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PREFACE 
„Botanists usually direct their research towards objects that encompass only a very 

small part of their science. They are concerned almost exclusively with the discovery of 

new species of plants, the study of their external structure, their distinguishing character-

istics, and the analogies that group them together into classes and families. This 

knowledge of the forms which make up organized beings is no doubt the principal basis for 

descriptive natural history. It must be regarded as indispensable for the advancement of 

the sciences that concern the medical properties of plants, their cultivation, or their 

applications in the arts; even if this knowledge is worthy of occupying a great number of 

botanists, even if it can be considered from a philosophical point of view, it is no less 

important to understand the Geography of Plants, a science that up to now exists in name 

only, and yet is an essential part of general physics. This is the science that concerns itself 

with plants in their local association in the various climates. This science, as vast as its 

object, paints with a broad brush the immense space occupied by plants, from the regions 

of perpetual snows to the bottom of the ocean, and into the very interior of the earth, 

where there subsist in obscure caves some cryptogams that are as little known as the 

insects feeding upon them.“  

Alexander von Humboldt: Essay on the geography of plants, 1807,  

translated by Sylvie Romanowski, 2008. 

Caspar David Friedrich:  Böhmische Landschaft mit dem Milleschauer, 1808 
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ABSTRACT 

In this thesis, I aimed to identify factors shaping plant distribution at different spatial 

scales, correlate them with environmental heterogeneity, identify causal processes and 

test general hypothesis on the nature of response curve shapes and species richness 

patterns. General review of the topic is introduced in the first chapter, followed by five 

chapters presenting three already published studies and two manuscripts. 

The first study deals with processes responsible for creation of fine-scaled spatial 

pattern of spruce seedlings and saplings, emerging after bark-beetle disturbance in 

mountain spruce forest. Aggregated pattern, replicating previous generation of spruce 

trees, emerges in consequence to microsite-dependent mortality, as was surveyed 

through repeated monitoring of the fate of individual seedlings. 

The second study explores spatial variability in forest understory temperatures at 

the landscape scale and its relevance for understory plant distribution. As the main 

source of variability in understory communities we identified seasonal maximum 

temperatures. Using GIS modelling approach, we created spatially continuous predic-

tion, which outperformed state-of-art climatic grids used currently by ecologists. 

The third study on the shape of species responses along elevational gradients used 

data from Himalaya collected by L. Klimeš, covering 3500 m wide elevational gradient. 

Here we show prevalence of asymmetric responses, gradually diminishing towards low 

elevations and steeply declining towards high elevations. This has practical conse-

quences for ecological model commonly assuming symmetric responses, but it also 

indicates interesting relations with environment. 

In the fourth study we explored patterns in species range size along elevational gra-

dient. Empirical pattern was heavily affected by geographic range truncation. After 

accounting for this artefact and with a support of our own climate measurements, we 

had to refuse elevational Rapoport rule, as well as the climate variability hypothesis as 

the potential explanations of the observed patterns. 

The last study focuses on the plant species diversity along elevational gradient, as 

the synergy of individual species distributions. We used mid-point attractor models to 

identify central tendency of diversity, accounting for geographic limits of the study. 
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SHRNUTÍ 

V této práci se zabývám procesy a faktory určujícími rozšíření rostlinných druhů na 

různých prostorových škálách. Studium prostorové distribuce má tři základní kroky: 

popis pozorovaného vzorce, nalezení prostorových vztahů s dalšími prostorovými jevy a 

nakonec určení kauzálních vztahů. Tato práce přináší pět případových studií, operují-

cích na různých prostorových škálách, které přináší různou úroveň poznání 

prostorových vztahů a jejich příčin: 

V první studii se zabýváme na jemné škále identifikací procesů, které vedou ke 

vzniku shlukovitého rozmístění semenáčků smrku v porostech horských smrčin 

zasažených gradací kůrovce, které je navíc konzervativní v čase – kopíruje totiž před-

chozí generaci lesa. S pomocí dlouhodobého sledování jednotlivých semenáčků jsme 

identifikovali rozdíly v mortalitě na mikrostanovištích zodpovědné za prostorové 

shlukování semenáčků. 

Druhá studie zkoumá prostorovou variabilitu teploty v lesních porostech na krajin-

ném měřítku a její vztah k rozšíření druhů bylinného patra. Jako hlavní složku teplotní 

variability zodpovědnou za rozšíření rostlin jsme identifikovali maximální teploty ve 

vegetační sezóně. S využitím metod GIS jsme informaci z bodových měření vztáhli k 

topografii terénu a vytvořili prostorově spojitou predikci mikroklimatu s velmi jemným 

rozlišením, která obstála při validaci na nezávislém souboru vegetačních snímků před 

stávajícími klimatickými modely, běžně používanými v ekologii. 

Třetí studie se zabývá symetrií tvaru druhové odpovědi na gradientu nadmořské 

výšky. Tvar druhové odpovědi je nejen důležitým předpokladem nejrůznějších ekologic-

kých modelů, ale zahrnuje informaci o vztahu k prostředí jako takovou. Tato studie na 

velkém měřítku je postavená na datech L. Klimeše získaných v Himalájích, v Ladákhu, 

které postihují 3500 m dlouhý gradient nadmořských výšek. Výsledkem studie je, že 

asymetrické křivky s pozvolným vyzníváním druhů do nižších poloh výrazně převládají. 

Čtvrtá studie zkoumá zákonitosti rozšíření druhů podél nadmořské výšky ve vztahu 

k celkové šířce rozšíření jednotlivých druhů. Jako příčinu pozorovaného vzorce odhalu-

jeme artefakty dané částečnou realizací celkové tolerance druhů v mezích zkoumaného 

území. S podporou vlastních klimatických měření potom odmítáme nejen elevační 

Rapoportovo pravidlo, ale i hypotézu o rostoucí klimatické variabilitě. 

V poslední, páté, studii zkoumáme průběh druhové bohatosti, jakožto synergii roz-

šíření jednotlivých druhů. S použitím modelu přitahovače středobodů1 hledáme 

centrální tendenci druhové diverzity při zohlednění geografických limitů studovaného 

území. 

  

                                                           
1 V originále „Mid-point attractor model“ (Colwell et al., 2016). 



 

CHAPTER ONE: 

INTRODUCTION  
 

Understanding actual physical distribution of organisms in space and time is one of the 

key goals in ecology, which is as old, as ecology itself, but is still sound (Sutherland et 

al., 2013). Many fields of ecology are dependent on the knowledge about patterns and 

processes responsible for spatial distribution of studied species, which propagate to 

higher organization levels, from community level (Watt, 1947) to global patterns of 

diversity (Hubbell, 2001; Kier et al., 2005). The occurrence of any individual in certain 

time on exact location is a result of a myriad processes acting on different time scales, 

stochastic or deterministic, driven by both physical environment and biotic interac-

tions.  

PLANT DISTRIBUTION  IN SP ACE :  FROM INDIVIDUALS TO SPECIES RANGES  

The spatial arrangement of individuals in space can be generally classified as uniform, 

random, or aggregated (Wiegand & A. Moloney, 2004). However, it is important to 

define the scale at which is the pattern analyzed: for example trees exhibit aggregated 

pattern at the landscape scale because they are restricted to forest patches, but they 

tend to uniform pattern within the forest stand due to competitive exclusion of neigh-

boring trees. From the processes potentially responsible for creation of aggregated 

patterns I have to mention namely environmental filtering (because most environmen-

tal variables are inherently autocorrelated in space), dispersal of diaspores (because 

diaspores are more likely to travel shorter distances), or disturbances. Less studied - but 

potentially important – process forcing spatial aggregation of individuals is the facilita-

tion (Callaway, 1995). Contrary, uniform pattern may stem from intraspecific 

competition, or positive density dependence in seed predation or parasitism (Janzen, 

1970). Random pattern may then arise when none of the above mentioned factors acts, 

or, more likely, when the antagonistic forces are in equilibrium. Study of spatial 

patterns is data-demanding, as it preferably require continuously mapped individual 

positions and also computationally-demanding, when pair-distance matrix is used for 

inference, and therefore most of the studies of point patterns are of limited spatial 

extent. Even more difficult is identification of causal relationship, for which either 

temporally replicated studies tracing dispersal and mortality or manipulative experi-

ments, or advanced statistical modelling tools build upon rigorous ecological knowledge 

are needed (Lepš, 1990; McIntire & Fajardo, 2009). The Janzen-Connell hypothesis links 

supposed density-dependent seedling mortality, acting against spatial aggregation of 

conspecific seedling density, to high species richness in tropics. Later research, as 

reviewed by Comita et al. (2014), confirmed that negative density dependent or distance 

dependent mortality is prevailing not only in tropics, but also in temperate zone. On 
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the other hand, Condit et al. (2000) analyzed patterns from six fully mapped large 

research plots in tropics, and concluded that aggregated pattern is by far the most 

common case for tropical trees. Such result indicates that dispersal and environmental 

filtering are still the dominant drivers responsible for spatial patterning of trees, even at 

small scales. Considerably clustered spatial pattern was found by Wild et al., (2014) for 

spruce seedlings in disturbed mountain spruce forest, where spruce seedlings were 

clustered right around tree trunks. The proposed explanation was built upon observa-

tion that the spruce seeds disperse mainly during late winter and supposed that they 

may be redistributed on the snow into melted holes around tree trunks (called ‘tree-

wells’), which act as a seed trap. In the chapter two of this thesis, we took a closer look 

on this phenomenon using a temporally replicated sampling design, which allowed us 

to describe temporal dynamics of forest regeneration and sapling density differentiation 

on different microhabitats. Here, we identified that seedling mortality is reduced in 

microhabitats related to deadwood, or in proximity to tree trunks, suggesting that 

facilitative effects of (already dead) maternal spruce trees are the driving force of 

aggregated pattern, rather than the seed dispersal. This facilitative mechanism main-

tains long-term stability of patterns in spruce forests, which can literally survive its own 

death. 

At intermediate scales, patterns in plant population density are typically studied 

using presence/absence data or cover/biomass estimates per unit area, which are then 

related to gradients in environmental or biotic conditions. Because it is usually not 

feasible to obtain spatially continuous estimates of species density, the entire area is 

sampled by limited set of plots covering only a fraction of the area, typically using 

transects, stratified- or random sampling design. Such research typically aims to identify 

conditions preferred by the species (species optima) and relative importance of various 

environmental correlates structuring the plant communities. As an example of study at 

intermediate (landscape) scale, I present the published study focusing on temperature 

control of plant communities in České Středohoří in chapter three. 

At the largest scales, the occurrence of a taxon is usually generalized as the total 

area of species distribution, i.e. by a spatial polygon bounding the whole population (or 

contiguous area bounding the majority of population) in geographic space, or by the 

limits of occurrence in ecological space. Because data on species distribution at large 

scales are usually compiled from multiple sources, lacking standardized sampling 

density (see Beck et al., 2014), inference of more detailed information about inner 

spatial structure is rare at large-scaled studies. Knowledge about the range limits of 

multiple taxa serve as a basis in search of limiting conditions of species distribution 

with implications for diversity. Geographical range size reflects ecological tolerance of 

the species, but its realization may be constrained by many confounding effects, 

including domain boundaries or dispersal limitations. Range size was reported to 

increase with increasing latitude, aka ‘Rapoport’s rule’, (Rapoport, 1982; Stevens, 1989). 
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Climate variability hypothesis provide reasonable explanation for this phenomenon – 

organisms living in higher latitudes have evolved adaptations to deal with seasonal 

changes in temperatures, which allows them to tolerate broader range of temperatures 

also along geographical gradient. In analogy to latitudinal ranges, range size was 

reported to increase also with elevation (Stevens, 1992).  In chapters four, five and six, I 

present large scale studies from Himalaya, Ladakh. At this large scale, we studied 

distribution of plants along prominent elevational gradient. Thanks to availability of 

extensive dataset with unified sampling methodology, I was able to quantify not only 

limits of distribution along elevational gradient, but also the shape of the species 

response curve. Here, I question validity of elevational Rapoport’s rule – broadening of 

range size with elevation is a mere artefact of domain truncation and it has nothing in 

common with fundamental niche of the species. 

LINKING SPECIES  DISTR IBUTION AND ENVIRONM ENT HETEROGENEITY  

Early formalized attempts to link spatial distribution of organisms and its drivers  were 

developed under niche theory framework, originating in work of J. Grinnell and later 

refined by G. E. Hutchinson (Grinnell, 1917; Hutchinson, 1957; Vandermeer, 1972). Niche 

theory accentuated importance of abiotic drivers, with fundamental niche defined by 

range of condition and resources levels under which the species can survive and 

reproduce and it’s realization in physical space to be realized niche. Hutchinson (1957) 

discussed two causes of discrepancy between fundamental and realized niche: (1) the 

physical space could be incomplete subset of possible combinations of factor levels 

creating fundamental niche, and (2) the competition for resources by two species whose 

niche overlap resulting in competitive exclusion (aka Lotka-Volterra model). 

Grounded in the niche theory, the modern numerical ecology developed multiple 

tools to describe patterns and identify environmental correlates and demographic 

processes behind actual distribution of organisms, from simple linear regressions to 

more sophisticated types of regression analysis including generalized linear models 

(GLM), generalized additive models (GAM), logistic regression models (Huisman et al., 

1993) or direct ordination techniques like redundancy analysis (RDA; van den 

Wollenberg 1977), canonical correspondence analysis (CCA) and related techniques. 

Knowledge of environmental drivers and ecological processes is than applied in the 

species distribution modelling (SDM) (Guisan & Zimmermann, 2000; Austin, 2002), 

which model either current species distribution based on incomplete set of observation, 

or potential species distribution under various scenarios of environmental change.  

The basic assumption of the most models is the shape of the response curve to the 

underlying environmental factors. It is clear that ‘universal’ shape of species response 

doesn’t exist, but for practical reasons e.g. model fitting, generalization of the results 

and their interpretability, the need of defining universal and simple response curve arise 

(Jansen & Oksanen, 2013). Many well-established modelling techniques used in ecology 
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implicitly build on assumption of certain type of response shape, most commonly linear 

dependence (linear regression, RDA) or Gaussian response (CCA). However, linear 

response is generally recognized as too simplistic, but can be used with caution in case 

that fitted gradient is short. Unimodal Gaussian response curve was generally accepted 

by ecologists in the past as the most appropriate, but later it was questioned (Oksanen 

& Minchin, 2002), because skewed responses were identified to be relatively common 

(Lawesson & Oksanen, 2002; Normand et al., 2009; Boucher-Lalonde et al., 2012). In 

chapter four of this thesis, I present study from Himalaya, showing the prevalence of 

skewed response shapes along elevational gradient. Skewed responses may arise when 

different processes act of left and right end of the gradient, e.g. increasing asymmetric 

competition at warm & productive end of distribution (at low elevations) and physiolog-

ical barrier caused by low-temperatures at high elevations (Normand et al., 2009; Wisz 

et al., 2013). However, skewed responses were found also in low-productivity ecosystems 

with limited competitive interactions among species, like in our study from Himalaya, 

where low elevations are characterized by increasing aridity, with exception of spatially 

restricted area along glacial streams and artificially irrigated fields (Fig. 1). More 

complicated shapes, including splines, bimodal shapes or threshold functions are 

increasingly used in ecological modelling, but fitting of these models require more 

intensive sampling design and advanced statistical tools (Oksanen & Minchin, 2002; 

Jansen & Oksanen, 2015; Michaelis & Diekmann, 2017). It is well-known that “all models 

are wrong, but some are useful” (Box, 1979), in other words, it is impossible to get 

perfectly realistic model, but we can learn even from more simple models, when we 

know their limits. 

Figure 1 Asymmetric species response curve 

realized along elevational gradient may arise in 

consequence of interaction of the two different 

stressors: the low temperature stress uniformly 

affecting high elevations and the increasing 

aridity, which is acting in lower elevations (with 

some local exceptions, responsible for the long-tail 

of the response curve). 
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Besides selection of an appropriate statistical model, the selection of relevant envi-

ronmental variables entering the model is crucial for successful explanation or 

prediction of species distribution. Ecologists in countless publications identified 

important environmental drivers based on extensive field experience, manipulative 

experiments or regression of occurrence data against multiple environmental factors 

(comprehensive overview of ecological factors shaping Central European vegetation 

provides Ellenberg (1988)). However, finding the parsimonious drivers of spatial or 

temporal dynamics is a challenging task, because the number of possible environmental 

or biotic drivers and their interactions is virtually unlimited, but the most relevant 

variables are not always readily available for the modelling (Mod et al., 2016; Körner & 

Hiltbrunner, 2018), and the correlation is not necessarily a sign of causality (Fig. 2). 

Figure 2 Environmental heterogeneity 

of the landscape can be expressed by 

many ways. Many of them correlate 

with plant distribution but few of them 

are the real causal drivers. On the 

illustrative figure are displayed (from 

the top): 95th percentile of seasonal 

maximum temperature, relative 

topographic position in 250m radius, 

diurnal anizotropic heating, SAGA 

wetness index, and elevation for part of 

study area in  České Středohoří 

(Chapter III). 

 

 

 

 

Classical regression techniques tend to be sensitive to overfitting and issues caused 

by collinearity predictors (Guisan et al., 2002). Informed selection of relevant environ-

mental factors entering the model is thus necessary – as Araújo and Guisan (2006) 

stated: “The use of automated solutions to predictor selection and contribution should 

not be seen as a substitution for pre-selecting sound ecophysiological predictors based 

on deep knowledge of the biogeographical and ecological theory”. Modern advanced 

statistical tools using machine-learning like boosted regression trees (BRT, Elith et al. 

2008), or maximum entropy modelling (MaxEnt; Phillips et al. 2006) are believed to be 

less sensitive to limitations of data entering the model (Thibaud et al., 2014) and less 

attention is also paid to informed pre-selection of environmental variables entering the 

model (Merow et al., 2013). For instance, the MaxEnt circumvents missing absence data 
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by producing “pseudo-absences”; the dark side of this approach is that the output 

provide only relative suitability values, which cannot be scaled to absolute occurrence 

probability (Guillera-Arroita et al., 2014). Further, even MaxEnt is not immune to 

overfitting issues, as was documented on species distribution modelling using MaxEnt 

and set of “pseudo-predictors” (paintings) and a whole set of bioclimatic variables 

available in Worldclim (Fourcade et al., 2018). This extreme example by Fourcade et al. 

clearly showed, that fit of the model to the empirical data does not qualify the model for 

extrapolation and contribute little to understanding of the real drivers. 

Is there any rule-of-thumbs for selection of appropriate explanatory variable? Some 

variables are of universal importance to the whole focal group of organisms, like the 

light- and water- availability for the autotrophic plants, but some factors are relevant 

only to specialized species (e.g. specific soil type for substrate specialists). Further, some 

factors may be relevant only at particular scale, according to inherent spatial or tem-

poral variability of the desired factor and the actual resolution of its map product and 

resolution of the species data (Wiens, 1989; Bell et al., 1993; Chase & Knight, 2013; 

Bernhardt-Römermann et al., 2015). At the largest spatial scales is the evolutionary 

history and macroclimate recognized (Peterson et al., 1999; Colwell & Rangel, 2010; 

Peters et al., 2016), while at landscape scale are factors like terrain topography, soil 

properties or land-use history increasingly important (Whittaker et al., 2001; Fraterrigo 

et al., 2006; Dambrine et al., 2007; Daly et al., 2009; Zellweger et al., 2015). At the finest 

scales, where position of single individual is recognized, are the biotic interactions, i.e. 

facilitation and competition, increasingly important (for examples see Herben et al. 

1993, Callaway 1995, Le Roux et al. 2013, Wild et al. 2014, Dolezal et al. 2019a)2. Stochas-

ticity, including random disturbances or random dispersal, is relatively large at this 

scale, but it is believed to have deeper consequences, than only puzzling the ecologists: 

the effect of fine-scale stochasticity propagate to higher spatial scales, and provide 

possible explanation to the question: “How can so many plant species, competing for 

the same resources (the light and water), coexist?” (Shmida & Ellner, 1984; Chesson, 

2000). 

