1.0 nm, polarization 2D in-plane, τ = 5× 10−10, 100000 steps, mechanically
clamped sample, temperature 298 K. Four stripes of ferroelastic domains have properties similar
to those described above. The system is apparently not in the equilibrium state but it still slowly
develops.

In order to verify the influence of individual interactions to the resulting structure, the
dipole-dipole interaction was excluded. Simulation setup: mesh 2D, 256 × 256 points, ∆ =
0.4 nm, polarization 2D in-plane, τ = 2 × 10−10, mechanically clamped sample, temperature
298 K. Results are displayed in Fig. 7.6(b). Similar domain structure appears as if electrostatic
interaction were taken into account. The difference is that approximately half of T90 domain
walls are head-to-head or tail-to-tail, i.e. charged. Charged domain walls are indicated by
black (head-to-head) and red (tail-to-tail) in Fig. 7.6(b) for 3000 steps. The evolution without
electrostatic interaction seems to be slightly faster compared to simulation with complete model.

An additional simulation was performed with only Landau and gradient interaction taken
into account. Simulation setup: mesh 2D, 256 × 256 points, ∆ = 0.4 nm, polarization 2D in-
plane, τ = 2× 10−10, temperature 298 K. Mechanical boundary conditions are irrelevant since
there is no link between polarization and unit cell shape without elastostriction interaction.
Coefficients α11 and α12 are substituted instead of α

(e)
11 and α

(e)
12 in order to obtain correct

values of spontaneous polarization. The energy of domain walls is now entirely dependent
on gradient short-range interaction. It seems that {100} directions of walls prevail during the
whole simulation. It is due to the smaller gradient constant in the direction of cubic axis than in
diagonal directions (≈ 13.6 times smaller). Polarization domain with (Px > 0, Py = 0, Pz = 0)
is the larger. It will finally prevail and span the whole sample.

Arrays of generalized forces from the right-hand side of Eqn. 5.4 are plotted in Fig. 7.9 for
resulting image of simulation in Fig. 7.5(b). Maximal values of plotted arrays are given in
Tab. 7.2. The total force, which is the sum of acting forces, is nonzero and the system will
continue its evolution towards equilibrium.

Three-dimensional simulations were also preformed in tetragonal phase.

7.3.2 Orthorombic phase

Similar simulation of domain structure evolution as for tetragonal phase was performed in
orthorombic phase in order to track basic features of resulting structure. Simulation setup:
mesh 2D, 256×256 points, ∆ = 4×10−10, polarization 2D in-plane, τ = 2×10−10, mechanically
free sample, temperature 218 K.

Sequence of images of polarization field is displayed in Fig. 7.11. From initial stages there
is noticeable fast alignment in fine orthorombic domain structure which subsequently coarsens.
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Table 7.2: Maximal values of plotted arrays of generalized forces in Fig. ??.

Field Component Maximal value Unit [SI]
fL x 36.87 106 kg m s−2 C−1

fL y 33.38 106 kg m s−2 C−1

fG x 3.92 106 kg m s−2 C−1

fG y 3.92 106 kg m s−2 C−1

fES x 33.02 106 kg m s−2 C−1

fES y 33.02 106 kg m s−2 C−1

fDD x 13.02 106 kg m s−2 C−1

fDD y 13.02 106 kg m s−2 C−1

fTO x 20.51 106 kg m s−2 C−1

fTO y 18.11 106 kg m s−2 C−1

There appears almost exclusively O90 domain walls which have, according to analytical com-
putations, which is energetically far less expensive than O180{11̄0}.
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Figure 7.5: Simulation of tetragonal structure evolution from paraelectric state at 298 K. (a)
Mechanically free sample with zero external stresses, 256x256 discrete points, (b) Mechanically
clamped sample 256x256 discrete points, (c) Mechanically clamped sample, 1024x1024 points.



7.3. EVOLUTION FROM NOISE 99

Figure 7.6: Simulation of tetragonal structure evolution from paraelectric state at 298 K. (a)
All interactions taken into account, the figure is the same as in Fig. 7.5(b). (b) All but electro-
static interaction taken into account. Charged head-to-head and tail-to-tail walls are present
(indicated by black and red curves in the picture for 3000 steps). (c) Only Landau and Gradient
interaction taken into account.
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Figure 7.7: Simulations in three-dimensional domain with three-dimensional order parameter:
(a) Mechanically free sample. (b) Mechanically clamped sample. (c) Mechanically clamped
sample. Arrows indicate the direction of polarization.
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Figure 7.8: Simulations in three-dimensional domain with three-dimensional order parameter:
(a) Mechanically free sample.



102 CHAPTER 7. EXAMPLES OF SIMULATIONS

Figure 7.9: The same two-dimensional simulation as in Fig. 7.5(b). Final state of polarization
field, local electric field, local elastic displacements and individual components of generalized
forces acting in the sample are plotted.
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Figure 7.10: Output of the program elast draw. Polarization field was loaded as input file.
Bellow is schematic plot of elastic deformation of crystal grid. Finally, on the right-hand side
of the image, there are spatially dependent components of elastic strain tensor. Color scheme
used is the same as in Fig. 7.9. Maximal values follows. e11: 5.41× 10−3, e12: 1.19× 10−3 and
e22: 5.75× 10−3
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Figure 7.11: Simulation of evolution of polarization field from paraelectric state. (a) Orthorom-
bic phase at temperature 208 K. (b) Rhombohedral phase at 118 K.
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7.4 Switching from tetragonal to orthorombic state
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Figure 7.12: Simulations of phase transition between tetragonal and orthorombic state for me-
chanically clamped sample. (a) Temperature changes linearly 298 K→ 208 K. (b) Temperature
changes linearly 208 K → 298 K.
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Figure 7.13: Simulations of phase transition between tetragonal and orthorombic state for
mechanically stress-free sample. (a) Temperature changes linearly 298 K → 208 K. (b) Tem-
perature changes linearly 208 K → 316 K.
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7.5 Comparison with other authors

We compare our results with those published by S. Nambu and D.A. Sagala [18] and H.-L. Hu
and L.-Q. Chen [19, 20].

