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Chapter 1

Introduction

In this thesis we aim to describe our work in the field of natural language under-
standing and machine translation. We present a developed system of automatic
analysis of temporal relations within a discourse and a text generation component
of a machine translation system together with a related tree rewriting formalism.
We also discuss possibilities to enhance the performance of the text generation
system by the additional information gained by the temporal analysis.

The system of automatic analysis of temporal relations is designed for Czech
and its purpose is to identify events expressed in a discourse (e.g. a newspaper
article) and, most importantly, to determine relative ordering of these events as
presented in the discourse. In addition to being a step towards automatic natural
language understanding, the existence of such a system can contribute to various
natural language processing tasks. For example, in text-summarization, the knowl-
edge of the relative ordering of events is important for the correct generation of
the summarized output. In question—answering, the user can ask when a partic-
ular event occurs or what events occurred after a given event. For the machine
translation purposes, this information might help in the generation of text in the
target language as this thesis tries to demonstrate. Naturally, a temporal annotation
scheme has to be devised before one can experiment with automatic analysis of
temporal relations. We present such a scheme as well.

The text generation component presented in this thesis is related to a transfer—
based Czech—to—English machine translation framework where the transfer layer
is a layer of deep-syntactic (tectogrammatical) representation (see Section 1.1.1).
Tectogrammatical representation attempts to capture deep syntactic relationships
based on the valency of sentence participants as a dependency tree. A key fea-
ture of tectogrammatical representation is that dependency relationships are rep-
resented only for autosemantic words (content words), meaning that synsemantic
words (function words) are encoded as features of the grammatical relationships
rather than the actual words. Moreover, tectogrammatical representation does not
capture surface order of words, i.e., the order in which the words appear in the
sentence. Abstracting away from specific syntactic and lexical items allows for the



representation to be less language-specific making the representation attractive as
a medium for machine translation. On the other hand, the generation process has
to recover all the missing information to produce the translation.

Finally, having the information on the relative ordering of events in the Czech
text at hand might help the generation of English translation. For example, in

Cekala tam uZ dvé hodiny, kdyz pFisel.
translated as
She had already been waiting there for two hours when he came.

it is necessary that the event of waiting terminates at the point the event of com-
ing takes place if the past perfect tense is to be used properly. In other words,
we have to know that this relation holds so as to be able to produce the transla-
tion. However, this relation is not encoded by grammar on the Czech side, it has
to be acquired by the system of temporal analysis for Czech and passed over to the
English generation component.

The thesis is structured as follows: In the rest of this chapter we describe
the tectogrammatical representation scheme together with the Prague Dependency
Treebank (Section 1.1) and the parallel Prague Czech—English Dependency Tree-
bank that serves as a data base for the described machine translation experiments
(Section 1.2) in greater detail. The first two chapters deal with temporality is-
sues: Chapter 2 introduces the devised temporal annotation scheme and Chapter 3
presents the developed system of automatic analysis of temporal relations and dis-
cusses the achieved results. The text generation component is subject of Chapter 4
and the tree rewriting formalism developed to ease tree modification in the gener-
ation process is described in Chapter 5. The experiments aimed at the improve-
ment of the generation component by the temporal information are described in
Chapter 6. Chapter 7 concludes the thesis. An introduction to the relevant areas
of research as well as a comparison to related work is covered in the respective
chapters. The appendices provide supplementary material to the main text: Ap-
pendices A and B are related to Chapter 3, Appendices C and relates to Chapter 4.
Appendix D provides an overview and basic description of the implemented soft-
ware modules (more detailed information is available on the enclosed DVD).

The presented work (including data annotation and manipulation) is that of the
author of this thesis except where explicitly stated otherwise. The topics covered
in this thesis are also described in the following papers published (sometimes in
cooperation with other authors) by the author of this thesis: the annotation scheme
in [55], the functional approach towards capturing the meaning of time expression
in [54], the results achieved in the automatic analysis of temporal relations in [57],
the generation of text from tectogrammatical tree structures within a machine trans-
lation framework in [29], the description of the tree rewriting formalism used in the
generation in [56] and [41].



1.1 Prague Dependency Treebank

In this section we aim to briefly describe the annotation scenario of the Prague
Dependency Treebank (PDT) [5] we use as a framework for our experiments.
Full annotation of a sentence within the PDT consists of three layers:

e morphological layer
e analytical layer (layer of shallow syntax)

e tectogrammatical layer (layer of deep syntax)

The technical realization differs between PDT versions 1.0 [25] and 2.0 [58]
but we will not discuss the differences here. However, note that the experiments
described in this thesis are implemented for PDT 1.0 style data as this format is
used in the Parallel Czech—English Dependency Treebank (see Section 1.2).

Note that in the subsequent chapters, when referring to the “tectogrammatical
annotation” or “annotation on tectogrammatical level” we mean the tectogrammat-
ical representation including the annotation of all the lower layers unless stated
otherwise.

Let us briefly describe the respective layers beginning with the most abstract
tectogrammatic layer.

1.1.1 Tectogrammatical Representation

The tectogrammatical representation (7R) [4, 23, 74] comes out of the Praguian lin-
guistic theory known as the Functional Generative Description of language founded
by Sgall [73, 72]. TR attempts to capture deep syntactic properties of a sentence
by the so—called tectogrammatical tree structure (TGTS). TGTS is a dependency
tree whose vertices correspond to autosemantic (content) words of the sentence
and whose edges represent either valency participants of verbs (nouns, adjectives)
or free modifications. The type of a dependency relation is captured by the functor
which takes its value from the predefined set of values. A key feature of TR is
that dependency relationships are represented only for autosemantic words (con-
tent words), meaning that synsemantic words (auxiliary function words) are en-
coded as grammatemes (morphological and grammatical features) rather than the
actual words. Abstracting away from specific syntactic and lexical items allows for
the representation to be less language-specific making the representation attractive
as a medium for machine translation and summarization as shown in Chapter 4.
For example, consider the TGTS from Figure 1.1 representing the sentence

Honza veze Marii do skoly.
(John is driving Mary to school.)



vézt (drive)
functor: PRED
tense: SIM, aspect: PROC, sentmod: IND

T

Honza (John) Marie (Mary) skola (school)
functor: ACT functor: PAT functor: DIR-3
number: SG number: SG number: SG

Figure 1.1: Example of a simple tectogrammatical tree. SIM stands for present
tense, PROC denotes processual aspect (see below), IND denotes indicative, ACT
and PAT stand for actor and patient, respectively.

The root! of the tree represents the main predicate of the sentence, the verb
“vézt” (to drive). Its concrete morphological form in the sentence is not preserved
but its meaning is captured by the tense, aspect and sentmod grammatemes. The
first two participants of the predicate, Mary and John, are assigned ACT (actor) and
PAT (patient) functors, respectively. The meaning of the non—valency complement
“do skoly” (to school) is captured by the DIR-3 functor which represents a target
direction (answer to the question “where to”’). Again, their morphological forms as
well as the synsemantic preposition “do” (to) are missing.

Note that the (horizontal) order of the nodes in the tree does not correspond
to the surface order (i.e., the order in which the words appear in the sentence).
Instead, this deep order expresses the so—called scale of communicative dynamism
closely related to topic—focus articulation [28]. Essentially, the higher (more to
the right in a TGTS) a node is, the newer? information (from the speaker’s point
of view) it represents. The items that lie low on the scale form the topic of the
sentence (what the sentence is about) and those that lie high form its focus (what is
said about the topic). The division line is assumed to lie either immediately before
or after the main predicate (see HajiCova et al. [24] for a complex discussion). The
lowest item on the scale is called the topic proper, the highest is the focus proper.
In Czech, the deep order corresponds in prototypical case to the surface word order,
i.e., unless some part of the sentence is stressed. As we don’t use the deep order
in our experiments, we will not describe it in detail, see the cited works for the
detailed description.

For the experiments we present in this thesis, the grammatemes of fense and
aspect are crucial so we will describe them in more detail. The fense grammateme

! Actual TGTSs contain an artificial root bearing information about the represented sentence, its
modality, its source, etc. For simplicity, we do not show this artificial root. Instead, we associate the
relevant information it carries with the main predicate.

?To say that an information is new does necessarily mean that it hasn’t yet occurred in the dis-
course - it means that it is presented as new (emphasized) by the speaker.

10



may contain one of the values ANT, POST and SIM corresponding to the three
morphological tenses (past, future and present). The aspect grammateme may con-
tain values PROC (processual) corresponding to imperfective aspect, CPL (com-
plex) corresponding to perfective aspect and RES, the so—called resultative, which
roughly corresponds to explicit perfect constructions in Czech, i.e., events consist-
ing of an event core and its consequent state such as

Mam veceri pripravenou.
(I have the dinner ready.)

Another important feature of the TR is the so—called subfunctor that further
specifies the meaning of functor. For example, in the sentence

Honza prisel poté, co Marie odesla.
(John came after Mary had left.)

whose TGTS is shown in Figure 1.2, the TW HEN functor specifies that the
adverbial phrase is a temporal one, answering the question when. However, the
meaning of “after” is not captured by the functor itself but it is encoded in the
subfunctor. Note that the subfunctor’s value after does not denote the preposition -
it is only a string value expressing the meaning of posteriority.

prijit (come)
functor: PRED
tense: ANT, aspect: CPL, sentmod: IND

/\\

Honza (John) odejit (leave)
functor: ACT functor: TWHEN, subfunctor: after
number: SG tense: ANT, aspect: CPL

/

Marie (Mary)
functor: ACT
number: SG

Figure 1.2: TGTS for the sentence “Honza prisel poté, co Marie odesla.”

Annotation of coreferential relations is also part of the TR [36], although the
annotation of nominal anaphora, i.e., the coreference between autosemantic noun
phrases, has not yet been finished.
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1.1.2 Analytical Layer

The analytical representation [22] of a sentence does not belong to the theoreti-
cally based description of the sentence; it is just an auxiliary technical device spec-
ifying the so-called shallow syntactic properties. It provides the information that
is underspecified in the tectogrammatical representation, i.e., synsemantic words,
the surface word order, actual word form and together with the morphological
representation (see Section 1.1.3) morphological properties of words (e.g. case).
Shallow—syntactic relations between the respective nodes are captured by analyti-
cal functors. Figure 1.3 shows the analytical tree for the introductory sentence in
the previous section repeated here for convenience

Honza veze Marii do skoly.
(John is driving Mary to school.)

veze (is—driving)
functor: Pred

T T

Honza (John) Marii (Mary) do (to)
functor: Subj functor: Obj functor: AuxP

skoly (school)
functor: Adv

Figure 1.3: Example of an analytical tree. Subj, Obj, AuxP and Adv correspond to
subject, object, preposition and adverbial, respectively.

1.1.3 Morphological Layer

The annotation on the morphological layer [21] assigns the morphological tag and
the lemma to each word of the given sentence. The tag contains information about
the morphological properties of the word in a given sentence such as part—of—
speech, number, gender, case, person, etc. Each of the 15 positions in the tag
corresponds to the value of one particular category. The sample sentence would be
annotated as shown in Table 1.1.

12



Word | Tag Description

Honza | NNMS1 - ————————— singular masculine noun in nominative
veze VB-S - - -3P-AA-—- active verb in third person singular
Marii | NNFS4 — — —— — —— — —— singular feminine noun in accusative
do RR————————————— preposition

Skoly | NNFS2 - - ———————— singular feminine noun in genitive

Table 1.1: Morphological annotation of the sentence “Honza veze Marii do skoly.”.
Lemma contains additional information not shown here.

1.2 Prague Czech-English Dependency Treebank

Prague Czech-English Dependency Treebank 1.0 (PCEDT) [11, 12, 15] is a corpus
of Czech-English parallel resources suitable for experiments in machine translation
with a special emphasis on dependency-based translation.

The core part of PCEDT is a Czech translation of 21600 English sentences
from the Wall Street Journal part of Penn Treebank 3 corpus® [47, 46]. Sentences
of the Czech translation were automatically morphologically annotated and parsed
into the analytical and tectogrammatical level corresponding to the PDT structure
(see Section 1.1). The original English sentences were transformed from the Penn
Treebank phrase-structure trees into dependency representations. A development
and evaluation set of 233 and 231 sentence pairs, respectively, was selected and
manually annotated on tectogrammatical level in both Czech and English. For the
purposes of quantitative evaluation (e.g. computation of BLEU score as in our
experiments) this set has been retranslated from Czech to English by 4 different
translation companies.

The included Czech-English translation dictionary consists of approximately
45,000 entry-translation pairs in its lemmatized version and approximately half a
million pairs of word forms where for each entry-translation pair all the corre-
sponding word form pairs have been generated.

PCEDT also contains other data sources but we do not introduce them here as
they are not used in our experiments. For more information see the cited papers.

The style of manual tectogrammatical annotation within PCEDT corresponds
to the obsolete PDT 1.0 annotation style. Moreover, as described in Section 2.3.1,
the manual tectogrammatical annotation contains many errors. Nevertheless, dur-
ing the time we were working on the projects described in this thesis there were
no other resources available that would be suitable for machine translation via tec-
togrammatical layer. Currently, an annotations schema for English is being de-
signed and systematic tectogrammatical annotation of English text is in progress
(see [10]).

3released by LDC in 1999 as LDC99T42
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Chapter 2

Annotation of Temporal
Relations

In this chapter we describe the temporal annotation scheme and the annotated cor-
pus we have created and used for our experiments with automatic analysis of tem-
poral relations as described in Chapter 3. The chapter is structured as follows:
Section 2.1 introduces several aspects of temporal annotation of events and their
classification. It also presents existing schemata for temporal annotation. Sec-
tion 2.2 describes our annotation schema and Section 2.3 provides information on
the annotated corpus. Section 2.4 concludes the chapter and provides comparison
of our approach to the related work.

2.1 Introduction

In this section we aim to briefly introduce properties that characterize events and
therefore represent information annotation schemata should capture. We also in-
troduce Allen’s classification of temporal relations [1] as many of the cited work
rely on it. We then present several existing annotation schemata.

In the following text, we refer by time—of—speech of an utterance to the time
in which the utterance took place. If the discourse is a written document time—of—
speech denotes the creation time of each respective utterance.

2.1.1 Event Properties
Tense

Tense generally expresses precedence, posteriority or concurrence of an event to
another event or time—of—speech. Languages differ in the complexity of their tense
system — some lack tense markers at all (e.g. Mandarin Chinese), some contain
only basic set of tenses — past, present and future (e.g. Czech) and some feature a
complex tense system (e.g. English). However, a complex tense system featuring

14



various perfect tenses usually also serves as a substitute for lack of aspect infor-
mation in lexemes themselves and is closely related to grammatical aspect (see
below).

In TR, tense is captured by the tense grammateme (see Section 1.1.1).

Grammatical Aspect

Grammatical aspect (perfective or imperfective) expresses how an event is viewed
by the speaker. Perfective aspect is used if the event is presented as a single unit
(completed or not) without emphasis on its internal structure. Imperfective aspect,
on the other hand, stresses the internal structure and/or duration of an event. In
Slavonic languages (e.g. Czech) the aspect is largely expressed lexically, i.e., as-
pect lies on the boundary of being a property of a given lexical unit (see Section 3.2)
and being a grammatical function. Note that this aspect of “lexical nature” is some-
thing quite different from the “lexical aspect” introduced below.
In TR, aspect is captured by the aspect grammateme (see Section 1.1.1).

Lexical Aspect

The classification of events (eventualities) into classes based on their lexical as-
pect was first introduced by Vendler in [79] and further extended and refined by
other authors, e.g. Moens and Steedman [50], Smith [75], Dorr and Olsen [16],
Dowty [18]. The basic division is as follows:

states (statives) States are durative eventualities that do not contain an internal
structure — an entity simply is or is not in the given state (with certain level
of approximation). A state has the so—called subinterval property: if a state
holds for a period of time (p), it must also hold for any subinterval within p.
For example,

John loves Mary.

is a state.

activities (processes) Activities are durative events that lack a culmination point.
They usually have an internal structure, i.e., they consist of primitive events.
An example of an activity is

John was walking in a park.

accomplishments Accomplishments are durative events that culminate such as

John repaired the radio in two hours.

15



achievements Achievements are “instantaneous accomplishments”, i.e., only the
culmination point is present. For example,

John reached his goal.

is an achievement.

Novék [53] argues against this distinction and proposes to represent all even-
tualities in a uniform manner — by their starting and ending point. While we do
not fully agree with Novak that the distinction is irrelevant for the representation
of discourse content, we believe that this uniform representation is a good starting
point for temporal annotation and our annotations scheme reflects that. Problems
arise only with accomplishments as they in fact express two events - the prepara-
tory process and the culmination (see Section 2.2.1). Moreover, we consider the
distinction between (content of) accomplishments and achievements rather unclear.
For example, in

John died.

it is questionable whether there is an associated process of dying associated with
the culmination. The context might provide a clue, e.g.

John died in two days. (accomplishment)
John died suddenly on Thursday at 15:30. (achievement)

but in general we find the distinction hard to draw.

Event Structure

Another property (tightly connected to lexical semantics) of an event is its struc-
ture, i.e., its decomposition into primitive events. For example, meaning of “ro
wash” can be (informally) captured as “to cause to become clean”. There are sev-
eral accounts on event decomposition, e.g. that of Dowty [17], Jackendoff [31]
and Pustejovsky [63]. Unlike the previous properties of events, event structure of
a particular event expressed in a discourse does not depend on the context and is
therefore not to be annotated for each separate event. Instead, this information
belongs to an event ontology.

2.1.2 Allen’s Temporal Relations

Allen [1] proposes to classify temporal relations between two intervals (¢1,t2) that
are extensions of respective events as follows (quotation from [1]):

DURING(ty,t2)
time interval ¢ is fully contained within ¢,

16



STARTS(t1,t9)
time interval ¢; shares the same beginning as ¢o, but ends before ¢9 ends

FINISHES(t1,t2)
time interval ¢; shares the same end as to, but begins after o begins

BEFORE(ty,t2)
time interval ¢; is before interval ¢5, and they do not overlap in any way

OVERLAP(t1,t2)
time interval ¢; starts before ¢2, and they overlap

MEETS(t1,t2)
time interval ¢; is before interval {5, but there is no interval between them,
i.e., t1 ends where ¢, starts

EQUAL(ty,t2)
t1 and ¢o are the same interval

Taking inverses of these relations into consideration we obtain 13 possible re-
lations. Allen also introduces derived relations such as

IN(tl,tg) & DURING(tl,tQ) V STARTS(tl,tQ) V FINISHES(tl,tQ)

2.1.3 Annotation Efforts

Temporal annotations, started virtually a few years ago, are one of the most recent
parts of the research on temporality. In many of the works we cite below, the
annotation scheme is rather implicit and the attention is paid mostly to an automatic
analysis system. We therefore also introduce the analysis part of the cited work in
Section 3.1.

The earliest approaches dealt with shallow annotation (and associated extrac-
tion) of time expressions in plain texts. The DARPA Message Understanding Con-
ference tagging included a subtask aimed at the recognition of absolute time ex-
pressions (i.e. time expressions whose time extension is independent on the time—
of—speech such as “1.5.71998”) [51] and later also relative [52] time expressions.
The reference set was manually annotated by human annotators. However, the
annotation scheme contained no interpretation (determination of the denoted time
extension), the task was simply to identify an expression as a date, time, etc.

TIMEX?2 [82] represents a step towards interpretation of time expressions as
each time expression has calendrical value denoting the time extension of the time
expression associated with it. To further explicate the meaning of a time expression
(rather than only its extension) and also to allow for separation of the recognition
and the interpretation of a time expression, TIMEX?2 has been further enriched by
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a functional approach [65] to TIMEX3 specification. The functions take the time—
of—speech point as their input argument and yield the extension of the given time
expression. For example, the meaning of “last week” can be captured as

predecessor(week(time — of — speech))

where the week function returns the extension of the week time—of—speech lies in
and the predecessor function returns the extension of the previous week.

Let us turn our attention to complex approaches that address the annotation of
events and, most importantly, temporal relations between the respective events.

Perhaps one of the most restrictive approaches is that of Katz and Arosio [33].
They only annotate verbs and draw temporal relations strictly within single sen-
tences. Their work is primarily motivated by the wish to study how temporal rela-
tions are conveyed by syntactic and lexical information within complex sentences.
This is similar to the Recursive Temporal Principle (see Section 3.3) that answers
some of these questions for Czech and that we use in our system of automatic
analysis of temporal relations.

Another fairly restrictive approach is that of Filatova and Hovy [19] that aims
to time—stamp events, i.e., to assign a calendrical value to events expressed in a
discourse. In their approach, events are represented by clauses containing a (verbal)
predicate and a subject.