The climate is generally recognized as the universal driver of species distribution 

and species richness at broad scales. Even though, little consistency in ecological studies 

can be found in which climatic parameters they use (Körner & Hiltbrunner, 2018; 

Gardner et al., 2019). Specifically, indices related to water balance, or water-energy 

(actual evapotranspiration and water deficit) were recognized to be highly relevant for 

plants (Mather & Yoshioka, 1968; Stephenson, 1998; Hawkins et al., 2003; Carpenter, 

2005), but we can find studies using many other climatic indices, e.g. mean annual 

temperature, mean growing season temperature, growing season length, maximum 

                                                           
2 There are many other studies, which are worth mentioning in this thesis, hereafter I preferentially select 

studies from related study systems and the studies which I personally participated. 
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temperature in growing season, temperature seasonality, total annual precipitation, soil 

water content (Jiménez-Alfaro et al., 2018; Gardner et al., 2019). Such inconsistency may 

be caused by different context of the studies, i.e. spatial extent, geographic area, studied 

species groups; but it may stem also from arbitrary decisions of the investigators.  

Currently, bioclimatic variables from WorldClim grids (Hijmans et al., 2005; Fick & 

Hijmans, 2017), available globally with spatial resolution of 30 arc sec (ca 1x1 km pixel), 

are widely used for ecological modelling. Despite the scale of these grids seems to be 

relatively fine, it may not reflect whole variability present at this scale. These maps are 

based on weather station data, most of which measure climatic conditions under 

standardized conditions – thermometers are placed in Stevenson screen on flat place 

not shaded by trees or other physical objects. Therefore, topographic effects like 

different exposure to solar radiation caused by slope aspect or effects of forest canopy 

on microclimates are not covered in the WorldClim or any other climate map based on 

interpolations of standard weather station data (De Frenne & Verheyen, 2016). Includ-

ing topographic, and vegetation cover effects into fine-scaled climatic maps would make 

the species distribution modelling and predictions of climate change impacts on 

biodiversity more realistic (Bramer et al., 2018; Maclean, 2019). To investigate, if these 

so-called fine-scaled climatic grids are sufficient for modelling of forest plant communi-

ties on the landscape scale, I designed the study using in-situ measured temperatures 

and spatially modelled topoclimate maps derived from digital elevation model with very 

fine (5x5m) resolution. This study revealed that substantial part of temperature variabil-

ity within the landscape is driven by factors not accounted for by WorldClim climate 

grids and that maximum temperature is better predictor of forest plant communities 

than mean and minimum temperatures. These results counterpoint the importance of 

climatic extremes and provide a clue for assessment of the climate change impacts on 

forest understory. 

Insufficient knowledge of the ecological mechanisms and the spatial and temporal 

scales at which they act, cause serious mismatch between our expectations how the 

ecosystems should react to environmental change, and the reality. As an example, I 

show the story of climate change impacts on forest plants distribution: Once it became 

evident, that global temperature had risen, ecologists started to search for evidence if 

the elevated temperature is reflected in species distribution. Upward and poleward 

shifts of range limits were expected, with a magnitude corresponding to the observed 

change in average temperature (Rosenzweig et al., 2008). Such upward shifts, congruent 

with expectations (i.e. expected vertical shift calculated as temperature warming rate 

between surveys divided by an adiabatic temperature lapse rate), were documented by 

multiple studies in mountain/alpine vegetation (Lenoir et al., 2008; Parolo & Rossi, 

2008; Morueta-Holme et al., 2015). Strikingly, forest communities showed a weak 

response or even response in an opposite direction than expected (Bertrand et al., 2011; 

Rabasa et al., 2013). Since then, ecologists seek for plausible explanation, why response 
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of forest plants to warming lags behind warming rates. Forest microclimate seems to be 

on the top of the list of suspects (De Frenne et al., 2013, 2019; Zellweger et al., 2019). 

Average temperatures are weakly influenced by forest canopy, which rather buffer the 

extremes (Geiger et al., 2009; De Frenne et al., 2019; Macek et al., 2019; Zellweger et al., 

2019). If this is true, than weakening of climate-warming signal in the forests cannot be 

attributed to the mean temperatures, but more likely is caused by the buffered high 

temperature extremes. Moreover, the narrative of range shifts driven unequivocally by 

temperature was questioned, as interactions with light availability (De Frenne et al., 

2015), water-availability (Crimmins et al., 2011) or land-use legacies (Rumpf et al., 2018) 

affected resulting impact on plant communities (see also Parmesan and Hanley 2015). In 

case of long-living trees, the unexpected elevational shifts were estimated from differ-

ences in distribution of adult trees and tree saplings/seedlings (Rabasa et al., 2013). This 

approach was later criticized, because differences between density of adult trees and 

saplings may reflect other factors than the temperature at the year of germination 

(Máliš et al., 2016). This short example demonstrates, how seemingly straightforward 

expectation can be in reality biased, if predictors used for modelling are not on the 

appropriate spatial scale (fine-scaled microclimate vs. coarse-grain macroclimate), 

temporal scale (considering the life-span of the studied organism), and if proper 

variables are not selected (average temperature vs. maximum temperature). The 

complexity of forest microclimate across the landscape and its relevance for understory 

plants is in detail presented in the third chapter of the thesis. 

SPECIES DIVERSITY  

Measures of species diversity integrate numbers (or abundances) of species be-

longing to pre-defined species group occurring together at certain area and time (alpha 

& gamma diversity), or compare differences in species numbers between these samples 

(beta diversity). What makes the difference between alpha and gamma diversity is the 

scale: the plot size used by vegetation scientists for alpha diversity evaluation is conven-

tionally ≤ 1000m2 (Chytrý & Otýpková, 2003) while the gamma diversity is calculated for 

larger area, with upper bound at to the total terrestrial area worldwide of nearly 150 

million km2 hosting ca 300,000 vascular plant species (estimates still differ, see 

Chapman (2009)). The most intuitive measure of diversity, the species richness, is the 

summation of individual species present in the sample. Because plants share same 

fundamental resources for their growth, one would expect similar drivers to be shaping 

species richness as are the drivers of species spatial distribution. In analogy, species 

richness is regulated by a hierarchy of drivers acting on different spatial and temporal 

scales (Clark et al., 2011; Bernhardt-Römermann et al., 2015): broad climatic gradients 

and evolutionary history acting at the coarsest scales (Mutke & Barthlott, 2005), 

environmental heterogeneity related to topography and substrate quality at landscape 

scales (Chytrý et al., 2003; Bruun et al., 2006; Zelený et al., 2010; Lippok et al., 2014) and 
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biotic interactions and environmental filtering at fine scales (Burton et al., 2011; Chytrý 

et al., 2015). 

After a century of ecological research, we are still missing consensus, which driv-

ers of diversity are the most relevant at each scale (Stevens & Carson, 2002; Michalet et 

al., 2006; Šímová et al., 2011; Chase & Knight, 2013). Among top explanatory drivers for 

diversity gradients remains diversity-productivity relationship. Nevertheless, even this 

relation is scale-dependent, switching from unimodal or even negative at small scales to 

positive at broad scales (Waide et al., 1999; Whittaker et al., 2001; Rahbek, 2005). This 

irregularity is caused by interplay of the total species pool and limited number of 

individuals in a plot at finer scales, controlled by competitive exclusion or productivity 

per se (Zobel, 1997; Zobel & Pärtel, 2008; Grace et al., 2011). Positive relation dominates 

at global scales (Waide et al., 1999), but in contradiction to this, many studies on 

elevational richness gradients found richness peak in middle elevations. Proposed 

explanation include random arrangement of species ranges within the elevational 

domain  (aka "mid-domain effect", Colwell & Hurtt, 1994; Colwell & Lees, 2000), land-

area effects, habitat heterogeneity, or biotic effects like source-sink dynamics (Grytnes, 

2003; Grytnes & McCain, 2007). Discussion on the role of neutral processes on for-

mation of spatial patterns of species richness, opened by S. Hubbell (2001) and R. 

Colwell (Colwell & Hurtt, 1994; Colwell & Lees, 2000) still continues, without a clear 

solution. Neutral processes can theoretically produce similar patterns to empirical ones, 

but environmental and biotic drivers cannot be ignored (Colwell et al., 2004, 2016; 

Zapata et al., 2005; McGill et al., 2006; Adler et al., 2007; Rosindell et al., 2011). Actually, 

the search for universal explanation of diversity gradients assumes existence of such 

driver. There are, undoubtedly, some shared limits, like thermal tolerances (Körner & 

Paulsen, 2004; Clarke, 2014) or shared resources (i.e. light, water, or CO2 for plants), but 

individual species differ in the strategy, how to utilize the resources and how to deal 

with environmental stress. Therefore, the vision of the universal model of diversity may 

be illusory. Further, the observed diversity patterns are subject to different sources of 

bias, from observer errors (Lepš & Hadincová, 1992; Kopecký & Macek, 2015; Verheyen et 

al., 2018) to artefacts caused by differences in sampling intensity (Chao et al., 2014) to 

methodological artefacts caused by the statistics used to aggregate species occurrence 

data into diversity measures (Grytnes & Vetaas, 2002; Šizling et al., 2009). Random bias 

can be averaged-out with sufficient number of replicates, but systematic bias can 

seriously affect interpretation of the results. A hot debate about apparent mid-domain 

diversity is the exemplary case: elevational diversity estimates are subject to both 

sampling bias and statistical artefacts (Colwell & Hurtt, 1994; Colwell & Lees, 2000; 

Grytnes, 2003; Colwell et al., 2004; Šizling et al., 2009). Study presented in the chapter 

six of this thesis shed a light on this topic, accounting for possible biases using null-

modelling, sampling intensity corrections (Chao et al., 2014), land area corrections and a 

brand-new mid-point attractor models (Colwell et al., 2016). Here, we found that 
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unimodal richness gradient is pervasive when corrected for sampling bias, but on the 

other hand, it can be produced by random sampling from truncated Gaussian distribu-

tion of midpoints, suggesting monotonous decline of environmental favourability 

within the domain of our study. This bridge the gap between our expectations on the 

productivity-diversity gradient and empirical evidence realized in the field. 

MAIN RESULTS  

To conclude, relative importance of ecological drivers of plant distribution vary 

across the scales as these factors display different levels of spatial heterogeneity accord-

ing to the scale and extent of the study. I assume, that this is not only the artefact of 

methodology, e.g. the effect of insufficient resolution of environmental grid used in the 

study (Hengl, 2006), but that this is real phenomenon, conditioned by the nature of 

environmental heterogeneity. Biotic interactions are most relevant at small spatial 

scales, where the physical interference between organisms take place, although the 

effects may propagate at higher spatial scales at long term perspective. In my study on 

Norway spruce regeneration following bark-beetle outbreak, I identified that facilitative 

effects of former canopy trees are responsible for spatial aggregation of seedlings during 

early stand development. 

At a landscape scale I focused on climatic heterogeneity modulated by topography 

and its relevance for plant distribution. Using in-situ measured climatic variables, I 

found that spatial variability of forest understory plant communities is coupled namely 

with spatial variability in maximum temperatures. I linked spatial variability in temper-

atures to topography and used fine-scaled prediction of temperatures for validation on 

independent set of plant distribution data. This validation proved applicability of my 

results. 

At a country scale, where I touched the fundaments of macroecological theory, I 

challenged plausibility of several deep-rooted hypotheses, showed that some models are 

really useful, and I conclude that climate and species identity matters, but neutral 

drivers are integral part of the story, too. What we can learn from the plant distribution 

patterns in Himalaya, is that symmetrical Gaussian shape is definitely not very common, 

so-called ‘Rapoport rule’ is a pure artefact here, caused by geographic range truncation 

and that mid-point attractor model can be useful, when interpreted carefully. 

  



Chapter One: Introduction 

  
21 

1.1 SUMMARY OF THE THESIS AND AUTHOR CONTRIBUTIONS 

In this thesis, I aimed to identify factors shaping plant distribution at different spatial 

scales, link them to causal processes and test general hypothesis on the nature of 

response curve shapes and species richness patterns. General review of the topic is 

introduced in the first chapter, followed by five chapters presenting three published 

studies and two manuscripts. 

Studies which I have selected for the thesis deal with plant distribution driven by 

environmental heterogeneity acting over across several order of magnitude of spatial 

resolution – from the very local scale (meters; Paper I), through the landscape scale 

(hundreds sq. km; Paper II) to the country scale (tens of thousands sq. km; Papers III; 

IV; & V). Research questions and methodology differs accordingly to the scale of the 

study: from tracking individual seedling’s growth and mortality in order to reveal 

processes responsible for creation of clumped spatial structures in mountain spruce 

forest, through attributing forest understory community composition to in-situ meas-

ured climate, up to ‘shuffling’ of the whole local flora of Ladakh, complemented with 

range limits from outside of the study region. 

PAPER I  (chapter two) 

Macek, M., Wild, J., Kopecký, M., Červenka, J., Svoboda, M., Zenáhlíková, J., Brůna, J., 

Mosandl, R., and Fischer, A. 2017. Life and death of Picea abies after bark-beetle out-

break: ecological processes driving seedling recruitment. Ecological Applications 27:156–

167. 

MM, JW, MK, MS and  AF conceived ideas; AF, RM and Maria Bauer designed and 

established permanent plots in 1998; MM, JW, MK, JČ, JZ and JB collected field data in 2010 survey; 

MM analyzed the data;  all authors contributed to writing and editing led by MM. 

Interesting spatial structures in plant distribution can be found even at the finest 

scales. In the detailed study, tracing the fate of individual Norway spruce seedlings, we 

identified processes responsible for creation of clumped spatial pattern of spruce 

regeneration following the bark beetle outbreak, which was described in previous work 

of Wild et al. (2014), but the explanation for observed pattern was only speculative. At 

this scale, competition was the starring actor, but even microclimate variability re-

mained between main suspects. Mortality rates differed between microhabitats, which 

resulted to highly uneven densities of surviving saplings after a decade since canopy 

disturbance. It is worth saying that this study was designed hierarchically to capture the 

variability at the scale of meters, as well as the variability at the landscape scale, where 

altitudinal gradient turned to be fairly important, but its effect was mediated through 

seed productivity or germination rate rather than through consecutive seedling mortali-

ty. 
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PAPER II  (chapter three) 

Macek, M., Kopecký, M., and Wild, J. 2019. Maximum air temperature controlled by 

terrain topography shapes forest plant distribution. Landscape Ecology 34:2541-2556. 

All authors conceived ideas and experimental design and contributed to text writing and 

editing. MM coordinated field data collection, analyzed data and led writing. 

The landscape-scale study from České Středohoří presented in Paper II dealt with 

relatively short climatic gradients, because underlying altitudinal gradient spanned only 

over several hundred vertical meters. Therefore, such data were not suitable for testing 

the shapes of the response curves, but on the other hand we were able to better deline-

ate effects of climate components and the role of topographic heterogeneity at this 

scale. We used in-situ measured temperatures and spatial modelling techniques to find 

biologically most relevant component of forest microclimate at the landscape scale. 

Maximum temperature turned out to be most influential driver of vegetation dynamics. 

Maximum temperature exhibited also highest spatial variability conditioned by terrain 

topography. We demonstrated limitations of input data quality used for ecological 

modelling by comparing predictive power of fine-scaled topoclimatic grids to coarser 

climatic grids from Worldclim 2 (Fick & Hijmans, 2017). 

PAPER III  (chapter four) 

Dvorský, M., Macek, M., Kopecký, M., Wild, J., and Doležal, J. 2017. Niche asymmetry of 

vascular plants increases with elevation. Journal of Biogeography 44:1418–1425. 

All authors conceived the ideas and contributed to text writing and editing led by MD; MM 

analysed the data. Species occurence data are based on late L. Klimeš botanical surveys. Climate 

data were collected by MM, JW, MK and JD. 

On the country scale, represented by the study from Himalaya (Ladakh region, In-

dia), the whole species distribution range along 3,500 m long altitudinal gradient was 

covered for substantial part of the flora. Luckily, species occurrence data collected by 

late Leoš Klimeš were sampled systematically using complete floristic inventory for ca 

4000 sites (1ha each), providing also true absences needed for logistic regression. This 

allowed us to quantify response curve shapes, and test the predictions of “asymmetric 

abiotic stress limitation“ hypothesis (Normand et al., 2009). We found asymmetric 

response shapes to be were quite common, particularly the left-skewed response on 

elevation gradient, which were found for more than one third of evaluated species. 

Moreover, the proportion of plants with left skewed response increased with elevation. 

We interpret this finding as evidence of higher importance of cold temperatures, or 

short vegetation season, as range limit determinant compared to drought limitation in 

lower elevations. 
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PAPER IV  (chapter five) 

Dvorský, M., Macek, M., Kopecký, M., Wild, J., and Doležal, J. (manuscript) Geometric 

constraints explain elevational range size patterns of vascular plants in Himalaya. 

All authors concieved ideas and contributed to writing and editing led by MD. MD compiled 

plant traits and ranges from literature, MM and JW prepared data for analyses. MM analysed the 

data, MK and JW consulted design of statistical analyses. Species occurence data were compiled 

from L. Klimeš botanical surveys (1998-2006) and surveys led by JD and participated by all authors 

(2008-2015). 

Alongside with shape of the response curve, we tested distribution of absolute range 

sizes along elevational gradient in Himalaya, in order to test predictions of Rapoport’s’ 

elevational rule (Stevens, 1992). We employed null modelling approach, to separate 

non-biological gradients in range size distributions, which resulted in surprising results: 

the pattern we observed was a pure artefact caused by range truncation by geographic 

extent of our study. To conclude, we found no support for Rapoport’s elevational rule. 

We also established extensive network of microclimate data loggers and expressed 

climatic variability to test assumptions of Climate Variability Hypothesis (Janzen, 1967). 

We conclude that climate variability doesn’t increase with elevation in our study area, 

and therefore basic assumptions of the Climate Variability Hypothesis were not fulfilled. 

PAPER V  (chapter six) 

Macek, M., Dvorský, M., Klimeš, A., Wild, J., Doležal, J., and Kopecký, M. (manuscript) 

Mid-point attractor models of plant species richness along elevational gradient reveal 

monotonically decreasing climatic favourability shaped by geometric constraints 

MM, MD, MK, JW and JD concieved ideas, MD compiled plant traits and ranges from 

literature, MM prepared data for analyses. Species occurence data were compiled from L. Klimeš 

botanical surveys (1998-2006) and surveys led by JD and participated by all authors (2008-2015). 

MM and AK analysed the data, all authors contributed to text writing led by MM. 

Species diversity peaking in middle altitudes was reported for various species 

groups and geographical areas; hot debate about causes of this phenomenon was 

initiated by the paper by Robert Colwell, attributing the creation of such pattern to 

biologically neutral processes (aka "mid-domain effect"; Colwell and Hurtt 1994). In his 

later work, Colwell presented mid-point attractor model, which introduce Gaussian 

mid-point attractor, compromising between neutral processes and true ecological 

drivers of diversity (Colwell et al., 2016). Here, we tested consent between proposed null 

models for elevational species richness and observations from W Himalaya, Ladakh 

region. We also examined in detail differences between species groups defined by their 

biogeographical affinity, taxonomic ranking and life form. Our results confirmed 

usefulness of mid-point attractor model and indicated that species richness pattern is 

clearly driven by climate and can be decomposed to according to differences between 

species groups. Nevertheless, observed hump-shaped pattern is accentuated by the 
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sampling bias, which may be the dominant cause of apparent mid-domain peak in 

diversity in case of studies based on less intensive sampling. 
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2.1 ABSTRACT 

The severity and spatial extent of bark-beetle outbreaks substantially increased in 

recent decades worldwide. The ongoing controversy about natural forest recovery after 

these outbreaks highlights the need for individual-based long-term studies, which 

disentangle processes driving forest regeneration. However, such studies have been 

lacking. To fill this gap, we followed the fates of 2,552 individual seedlings for 12 years 

after a large-scale bark-beetle outbreak that caused complete canopy dieback in 

mountain Norway spruce (Picea abies) forests in SE Germany. Here we explore the 

contribution of advance, disturbance-related and post-disturbance regeneration to 

forest recovery.  