7.5.1 Grid spacing and time step

The time step was chosen τ = 5.×10−10 for discrete grid spacing ∆ = 1.0 nm in our simulations.
Taking into account renormalizations1, S. Nambu and D.A. Sagala made computations with
space step ∆ = 0.8 nm and time step τ = 6.73× 10−11. While grid spacing is comparable, time
step is considerably lower as a consequence of used simple Euler algorithm. On the contrary,
H.-L. Hu and L.-Q. Chen, who make use of the semi-implicit numerical scheme, have time their
step twice larger as we have (τ = 13.50 × 10−10). It corresponds to their larger grid spacing
(∆ = 3.7 nm).

Our time step is even lower τ = 2.× 10−10 smaller grid spacing ∆ = 0.4 nm. This spacing
is used for simulation of finest structures as discussed in Sec. 7.1.

7.5.2 Domain structure

Polarization fields with coexisting T90 and T180 domain walls were also compared. In our
simulations in tetragonal phase, there appear T90 and T180{001} wall structure as in the
Fig. 7.5(b,c). Simulations published by S. Nambu and D.A. Sagala reveal fine T90 wall stripe
structure. T180{001} walls are, however, neither visible in the provided figures nor discussed.
Therefore, it seems that there are no such walls. Slightly different situation is in Ref. [20],
where domain walls are not visible in the images, but they are mentioned in the discussion.
In the previous work (Ref. [19]) of the same authors, the 180 degree domain walls are again
not visible, but their presence may be anticipated from T90 wall structure and the fact that
the dipole-dipole interaction was taken into account in their computations. T180 walls are not
mentioned in the discussion.

The reason for this sporadic appearance or non-existence of T180{001} walls may be in
different gradient constants or, more precisely, in resulting energies of domain walls. For given
constants of Landau potential (a1, a2, a3), the energy of domain wall in one-dimensional model
is determined only by the value of gradient constant g, which is g = G44 for T180{001} wall
and g = (G11 − G12)/2 for T90 wall. According to Eqn. 3.16, the energy of a wall depends
on gradient constant as

√
g. We use values G11 = 51, G12 = −2 and G44 = 2, that result in

gT180 = 2 and gT90 = 26.5. In all previously mentioned works, the gradient interaction was
taken isotropic2: G11 = 51, G12 = −51 and G44 = 51. Consequently, gT180 = 51 and gT90 = 51.

From Tab. 3.3 and Fig. 3.9(b) it is apparent, that the wall energy per area Σ is approximately
the same for T90 and T180{001} (about 20% difference for room temperature). With coeffi-
cients compared articles, we get energy of T90 wall

√
2 higher, but energy of T180{001} wall

is approximately 5-times higher. It is clear that T180 walls are suppressed in those simulation.

1S. Nambu and D.A. Sagala using rescaling of variables t′ = (2α1Λ) t, x′ =
(

G11
2α1

)1/2

x and P′ = P
P0

.

Similarly, H.-L. Hu and L.-Q. Chen using t′ = (α1Λ) t, x′ =
(

G11
α1

)1/2

x and P′ = P
P0

.
2Value of G11 is chosen the same as ours
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7.6 Mobility of domain walls in tetragonal phase

Assuming that there is an appreciable contribution to the dielectric constant from motion of
domain walls (i.e. polarization reversal at moving interface) at lower frequencies, it is important
to know how fast can domain wall move under applied electric field. It is well known that T90
wall in BaTiO3 is able to move relatively easily in comparison with T180 domain wall that
almost does not move at room temperature.

Mobility µE of domain wall is defined as fraction µE = v/Er, where v is a velocity of domain
wall and Er is component of electric field in the direction of motion. In Ref. [44] it was reasoned
that dissipated energy of wall motion equals

− 1

S

dF

dt
=

v2

Λ

2Σ

G11 −G12

. (7.2)

Energy dissipation can be also expressed as energy decrease by polarization reversal due to
applied electric field Er

− 1

S

dF

dt
= 2vPr∞Er . (7.3)

It was finally concluded that the mobility of T90 wall can be expressed as

µE =
v

Er

=
ΛP0(G11 −G12)√

2Σ
. (7.4)

For numerical values (G11 −G12) = 53× 10−11, Λ = 4× 104, P0 = 0.265 and Σ = 7× 10−3 (see
Tabs. 2.1,3.3), the mobility is µE = 5.7× 10−4 m2 V−1 s−1.

T90 domain wall is sufficiently large (with thickness about 10 crystal unit cells) smooth (see
Sec. 3.3.3), and can be correctly described by continuous model. On the contrary, T180 degree
domain wall with thickness less then 2 unit cells (see Sec. 3.3.1) is pinned to a discrete crystal
lattice.

Time dependent GGLD model enables simulation of a domain wall motion. Simulations
were performed for both T90 and T180{001} domain wall.

Velocity of a domain wall is determined by kinetic coefficient Λ in Landau-Khalatnikov
equation3, by Euler-Lagrange potential4 and by discretization in numerical simulation. Rough
grid enables to study bigger samples, but may create artificially energy barrier for motion of
a domain wall. Dependence of wall motion on a spacing of the discrete grid is therefore also
inspected for the case of T90 wall.