Schilder and Habel [71] consider verbal events and events expressed by a noun
phrase (nominalization). They only consider temporal relations between an event
and its anchoring time expression which is determined largely by prepositions and
use Allen’s classification of temporal relations. They also provide another way of
representing meaning of time expressions by means of Prolog [6] predicate under-
specification.

Li et al. [39] deal both with event anchoring (time—stamping) and temporal
relations between events for Chinese. Again, the classification of the relation types
is based on Allen’s classification.

To our best knowledge, the most complex approach is the TimeML annotation
scheme developed by Pustejovsky et al. [65]. TimeML captures all kinds of events
expressed in a discourse (even by nominals, adjectives and infinitive verbs). Un-
like the approaches discussed so far, it classifies events into several groups, e.g.
occurrence, state, reporting, perception etc. Features such as tense, aspect, polar-
ity, modality, etc. are part of the annotation, too. The types of temporal relations
between events are largely motivated by Allen’s approach. TIMEX3 specification
for capturing meaning of time expressions (described above) is also part of the
TimeML specification.
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2.2 Annotation Scheme

2.2.1 Basic Principles

In accordance with Novak [53] we recognize the starting time point anchor F/; and
the ending time point anchor E. of each event (state, activity, accomplishment,
achievement) E expressed in a discourse. E anchors the beginning of the event
whereas F, anchors the time the event is finished. If an event E takes place in one
single time point, we take F's = E.. These anchors are interpreted as time points
on the real time axis.

The set of all the anchor pairs and the set of time—of—speech points (one for
each discourse utterance) together form the femporal space of a discourse. Con-
sider the following example:

1. A consortium of private investors operating as BPH Funding Co. said yes-
terday that it could eventually make a $300 million cash bid.

2. Today it announced that it no longer considers the possibility.

The two time—of—speech points (/.f, 2.f) are present as well as the starting
and ending points for the events expressed by the words operating (op.s, op.e),
said (say.s, say.e), make (mk.s, mk.e), announced (anc.s, anc.e), and (no longer)
considers (cnsd.s, cnsd.e).

The task of the temporal annotation of a discourse is to identify its temporal
space and to determine relations between these points.

The following relative ordering relations may hold between two time points p
and ¢: precedence (p < q), precedence—or—equality (p < ¢q), posteriority (p > q),
posteriority—or—equality (p >~ ¢) and equality (p = ¢). For the example mentioned
above the basic possible set of relative ordering relations would be as follows:

e 1.t < 2.t (sentence order)

e say.s = say.e < 1.t (said expresses a single time point event)

1.t < mk.s = mk.e (make takes place in the future if it takes place at all)
e anc.s = anc.e < 2.t

e cnsd.s < anc.s < cnsd.e

These relations correspond to the information provided by grammar. Neverthe-
less, more relations can be inferred with various levels of confidence:

e op.s < say.s (the consortium was probably operating as BPH Funding be-
fore it made a statement yesterday)

e op.s < 1.t < op.e (the consortium is understood to operate as BPH Funding
in the time the sentence was written)
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e say.s < anc.s (follows from the temporal expressions yesterday, today)

e op.s < 2.t < op.e (the state of affairs is understood to be true even in the
time—of—speech of the other sentence)

e cnsd.s < 1.t < cnsd.e (the same)

In our approach, the temporal space of a discourse consists in the points of
events that are explicitly expressed (by a verb, a deverbative noun or adjective).
We do not consider any other related events with the following exception. If an
event is an accomplishment (in Vendler’s sense) modified by a temporal adverbial
phrase with za (in) as in

Petr postavil diim za dva roky.
(Petr built a house in two years.)

we introduce the process (building of the house) associated with the culmination
event (built) so as to be able to anchor the adverbial phrase (see Section 2.2.2).
However, we do not introduce processes associated with accomplishments in gen-
eral because we consider the boundary between accomplishments and achieve-
ments rather fuzzy (see Section 2.1) — we would not be able to make the decision
on whether there is a preparatory process related to a given event systematically.
Moreover, these “hidden” events would significantly and, in our view, artificially
alter the distribution of the annotated events and therefore even the results of a
system of automatic analysis of temporal relations.

The relative ordering relations between the respective events are to be anno-
tated from the viewpoint of the speakers of the respective utterances.

The annotator should annotate all relations which correspond to a natural inter-
pretation of the expressed events, not only relations which are obvious or logically
necessary. We have chosen this approach because we believe that all these relations
represent a part of the human understanding of the given discourse and a system of
automatic analysis should be able to determine even the relations which are only
plausible but not directly implied by the discourse if it is to be truly a part of a
content understanding system.

The final annotation is obtained as the transitive closure of the annotated re-
lations. We do not deal with “unclosed” annotations and analyses because we
consider them inconsistent: An annotator can (and should) never annotate all the
relations that follow from the relations he/she has entered (the core) and the choice
of this core largely depends on the annotator as it would be very hard to design
some canonical form of the core and force the annotator to uphold it. All the cor-
pus statistics and errors of a system of automatic analysis would then depend on
the (arbitrary) choice of a core by a particular annotator — two annotations could
differ even if their content would be the same. On the other hand, as far as the
evaluation of a system of automatic analysis is concerned, the evaluation based on
the closed set of relations leads to propagation of errors, thus altering their impact.
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The final principle deals with the number of potential relations within a dis-
course. It would be infeasible for the annotator to consider all of them as their
number rises quadratically with the size of the temporal space (e.g. in an article
containing 30 simple sentences, each with only a single verb, the temporal space
consists of 90 points (30 x 2+ 30) and there are 4005 (90 x 89/2) potential relations
in total). To make the annotation process reasonably fast we have annotated only
relations between points in one sentence and between two adjacent sentences. Be-
cause the final annotation is formed by transitive closure of the respective relations,
this principle allows us to retain some degree of global discourse coverage.

2.2.2 Functional Formalism

Some of the time points within a discourse are more specifically determined by
functions of other time points or are even specified absolutely. For example, in the
sentence

Last year we spent our holiday in Austria and it was very similar to our vaca-
tion in Germany in February 1980.

the event of spending the holiday in Austria is determined as a function of the time—
of—speech point (returning the extension of last year relative to time—of—speech)
whereas the event of spending the holiday in Germany has been positioned ab-
solutely to the interval of February 1980. Note that although we may not know the
exact value of speech time of the utterance we still understand the sentence, we
should be able to annotate it and draw inferences from it.

To capture this kind of information we have developed an apparatus based on
the operators and functions described below'. It represents content of the expres-
sions such as “last Friday”, “beginning of the next month”, “the middle of 80s”
etc. It allows for the construction of efficient algorithm for the computation of par-
tial ordering of these expressions on the real time axis as described in Section 3.6.2.

Let us present type system for these functions and operators first (see Appen-
dix A for the complete list of supported constants for the relevant types):

Types
e t_point is a concrete point on the real time axis

e {_interval is a concrete closed interval on the real time axis, i.e., the time
period between two time points including the points

e t{_etype represents a time entity type. There are following basic types:

"'Using these operators and functions we have been able to capture all the absolute time expres-
sions within the annotated data. However, we do not claim that this list is sufficient to capture all
time specifications. Its extension may be needed in the future.
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- millenium
— century

— decade

- year

— month

- day

— hour

- minute

— second

These types can be modified by quarter and half prefixes to yield de-
rived types such as quarteryear?. A type may be further modified by a
modifier such as fiscal or academic to yield e.g. halfyear_fiscal or
year_academic

t_range is any amount of time (e.g. two seconds, four months, etc.)

t_pe_name is a named time entity representing a time point such as mid —
night or noon

t_ie_name is a named time entity representing a time interval such as day
parts (morning), seasons (spring), weekdays (tuesday) and months (jan—
uary)

t_vague_part is either beginning, end, or middle
t_int,t_uwint represent a signed and unsigned integer, respectively

t_bool is the boolean type realized as 1 for true and 0 or -1 for false?

There are also set types - appending s to the type name yields the set of the
objects of the given type, e.g. t_points denotes a set of points.

Functions and Operators

We may now list the operators and functions (the type of arguments and result
follow after colon, ¢ denotes time—of—speech point):

U, N(Intervaly, Intervals) :

(t_interval, t_interval) — t_interval

are the usual union and intersection operations on the interval type.

2The reason we treat these specific parts of basic types as types themselves is that they correspond
to one—word expressions (halfyear) which makes the correspondence between a time expression and
the resulting functional representation more direct.

3We use -1 for false in the In Future parameter of the functions described below. -1 then means
“in the past” and 1 means “in the future”.
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start, end(Interval) :
(t_interval) — t_point

retrieve the starting and the ending point of the specified interval, respec-
tively.
interval By Points(Pointy, Pointsy) :
(t_point,t_point) — t_interval
constructs the interval from the specified points
intervalSize(interval) :
(t_interval) — t_range
returns the entity range represented by the specified interval
+, —(Range1, Ranges) :
(t_range,t_range) — t_range
are the usual addition and subtraction operators on the time range type.

const(Y,[M,D,H, M, S]) :
(tint, [t_uint,...]) — t_interval

constM (Millenium) :
(t_int) — t_interval

constC(Century) :
(t_int) — t_interval

The constructors make it possible to construct a time interval by specifying
the respective parts (year (Y'), month (M), etc.). Only the year is obligatory
in the first version of the constructor. Note that all constructors return an
interval, i.e.

const(1980, 3, 15, 10, 40, 25)

does not denote the point 15.3.1980 10:40:25, but rather the entire interval of
the 25th second. It is possible to use the start function to retrieve the point:

start(const(1980, 3, 15, 10, 40, 25))

entity Range( EntityType, Number) :
(t_etype,t_uint) — t_range

returns the time range represented by Number time entities of type Entity—

Type, e.g.
entity Range(year, 2)

returns time range of two years.
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shift(Point, Distance, InFuture) :
(t_point,t_range,t_bool) — t_point

returns the time point that succeeds or precedes (depending on the value of
InFuture) Point by Distance. For example

shift(t,entity Range(hour,3), 1)
returns the time point exactly three hours after ¢.
span(Point, EntityType) :

(t_point,t_etype) — t_interval

returns the concrete time interval of the time entity of type EntityType that
contains the time point Point, e.g.

span(start(const(2006,11,5)), month)

returns the interval corresponding to November 2006.
findEntityType(Point, EntityType, Index) :
(t_point,t_etype,t_int) — t_interval

finds the Index-th occurrence of EntityType succeeding or preceding (if
Index is negative) Point. For example,

find(t,day, 1)

returns the day following the day containing ¢ (i.e., it corresponds to “tomor-
row”).

findET ByOrd(Point, EntityType, Order, SupET, Index, This) :
(t_point,t_etype, t_uint,t_etype,t_int,t_bool — t_interval)
finds the Index-th occurrence of the Order-th EntityType within SupE'T
(superior entity type) succeeding or preceding (if Index is negative) Point.
This determines whether the time entity containing Point is taken into ac-
count or not. For example,

findET ByOrd(t,day, 8, month, —1,1)

returns the interval corresponding to the last 8th day in a month (i.e., the
month containing ¢ or the month before). If ¢ itself lies in such a day, that
day is returned (the occurrence is counted).

findI EByName(Point, Entity, Index, This) :
(t_point,t_ie_name,t_int,t_bool) — t_interval)
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findPEByN ame(Point, Entity, Index, This) :
(t_point,t_pe_name,t_int,t _bool) — t_point

Both versions (for point and interval entities, respectively) find the Indez-th
occurrence of Entity succeeding or preceding (if Index is negative) Point.
This determines whether the time entity containing Point is taken into ac-
count. For example,

findI EByName(t, january,1,0)
finds the “next January” from ¢ regardless of whether ¢ lies in January.

part By EntityType(Interval, Part, Order) :
(t_interval, t_etype, t_int) — t_interval

part Byl Entity(Interval, Part,Order) :
(t_interval, t_ie_name,t_int) — t_interval

part By P Entity(Interval, Part, Order) :
(t_interval, t_pe_name,t_int) — t_point

All the three versions (for entity type and point and interval entities, respec-
tively) retrieve the Order-th Part within the specified Interval. (Order is
counted from the end if negative.) For example,

partByP Entity(const(1970, 3), noon, 2)

returns the interval corresponding to the noon of 2.3.1970 and is therefore
equivalent to

part By P Entity(const(1970, 3,2), noon, 1)
partVague(Interval,VaguePart) :
(t_interval, t_vague_part) — t_interval

returns the given vague subinterval of the specified Interval — beginning,
end or middle*. For example,

partVague(const(1970), beginning)
corresponds to the expression beginning of 1970.

part ByFraction(Interval, N1, D1, No, Ds) :
(t_interval, t_uint, t_uint, t_uint, t_uint) — t_interval

returns the Interval’s subinterval determined by the two fractions (numera-
tors N1, N2 and denominators Dy, Ds). For example

partByFraction(const(1980), 1,4, 1,2)

returns the second quarter of 1980.

*Note that there is actually no difference between partV ague and part Byl Entity functions as
the latter also accepts vague expressions such as evening or summer. However, vague periods are
not entities.
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seriesET ByInterval( EntityType, Interval) :
(t_etype, t_interval) — t_intervals

series] EBylInterval( Entity, Interval) :
(t_ie_name, t_interval) — t_intervals

seriesPE BylInterval( Entity, Interval) :
(t_pe_name, t_interval) — t_points

All the three versions return all the occurrences of the specified Entity (or
FEntityType) within the specified Interval. For example,

series] E ByInterval(monday, const(1980,4))
returns the set of all Mondays within April 1980.

seriesET ByCount(Point, EntityType, Count) :
(t_point,t_etype, t_uint) — t_intervals

series] E ByCount(Point, Entity, Count) :
(t_point,t_ie_name,t_wint) — t_intervals

series PEByCount(Point, Entity, Count) :
(t_point,t_pe_name,t_uint) — t_points

All the three versions return C'ount occurrences of the specified Entity (or
EntityType) from Point. For example,

seriesET ByCount(t,day,4)
returns the set of 4 days after .

lexp1, expa, ...|

denotes an alternative. For example,
[findI Entity ByN ame(t, September, 1),
findI Entity ByName(t, October, —1)]
is either the “next September” or the “last October”.

These functions and operators may be composed to form the resulting func-
tional composition. A time point can then be related to this functional composition
yielding the complete time specification. For example, the starting point sp.s of
spend from our introductory example can be positioned to “last year” as follows

sp.s € findEntityType(t,year, —1)

The same mechanism can be used to specify the absolute distance between two
time points (event duration) or even more complicated relations between time
points.
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If a time expression is interpreted as underspecified in a given context, as in

The president will definitely leave on Monday but the exact date is still un-
known.

the proper version of part function with unspecified input interval is used:
depart.s(= depart.e) € part Byl Entity(X, Monday, 1)

Note that the set of provided functions is not parsimonious (e.g. some part
functions can be replaced by their find counterparts) but it corresponds more di-
rectly to the syntactic structure of time expressions which leads to less complicated
compositions.

Let us present a few more examples of time specifications:

1. He will return in five hours from now.

return.s(= return.e) = shift(t, entity Range(hour,5))

2. The committee discussed the report on Thursday.

discussed.s, discussed.e €
partByl Entity(X, Thursday, 1)
(findI Entity ByName(t, Thursday, —1))

3. The shipment will arrive no sooner than January of next year.

arrive.s(= arrive.e) >

partI ByName( find EntityType(t, year, 1), January)

4. The board will be discussing the new business strategy on 4.5.2006 in the
morning.

discussing.s, discussing.e €
part Byl Entity(const(2006, 5,4), morning)

5. The plane America West ordered will be delivered next Monday or Tuesday.

deliver.s(= deliver.e) € [findI EntityByName(t, Monday,1),
findI EntityByName(t, Tuesday, 1)]

27



6. The company will be sponsoring the project for at least two years.

sponsoring.s < shift(sponsoring.e, entity Range(year, 2))

7. The meeting of the presidents will take place on Monday.

meeting.s, meeting.e, take.s, take.e €
part Byl Entity(X, Monday, 1)
(findI Entity ByName(t, Monday, 1))

Note that in Examples 2, 4 and 7 the starting and ending points of the respec-
tive events are placed into the time extension denoted by the given time expressions
although this is incorrect from the strict logical viewpoint — e.g. from the fact the
committee discussed the report on Thursday it does not follow that the report was
discussed only on Thursday as the anchoring of the time points suggests. However,
when reading such a sentence in a newspaper (in a neutral context) we conclude
that the discussion took place only on Thursday, because if not, the author of the
article would have added the information. In other words, not providing the com-
plete information on the extension of such an event (while not informing the reader
that it is incomplete) would be viewed as a misinformation. The annotation of the
presented examples is therefore in accordance with our principle of “natural in-
terpretation” annotation (see Section 2.2.1). Nevertheless, in certain situations we
really only wish to state that there is a common point between an event and a time
expression as in

The committee discussed the report also on Thursday.

which can be annotated as follows:

discussed.s = end(partByl Entity(X, Thursday, 1))
discussed.e = start(part Byl Entity(X, Thursday, 1))

Example 7 (and similarly Example 2) also demonstrates the difference between
an underspecified reading and a reading that involves pragmatic inference. In the
former case, the time specification only asserts that the meeting would take place
on some Monday. However, in a common context of a newspaper article, the pre-
ferred reading of the sentence is that “on Monday” refers to the next Monday rel-
ative to the time—of—speech (document time) of the article. If so, the more specific
composition

findI EntityByName(t, Monday, 1)
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is the appropriate one. The important point to note here is that the determination
of the correct (most specific) time specification requires not only syntactic and
semantic analysis but also pragmatic inference. There are no explicit “intermediate
layers” in our annotation scheme, only the final content of the time expression is
captured.

A consequence of this strategy is that our annotation schema also does not con-
tain a layer of “shallow” time expression recognition. The expression on Monday
in Example 7 anchors four time points — the starting and the ending points of meet-
ing and take place® and only the corresponding four time specifications are present
in the annotation — the information about its source, the surface time expression,
is lost. (In special cases, a time specification may not even correspond to a sur-
face time expression, see Section 2.2.3 where an example of plan repeat period
specification is presented.)

The reason our approach is not explicitly a stratificational one is that it aims
to be the core of a content representation of temporal expressions, not a general
time specification language. However, in combination with tectogrammatical an-
notation (see Section 1.1.1) the annotated temporal corpus contains intermediate
syntactic layers as described in Section 2.3. Moreover, the layer of semantic prop-
erties (i.e. no pragmatical inference) of time expressions is, to certain extent, also
implicitly present. In our approach, semantics of a time expression corresponds
roughly to the underspecified time specification which can often be inferred from
the final specification, e.g.

x € findI EntityByName(t, Monday, 1)

entails
x € part] ByName(X, Monday, 1)

2.2.3 Special Markers

Some discourse expressions do not express a single event taking place in a single
interval of time.
The event may be iterative as in

Last month, I used to wake up every morning and run 10 miles.

and it is necessary to capture this information. However, it is not enough to mark
each of the two events separately as the connection between them would be lost.
Instead, we introduce the notion of a plan to capture the fact that the events are
iterative and one follows after another in a “single run”: the ordering of the two
events is annotated as usual but the events are declared to be part of one particu-
lar box — the plan. The plan itself has a start time point and end time point (plan

>This verb might be considered temporal auxiliary as it only anchors time specification of another
event (meeting). However, in accordance with our annotation principles, we consider it an event and
annotate it as well.
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boundaries) which denote the interval of plan’s validity (in the example, these are
directly specified as the start and end of the “last month”). Repeat period of the
plan may also be specified (“one day” in our example). The complete annotation
is as follows:

e P.s = start(findEntityType(t,month,—1)) (the plan starts in the be-
ginning of the last month)

e P.e = end(findEntityType(t, month,—1)) (the plan ends in the end of
the last month)

e P.repeat = entityRange(day, 1) (repeat period)

o Pwake.s(= Pwake.e) < P.run.s < P.run.e (sequence of events within
the plan)

e Pwake.s(= Pwake.e) € part Byl Entity(X, morning, 1) (waking up in
the morning)

Another special situation similar to iterativeness arises when an event occurs
separately for each actor in distributive readings such as

Each company built its own headquarters in Boston.
This is indicated in the annotation by a special “distributive” marker:
D.built.s(= D.built.e) <t
An event may be both iterative and distributive as in
Many people wake up every morning and run 10 miles.
In this case the plan is marked as distributive as well:

D.P.s = start( findEntityType(t, month, —1)

2.3 Annotated Corpus

Although the annotation scheme itself is language independent and can be used
to annotate plain texts, it is particulary convenient to link the temporal annotation
with the existing layer of tectogrammatical representation (TR) described in Sec-
tion 1.1.1. The temporal annotation can be therefore viewed as an extension to
TR.
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We have annotated the Czech translation of portion (see below) of Wall Street
Journal (WSJ) as present in the PCEDT (see Section 1.2) corpus. The development
testing set was annotated by the author of this thesis and the evaluation testing set
was annotated by a different annotator®. However, due to the complexity of the
annotation procedure, the time specifications corresponding to the respective time
expressions i the evaluation testing set were also annotated by the author of this
thesis’.