Most seedlings originated directly within the three-year dieback of canopy trees 

induced by bark-beetle outbreak. After complete canopy dieback, the establishment of 

new seedlings was minimal. Surprisingly, advance regeneration formed only a minor 

part of all regeneration. However, because it had the highest survival rate, its im-

portance increased over time. The most important factor influencing the survival of 

seedlings after disturbance was their height. Survival was further modified by microsite: 

seedlings established on dead wood survived best, whereas almost all seedlings sur-

rounded by graminoids died. For 5 cm tall seedlings, annual mortality ranged from 20% 

to 50% according to the rooting microsite. However, for seedlings taller than 50 cm, 

annual mortality was below 5% at all microsites. While microsite modified seedling 

mortality, it did not affect seedling height growth. A model of regeneration dynamics 

based on short-term observations accurately predicts regeneration height growth, but 

substantially underestimates mortality rate - thus predicting more surviving seedlings 

than were observed. 

We found that Picea abies forests were able to regenerate naturally even after severe 

bark-beetle outbreaks owing to advance and particularly disturbance-related regenera-

tion. This, together with microsite-specific mortality, yields structurally and spatially 

diverse forests. Our study thus highlights the so far unrecognized importance of 

disturbance-related regeneration for stand recovery after bark-beetle outbreaks. 

2.2 KEYWORDS 

Advance regeneration, Growth function, Ips typographus, Mortality, Norway spruce, 

Permanent plots, Salvage logging, Stand-replacing disturbance, Survival 
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2.3 INTRODUCTION 

The key to forest recovery after disturbance is tree regeneration. Its species compo-

sition, spatial pattern and structural heterogeneity are crucial for the biodiversity and 

future resilience of the developing forest (Swanson et al. 2011, Donato et al. 2012). 

Following the death of mature trees in consequence of a disturbance event, diaspore 

supply sharply decreases. Successful stand-replacement often depends on the survival 

and growth of advance regeneration established before the disturbance (Kuuluvainen 

1994, Franklin et al. 2002, Svoboda et al. 2012). Increased understory light and released 

nutrients promote the growth of recruits after disturbance (Metslaid et al. 2007, Kaňa et 

al. 2012), but regeneration rate depends also on competition with the expanding herb-

layer and on biological legacies, such as the amount of coarse woody debris and pit-and-

mound topography (Kuuluvainen and Juntunen 1998, Jonášová and Prach 2004). 

In contrast to episodic disturbances such as fire or windthrow, bark-beetle outbreak 

impact is gradual: ongoing canopy tree dieback takes several years (Köster et al. 2009, 

Edburg et al. 2012). The main differences from episodic high-severity disturbances are: 

(i) gradual changes in stand microclimate during the dieback of canopy trees; (ii) 

undisturbed soil surface; and (iii) minimal damage to already established advance 

regeneration and herb layer vegetation (Kuuluvainen 1994, Storaunet and Rolstad 2004, 

Fischer et al. 2013, 2015). The regeneration processes after bark-beetle outbreaks are 

therefore different from those following other disturbances. Knowledge about tree 

regeneration after stand-replacing fire or windthrow is non-transferable to stand 

recovery after bark-beetle outbreaks. 

The severity and spatial extent of bark-beetle outbreaks substantially increased in 

recent decades worldwide in different types of coniferous forests (Dale et al. 2001, 

Schelhaas et al. 2003, Meddens et al. 2012). In Europe, Norway spruce (Picea abies (L.) 

Karst.) forests cover large areas within the boreal forest zone and in the mountains 

within the temperate zone, where spruce naturally forms almost monodominant stands. 

These stands are prone to European spruce bark-beetle (Ips typographus L.) outbreaks, 

usually induced by preceding windthrow damage (Brůna et al. 2013, Čada et al. 2016). 

Recently, these outbreaks have been amplified by series of windstorm events, vast 

artificial spruce plantations and also by warmer climate causing tree physiological stress 

and hastened bark-beetle development (Raffa and Aukema 2008, Temperli et al. 2013, 

Seidl et al. 2014). As a result, recent outbreaks caused almost complete mortality of 

canopy trees over large areas within short time intervals (Lausch et al. 2011).  

Large-scale, stand-replacing disturbances in spruce forests caused severe economic 

loss in managed forests and at the same time affected many protected areas (Müller et 

al. 2008). This presented a challenge for both forest managers and nature conservation-

ists and raised important questions about the best management schemes to balance the 
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requirements of sustainable timber production, biodiversity conservation and other 

ecosystem services (Wermelinger 2004, Seidl et al. 2008, Beudert et al. 2015). Detailed 

knowledge of post-disturbance succession is important for nature conservationists 

because these early-seral stages are crucial for biodiversity (Kouki et al. 2001, Müller et 

al. 2008, Donato et al. 2012, Lehnert et al. 2013). Recommendations for management of 

affected stands are urgently needed also by forest managers, who must decide whether 

the forest will self-replace itself in an acceptable time frame or instead needs salvage 

logging and replanting. Salvage logging, often applied after bark-beetle outbreaks, has 

been hotly debated (Lindenmayer and Noss 2006). Its proponents argued that salvage 

logging followed by tree replanting is needed to control bark-beetle spread and secure 

stand recovery (Fettig et al. 2007; Stadelmann et al. 2013), while its opponents ques-

tioned the efficiency of salvage logging in controlling bark-beetle epidemics (Grodzki et 

al. 2006) and argued that this treatment disrupts natural regeneration, adversely affects 

the self-replacing ability of disturbed stands (Donato et al. 2006, Wild et al. 2014) and 

negatively influences biodiversity (Kouki et al. 2001, Jonášová and Prach 2008, Thorn et 

al. 2014).  

This controversy has triggered intensive research on natural regeneration and fac-

tors affecting stand self-replacement (Kupferschmid et al. 2006, Harvey et al. 2014). 

However, the regeneration process after bark-beetle outbreaks has been investigated 

only through studies that did not follow individual seedlings over time (Jonášová and 

Prach 2004, DeRose and Long 2010, Diskin et al. 2011, Zeppenfeld et al. 2015).  Moreover, 

these studies usually focus only on regeneration over a certain height threshold. The 

resulting snapshot data covering only a subset of regeneration can easily provide biased 

results, as it is extremely difficult to infer actual processes behind the observed static 

patterns (Wiegand et al. 2003). For instance, clumped spatial pattern of spruce seedlings 

was repeatedly observed, but the processes responsible for the formation of such a 

pattern remain unclear (Grenfell et al. 2011, Wild et al. 2014). High densities of seedlings 

on coarse woody debris suggest low mortality on these microsites  (Jonášová and Prach 

2004, Kupferschmid and Bugmann 2005), but Kathke and Bruelheide (2010) inferred 

opposite conclusions from regeneration age structure. Advance regeneration, i.e. 

recruits well-established before the disturbance, is generally thought to be the most 

important tree cohort for shade-tolerant tree recovery (DeRose and Long 2010, Bače et 

al. 2015, Burton et al. 2015), but reliable evidence based on temporally replicated surveys 

is missing. To disentangle conflicting evidence and to provide robust recommendations 

for the management of P. abies forests, long-term studies following the fates of individ-

ual seedlings are needed (Fischer and Fischer 2011). 

In the present study, we therefore tested the following hypotheses about tree regen-

eration after stand-replacing bark-beetle outbreaks: 
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H1: Tree regeneration after the disturbance will be dominated by advance regenera-

tion already established before the disturbance. 

H2: Tree regeneration will be structured by microsite-specific seedling performance 

(i.e. growth and survival rates). 

To test these hypotheses, we collected and analyzed individual performance data on 

Picea abies seedlings and saplings during the first 12 years after a stand-replacing bark-

beetle outbreak in a naturally regenerated forest in the Bavarian Forest National Park, 

Germany. To provide recommendations for applied ecology, we also evaluated the 

potential of short-term post-disturbance monitoring of individual seedlings to yield 

meaningful predictions of further stand development. 

2.4 METHODS 

2.4.1 STUDY SITE 

We worked in the Bavarian Forest National Park in SE Germany (Fig. 1). The park 

was established in 1970 and enlarged to its current 240 km2 in 1997. Bedrock mostly 

comprises gneiss and granitic rocks, leading to acidic, podzolised soils. Climate in the 

park is cold, with long winters and short, but relatively warm summers. Mountain 

spruce forests form the natural vegetation from about 1150 m a.s.l. up to the highest 

elevation in the park (1453 m a.s.l.) where mean annual temperature ranges from 5.1 to 

3.6°C (Elling et al. 1987). The tree layer is dominated by Norway spruce, accompanied by 

a small fraction of mountain ash (Sorbus aucuparia L.). The European spruce bark-

beetle responsible for periodic outbreaks is indigenous to these forests, but its popula-

tions show extensive fluctuations depending on forest stand and weather conditions 

(Wermelinger 2004, Berec et al. 2013). Outbreaks usually cause complete dieback of 

Norway spruce canopy trees over large areas (Müller et al. 2008). 

We studied stands affected by a major outbreak that started in 1993 and culminated 

between 1996 and 2000. The severity and extent of the canopy dieback were exception-

ally high, with complete canopy dieback on about 54 km2 (Lausch et al. 2011). The 

affected stands in the core zone were left to spontaneous development, and this gave us 

a unique opportunity to study natural tree regeneration after a bark-beetle outbreak. 
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Figure 1. Study site location and plot arrangement: plots are subdivided into a grid of 76 

circular sub-plots, 0.5 m2 each, spaced 3.35 m apart. All seedlings and saplings present 

on these sub-plots were permanently labelled and repeatedly measured during the first 

12 years after stand-replacing disturbance by a massive bark-beetle outbreak. Inset 

photograph shows the stand 12 years after the outbreak (during fieldwork in 2010). 

2.4.2 DATA COLLECTION 

In 1998, Bauer established 24 permanent plots in mountain spruce forests across the 

park (Bauer 2002, Bauer et al. 2008). The plots covered the whole elevation gradient 

within the natural spruce forest belt in the region (1155 – 1345 m a.s.l.). Plots were 

established in stands infested by bark-beetles, complete canopy dieback was reported 

on all plots by the year 2000. Pre-disturbance stem densities ranged from 269 to 669 

stems ha-1, with median 459.5 stems ha-1. 

A regular grid of 76 circular sub-plots (0.5 m2 each) was established within each 

762 m2 plot (Fig. 1). All seedlings and saplings rooting in the sub-plots were permanent-

ly labelled and numbered. Four parameters were determined for each labelled 

individual: 1) age in years, 2) absolute height in millimeters, 3) annual height increment 

in millimeters and 4) rooting microsite. Age was determined according to terminal bud 

scar and verticil positions, which is reliable for young spruce saplings (Zielonka 2006, 

Bače et al. 2011). This allowed us to date very precisely the individual seedlings and 

divide them into three age cohorts: (1) advance regeneration - trees established prior to 

the outbreak (i.e. germinating before 1996); (2) disturbance-related regeneration - trees 

established during the bark-beetle outbreak (i.e. germinating between 1996 and 1999); 
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and (3) post-disturbance regeneration - trees established after complete canopy dieback 

(i.e. 2000 and later). Rooting microsite type was categorized according to substrate and 

surrounding vegetation (see Tab. 1). Annual increments and mortality of individual 

seedlings were measured in the following two years (1999 and 2000).  

In 2010, we repeated the same measurements on 21 plots, excluding three plots in 

the area damaged by windstorm Kyrill. To retain continuity in data, we measured all 

annual increments of the labelled trees from the last year of measurement in 2000. To 

get a more representative estimate of regeneration density in each sampled stand, we 

also counted all juvenile trees growing on each plot. 
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Table 1. Microsite type definitions and overview of tree proportions on microsites from 1998 (during 

dieback), 2000 (shortly after dieback) and 2010.  

  Proportion of juveniles 

observed on microsite 

(weighted plot mean ± SE) 

 Cumulative 

mortality  

1998 – 

2010 

 Fitted mortality 

effects 

Microsite Description 1998 2000 2010   Odds ratio Tukey HSD 

Dead wood  laying tree logs or coarse 

woody debris 

4.8 ± 1.3 7.3 ± 2.0 12.0 ± 4.4  68.6  0.547 a 

Tree base area surrounding standing 

trunks up to the distance 

equal to trunk diameter 

15.4 ± 5.1 20.8 ± 5.9 18.0 ± 8.7  85.5  0.632 a 

Stump directly on stumps/snags 14.0 ± 2.9 19.4 ± 3.8 25.0 ± 5.6  77.9  0.665 a 

Pits and mounds windfall pits and mounds 1.7 ± 0.6 1.9 ± 0.4 4.1 ± 0.7  69.8  0.910 abc 

Moss cover predominantly of 

mosses 

15.5 ± 3.2 13.2 ± 3.2 8.5 ± 2.3  93.2  1.215 b 

Litter ground covered by needles, 

bark or twigs 

37.9 ± 4.9 31.2 ± 5.5 29.1 ± 9.0  90.5  1.228 b 

Lycopodium  cover predominantly of 

Lycopodium annotinum 

5.0 ± 0.9 3.2 ± 0.6 2.5 ± 0.5  93.8  1.428 bc 

Graminoid cover predominantly of 

Calamagrostis villosa, Luzula 

sylvatica or Avenella 

flexuosa 

3.8 ± 0.8 1.9 ± 0.6 0.3 ± 0.3  99.0  2.243 c 

Other* cover predominantly of 

other species i.e. Vaccinium, 

Athyrium, Dryopteris, Oxalis 

1.8 ± 1.3 1.1 ± 0.9 0.3 ± 0.3  97.8  - - 

Total no. of individuals   2550 1045 316  87.6%      

Notes: Numbers are based only on a subset of trees already present in 1998. Tukey HSD letter codes 

indicate microsite groups with significantly different mortality odds at the 0.05 level. Note that cumula-

tive mortality is a raw value, but fitted odds ratios also reflect tree height as a component of mortality.  
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2.4.3 DATA ANALYSIS 

We analyzed the survival and growth only of P. abies, which formed 99% of all rec-

orded individuals. Other species were too rare for such analyses, and we included them 

only in a plot-level overview of regeneration density. 

REGENERATION STRUCTUR E  

To assess changes in regeneration structure over time, we calculated proportions of 

cohorts in the survey years. To test the hypothesis H1, we tested the year 2010 paired 

differences in plot-level sums of advance regeneration vs. disturbance related plus post-

disturbance regeneration by a one-sided Wilcoxon test for paired data. 

GROWTH  

To analyze tree growth, we fitted the tree-height series with parametric growth 

functions through nonlinear mixed-effect models, accounting for the spatially and 

temporally dependent error structure. Only juveniles surviving the whole period (1998 

to 2010) were selected for fitting tree growth. We compared six different growth 

functions previously used for temperate forest trees (Tab. 2) (Pretzsch 2010). 

To fit the models, we used the R software version 3.2 (R Core Team 2015) and the 

nlme function from the nlme package (Pinheiro et al. 2013). In the models, we used tree 

age as a fixed effect and individual trees nested within individual plots as random effects 

to account for autocorrelation. As an asymptotic tree height parameter, we used the 

90th percentile (i.e. 26.85 m) of canopy tree heights measured on our plots before stand 

dieback (Bauer 2002). To account for heteroscedasticity in tree heights, we used a power 

variance function. For further analyses, we selected the growth function which fitted 

best according to the root mean square error (RMSE) and visual inspection of the 

residuals. 

To test the effect of rooting microsite on sapling growth, we added microsite as an 

additional fixed effect to the best-fitting growth-function model. We used the AIC 

(Akaike Information Criterion) and a log-likelihood ratio test to explore if the inclusion 

of rooting microsite improved model fit. 

MORTALITY  

To investigate the drivers of juvenile tree mortality, we fitted binomial generalized 

linear mixed-effect models using the glmer function of the lme4 R package (Bates et al. 

2015). We tested log-transformed tree height, rooting microsite and site elevation as 

fixed effects. Plot ID and survey year were included as crossed random effects. We 

constructed the minimal adequate model through forward selection of predictors based 

on the AIC (Crawley 2007). Then, we used a type II Wald χ2 test to check the statistical 

significance of the fixed model terms. In the models, we used Laplace approximations 
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for maximum likelihood estimation. For post-hoc comparison of mortality levels we 

used Tukey’s HSD test. 

REGENERATION DYNAMICS  MODEL  

To investigate whether short-term observation can be used for the prediction of 

future stand structure, we built a predictive model and compared its output with the 

observations made after ten years. We used data from only the first three years of 

sampling (1998 to 2000) to fit the previously selected growth function to all juvenile 

trees present in 2000. We then made predictions of their heights in the period 2001-

2020. For each sapling, we also estimated survival probability according to the marginal 

prediction of an annual mortality risk model based on rooting microsite, and estimated 

sapling height for each given year. Individuals surviving to the next year were selected 

randomly, with weighting based on survival probability. 

To evaluate the model, we compared our observations with the predicted numbers 

of surviving saplings, their densities on different microsites and their height and age 

structures in the year 2010. We ran this model 1000 times. In each run we tested 

conformity of mean and distribution function for height by a two-sample t-test and 

Kolmogorov-Smirnov test and by a discretized Kolmogorov-Smirnov test from the dgof 

R package (Arnold and Emerson 2011) for age structure. Finally, we calculated the 

number of simulations having predictions significantly deviant (p < 0.05) from the 

observed data. 

2.5 RESULTS 

REGENERATION STRUCTUR E  

Initially, in 1998, a total of 2,552 spruce seedlings and saplings were found on the plots, 

with 86% of them belonging to the disturbance-related cohort. Advance regeneration 

represented only 14% of all juvenile trees (Tab. 3).  

Of the 2,552 juveniles found in 1998, only 316 individuals (12.4%) survived to 2010. 

Only 38 juveniles got established after complete canopy dieback and survived to 2010. 

Advance regeneration benefited from lower mortality, and therefore its relative propor-

tion increased over time to 31% in 2010. Despite local variability in proportion of 

regeneration cohorts (Fig. 2) the advance regeneration does not dominate globally 

(Wilcoxon test: V = 13.5, p < 0.01). Contrary, disturbance-related cohort represented the 

majority of regeneration (58%) even 12 years after the disturbance (Fig. 3). We thus have 

to reject the H1 hypothesis, that the regeneration will be dominated by the individuals 

established before the disturbance. 



Chapter Two: Life and death of Picea abies after bark-beetle outbreak 

  
45 

 

Figure 2. Cohort contribution 

to regeneration in 2010 (twelve 

years after bark-beetle out-

break): total mean (black 

triangle) and site values (red 

dots). Size of the dots is 

proportional to total number 

of recruits; sites without 

surviving tracked individuals 

are not plotted. 

 

 

 

 

 

 

Table 3. Cohort contribution (total no. of individuals and actual percentages ± SEM in parentheses) to 

spruce population and cumulative mortality starting from 1998 (outbreak culmination) to 2010 (decade 

after outbreak). 