Model parameters were taken from set ”A” in Tab. 2.1. Sample was mechanically free in
all directions. For T90 wall, initial conditions were chosen as in Fig. 7.1(b), sufficiently aged in
order provide equilibrium state at zero electric field. Three simulations was performed: 64x64
points for ∆ = 2 nm, 128x128 points for ∆ = 1 nm and 256x256 for ∆ = 0.4 nm. The distance
of domain walls was 45 nm with the exception of 0.4 nm spacing where it was slightly lower,
approximately 36 nm. We perform 10000 steps with τ accustomed to observe motion of the wall
properly. Constant electric bias was applied in x-direction and ranges from Ex = 2×104 V m−1

up to 1.024 · 107 V m−1.

3It was estimated as Λ = 4× 104 kg−1 m−3 sC2.
4Euler-lagrange potential for particular structure as discussed in Sec. 3 that is changed e.g. by distance

between domain walls, spontaneous values in adjacent domains with electric field, etc.
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Domain wall position is (for purpose of this simulation) defined as zero point in linear inter-
polation of Pr (polarization component perpendicular to the wall) the between two following

(in direction of the wall normal) discrete points P
(i)
r and P

(i+1)
r with opposite signs.

Figure 7.14: Time dependence of a velocity of T90 domain wall in tetragonal phase of BaTiO3.
Black: ∆ = 2 nm, blue: ∆ = 1 nm, green: ∆ = 0.4 nm. Values of electric field Ex are provided.
(a) Lower values of applied bias, (b) higher values of applied bias.

Results are shown in Fig. 7.14. The simulation was started from initial conditions aged
without external field. Therefore, after abrupt application of electric bias, there appear some
residual effects in speed as the wall shifts in order to gain equilibrium position under new
conditions. Then the velocity varies periodically5 as grid points reach maximum in potential.
For small electric fields (up to 1.28× 106 V m−1), the velocity remain constant in average, for
higher the polarization switches in the whole volume and walls cease exist. It is indicated by
extreme increase of wall speed.

For larger ∆, the time-dependence of the velocity is more irregular than for lower ∆. The
average is, however, almost the same. It seems that domain the wall speed for ∆ = 0.4 nm
spacing is systematically slightly higher than the speed for two remaining grid spacing. It is

5Speed of domain wall plotted versus time exhibits sharp peaks. Position of T90 domain wall in a system
without electric field is not arbitrary, but it is pinned to a certain position with respect to the discrete lattice
of a crystal which corresponds to the lowest potential energy. The analogy in numerical simulation is pinning
with respect to discretization grid. Energy increase if the wall is displaced from this equilibrium position. The
energy of the system vary periodically with the period of the grid. For the moment lets expect simple sin(x)
variation of energy with domain wall position. If sufficient electric field is applied, the energy increase is no
longer periodic, but it is monotonically decreasing function of position, e.g. F (x) = sin(x)−1.2x (Fig. 7.15(a)).
Velocity of a wall dependent on position may be obtained as derivative of energy with respect to position
v(x) = dF (x)/dx = −cos(x) + 1.2 (Fig. 7.15(b)). Position dependence of the domain wall on time s(t) can be
evaluated from ds(t)/dt = v(s(t)) (Fig. 7.15(c)). Finally, required dependence of the wall speed on time reads
v(t) = v(s(t)) (Fig. 7.15(d)). The shape of v(t) exhibit similar peaks as in Fig. 7.14, exact shape would result
from proper choice of F (x).
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Figure 7.15: Explanation of sharp peaks in a domain wall speed versus time plot.

Table 7.3: Approximate mobility of T90 domain wall in tetragonal BaTiO3 for grid spacing
∆ = 0.4 nm.

Er [104 Vm−1] 2 4 8 16 32 64 128 256
Ex [104 Vm−1] 1.4 2.8 5.7 11.3 22.6 45.2 90.5 181.0
µE [10−4 m2 V−1 s−1] 7.1 7.4 7.6 7.7 7.7 7.8 8.8 9.7

likely due to smoother shape that decreases energy barrier for domain wall to overcome. Effect
of closer domain walls can be also partially responsible.

Values of estimated mobility of T90 domain wall are listed in Tab. 7.3 together with com-
ponent of electric field normal to domain wall Er. Resulting mobility is higher than that
estimated in Eqn. 7.4. This discrepancy (about 25% ) exhibits evident tendency to decrease for
lower fields.

Similar simulation was performed for T180{001} domain wall with grid spacing ∆ = 0.4 nm.
For larger values of ∆, the speed was either zero or to high to be tracked properly. The same
setup as in previous case was used. Electric field Ex now ranges from Ex = 32× 104 V m−1 to
Ex = 4.1× 107 V m−1. Domain wall velocity as well as the distance of the wall from its original
position is displayed in Fig. 7.16. From comparison with Fig. 7.14 it is clear that mobility of
T90 wall is lower than that of T90 wall. The mobility of T180{001} domain wall for increasing
electric field Ex is estimated in Tab. 7.4.

Table 7.4: Approximate mobility of T180{001} wall in tetragonal BaTiO3 for grid spacing 4 nm.

Ex [104 V m−1] 32.0 64.0 128.0 256.0 512.0 1024.0 2048.0 4096.0
µE [10−4 m2 V−1 s−1] 0.00 0.8 0.8 0.8 0.8 0.8 0.9
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Figure 7.16: (a) Velocity of T180{001} domain wall in tetragonal phase of BaTiO3 for ∆ =
0.4 nm. (b) Distance of T180{001} wall from its original position. Values of electric field Ex

given next to appropriate curves.



Chapter 8

Conclusions

In this thesis, analytical and numerical modeling of domain wall properties using GGLD phe-
nomenological model is presented.

Profiles of domain walls were computed analytically within GGLD model within charge-free
approximation. This approach enables to compare all domain walls in BaTiO3 from different
points of view (e.g. thickness and energy density). Estimates of wall thicknesses provides
valuable information about validity and limits of continuous phenomenological approach.