The primary reason for the decision to use these data for temporal annotation
(in contrast to annotating the original PDT data) was the possibility to integrate
the resulting automatic temporal information retrieval system into this machine
translation framework. This allows us to directly evaluate the contribution to the
existing machine translation system (see Chapter 4). However, this decision also
has a major disadvantage — due to the PDT 1.0 style of PCEDT tectogrammatical
annotation, our implemented experiments cannot be directly run on PDT 2.0 style
data.

2.3.1 Extending PCEDT by Temporal Annotation

Our temporal corpus consists in the extension of the manual TR annotation of the
Czech translation of WSJ as present in the PCEDT. This manual TR annotation
covers parts of WSJ sections 22,23 and 24 and is divided (within PCEDT itself)
into development and evaluation testing sets as follows:

DTest
subsections 2303, 2308, 2309, 2313, 2315, 2332, 2338, 2393, 2399, 2406,
2435, 2436 (233 sentences in total)

ETest
subsections 2201, 2202, 2203, 2211, 2212, 2214, 2222, 2246, 2248, 2249
(231 sentences in total)

We keep this division in our experiments as well. Note that there is no training
set manually annotated on tectogrammatical level within PCEDT.

Generally, even the manual tectogrammatical annotation (not to speak of the
automatic data) within PCEDT contains many errors, namely

e anomalies and errors in the tree structure
e errors in or absence of values of some grammatemes

e absence of subfunctors

8Jana Némcova

"The evaluation testing set should be as much a “black box” for the author of this thesis as possible
because he tests the performance of his system of automatic analysis of temporal relations on this
data set. As far as the meaning of time expressions is concerned, we were unable to avoid seeing the
evaluation data.
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e missing and inconsistent punctuation, especially direct speech markers (“,
7, etc.)

Some of these errors would render automatic analysis of temporal relations vir-
tually impossible, it was therefore necessary to repair the data. We have modified
the original data as follows:

e We have corrected and added values of the grammatemes tense and aspect.
e We have corrected and added punctuation related to direct speech.
e We have non-systematically repaired incorrect functors.

e For the purposes of text generation we have developed an automatic proce-
dure to assign subfunctors (see Appendix C). This insertion takes place “on
the fly”” so subfunctors are not a permanent part of the modified PCEDT data.

We have not changed the structure of TGTSs in any way as we consider such
a modification to be a too grave intervention. However, this causes errors in our
experiment that are only due to incorrect tectogrammatical annotation.

2.3.2 Annotation Format

The annotation is provided in a plain text format very similar to the presented
annotation examples. Events are identified by their unique ordering number (ord
attribute) within the corresponding TGTS. Example 2.1 shows a TGTS tree and its
temporal annotation. This simple annotation format can be simply converted e.g.
to XML.

2.3.3 Corpus Statistics

In this section we provide several statistics related to the morphological types of
the lexical items expressing events as well as distribution of plans and distributive
markers and the number of time specifications related to time expressions. We
present most of the statistics only for the development testing set because we be-
lieve that this sort of analysis of the evaluation testing set internal structure is in
fact a violation of its supposed “black box” nature®. As far as the evaluation testing
set is concerned, we only present overall statistics used for the evaluation of system
performance. A more detailed statistics can be found in the corresponding files’
but we have never studied it nor used it.

In the development testing set, there are 1691 points (corresponding to 962
entities) in total. 146 of these are marked by the distributive marker and 184 belong

8A potential developer a system of automatic analysis might for example decide not to handle
certain morphological types or special markers because their frequency is too low in the evaluation
testing set.

%available on the enclosed DVD
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byt (PRED)
ID: /
tense: ANT, aspect: PROC

/\

filosofie (ACT) a(CONJ)
ID: 2 ID: 3
Hooker (APP) postavit (PAT_CO) prodat (PAT_CO)
ID: 4 ID: 5 ID: 6
aspect: CPL aspect: CPL

P.s = 1.s (the validity of the plan is determined by the verb “byt” (to be)
Pe=2s

P.e < 0.p (the plan has ended in the past, before the time—of—speech)
P.5.s = P.5.e “postavit” (to build) is a complex (instantaneous) event
P.6.s = P.6.e “prodat” (to sell) is also a complex event

P.5.s < P.6.e “postavit” precedes “prodat” in a single run of events

Figure 2.1: Example of temporal annotation for the sentence “Hookerova filosofie
byla postavit a prodat.”.

to a plan. Tables 2.1 list the distribution of events expressed by the respective
morphological types.

Table 2.2 list the distribution of temporal relations between the respective mor-
phological types after the transitive closure (73517 relations in total). We also list
the distribution of the original (“unclosed”) set in Table 2.3 for the sake of illustra-
tion of the closure effect(2075 relations in total). In the evaluation testing set, there
are 87043 relations in total.

There are 92 and 115 time specifications present in the development and eval-
uation training set, respectively.

2.4 Conclusion

We have presented a scheme for temporal annotation featuring a pure functional
approach for capturing meaning of time expressions. Although the scheme is very
simple, it is more general than many of the schemes presented in Section 2.1 mainly
in terms of types of events that are covered and the general intensional approach
toward capturing meaning of time expressions. Unlike most of the annotation
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Time-of-speech Verbs Nouns
Entities 233 (24.22) 544 (56.55) | 100 (10.40)
Points 233 (13.78) 1088 (64.34) | 200 (11.83)
Adjectives | Plan Boundaries
Entities | 51 (5.30) 34 (3.53)
Points | 102 (6.03) 68 (4.02)

Table 2.1: Distribution of time entities and associated time points as present in the
development testing set. The percentage with respect to the sum of the respective

rows is given in parentheses.

TOS Verbs Nouns Adjectives PB
TOS | 3124 (4.25) X X X X
Vrbs | 23698 (32.23) | 21239 (28.89) X X X
Nns | 4196 (5.71) 8334 (11.34) | 976 (1.33) X X
Adjs | 2232 (3.04) 3355 (4.56) | 461 (0.63) | 439 (0.60) X
PBs 1517 (2.06) 2861 (3.89) | 647 (0.88) | 262 (0.36) | 176 (0.24)

Table 2.2: Distribution of temporal relations between events expressed by the re-
spective morphological types in the development testing set after the transitive clo-

sure.

TOS Verbs Nouns | Adjectives PB

TOS | 221 (10.7) X X X X

Verbs | 432 (20.8) | 737 (35.5) X X X

Nouns | 32 (1.5) 104 (5.0) | 121 (5.8) X X

Adj. 61(2.9) 22 (1.1) 5(0.2) 34 (1.6) X
PB 24 (1.2) 182 (8.8) | 56 (2.7) 4(0.2) 40 (1.9)

Table 2.3: Distribution of temporal relations between events expressed by the re-
spective morphological types in the original development testing set (before the

transitive closure).
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schemata, we also annotate inter-sentential relations (between adjacent sentences).
Note that the scheme for relative ordering of events is able to capture each of the
13 Allen’s relations. However, it is not able to express all relations derived from
this basic set e.g. by logical disjunction.

To our best knowledge, the only scheme that is in almost every aspect more
general than our approach is TimeML [65] mainly because it classifies events to
groups (roughly corresponding to their lexical aspect). It also features a functional
approach toward capturing the meaning of time expressions but we have not been
able to determine how does the functional system look like (in the examples the
authors present, the compositions are underspecified). It is also obvious that only
some indexical time expressions are represented by functional compositions while
other are only assigned their extension (calendrical value).

Another difference between our approach and the cited work is that our schema
extends the existing deep—syntactic representation that already contains much of
the information that other approaches annotate from scratch.
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Chapter 3

Automatic Analysis of Temporal
Relations

In this chapter we present the results achieved by our system of automatic analysis
of temporal relations for Czech. The chapter is structured as follows: Section 3.1
introduces previous research in the field. Section 3.2 provides a brief overview of
relevant points in the Czech morphologic and syntactic system. The so—called “Re-
cursive Temporal Principle” (RTP), the core algorithm of the system, is described
in Section 3.3. Section 3.4 discusses the metrics we use to evaluate the perfor-
mance of the system. The main Section 3.5 presents the respective corrections
and extensions to the RTP that yield the final system of automatic analysis whose
temporal expression processing part is described in Section 3.6 in greater detail.
Section 3.7 compares our results to the related work and concludes the chapter.

3.1 Introduction

The work on the automatic analysis of temporal relations is closely related to the
annotation schemata introduced in Section 2.1.3.

Using TIMEX annotation scheme [51, 52], Mani and Wilson [44] attempted to
determine event ordering by a naive rule—based approach based on blind proximity
propagation of the extensions of time expressions that occur in a text (the event
ordering is then given by the ordering of these extensions). They were able to ob-
tain 59.4% accuracy on a small testing set of 8,505 words from New York Times
articles and transcripts from Voice of America. Later, Mani et al. [42] trained de-
cision tree for the problem of anchoring events to reference times yielding 80.2
F-measure. Extending the approach to deal with temporal relations between events
within TimeML framework, Mani et al. [43] used a Maximum Entropy classifier
on the union of the Time-Bank corpus [64] and the Opinion Corpus. They used
event features such as aspect, tense, negation, modality etc. The classifier yields
results as high as 93% accuracy which is significantly higher than the performance
of a baseline rule-based approach they present. Another work related to TimeML
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framework is that of Boguraev and Ando [3] who trained a classifier on Time-
bank corpus for event anchoring for events and times within a single sentence that
yielded 53.1 F-measure.

Schilder and Habel [71] used a set of rules (implemented as a cascade of Fi-
nite State Transducers) to anchor events expressed by verbs and nouns in German
financial texts to time expressions. They were able to achieve 84.49 accuracy.

Li et al. [39] used a rule-based approach to determine event ordering in Chinese
texts within a single sentence based on presence of temporal connectives (before,
after). They approach yielded approximately 93% accuracy but its coverage was
very low. Later, Li et al. [40] also used several machine—learning techniques for
complex determination of temporal relations between events and achieved 78-88%
accuracy.

3.2 Linguistic Prerequisities

To ease the understanding of the subsequent text, we give a very brief overview of
the relevant points regarding morphologic system of Czech (which is substantially
different from, for example, English tense morphology). We also introduce the
notion of “content clauses” — a basis on which the RTP is formulated.

3.2.1 Morphology

In Czech, a verb bears either perfective or imperfective aspect. The former corre-
sponds primarily to a complex event (taking place in a single time point), the latter
corresponds primarily to a processual event (event or state with a time duration).
The aspect information is therefore partly encoded lexically (in contrast to English
where it is encoded purely gramatically), see Section 2.1.1. The following example
demonstrates the difference:

Petr délal domdci vikol. (Petr was doing his homework.)
Petr udélal domdci vikol. (Petr has done his homework.)

A finite verb bears one of the three basic tenses — past, present or future. There
are no perfect tenses. A perfective verb can only bear past or future tense.

3.2.2 Content Clauses

The division between content and non—content clauses represents an alternative
classification to the classification based on sentence constituents. The classification
criterion is the relationship between the considered clause and its governing clause.
Some classical grammars ([20, 30]) consider this division secondary to the primary
classification according to sentence constituents, other studies argue for its primary
position ([77, 78]).
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Roughly speaking, content clauses correspond to indirect speech and some sim-
ilar types of clauses. Object clauses form the core of content clauses but there are
also content clauses among subject and attributive clauses. Classical grammars
often try to define the content clause based on whether the clause expresses the
so—called relative time (the tense is related to the tense of the governing clause) in
contrast to the absolute time (its tense is related to the time—of—speech). The Re-
cursive Temporal Principle described in the next section represents correction and
generalization of this simplified distinction. However, if the content clauses were
defined based only on their temporal properties the entire principle would be a tau-
tology (or more precisely, the definition itself). See Panevova [59] for the detailed
analysis of this notion and an attempt to provide an independent classification of
content clauses. See also HajiCov4 et al. [27] for a discussion on the validity of the
described classification for English.

3.3 Recursive Temporal Principle

RTP can be described as follows: The morphological tense of a finite verb — past,
present, future — determines its temporal relation — precedence, overlap (i.e. at least
one common point), posteriority — with its reference point.

e The reference point of the matrix clause of the sentence is the time—of—
speech of the sentence.

e The reference point of a content clause is the point of the event of its gov-
erning clause.

e The reference point of a non—content clause is (recursively) the reference
point of its governing clause.

For example, consider the sentence

Honza vekl,Ze Petr nasel veSent, které Marie schvaluje.”
(lit. Honza said that Petr found solution that Marie approves.)

whose TGTS is shown in Figure 3.1 (the clause headed by “najit” (find) is a con-
tent clause, the clause headed by “schvalovat” (approve) is not). According to
RTP

e ekl precedes time—of—speech, thus
rekl.s (=rekl.e) < tos

e nasel precedes rekl, thus
nasel.s (=naSel.e) < Fekl.s (=rekl.e)

e schvaluje is simultaneous (overlaps) with Fekl, thus
schvaluje.s < Fekl.s (=Fekl.e) < schvaluje.e
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fici (say)
functor: PRED
tense: past, aspect: complex

Honza (John) najit (find)
functor: ACT functor: PAT
tense: past, aspect: complex

Petr (Peter) feSeni (solution)
functor: ACT functor: PAT

schvalovat (approve)
Sfunctor: RSTR
tense: present, aspect: processual

Marie (Mary)
functor: ACT

Figure 3.1: TGTS representing the sentence “Honza fekl, Ze Petr naSel feSenti, které
Marie schvaluje.”.

As the annotation of content clauses is not part of TR, we take content clauses
as identical to object clauses. As shown in Section 3.5, this simplification did not
cause any additional errors.

3.4 Evaluation Metrics

The evaluation of the performance of the presented system is based on the com-
parison between the reference (annotated test set) matrix and the hypothesis matrix
of temporal relations for the respective discourses (WSJ articles). The transitive
closure of both is computed before the evaluation takes place.

We compute precision P and recall R defined as
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_ #Correct
~ #Hypothesis
#Correct
#Reference

where #Correct denotes the number of correctly determined relations, # Hy—
pothests is the number of determined relations and # Re ference is the number of
relations within annotation.

A relation between two points (p and q) is considered correct if its value (i.e.
one of <, X, >, >, =) is exactly the same within the hypothesis and the reference.
If the hypothesis contains a weak relation (<,>) instead of the (correct) corre-
sponding “strong” relation (<,>, or =) we call the result “weakly correct”. We
denote P,, and R, the versions of P and R that consider weakly correct relations
as correct.

By default, if p or ¢ is marked as distributive and unrecognized as such or is
part of an unrecognized plan the relation is considered incorrect. We also denote
Py and Ry the versions of P and R that do not take these markers into account.
We provide these supplementary metrics because we believe that providing a weak
(defensive) analysis or a correct analysis on an unrecognized plan or distributive
marker is still an achievement that should be taken into account. On the other hand,
it is obvious that in these cases the system did not succeed entirely.

Finally, P, and R,y combine both aspects and are therefore the most per-
missive metrics. We also list F-measure (F, I, Fy and F,,; ) for the respective
metrics in the evaluation tables.

R =

3.5 Automatic Analysis

In this section we list the respective rules used in the system of automatic analy-
sis of temporal relations together with their performance. The rules are divided
into two groups: those that correct the errors produced by the RTP are listed in
Section 3.5.1 and those that extend it are listed in Section 3.5.2. Section 3.5.3 dis-
cusses unresolved issues (either errors or types of relations we were not able to
determine).

Table 3.1 gives complete overview of the system performance on the develop-
ment testing set: the unrefined RTP baseline, the performance with all rules on and
the contribution of each respective rule by switching it off and providing difference
to the all-on state. We do not provide difference of each single rule against the RTP
baseline because the rules are not independent — application of some of them re-
quires prior application of others to yield correct results. The rules are described
in the following subsections.

Table 3.2 list the overall performance of the system on the evaluation testing
set. As we were able to process deverbative adjectives and nouns only to a limited
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extent (see Section 3.5.2) we also report the performance measured only on verbs
in Table 3.3.

3.5.1 Corrections to RTP
Direct Speech

If a sentence is part of a direct speech segment its reference point (i.e. the reference
point of its matrix verb) obviously is not the time—of—speech point (as assumed
by the unrefined RTP) but rather the speech verb introducing the direct speech
segment. A TGTS from PCEDT - one per sentence — provides by itself no clue as
to whether the sentence it represents belongs to a direct speech segment or not. To
correct the produced errors it is necessary to detect direct speech segments (based
on quotation markers) and speech verbs which we did.

Adverbial Aim Clauses

It turns out that — in contrast to the assumptions of the RTP — the behavior of adver-
bial clauses of aim conjoined by the conjunction “aby” (so that) is different from
the expected behavior of adjunct clauses. Consider the following example:

Pan Shidler vekl, Ze firma propustila zaméstnance, aby uSetfila.
(lit. Mr. Shidler said that company fired employees so that (it) saves (money).)

According to the RTP, the reference point of the event usetrila (saves') is the point
of rekl (said), but there is no relation whatsoever — the company may save the
money before or after Mr. Shidler made the statement. Instead, the event in the
subordinate clause follows the event — propustila (fired) — in the governing clause.

The reference point of an aim clause is therefore its governing clause itself
rather than the reference point of this governing clause as predicted by the RTP. In
this aspect, the behavior of the aim clauses is identical to the behavior of content
clauses rather than adjunct clauses. Moreover, because of the semantics of the aim
clauses, such a clause expresses posteriority to its governing clause. It seems that
this is the general behavior of the aim clauses. (However, one might argue that the
reference point is in fact still the point predicted by the RTP but because the clause
expresses no tense there is no temporal relationship. The posteriority relation to the
governing clause is then given only by the semantic properties of the conjunction
“aby”. In any case, it is important that the temporal relation can be drawn.)

The rule Aim Clauses reflects the proper behavior of this type of clauses.

Historic Present

Primarily, the verbal aspect corresponds to the duration of the denoted event: com-
plex verbs denote events taking place in one single time point (with certain level of

'This is actually a conditional in Czech so its tense meaning is not expressed.
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All P R F P, Ry, Fy
75.39 | 39.39 | 51.74 | 77.12 | 40.29 | 52.92

Without Rule dP dR dF | dP, | dRy, | dFy
Historic Present 3.17 | 091 | 1.54 | 321 | 091 | 1.54
Common Complex Anchor | 0.33 | 1.54 | 142 | 027 | 1.53 | 1.39
Zero Conditionals 231 | 0.15 | 0.68 | 236 | 0.15 | 0.69
Modality -0.06 | 1.03 | 0.88 | -0.10 | 1.03 | 0.87
Aim Clauses 269 | 021 | 0.83 | 243 | 0.03 | 0.61
Direct Speech 223 | 013 | 0.65 | 2.09 | 0.03 | 0.52
Infinitives -0.67 | 0.01 | -0.15 | -0.57 | 0.07 | -0.08
Inference (full) 025 | 043 | 043 | 0.14 | 0.37 | 035

Inference (underspecified) 0.16 | 034 | 033 | 0.12 | 0.32 | 0.30
Negated Complex Aspect 0.18 | 0.20 | 0.22 | 0.17 | 0.20 | 0.21

RTP 548 | 420 | 493 | 5.14 | 406 | 4.73
All Py Ry Fy Pyt | Ryy | Fuy
86.23 | 45.05 | 59.18 | 88.10 | 46.03 | 60.46
Without Rule dPy | dRy | dFy | dPyy | dRyy | dFyy
Historic Present 387 | 1.17 | 1.93 | 391 1.18 | 1.94
Common Complex Anchor | 0.39 | 1.76 | 1.63 | 033 | 1.77 | 1.62
Zero Conditionals 2.89 | 030 | 095 | 295 | 031 | 097
Modality -032 | 1.05 | 0.84 | -0.37 | 1.05 | 0.83
Aim Clauses 302 | 020 | 090 | 2.76 | 0.03 | 0.69
Direct Speech 251 | 013 | 0.72 | 238 | 0.03 | 0.59
Infinitives -0.07 | 037 | 031 | 0.05 | 0.44 | 0.39
Inference (full) 0.18 | 042 | 041 | 0.07 | 0.38 | 0.34

Inference (underspecified) | 0.10 | 0.34 | 032 | 0.05 | 0.32 | 0.29
Negated Complex Aspect 0.14 | 0.19 | 0.20 | 0.14 | 0.20 | 0.20

RTP 727 | 530 | 631 | 6.94 | 518 | 6.12

Table 3.1: The overall performance of the system with all rules on the development
testing set and the list of differences to this performance for each respective rule
off. The last row corresponds to the unrefined RTP algorithm (baseline).
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P R F | P, | Ry | Fy
RTP | 69.84 | 42.50 | 52.84 | 73.74 | 44.87 | 55.79
Rules | 71.28 | 47.40 | 56.93 | 74.28 | 49.40 | 59.33
Py | Ry | Fy | Pur | Ruy | Fuy
RTP | 75.07 | 45.68 | 56.79 | 79.28 | 48.24 | 59.98
Rules | 78.08 | 51.93 | 62.37 | 81.37 | 54.11 | 64.99

Table 3.2: The overall performance of the system with all rules on and off (RTP
baseline), respectively, on the evaluation testing set.