Cohort 

No. of individuals  Cumulative mortality (%) 

1998 1999 2000 2010  1999 2000 2010 

Pre-disturbance 363 (14.2 ± 7.2) 308 (16.7 ± 6.9) 238 (22.8 ± 7.2) 110 (31.1 ± 8.6)  15.2 34.4 69.7 

Disturbance-related 2189 (85.8 ± 7.2) 1534 (83.2 ± 6.9) 807 (77.2 ± 7.2) 206 (58.2 ± 8.1)  29.9 63.1 90.6 

Post-disturbance 0 (0.0 ± 0.0) 1 (0.05 ± 0.1) 1 (0.1 ± 0.2) 38(10.7 ± 6.6)  NA NA NA 

Total 2552 (100) 1843 (100) 1046 (100) 354 (100)  27.8 59.1 87.6 
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Figure 3. Height distribution of seedlings and saplings A) in 1998; and B) in 2010. Grey solid line 

shows height distribution of all regeneration, colored areas show height distributions of separate 

regeneration cohorts. Vertical lines denote median heights for each cohort separately. Note 

different scales used. Regeneration during bark-beetle outbreak comprised mostly 1-2 year old 

seedlings of height < 5 cm established during the outbreak itself (A). Twelve years later (B), the 

dominance of this disturbance-related cohort was still apparent, but the relative proportion of 

advance regeneration increased. Only a small fraction of seedlings got established after the canopy 

dieback. 

 

In 2010, spruce dominated regeneration with densities varying among plots from 39 

to 17,275 individuals ha-1, with a median of 1,601 individuals ha-1. Other tree species were 

far less abundant: only Sorbus aucuparia was present regularly, with median density of 

66 individuals ha-1 (3.6% of total counts). Light-demanding pioneer species (Betula spp., 

Salix spp.) appeared sparsely, together comprising only 0.6% of regeneration. For 

individual plot values see Appendix S1: Table S1. 

Density of regeneration on plots 12 years after the outbreak was 3.9 times the pre-

disturbance density of canopy trees (calculated as median of pair-wise ratios). However, 

regeneration density decreased with increasing elevation by an order of magnitude 

every 122 m (linear regression, densities log-transformed, R2
adj.

 = 0.43, F1,19 = 16.31, 

p < 0.001). All plots below 1300 m a.s.l. had regeneration densities higher than their pre-
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disturbance stem densities, but above this elevation 5 out of 8 plots had less regenera-

tion than their pre-disturbance numbers of canopy trees. 

GROWTH  

Median height rose from 7.3 cm (1998) to 110 cm (2010) for pre-disturbance regener-

ation and from 3.3 cm to 71.5 cm for disturbance-related regeneration. The median 

height of post-disturbance regeneration was 26 cm in 2010. During the 12 years after the 

outbreak, height variability of all regeneration present increased substantially (Fig. 3). 

Fitted growth functions differed substantially in residual error structure (Appendix 

S1: Fig. S1). Logistic and Gompertz growth functions had the lowest RMSE (5 cm and 

5.1 cm; Tab. 2). No trends in residual error structure were apparent for the Gompertz 

growth function. Chapman-Richards, Bertalanffy, Korf and Hossfeld IV growth func-

tions substantially underestimated the height of the youngest recruits, while logistic 

growth function overestimated it (Appendix S1: Fig. S1). Therefore, we chose the 

Gompertz growth function for further analyses. Rooting microsite was not related to 

individual growth rate (approx. log-Likelihood ratio 20.75, p = 0.108; δAIC = +7.24). 

In general, young seedlings grew slowly, but their growth gradually accelerated (Fig. 

4). The median annual height increment was 1.1 cm for year-2 seedlings (i.e., in their 

second growing season), but 4 cm and 11 cm for year-10 and year-15 saplings, respective-

ly. Accordingly, the median age needed to reach the height of 10 cm was almost 6 years 

(6 growing seasons), and to reach breast height (1.3 m) it was almost 16 years. 

 

Figure 4. Annual height 

increments (mean  ±1 SD) 

observed for juveniles 

regarding their age and 

cohort rank. 
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Table 2. Growth function equations. Asymptotic height (parameter a) was set as 26.85 m for all 

functions; standard errors (SE) of fixed effect terms are given. 

Growth curve Equation RMSE Parameter estimates ± 
SE 

Logistic height ~ a/(1+c*exp(-b*age)) 0.050 b = 0.2191 ± 0.0038 

c = 1083.8 ± 26.727 

Gompertz height ~ a*exp(-b*exp(-c*t)) 0.051 b = 7.606 ± 0.0406 

c = 0.0482 ±0.0014 

Chapman-
Richards 

height ~ a*(1-exp(-b*age)^c) 0.067 b = 0.0131 ± 0.0016 

c = 2.103 ± 0.1155 

Bertalanffy height ~ a*(1-exp(-b*age)^3 0.071 b = 0.0236 ± 0.0006 

Korf height ~ a*exp(-b*age^-c) 0.092 b = 11.9955 ±0.6293 

 c = 0.4099 ± 0.0243 

Hossfeld IV height ~ t^c/(b+t^c/a) 0.100 b = 373.9 ± 8.832 

c = 2.02 ± 0.0138 

 

 

MORTALITY  

Smallest seedlings faced the highest mortality (Fig. 5), which sharply decreased with 

increasing seedling height: tenfold increase in height reduced mortality odds 

47.47 times (χ2 = 356.75; df = 1; p < 0.001). Additionally, mortality was affected by rooting 

microsite (χ2 = 93.98; df = 7; p < 0.001). Mortality risk was lowest at wood-related 

microsites – logs, stumps and tree bases – with odds ratio ranging from 0.55 to 0.66 

(Tab. 1). In contrast, graminoid-dominated microsites showed the highest mortality risk 

(odds ratio 2.24). Seedlings rooting in litter, moss, Lycopodium and pits & mounds 

microsites had a moderate mortality risk (Fig. 5). Mortality risk was independent of plot 

elevation (χ2= 0.26; p = 0.62; ΔAIC= +1.8). 
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Figure 5. Annual mortality steeply 

decreases with height and differs for 

particular microsites. Overall, the 

highest mortality was for seedlings 

growing in graminoid vegetation, 

whereas seedlings rooting in 

deadwood had the lowest mortality. 

Lines show marginal predictions of 

mortality model. 

 

 

 

 

 

 

 

REGENERATION DYNAMICS  MODEL  

The predictive model built on data from the first three survey years started with 1028 

juvenile trees in 2000. After ten years, all model runs predicted higher numbers of 

surviving saplings than were actually observed in 2010 (Appendix S1: Table S2). Accord-

ing to the model, the annual mortality dropped below 1% in 2010. While the model 

overestimates the number of surviving saplings, it predicts regeneration height struc-

ture reasonably well. The mean predicted tree height (88 cm) was only slightly lower 

than the observed mean height (92 cm). Moreover, the difference in the means was 

significant only for 1% of simulations and K-S test revealed 57.8% simulated empiric 

distribution functions to be equal with the observed ones (Fig. 6). 

 

 

Figure 6. Observed height 

distribution (upper green bars) 

corresponds to the year 2010 

predictions (lower red bars), 

while total number of survivors 

is systematically overestimated. 

Error bars delimit 95% 

simulation interval.  
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The model predicted an increase in the amount of pre-disturbance regeneration 

relative to disturbance-related regeneration, which was similar to that actually observed 

(K-S test of age distributions insignificant in all simulations). The observed and predict-

ed trends in proportions of trees rooting in specific microsites were similar. The only 

exception was tree-base microsite, for which the model predicted a higher proportion of 

juvenile trees than observed (for details see Appendix S1: Table S2). 

  

2.6 DISCUSSION 

REGENERATION STRUCTUR E  

Our hypothesis H1 that advance regeneration would dominate after the bark-beetle 

outbreak was rejected. Despite high mortality, disturbance-related regeneration 

outnumbered all other cohorts during the 12-year observation period. After the canopy 

dieback, seed rain apparently decreased and the proportion of unsuitable patches 

occupied by graminoids or dense clumps of tree regeneration increased. This explains 

the minimal establishment of new seedlings after the canopy dieback. The relative 

importance of advance regeneration increased over the evaluated period because it had 

the lowest mortality. To the future, we expect the relative proportions of regeneration 

groups to remain stable because all groups reached low mortality (about 1% annually). 

The dominance of disturbance-related regeneration can be ascribed to the timing of 

several events. The bark-beetle outbreak created a temporal window allowing estab-

lishment of numerous seedlings originating mostly from the last mast year in 1995, 

immediately before the outbreak. These seedlings germinated in 1996, after the out-

break began. The timing of mast seeding preceding an outbreak could be of major 

significance for regeneration assembly, but mast years are relatively frequent in our 

study area, occurring on average every three years over the last 20 years (Zeppenfeld et 

al. 2015). Therefore, a relatively abundant seedling bank could be maintained continu-

ously despite limited long-term survival. 

The abundant seedling establishment during canopy dieback suggests that most 

regeneration usually considered as “advance” – i.e. established before a bark-beetle 

outbreak – could in fact originate during the disturbance itself. This has far-reaching 

consequences, because the processes driving regeneration establishment are markedly 

different before and during a bark-beetle outbreak. Even the shade-tolerant “true” 

advance regeneration is light-limited and survives mostly in patches under small canopy 

openings (Metslaid et al. 2007, Nigh et al. 2008, Kathke and Bruelheide 2010). As the 

stand infested by bark-beetles gradually opens, the seedlings can readily establish on a 

wider range of microsites until they are outcompeted by expanding vegetation. Canopy 

trees thus self-replace mostly during disturbance itself. This self-replacing mechanism 
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leads to the long-term stability of tree species composition and genetic structure of 

populations. Such positive relationship between conspecific overstory and understory 

(called ‘neighborhood effect’) was proposed by Frelich and Reich (1999) as major factor 

forming forest dynamics. Zeppenfeld et al. (2015) recently showed positive neighbor-

hood effect also in European mountain spruce forest. Our results corroborated this 

finding but showed that not only advance regeneration, but also disturbance-related 

regeneration contributed to continuous dominance of spruce. 

More precise specification of cohorts in terms of their temporal relationships to dis-

turbance is needed. We propose that the term “advance regeneration” should be used 

only for those juveniles that have already passed the earlier high-mortality stage and 

have a higher chance to survive in the understory for a longer time, typically decades. 

The seedlings established during or just before a disturbance, which experienced 

different ecological conditions, but share similar seed-source would be called “disturb-

ance-related regeneration”. We are convinced that using this more precise 

differentiation could change the interpretation of many observed tree recovery patterns 

as well as forest practitioners’ perception of disturbance. 

REGENERATION HEIGHT GROWTH  

We found the absolute increments in early life stages of spruce to be quite small but 

gradually increasing (Fig. 4). Since it usually takes 6 years for a juvenile to reach 10 cm 

height (but varying greatly among individuals), this height class includes an important 

fraction of regeneration even several years after disturbance. Unfortunately, a common 

practice in forest inventory is to record only seedlings taller than 10 cm or more 

(Schweiger and Sterba 1997, Heurich 2009, Tomppo et al. 2010, Zeppenfeld et al. 2015). 

Our data showed that the information about tree regeneration captured by these 

inventories is incomplete, if not biased. For example, a stand with massive regeneration 

during a bark-beetle outbreak can be classified by standard forest inventories as having 

insufficient regeneration even several years after the outbreak. 

The quality of fit differed considerably between growth functions used. We chose 

the Gompertz function as most suitable for fitting height growth of juvenile spruce trees 

because it showed the best fit and stability of residuals. Rammig et al. (2007) recom-

mended the Bertalanffy growth function for fitting growth of young saplings, but they 

did not provide comparison with other growth functions. However, their data also 

showed that Bertalanffy function systematically underpredicts heights in the smallest 

height category. Since juvenile mortality is tightly coupled with tree height, the selec-

tion of an accurate growth function is crucial for the proper prediction of the 

regeneration process. 
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PROCESSES STRUCTURING REGENERATION  

Seedling microsite preferences are thought to be the main driver of regeneration 

spatial pattern and density (Kuuluvainen and Kalmari 2003, Wild et al. 2014). Because 

height-dependent mortality excludes slowly growing individuals from regeneration, we 

expected that microsites will affect mortality indirectly through differentiated height 

growth. However, we found no significant effects of microsites on height growth. 

Published evidence is ambivalent: height growth at wood-related microsites was 

reported to be lower (Kathke & Bruelheide 2010), unaffected (Kupferschmid and 

Bugmann 2005), or even higher (Baier et al. 2006). Height growth variation thus seems 

to be influenced by other factors, such as intraspecific competition (Metslaid et al. 

2007). 

In contrast, we found considerable differences in tree mortality among microsites. 

Low mortality found on decaying wood and at the bases of standing stems is in accord 

with the often-reported increase in regeneration densities on these microsites 

(Kuuluvainen 1994; Kuuluvainen & Kalmari 2003; Bače et al. 2012). However, low 

mortality values contradict Kathke & Bruelheide (2010), who deduced from regeneration 

age structure that mortality is highest on log and stump microsites. Low mortality 

without improved growth at these wood-related microsites suggests that spruce 

regeneration occurs preferentially there due to lower stress-induced mortality, rather 

than better growth conditions enabling the juveniles to grow out of high mortality 

stages. Indeed, differences in microsite-specific mortality levels can be attributed to 

various mechanisms that could include the much greater stress caused by competition 

in patches occupied by graminoids, lower snow-mold infection rates on microsites with 

shortened snow cover duration (Cunningham et al. 2006), or better moisture conditions 

on decayed logs and stumps preventing seedling desiccation (Takahashi and Sakai 2000, 

Bače et al. 2012). Our hypothesis H2, that regeneration is structured through microsite-

specific individual performance, was thus supported, but the main underlying driver 

was tree mortality rather than height growth. 

Our findings of microsite effects on tree mortality allow us to clarify how the clus-

tered spatial pattern of Norway spruce regeneration arises. The previous hypothesis of 

secondary seed dispersal into snow “tree wells” around trunks and snags was based only 

on snapshot data (Wild et al. 2014). Here we provide an alternative explanation that 

improved juvenile survival around tree trunks and snags governs the formation of such 

a pattern, but these processes could act simultaneously. Further research is needed to 

disentangle them precisely. 

Interestingly, we found no relationship between mortality and elevation. However, 

sapling densities decreased considerably with elevation: in five stands above 1300 m, we 

even found regeneration densities lower than the pre-disturbance stem density. The 

gradient in density is probably driven by decreasing seed production or germination, as 
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was shown in the Alps (Mencuccini, Piussi & Zanzi Sulli 1995). Recruitment on these 

sites thus strongly depends on microsite availability and sparse canopies can persist 

there for decades. Further research is needed to ascertain whether the canopy gaps will 

be infilled, or if the sparse canopies will persist. With this exception, regeneration 

densities were several times higher than pre-disturbance canopy density. Self-thinning 

is thus likely to be the most important driver of future sapling mortality, but this can 

take decades to manifest in shade-tolerant spruce (Pretzsch 2006). 

EVALUATION OF PREDICT IONS BASED ON SHORT-TERM DATA  

We expected that short-term monitoring of individual seedlings after the disturb-

ance would not be sufficient to predict further stand development. Surprisingly, our 

model based on only three years of monitoring provided satisfactory predictions for 

some aspects of regeneration structure development. Individually modelled tree growth 

following the Gompertz function and non-random mortality provided realistic height 

and age distribution estimates even ten years later, despite height growth being strictly 

nonlinear and mean height increasing nine-fold in the evaluated period. 

However, the same model systematically overestimated the total number of surviv-

ing individuals. This is probably a result of underestimated mortality due to increasing 

competition with other juveniles and expanding graminoids. Kupferschmid et al. (2006) 

achieved better prediction accuracy with a model that included changes in competition. 

However, we were not able to include competition in our model because competition is 

not practically possible to parametrize from only three years of data. 

MANAGEMENT RECOMMENDA TIONS  

We provide strong evidence that self-replacement of mountain spruce forests after 

bark-beetle outbreak is possible without any management intervention. Moreover, 

because most of the regeneration comprises trees that germinated during the gradual 

stand-dieback, even stands lacking advance regeneration could recover naturally. 

Although young seedlings with height <10 cm at the time of outbreak suffer high 

mortality, their role in stand recovery is crucial. Individuals that emerged from such 

seedlings form the dominant cohort even a decade after the disturbance. Therefore, the 

practice of counting only seedlings above a pre-defined threshold height, which is 

frequently employed in current forest inventories, must change, as it excludes potential-

ly important seedlings and can lead to seriously biased management recommendations. 

We propose that forest inventories should include all regeneration, with height classes 

weighted by expected future mortality. Similarly, the prediction of regeneration growth 

should be based on longer (> 3 year) observation; otherwise the tree counts could be 

strongly overestimated. Although our study was based on observations only in one 

region, given the ecological similarity of conifer dominated forests in the northern 
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hemisphere, our results have far reaching consequences, which could be applicable 

elsewhere. 

Spatially structured stands with complex age and height distributions of young trees 

formed rapidly despite relatively uniform initial conditions. Resulting stand heterogene-

ity, together with the biological legacies of the former stands, contributes to the high 

biodiversity of unsalvaged stands (Kouki et al. 2001, Müller et al. 2008, Thorn et al. 

2014). Salvage logging can thus damage natural regeneration in the time most critical 

for seedling establishment and disrupt or postpone the regeneration process. Moreover, 

excluding soil disturbance caused by salvage logging protects the site from invasion by 

pioneer and weedy species (Fischer et al. 2015, Nováková and Edwards-Jonášová 2015). 

Therefore, we consider natural regeneration as an appropriate management practice 

after bark-beetle outbreaks in natural Norway spruce forests. 
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2.9  SUPPLEMENTARY MATERIALS 

 

Table S1 Attributes of study localities. Other species include Salix spp. and Betula spp. 

Site Locality 
Latitude 

(WGS84) 

Longitude 

(WGS84) 

Elevation 

(m a.s.l.) 
Aspect 

Inclina-

tion 

1998 

tree stems 

(ha-1) 

2010 

P. abies 

regeneration 

(ha-1) 

2010 

S. aucuparia 

regeneration 

(ha-1) 

2010 

other 

species 

(ha-1) 

101 

Plattenhausenrie-

gel 48.965384 13.442958 1 302 SW 3.8 413 184 13 0 

102 Lusen - Blaue Saule 48.951184 13.481550 1 233 SOS 2.6 550 3321 184 39 

103 Lusen – Moorberg 48.948454 13.510177 1 329 O 3.1 531 1497 53 0 

104 Reschbachklause 48.962621 13.547129 1 176 S 3.6 556 1825 289 13 

201 Gr. Rachel 48.970273 13.388860 1 317 SW 1.4 363 39 0 0 

202 Schwarzbach 48.973447 13.533087 1 229 SSO 1.8 656 12340 66 0 

203 Reschbachklause 48.966068 13.554480 1 173 NW 1.4 588 2258 39 26 

204 Reschbachklause 48.964811 13.554741 1 170 S 1.6 506 4831 131 39 

211 Lackenberg 49.102625 13.309456 1 330 NW 2.6 494 801 158 26 

214 Gr. Falkenstein 49.091633 13.285603 1 257 S 1.3 394 1693 79 0 

301 

Plattenhausenrie-

gel 48.975853 13.420128 1 222 WSW 10.4 425 1602 66 0 

302 

Plattenhausenrie-

gel 48.968806 13.434153 1 222 WSW 7.2 544 5907 158 79 

303 Lusen - Moorberg 48.946709 13.512470 1 300 O 31.2 288 53 0 0 

304 Lusen - Moorberg 48.951483 13.511743 1 319 O 32.6 275 328 249 0 

401 Gr. Rachel 48.981010 13.379838 1 339 SW 9.1 444 276 26 0 

402 Gr. Rachel 48.973776 13.382771 1 315 W 8.7 406 66 0 0 

403 Reschbachklause 48.963234 13.567973 1 173 WNW 6 669 17276 591 0 

404 Reschbachklause 48.969726 13.578729 1 236 SO 10.5 569 3584 53 53 

411 Lackenberg 49.100530 13.310432 1 291 S 12.2 269 1050 184 53 

412 Kiesruck 49.057351 13.336942 1 155 SW 10.1 319 3361 39 13 

413 Kiesruck 49.052849 13.342718 1 227 W 8.6 531 1090 13 53 
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Table S2. Regeneration dynamics model: initial conditions in 2000 and observed vs. predicted 

(median from 1000 simulations) values for 2010. ercentages in parentheses show cohort propor-

tions to total number of survivors in given years. 