Computer program for simulation of evolution, formation and coarsening of domain struc-
ture in ferroelectric perovskite materials was developed and tested. Results obtained with use
of this computational tool were discussed and compared with other published simulations and
with exact analytical solutions.

Recently estimated gradient constants and background permittivity [26] were used in cal-
culations. This choice has crucial impact on domain wall thicknesses and other properties.

8.1 Analytical computation of wall profiles

Shape of complete set of elastically compatible domain walls were predicted analytically within
div P = 0 approximation that implies constant projection of polarization to the direction of
domain wall normal. In order to obtain one-dimensional model, which is solvable analytically,
only one of polarization components varies across domain wall. Both assumptions and their
influence on result were discussed.

Thickness and energy per area was computed for all domain walls. Three temperatures were
chosen that correspond to tetragonal (298 K), orthorombic (208 K) and rhombohedral (118 K)
phase. Resulting values and all parameters for one dimensional model are given in Tab. 3.3. In
addition, temperature dependence of thickness and energy of domain wall per area is provided
in Fig. 3.9.

Charge-free assumption was found reasonable in all cases. On the contrary, it was found
that Ising assumption can lead to an unstable profile in several cases. These are: O180{001},
O120, R180{11̄0}, R180{2̄11} and R109 walls. Cross section of the Euler-Lagrange potential
(perpendicular to the normal of domain wall) shows additional minimum for non-zero com-
ponent Pt (as indicated by the diagrams in Fig. 3.14). Simple numerical simulations (with
two-dimensional degree of polarization) revealed appearance Bloch-type domain wall.

All results can be easily recomputed and verified since analytical expressions are provided.
It also enables to use this results for another material with similar structure.
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8.2 Numerical simulation of domain evolution

Numerical approach enables to study complicated structures for which analytical solution does
not exist. It also enables observation of the dynamics of polarization field evolution, appear-
ance of domains, their coarsening and behavior of polarization under changing electrical and
mechanical conditions or changing temperature.

The computational tool ferrodo for modeling of the evolution of a polarization field was
developed. It enables independent choice of dimensionality of space domain and also dimen-
sionality of the order parameter – polarization. Mechanical and electrical boundary conditions
together with temperature of the sample can be prescribed and can vary during simulation.
Polarization fields and other obtained results and data are saved to files and displayed in the
form of images. Several tests of the program and also examples of use are provided.

Tests indicate that maximal spacing of a discrete grid is about half the thickness of the
simulated domain wall. With this or lower spacing, the analytical results are well reproduced
by numerically obtained profiles.

Evolution of polarization from quenched paraelectric cubic phase was performed for all
phases. In tetragonal phase, both 90 degree and 180 degree domains coexist in stripe domain
structure. It match experimental observations. Electrostatic dipole-dipole interaction influences
crucially resulting architecture of polarization field.

Results comparable to other published simulations were obtained [28] using the same pa-
rameter set.

Interference of domain walls was discussed in dependence on their mutual distance in stress-
free sample. With dipole-dipole interaction taken into account, the value of spontaneous po-
larization in the middle of the T90 domain decreases with decreasing distance of walls. On
the contrary, without dipole-dipole interaction the wall profile is almost independent on wall
distance.

Mobility of domain wall in dependence on grid size and magnitude of external electric field
was estimated numerically. Relatively good agreement with theoretical results was acquired for
90 degree domain wall in tetragonal phase of BaTiO3.



Chapter 9

Future work

9.1 Implementation of absolutely stable algorithm

Although simple Euler method is sometimes used in simulations, it is inappropriate for solving
such demanding problems. Time step of stable method is restricted by square of the spatial
step. Recently published semi-implicit method, which is also used for simulations presented in
this thesis, enables great improvement of time step, but still suffers from limitation of time step
by the spatial step.

In recent years there appeared absolutely stable methods for similar problems. Significant
advance in numerics was achieved namely in the branch of modeling of metals and alloys, where
Cahn-Hillard equation is used for simulation of precipitation and chemical ordering during
solidification [47, 48]. Absolutely stable algorithms was also proposed for Allen-Cahn dynamics
in Ref. [48].

This innovative method might be applicable to GGLD model driven by Landau-Khalatnikov
governing equation. It would offer faster simulations with bigger time-step. Euler and semi-
implicit method will nevertheless remain as a reference.

9.2 Generalization of boundary conditions

Original concern in bulk material and consequent periodicity of polarization and displacement
field seems rather restrictive for certain applications of the numerical model. Generalization of
boundary conditions as in Ref. [24] would be beneficial.

To do this, it will be necessary to perform computation in real space, which will require
profound changes in the kernel of the program. It is expected, that local electric field and
equilibrium strain field will be computed separately with use of Poisson equation and Euler-
Lagrange equation for mechanical equilibrium, resp. (with appropriate boundary conditions).
Evolution of polarization field will be then computed with use of Landau-Khalatnikov governing
equation in real space.

In the case of both previously mentioned changes (implementation of absolutely stable
algorithm and generalization of boundary conditions), the existence of the working and verified
reference simulation kernel will be highly valuable.
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9.3 Simulation of chemical ordering and appearance of

nanoclusters

Giant dielectric and piezoelectric coefficients in relaxor ferroelectrics are often ascribed to chem-
ical ordering - appearance of polar nanoclusters is associated to a certain degree of occupational
order in the B-site perovskite sublattice. It would be interesting to simulate the behavior of po-
larization field in a lattice with realistic chemical correlations. It can be simulated for example
using an appropriate Cahn-Hillard equation for diffusion of ions in the crystal lattice.