P R F | Py, | Ry, | Fy
RTP | 69.84 | 59.66 | 64.34 | 73.74 | 62.99 | 67.94
Rules | 71.46 | 66.49 | 68.88 | 74.46 | 69.28 | 71.77
Py | By | Fy | Pur | Rup | Fuy
RTP | 75.07 | 64.13 | 69.17 | 79.28 | 67.72 | 73.04
Rules | 78.28 | 72.84 | 75.46 | 81.57 | 75.90 | 78.63

Table 3.3: The overall performance of the system with all rules on and off (RTP
baseline), respectively, on the evaluation testing set taking only the verbs into ac-
count.
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approximation) while processual verbs denote events that last over a certain time
period. Occasionally, this correspondence is broken as is the case of the so—called
“historic present” (described in this temporal context already by Panevovd in [60]).
For example, in

Pan Shidler v rozhovoru ¥ikd, Ze spolecnost zméni svou investicni strategii.
(lit. Mr. Shidler in interview says that company will_change its investment
strategy.)

fikd (says) actually means Fekl (said) and the processual present is used for stylistic
reasons. Note, however, that sentences such as

Zprdva tikd, Ze Martin pfijede zitra.
(lit. Message says that Martin will_come tomorrow.)

are not instances of the historic present. We have attempted a correction of errors
that stem from this phenomenon for speech verbs only. To do so, it is necessary a)
to detect an animate actor of the speech verb, b) to ensure that the instance really
is a single point event and not a recurrent event as in

Maminka Fikd, Ze nemdm chodit do lesa.
(lit. Mum says that I should not go to forest).

As far as a) is concerned, we use a simple animate actor detection algorithm: if
the actor is not a proper noun it consults the Czech EuroWordNet ontology [80]
whether the actor is an animate entity. If the actor is a proper noun, the algorithm
scans for all the occurrences of that name within the discourse and checks whether
there is a description associated via apposition, e.g.

Tom Baker, president of Machinists District 751)

The description is again checked against the ontology. We have not found any
examples of the mentioned recurrent event usage in our domain of newspaper ar-
ticles (WSJ) so we have not even attempted to fulfil the second condition. The
current solution is therefore a domain—specific rule.

Negated Complex Verbs

Another case where the verb’s aspect may not correspond to the nature of the event
is the negation of a complex verb:

Boeing zdsilku zatim nedostal.
(lit. Boeing package(accusative) so_far not_got.)
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obdrzet (to receive) is a complex verb but its negation in this context denotes a
progressive state. However, in context such as

Boeing zdsilku véera v 16:00 nedostal.
(lit. Boeing package(accusative) yesterday in 16:00 not_got.)

the event is still taking place in a single point (16:00 yesterday). Currently, we
detect the presence of the specific adverbs such as zatim or dosud (so far) to cor-
rect this type of errors.

Conditionals

Although the conditional in Czech has two sets of forms (past conditional and
present conditional), this distinction is not present in the annotation of the PCEDT
corpus. The information on the tense of a conditional expression — required by
the RTP — is therefore not available. Worse yet, as the autosemantic part of the
conditional expression is identical to the ordinary past tense, the tense attribute
of the conditionals in the PCEDT corpus is incorrectly set to past. This naturally
produces many errors.

The decision on the proper “content” tense of the event denoted by a condi-
tional seems to be hard. Consider the following examples:

o (future) Ty projekty jsou velké, ale nesli bychom do nich sami.

(lit. Those projects are big but (we) would_not_go into them alone.)
e (present) Nezdd se, Ze by stdavka méla néjaky efekt.
(lit. It_does_not_seem that strike would have any effect.)

o (past) Prisel by, ale ona nechtéla.

(lit. He_would_come but she did_not_want (him to).)
We were unable to find any reliable? principle that would allow us to distin-
guish between the respective cases. TGTSs of PDT distinguish at least between
past conditionals and present® conditionals. However, this distinction is not present

in PCEDT trees. We therefore do not determine any relation when considering a
conditional. The rule is denoted as Zero Conditionals.

3.5.2 Extensions to RTP
Common Complex Anchor

If the reference point of a present processual verb (A) is again a processual verb
(B) it is not possible to determine any relations in terms of the starting and the

Mt is possible to set, for instance, future defaults and gain a higher F-measure as the precision loss
is less than the recall gain but we have decided not to as the rules should be as reliable as possible.
3Present conditionals subsume conditionals both with present and future meaning.
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ending points of the two events because they may overlap in a variety of ways. If
B is in the present tense we have tried to extend RTP by taking the reference point
of B (C) as the reference point of A. If C' is again a processual present verb we
use its reference point (D) and so forth. For example, in

Pavel vekl, Ze si mysli, Ze pracuje dobre.
(lit. Pavel said that he thinks that he works well.)

this principle allows us to determine the overlap relation between “pracuje” (works)
and “Fekl” (said).

We have encountered no errors due to this extension. A potential counterex-
ample would consist in the possible intransitivity of the overlap relation.

Modality

Let us consider the situation where an active* modal verb M is associated with
an infinitive verb V' whose reference point (according to the RTP) is R. In this
situation, M expresses the tense of the compound M — V expression whereas V'
expresses the aspect. We have tried to identify the cases where a relation between
V and R can be drawn for a complex V.

A reliable determination does not seem to be possible for the past tense of M
“moci” (can), “mit” (should), “chtit” (want) and “smét” (may) probably as the fol-
lowing examples demonstrate:

(Dnes) fekl, Ze na vychdzku mohl/mél/smél/chtél vyrazit véera/zitra.
(He said (today) that he could/should//might (have)/wanted (to) go for a walk
yesterday/tomorrow.)

All variants of the sentence are plausible’ but the relation between “Fekl” and
“vyrazit” differs and cannot be determined without the respective adverbs. An
exception is the modal verb “muset” (must) whose past tense seems to always
indicate that V' precedes R.

Present or future tense of all the modal verbs seems to indicate that V' follows
R:

Petr miiZe/md/chce/smi/must prijit.
(Petr can/should/wants(to)/may/must come.)

We have not found any real counterexample to this rule in our corpus, the pre-
cision decrease is caused by relations that are part of plan, i.e., there are more

*In Czech, a modal verb is an ordinary verb from the viewpoint of morphology and it is conju-
gated normally.
SHowever, it is true that the variant with “sm&l” and “zitra” sounds a bit strange.
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instances where the “normal” relationship between V' and R is broken as in

(Jint stavi a proddvaji.) My chceme postavit a ponechat si.
(Others build and sell.) We want to build and keep.

Infinitives

We have discussed the relations between finite verbs (and infinitives surrounded by
auxiliary finite verbs) so far. Let us consider the situation where an infinitive (/) is
dependent on an autosemantic finite verb (F'). Our hypothesis is as follows: If [ is
complex then F'.s < I.s. For example, in

“PriSel ndm pomoci.”
(He came to help us.)

Note that the hypothesis obviously does not hold if I is processual as the following
examples demonstrate:

“Odmitl naddle pracovat.”
(He denied to work further.)

“To délnikiim pomdhd vyvijet tlak na spolecnost.”
(That helps workers to put pressure on the company.)

We are aware that this is quite an ad-hoc hypothesis, nevertheless we have not
found any real counterexample to it in the corpus. In spite of that, this rule actually
decreases the resulting F-measures numbers. As for modalities, the precision loss
is caused by iterative verbs (parts of plans).

Temporal Clauses

Czech temporal subordinate clauses determine the relative ordering relation of the
expressed event not only with respect to its reference point (according to the RTP)
but also to its governing clause. TGTS captures various types of temporal comple-
ments such as “before”, “after”, “parallel to” etc. For certain types of complements,
this information can be quite straightforwardly used to determine relations between
the head verb of a temporal subordinate clause and the head verb of its governing
clause.

This rule brought only a small F-measure increase due to the small number of

affected temporal clauses. The rule is denoted as Temporal Clauses in Table 3.1.
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Inference from Time Expressions

As shown in Section 2.2.2, the annotation scheme provides a functional approach
to capture meaning of various time expressions. In order to infer relative ordering
relations based on these determinations it is necessary to construct the functional
compositions and to compare the respective compositions. Both issues are de-
scribed in greater detail in Section 3.6.

The Inference (underspecified) row in Table 3.1 corresponds to the comparison
of time specifications without the knowledge of the exact value of time—of—speech
point as described in Section 3.6. The Inference (full) row lists the results for the
comparison where this value is known which therefore makes it possible to draw
more precise estimates (exact values in most cases). The performance increase is
low due to the fact that only the inferences based on time expressions within one
sentence or in adjacent sentences may be drawn as the annotation does not contain
relations between events across more than one sentence — we would not be able
to evaluate full analysis based on time expressions. There are only a few adjacent
time expressions in the corpus in total.

Additionally, we also detect events expressed by nouns by the analysis of time
specifications (see below).

Non-verbal Events

We detect events that are expressed by a non—verb to a very limited extent only.
Firstly, every noun that has a temporal adverbial recognized as a time specification
attached to it is considered an event. For all these events we only draw the trivial
s < erelation.

Secondly, the morphological tag allows for detection of certain deverbative ad-
jectives. In Czech, there are two basic categories of deverbative adjectives: “active’
(corresponding to the English -ing verb form) and “resultative” (corresponding to
the English perfect verb form). Adjectives of the former category are marked by G
subtype in their morphological tag. A very small fraction of the adjectives of the
latter category (those corresponding to a transgressive verb form) is marked by M
subtype. For these adjectives, we draw s < e and s = e relations, respectively.

The overall effect of this extension is negligible so we do not list it as a separate
rule.

3.5.3 Unresolved Issues

Deverbative Adjectives and Nouns

Both the “active” and “resultative” form of adjectives (see the previous section)
seem to be counterparts of the subordinated attributive clauses. Unfortunately, a
reliable determination of a temporal relation for any of these adjectives does not
seem to be possible as the following examples demonstrate:
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e Rekl, Ze (namisto soucasné trosky) predd synovi prosperujici podnik. (=
podnik, ktery bude prosperovat)

(He said that (instead of the current ruin) he would pass a well-performing
company on his son.) (= a company that will perform well)

o Slibil ji, Ze jeji prosperujici podnik neprodd. (= podnik, ktery prosperuje)

(He promised her that he would not sell her well-performing company.) (=
a company that performs well)

e Policie prohldsila, Ze ukradené zlato bude navrdceno bance. (= zlato, které
bylo ukradeno)

(The policie announced that the stolen gold will be returned to the bank.) (=
gold that was stolen)

o Pred loupeZi slibil, Ze ukradené penize budou rozdéleny rovnym dilem. (=
penize, které budou ukradeny)

(He promised before the robbery that the stolen money would be distributed
evenly.) (= money that will be stolen)

The sentences are of the same pattern but the time meaning of the deverbative
items change in accordance with the context.

Exceptional Clauses

We have identified two interesting types of clauses that violate the RTP. The first
type is represented by sentences containing certain clauses where two different
tense forms could be used: the future and the present tense. Consider the following
example:

Otec chce synovi predat (namisto soucasné trosky) podnik, ktery prosperuje (=
bude prosperovat).

(lit. Father wants (on his) son pass (instead_of current ruin) company that
prospers (= will prosper).

Future tense corresponds to the “real” meaning of the clause predicted by the
RTP, whereas the present tense is a marked variant yielding incorrect results in the
context of the RTP.

The other case (described already by Panevova in [60]) is the so—called “com-
mentary” of the speaker as in

Pan Shidler rekl, Ze spolecnost chce odkoupit pozemky v Ohiu, které nyni vidda
pldnuje rozdeélit.

(lit. Mr. Shidler said that company wants (to) buy properties in Ohio that now
goverment plans (to) divide.)
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where the last subordinate clause is not part of the reported speech but rather a
commentary of the author of the article.
We do not see any feasible way to identify and correct these instances.

Iterative Events

As some of the described rules demonstrate, appurtenance of an event to a plan
leads to many errors in general because the nature of the described recurrent series
of events is different. It represents our greatest source of errors. A very common
situation looks as follows:

BPH Funding Co. béZné nejprve sloZi zdlohu a poté koupé pozemek.
(lit. BPH Funding Co. usually first will_ make deposit and then will_buy prop-
erty.)

where the future tense of both verbs wrongly suggests that the events take place
in the future.

The appurtenance of an event to a plan can also lead to aspect deviations where
the processual aspect of a verb can (but does not have to) be used to express itera-
tion of a complex event as in:

BPH Funding Co. béiné nejprve sklddd zdlohu a poté kupuje pozemek.
(lit. BPH Funding Co. usually first makes deposit and then buys property.)

where the respective verbs express instantaneous events in the single run of the
plan. (However, it is often not clear what the nature of an event in the single run is
and both variants seem to be plausible).

Iterative events can be detected by the presence of relevant temporal adverbs
such as obvykle (usually), casto (often), etc., but this handles only a little fraction
of (incomplete) parts of plans so there is essentially no improvement.

Remaining Errors and Unresolved Issues

The errors that remain after the application of all the described rules are caused
partly by counterexamples to RTP we were unable to correct as described in Sec-
tion 3.5.3, partly by (common) errors in the structure (or grammatemes) of the
underlying TGTSs and partly by the errors in the temporal annotation.

The rest of the unresolved types of relations are largely represented by infer-
ences based heavily on context and world knowledge. An automatic analysis of
these types of relations seems to be very difficult.
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3.6 Inference of Temporal Relations from Time Expres-
sions

In order to infer relative ordering relations based on time expressions it is neces-
sary to construct the functional composition and to compare the respective com-
positions. The former task is addressed by the parser, the latter by the inference
engine. Both are described in the subsequent sections.

3.6.1 Parser

The construction of the compositions is handled by a parser module that scans
TGTSs for occurrences of subtrees that are accepted by a tree grammar. The func-
tional composition is then built incrementally.

The tree grammar consists of rules whose left-hand side is a non-terminal
representing a dependency subtree and the right—hand side represents the head of
that subtree and its immediate descendants — children. A child (or the head) might
be either a terminal node (corresponding to a node in the parsed tree) or a non—
terminal defined by another rule. In this way the grammar makes it possible to
process layers (a head and its children) of the time expression subtree one by one.
There can be an interpretation function associated with each rule. It combines the
interpretations — functional compositions of the respective non—terminal children
with the lexical and structural information contained in the processed layer to yield
the interpretation for this layer.

An example of the grammar is shown in Figure 3.2. S, FRCT, EX P and
PART are non—terminal symbols representing the respective subtrees (.S is the
start symbol and PART is EX P, recursively). part, preposition, numerator,
denominator, modifier, ordinal, count, quantifier represent nodes in the
parsed TGTS that fulfill corresponding lexical conditions (see below), most of
them are optional. InterpretVaguePart, InterpretFraction and InterpretCore
are interpretation functions creating the functional compositions that correspond to
the information provided by the given layer. For example, InterpretVaguePart
applies the partV ague function (see Section 2.2.2) on the interpretation (of type
t_interval) resulting from the subtree F'RC'T" and supplies the second argument
part.

To illustrate how the parsing works consider the TGTS subtree shown in Fig-
ure 3.3 that corresponds to the adverbial phrase

na zacdtku druhé poloviny p¥istiho mésice
(lit. in (the) beginning of (the) second half (of the) next month)

Figure 3.4 captures the parsing process: .S is the starting symbol of the gram-

mar so its righthand side must match the subtree. And it does: part matches
the word “beginning”, preposition matches “in” and the remaining branch must
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S (interpreted by InterpretVaguePart):

part

RN

preposition ~FRACT

FRACT (interpreted by InterpretFraction):

denominator

RN

numerator EXP

EXP (interpreted by InterpretCore):

entity

modifier relative sp. ordinal sp.  count quantifier PART (=EXP)

Figure 3.2: Examples of rules recognized by the tree grammar. The horizontal
ordering of nodes is arbitrary — it is not related to the surface ordering of the re-
spective lexical units.

match the subtree determined by F'RAC'T (the interpretation waits till the interpre-
tation of FRAC'T is available). Again, numerator matches “half”, denominator
matches “second” and the remaining branch must match the subtree determined by
EX P and so on. When the entire subtree is matched we can proceed with inter-
pretations in the bottom—up manner. Firstly, InterpretCore interprets the lowest
subtree (E' X P) corresponding to “next month” and yields the following composi-
tion:
findEntityType(t, month, 1)

This composition is passed to the Interpret Fraction that yields

part ByFraction( find EntityType(t, month,1),1,2,1,1)
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zacatek (beginning)
functor: TWHEN

T

na (in) polovina (half)

hidden functor: APP
druhy (second) meésic (month)
functor: RSTR functor: APP

/

pristi (next)
functor: RSTR

Figure 3.3: A simplified TGTS representing the adverbial phrase “na zacdtku

druhé poloviny pristiho mésice”. The English auxiliaries (the, of) are not displayed
as they are not present in the Czech sentence.

and, finally, InterpretV ague returns

partVague(
part ByFraction( findEntityType(t, month,1),0,1,1,2),

beginning)

The presented example is a simplification of the actual grammar. It is clear that
a time expression does not have to contain all the described layers. For example,
the phrase

na zacdtku pristtho mésice
(lit. in (the) beginning (of the) next month)

should also be accepted by the grammar. Therefore, there can be multiple right—
hand side alternatives for a single non-terminal on the left-hand side, one of which
may be just a simple transition to another non—terminal (bypassing the given tree
layer). The actual form of the rules from Figure 3.2 is as shown in Figure 3.5. Note
that because the top layers may be missing the preposition node has to be repeated
in every rule.

The set of allowed lexical items for a given terminal node in the grammar is
specified by an associated procedure, it is therefore very general. The grammar also
allows for specification of additional constraints on the children in the respective

53



S (interpreted by InterpretVaguePart):

part: zacdtek (beginning)

preposition: na (in) FRACT

FRACT (interpreted by InterpretFraction):

denominator: polovina (half)

numerator: druhy (second) EXP

EXP (interpreted by InterpretCore):

entity: mésic (month)
relative spec.: pristi (next)

Figure 3.4: Parsing process of the TGTS subtree shown in Figure 3.3 by the gram-
mar from Figure 3.2.

rules such as surface order, logical conditions on their co—occurrence etc. Addi-
tionally, because some embedded subtrees cannot be properly interpreted without
the knowledge of structure that embeds them, parameters make it possible to pass
parsing information “top—down”.

The majority of simple expressions such as “two days ago”, “tomorrow”, ”in
the beginning of the next week”, “in 1987”, “in the end of the last summer” etc.
are accepted. Appendix A lists the complete grammar.

Performance Evaluation

The evaluation of the performance of the time expression identification system is
not straightforward. Our annotation schema does not contain a level of “shallow”
time expression recognition which would allow us to count the number of recog-
nized time expressions. For example, consider the sentence “The meeting of the
presidents will take place on Monday.” appearing in a newspaper article. The ex-
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FRACT or part

TN

preposition ~ FRACT

optional
FRACT:
EXP or denominator
preposition  numerator EXP
optional optional
EXP (interpreted by InterpretCore):
entity

prep. modifier relative ordinal count quantifier PART
opt. opt. opt. opt. opt. opt. opt.

Figure 3.5: Actual form of the example rules recognized by the tree grammar.

pression on Monday anchors four time points — the starting and the ending points of
meeting and take place and only the corresponding four specifications are present
in the annotation. Moreover, the determination of the correct functional compo-
sition (findI Entity By N ame(t, Monday, 1) in this case) requires pragmatic in-
ference — we have to know that we speak of the next Monday. The evaluation is
therefore based on the complete specifications rather than the separate time expres-
sions. We measure the performance of the time expression identification system by
the following metrics. Precision P denotes the ratio of the correctly determined
specifications and all the determined relations. Recall R denotes the ratio of the
correctly determined specifications and all the existing (annotated) specifications.
In order to somehow demonstrate the “shallow time expression recognition ca-
pability” of the system we also introduce the versions of precision and recall P,
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P R F | p | R | F|
| 6533 | 44.95 | 53.25 | 82.66 | 56.88 | 67.38 |

Table 3.4: The performance of the time expression recognition system.

and R, respectively that: a) take misplaced functional compositions (i.e. compo-
sitions which are correct but attached to an incorrect time point) as correct and
b) take underspecified compositions as correct (e.g. part(X, Monday, 1) instead
of findl EntityByN ame(t, Monday,1)). We also compute the corresponding
F-measures F' and F),.