  2000  2010 

  Observed  Observed Model prediction 

Total no. of survivors 1028  314 555 

Advance regeneration* 229 (22.3%)  108 (34.4%) 164 (29.5%) 

Disturbance-related regeneration* 799 (77.7%)  206 (65.6%) 391 (70.5%) 

Previous year mortality 43.30%  NA 0.92% 

Mean height (m) 0.106  0.920 0.877 

Proportion of juveniles on microsites (%) 

Litter 31.52  28.98 27.66 

Treebase 21.11  18.15 25.09 

Stump 19.75  25.16 23.81 

Moss 13.33  8.92 10.07 

Timber 7.30  11.78 8.61 

Lycopodium 3.21  2.55 2.01 

Pits & mounds 1.95  4.14 2.38 

Graminoid 1.85  0.32 0.37 
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Figure S1. Comparison of fit for six growth functions. Observed heights are plotted on horizontal 

axis, fitted values on vertical axis. Line represents 1:1 relation. Fit of Gompertz function is stable 

for all height classes, logistic function overestimates height of smallest seedlings (up to 0.1 m), 

while all other growth functions underestimate it. 
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3.1 ABSTRACT 

Context Forest microclimates differ from regional macroclimates because forest 

canopies affect energy fluxes near the ground. However, little is known about the 

environmental drivers of understorey temperature heterogeneity and its effects on 

species assemblages, especially at landscape scales. 

Objectives We aimed to identify which temperature variables best explain the land-

scape-scale distribution of forest plants and to disentangle the effects of elevation, 

terrain topography and canopy openness on understorey temperatures. 

Methods We measured growing season air temperature, canopy cover and plant 

community composition within 46 plots established across a 400-km2 area in Czech 

Republic. We linked growing season maximum, mean and minimum temperatures with 

elevation, canopy cover and topographic proxies for heat load, topographic position, soil 

moisture and cold air drainage, and created fine-scale topoclimatic maps of the region. 

We compared the biological relevance of in situ measured temperatures and tempera-

tures derived from fine-scaled topoclimatic maps and global WorldClim 2 maps. 

Results Maximum temperature was the best predictor of understorey plant species 

composition. Landscape-scale variation in maximum temperature was jointly driven by 

elevation and terrain topography (R2adj. = 0.79) but not by canopy cover. Modelled 

maximum temperature derived from our topoclimatic maps explained significantly 

more variation in plant community composition than WorldClim 2 grids. 

Conclusions Terrain topography creates landscape-scale variation in maximum 

temperature, which in turn controls plant species assembly within the forest understo-

rey. Maximum temperature is therefore an important, but neglected microclimatic 

driver of species distribution across landscapes. 

 

3.2 KEYWORDS 

Canopy cover; iButton; Maximum temperature; Microclimate; Species composition; 

Temperate forest; Terrain attributes; Topoclimate; WorldClim 2 
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3.3 INTRODUCTION 

The relationship between the climate and the distribution of species is at the core of 

ecology and biogeography. However, this relationship is usually studied using coarse-

grained climatic data which do not capture the actual microclimates experienced by 

organisms (Franklin et al. 2013). Moreover, the selection of climate variables used in 

species distribution modelling is seldom based on their physiological relevance. Instead, 

readily available data are preferentially used, with mean annual temperature being the 

most overused climate variable in ecological modelling (Gardner et al. 2019). The 

resulting mismatch between coarse-grained climatic data and the real drivers of species 

distribution acting on fine scales can substantially bias both species distribution models 

and predictions of species’ vulnerability to climate change (Ashcroft et al. 2012, Potter et 

al. 2013, Slavich et al. 2014). Microclimatic data are therefore essential in assessing 

climatic effects on the biota (Lembrechts et al. 2018). 

Temperature variability across landscapes is driven not only by decreasing tempera-

tures with elevation caused by adiabatic cooling, but also by topographic processes such 

as anisotropic surface heating, cold air drainage and evaporative cooling (Geiger et al. 

2009). Whereas physical processes affecting local temperature variability are well 

understood, their complexity makes modelling long-term temperature across land-

scapes challenging. The recent development of miniaturized low-cost data loggers has 

allowed continuous microclimatic measurements at many sites across entire landscapes 

(Lookingbill and Urban 2003, Ashcroft et al. 2008, Vanwalleghem and Meentemeyer 

2009, Fridley 2009, Wild et al. 2019). Empirical spatial predictions from these measure-

ments suggest that topography-driven temperature variability can be high enough to 

create local microclimatic refugia able to buffer the effects of climate change on organ-

isms (Ashcroft et al. 2009, Kulonen et al. 2018). 

Forest understorey microclimates differ from the macroclimate because tree cano-

pies limit air mixing, absorb incident radiation and force evapotranspiration rates 

(Geiger et al. 2009, Von Arx et al. 2012). Although the tree canopy has a weak effect on 

mean temperatures, it can substantially decrease maximum temperatures and increase 

minimum temperatures near the ground; in other words, forest canopies behave like 

thermal insulating layers (Vanwalleghem and Meentemeyer 2009, Suggitt et al. 2011, 

Davis et al. 2019). Therefore, understorey temperatures fluctuate less than those in tree-

less habitats (Häntzschel et al. 2005). Because of this decoupling of forest microclimates 

from conditions above the canopy, topography is possibly a less influential driver of 

microclimates in forests than in tree-less habitats (Running et al. 1987, Treml and Banaš 

2008, Vanwalleghem and Meentemeyer 2009). However, the effect of the forest canopy 

on understorey temperatures depends on the meteorological situation and on structural 

attributes and phenological phase of the canopy, making it difficult to generalize the 
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effects of the canopy, especially at landscape-scales or in the long term (Renaud and 

Rebetez 2009, Von Arx et al. 2012). 

In temperate forests, the diversity of vascular plants is concentrated in the under-

storey (Gilliam 2007) and understorey plant species are sensitive to fine-scale 

microclimatic variation (Ashcroft et al. 2008, Tinya et al. 2019). Microclimatic condi-

tions in the understorey are also relevant for tree seedling establishment and growth 

(Von Arx et al. 2013), causing possible feedbacks in the long-term.  

It has been postulated that the effects of climate change in forests can be attenuated 

by increased canopy cover (De Frenne et al. 2013, Frey et al. 2016). However, the exact 

mechanism by which this can happen remains unclear because temperatures under 

forest canopy are not constantly offset from open-area temperatures, but positive offset 

in minimum and negative offset in maximum temperatures is the usual situation. In 

addition, the relative importance of different aspects of thermal variability for the forest 

biota is largely unknown because of a lack of relevant studies and potential interactions 

with light and moisture microclimatic conditions (Chen et al. 1999, Von Arx et al. 2013). 

Direct microclimatic measurements are necessary for addressing links between spatial 

and temporal variation in microclimate and macroclimate, topography, forest structural 

attributes and plant communities because evidence based on bioindication or standard 

weather station data may provide misleading results (Harwood et al. 2014). 

In the present study, we measured forest understorey temperatures, canopy cover 

and recorded plant species composition across a broad topographic gradient to: (1) 

explore how elevation, local topography and canopy cover variation affect understorey 

temperatures; (2) identify which temperature variable (maximum, mean, or minimum) 

is the most influential driver of understorey plant communities; and (3) test whether 

fine-scale empirical topoclimatic model based on forest microclimate measurements 

can explain gradients in plant species composition better than analogous climatic grids 

with coarser resolution based on interpolated weather station data, such as WorldClim 

2 dataset (Fick and Hijmans 2017). 

3.4 METHODS 

3.4.1 STUDY AREA 

To explore links between local climates, terrain attributes and plant communities at a 

landscape scale, we set up a network of vegetation plots with in situ recorded tempera-

tures in the České Středohoří region, Czech Republic (50°29’ – 50°37’ N; 13°52’– 14°12’E; 

Fig. 1). The area is formed by a chain of extinct volcanic hills rising above a sedimentary 

plateau. Elevations range from 122 m a.s.l. in the Elbe river basin to 837 m a.s.l. at the 

top of Milešovka hill. The climate is temperate with mean annual temperatures ranging 
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from 5 to 9°C, mean annual precipitation of 450–600 mm and prevailing westerly winds 

(Tolasz et al., 2007). 

Mostly semi-natural forests cover ca 28 % of the region (Fig. S1 in Electronic Sup-

plementary Material 1). Thermophilous woodlands with sessile oak (Quercus petraea 

agg.) and European hornbeam (Carpinus betulus) occur at low elevations and on south-

facing slopes, European beech (Fagus sylvatica) forests dominate on hilltops and 

northern slopes, and species-rich forests with limes (Tilia cordata, T. platyphyllos), 

maples (Acer pseudoplatanus, A. platanoides) and wych elm (Ulmus glabra) cover steep 

slopes and screes. 

 

 

Figure 1 Study area with sampled forest vegetation plots. White dots indicate the locations 46 

plots where we simultaneously ascertained air temperature, canopy cover and plant species 

composition. Red triangles show the independent dataset of 160 vegetation plots used to evaluate 

the topoclimatic maps. Elevation is represented by a colour scale; the terrain is visualized using a 

hillshade effect. The photograph at the top shows a view of the central part of the study area; the 

inset map shows the position of the study (asterisk) within Central Europe. The geographic 

projection is S-JTSK Křovák, baseline data by © ČÚZK (DMR 4G digital elevation model with 5×5m 

resolution). 
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3.4.2 DATA COLLECTION 

We established 53 plots (10×10 m) in forests distributed across the 400 km2 region 

according to a stratified random sampling design with strata reflecting main topograph-

ic gradients (elevation, slope exposure and topographic wetness; Fig. 1, Fig S7). We 

excluded recently disturbed stands and coniferous plantations from the selection. We 

recorded the geographic positions of the plots using differential GPS (GeoExplorer 2008 

GeoXH, Trimble Inc., USA) with data post-processing. 

TEMPERATURE  

At each plot, we measured air temperature with DS1922L iButton Thermochron loggers 

(Maxim Integrated Inc., San Jose, CA) with a resolution of 0.0625°C placed at a height of 

2 m on the north side of a tree trunk and shaded by a passively ventilated plastic shield. 

The height of 2 m corresponds to the height at which standard meteorological data 

underlying the reference WorldClim 2 dataset are acquired. The temperature was 

recorded every three hours over the course of the growing season (1 May to 30 Septem-

ber) in the years 2015 to 2018. We used temperatures collected during the growing 

season because they are more important drivers of forest plant species distribution than 

yearly temperatures (Lenoir et al., 2013). As a result of datalogger malfunction or 

vandalism, we acquired continuous temperature measurements from 46 plots out of 53 

in 2015 but obtained a complete record for all four seasons for only 27 plots. Therefore, 

to maximize the number of plots without missing values, we used for further analyses 

only data from the 2015 season used the data from the following seasons only to docu-

ment the consistency of the observed patterns between years (Fig S2). 

To identify the temperature variable most relevant for vegetation composition, we 

compared three variables capturing different aspects of the thermal climate (Ashcroft et 

al., 2014; Körner & Hiltbrunner, 2018): (i) maximum temperature expressed by the 95th 

percentile of daily maximum temperatures (Tmax95), (ii) mean temperature (Tmean) 

and (iii) minimum temperature expressed by the 5th percentile of daily minimum 

temperatures (Tmin5). 

 

PLANT COMMUNITY COMPOSITION  

At each 100-m2 plot, we identified all vascular plant species growing in the understorey 

(herbs and woody species < 1.3-m height) and estimated their cover according to the 

Braun-Blanquet scale (Westhoff and Van Der Maarel 1978) transformed to percentage 

cover. 
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CANOPY COVER  

To measure canopy cover at each plot, we took five hemispherical photographs within 

each plot – one in the plot centre and four on the diagonals 5 m from the plot centre, 

using a Canon 40D camera with a Sigma 8mm f/3.5 EX fish-eye lens levelled at the 

height of 1.3 m. We used WinSCanopy v. 2014a (Regent Instruments, Canada) to 

calculate percent canopy cover over a 50° zenith angle from each photograph and 

averaged these five canopy cover values into plot mean canopy cover (Canopy). 

TOPOGRAPHIC VARIABLES  

To explore links among temperature, topography and vegetation, we extracted the 

elevation of each plot from a LiDAR-based digital terrain model with a horizontal 

resolution of 5 m (‘DMR 4G’, Czech Office for Surveying, Mapping and Cadastre) and 

calculated three climatically relevant topographic variables: the topographic position 

index (TPI), potential heat load (HL) and the SAGA wetness index (SWI), all calculated 

in SAGA GIS ver. 3.0.0 (Conrad et al. 2015). 

The topographic position index (TPI) expresses the difference between the elevation 

of a plot and the mean elevation in its surroundings (Guisan et al., 1999) and captures 

the topographic exposure of the site, with positive values for ridge or hilltop positions, 

null on flats or midslopes and negative values on valley bottoms (Fig. S6). The TPI has 

been successfully used in many studies exploring temperature variation across land-

scapes (Strachan & Daly, 2017; Jucker et al., 2018). With respect to the scale of 

topographic variability within our study region, we calculated the TPI using a 250-m 

radius. 

Potential heat load (HL) defined as HL = cos(202.5°−aspect)×tan(slope) was calcu-

lated using the function ‘anisotropic diurnal heat’ in Saga GIS (Böhner & Antonić, 2009). 

Flat surfaces have zero HL values whereas northerly slopes have negative and southerly 

slopes positive HL values, with a maximum on SSW-facing slopes (Fig. S7). HL thus 

reflects maximum temperature patterns across a landscape with respect to diurnal 

variation in heat fluxes driven by surface exposure to solar radiation (Geiger et al. 2009). 

Because warm air is not static, local variation in slope and aspect produces unrealistic 

small-scale variation. We therefore smoothed HL values using a Gaussian filter with a 

50-m range. 

The topographic wetness index has been successfully used to model cold air pooling 

(Ashcroft et al., 2008; Kilibarda et al., 2014; Leempoel et al., 2015). We therefore calcu-

lated the SAGA wetness index (SWI), a variant of the topographic wetness index 

(Kopecký & Čížková, 2010) with iteratively adjusted catchment area (Böhner & Selige, 

2006) (Fig. S8). Adjusted catchment area produces smoother patterns of the wetness 

index, especially in flat areas such as valley bottoms, and therefore better reflects the 

redistribution of cold air than the classical TWI (Böhner and Antonić 2009). 
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3.4.3 DATA ANALYSES 

CLIMATIC EFFECTS ON UNDERSTOREY PLANT COMMUNITIES  

To visualize the main composition gradients, we used global non-metric multidimen-

sional scaling (NMDS) calculated from a Bray-Curtis dissimilarity matrix, and to relate 

these gradients to environmental variables, we used the envfit function from the ‘vegan’ 

R package. 

To calculate the amount of variation in species composition explained by the cli-

matic variables, we used distance-based redundancy analysis (dbRDA, McArdle and 

Anderson 2001) calculated with the dbRDA function of the ‘vegan’ package (Oksanen et 

al. 2017) in R 3.2.5 (R Core Team 2016). We expressed dissimilarity in species composi-

tion as the Bray-Curtis index calculated from species percentage cover estimates 

transformed using a base-2 logarithm to down-weight the influence of the most abun-

dant species (Anderson et al. 2006). We tested the statistical significance of climatic 

variables using 9,999 permutations. 

Absolute values of explained variability in direct multivariate analyses (such as 

dbRDA) depend on the sample size and compositional heterogeneity of the dataset 

(Økland 1999). Therefore, it is useful to express explained variability relative to the 

maximum variability that could be explained by the same number of predictors. To 

calculate relative importance (RI), we divided the variability in species composition 

explained by a selected climatic variable by the variability explained by the sample 

scores on the first ordination axis of the principal coordinates analysis (PCA), which 

represent the maximum variability that can be explained by a single explanatory 

variable for the given dataset. We calculated the 95% confidence interval of RI by 

bootstraping with 9,999 replicates and the adjusted bootstrap percentile (BCa) method 

from the ‘boot’ R package (Canty and Ripley 2017). 

ELEVATION ,  TOPOGRAPHY AND CANOPY EFFECTS ON UNDERSTOREY 

TEMPERATURE  

To explore the effects of terrain topography and canopy cover on the spatial varia-

bility of understorey temperature, we constructed empirical models for each 

temperature variable using multiple linear regression with forward selection based on 

the BIC criterion. As predictors, we used elevation, topographic indices (TPI, HL and 

SWI) and canopy cover (Canopy). Prior to the analyses, we standardized elevation and 

the SWI to zero means, leaving naturally centred variables (HL, TPI) untransformed. 

Variables entering the model were checked for co-linearity using variance inflation 

factors (VIF) from the ‘car’ R package (Fox and Weisberg 2011). All VIF values were 

below 1.6, indicating low co-linearity of the predictors (see Fig. S7 for correlations 

between predictors). 
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To calculate the relative importance of predictors used in the final models, we used 

LMG metrics from the ‘relimpo’ R package (Grömping 2006), which calculates the 

sequential R2 contribution averaged over all possible orderings among regressors. To 

express absolute effect size in °C, we subtracted the lowest from the highest predicted 

values at sampling points where either topographic variables (for elevational effects) or 

elevation (for topographic effects) were fixed to zero (Ashcroft and Gollan 2013). We 

evaluated the prediction accuracy of the final topoclimatic models using mean absolute 

error (MAE) and root-mean-square error (RMSE) statistics based on leave-one-out 

cross-validation. Because the various temperature variables had different absolute 

ranges, we also calculated normalized RMSE as absolute RMSE divided by the range of 

observed values. 

FINE-SCALED TOPOCLIMATIC MAPS VS .  WORLDCLIM2 

We used these empirically derived models to create high-resolution (5 m) topocli-

matic maps for the whole study area (Fig. 3). Our sampling design covered most 

topographic gradients within the study area (Fig. S8). We checked for spatial autocorre-

lation in observed temperature variables and in model residuals using Moran’s I 

calculated with the ‘ncf’ R package (Bjornstad 2018). Because the spatial autocorrelation 

of model residuals was low, we concluded that the model assumptions were met and 

that it was not needed to correct for spatial dependence. 

To assess the biological relevance of the newly created topoclimatic maps, we used 

an `independent validation dataset of 160 georeferenced forest vegetation plots without 

in-situ temperature measurement (see Kopecký and Macek 2015 for a description of the 

sampling design) sampled across the same region by the authors (Fig. 1). We compared 

variation in plant species composition explained by temperature variables extracted 

from our topoclimatic maps to the widely used WorldClim2 gridded climatology with 

30 arc-second spatial resolution (Fick and Hijmans 2017). First, for each sample location 

we extracted Tmax95, Tmean and Tmin from our topoclimate maps and Mean Annual 

Temperature (bio1; Fig. S9), Max Temperature of Warmest Month (bio5; Fig. S10), 

Minimum Temperature of Coldest Month (bio6; Fig. S11) from WorldClim 2. Then we 

used dbRDA (with the same settings as we used to test the effects of in-situ measured 

temperatures) to assess the variability in understorey species composition explained by 

temperatures derived from fine-scaled microclimate maps and standard bioclimatic 

layers. 

UNDERSTOREY TEMPERATU RE VARIABILITY  

To explore the effects of topography and canopy cover on the spatial variability of 

understorey temperature, we constructed empirical models for each temperature 

variable using bidirectional elimination of model variables in multiple linear regression 

based on the Bayesian information criterion (BIC). As predictors we used plot elevation, 



 

 
74 

topographic variables (TPI, HL and SWI) and canopy cover. Prior to the analyses we 

standardized elevation and the SWI to zero means, leaving naturally centred variables 

(HL, TPI) untransformed. Variables entering the model were checked for co-linearity 

using variance inflation factors (VIF) from the ‘car’ package (Fox and Weisberg 2011) in 

R 3.2.5 (R Core Team 2016). All VIF values were below 1.6, indicating low co-linearity of 

the predictors (Fig. S9). We checked for spatial autocorrelation in observed temperature 

variables and in model residuals using Moran’s I calculated with the ‘ncf’ R package 

(Bjornstad 2018). Because the spatial autocorrelation of model residuals was low, we 

concluded that the model assumptions of independence of residuals were met and that 

it was not necessary to further correct for spatial dependence. 