Appendix A

Additional materials for analytical
approach

Figure A.1: Cross sections of Euler-Lagrange potential in orthorombic phase for T=208 K.
Cross sections are made in rt plane, which is perpendicular to a particular O180 domain wall.
Component Ps of the polarization is fixed to the boundary value (see e.g. Tab.A.1). The
direction of the wall changes between [11̄0] and [001], which are directions of O180{11̄0} and
O180{001} domain walls. Appearance of side minima is clearly visible. Angles denotes deviation
from [11̄0] direction. Contours are distributed linearly.
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Table A.1: Values of polarization vector in the infinity and in the middle of the domain wall.

Original coordinate system
Wall P(−∞) P(∞) P(0)
T180{001} (0.265,0.000,0.000) (-0.265,0.000,0.000) (0.000,0.000,0.000)
T180{011} (0.265,0.000,0.000) (-0.265,0.000,0.000) (0.000,0.000,0.000)
T90 (0.265,0.000,0.000) (0.000,-0.265,0.000) (0.133,-0.133,0.000)
O180{11̄0} (0.234,0.234,0.000) (-0.234,-0.234,0.000) (0.000,0.000,0.000)
O180{001} (0.234,0.234,0.000) (-0.234,-0.234,0.000) (0.000,0.000,0.000)
O90 (0.234,0.234,0.000) (0.234,-0.234,0.000) (0.234,0.000,0.000)
O60 (0.234,0.234,0.000) (0.000,0.234,-0.234) (0.117,0.234,-0.117)
O120 (0.234,0.234,0.000) (0.000,-0.234,0.234) (0.117,0.000,0.117)
R180{11̄0} (0.220,0.220,0.220) (-0.220,-0.220,-0.220) (0.000,0.000,0.000)
R180{2̄11} (0.220,0.220,0.220) (-0.220,-0.220,-0.220) (0.000,0.000,0.000)
R109 (0.220,0.220,0.220) (-0.220,-0.220,0.220) (0.000,0.000,0.220)
R71 (0.220,0.220,0.220) (0.220,-0.220,0.220) (0.220,0.000,0.220)

Transformed coordinate system
Wall P′(−∞) P′(∞) P′(0)
T180{001} (0.265,0.000,0.000) (-0.265,0.000,0.000) (0.000,0.000,0.000)
T180{011} (0.265,0.000,0.000) (-0.265,0.000,0.000) (0.000,0.000,0.000)
T90 (0.188,0.188,0.000) (-0.188,0.188,0.000) (0.000,0.188,0.000)
O180{11̄0} (0.331,0.000,0.000) (-0.331,0.000,0.000) (0.000,0.000,0.000)
O180{001} (0.331,0.000,0.000) (-0.331,0.000,0.000) (0.000,0.000,0.000)
O90 (0.234,0.234,0.000) (-0.234,0.234,0.000) (0.000,0.234,0.000)
O60 (0.166,0.195,0.210) (-0.166,0.195,0.210) (0.000,0.195,0.210)
O120 (0.287,0.166,0.000) (-0.287,0.166,0.000) (0.000,0.166,0.000)
R180{11̄0} (0.381,0.000,0.000) (-0.381,0.000,0.000) (0.000,0.000,0.000)
R180{2̄11} (0.381,0.000,0.000) (-0.381,0.000,0.000) (0.000,0.000,0.000)
R109 (0.311,0.220,0.000) (-0.311,0.220,0.000) (0.000,0.220,0.000)
R71 (0.220,0.311,0.000) (-0.220,0.311,0.000) (0.000,0.000,0.000)
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Appendix B

Fourier Transform

B.1 Continuous Fourier transform

Definition of the Fourier transform used in this work is

F [f(r)] (k) = f(k) =

∫
drf(r)e−ikr

F−1 [f(k)] (r) = f(r) =
1

(2π)3

∫
drf(r)eikr . (B.1)

The convolution of functions in direct space corresponds to multiplication of their Fourier
images

∫
dr1Φ(r1 − r) =

1

(2π)6

∫∫
dk1dk

∫
dr1P (k1)Φ(k)ei(k1+r1−r) = F−1 [P (k)Φ(k)] .

(B.2)

Key relations for derivation Fourier transform of electrostatic dipole-dipole interaction are
(Ref. [49])

F
[

1

|R|
]

=
4π

|k|2 , (B.3)

where |R| =
√

x2 + y2. Using sequence of derivatives in direct space

∂2

∂x2

(
1

|R|
)

= −|R|
2 + 3R2

x

|R|5 (B.4)

∂2

∂x∂y

(
1

|R|
)

=
RxRy

|R|5 , (B.5)

we get immediately

F
[
−|R|

2 + 3R2
x

|R|5
]

= −4π
k2

x

|k|2 (B.6)

F
[
3RxRy

|R|5
]

= −4π
kxky

|k|2 . (B.7)
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B.2 Discrete Fourier transform

The discrete Fourier transform is defined according to Ref. [70] as

Fd [f(rd)] (kd) =

R1−1∑
x=0

R2−1∑
y=0

R3−1∑
z=0

f([x, y, z])exp

[
−2πi

(
u

x

R1

+ v
y

R2

+ w
z

R3

)]

F−1
d [f(kd)] (rd) =

1

R1R2R3

R1−1∑
u=0

R2−1∑
v=0

R3−1∑
w=0

f([u, v, w])exp

[
2πi

(
x

u

R1

+ y
v

R2

+ z
w

R3

)]
,

(B.8)

where rd, kd ∈ ({1, 2, .., R1}, {1, 2, .., R2}, {1, 2, .., R3}) stands for ”discrete” point in direct and
Fourier space, resp. rd = [x, y, z], kd = [u, v, w]. Here, Rd is the number of discrete points
in a particular direction. Normalization of transformed variables is performed for backward
transform only. Discrete derivatives in Fourier space are