Table 3.4 lists the results. The errors are caused mainly by the errors in the
TGTS annotation.

3.6.2 Inference Engine

The purpose of the inference engine is to compare time specifications in order
to be able to determine relative ordering relation between the corresponding time
points without having to know the precise value of time—of—speech. Two time
specifications are compared against each other by tracing the composition “inside—
out” (from the innermost function) and using a “beam” structure to keep record of
the distance (or absolute value) of the outcome of the last visited function to the
source interval or point. If the source point is a variable only the estimates are
provided while tracing the composition. If the compositions are comparable (e.g.,
the highest estimate carried by the beam of one composition is lower or equal to
the lowest estimate carried by the beam of the other composition) then the ordering
of the events anchored by the corresponding time expression can be inferred.

Let us present the inference mechanism in greater detail. After a function has
been processed, the beam structure carries the following information (FE denotes
the extension of the processed function — set of intervals in general):

e Lower and upper estimate of the lowest (leftmost) point of the resulting set of
intervals® relative to the source input interval (constructed by a constructor)
or point variable, i.e., the innermost argument in the functional composition.

e Lower and upper estimate of the highest (rightmost) point of the resulting
set of intervals relative to the source input interval or point variable.

e The absolute time versions of the items described above which are only com-
puted if the information is available. In general, they are set to exact time
points using CPAN DateTime package’ if possible. As their use is similar to

%In general, a function returns a set of intervals such as series family of functions. However, in
most cases we only deal with a single interval or a time point.
"by Dave Rolsky
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their relative estimate counterparts, we do not include them in the description
list.

Lower and upper estimate of the size of the resulting time extension if it is a
single interval.

Indication of whether the lowest and highest point, respectively, of the re-
sulting set of intervals lie on a boundary of an entity such as day, week etc.
A value of these items is a set of entities on whose boundaries the given point
lies. It is only present, if it applies for both the lower and upper estimate for
the given point.

This information may in general allow for a more precise estimate of extension
of the next (outer) processed function.
To illustrate the inference process, let us consider the following sentence:

My mother will visit us no sooner than September of next year but my father
will come this Friday.

We will show how the inference engine determines the relative ordering of the
events (without the knowledge of time—of—speech of the utterance). The parser
(interpreter) produces the following temporal specifications:

visit.s(= visit.e) >

start(partI ByName( find EntityType(t, year, 1), September, 1))

come.s(= come.e) € findI EntityByName(t, Friday, 1)

The extension of the first functional composition is estimated as follows:

1.

findEntityType is estimated. The estimate of the leftmost point (begin-
ning of the next year)) is set to the interval

(0, entity Range(year, 1))

relative to ¢ as the next year may start from almost immediately after ¢ (if ¢
is the last moment of a year) to almost a year from ¢ (if ¢ is the first moment
of a year). Similarly, the estimate of the rightmost interval is set to

(entity Range(year, 1), entity Range(year, 2))

The size the interval is set to entity Range(year, 1) as it represents exactly
one year. The boundary markers are also set to the beginning and end of a
year.
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2. partl ByName is estimated, the estimate structure (beam) from the preced-
ing point is supplied as its first parameter. The beam is updated as follows:
Since we know that the interval the September part is taken from is a calen-
drical year, the estimate of the leftmost point is shifted by 9 months to

(entity Range(month,9),
entityRange(year, 1) + entity Range(month,9))
whereas the estimate of the rightmost point is shifted by 10 months to
(entity Range(month, 10),
entity Range(year, 1) + entity Range(month, 10))
Again, the information that the outcome represents a month is recorded.

3. The start function is processed which consists simply in taking the leftmost
point from the input beam as the estimate and recording that the outcome is
a point. The final extension estimate is therefore

(entityRange(month,9),
entity Range(year, 1) + entity Range(month,9))
The extension of the second functional composition is estimated to lie within
(0, entity Range(day, 8)

Comparing the estimates of the extensions of the two functional compositions
it is clear that the second one is always less than the first and because “visit” takes
place after the interval of the first composition we may draw the desired inference:

come.s(= come.e) < visit.s(= visit.e)

See Appendix B for detailed description on how respective functions are esti-
mated.

3.7 Conclusion

The results achieved by our system of temporal analysis have shown that the RTP
provides vast majority of the gained information. In comparison to the RTP back-
bone, the respective rules that correct and extend the RTP do not affect the over-
all performance very significantly. Nevertheless, we believe that this experiment
showed how far a reliable rule-based approach can go. Moreover, some of the
rules them are of linguistic relevance per se.
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The inferencing mechanism based on the meaning of time expressions is one
of the key aspects of our temporal analysis scheme although it turned out that it is
quantitatively rather insignificant. Although the inferencing subsystem deals with
a variety of simple expressions many feasible issues are still not implemented such
as the analysis of ranges (from—to), disjunctions, comparison between standard and
derived entity time types (e.g. between calendric and fiscal years), etc.

The comparison to the related work introduced in Section 3.1 is difficult as the
reported success rates are measured on different testing data, use different annota-
tion schemata, annotation principles and evaluation metrics. Nevertheless, it seems
clear that machine-learning approaches can highly increase the performance of a
system of automatic temporal analysis. Mani et al. [43] is a nice example of this.
Many of the problems mentioned in Section 3.5.3 (conditionals, deverbative adjec-
tives etc.) as well as many other unresolved relations could be possibly resolved
by such an approach.

As far as inferencing from time expressions is concerned, there has been a
substantial previous work on the subject. Some approaches such as [45] or [71]
work only with extensions of time expressions and are therefore unable to process
discourses whose time-of-speech is unknown. The only schema we are aware of
that does deal with time expressions intensionally (via functional compositions) is
TimeML [65]. The annotation scheme introduces time functions for some indexical
expressions but to our best knowledge there is no implemented inferencing engine
that would compare the functions directly. Systems that extract and normalize
time expressions from raw text (for example [82]) usually achieve high F-measure
scores. As explained in Section 3.6.1 these results are not directly comparable
to the performance of our system as they do not fully address the issue of the
attachment of the information provided by a time expression to respective events
nor they address pragmatic inference.

59



Chapter 4

Text Generation within a
Machine Translation Framework

In this chapter we present a generation component of a transfer—based Czech—to—
English machine translation system. The system itself is still under development.
The transfer layer is represented by the tectogrammatical representation. The chap-
ter is structured as follows: Section 4.1 introduces our model and previous research
on generation from various sorts of abstract structures. Section 4.2 describes which
PCEDT data were used and how they were modified. The generation process itself
is subject of Section 4.3 and the achieved results are listed in Section 4.4. Sec-
tion 4.5 concludes the chapter.

4.1 Introduction

Syntactic models for language are being reintroduced into language and speech
processing systems thanks to the success of sophisticated statistical models of pars-
ing [8, 13]. Representing deep syntactic relationships is an open area of research;
examples of such models are exhibited in a variety of grammatical formalisms,
such as Lexical Functional Grammars [7], Head-driven Phrase Structure Gram-
mars [61] and the tectogrammatical representation of the Functional Generative
Description (see Section 1.1.1). For the purpose of high level transfer—based ma-
chine translation frameworks and also given the large number of publications on
the analytical processes for deriving deep representation (e.g., dependency parsing
and verb frame prediction) we believe it is important to show that surface structure
and sentences can be recovered from abstract deep representations.

Augmenting models of machine translation (MT) with syntactic features is one
of the main fronts of the MT research community. The Hiero model has been the
most successful to date by incorporating syntactic structure amounting to simple
tree structures [9]. Synchronous parsing models have been explored with moderate
success [83, 66]. An extension to this work is the exploration of deeper syntactic
models, such as TR. However, a better understanding of the synthesis of surface
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structure from the deep syntax is necessary.

We present a generative model for surface syntax and strings of English given
tectogrammatical trees. Sentence generation begins by inserting auxiliary words
associated with autosemantic nodes; these include prepositions, subordinating con-
junctions, auxiliary verbs, and articles. Following this, the linear order of nodes is
modelled by a similar generative process. These two models are combined in order
to synthesize a sentence. The insertion of auxiliaries and surface ordering takes
place within TGTSs using hidden nodes.

We have also preliminarily experimented with a variant of the model where the
surface ordering phase is carried out on the analytical representation layer. A TGTS
with inserted auxiliaries is transformed to the analytical tree using a simple list of
tree transformations written as a program recognized by the interpreter described in
Chapter 5. However, the quality of the resulting analytical trees is not good and the
final results are much worse that those for the main model as listed in Section 4.4.
We have therefore decided to abandon this variant.

4.2 Preprocessing Tectogrammatic Data

In order to evaluate the efficacy of the generation model, we construct a dataset
from both manually annotated data and automatically generated data of PCEDT
(see Section 1.2). The information contained in the originally manually annotated
TGTSs all but specifies the surface form. We have modified the annotated data
by removing all features except those that could be directly transferred across lan-
guages. Specifically, we preserve the following features: lemma, functor, subfunc-
tor and (Penn Treebank) morphological tag which is part of the PCEDT.

Although the morphological tag is definitely not part of the pure TR, we be-
lieve we would be able to obtain it with high accuracy in the Czech—English trans-
fer process as it only encodes simple English morphological properties that are
(with the exception of the verb gerund form) encoded by TGTS grammatemes .
Nevertheless, we have not tested this assumption.

Subfunctor information is not part of PCEDT but as it is crucial for determina-
tion of the complete meaning of a given phrase (and the associated preposition) we
have generated subfunctors automatically according to rules listed in Appendix C.

4.3 Generative Process

In this section we describe the generative process that inserts the synsemantic aux-
iliary words, reorders the trees, and produces a sentence. Our evaluation will be
on English data, so we describe the models and the model features in the context
of English. While the model is language independent, the specific features and the
size of the necessary conditioning contexts is a function of the language.

Given a TGTS T, we wish to predict the correct auxiliary nodes A and an
ordering of the words associated with {T"U A}, defined by the function f({T'UA}).
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The functions f determine the surface word order of the words associated with
nodes of the auxiliary-inserted TGTS: N = {T'U A}. The node features that we
use from the nodes in the TGTSs and AT's are: the word lemma, the part-of-speech
(POS) tag, the functor and the subfunctor. The objective of our model is:

arg njafx P(A, f|T) 4.1)
= arg r%afx P(f|A,T)P(A|T) 4.2)
~ arg mJ.;;LxP(f\T, arg max P(A|T)) (4.3)

In Equation 4.3 we approximate the full model with a greedy procedure. First, we
predict the most likely A according to the model P(A|T"). Given A, we compute
the best ordering of the nodes of the tree, including those introduced in A.

There is an efficient dynamic-programming solution to the objective function in
Equation 4.2; however, in this work we experiment with the greedy approximation.

4.3.1 Insertion Model

The specific English auxiliary nodes which are not present in TR include articles,
prepositions, subordinating conjunctions, and auxiliary verbs. For each node in the
TGTS, the generative process predicts which synsemantic word, if any, should be
inserted as a dependent of the current node. We make the assumption that these
decisions are determined independently.

Let T = {wi,...,w;,...,w;} be the nodes of the TGTS. For each node w;,
we define the associated node a; to be the auxiliary node that should be inserted
as a dependent of w;. Given a tree T', we wish to find the set of auxiliary nodes
A ={ay,...,a;} that should be inserted':

P(A|T) 4.4
=[[P(alas, ... ai1,T) (4.5)
~ H P(a;|T) (4.6)
~ [ Plailwi, wye) “.7)

Equation 4.5 is simply a factorization of the original model, Equation 4.6 shows
the independence assumption, and in Equation 4.7 we make an additional condi-
tional independence assumption that in order to predict auxiliary a;, we need only
know the associated node w; and its governor wg ;) 2

"Note that we include the auxiliary node labeled NOAUX to be inserted, which in fact means a
node is not inserted.

*In the case of nodes whose governor is a coordinating conjunction, the governor information
comes from the governor of the coordination node.
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We further divide the model into three components: one that models articles,
such as the English articles the and a; one that models prepositions and subordi-
nating conjunctions; and one that models auxiliary verbs. The first two models are
of the form described by Equation 4.7. Additionally, each model is independent of
the other and therefore up to two insertions per TGTS node are possible (an article
and another syntactic modifier). In a variant of our model, we perform a small set
of deterministic transformations in cases where the classifier is relatively uncertain
about the predicted insertion node (i.e., the entropy of the conditional distribution
is high).

The auxiliary verb insertion model is preliminary. We are unable to determine
correct modal auxiliary as the modality of a verb grammateme is not present in
the PCEDT data. Some of the remaining auxiliary verbs can be inserted based on
the tense, aspect (resultative or not) and negation of the verb but in general the
knowledge of the proper English tense is necessary for the determination of the
correct auxiliary (see Chapter 6).

Insertion Features

Features for the insertion model come from the current node being examined and
the node’s governor. When the governor is a coordinating conjunction, we use
features from the governor of the conjunction node. The features used are the
lemma, morphological tag, functor and subfunctor for the current node, and the
lemma, morphological tag, and functor of the governor.

11 P(ailwi, wy) (4.8)

:Hp(ai“ivtivfi)lgatgvfg) (49)

The left-hand side of Equation 4.8 is repeated from Equation 4.7 above. Equa-
tion 4.8 shows the expanded model for auxiliary insertion where [; is the lemma ,
t; is the morphological tag, and f; is the functor of node w;

4.3.2 Surface-order Model

The node ordering model is used to determine a projection of the tree to a string.
We assume the ordering of the nodes in the input TGTSs is arbitrary, the reordering
model proposed here is based only on the dependency structure and the node’s
attributes (words, morphological tags, etc.). In a variant of the reordering model,
we assume the deep order of coordinating conjunctions to be the surface order.

Algorithm 1 presents the bottom-up node reordering algorithm. In the first part
of the algorithm, we determine the relative ordering of child nodes. We maximize
the likelihood of a particular order via the precedence operator <. If node ¢; <
c;+1, then the subtree of the word associated with ¢; immediately precedes the
subtree of the word associated with c¢; 11 in the projected sentence.
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Algorithm 1 Subtree Reordering Algorithm
procedure REORDER(T, A, O) > Result in O
N —bottomUp(T U A); O —{}
for g € N do
bestScore < 0; og —{}
5: for C' —permutation of ¢’s children do
fori — 1...|C|do
s sx P(c; < ¢it1lciycivr,9)
end for
if s > bestScore then
10: bestScore <+ s; 04 — C
end if
end for
bestScore < 0; m«— 0
for i — 1...|bestOrder| do
15: S «— P(Cz <g = Ci+1lci70i+1yg)
if s > bestScore then
s < bestScore ; m <1
end if
end for
20: Insert governor ¢, after m'" child in 0g
O~ O0OUoy
end for
end procedure

In the second half of the algorithm (starting at line 13), we predict the position
of the governor among the previously ordered child nodes. Recall that this is a
dependency structure; knowing the governor does not tell us where it lies on the
surface with respect to its children. The model is similar to the general reordering
model, except we consider an absolute ordering of three nodes (left child, governor,
right child). Finally, we can reconstruct the total ordering from the subtree ordering
defined in O = {o1,...,0,}. The procedure described here is greedy; first we
choose the best child ordering and then we choose the location of the governor.

Reordering Features

Our reordering model for English is based primarily on non-lexical features. We
use the morphological tag and functor from each node as features. The two distri-
butions in our reordering model (used in Algorithm 1) are:

P(ci < citilci, ciy1,9) (4.10)
= (¢ < cip1lfis tis fivr tiva, fgotg) (4.11)
P(c; < g < ciyilei, civ1, 9) (4.12)
= P(c; < g < civalfisti, firr, tiv1, tg, fg) (4.13)

In both Equation 4.10 and Equation 4.12, only the functor and morphological
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tag of each node is used.

4.3.3 Morphological Generation

In order to produce true English sentences, we convert the lemma and morpho-
logical tag to a word form. We use John Carroll’s morphg tool® to generate Eng-
lish word forms given lemma/morphological tag pairs. This is not perfect, but it
performs an adequate job at recovering English inflected forms. In the complete-
system evaluation, we report scores based on generated morphological forms.

4.4 Empirical Evaluation

We have experimented with the above models on both manually annotated TGTSs
and automatically generated trees from PCEDT.

All models were trained on the PCEDT data set, approximately 49,000 sen-
tences, of which 4,200 were randomly selected as held-out training data, the re-
mainder was used for training. We estimate the model distributions with a smoothed
maximum likelihood estimator, using Jelinek—Mercer EM smoothing (i.e., linearly
interpolated backoff distributions). Lower order distributions used for smoothing
are estimated by deleting the rightmost conditioning variable (as presented in the
above models).

4.4.1 Insertion Results

For each of the two insertion models (the article model and the preposition and
subordinating conjunction model), there is a finite set of values for the dependent
variable a;. For example, the articles are the complete set of English articles as col-
lected from the Penn Treebank training data (these have manual morphological tag
annotations). We add a dummy value to this set which indicates no article should
be inserted.* The preposition and auxiliary model assumes the set of possible mod-
ifiers to be all those seen in the training data that were removed when modifying
the manual TGTSs.

The classification accuracy is the percentage of nodes for which we predicted
the correct auxiliary from the set of candidate nodes for the auxiliary type. Articles
are only predicted and evaluated for nouns (determined by the morphological tag).
Prepositions and subordinating conjunctions are predicted and evaluated for all
nodes that appear on the surface. We have experimented with different features
sets and found that the model described in Equation 4.8 performs best when all
features are used.

In a variant of the insertion model, when the classifier prediction is of low
certainty (probability less than .5) we defer to a small set of deterministic rules. For

3 Available on the web at:
http://www.informatics.susx.ac.uk/research/nlp/carroll/morph.html.

“In the classifier evaluation we consider the article a and an to be equivalent.
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Model Manual Data

Ins. Rules No Rules
Model Articles | Prep & SC | Articles | Prep & SC
Baseline N/A N/A 77.93 76.78

w/o g. functor 87.29 89.65 86.25 89.31
w/o g. lemma 86.77 89.48 85.68 89.02

w/o g. POS 87.29 89.45 86.10 89.14
w/o functor 86.10 85.02 84.86 84.56
w/o subfunctor || 87.49 88.65 86.62 88.20
w/o lemma 81.34 89.02 80.88 88.91
w/o POS 84.81 88.01 84.01 87.29
All Features 87.49 89.68 86.45 89.28
Model Automatic Data
Ins. Rules No Rules

Model Articles | Prep & SC | Articles | Prep & SC
Baseline N/A N/A 78.00 78.40

w/o g. functor 88.07 91.83 87.34 91.06
w/o g. lemma 87.53 90.95 86.55 91.16

w/o g. POS 87.68 91.86 86.89 92.07
w/o functor 86.01 85.60 84.79 85.65
w/o subfunctor 87.82 91.35 87.19 91.54
w/o lemma 81.28 91.03 81.42 91.33
w/o POS 85.53 91.08 84.69 90.98
All Features 87.87 91.83 87.24 92.02

Table 4.1: Classification accuracy for insertion models on development data from PCEDT
1.0. Article accuracy is computed over the set of nouns. Preposition and subordinating
conjunction accuracy (P & SC) is computed over the set of nodes that appear on the surface
(excluding hidden nodes in the TGTS — these will not exist in automatically generated
data). Models are shown for all features minus the specified feature. Features with the
prefix “g.” indicate governor features, otherwise the features are from the node’s attributes.
The Baseline model is one which never inserts any nodes (i.e., the model which inserts the

most probable value - NOAUX).
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Model Manual Data

Coord. Rules No Rules

All | Interior | All | Interior
Baseline N/A N/A 68.43 | 21.67
w/o g. functor || 94.51 | 86.44 | 92.42 | 81.27
w/o g. tag 93.43 | 83.75 |90.89 | 77.50
w/o c. functors || 91.38 | 78.70 | 89.71 | 74.57
w/o c. tags 88.85 | 72.44 | 82.29 | 57.36
All Features 9443 | 86.24 | 92.01 | 80.26
Model Automatic Data

Coord. Rules No Rules

All | Interior | All | Interior
Baseline N/A N/A ] 69.00 | 21.42
w/o g. functor || 94.90 | 87.25 | 93.37 | 83.42
w/o g. tag 93.82 | 84.56 | 91.64 | 79.12
w/o c. functors || 91.91 | 79.79 | 90.41 | 76.04
w/o c. tags 88.91 | 7229 | 83.04 | 57.60
All Features 95.21 | 88.04 | 93.37 | 83.42

Table 4.2: Reordering accuracy for TGTSs on development data from PCEDT. We include
performance on the interior nodes (excluding leaf nodes) for the Manual data to show a
more detailed analysis of the performance. “g.” are the governor features and “c.” are the
child features. The baseline model sorts subtrees of each node randomly.

infinitives, we insert “to””; for origin nouns, we insert “from”, for actors we insert
“of”, and we attach “by” to actors of passive verbs. In the article insertion model,
we do not insert anything if there is another determiner (e.g., “none” or “any”) or
personal pronoun; we insert “the” if the word appeared within the previous four
sentences or if there is a suggestive adjective attached to the noun.’