To calculate the relative importance of predictors used in the final models, we used 

the sequential R2 contribution averaged over all possible orderings of the regressors, 

implemented in the ‘relimpo’ R package as ‘LMG‘ metrics (after Lindeman, Merenda and 

Gold (1980) in Grömping 2006). To express absolute effect size in degrees Celsius, we 

subtracted the lowest from the highest predicted values at sampling points where either 

topographic variables (for elevational effects) or elevation (for topographic effects) were 

fixed to zero (Ashcroft and Gollan 2013). We evaluated the prediction accuracy of the 

final topoclimatic models using mean absolute error (MAE) and root-mean-square error 

(RMSE) statistics based on leave-one-out cross-validation. Because the various tempera-

ture variables had different absolute ranges, we also calculated normalized RMSE as 

absolute RMSE divided by the range of observed values. 

Finally, we used these empirically derived models to create high-resolution (5 x 5 m 

pixel size) topoclimatic maps of Tmax95, Tmean and Tmin5 for the whole study area 

(Fig. 3). As a supplement to these topoclimatic maps, we provide spatially explicit 

information about topographic gradients covered by our sampling design (interpolated 

climate) and those not covered (extrapolated climate) in the supplementary material 

(Fig. S11). 

EFFECTS OF IN-SITU MEASURED TEMPER ATURE ON UNDERSTOREY  PLANT 

COMMUNITIES  

To explore the effects of different temperature variables on understorey plant species 

composition, we performed two complementary multivariate analyses (Økland 1996). 

First, we explored main gradients in plant species composition and their relationship to 

environmental variables through indirect ordination and then we used direct ordination 

to calculate the variation in species composition explained by each in-situ measured 

temperature variable (Legendre and Lengendre 2012). We expressed dissimilarity in 

plant species composition as the percentage (aka Bray-Curtis) index (Legendre and 

Lengendre 2012) calculated from species percentage cover estimates transformed using 

a base-2 logarithm to decrease the influence of the most abundant species (Anderson et 

al. 2006). 
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To explore the main gradients in plant species composition, we used global non-

metric multidimensional scaling with primary (‘weak’) treatment of ties (NMDS) 

calculated in two dimensions with the ‘metaMDS’ function from the ‘vegan’ R package 

version 2.4-6 (Oksanen et al. 2018). To visualize relationships among the main composi-

tional gradients and environmental variables, we projected all environmental variables 

onto the NMDS compositional space using the ‘envfit’ function from the ‘vegan’ R 

package. 

To calculate the variation in species composition explained by the temperature var-

iables, we used distance-based redundancy analysis (dbRDA, McArdle and Anderson 

2001) performed using the ‘dbRDA’ function from the ‘vegan’ R package. We tested the 

statistical significance of temperature variables using 9,999 permutations. 

The proportion of variability explained by environmental gradients in direct multi-

variate analyses (such as dbRDA) tends to be low because explained variability depends 

on the compositional heterogeneity of the dataset (Økland 1999). It is therefore useful 

to express the relative importance (RI) of predictors calculated here as the variability 

explained by the predictor relative to the maximum variability that can be potentially 

explained by a single predictor. To calculate RI, we divided the variability in species 

composition explained by each temperature variable by the variability explained by the 

sample scores from the first ordination axis of the Principal Coordinates Analysis 

(PCoA) supplied as a single explanatory variable to dbRDA. To provide uncertainty 

estimates for these RI values, we further calculated the 95% confidence interval of RI for 

each temperature variable by bootstrapping with 9,999 replicates calculated using the 

adjusted bootstrap percentile (BCa) method from the ‘boot’ R package (Canty and 

Ripley 2017). 

TOPOCLIMATIC AND MACR OCLIMATIC MAPS IN EC OLOGICAL APPLICATION S  

To assess the biological relevance of the newly created fine-scale topoclimatic maps, we 

used an independent dataset of 160 georeferenced forest vegetation plots without in situ 

temperature measurement, sampled across the same region by the authors (see Fig. 1 for 

the spatial distribution of the plots, Suppl. Fig. S10 for coverage of topographic gradients 

and Kopecký and Macek (2015) for a description of the sampling design). 

We compared variation in plant species composition explained by temperature var-

iables extracted from our high-resolution topoclimatic maps (5 × 5 m pixel size) to the 

widely used WorldClim 2 climate grids with 30 arc-second (ca 930 × 590 m pixel size at 

this latitude) spatial resolution (Fick and Hijmans 2017). First, for each sample location 

we extracted Tmean, Tmax95 and Tmin5 from our topoclimate maps and analogous 

indices calculated using growing season (May to September) monthly data from 

WorldClim 2: maximum temperature of the warmest month (WC2 Tmax; Fig. S12), 
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mean of average monthly temperature (WC2 Tmean; Fig. S13) and minimum tempera-

ture of the coldest month (WC2 Tmin; Fig. S14). 

We used dbRDA with the same settings as we used to test the effects of in situ 

measured temperatures to assess the variation in understorey species composition 

explained by temperatures derived from fine-scale topoclimate maps and from World-

Clim 2 climate grids. To test if the fine-scale topoclimate predicts vegetation 

composition better than analogous WorldClim 2 variables, we compared bootstrapped 

explained variances (R2) between pairs of models using topoclimatic and analogous 

WorldClim 2 predictor variables (e.g. Tmax95 vs WC2 Tmax) using one-sided empirical 

p-values corrected for finite sampling: 

Eq. 1:  p = (1+∑ (R2 topo ≤ R2 WorldClim 2 ))/(n+1) 
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3.5 RESULTS 

UNDERSTOREY TEMPERATU RE VARIABILITY  

Mean temperatures measured in the growing season 2015 (Tmean) varied by 2.55°C, 

ranging from 15.02 to 17.57°C across the landscape. Minimum and maximum tempera-

tures were substantially more variable: Tmax95 differed between sites by as much as 

6.86°C (Table 1). Similar patterns in Tmax95 and Tmean were found for the next three 

years on a subset of 27 locations with continuous record (Pearson’s correlation coeffi-

cient between different years was between 0.9 and 0.97 for Tmax95 and between 0.97 

and 0.98 for Tmean). Higher interannual variability was found only for Tmin (Pearson’s 

correlation coefficient between 0.32 and 0.93), Fig. S2-S4. 

 

Table 1 Environmental variables and their descriptive statistics across the 46 sample sites. 

Topographic variables were derived from a high-resolution digital elevation model and canopy 

cover was calculated from hemispherical photographs. Temperature variables were measured 

using iButton Thermochron data loggers in the vegetation season of 2015 (1st May – 30th Septem-

ber). Mean temperature is calculated as the average from all readings (every 3h). 

Variable Abbrev. Units min mean max sd range 

Elevation Elev m 220 427.7 644 109.3 424 

Canopy cover Canopy % 79 91.8 97 3.37 18 

SAGA Wetness Index SWI - 5.19 8.77 16.84 2.75 11.65 

Heat load HL - -0.55 -0.04 0.43 0.21 0.98 

Topographic position index TPI m -39 -0.54 36 16.83 75 

95th percentile of daily 
maximum temperatures 

Tmax95 °C 27.29 29.97 34.15 1.57 6.86 

Mean temperature Tmean °C 15.02 16.13 17.57 0.69 2.55 

5th percentile of daily 
minimum temperatures 

Tmin5 °C 4.34 6.88 8.02 0.84 3.68 

 

The final model for Tmax95 with four explanatory variables explained most of the 

variability in measured temperatures (R2adj. = 0.79); it had RMSE = 0.76°C and no 

spatial autocorrelation in residuals (Table 2; Fig. 3c). Elevation had a strong negative 

effect (lapse rate −11.4°C·km−1) with a relative importance of 62.9%. The topographic 

variables selected in the regression model were the TPI (positive effect, 15.4% RI), HL 

(positive effect, 15.3% RI) and SWI (negative effect, 6.2% RI). For detailed information 

on the stepwise model selection see Supplementary Table S15. 

The best topoclimatic model for Tmean explained most of the variability (R2adj. = 

0.80) and had good prediction accuracy (RMSE = 0.31°C) and no autocorrelation in 
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model residuals up to the distance of 10 km (Fig. 3f). The model included three variables 

– elevation, TPI and SWI (Table 3). Tmean decreased with elevation (lapse rate 

−5.16°C·km−1), which was the most important variable in the model (73% RI). Tmean 

increased with increasing TPI (14.5% RI) and decreased with increasing SWI (12.4% RI). 

Variation in Tmin5 showed low spatial autocorrelation (Fig. 3h) and was difficult to 

predict (R2adj. = 0.30); the only predictor of Tmin5 selected in the stepwise-selection 

was SWI (Table 2). The negative relation between Tmin5 and SWI suggests cold air 

pooling at valley bottoms as the dominant process driving spatial patterns in Tmin5. 

 

Table 2 Microclimate regression model parameters for minimum, mean and maximum tempera-

tures. The effect size for elevation (Elev. e.s.) was calculated as the range of predicted values for 

observed plot elevations with all other variables held constant. Topographic effect size (Topo. e.s.) 

is the range of predicted values for constant elevation and original values of topographic variables. 

Significance codes: ‘n.s.’ – not significant; ‘*’ – p < 0.05; ‘**’ – p < 0.01; ‘***’ – p < 0.001. MAE – mean 

absolute error; RMSE – root-mean-square-error, RMSE norm – normalized root-mean-square-

error (RMSE divided by the observed range of values). 

Variable Inter-
cept 

Elev SWI TPI HLI Canopy R2adj. Elev. 
 e.s. 

Topo. 
 e.s. 

model 
p 

MAE RMSE norm 
RMSE 

Tmax95 
29.52 
*** 

-0.0114 
*** 

-0.709 
** 

0.0362 
*** 

0.00014 
*** 

n.s. 0.79 4.74 4.27 *** 0.62 0.76 0.112 

Tmean 
15.79 
*** 

-0.0057 
*** 

-0.446 
*** 

0.0141 
*** 

n.s. n.s. 0.80 2.36 1.72 *** 0.24 0.31 0.123 

Tmin5 
6.34 
*** 

n.s. 
-0.781 

*** 
n.s. n.s. n.s. 0.30 - 1.87 ** 0.57 0.72 0.195 

 

EFFECTS OF IN-SITU MEASURED TEMPER ATURE ON UNDERSTOREY  PLANT 

COMMUNITIES  

In total, we recorded 196 plant species (median 25.5, min. 4, max. 48 per plot). The main 

gradient in vegetation composition, as seen on NMDS ordination diagram, can be 

interpreted as the transition from thermophilous oak woodlands to mesic beech-

dominated communities (Fig. 2). The second ordination axis in NMDS followed mainly 

nutrient status, from communities of acidic soils with Vaccinium myrtillus and Avenella 

flexuosa to the calcicole and nutrient demanding species like Astrantia major or Viola 

mirabilis. Whereas Tmax95 and Tmean were both closely related to the first axis of the 

NMDS ordination, Tmin5 had only weak correlation with the second ordination axis 

(Fig. 2). 

Direct gradient analysis (dbRDA) revealed that species composition was most 

strongly controlled by Tmax95, less by Tmean and only weakly by Tmin5 (Table 3). 
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Figure 2 Ordination diagram from non-metric multidimensional scaling showing main vegetation 

gradients with passively projected climatic and topographic variables. Environmental variables 

with statistically significant (p < 0.05) correlations with sample scores in the ordination space are 

depicted by solid red lines; insignificant variables are indicated by a dashed blue lines (see Table 1 

for variable abbreviations and descriptions). The contractions of species names are composed of 

the first four letters of the generic name and the first four letters of the specific epithet; font size is 

proportional to the species’ frequencies in the dataset. In cases of overlapping labels, only the 

more frequent species was plotted. 
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Table 3 Variation in species composition explained by in situ measured temperatures (Tmax95, 

Tmean, Tmin5) and the bioclimatic variables bio1 (mean temperature), bio5 (maximum tempera-

ture of the warmest month) and bio6 (minimum temperature of the coldest month) extracted from 

WorldClim 2 climate grids. Explained variation in species composition (R2 and adjusted R2) and p-

values are based on 9,999 permutations of dbRDA. The shared effect is the fraction of variation 

jointly explained by in situ measured and corresponding WorldClim 2 variables. Pearson’s r is the 

bivariate correlation between in situ measured and corresponding WorldClim 2 variables. 

 variable n F model R2 R2 adj. p RImean RI2.5% RI 97.5% 

In situ measured temperatures 

      Tmax95 46 3.929 0.082 0.061 < 0.001 0.634 0.365 0.822 

Tmean 46 3.323 0.070 0.049 < 0.001 0.568 0.269 0.722 

Tmin5 46 1.908 0.042 0.020 0.012 0.382 0.139 0.447 

Topoclimatic map spatial 
prediction 

       Tmax95 160 9.516 0.057 0.051 < 0.001 0.489 0.306 0.613 

Tmean 160 6.897 0.042 0.036 < 0.001 0.374 0.204 0.452 

Tmin5 160 4.900 0.030 0.024 < 0.001 0.286 0.141 0.314 

WorldClim2 bioclimatic grids 

       bio1 160 7.117 0.043 0.037 < 0.001 0.384 0.226 0.454 

 bio5 160 6.166 0.038 0.031 < 0.001 0.339 0.187 0.401 

 bio6 160 5.324 0.033 0.026 < 0.001 0.302 0.160 0.350 

 

 

TOPOCLIMATIC AND MACR OCLIMATIC MAPS IN EC OLOGICAL APPLICATION S  

In the independent dataset, microclimatic variables extracted from fine-scale topocli-

matic maps (Fig. 3) explained less variability in plant community composition than was 

explained by in situ measured temperatures in the original dataset, but the ranking of 

individual variables was the same as for in situ measured temperatures (Table 3). The 

best predictor of plant community composition was again Tmax95, which was a 

significantly better predictor of vegetation composition than maximum temperature 

extracted from WorldClim 2 (p = 0.005). However, the explanatory power of Tmean and 

Tmin5 from topoclimatic maps was not better than that of Tmean (p = 0.52) and Tmin 

(p = 0.872) from WorldClim 2. 
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Fig. 3 Predicted topoclimatic maps for Tmax95 (a), Tmean (b) and Tmin5 (c). Spatial autocorrela-

tion is expressed as Moran’s I of measured temperature values (d,f,h) and model residuals (e,g,i) 

for Tmax95 (d,e), Tmean (f,g) and Tmin5 (h,i). Instances of significant (p < 0.05) spatial autocor-

relation are plotted as full circles. The model for Tmax95, which was best predictor of plant 

community composition, explained most of the observed spatial variability and accounted for 

spatial autocorrelation of residuals at all spatial scales. 
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3.6 DISCUSSION 

Different sets of topographic variables explained spatial variability in minimum, mean 

and maximum temperatures, while spatial variability of understorey temperatures 

driven by differences in canopy openness was insignificant. Maximum temperatures 

were the most variable in space, with variability controlled jointly by elevation, heat 

load, topographic position and topographic wetness. Understorey plant community 

composition was best explained by a gradient of in-situ measured maximum tempera-

tures. Using an independent dataset of vegetation samples, we shoved that the fhad the 

strongest relation to understory plant community composition. Fine-scaled topoclimat-

ic maps of maximum temperatures can explain forest understorey composition 

substantially better than the WorldClim 2 gridded climate data, which lack sufficient 

resolution and do not account for topographic effects other than elevation. 

DRIVERS OF UNDERSTORE Y TEMPERATURE VARIABILITY  

It has been suggested that topographic effects on near-surface temperatures are reduced 

under dense forest canopies (Wilson and Gallant 2000, Körner and Paulsen 2004). 

However, our results clearly show that topography has a strong effect even in closed-

canopy forests. Although we found a significant effect of heat load on maximum 

temperatures, heat load did not affect mean temperatures significantly, probably 

because the contrast in temperatures on south-facing slopes is pronounced only around 

noon on sunny days, which contribute little to seasonal means. By contrast, the SWI, 

which is a topographic proxy for soil moisture and cold air pooling (Olaya and Conrad 

2009, Kilibarda et al. 2014), correlated significantly with all temperature variables. The 

effect of cold air drainage affecting maximum temperatures during daytime in the 

growing season seems rather odd. However, beneath the forest canopy, topographically 

driven downslope flow of the cold air can persist all day, in contrast to conditions above 

the canopy, where the air flow is reversed during the daytime (Pypker et al. 2007). 

Within our study region, the temperature variability driven by topography was 

comparable to the temperature variability driven by elevation. Terrain topography thus 

creates contrasting fine-scale microclimatic patterns across the landscape (Fig. 3). 

Interestingly, the magnitude of topographically driven variability in maximum tempera-

tures observed in our study is in line with values reported from Australia (Ashcroft and 

Gollan 2012) and France (Joly and Gillet 2017). Similar topographic effects on effective 

temperatures in the forest understorey have been also demonstrated in Germany, where 

bioindicated temperature was better predicted by models including the topographic 

heat load index along with conventional interpolated temperature grids (Reger et al. 

2011) Together, these results suggest that topographically driven temperature variability 

should be considered in ecological studies (Vanwalleghem and Meentemeyer 2009, 

Ashcroft et al. 2012). 
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Surprisingly, we did not find any significant correlation between variation in canopy 

cover and understorey temperature. The average buffering effect of the forest canopy 

compared to open habitats on maximum air temperatures has been quantified to be ca 

2°C in broadleaved forests (Von Arx et al. 2012, Zellweger et al. 2019) and ca 1.4°C in 

coniferous ones (Davis et al. 2019). The estimated effect of canopy cover, albeit insignifi-

cant, in our full model was roughly comparable to these values, tending towards 2.6°C, 

but with a high standard error of 2.4°C. In contrast to studies reporting significant 

effects of canopy cover (e.g. Ashcroft and Gollan 2012, Von Arx et al. 2013, Greiser et al. 

2018), we did not measure temperature in non-forest habitats. It can therefore be 

argued that we did not find any effects of canopy cover because we sampled only a 

limited gradient of canopy cover. However, we selected our plot locations according to a 

stratified random design with strata defined only by topographic variables; canopy cover 

in our plots thus reflects typical variation within the region. While most plots were 

established within close-canopy forests dominating the region, we measured tempera-

tures also in tree-fall gaps and open forests on steep slopes with shallow soils and the 

range of canopy cover values observed in our study is fully comparable to values 

reported from other temperate forests, even in studies that also considered canopy gaps 

(Canham et al. 1990, Valverde and Silvertown 1997, Tinya et al. 2009, Hofmeister et al. 

2009). Nevertheless, we acknowledge that part of the unexplained temperature variabil-

ity can be potentially attributed to variation in other forest structural attributes like 

canopy height or stem density (Frey et al. 2016, Kovács et al. 2017).  

Recently, it has been shown that forest canopy ability to buffer understorey temper-

atures in temperate deciduous forests does not increase linearly with increasing canopy 

cover, but is constant beyond a threshold of ca 75% canopy cover (Zellweger et al. 2019). 

As all sites in our study have canopy cover above 75% (Table 1), lack of effect of canopy 

cover on measured temperatures is fully in line with Zellweger et al. results. Likewise, 

Gray et al. (2002) have compared temperatures under closed canopy and canopy gaps of 

different size, reporting that minimum and mean temperatures were not affected by 

gaps, but only the maximum air temperatures measured in the largest gaps were 

significantly affected. Together, these results suggest that there is some threshold value 

of canopy cover above which the effect of canopy on air temperature is saturated. The 

temperature variability potentially driven by variation in canopy cover within forest 

stands is therefore relatively small compared to topography-driven variability (over 4°C 

in our region). 