Fd

[
∂f

∂x
(rd)

]
(kd) =

2πkdx

R1∆
Fd [f(rd)] (kd) , (B.9)

where ∆ is regular lattice spacing which we consider equal in all directions. Similarly, second
derivatives are computed as

Fd

[
∂2f

∂x2
(rd)

]
(kd) =

4π2k2
dx

R2
1∆

2
Fd [f(rd)] (kd)

Fd

[
∂2f

∂x∂y
(rd)

]
(kd) =

4π2kdxkdy

R1R2∆2
Fd [f(rd)] (kd) . (B.10)



Appendix C

Variation of the free energy functional

On the right-hand side of the Landau-Khalatnikov equation (5.2), there is a variation of the free
energy functional (with eliminated elastic field) with respect to a component of polarization.
Functional consists of four parts: Landau, gradient, elastostriction and electrostatic. Changes
of individual parts of the free energy functional are computed with respect to small variation
of Pi(x) by δPi(x).

C.1 Landau energy variation

Variation of Landau energy with respect to component P1 (other components can be obtained
by cyclic permutation (1 → 2, 2 → 3, 3 → 1) reads

δF
(e)
L [{Pi}]
δP1

=

= lim
t→0

1

t

∫

Ω

dx[α1

[[
(P1(x) + tδP1(x))2 + P 2

2 (x) + P 2
3 (x)

]− [
P 2

1 (x) + P 2
2 (x) + P 2

3 (x)
]]

+α11

[[
(P1(x) + tδP1(x))4 + P 4

2 (x) + P 4
3 (x)

]− [
P 4

1 (x) + P 4
2 (x) + P 4

3 (x)
]]

+ ...]

= lim
t→0

∫

Ω

dx[α1

[
2P1(x)δP1(x) + t(δP1(x))2

]

+α11

[
4P 3

1 (x)δP1(x) + 6tP 2
1 (x)(δP1(x))2

]
+ ...]

=

∫

Ω

dx
[
2α1P1(x)δP1(x) + 4α11P

3
1 (x)δP1(x) + ...

]
. (C.1)

Variation with respect to value Pi in a particular point r can be evaluated by setting δP (x) =
δr(x)

δF
(e)
L [{Pi}]
δP1(r)

= P1(r)[2α1 + 4α11P
2
1 (r) + 2α12

(
P 2

2 (r) + P 2
3 (r)

)

+ 6α111P
4
1 (r) + 2α112

(
P 4

2 (r) + P 4
3 (r) + 2P 2

1 (r)(P 2
2 (r) + P 2

3 (r))
)

+ 2α123P
2
2 (r)P 2

3 (r)

+ 8α1111P
6
1 (r) + 2α1112

(
P 6

2 + (r)P 6
3 (r) + 3P 4

1 (r)(P 2
2 (r) + P 2

3 (r))
)

+ 4α1122P
2
1 (r)

(
P 4

2 (r) + P 4
3 (r)

)

+ 2α1123

(
2P 2

1 (r)P 2
2 (r)P 2

3 (r) + P 2
2 (r)P 2

3 (r)(P 2
2 (r) + P 2

3 (r))
)
] . (C.2)
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C.2 Gradient energy variation

Ginzburg gradient energy functional is expressed in terms of derivatives of polarization. Here,
for simplicity, energy functional is expected in the form

FG [P1,1] =

∫

Ω

dx
G11

2

(
∂P1(x)

∂x

)2

, (C.3)

with P1 dependent just on x. The variation is derived

δFG [P1,1]

δP1

=
G11

2
lim
t→0

1

t

[∫

Ω

dx

[
∂(P1(x) + tδP1(x))

∂x

]2

−
∫

Ω

dx

[
∂P1(x)

∂x

]2
]

=
G11

2
lim
t→0

∫

Ω

dx

[
2
∂P1(x)

∂x

∂δP1(x)

∂x
+ t

∂δP1(x)

∂x

]

=
G11

2

∫

Ω

dx

[
2
∂P1(x)

∂x

∂δP1(x)

∂x

]

=
G11

2

[
2
∂P1(x)

∂x
δP1(x)

]

∂Ω

−G11

∫
dx

[
∂2P1(x)

∂x2
δP1(x)

]
. (C.4)

Considering periodic boundary condition for P (x) and δP (x), the result is obtained in the form

δFG [P1,1]

δP1(r)
= −G11

∂2P1(x)

∂x2
(r) . (C.5)

C.3 Elastostriction energy variation

Formula for long-range elastostatic energy was derived in Sec. 2 in Eqn. 2.36. Derivation will
be provided for the first part of this expression

F ′
Cq [{Pi}] = −1

2

∫∫
ds dtΨ11(t− s)P 2

x (s)P 2
y (t) . (C.6)

Other components are similar.

δF ′
Cq [{Pi}]
δPx

=

= −1

2
lim
t→0

1

t

∫∫
ds dtΨ11(t− s)[(Px(s)− tδPx(s))

2 (Px(t)− tδPx(t))
2 − P 2

x (s)P 2
x (t)]

= −1

2

∫∫
ds dtΨ11(t− s)

[
2Px(s)δPx(s)P

2
x (t) + 2Px(t)δPx(t)P

2
x (s)

]

= −
∫

dsP 2
x (s)

∫
dtΨ11(t− s)Px(t)δPx(t)

−
∫

dtP 2
x (t)

∫
dsΨ11(t− s)Px(s)δPx(s)

= −2

∫
dsP 2

x (s)

∫
dtΨ11(t− s)Px(t)δPx(t) . (C.7)
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Relation Ψρσ(r) = Ψρσ(−r), used in last step, holds due to the fact that Ψρσ(k) is purely real
in reciprocal space. We finally obtain the result in the form

δF ′
Cq [{Pi}]
δPx(r)