Table 4.1 shows that the classifiers perform better on automatically generated
data, but also perform well on the manually annotated data. Prediction of articles
is primarily dependent on the lemma and the tag of the node. In predicting the
prepositions and subordinating conjunctions, the node’s functor is the most critical
factor. It turns out that the rules are not reliable for the preposition and subordinat-
ing conjunction model.

Table 4.3 presents a confusion set from the best article classifier on the de-

3 Any adjective that is always followed by the definite article in the training data.
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% Errors | Reference—Hypothesis
41 the — NULL
19 a/an — NULL
16 NULL —  the
11 alan —  the
11 the — a/an
2 NULL — a/an

Table 4.3: Article classifier errors on development data.

Manual Automatic
Det. | P&SC || Det. | P& SC
\ 8553 | 89.18 | 8531 | 91.54 \

Table 4.4: Accuracy of best models on the evaluation data.

velopment data. Our model is relatively conservative, incurring 60% of the error
by choosing to insert nothing when it should have inserted an article. The model
requires more informed features as we are currently being overly conservative.

In Table 4.4 we report the overall accuracy on evaluation data using the model
that performed best on the development data. The results are consistent with the re-
sults for the development data; however, the article model performs slightly worse
on the evaluation set.

4.4.2 Reordering Results

Evaluation of the final sentence ordering was based on predicting the correct words
in the correct positions. We use the reordering metric described in [26] which
computes the percentage of nodes for which all children are correctly ordered (i.e.,
no credit for partially correct orderings).

Table 4.2 shows the reordering accuracy for the full model and variants where
a particular feature type is removed. These results are for ordering the correct
auxiliary-inserted TGTSs (using deep-syntactic functors and the correctly inserted
auxiliaries). In the model variant that preserves the deep order of coordinating
conjunctions, we see a significant increase in performance. The child node tags are
critical for the reordering model, followed by the child functors.

4.4.3 Combined System Results

In order to evaluate the combined system, we used the multiple-translation dataset
in the PCEDT corpus. This data contains four retranslations from Czech to Eng-
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‘ Model Manual | Automatic ‘
TR w/ Rules 4614 A777
TR w/o Rules 4532 4657

Table 4.5: BLEU scores for complete generation system for TGTSs (with and without
rules applied).

lish of each of the original English sentences in the development and evaluation
datasets. In Table 4.5 we report the BLEU scores on development data for our TR
generation model (including the morphological generation module). The results
for the TR model with the additional rules are consistent with the previous results;
the rules provide only a marginal improvement. Finally, we have run the complete
system on the evaluation data and achieved a BLEU score of .4633 on the manual
data and .4750 on the automatic data. These can be interpreted as the upper-bound
for Czech-English translation systems based on TR tree transduction.

4.5 Conclusion

We have provided a model for sentence synthesis from tectogrammatical trees. We
provide a number of models based on relatively simple, local features that can be
extracted from impoverished TGTSs. We believe that further improvements will
be made by allowing for more flexible use of the features. The current model uses
simple linear interpolation smoothing which limits the types of model features used
(forcing an explicit factorization). The advantage of simple models of the type pre-
sented in this paper is that they are robust to errors in the TGTSs — which are ex-
pected when the TGTSs are generated automatically (e.g., in a machine translation
system).

Very similar experiments were performed at the 2002 Johns Hopkins summer
workshop. The results reported here are substantially better than those reported in
the workshop report [26]; however, the details of the workshop experiments are not
clear enough to ensure the experimental conditions are identical.

Another work that is very closely related to ours is that of Pti¢ek and Zabo-
krtsky [62] who developed a system that generates Czech sentences from the PDT
2.0 trees. The authors used a purely rule-based approach using wide variety of
PDT 2.0 features and obtained BLEU score result of 0.477 which is almost the
same result we obtained for automatic data. However, we feel that the quality of
sentences generated by [62] is substantially better than our results®. On the other
hand, PDT 2.0 trees are of better quality and contain more information than PCEDT
trees we work with.

The Amalgam system also provides a similar model for generation from a log-
ical form [14] compared to our model. The primary difference between our ap-

SThe files with sentences generated by our system are available on the enclosed DVD.
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proach and that of the Amalgam system is that we focus on an impoverished deep
structure (akin to logical form); we restrict the deep analysis to contain only the
features which transfer directly across languages; specifically, those that transfer
directly in our Czech-English machine translation system. Amalgam targets differ-
ent issues. For example, Amalgam’s generation of prepositions and subordinating
conjunctions is restricted as many of these are considered part of the logical form.
Amalgam’s reordering model is similar to the one presented here; their model re-
orders constituents in a similar way that we reorder subtrees.

Both the model of Amalgam and that presented here differ considerably from
the n-gram language models of [38], the TAG models of [2], and the stochastic
generation from semantic representation approach of [76]. In our work, we or-
der the local-subtrees’ of an augmented deep-structure tree based on the syntactic
features of the nodes in the tree. By factoring these decisions to be independent
for each local-subtree, the set of strings we consider is only constrained by the
projective structure of the input tree and the local permutation limit.

Yet another work similar to ours is that of [37] on the Halogen system. The
differences that distinguish their work from ours stem from the type of deep repre-
sentation from which strings are generated. Although their syntactic and semantic
representations appear similar to the Tectogrammatical Representation, more ex-
plicit information is preserved in their representation. For example, the Halogen
representation includes markings for determiners, voice, subject position, and da-
tive position which simplifies the generation process. We believe their minimally
specified results are based on input which most closely resembles the input from
which we generate in our experiments.

7 A local subtree consists of a parent node (governor) and its immediate children.
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Chapter 5

Tree Searching/Rewriting
Formalism

In this chapter we aim to introduce a Tree Searching/Rewriting Formalism (TSRF)
and its implementation. Originally, we developed the formalism for searching com-
plicated linguistic phenomena in the tectogrammatical trees [41] and then we ex-
tended it to a rewriting formalism for the purpose of converting TGTSs to analytical
trees as described in Chapter 4 (however, this approach did not prove useful).

The formalism recognizes rules whose left side specifies a forest of subtrees to
be found within a tree by imposing a set of constraints encoded as a query formula.
The optional right side then contains respective substitutions for the found subtrees
(or may be omitted in the searching mode). The searched structures have to be
rooted trees whose nodes may be labeled by a set of (attribute — value) pairs.

There are several reasons for the development and implementation of such for-
malism. First, it can serve as a corpus searching tool allowing linguists to search
for relevant linguistic phenomena. Second, its rewriting capabilities provide an el-
egant and intuitive way to perform rule-based tree transformations. Moreover, the
rules can be reversed, i.e. given a rule that transforms tree A to tree B, it is possible
to determine a rule that transforms B back to A.

An interpreter for the proposed formalism is fully implemented.

The chapter is organized as follows: Section 5.1 briefly introduces the formal-
ism, Section 5.2 describes its searching part and Section 5.3 explains the substitu-
tion process. Section 5.4 lists several examples of rules recognized by TSRF. Sec-
tion 5.5 discusses the implementation issues and Section 5.6 concludes the chapter.

5.1 Introduction
The proposed formalism is designed to allow searching for a specified forest of

subtrees within queried trees. In the substitution mode, the found matches are then
replaced by specified substitution trees. The nodes of the queried trees may be
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labelled by a set of (attribute,value) pairs' (such as e.g. TGTS trees).

In the following text we take a tree to be of the form (V, E'), where V' is the set
of vertices” and E is the set of edges. Additionally, we will denote V,, and E, the
set of all vertices and edges, respectively, within the subtree whose rootisv € V.

In the following we will describe TSRF in the substitution mode. In the search
mode, TSRF works the same way, but it accepts only the left side of a rule (query
formula) and yields the list of all the matches.

TSRF operates on a list of rules (a program) that are sequentially applied on a
given tree. Schematically, a substitution rule looks as follows

F— > [Sl, SQ, ceey Sn],

where F' is a query formula (see Section 5.2) containing (among other predicates)
positive, i.e. non-negated, occurrences of structural predicates specifying subtrees
(templates) T, 15, ..., T,, to search for and S1, S5, ..., S, are the respective substi-
tution trees (substitutions) for the found subtrees. The template vertices are associ-
ated with actual tree vertices after a successful match. Substitutions represent new
tree structures on the matched vertices.

Each vertex v of a template or substitution is assigned a label [(v). | must be
injective for the set of all template vertices (i.e. each vertex v € T;,1 < i < n,
is assigned a unique label). .S;, the corresponding substitution, then defines a new
tree structure by means of these labels. Additionally, for the substitution vertices [
may introduce a new label (node adding), a single template label may be repeated
(node copying), or a template label may be omitted whatsoever (node drop).

5.2 Query Formula

In this section we will describe the query formula, the searching part of the formal-
ism, in detail.

As mentioned in the previous section, the purpose of the query formula is define
a set of templates 71, 15, ..., T), to be searched for. Each such template is defined
by one non-negated occurrence of the structural predicate (described in the next
subsection). The query result is the set of all matches of these templates that satisfy
the query formula (see Section 5.4 for examples of complete query formulae).

The query formula is a propositional formula consisting of standard logical
operators (and, or, not) that can be arbitrarily nested (i.e. unrestricted use of
parentheses is supported). Its atoms are the predicates described in the following
subsections.

"Note that it is straightforward to convert e.g. edge-labelled trees to this representation as the
label on an edge may be viewed as a value of a (special) attribute of the child node this edge leads to.

?For brevity reasons, we will also assume that each v € V' contains its labelling as well and that
exactly one r € V' is designated as the root of the tree.

72



The arguments of some of the predicates (e.g. attribute value or absolute posi-
tion test) can be variables that are then subject to the standard unification procedure
over the entire query formula.

From these facts a very important point regarding the overall expressive power
of the query formula follows: because an occurrence of the structural predicate can
viewed as an implicit existential quantifier on the vertex variables this predicate
contains and because this occurrence can be arbitrarily nested and/or negated in
the query formula, we in fact get the full power of first order logic over vertex
variables, not just its existential fragment. (This follows from the fact that for any
formula of first order logic there exists an equivalent formula without universal
quantifiers.)

5.2.1 Structural predicate

The structural predicate specifying a template is of the form

(VertexVar,VertexConditions, SubT'rees),

where VertexV ar is an (arbitrary) vertex variable identifying the template vertex,
VertexConditions is a propositional formula imposing conditions on the vertex,
and SubT'rees is a list of other structural predicates specifying the children vertices
of this vertex, i.e., the structural predicate is fully recursive on the members of
SubTrees.

The propositional formula (VertexConditions) consists of arbitrarily nested
standard logical operators (and, or, not) and the following predicates-atoms:

e Attribute value test
(Attribute Operator Value)

where Operator € {=,=~,#,#~,<,>} and Value is either a number,
a string, or a variable. The last option allows for the unification of attribute
value variables throughout the entire query formula. =~ (#~) allows to
test match (mismatch) against the given regular expression.

e Children count test
(# Operator Number),

where Operator € {=, <, >}

For example, the structural predicate specifying a template consisting of a con-
junction (a) that coordinates two nouns (its children, b and c) that share the gram-
matical number would look as follows:

(a.func = "CONJ’, [ (b, tag =~ 'N*" and number = X, []), (c, tag =~ 'N* and
number =X, []) ])
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5.2.2 Path predicate

The path predicate allows to impose constraints on the path between two nodes -
Start_VertexVar and End_VertexVar - specified in the structural predicates.
It is of the following form
path(Start_VertexVar, End_-VertexVar,
Segments, VertexConditions),

Segments is the list of respective path segments. Each segment specifies the
“movement” within the tree with respect to the previously visited node (which is
Start_VertexVar if this is the first segment, otherwise it is the last node of the
previous segment). The form of a segment is as follows:

(Distances, Direction),

where Distances is a list of intervals specifying the possible number of steps-
nodes in the given direction. Direction is either up (towards the parent), down
(towards a child), le ft (towards the nearest node on the same tree level to the left),
right (towards the nearest node on the same tree level to the right). For example,

(1 —inf),right), ((0,2),up))]

denotes a two segment path, i.e., one node lies between Start_VertexVar and
End_VertexVar: it is located on the same level and to the right of Start_Ver —
texVar and End_VertexV ar is either this node itself or its grandfather.

VertexConditions specify the attribute values constraints imposed on the
nodes of the segment and are identical to attribute tests in the structural predicate
(see the previous subsection).

5.2.3 Other predicates

There are several other predicates present:
o testAttribute(VertexVar, Attribute, Operator, Value)
o testChildrenCount(VertexVar, Operator,Value)

e testDistance(VertexVary, VertexVary, Attribute, Operator, Value)

The first two predicates correspond to their counterparts in the structural predi-
cate. This way, however, they can appear independently in the query formula, thus
increasing the expressive power of the formalism. For instance,

(a,,]]) and (b,,[]) and (test Attribute(a, [attr =" value'])

or testChildrenCount(b, >' 1))
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allows to search for nodes a and b, where either a — attr equals to value or b has
more than 1 child. This would be impossible to express with only the structural
predicates at hand.

test Distance allows to compare the difference in numerical attribute Attri —
bute of the specified nodes VertexVary and VertexVary. This predicate com-
pensates to some extent® the impossibility to use arithmetic expressions within
predicate calls. The predicate holds if the difference is in the Operator relation to
the Value. For example,

test Distance(a, b, sentord’,=,1)

tests whether the difference in sentord attribute between nodes a and b is 1 (for a
TGTS, this tests whether the words represented by the two nodes lie next to each
other in the sentence).

5.3 Substitution Process

In this section we will describe the substitution process, the optional substitution
part of the formalism, in detail. Throughout this section we will provide examples
based on the situation shown in Figure 5.1 for easier understanding.

Let Q = (V9,E?) be a tree. Let R be a rule that is to be applied on @, let
T1, Ts, ..., T), be the respective templates and S7, S, ..., S, the corresponding
substitutions. We will call any set of nodes that form a matching subtree for T;
within @) a match for T;. Additionally, we will call the set of assignments of the
vertices of template T to the vertices of a match M for T = (VT ET) the map
mra between T and M. Let valy,,,, (v),v € VT, be a function that returns the
matching node for v according to myy.

R is applicable on @ if and only if the following conditions hold *:

1. Foreach v € V@, v appears at most in one match from the set of all matches
for the templates that are to be altered (i.e. the templates whose correspond-
ing substitution is not identical to the templates themselves).

2. Let S; be a substitution containing a vertex v such that [(v) = l(w), w €
T;,1 # j,1 <14,j < n(ie. visdefined in a foreign template 7). Then Tj
has only a single match in ) or 7; has no match in Q.

These conditions’ on applicability ensure that the substitution process may be
carried out as intended.

3In our experience, all the linguistically relevant queries over PDT that require a numerical oper-
ation are limited to the comparison of attribute value difference.

“If R is not applicable on @, it is ignored.

SNote that both of them represent “run-time” conditions - their fulfillment depends on not only
on the rules themselves but also on the queried tree. It is the responsibility of the user to create
meaningful rules that are applicable on all the processed trees.
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Figure 5.1: Example of a substitution rule featuring two templates 77 and 7> and
the corresponding substitutions S and S5

The first one prevents a part of the tree to be subject to “multiple substitution”
by specifying that the respective matches do not overlap (it is harmless for a tem-
plate whose substitution is identical to it). Figure 5.2 illustrates such a malformed
situation: M; and M> are two matches for the template 77 from example shown in
Figure 5.1. Node 2 is contained in both matches and, as the substitution for S; is
not identical to the template 77, its application is not well defined at all.

The second condition ensures that a substitution featuring foreign template ver-
tices is defined unambiguously. For the example shown in Figure 5.1 this requires
that either 77 has only a single match or 75 has no match within the queried tree as
the node b appears also in S5 (77 is a foreign template with respect to S5).

M

Figure 5.2: Example of an unapplicable rule.

If R is applicable the following substitution step is performed for each match
M of each template T = (VT ET) € {T;,1 <i < n}:

Let S = (V°, E¥) be the substitution associated with T". Let us define the
partitioning of V¥ into the set of nodes occurring in the corresponding template
(Vg ), the set of nodes occurring in foreign templates (Vﬁq ) and the set of new
nodes (Vﬁ ):
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Vg:{UEVS:EIw;wGVT A l(v) =lw)}

VE={veVS: 3T w; T£T AweVl A
[(v) = U(w)}

S e A

For the example shown in Figure 5.1, node ¢ € S is a new node and node b € Sy
is a node from the foreign template 77, nodes a € Sy and b € Sp lie in their
corresponding template 77 .

Let us now define the graph G that is induced by S. Informally, G consists of
the copies of match nodes connected according to S' (with the values of the speci-
fied attributes rewritten), copies of all the descendants of these nodes in () (except
for those that are already in some match for 7") and the added nodes (according to
9S).

Formally, let c,(u),v € V', be a vertex copy function that returns a vertex
with the same valuation as u, v is a substitution vertex that induces the copy®. We
denote {c,(u) : u € V} as ¢,(V'), where V is a set of vertices. Similarly, ¢, (E)
is {(cy(u), cy(w)) : (u,w) € E}, where E is a set of edges. Let us introduce two
more abbreviations val(v) and c(v):

val(v) = valy,.,, (V) < v e VS

val(v) = valy,,,,(v) & v e Ve

c(v) = ¢, (val(v)) & v e V§UVE
c(v) = cp(v) S v eV

where T" is the one foreign template in which v occurs. Then S induces the
following subtree G = (V& E¢):

VG - U C(U) U U Cv (chgl(v) o U Vanl(u)>

vEVR veEVSUVE ue(VEUVE)—{v}

ECG — { (c(v),c(u)) : (v,w) € E° } U U (CU(Ef;gal(v)) — { (u, ep(w)) :

veVSUVE

u € CU(Vanl(v)) Nw € VS})

%We index ¢ function(s) by this vertex in order to be able to identify the copy unambiguously.
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Additionally, the valuation of each vertex val(v),v € V*°, is changed accord-
ing to the labelling of v so that the values of the specified attributes are rewritten
(the values of other attributes remain unchanged).

The substitution process then consists in removal of M from () and attachment
of GG (if the root of M is identical to the root of () then the updated tree is G itself).

Figure 5.3 presents an example of a tree transformation via the rule shown in
Figure 5.1. M, and M> are the only matches of T} and T respectively. Node 3’
denotes a copy of node 3 and new is a new node (corresponding to template vertex

).

3
R //\\

M- —> ] new

2 3

(&)

Figure 5.3: Example of a tree transformation via rule R shown in Figure 5.1.

5.4 Test Examples

This section provides a few examples of the replacement rules. These examples
have been selected because their query parts (left side of the rules) represent rele-
vant types of linguistic queries and because they well demonstrate the possibilities
of TSRF. We have also used these types of substitution rules in the experiments
with machine translation. Additionally, we will test the performance of the imple-
mented software tool on these examples (see Section 5.5).

1. Copy the value of form to lemma for each preposition or conjunction (tag
begins with R and J respectively ).

(a, tag =~ [RI]* and form = X, []) —
(a, lemma =X, [])

2. Search for a template consisting of an auxiliary word (a fun begins with
Aux) and its daughter - a locative adverbial (func = LOC). Swap the two
nodes and mark the auxiliary as hidden:

(a, afun =~ "Aux*’, [(b, func = 'LOC",[])]) —
(b,,[(a,TR = "hidden’,[])])
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3. Delete all subtrees whose root is a noun and which do not contain an adjec-
tive that 1) matches the gender or the number of the noun and 2) precedes the
noun at most in two positions in the linear surface order (value of sentord
attribute). Two templates are needed’ as the adjective is not necessarily a
direct dependant of the noun.

(a, tag =~ 'N*’ and gender = X and
number =Y, []) and not
( (b, tag =~ 'A*" and (gender = X or number =Y), []) and
testDistance(a,b,’sentord’,1-2) and path(b,a,[vu,I-INF])) — ()

4. Repair a possibly incorrect parsing result: a noun phrase, being a dependant
of the main predicate (func = Pred), contains a temporal determination
(func = TWHEN) which is more likely to be a modifier of the main
predicate.