EFFECTS OF IN-SITU MEASURED TEMPER ATURE ON UNDERSTOREY  PLANT 

COMMUNITIES  

We found that maximum temperatures have a stronger effect on understorey plant 

communities than mean or minimum temperatures. Tmax95 explained 51% of the 

variability explainable by a single predictor variable in the multivariate analysis, which 
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indicates a high importance of maximum temperatures. Our results thus support 

previous studies arguing that not average climatic conditions but rather climatic 

extremes are the determinants of species distribution and community assembly (Suggitt 

et al. 2011, Ashcroft and Gollan 2012). The range and spatial heterogeneity observed for 

maximum temperatures was also broader than that of mean or minimum temperatures 

(Fig. 3) and which may also contribute to the greater explanatory power of maximum 

temperatures. 

In our opinion, maximum temperature acts on forest plant species as a permanent 

stress factor rather than an episodic disturbance agent because spatial pattern of 

maximum temperature was consistent between years (Fig. S2). Plants growing at sites 

regularly exposed to high maximum temperatures are not only affected by physiological 

stress caused directly by high temperatures, but they are also exposed to high vapour 

pressure deficit, which is physically linked to temperature, resulting in high evapotran-

spiration rates (Kovács et al. 2017, Davis et al. 2019). The effects of high temperature 

stress on plant communities thus may be accentuated as a result of trade-offs with 

shade adaptations of forest plants, which make them more sensitive to water deficit 

under high-temperature conditions (Valladares and Niinemets 2008). Indeed, sites with 

lower maximum temperatures host typical forest species such as Actaea spicata or ferns 

Dryopteris carthusiana and D. filix-mas whereas sites on the ‘hot’ end of the gradient 

host many plant species that can be found also in forest edges, shrublands or in non-

forest habitats, for example Serratula tinctoria, Fragaria vesca or graminoids such as 

Festuca ovina, Carex montana and Poa anguistifolia (Fig. 2). 

The species composition of temperate forest understories changed substantially less 

than had been expected from the observed changes in mean temperature in the past 

decades (Bertrand et al. 2011, De Frenne et al. 2013). One explanation for this discrepan-

cy, proposed by De Frenne et al. (2013), is the microclimatic buffering of understorey 

temperatures caused by increasing canopy cover. However, our results suggest that the 

potential buffering effect of canopy cover on temperature variability within forests in 

this region is relatively weak: Even if the relation between canopy cover and maximum 

temperatures was linear and canopy cover in all our plots was to increase to 100%, the 

potential difference in buffering effect on maximum temperatures in the forest under-

storey compared to current situation would not exceed 0.25°C according to the effect 

reported by Von Arx et al. (2012), but no additional buffering effect with increasing 

canopy cover can be expected if there is a threshold value in canopy cover above which 

the temperatures do not further respond to increasing canopy cover, as was reported by 

Zellweger et al. (2019). Even when the buffering effect is expressed directly as ther-

mophilization of plant communities, using the most extreme estimate of effect sizes 

from De Frenne et al. (2013) and simulated increase in canopy cover to 100% on all plots, 

the expected mean buffering effect mitigating plant community thermophilization 

would be as low as 0.003°C. Such values are far below the expected rise in temperatures 
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during the 21st century, but also below the observed rise of temperatures in the past 

decades (IPCC 2014). Our data thus challenge the potential of forests to buffer climate 

warming by increasing canopy closure at the landscape-scale (De Frenne et al. 2013, Frey 

et al. 2016). However, significant effects of alternated temperature regime on understo-

rey vegetation can be expected locally in response to moderate to severe canopy 

disturbance or stand development following such disturbance (Stevens et al. 2015, Brice 

et al. 2019), but such dynamics is accompanied also by dramatic changes in light, water 

and nutrient availability, affecting understorey vegetation in a complex way (Canham et 

al. 1990, Gray et al. 2002, Gálhidy et al. 2005). This makes disentangling the effects of 

the temperature from other driving forces challenging. 

Interestingly, maximum daily temperatures, which proved to be the most determin-

ing factor for understorey species composition, have risen globally at a lower rate 

compared to mean or minimum temperatures (Easterling et al. 1997). The slower 

increase in maximum temperature and its greater spatial heterogeneity can theoretically 

be at least partly responsible for the lower rate of change in forest understorey vegeta-

tion observed across temperate forests. However, only long-term microclimatic data 

measured along gradients of canopy cover can disentangle links between the changing 

climate, forest canopies, topographic complexity and directional change in forest 

understorey vegetation, so far deduced mostly from indirect evidence based on space-

for-time substitutions (Frey et al. 2016, De Frenne et al. 2019) or bioindication (De 

Frenne et al. 2013). 

 

TOPOCLIMATIC  AND MACROCLIMATIC M APS IN ECOLOGICAL AP PLICATIONS  

Our findings stress that fine-scale information about maximum temperatures in the 

growing season is essential for a proper assessment of the effect of climate change and is 

also vital for species distribution modelling (see also Parmesan et al. 2000, Ashcroft and 

Gollan 2012, Gardner et al. 2019). The common limitations of currently available global 

climatic datasets, including WorldClim 2, are their insufficient spatial resolution, 

possible bias in temperature interpolations and, finally, the fact that weather-station 

data behind these datasets do not reflect specific forest microclimates and topographic 

complexity (Bedia et al. 2013, Nadeau et al. 2017, Bramer et al. 2018). Elevation is still the 

only topographic attribute used in interpolations of WorldClim 2 climate grids (Fick 

and Hijmans 2017), but we found that other aspects of topographic complexity, includ-

ing anisotropic heating and cold air pooling can be similarly important at landscape 

scales. This is the likely reason why maximum temperature from WorldClim 2 explained 

substantially less variation in species composition than both in situ measured maximum 

temperatures and maximum temperatures from our interpolated topoclimatic grids. 

However, the explanatory power of mean temperature was comparable between 

topoclimatic grids and WorldClim 2. This is probably caused by the lower spatial 
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variability in mean temperatures and greater relative importance of elevation compared 

to other topographic attributes, which makes mean temperature predictions in World-

Clim 2 more realistic compared to maximum temperature predictions based on the 

same dataset. 

Together, our results show that it is possible to improve bioclimatic maps using 

topographic variables and thus substantially enhance the ecological relevance of these 

maps. Therefore, despite substantial improvements in the precision and spatial resolu-

tion of global climate grids (Fick and Hijmans 2017), there is still a need to incorporate 

local topography into these grids (Slavich et al. 2014, Aalto et al. 2017). We show that 

such topoclimatic maps capture more biologically relevant information and can there-

fore increase the predictive accuracy of ecological models. 

 

3.7 CONCLUSION 

Elevational gradients together with terrain topography create complex microclimatic 

mosaics across forested landscapes. Plant species growing in forest understoreys are 

sensitive to these microclimatic mosaics and most strongly respond to maximum 

temperature. At landscape scales, maximum temperatures can be successfully modelled 

using topographic variables derived from high-resolution DEMs, suggesting promising 

avenues for the refinement of species distribution models and the modelling of species’ 

vulnerability to climate change. 
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3.10 SUPPLEMENTARY MATERIALS 

 

Fig. S1 Distribution of forested area (green) within study region. Study plots with temperature 

sensors and plant species composition are displayed with white circles, vegetation-only plots by 

red triangles in this figure and hereafter. 

 

Fig. S2  Correlation matrix showing in-situ measured maximal temperature (95th percentile of 

daily maxima; in °C) of the growing seasons 2015 – 2018 (May 1 – September 30). Lower panels 

show Pearson’s correlation coefficients. Despite overall means differ between years, relative 

differences among locations remained stable.  
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Fig. S3 Correlation matrix showing in-situ measured growing season (May 1 – September 30) mean 

temperatures (in °C) for years 2015 – 2018. Lower panels show Pearson’s correlation coefficients. 

Relative positions of sites are stable between years. 

 

Fig. S4  Correlation matrix showing in-situ measured minimal temperature (5th percentile of daily 

minima; in °C) of the growing seasons 2015 – 2018 (May 1 – September 30). Lower panels show 

Pearson’s correlation coefficients. Between-year variability in minimum temperatures was high 

compared to mean or maximum temperatures.  
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Fig. S5 Pairwise comparison of climatic characteristics based on in situ measurements and data 

extracted from Worldclim2 monthly temperature grids for growing season (May to September). 

Lower panels show Pearson’s correlation coefficients. In situ measured variables: 95th percentile of 

daily maximum temperatures (Tmax95); mean temperature (Tmean); 5th percentile of daily 

minimum temperatures (Tmin5). Worldclim 2 grids: maximum monthly temperature (WC2 

Tmax); average temperature in growing season (WC2 Tmax); minimum from minimum tempera-

tures (WC2 Tmax). All values are in °C. 
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Fig. S6 Topographic position index (TPI) calculated as difference between actual elevation and 

averaged elevation in 250m buffer surrounding focal pixel. Positive values (reds) are for areas 

elevated above surrounding terrain, negative values (blues) represents local depressions. Study 

plots with temperature sensors and plant species composition are displayed with white circles, 

vegetation-only plots by red triangles in this figure and hereafter. 

 
Fig. S7 Topographic heat load (HL) calculated from slope and aspect. Highest HL values (red) are 
found on steep SSW (202.5°) facing slopes, zero values (white) on flat areas and negative values 
(blue) of HL on NNE slopes. HL was calculated using ‘diurnal anizotropic heating’ function in 
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SAGA GIS 3.0.0 with parameter alphamax = 202,5° and resulting surface was smoothed using 
gaussian filter with 50 m radius. 

 

Fig. S8 SAGA Wetness Index (SWI) was used as a proxy for cold air drainage. High SWI values 

(blue) denotes area prone to accumulation of cold air, while low SWI (yellow) occurs on well-

drained hilltops or ridges.  
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Fig. S9 Histograms and pairwise comparison of correlation among predictors used to fit measured 

temperatures on 46 measuring sites: Elevation (m a.s.l.), Canopy  - canopy cover (fraction) and 

topographic attributes HL – heat load (unitless index), SWI – SAGA wetness index (unitless) and 

TPI – topographic position index (m). Lower panels show Pearson’s correlation coefficients. 
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Fig. S10 Histograms and pairwise comparison of correlation among elevation and topographic 

attributes for 160 sites with vegetation data only: Elevation (m a.s.l.); and topographic attributes 

HL – heat load (unitless index), SWI – SAGA wetness index (unitless) and TPI – topographic 

position index (m). Lower panels show Pearson’s correlation coefficients between pairs. 
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Fig. S11 Area within the range of terrain parameters used in regression models for 

temperature (Elevation, Heat Load, Topographic Position Index, SAGA Wetness Index). 

Dark shaded area represents interpolation between terrain parameters observed on plots 

with temperature sensors, light shaded area extrapolation outside the range of terrain 

parameter values. 

  
Fig. S12 Maximum of maximum monthly temperatures in growing season (May-

September) from WorldClim2 (Fick & Hijmans, 2017). 
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Fig. S13 Mean of mean monthly temperature in growing season (May-September) from 

WorldClim2 product (mean annual temperature) for the study area (Fick & Hijmans, 

2017). 

 
Fig. S14 Minimum of minimum monthly temperatures in growing season (May-

September) from WorldClim2 (WC2 Tmin). 
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Table S15 Model parameters of models compared in stepwise model selection and final model 

summaries. Set of linear regression models for Tmax95, Tmean and Tmin5 and elevation (Elev), 

heat load (HL), topographic position index (TPI) and SAGA wetness index (SWI). Models were 

selected according to BIC, using k = log(n) penalization. Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 

‘.’ 0.1 ‘ ’ 1 

Model selection for Tmax95 

Start:  BIC=44.05 

Tmax95 ~ 1 

 

         Df Sum of Sq     RSS    BIC F value    Pr(>F)     

+ Elev    1    49.981  60.298 20.108 36.4718 2.956e-07 *** 

+ HL      1    17.306  92.973 40.026  8.1902  0.006424 **  

+ TPI     1     9.916 100.364 43.545  4.3472  0.042906 *   

<none>                110.279 44.050                       

+ Canopy  1     4.952 105.328 45.765  2.0685  0.157448     

+ SWI     1     1.220 109.059 47.367  0.4922  0.486632     

--- 

 

Step:  BIC=20.11 

Tmax95 ~ Elev 

 

         Df Sum of Sq     RSS    BIC F value    Pr(>F)     

+ TPI     1    25.706  34.593 -1.624 31.9531 1.167e-06 *** 

+ SWI     1    16.762  43.536  8.953 16.5560 0.0001982 *** 

+ HL      1     6.088  54.210 19.040  4.8294 0.0334133 *   

<none>                 60.298 20.108                       

+ Canopy  1     4.762  55.536 20.152  3.6874 0.0614721 .   

- Elev    1    49.981 110.279 44.050 36.4718 2.956e-07 *** 

--- 

 

Step:  BIC=-1.62 

Tmax95 ~ Elev + TPI 

 

         Df Sum of Sq     RSS    BIC F value    Pr(>F)     

+ HL      1     7.510  27.083 -9.053 11.6458  0.001435 **  

+ SWI     1     4.143  30.450 -3.664  5.7144  0.021387 *   

<none>                 34.593 -1.624                       

+ Canopy  1     1.635  32.957 -0.023  2.0840  0.156264     

- TPI     1    25.706  60.298 20.108 31.9531 1.167e-06 *** 

- Elev    1    65.771 100.364 43.545 81.7563 1.674e-11 *** 

--- 

 

Step:  BIC=-9.05 

Tmax95 ~ Elev + TPI + HL 

 

         Df Sum of Sq    RSS     BIC F value    Pr(>F)     

+ SWI     1     5.804 21.279 -16.320  11.184  0.001772 **  

<none>                27.083  -9.053                       

+ Canopy  1     1.473 25.610  -7.797   2.358  0.132321     

- HL      1     7.510 34.593  -1.624  11.646  0.001435 **  

- TPI     1    27.127 54.210  19.040  42.068 7.938e-08 *** 

- Elev    1    52.651 79.734  36.789  81.651 2.113e-11 *** 

--- 

 

Step:  BIC=-16.32 

Tmax95 ~ Elev + TPI + HL + SWI 

 

         Df Sum of Sq    RSS     BIC  F value    Pr(>F)     

<none>                21.279 -16.320                        

+ Canopy  1     1.143 20.135 -15.032   2.2711 0.1396660     

- SWI     1     5.804 27.083  -9.053  11.1838 0.0017721 **  

- HL      1     9.171 30.450  -3.664  17.6708 0.0001386 *** 

- TPI     1    12.855 34.134   1.591  24.7700 1.208e-05 *** 

- Elev    1    58.340 79.619  40.551 112.4105 2.564e-13 *** 

--- 

 

 

Final model summary 

Formula = Tmax95 ~ Elev + TPI + HL + SWI 
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Residuals: 

     Min       1Q   Median       3Q      Max  

-1.79375 -0.50041 -0.03022  0.54176  1.30847  

 

Coefficients: 

             Estimate Std. Error t value Pr(>|t|)     

(Intercept) 29.520733   0.184419 160.074  < 2e-16 *** 

Elev        -0.011473   0.001082 -10.602 2.56e-13 *** 

TPI          0.036183   0.007270   4.977 1.21e-05 *** 

HL           2.280715   0.542555   4.204 0.000139 *** 

SWI         -0.708827   0.211956  -3.344 0.001772 **  

--- 

Residual standard error: 0.7204 on 41 degrees of freedom 

Multiple R-squared:  0.807, Adjusted R-squared:  0.7882  

F-statistic: 42.87 on 4 and 41 DF,  p-value: 3.943e-14 

________________________________________________________________ 

 

Model selection for Tmean 

Start:  BIC=-31.87 

Tmean ~ 1 

 

         Df Sum of Sq    RSS     BIC F value    Pr(>F)     

+ Elev    1    9.4800 11.690 -55.360 35.6828 3.691e-07 *** 

+ TPI     1    2.2258 18.944 -33.152  5.1696   0.02792 *   

<none>                21.170 -31.871                       

+ SWI     1    1.1333 20.036 -30.573  2.4887   0.12183     

+ HL      1    0.8709 20.299 -29.974  1.8877   0.17642     

+ Canopy  1    0.3608 20.809 -28.833  0.7629   0.38718     

--- 

 

Step:  BIC=-55.36 

Tmean ~ Elev 

 

         Df Sum of Sq     RSS     BIC F value    Pr(>F)     

+ SWI     1    5.8263  5.8634 -83.270 42.7282 6.054e-08 *** 

+ TPI     1    5.4405  6.2492 -80.339 37.4357 2.459e-07 *** 

<none>                11.6897 -55.360                       

+ Canopy  1    0.3387 11.3510 -52.883  1.2830    0.2636     

+ HL      1    0.0279 11.6618 -51.641  0.1029    0.7499     

- Elev    1    9.4800 21.1697 -31.871 35.6828 3.691e-07 *** 

--- 

 

Step:  BIC=-83.27 

Tmean ~ Elev + SWI 

 

         Df Sum of Sq     RSS     BIC  F value    Pr(>F)     

+ TPI     1    1.9543  3.9091 -98.091  20.9974 4.081e-05 *** 

<none>                 5.8634 -83.270                        

+ HL      1    0.2575  5.6058 -81.508   1.9295    0.1721     

+ Canopy  1    0.0705  5.7929 -79.998   0.5109    0.4787     

- SWI     1    5.8263 11.6897 -55.360  42.7282 6.054e-08 *** 

- Elev    1   14.1731 20.0364 -30.573 103.9402 4.786e-13 *** 

--- 

 

Step:  BIC=-98.09 

Tmean ~ Elev + SWI + TPI 

 

         Df Sum of Sq     RSS     BIC  F value    Pr(>F)     

<none>                 3.9091 -98.091                        

+ HL      1    0.2429  3.6662 -97.213   2.7160    0.1070     

+ Canopy  1    0.0052  3.9039 -94.323   0.0541    0.8172     

- TPI     1    1.9543  5.8634 -83.270  20.9974 4.081e-05 *** 

- SWI     1    2.3401  6.2492 -80.339  25.1425 1.016e-05 *** 

- Elev    1   14.8959 18.8050 -29.662 160.0443 6.451e-16 *** 

--- 

 

Final model summary 

Formula: Tmean ~ Elev + SWI + TPI 

 

Residuals: 

    Min      1Q  Median      3Q     Max  

-0.6488 -0.1652 -0.0235  0.1399  0.7876  

 

Coefficients: 



Chapter Three: Maximum air temperature controlled by terrain topography shapes forest plant distribution 

 

  
105 

              Estimate Std. Error t value Pr(>|t|)     

(Intercept) 15.7964108  0.0780820 202.305  < 2e-16 *** 

Elev        -0.0056966  0.0004503 -12.651 6.45e-16 *** 

SWI         -0.4463089  0.0890084  -5.014 1.02e-05 *** 

TPI          0.0141070  0.0030786   4.582 4.08e-05 *** 

--- 

 

Residual standard error: 0.3051 on 42 degrees of freedom 

Multiple R-squared:  0.8153, Adjusted R-squared:  0.8022  

F-statistic: 61.82 on 3 and 42 DF,  p-value: 1.873e-15 

________________________________________________________________ 

 

Model selection for Tmin 

Start:  BIC=-13.14 

Tmin5 ~ 1 

 

         Df Sum of Sq    RSS      BIC F value    Pr(>F)     

+ SWI     1   10.4684 21.341 -27.6715 21.5834 3.076e-05 *** 

+ TPI     1    5.3000 26.509 -17.6954  8.7969  0.004861 **  

<none>                31.809 -13.1400                       

+ HL      1    0.5474 31.262 -10.1098  0.7704  0.384854     

+ Elev    1    0.1195 31.690  -9.4845  0.1660  0.685698     

+ Canopy  1    0.0011 31.808  -9.3129  0.0015  0.969483     

--- 

 

Step:  BIC=-27.67 

Tmin5 ~ SWI 

 

         Df Sum of Sq    RSS     BIC F value    Pr(>F)     

<none>                21.341 -27.672                       

+ Elev    1    0.9094 20.431 -25.846  1.9140    0.1737     

+ TPI     1    0.6417 20.699 -25.247  1.3331    0.2546     

+ Canopy  1    0.1280 21.213 -24.120  0.2595    0.6131     

+ HL      1    0.0009 21.340 -23.845  0.0018    0.9660     

- SWI     1   10.4684 31.809 -13.140 21.5834 3.076e-05 *** 

--- 

 

Final model summary 

Formula = Tmin5 ~ SWI 

 

Residuals: 

    Min      1Q  Median      3Q     Max  

-1.7331 -0.4013  0.1455  0.4669  1.3171  

 

Coefficients: 

            Estimate Std. Error t value Pr(>|t|)     

(Intercept)   6.3357     0.1564  40.521  < 2e-16 *** 

SWI          -0.7805     0.1680  -4.646 3.08e-05 *** 

--- 

 

Residual standard error: 0.6964 on 44 degrees of freedom 

Multiple R-squared:  0.3291, Adjusted R-squared:  0.3139  

F-statistic: 21.58 on 1 and 44 DF,  p-value: 3.076e-05 
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Table S16 List of species, their abbreviations and frequency in datasets with in-situ tempera-

tures and in independent dataset used for validation of topoclimatic maps. Nomenclature 

according to: Kubát, K., L. Hrouda, J. Chrtek, Z. Kaplan, J. Kirschner, and J. Štěpánek, editors. 