= −2Px(r)

∫
dsΨ11(r− s)P 2

x (s) . (C.8)

C.4 Electrostatic dipole-dipole energy variation

Derivation is given for two-dimensional case. Three-dimensional extension simply follows.
Firstly, dipole-dipole energy is split into two parts:

Fdep [{Pi}] =
1

8πε0εB

∫∫
dr1dr2

[
P(r1) · (P)(r2)

|r1 − r2|3 − (P(r) · (r1 − r2))(P(r2) · (r1 − r2))

|r1 − r2|5
]

=
1

8πε0εB

[
∫∫

dr1dr2

[
Px(r1)Px(r2) + Py(r1)Py(r2)

|r1 − r2|3
]

− 3

[
[Px(r1)(r1 − r2)x + Py(r1)(r1 − r2)y] [Px(r2)(r1 − r2)x + Py(r2)(r1 − r2)y]

|r1 − r2|5
]
]

= Fdep1 [{Pi}]− Fdep2 [{Pi}] . (C.9)

Functional derivative of the first part

δFdep1 [{Pi}]
δPx

=

=
1

8πε0εB

lim
t→0

∫∫
dr1dr2

1

t

[
(Px(r1) + tδPx(r1))(Px(r2) + tδPx(r2))− Px(r1)Px(r2)

|r1 − r2|3
]

=
1

8πε0εB

∫∫
dr1dr2

[
Px(r1)δPx(r2) + Px(r2)δPx(r1)

|r1 − r2|3
]

δFdep1 [{Pi}]
δPx(r)

=

=
2

8πε0εB

∫
dr1

[
Px(r)

|r1 − r|3
]

. (C.10)

Similarly, after slightly longer algebra

δFdep2 [{Pi}]
δPx

=
3

8πε0εB

∫∫
dr1dr2

[
δPx(r1)(r1 − r2)x [P(r2) · (r1 − r2)]

|r1 − r|5
]

+
3

8πε0εB

∫∫
dr1dr2

[
δPx(r2)(r1 − r2)x [P(r1) · (r1 − r2)]

|r1 − r|5
]

δFdep2 [{Pi}]
δPx(r)

=
6

8πε0εB

∫
dr1

[
(r1 − r)x [P(r) · (r1 − r)]

|r1 − r|5
]

. (C.11)

Together, functional derivative of electrostatic dipole-dipole contribution with respect to Px

component of polarization field reads

δFdep [{Pi}]
δPx(r)

=
2

8πε0εB

∫
dr1

[
Px(r1)

|R|3 − 3Rx (P (r) ·R)

|R|5
]

=
2

8πε0εB

∫
dr1

[
Px(r1)(|R|2 − 3R2

x)− 3Py(r1)RxRy

|R|5
]

. (C.12)
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Appendix D

Elastostriction kernels

Long-range elastostatic interaction in the free energy functional with eliminated elastic field
is determined by the form of angular kernels Φρσ(k̂) in Eqn. 2.36. Their contribution to the
generalized force, given by convolution (C.8), is equivalent to multiplication of Fourier image
of polarization square (2.38) with elastostriction kernels Aρσ(k̂). Explicit form of these kernels,
which were derived according to Ref. [18], reads:

Aρρ(k̂) = q̂2
22Bρρ(k̂) + 2q12q̂22

3∑
σ=1

Bρσ(k̂) + q2
12

3∑
ρ=1

3∑
σ=1

Bρσ(k̂) for ρ = 1, 2, 3

A23(k̂) = q̂2
22B23(k̂)− q12q̂22

3∑
ρ=1

Bρ1(k̂) + q11q12

3∑
ρ=1

3∑
σ=1

Bρσ(k̂)

A32(k̂) = A23(k̂)

A13(k̂) = q̂2
22B13(k̂)− q12q̂22

3∑
ρ=1

Bρ2(k̂) + q11q12

3∑
ρ=1

3∑
σ=1

Bρσ(k̂)

A31(k̂) = A13(k̂)

A12(k̂) = q̂2
22B12(k̂)− q12q̂22

3∑
ρ=1

Bρ3(k̂) + q11q12

3∑
ρ=1

3∑
σ=1

Bρσ(k̂)

A21(k̂) = A12(k̂)

A1σ(k̂) = q̂22q44B1σ(k̂) + q12q44

3∑
ρ=1

Bρσ(k̂) for σ = 4, 5, 6

A2σ(k̂) = q̂22q44B2σ(k̂) + q12q44

3∑
ρ=1

Bρσ(k̂) for σ = 4, 5, 6

A3σ(k̂) = q̂22q44B3σ(k̂) + q12q44

3∑
ρ=1

Bρσ(k̂) for σ = 4, 5, 6

Aρσ(k̂) = q2
44Bρσ(k̂) for ρ, σ = 4, 5, 6

Polarization square vector (2.38) reduces to Y = [P 2
1 , P 2

2 , 0, 0, 0, P1P2] and only components
A11(k̂), A22(k̂), A12(k̂), A16(k̂), A26(k̂), A66(k̂) contributes to the free energy. Shapes of these
functions are plotted in Figs.D.1,D.2.
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Figure D.1: Angular dependence of elastostriction kernels A11(k̂), A22(k̂), A12(k̂), A16(k̂),
A26(k̂), A66(k̂) in two dimensions.

Figure D.2: Schematic plots of elastostriction kernels A11(k̂), A22(k̂), A12(k̂), A16(k̂), A26(k̂),
A66(k̂) in two-dimensional reciprocal space. The darker the color, the lower the value.



Appendix E

Tensors and transformation of
coordinates

Physical properties of the matter are represented by tensors. Neumann’s principle (A crystal’s
point group is a subgroup of the symmetry of that crystal’s properties.) allows determination of
number of independent components of a tensor. Symmetry properties of tensors are described
in detail e.g. in [51].