(a, func = 'Pred’, []) and (b, tag =~ 'N*’, []) and path(b,a,[vu,I-INF]) and
(c, func = "TWHEN’, []) and path(c,b,[vu,I-INF]) — (a,[(c,.[])]).(b,,[]),()

5.5 Implementation

In this section we present the software tool that implements the described formal-
ism. First, we will describe some of its basic characteristics, then we discuss the
complexity issues, and finally we will present performance results of the imple-
mented tool.

The tool was developed in Mercury® programming language. Mercury is a
declarative language similar to Prolog but it goes above first order logic and pro-
vides a strict type system. Moreover, the Mercury compiler first translates the code
into the programming language C and then compiles it as standard C code. This
generates fast running code. Many optimizations, especially those connected to the
backtracking backbone, are thus performed by Mercury.

The tool was implemented to process PDT 1.0 style trees and currently features
no support for PDT 2.0 style trees. However, the tool relies on its own tree repre-
sentation so only the conversion routines have to be changed in order to incorporate
PDT 2.0 data. Appendix D provides more information regarding the software.

5.5.1 Algorithm

The algorithm used to process TSRF queries is quite simple. The query formula is
being evaluated (with backtrack to get all the possible matches and variable instan-
tiations) and the truth value of each predicate atom is tested. The free and ground

"Note that only the first template is subject to substitution as the second is negated.
8http://www.cs.mu.oz.au/research/mercury
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variables from the already evaluated predicates are passed through and upon each
successive predicate test these might be subject to unification.

When a structural predicate occurrence is being tested, i.e., there is an attempt
to find a match for the corresponding template within the queried tree, the tree is
traversed with backtrack starting with the root of a template.

All the possible matches (and variable instantiations) that fulfill the query for-
mula are then collected and returned. If the tool is used in the substitution mode,
the respective substitutions are then performed on the returned matches (providing
the rules are applicable).

The nodes of the tree to be queried are first indexed so as to minimize the access
time when evaluating the respective predicates (mainly the structural predicate) in
the subsequent search run. There is large number of other optimizations (also for
the optimal performance of the tests of respective designed predicates) but essen-
tially the search run is optimized for a single tree (no optimizations are made for
the entire treebank in advance).

5.5.2 Complexity Issues

Let us discuss the computational complexity of the respective parts of the algorithm
presented in the previous section.

The initial node indexing is performed once for each node, its time complexity
is thus linear. The query formula is being evaluated in exponential time with respect
to the number of occurrences of structural predicates contained in it.

The structural predicate test runs generally also in exponential time (searching
for a subtree within a tree is known to be NP-hard), but not independently of the
query formula evaluation - each successive match found by the structural predicate
test run leads to a backtracking step of the query formula evaluation. The path
predicate test runs in O(k * n), where k is the number of segments specified by
the predicate and n is the number of nodes of the queried tree. All other predicates
listed in Section 5.2 run in constant time.

As each node of the queried tree is subject to at most one substitution (applica-
bility condition), all the substitutions are performed in linear time with respect to
the queried tree size.

In summary, the entire algorithm runs in exponential time (which cannot be
avoided as there are in general exponentially many subtrees within a tree).

5.5.3 Performance Results

We have chosen the queries from Section 5 to measure the computation time over
the PDT corpus. The primary purpose of doing so is to ensure that even such a large
treebank as PDT (containing cca 50000 TGTS) can be queried in an acceptable
time. The tests were performed on AMD Athlon 64 3800+, 1 GB RAM, running
Windows XP. We have divided the tectogrammatical trees of PDT into three groups
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according to the number of their nodes. The resulting average computation times
per tree from the given size range are listed in Table 5.1.

nodes |1 |2 3| 4
0-9 (04|04]06| 04
10-20|1.1{1.0|2.1| 1.0
>20 |2.112.114.9]0.20
any size|1.2]1.1|2.5] 1.1

Table 5.1: Average computation time per tree in milliseconds.

These results show that the tool is able to perform the relevant queries in ac-
ceptable times even for large corpora, in our case in the order of minutes for the
entire PDT. Moreover, the results are being retrieved sequentially so the user does
not have to wait till the search is complete.

5.6 Conclusion

The expressive power of presented formalism is able to capture complex linguistic
structures in the tree structures and is comparable to the currently most advanced
tools available. However, there are still structures which cannot be captured (such
as two templates connected by a potentially infinite set of vertices with properties
that cannot be expressed by the path predicate). Likewise, there are substitutions
that cannot be performed (such as reversion of potentially infinite path within a
tree).

The implemented tool has shown acceptable performance which makes it pos-
sible to use it to process even large data sources. However, many optimizations
(such as indexing of the entire corpus in advance) can yet be performed.

To our best knowledge, there is no similar tool that could be straightforwardly
used both as a searching and rewriting tool. However, there is a large number of
treebank searching tools, e.g. CorpusSearch [68], ICECUP III [81], TGrep2 [70],
TIGERSearch [35], VIQTORYA [32], and Finite Structure Query[34]. Specifi-
cally for PDT querying purposes, NetGraph [49] tool was previously developed.
All these tools implement some form of predicates for basic tree relations between
nodes. As far as their overall expressive power is concerned, they rank from the
most restricted ones featuring only limited possibilities to combine respective con-
straints by logical operators (CorpusSearch, ICECUP III, NetGraph) via more gen-
eral ones (TGrep2, TIGERSearch, VIQTORYA) up to those that use the full power
of first order logic (Finite Structure Query). Additionaly, some of these tool can be
used to query more general structures than strict trees (VIQTORYA, Finite Struc-
ture Query).

81



We will compare the presented tool to Finite Structure Query, the tool featuring
the most powerful query expressiveness so far, and NetGraph, the tool directly
designed to query PDT treebank, in greater detail.

TSRF is comparable to the query language used by Finite Structure Query.
Although TSRF does not use overt quantification (and is therefore not strictly first
order logic based), for any first order logic formula (over vertex variables) there ex-
ists an equivalent formula that can be expressed by TSRF. However, TSRF is much
less powerful than Finite Structure Query in terms of generality of the queried
structures - TSRF operates only on strict trees whereas Finite Structure Query can
operate on an arbitrary finite structure. The expressive power of a formalism de-
pends of course also on the set of supported predicates. We believe that in this
aspect the set of predicates present in TSRF at least matches the set offered by
Finite Structure Query, we were at least able to express all the examples presented
at [34] in the TSRF query formula®.

NetGraph uses its own form of query formula. This formula in fact directly
represents an underspecified tree template rather than being a logical formula con-
taining predicates. As described in [49] , NetGraph is obviously less powerful
than TSRF as its query formula (when stated in logical terms) features only a re-
stricted disjunction and no negation at all (thus it forms only a positive existential
fragment). However, NetGraph was recently substantially improved [48] as it de-
veloped a powerful functionality within its underspecified template (e.g. a specific
type of negation, a form of attribute value unification etc.).

In summary, we see the contribution of the presented work mainly in the ex-
pressiveness of the query formula, in the elegant and intuitive way the rules are
written (and their easy reversibility), and in the performance of the implemented
tool.

For example, we are not sure whether unification of attribute value variables supported by TSRF
is supported by Finite Structure Query,too.
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Chapter 6

Using Temporal Information for
Text Generation

In this chapter we aim to enhance the English generation system described in
Chapter 4 by the results of automatical analysis obtained from the Czech trees.
Section 6.1 discusses the theoretical background of English tense generation. The
experimental results are then described in Section 6.2. Chapter 6.3 concludes the
chapter.

6.1 Tense Generation

We will begin the discussion with the account on what aspects of English tense
cannot be determined (Section 6.1.1) using only information on event ordering and
then turn to issues where this information might help (Section 6.1.2).

6.1.1 Unresolvable Tense Issues

Simple vs Perfect

It seems clear that the event ordering information alone does not allow for de-
termination of perfect or simple tense (with the partial exception of past perfect
discussed below). The difference between these tenses does not consist in the time
placement of these events. Consider the following pairs of sentences:

John did his homework (yesterday).
John has done his homework.

John had done his homework before his mother returned.
John did his homework before his mother returned.

John will do his homework in the afternoon.
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John will have done his homework by the afternoon.

The relative ordering of events and time—of—speech points is the same in each pair
of sentences (although in case of future perfect it is possible that John had already
made the homework but then the utterance is rather misleading).

Although all the three tenses (past, present and future perfect) express or em-
phasize completion of an event, each of the tenses requires different set of con-
ditions to be fulfilled before the proper tense can be used (such as the condition
of recentness for present perfect), see [67] for detailed account on English tenses.
According to Reichenbach [69] the perfect and simple tenses differ in the position
of their respective reference time which is the time a given event is related to. For
example, in past simple, the reference point is identical to the time of the event
whereas in present perfect it is simultaneous with the time—of—speech point, i.e.,
the event is viewed from the perspective of the time—of—speech point. However, an
automatic determination of the reference time is difficult.

To be able to make a decision on whether a perfect tense should be used, the
tectogrammatical representation would have to contain a grammateme for perfec-
tiveness ! (as even the authors of the TR admit in [27]) which is not present in any
of the current corpora annotated on tectogrammatical layer.

Continuous Tenses
The event ordering information is also not sufficient for the decision on the con-
tinuous (extended) tense. The continuous tense may be used to report an ongoing
activity as in

Jack is playing football.
or to indicate repetition as in

Women are wearing larger hats this year. (Reichenbach [69])

or, generally, to stress the progressive nature of an event. Unfortunately, an on-
going event (state) can be expressed by a non—continuous tense as well:

He never takes any chances.
Therefore, knowing that an event is simultaneous with the time—of—speech and

1s non—iterative does not suffice for the decision on the correct variant. The same
holds true for past and future tenses

'"The aspect grammateme may contain the value “resultative” which captures explicit perfective
constructions in Czech. However, this rare case represents only a fraction of cases where a perfect
tense would be used in English.
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He was (will be) running. He ran (will run).

On the other hand, a repetition can be (and usually is) expressed also by a non—
continuous tense:

I play football whenever I have time.

so, again, the knowledge that an event is iterative, i.e., part of a plan (see Sec-
tion 2.2.3), therefore does not help to determine the right variant (sometimes both
variants are possible and the difference is very little).

6.1.2 Tangible Issues

There are two situations in which one would expect that the information on event
ordering would help to generate the correct English tense: determination of past
perfect tense and determination of the correct tense in indirect speech.

Past Perfect Tense

The past perfect tense has a special position among English perfect tenses — in ad-
dition to its perfective aspect (which we cannot capture, see Section 6.1.1) it also
expresses precedence of an event in the past to another past event as in

Mary looked around but John had left.

Using past perfect is usually optional and there is rarely an occurrence of this tense
in our corpus. On the other hand, past perfect conveys more information than sim-
ple past so it might be desirable to generate past perfect whenever possible for for
certain applications.

As we are unable to automatically determine the reference time (in Reichen-
bach’s sense) to use as an anchor for generating past perfect, we attempt to generate
this tense for a verb V' if and only if there is a verb W such that

1. the event expressed by W precedes time—of—speech of the given utterance
2. the event expressed by W follows the event expressed by V'
3. either W is a descendant of V or V' is a descendant of W in the given TGTS

4. W lies in the vicinity of V' — there is no verb U that lies between V and W
in the surface order

Indirect Speech

In English, a tense present in a sentence is changed when this sentence appears in
indirect speech (as a content clause) introduced by a speech verb in past simple.
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Original tense | Indirect speech

present simple past simple
present perfect past perfect
past simple past perfect

future tenses | past with would

Table 6.1: Indirect speech tense transition. Continuous tenses remain continuous.
Other tenses not listed in the table do not change.

The overview of the transition rules is shown in Table 6.1. Some of these transitions
are often optional or even improper:

Past simple often does not have to be changed to past perfect. Moreover,
the transition must not violate perfective nature of the matrix verb in the indirect
speech. If so, the indirect speech retains past simple.

Present simple does not have to be changed to past simple if the content con-
veyed by the indirect speech is believed to be true even in the time—of—speech of
the reporting utterance.

The knowledge of the relation between a speech verb introducing an indirect
speech and the matrix verb of the indirect speech allows for the determination of
the correct tense. Again, as we cannot reliably determine perfect and continuous
tenses, we attempt to generate only simple tenses.

6.2 Empirical Evaluation

We have tried to verify whether the information about relative ordering of events
really contributes to determination of correct tense as discussed in Section 6.1.2.
Firstly, we have linked the corresponding Czech and English trees as described in
Section 6.2.1. Then we have used the manual temporal annotation to test the re-
spective methods. The results are listed in Section 6.2.2. Because, as discussed
later, the numbers themselves are hardly informative, we have not even attempted
to provide similar analysis for the output of the automatic system and to compare
the results. Given the number of verb instances affected by the described rules,
such comparison would be insignificant. Instead, we try to discuss the counterex-
amples to draw some linguistic conclusion out of it.

Although we focus on the analysis of performance of the event instances af-
fected by rules described in Section 6.1.2 we also provide generation results for all
linked verbs — the verbs unaffected by any of our rules are assigned simple past,
present and future tense based on the tense of the associated Czech counterpart.
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6.2.1 Data Preparation

To be able to test the potential gain of the event ordering information (determined
on the Czech side) for the English generation component, it is necessary to link the
corresponding Czech and English TGTSs, i.e., to pair the tree nodes that represent
events (other nodes are not relevant). Ideally, this would be done automatically
given a Czech-English dictionary (such as the probabilistic dictionary included in
the PCEDT distribution). However, a fully automatic assignment is not possible
due to

e ambiguities (i.e. a sentence to be linked may contain several identical or
similar lexical items that all match a plausible translation of an item in the
source sentence)

e the fact that the translation of an event may be so highly context—specific that
it does not correspond to a usual equivalent translation

e low coverage of the used dictionary

Note that it is also not possible to convey all the temporal information from
the Czech side. The mapping is not one—to—one as the translation is not literal and
some events expressed in the English text may be omitted on the Czech side and
vice versa.

We have therefore decided on a semi-automated approach. Firstly, the prelim-
inary mapping is created by a simple but highly accurate automatic assignment
algorithm which only links a Czech verb to the English verb that is the only plau-
sible candidate according to the probabilistic dictionary. This algorithm was able
to correctly link approximately 40% of the links and produce report on the re-
maining ambiguities and unmatched instances which were subsequently processed
manually to yield the final mapping. We have only used manual (both Czech and
English) TGTSs corresponding to the development and evaluation testing set, re-
spectively.

The correct tense of verbs within the testing sets was determined in advance by
an automatic procedure based on the presence of the relevant auxiliaries. Addition-
ally, because of the rare occurrence of past perfect in the corpus, for the verbs in
the past tense in the vicinity of other past tense verbs it has been indicated whether
they could also appear in past perfect in the given context. This annotation was
performed by a native American English speaker?.

6.2.2 Results

Having the mapping between Czech and English TGTSs described in the previous
section at hand, we can transfer the event ordering information to events on the
English side.

*David McClosky

87



Instances | Correct | Accuracy || Bl. Corr. | Bl. Accur.
IS Past 17 13 76% 12 71%
IS Present 15 0 0% 15 100%
IS Future 4 3 75% 2 50%
Past Perfect 5 4 80% 2 40%

Table 6.2: Performance of the respective methods in tense generation for affected
instances only. “Bl.” stands for the baseline.

Instances || Correct | Accuracy || Bl. Corr. | Bl. Accur.
DTest 337 289 85.8% 286 84.9%
ETest 362 306 84.5% 309 85.3%

Table 6.3: Performance of the respective methods in tense generation for all linked
verbs. “Bl.” stands for the baseline.

Table 6.2 lists the performance of the respective methods on the development
testing set. IS Past (Present, Future) stand for the generation of tense of the main
verb in indirect speech that precedes (is simultaneous, follows) the verb introduc-
ing the indirect speech. As described earlier, baseline results are obtained simply
by generating simple past, present and future based on the tense of the Czech coun-
terpart.

It is evident that the results are not statistically significant which is also demon-
strated by the evaluation on the evaluation testing set (33 instances): The combined
method generating past perfect and indirect speech in past and future (the methods
that performed well on the development testing set) yielded 66% (22 correct in-
stances) accuracy whereas the performance of the baseline was 75% (25 correct
instances).

Table 6.3 shows the results for all verbs that could be linked to their respective
Czech counterparts. Rules affect only the instances listed in Table 6.2, the outcome
for the remaining instances is set as identical to the baseline.

Apparently, the evaluation brings no decisive results but it suggests that our
rules are not reliable. Let us discuss the performance of the respective methods in
detail to discover the counterexamples to our rules.

Indirect Past Speech

Although using past perfect for the main verb in indirect past speech yielded neg-
ligibly better result than using past simple, there are counterexamples in which the
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transition to past perfect was deemed inappropriate by a native speaker, e.g.>

Kaufman & Broad Home Corp. said it formed (had formedx) a $53.4 million
limited partnership subsidiary to buy land in California suitable for residential de-
velopment.

It seems the event lacks the “perfective” nature which apparently has to be retained
even in the indirect speech transition.

Indirect Present Speech

As shown in Table 6.2, all the instances of indirect speech originally in the present
tense remain in the present tense, for example

Reached in Honolulu , Mr. Shidler said that he believes (believedx) the various
Hooker malls can become profitable with new management.

This systematic use of present tense in indirect speech seems to be connected to the
recentness of the information but it violates to some extent the usual grammatical
assumptions.

Indirect Future Speech

Some occurrences of indirect speech in future tense were transformed to “would”
clauses correctly whereas other retain the future tense:

Ripples from the strike by 55,000 Machinists union members against Boe-
ing Co. reached air carriers Friday as America West Airlines announced it will
(wouldx) postpone its new service out of Houston because of delays in receiving
aircraft from the Seattle jet maker.

It seems the future tense can be preserved if the event follows not only the re-

porting utterance but even the time—of—speech point.

Past Perfect

Our method of generating past perfect has yielded a single counterexample:
Against that backdrop , UAW Vice President Stephen P. Yokich , who recently

became (had becomex) head of the union s GM department , issued a statement
Friday blasting GM ’s “ flagrant insensitivity ” toward union members.

*In the presented examples, asterisk denotes a different (possibly incorrect) variant determined
by the system.
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Again, the context apparently does not grant use of the perfect tense - either be-
cause of the nature of the event or because the events are not explicitly related to
each other (“became” governs the attributive clause related to Mr. Yokich).

6.3 Conclusion

We have tested a preliminary approach to English verb tense generation based on
the traditional assumptions regarding English tense system. Although the obtained
results are statistically insignificant due to the small number of affected instances,
it seems clear that the traditional assumptions often do not hold and that the rules
based on them are unreliable. The tested tense generation subsystem cannot im-
prove the text generation system described in Chapter 4. We believe that further
research on the automatic analysis of event properties that determine usage of the
respective English tenses is necessary.
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Chapter 7

Conclusion

We have presented our work in different yet related areas.

In the area of natural language understanding and content representation we
have developed a rule-based system of automatic analysis of temporal relations
for Czech. The system relies heavily on the recursive temporal principle intro-
duced by Panevova while correcting some of the errors produced by the application
of this principle and extending it in various ways namely by the analysis the lexical
information provided by time expressions. To capture their meaning, a functional
approach has been designed that allows for comparison of time expressions appear-
ing in discourses whose time—of—speech is unknown. The corresponding software
tools are implemented. However, the related work shows that a rule-based ap-
proach is probably insufficient, in particular, that its recall is too low. As pointed
out, there are many types of relations determination of which is impossible by a re-
liable rule and which therefore remain unresolved in our system. The distribution
of the respective variants might be highly context—dependent in real texts making a
high—precision determination by using machine—learning techniques possible. For
this, a large training temporal corpus is necessary.

Within a machine translation framework, we have developed a generative com-
ponent that generates English text from the corresponding tectogrammatical trees.
The components shows relatively good performance (demonstrated also by the
BLEU score) but it can be further enhanced. One way of improving the com-
ponent consists in implementing the dynamic solution to the problem instead of
the presented greedy approach, i.e., to select the best auxiliary insertion—surface
order combination instead of selecting the best auxiliary insertion to be reordered.
Another possibility is to enrich the reordering model by a language model trained
on huge amount of plain text. Yet another way consists in a purely rule-based
approach which turned out to be very successful in generation of Czech text from
Czech tectogrammatical trees. However, in comparison to the Czech PDT 2.0 data,
the manual English data from PCEDT 1.0 are of poor quality with many features
missing which can significantly hinder a rule—based approach.

Finally, we have attempted to use the temporal information to improve the
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generation process but were unable to gain any improvement.
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Appendix A

Grammar for Parsing of Time
Expressions

This appendix lists the grammar used to parse the time expressions. We do not de-
scribe the respective interpretation functions please see the corresponding software
module described in Appendix D.

Main Grammar

Start (InterpretStart):

SoleTimeExpression V

vague_determination

/\

preposition_hidden = SoleTimeExpression

vague_determination:

beginning: pocatek, zacatek

end: konec, zavér
preposition_hidden:

after: po, za

before: pred

in: v, k, béhem, na, o, pribéhu
not_before: nejdrive, od, poCinaje

not_after: nejpozdéji, do, konce
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beginning: pocatkem, zacatkem

end: koncem, zavérem

SoleTimeExpression (Interpret Fraction):

ExpressionCore

denominator

preposition_hidden numerator  ExpressionCore

denominator: a fraction numeral’

numerator: an ordinal numeral

ExpressionCore:

DateConstructor VV TimeConstructor V SingleIndexicalExp V
AbsoluteSpecification V GeneralSpecification

DateConstructor: (InterpretDateConstructor)

month_name

preposition_hidden day year Part Bridge

month_name: name of a month
day: an ordinal numeral

year: a cardinal numeral

V

month_specifier

preposition_hidden day year Part Bridge

"Numeral denotes either a textual or numeric representation of a number.
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month_specifier: an ordinal number specifying a month

Part: SoleTimeExpression
Bridge: a separate clause connected to the time expression

TimeConstructor: (InterpretTimeConstructor)

colon (%)

preposition_hidden  hour minute Part Bridge

hour: a cardinal number
minute: a cardinal number

SingleIndexicalExp: (InterpretSinglelnderical Exp)

indexical _exp

/\

preposition_hidden Bridge

indexical_exp:
today: dnes, dnesek, dneska
tomorrow: zitra
tomorrow_tomorrow: pozitii
yesterday: vCera
this_year: letos
prev_year: loni, vloni
prev_prev_year: predloni
next_year: napresrok

AbsoluteSpecification (Interpret ET AbsoluteSpeci fication):
ExpressionCore V

entity_type

abs_specifier preposition_hidden Bridge
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entity_type:

year: rok
century: stoleti

millennium: tisicileti

abs_specifier: an ordinal numeral

GeneralSpecification (InterpretGeneralSpeci fication):

entity

mod. rel. ord. count quant. prep. Bridge Part

entity:

millennium: tisicileti

century: stoleti

decade: desetileti

(half/quarter)year: (pal/Ctvrt)rok
month: mésic

week: tyden

(half)day: (ptl)den

(half/quarter)hour: (pal/Ctvrt)hodina
(half/quarter)minute: (pal/Ctvrt)minuta
year_part: jaro, 1éto, podzim, zima
week_part: vikend

day_part: rano, dopoledne, poledne, odpoledne, vecer, noc, ptilnoc
month_name: name of a month

day_name: name of a day
mod. (modifier):

fiscal: fiskalni
school: Skolni

academic: akademicky
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work: pracovni

rel. (relative specifier):

2%

next: dal$i, nasledujici, ptisti, budouci, zitfejsi
next_next: prespristi
this: tento, dnesni, letoSni
previous: predesly, minuly, uplynuly, lonisky, pfedchozi, pfedchazejici,
vcerejsi, lonsky
previous_previous: predvcerejsi, predlonsky
ord. (ordinal specifier): an ordinal numeral
count: a cardinal numeral

quant. (quantifier): an ordinal numeral

every: kazdy
some: néktery

prep. (preposition hidden))

Grammar for Attributes

Start:
indexical_expression (InterpretSingleIndexical Exp) V
entity_ name (Interpret Entity N ameAttr)

indexical_expression:

today_attr: dneSni
tomorrow_attr: zitfejsi
vesterday_attr: vCerejsi
this_year_attr: letoSni
prev_year_attr: lonisky
prev_prev_year_attr: prlonsky

entity_name:

month_name_attr: month name adjective (e.g. tinorovy)
day_name_attr: day name adjective (e.g. titerni)
day_time_point_attr: poledni, pilnocn{

day_time_period_attr: ranni, dopoledni, odpoledni, vecerni, no¢ni
week_time_period_attr: vikendovy

year_time_period_attr: jarni, letni, podzimni, zimni
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Grammar for Durations

Start (Interpret Duration):

entity_type

modifier count specifier

entity_type:

millennium: tisicileti

century: stoleti

decade: desetileti
(half/quarter)year: (pal/Ctvrt)rok
month: mésic

week: tyden

(half)day: (ptl)den
(half/quarter)hour: (pal/¢tvrt)hodina

(half/quarter)minute: (pal/Ctvrt)minuta
modifier:

fiscal: fiskalni
school: skolni
academic: akademicky

work: pracovni

count:

cardinal: a cardinal numeral

vague count: nékolik par mnoho malo

specifier:

in_preposition: za
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Appendix B

Estimating Extensions of
Functional Compositions

In this appendix we present estimates for the time extensions of the respective time
functions. The beam (time extension estimate) consist of the following items:

SL, SU
Lower and upper estimate of the lowest (leftmost) point of the resulting set of
intervals! relative to the source input interval (constructed by a constructor)
or point variable, i.e., the innermost argument in the functional composition.

EL,EU
Lower and upper estimate of the highest (rightmost) point of the resulting
set of intervals relative to the source input interval or point variable.

ASL, ASU, AEL, AEU
The absolute time versions of the items described above which are only com-
puted if the information is available. In general, they are set to exact time
points using CPAN DateTime package if possible. As their use is similar to
their relative estimate counterparts, we do not include them in the description
list.

WL, WU
Lower and upper estimate of the size of the resulting time extension if it is a
single interval.

SB, EB
Indication of whether the lowest and highest point, respectively, of the re-
sulting set of intervals lie on a boundary of an entity such as day, week etc.
A value of these items is a set of entities on whose boundaries the given point

'In general, a function returns a set of intervals such as series family of functions. However, in
most cases we only deal with a single interval or a time point.
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lies. It is only present, if it applies for both the lower and upper estimate for
the given point.

start(Interval) :
(t_interval) — t_point

SL =EL: Interval — SL
SU = EU: Interval — SE
WL =WU: 0

SB = EB: Interval — SB

end(Interval) :
(t_interval) — t_point

SL =EL: Interval — EL
SU = EU: Interval — EU
WL =WU: 0

SB =EB: Interval — EB

const(Y,[M,D,H, M,S]) :
(tint, [t_uint,...]) — t_interval

constM (Millenium) :
(t_int) — t_interval

constC(Century) :
(t_int) — t_interval

SL=SU=EL=EU:0

WL = WU: size of the constructed entity
SB = EB: the constructed entity

shift(Point, Distance, InPast) :
(t_point,t_range,t_bool) — t_point
SL =EL: Point — SL+ / — Distance (depends on the value of InPast)
SU =EU: Point — SU+ / — Distance (depends on the value of InPast)
WL =WU: 0
SB = EB: check the resulting point based on the input boundary information

span(Point, EntityType) :
(t_point,t_etype) — t_interval
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SL: Point — SL — |EntityType|
SU: Point — SU

EL: Point — EL

EU: Point — EU + |EntityType|
WL = WU: | EntityType|

SB = EB: EntityType

findEntityType(Point, EntityType, Index) :
(t_point,t_etype,t_int) — t_interval

SET (Superior Entity Type): EntityType

find ET ByOrd(Point, EntityType, Order, SupET, Index, This) :
(t_point,t_etype, t_uint,t_etype,t_int,t_bool — t_interval)

SET (Superior Entity Type): SupET

SL: Point — SL + (Index — 1) x |SET|
SU: Point — SU + Index * |SET

EL: Point — EL + Index x |SET|

EU: Point — EU + (Index + 1) x |SET|
WL = WU: | EntityType|

SB =EB: EntityType

Holds for This = false, for This = true it has to be changed by 1/-1 for
positive and negative indices accordingly.

findI EByName(Point, Entity, Index, This) :
(t_point,t_ie_name,t_int,t_bool) — t_interval)

SET (Superior Entity Type): the (basic) entity type to which Entity is
equivalent if there is such a type, otherwise it is the lowest entity type
that safely (i.e. always) contains Entity

LET (Lower Entity Type): the (basic) entity type to which Entity is equiv-
alent if there is such a type, otherwise it is the entity type directly under
SET

SL: Point — SL + (Index — 1) = |SET|
SU: Point — SU + Index * |SET

EL: Point — EL + Index x |SET|

EU: Point — EU + (Index + 1) x |SET
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Holds for This = false, for This = true it has to be changed by 1/-1 for
positive and negative indices accordingly.

WL: |LET]
WU: |SET|
SB =EB: SET if SET == LET

findPEByN ame(Point, Entity, Index, This) :
(t_point,t_pe_name,t_int,t _bool) — t_point

SL:

Index < 0: Point — SL + Index * |SET|
Index > 0: Point — SL + (Index — 1) % |SET)|
SU:
(Index < 0): Point — SU + (Index + 1) x |SET)|
(Index > 0): Point — SU + Index * |SET
EL:
(Index < 0): Point — EL + Index % |[SET|
(Index > 0): Point — EL + (Index — 1) % |SET)
EU:
(Index < 0): Point — EU + (Index + 1) x |[SET)
(Index > 0): Point — EU + Index x |SET|

WL =WU: 0
SB: boundaries implied by Entity
EB: boundaries implied by Entity

part By EntityType(Interval, Part, Order) :
(t_interval,t_etype,t_int) — t_interval

part Byl Entity(Interval, Part, Order) :
(t_interval, t_ie_name,t_int) — t_interval

partByP Entity(Interval, Part, Order) :
(t_interval,t_pe_name,t_int) — t_point

All the three versions of the part function are evaluated as

AppropriateFindV ersion(start(Interval), Part, Order, true)

partByFraction(Interval, Ny, D1, No, D3) :
(tinterval, t_wint, t_uint, t_uint, t_uint) — t_interval
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SL: Interval — SL + Interval — WL % Ny/D;

SU: Interval — SU + Interval — WU % N1/D;

EL: Interval — EL + Interval — WU % (1 — Ny/Ds)
EU: Interval — EU + Interval — WL * (1 — Ny/Ds3)
WL: Interval — WL % (No/Dy — N1/D7)

WU: Interval — WU % (Ny/ Dy — N1/D1)

SB = EB: none (sophisticated checks can be implemented)

partVague(Interval,VaguePart) :
(t_interval, t_vague_part) — t_interval

start: fract; =0, fracty =1/2
end: fracty =1/2, fracto =1
middle: fract; = 1/4, fracty = 3/4

SL: Interval — SL + Interval — W L x fract;

SU: Interval — SU + Interval — WU % fracto

EL: Interval — EL + Interval — WU = (1 — fracts)
EU: Interval — EU + Interval — WL (1 — fracty)
WL: Interval — WL x (fracta — fracty)

WU: Interval — WU x* (fracta — fract;)

SB = EB: none (sophisticated checks can be implemented)

seriesET ByInterval( EntityType, Interval) :
(t_etype, t_interval) — t_intervals

series] E ByInterval( Entity, Interval) :
(t_ie_name, t_interval) — t_intervals

seriesPE BylInterval(Entity, Interval) :
(t_pe_name, t_interval) — t_points

SL: Interval — SL
SU: Interval — SU
EL: Interval — EL
EU: Interval — EU
WL, WU, SB, EB: N/A

seriesE'T ByInterval( EntityType, Interval) :
(t_etype, t_interval) — t_intervals
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series] E ByInterval( Entity, Interval) :
(t_ie_name,t_interval) — t_intervals

seriesPEBylInterval(Entity, Interval) :
(t_pe_name, t_interval) — t_points

SL: Interval — SL
SU: Interval — SU
EL: Interval — EL
EU: Interval — EU
WL, WU, SB, EB: N/A

seriesET ByCount(Point, EntityType, Count, InFuture) :
(t_point,t_etype, t_uint,t_bool) — t_intervals

SET (Superior Entity Type): EntityType

series] E ByCount(Point, Entity, Count) :
(t_point,t_ie_name,t_wint) — t_intervals

seriesPEByCount(Point, Entity, Count) :
(t_point,t_pe_name,t_uint) — t_points

SET (Superior Entity Type): the (basic) entity type to which Entity is
equivalent if there is such a type, otherwise it is the lowest entity type
that safely (i.e. always) contains Entity

SL: Point — SL

SU: Point — SU + |SET)|

EL: Point — EL + (Count — 1) * |SET|

EU: Point — EU + (Count + 1) x |SET|

WL, WU, SB, EB: N/A
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Appendix C

Automatic Subfunctor
Assignment

In this appendix we list subfunctor values that are automatically assigned to given
functors based on the respective preposition compounds containing the listed prepo-
sitions (in PCEDT, prepositions consisting of multiple words are merged into prepo-
sition compounds).

We have only assigned typical prepositions to a given subfunctor, some sub-
functors are not assigned to. Note that the most common preposition are not as-
signed to any subfunctor! as they do not convey a very distinct meaning.

ACMP

incl: including

wout: without
BEN

agst: against

CPR
than: than
wrt: unlike
DIR-2

across: across
along: along
around: round

between: between

I"There is a technical subfunctor basic.
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near: near

DIR-3

EXT

LOC

above: above
behind: behind
below: below
elsew: outside
ext: to_up
near: near

to: to

approx: round, around
less: less, below

more: more, over

above: above
along: along
around: round
behind: behind
below: below
between: between
elsew: outside

in: inside

near: near

TWHEN

after: after
approx: round
before: before
between: between

flow: during
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Appendix D

Overview of the Implemented
Software

In this appendix we provide a brief overview of the structure of the software that
implements the experiments described in this thesis. It consists of Perl scripts and
relies heavily on using BTred! — a Perl engine allowing for reading, traversing and
manipulating TGTSs. The software is part of the enclosed DVD.

More detailed information regarding the installation of the software, data de-
scription and manipulation, how the software is run etc. is available on the DVD,
please see the README.txt file in the root directory.

Automatic Analysis of Temporal Relations

Main Scripts

analyse_temporality.btred
is the main btred macro file that is to be run on the TGTSs representing
discourses in which temporal relations are to be determined. It contains
the implementation of RTP (see Section 3.3) and uses other libraries for the
complex subparts of the analysis such as dealing with time expressions.

eval.btred
is the evaluation script. It reads the given TGTSs, the reference and hy-
pothesis (output of the analysis) annotation of the corresponding temporal
relations and outputs detailed statistics. It uses the Closure module to com-
pute transitive closure of the relations contained in the annotations. It also
uses auxiliary comparison routines (FunctionEval.pm) to decide whether a
time expression was (weakly) correctly interpreted (see Section 3.6.1).

"http://ufal.mff.cuni.cz/ pajas/tred/btred.html
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Library Packages

In this section we briefly describe the content of the respective scripts and libraries
and outline the main dependencies.

General Knowledge Libraries

TimeKnowledge.pm
contains some common sense knowledge about time entities as well as some
more specific routines tailored to be used by the time expression reasoning
subsystem.

NumeralsKnowledge.pm
allows for recognition of Czech numerals and their conversion to the numeric
representation. It is used by time expression parsing subsystem.

CommonKnowledge.pm
contains routines related to general knowledge (e.g. inverses of ordering
relations).

Ontologylnterface.pm
represents a general interface to an ontology for certain types of queries (e.g.
appurtenance of an entity to a class). Currently, the EuroWordNet ontology
is the only one installed. Queries to the ontology are posed by the subsystem
of detection of animate actors (see Section 3.5.1).

Temporal Annotation Manipulation

Annotation.pm
contains main routines that allow for the reading of plain text temporal an-
notation files (using ExpString.pm), processing the information (which in-
cludes determining the morphological types of the respective points using
TempTypes.pm) and creating the corresponding temporal relation matrix ob-
ject (TempMatrix.pm).

ExpString.pm
contains various string manipulation and verification routines connected to
the recognition of the respective time entities in temporal annotation files.

TempTypes.pm
contains routines that detect morphological type of the respective time points
and record that information for a given time point.

TempMatrix.pm
represents the temporal relation matrix which also contains attributes of the
respective time points (appurtenance to a plan, etc.).
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Tempo.pm
contains various useful routines related to tree querying that is specific to the
time processing subsystem. This package is widely used by other libraries.

Closure
contains implementation of the computation of transitive closure . Clo-
sure.pm is a Perl implementation, the project located in Exe/Closure is a
C++ implementation. Currently, C++ implementation is used as it is much
faster.

FunctionEval.pm
contains comparison routines that determine the relationship between two
functional compositions, namely whether one if a less specific than the other.

Interpreting Time Expressions

Entityldentification.pm
is the entry point to time expression interpretation subsystem. The main
function gathers the interpretations (functional compositions) of the child
subtrees of the given node which correspond to the respective time expres-
sions. It does so by running the parser (EIEngine.pm) for the given grammar
(EIGrammar.pm). It then builds the final time specification for the given
node.

ElEngine.pm
contains an implementation of the parser described in Section 3.6.1. The
parser accepts a grammar to parse with and a subtree to parse.

ElIGrammar.pm
is a grammar describing time expression subtrees. Lexical conditions the
respective terminal nodes must match are present in ElParsing.pm. Ellnter-
pretation.pm contains the interpretation functions for the respective grammar
layers.

ElParsing.pm
contains predicates determining whether a node of the parsed subtree fulfills
given lexical constrains.

Ellnterpretation.pm
contains the interpretation functions for the respective grammar layers. It
uses ElParseNavigation to process the parsing result.

ElParseNavigation.pm
contains auxiliary routines that make it easier to traverse parsing results.
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Comparing Extensions of Time Expressions

Beam.pm
contains beam estimation routines described in Appendix B. It uses time
functions type system (TimeFunctions.pm) and the general time knowledge
library (TimeKnowledge.pm).

TimeFunctions.pm
contains definition of the respective time functions as well as validation rou-
tines that allow for valid construction of functional compositions.

Detection of Animate Actors

Inquiry.pm
contains the detection routines. It uses Ontologylnterface.pm to query the
EuroWordNet ontology.

Auxiliary Routines”

PCEDT.pm

represents an abstraction layer between tree operations supported by BTred
and those used by our systems. The module encapsulates BTred calls by
its own functions and our system uses these functions instead of the original
BTred calls. It also provides some extensions. The motivation is to somehow
shield the code from different tectogrammatic annotation schemata. How-
ever, our code still heavily relies on the PCEDT (PDT 1.0) tree structure so
it would take much more than simply rewriting PCEDT.pm to get the system
functional under PDT 2.0.

LexMorph(EN).pm
contains various tests related to lexical and morphological properties of tree
nodes for Czech and English, respectively.

TreeExtensions.pm
contains various extensions to tree querying.

Pearls.pm
is a general Perl utility package.

CFGParser.pm
is a user friendly interface to the Earley’ context free grammar parser. It
is used by the functional composition comparison subsystem to parse the
compositions.

2Some of these routines are also used by the tense generation system.
*CPAN module
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Text Generation

Main Scripts

create_data.pl
processes the training, heldout and testing TGTSs and creates the corre-
sponding n—gram (each position corresponds to a feature) files to be used
by the EM module. This is a wrapper around BTred scripts that create the
file for the respective subsystems: dist_det.btred (insertion of determiners),
dist_pp.btred (insertion of prepositions and subordinating conjunctions) and
dist_surf.btred (surface ordering).

run_stat.pl
runs the EM model on the created data files for the given subsystem. It calls
the NGram executable* (written in C++) to do the actual work.

run_test.pl
is the evaluation script that can also physically modify TGTSs according
to the results for the given experiment (subsystem). It is a wrapper around
the scripts for the respective experiments: eval_det.btred, eval_pp.btred and
eval_surf.btred. These scripts also contain all the rule—based postprocessing
of the results obtained by EM.

tri.pl
is the TSRF (see Chapter 5) Perl wrapper. TSREF itself is implemented in
Mercury and contains large number of modules, see the enclosed DVD.

Libraries

Common.pm
contains auxiliary routines connected to the wrapper scripts.

tri_parsing.pm
contains auxiliary routines connected to the TSRF wrapper script.

Generation of English Tenses

Main Scripts

match.pl
runs the automatic matching procedure between the nodes in Czech and Eng-
lish trees.

verb_tense.pl
runs the tense generation.

*EM computation module was written by Keith Hall and his colleagues at Center for Speech and
Language Processing, Johns Hopkins University, Baltimore, USA.
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Libraries

MTTemporality.pm
represents a map object between the Czech and English temporal annotation,
i.e., it allows to query temporal relations between the matched English nodes
based on the temporal annotation of their Czech counterparts.

VTGSupport.pm
contains various auxiliary routines.
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