E.1 Transformation of tensors

Transformation from the original to a new coordinate system, which denoted by primes, is given
by transformation matrix R. It can be written as product of rotation matrices along individual
axes

R = Rx ·Ry ·Rz , (E.1)

where

Rx =




1 0 0
0 cos(α) −sin(α)
0 sin(α) sin(α)


 ,

Ry =




cos(β) 0 sin(β)
0 1 0

−sin(β) 0 cos(β)


 ,

Rz =




cos(γ) −sin(γ) 0
sin(γ) cos(γ) 0

0 0 1


 . (E.2)

Angles α, β and γ are rotations along axes x, y and z, respectively (see Fig. E.1). A vector x
transforms according to the relation

x′m =
∑

i

Rmixi . (E.3)

A tensor of second-order e transforms as

e′mn =
∑
ij

RmieijR
−1
jn . (E.4)
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Figure E.1: Rotation along individual axes.

Transformation relations for fourth-rank elastic, gradient and electrostriction tensors C, G and
q

C ′
mnop =

∑

ijkl

CijklR
−1
imRnjR

−1
ko Rpl

G′
mnop =

∑

ijkl

GijklR
−1
imRnjR

−1
ko Rpl

q′mnop =
∑

ijkl

qijklR
−1
imRnjR

−1
ko R−1

lp . (E.5)

Gradient coefficients Gijkl have the same transformation properties as Cijkl (see relation for
gradient part of the free energy, Eqn. 2.18).

E.2 Voigt notation

For a second rank tensor e it defines e1 = e11, e2 = e22, e3 = e33, e4 = 2e23, e5 = 2e13 and
e6 = 2e12. Symmetric fourth-rank tensor like tensor of elastic constants in Voigt notation reads

C =




C1111 C1122 C1133 C1123 C1113 C1112

C2222 C2233 C2223 C2213 C2212

C3333 C3323 C3313 C3312

C2323 C2313 C2312

SY M. C1313 C1312

C1212




=




C11 C12 C13 C14 C15 C16

C22 C23 C24 C25 C26

C33 C34 C35 C36

C44 C45 C46

SY M. C55 C56

C66




.

(E.6)

The tensor of electrostriction constants q that express linear-quadratic coupling of deformation
and polarization is not generally symmetric. For cubic symmetry we define q44 = 2q1212. Vector
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of polarization square is defined P = {P11, P22, P33, P23, P13, P12}.

E.3 Transformation matrices for domain walls in BaTiO3

In Sec. 3, the transformation of coordinates (x, y, z) → (r, s, t) is performed in order to simplify
computation of domain wall profiles. Rotation matrices of these transformations are provided
bellow.

T180{001}



1 0 0
0 0 1
0 −1 0


 (E.7)

T180{011}

1√
2



√

2 0 0
0 1 1
0 −1 1


 (E.8)

T180{011}

1√
2



√

2 0 0
0 1 1
0 −1 1


 (E.9)

T90

1√
2




1 1 0
1 −1 0

0 0 −√2


 (E.10)

O180{11̄0}

1√
2




1 1 0
1 −1 0

0 0 −√2


 (E.11)

O180{001}

1√
2




1 1 0

0 0
√

2
1 −1 0


 (E.12)

O90



0 1 0
1 0 0
0 0 −1


 (E.13)
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O60



1√
2

0 1√
2

ea−ec√
2(ea−ec)2+4e2

b

2eb√
2(ea−ec)2+4e2

b

ec−ea√
2(ea−ec)2+4e2

b−eb√
(ea−ec)2+2e2

b

ea−ec√
(ea−ec)2+2e2

b

eb√
(ea−ec)2+2e2

b


 (E.14)

O120

1√
6




1 2 −1√
3 0

√
3√

2 −√2 −√2


 (E.15)

R180{11̄0}

1√
6



√

2
√

2
√

2√
3 −√3 0

1 1 −2


 (E.16)

R180{2̄11}

1√
6



√

2
√

2
√

2
−2 1 1

0 −√3
√

3


 (E.17)

R109

1√
2




1 1 0

0 0
√

2
1 −1 0


 (E.18)

R71

1√
2




0
√

2 0
1 0 1
1 0 −1


 (E.19)



Appendix F

Compatibility relations

In the linear theory of elasticity, components of strain tensor are derivatives of displacement.

eij =
1

2

(
∂ui

∂xj

+
∂uj

∂xi

)
(F.1)

If the computation is provided in terms of components of strain tensor, additional conditions
must be included to provide existence of a displacement field for given components of strain
tensor. These compatibility conditions have the form

εiklεjmneln,km = 0 (F.2)

for i, j, k, l, m, n ∈ {1, 2, 4}. In three dimensions, there are six independent equations

e22,33 − 2e23,23 + e33,22 = 0

e11,33 − 2e13,13 + e33,11 = 0

e11,22 − 2e12,12 + e22,11 = 0

−e11,23 + e12,13 + e13,12 − e23,11 = 0

−e22,13 + e12,23 + e23,12 − e13,22 = 0

−e33,12 + e13,23 + e23,13 − e12,33 = 0 , (F.3)

which reduce to one relation in two dimensional space.

e11,22 − 2e12,12 + e22,11 = 0 . (F.4)

In Sec. 3, where only variation along second coordinate (s) is taken into account in quasi one
dimensional calculations, compatibility conditions simplifies to

ett,ss = 0

err,ss = 0

ert,ss = 0 . (F.5)

Mechanical compatibility conditions are not included in numerical computation in this work,
because the elastic field is eliminated in every step with explicit use of displacement field,
Eqn. 2.25. Consequently, the existence of an underlying field of displacements is provided.
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