2002. Klíč ke květeně České republiky [Key to the flora of the Czech republic]. Academia, Praha. 

Species Abbreviation 

Frequncy: 
Temperature + 
vegetation 
dataset 
(n = 46) 

Frequency: 
Vegetation 
only 
dataset 
(n = 160) 

Acer campestre Acercamp 21 47 

Acer platanoides Acerplat 20 53 

Acer pseudoplatanus Acerpseu 28 70 

Actaea spicata Actaspic 3 23 

Adoxa moschatellina Adoxmosc 1 2 

Aegopodium podagraria Aegopoda 11 23 

Achillea millefolium agg. Achimill 0 10 

Ajuga reptans Ajugrept 2 5 

Alliaria petiolata Allipeti 9 47 

Anemone nemorosa Anemnemo 15 40 

Anthericum ramosum Anthramo 3 17 

Anthriscus sylvestris Anthsylv 5 18 

Arctium minus agg. Arctminu 1 3 

Asarum europaeum Asareuro 7 15 

Astragalus glycyphyllos Astrglyc 1 16 

Astrantia major Astrmajo 3 7 

Athyrium filix-femina Athyfili 1 11 

Avenella flexuosa Avenflex 3 19 

Betula pendula Betupend 1 4 

Brachypodium pinnatum Bracpinn 1 21 

Brachypodium sylvaticum Bracsylv 14 40 

Bromus benekenii Brombene 7 45 

Bromus erectus Bromerec 1 0 

Calamagrostis arundinacea Calaarun 15 74 

Calamagrostis epigejos Calaepig 5 17 

Campanula persicifolia Camppers 4 13 

Campanula rapunculoides Camprapu 6 1 

Campanula rapunculoides Camprapu 6 28 

Campanula rotundifolia Camprotu 2 6 

Cardaminopsis arenosa ssp. arenosa Cardaren 1 2 

Cardamine impatiens Cardimpa 3 10 

Carex brizoides Carebriz 1 2 

Carex digitata Caredigi 3 1 

Carex montana Caremont 3 6 

Carex muricata agg. Caremuri 1 17 

Carex species Carespec 1 2 
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Species Abbreviation 

Frequncy: 
Temperature + 
vegetation 
dataset 
(n = 46) 

Frequency: 
Vegetation 
only 
dataset 
(n = 160) 

Carex sylvatica Caresylv 4 12 

Carpinus betulus Carpbetu 27 41 

Cephalanthera rubra Cephrubr 1 0 

Cerastium lucorum Ceraluco 0 0 

Circaea lutetiana Circlute 2 2 

Cirsium arvense Cirsarve 0 2 

Convallaria majalis Convmaja 13 40 

Cornus species Cornspec 1 0 

Corylus avellana Coryavel 11 14 

Crataegus species Cratspec 18 27 

Dactylis glomerata Dactglom 3 20 

Dactylis polygama Dactpoly 6 26 

Daphne mezereum Daphmeze 2 6 

Dentaria bulbifera Dentbulb 1 0 

Dentaria enneaphyllos Dentenne 1 1 

Deschampsia cespitosa Desccesp 4 10 

Digitalis lutea Digilute 2 0 

Dryopteris carthusiana Dryocart 7 20 

Dryopteris dilatata Dryodila 4 15 

Dryopteris filix-mas Dryofili 11 38 

Elymus caninus Elymcani 2 21 

Epilobium montanum Epilmont 1 8 

Epipactis purpurata Epippurp 1 3 

Euonymus europaeus Euoneuro 5 4 

Euonymus europaeus Euoneuro 5 3 

Euphorbia dulcis Euphdulc 1 3 

Fagus sylvatica Fagusylv 23 58 

Fallopia convolvulus Fallconv 5 50 

Festuca gigantea Festgiga 8 24 

Festuca heterophylla Festhete 1 15 

Festuca ovina Festovin 4 13 

Festuca rubra agg. Festrubr 1 1 

Filipendula ulmaria Filiulma 1 2 

Fragaria moschata Fragmosc 10 20 

Fragaria vesca Fragvesc 3 21 

Frangula alnus Franalnu 1 1 

Fraxinus excelsior Fraxexce 38 112 

Galeopsis bifida Galebifi 4 1 

Galeobdolon luteum Galelute 13 26 

Galeopsis pubescens Galepube 3 1 

Galeopsis speciosa Galespec 1 7 
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Species Abbreviation 

Frequncy: 
Temperature + 
vegetation 
dataset 
(n = 46) 

Frequency: 
Vegetation 
only 
dataset 
(n = 160) 

Galeopsis tetrahit agg. Galetetr 12 60 

Galium aparine Galiapar 8 50 

Galium boreale Galibore 2 2 

Galium glaucum Galiglau 0 1 

Galium odoratum Galiodor 27 90 

Galium sylvaticum Galisylv 9 17 

Geranium robertianum Gerarobe 6 36 

Geum urbanum Geumurba 21 67 

Glechoma hederacea Glechede 1 1 

Hedera helix Hedeheli 4 7 

Hepatica nobilis Hepanobi 16 48 

Heracleum sphondylium Heraspho 1 2 

Hierochloe australis Hieraust 1 0 

Hieracium lachenalii Hierlach 2 7 

Hieracium murorum Hiermuro 4 29 

Hieracium sabaudum Hiersaba 3 2 

Hordelymus europaeus Hordeuro 8 31 

Hylotelephium maximum Hylomaxi 1 9 

Hypericum hirsutum Hypehirs 1 4 

Hypericum perforatum Hypeperf 3 20 

Chaerophyllum aromaticum Chaearom 2 6 

Chaerophyllum hirsutum Chaehirs 1 0 

Chaerophyllum temulum Chaetemu 8 45 

Chelidonium majus Chelmaju 1 2 

Impatiens noli-tangere Impanoli 5 23 

Impatiens parviflora Impaparv 40 138 

Juglans regia Juglregi 2 0 

Juncus effusus Junceffu 1 0 

Lamium maculatum Lamimacu 1 4 

Lapsana communis Lapscomm 2 13 

Lathyrus niger Lathnige 6 21 

Lathyrus pratensis Lathprat 1 0 

Lathyrus vernus Lathvern 14 46 

Ligustrum vulgare Liguvulg 1 2 

Lilium martagon Lilimart 8 15 

Lonicera xylosteum Lonixylo 8 9 

Lunaria rediviva Lunaredi 1 1 

Luzula luzuloides Luzuluzu 7 35 

Lychnis viscaria Lychvisc 1 7 

Lysimachia nummularia Lysinumm 3 6 

Maianthemum bifolium Maiabifo 5 19 
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Species Abbreviation 

Frequncy: 
Temperature + 
vegetation 
dataset 
(n = 46) 

Frequency: 
Vegetation 
only 
dataset 
(n = 160) 

Melampyrum pratense Melaprat 5 18 

Melittis melissophyllum Melimeli 2 11 

Melica nutans Melinuta 14 45 

Melica uniflora Meliunif 3 4 

Mentha arvensis Mentarve 1 1 

Mercurialis perennis Mercpere 22 71 

Mespilus germanica Mespgerm 1 0 

Milium effusum Milieffu 11 18 

Moehringia trinervia Moehtrin 14 56 

Molinia arundinacea Moliarun 1 1 

Mycelis muralis Mycemura 9 26 

Myosotis species Myosspec 1 0 

Oxalis acetosella Oxalacet 4 13 

Petasites albus Petaalbu 2 10 

Plantago major Planmajo 1 6 

Poa angustifolia Poaangu 3 5 

Poa nemoralis Poanemo 25 98 

Polygonatum multiflorum Polymult 7 22 

Polygonatum odoratum Polyodor 7 12 

Polygonatum verticillatum Polyvert 2 3 

Polypodium vulgare Polyvulg 1 0 

Polypodium vulgare Polyvulg 1 1 

Populus tremula Poputrem 3 9 

Prenanthes purpurea Prenpurp 3 7 

Primula elatior Primelat 1 0 

Primula veris Primveri 2 7 

Prunus avium Prunaviu 7 21 

Prunus spinosa Prunspin 3 15 

Prunella vulgaris Prunvulg 1 1 

Pulmonaria obscura Pulmobsc 20 47 

Pyrus communis Pyrucomm 2 4 

Quercus cerris Quercerr 1 0 

Quercus petraea Querpetr 34 81 

Ranunculus auricomus agg. Ranuauri 1 8 

Ranunculus lanuginosus Ranulanu 1 5 

Ranunculus repens Ranurepe 1 0 

Ribes uva-crispa Ribeuva 10 7 

Rosa canina agg. Rosacani 14 40 

Rosa gallica Rosagall 1 0 

Rubus caesius Rubucaes 1 0 

Rubus fruticosus agg. Rubufrut 11 53 
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Species Abbreviation 

Frequncy: 
Temperature + 
vegetation 
dataset 
(n = 46) 

Frequency: 
Vegetation 
only 
dataset 
(n = 160) 

Rubus idaeus Rubuidae 3 29 

Sambucus nigra Sambnigr 17 37 

Sambucus racemosa Sambrace 1 1 

Sanicula europaea Sanieuro 3 13 

Scrophularia nodosa Scronodo 6 27 

Senecio ovatus Seneovat 11 24 

Senecio viscosus Senevisc 1 3 

Serratula tinctoria Serrtinc 1 0 

Sorbus aria agg. Sorbaria 4 3 

Sorbus aucuparia Sorbaucu 15 52 

Stachys sylvatica Stacsylv 8 32 

Stellaria holostea Stelholo 20 67 

Stellaria media Stelmedi 2 9 

Stellaria neglecta Stelnegl 0 0 

Stellaria nemorum agg. Stelnemo 1 0 

Symphytum tuberosum agg. Symptube 0 4 

Tanacetum corymbosum Tanacory 8 42 

Taraxacum sect. Ruderalia Tarasect 2 4 

Tilia cordata Tilicord 14 18 

Tilia platyphyllos Tiliplat 4 4 

Torilis japonica Torijapo 2 10 

Ulmus glabra Ulmuglab 6 6 

Ulmus laevis Ulmulaev 1 1 

Urtica dioica Urtidioi 21 112 

Vaccinium myrtillus Vaccmyrt 1 13 

Veronica chamaedrys Verocham 7 30 

Veronica officinalis Verooffi 4 14 

Viburnum opulus Vibuopul 2 4 

Vicia dumetorum Vicidume 1 1 

Vicia sepium Vicisepi 1 14 

Vicia sylvatica Vicisylv 0 4 

Viola collina Violcoll 3 7 

Viola mirabilis Violmira 1 2 

Viola odorata Violodor 2 6 

Viola reichenbachiana Violreic 19 46 

Viola riviniana Violrivi 2 12 
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4.1 ABSTRACT 

Aim Species distributions along an environmental gradient are often not symmetric but 

skewed towards one end of the gradient. Various explanations for this skewness have 

been proposed but the patterns of niche asymmetry along extensive environmental 

gradients have been rarely explored. Here we tested three predictions of asymmetric 

abiotic stress limitation (AASL) hypothesis that predicts a steeper decrease in the 

probability of occurrence towards the more stressful end of a plant distributional range. 

Location Ladakh, arid Himalayas, where drought stress dominates in lower elevation, 

while the cold stress dominates in upper elevations. 

Methods Using data from 4062 plots (2640–6150 m a.s.l.), we explored the shapes of 

response curves of 395 vascular plant species through Huismann-Ollf-Fresco models. 

We compared the observed patterns of niche asymmetry along the elevational gradient 

with null models.  

Results Species with symmetric response curves (61.5%) prevailed at lower elevations, 

while species with left-skewed responses (36.2%) were significantly underrepresented 

up to 3750 m a.s.l. and occurred significantly more frequently at 5150–5450 m a.s.l. 

Right-skewed responses were rare (2.3%) along the whole gradient. The steepness of the 

response increased with elevation. Response types were found in similar proportions 

across different habitats and functional groups. 

Main conclusions Our results support the predictions of AASL hypothesis for cold 

limits, but not for dry limits. The low proportion of right-skewed responses over the 

entire gradient suggests an effective adaptation of the local flora to arid conditions, or 

sufficient opportunity to avoid drought stress through the presence of favourable 

habitat patches. The accumulation of skewed responses at high elevations likely reflects 

shared physiological limits of many steppe species, whose distribution abruptly ends at 

the transition between steppe and alpine zones. Cold therefore represents a stronger 

barrier to species distribution than drought.  

 

4.2 KEYWORDS 

drought stress, Himalaya, HOF model, low temperature stress, skewed response, species 

range limits, species response curve 
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4.3 INTRODUCTION 

Asymmetric responses of vascular plant species have been reported for various envi-

ronmental gradients (Oksanen & Minchin, 2002), but its causes are not fully understood 

(Austin, 2007). Various factors have been proposed to produce asymmetric responses, 

including physiological constraints and biotic interactions (Austin & Gaywood, 1994; 

Ettinger & HilleRisLambers, 2013). Recently, Normand et al. (2009) introduced the 

asymmetric abiotic stress limitation (AASL) hypothesis, predicting a steeper decrease in 

the probability of occurrence towards the physiologically more stressful ends of abiotic 

gradients. Some aspects of the AASL hypothesis have already been documented, e.g. a 

considerable proportion of species have been shown to respond asymmetrically to an 

abiotic gradient (Murphy et al., 2010; Suchrow & Jensen, 2010). However, such findings 

are not always accepted as a definite proof of the validity of AASL hypothesis (Boucher 

Lalonde et al., 2012). Moreover, several relevant issues still remain to be explored, for 

example, the distribution of asymmetric responses in relation to an abiotic stress 

gradient, the presumably increasing proportion of asymmetric responses with elevated 

abiotic stress, or the universality of AASL hypothesis predictions. 

Increasing evidence suggests that cold limits of vascular plants are determined by 

distinctly different factors than limits associated with warm areas (Sexton et al., 2009; 

Pellissier et al., 2013). While cold limits are believed to be primarily driven by abiotic 

factors (Ettinger et al., 2011; Butterfield, 2015), warm limits are thought to be shaped 

mostly by biotic factors, particularly competition (Meier et al., 2010; Wisz et al., 2013; 

but see Cahill et al., 2014). Therefore, the underlying cause of asymmetry in a species 

response to an environmental gradient could be explained by the varying strength of 

these factors. Effects of low temperature, including repeated damage by freezing and a 

short vegetation season, pose physiological constraints on plant growth, development 

and reproduction, resulting in direct climatic stress (Körner, 2003; Vetaas 2002). Despite 

an increasing understanding regarding the physiological drivers of cold limits in 

vascular plants (e.g. Li et al., 2008; Shi et al., 2008; Wiley & Helikker, 2012), there is a 

lack of studies focusing on the distributional patterns of entire species pools which 

could demonstrate whether there is a universal temperature threshold. Such an ap-

proach however can only be applied to data covering whole species ranges and, 

importantly, in a region where the vegetation is of the same physiognomy. This is 

because transitions between physiognomically different vegetation types naturally 

produce asymmetric distributional patterns (e.g. forest herbaceous species steeply 

decline at treeline, being bound to the specific forest microclimate; Doležal & Šrůtek, 

2002), thus obscuring the response related directly to the temperature decrease. 

Similar to cold stress, drought stress is also believed to affect geographic range lim-

its (Osmond et al., 1987). Despite its significance, the role of water availability in 

shaping species response curves remains speculative. The region of Ladakh provides a 
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unique opportunity to study species responses along prominent gradients of tempera-

ture and soil moisture, which are combined in a single elevational gradient. Lower 

elevations being dry and warm, while high elevations are cold and relatively moist, with 

the distribution of plant species reflecting trade-offs between drought and cold toler-

ance (Klimeš, 2003; Dvorský et al., 2011). Importantly, the elevational gradient in Ladakh 

accommodates the entire vertical range of most species there, including the highest 

known occurrences of vascular plants on Earth (Dvorský et al., 2015). Moreover, the 

upper limit of vegetation in Ladakh is determined climatically, not by physical barriers 

like permanent snowfields or glaciers. Species´ distributions thus stretch along their full 

climatic niches (Dvorský et al., 2016). Owing to the overall arid climate, all the vegeta-

tion zones are herbaceous such that species ranges are not influenced by transitions of 

physiognomically different vegetation types. Due to the very low vegetation cover, and 

consequently the marginal role of biotic interactions, the shapes of responses bear a 

strong abiotic signal. These characteristics of our study region allow us to filter out 

major confounding factors, providing unique insights into niche pattern along envi-

ronmental  gradients.  

Here, we used a large dataset of plant species occurrences to test three predictions 

of the AASL hypothesis (Fig. 1). We explored species response curves along a lengthy 

elevational gradient, starting in dry deserts around 2800 m a.s.l. and ending at the 

absolute elevational limit of vascular plants at 6150 m a.s.l. Based on the premise that 

both ends of the elevational gradient are similarly stressful to vascular plants (cold 

versus dry), we formulated and tested the following hypotheses: 

(1) The proportion of species with an asymmetric response increases towards both 

ends of the elevational gradient. 

(2) Species with a right-skewed response prevail at the dry end, and species with a 

left-skewed response prevail at the cold end of the elevational gradient. 

(3) Response curves are increasingly steeper towards both ends of the elevational 

gradient. 
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FIGURE 1  Schematic representation of species responses along an elevational gradient with 

different stressors at both ends predicted by AASL hypothesis. At lower elevations, the stress 

caused by drought prevails, while at higher elevations plant distribution is limited by low tempera-

ture: a) responses at lower elevations are right-skewed, symmetric in the middle and left-skewed at 

upper elevations; b) response interval (width of the steep side of the curve) contracts towards both 

ends of the gradient; c) proportion of species with right-skewed responses increases towards lower 

elevations and vice versa for species with left-skewed responses; d) proportion of species with a 

skewed response is lowest in the middle of the gradient. 

 

4.4 MATERIALS AND METHODS 

STUDY REGION  

Ladakh is part of the Transhimalayan region in India, Jammu and Kashmir state (Fig. 2). 

Due to its arid climate (ca. 100 mm yr-1), the vegetation is treeless except for isolated 

stands along glacial streams composed of low trees (Salix spp., Populus spp.) and tall 

shrubs (Hippophae rhamnoides, Myricaria elegans). The sporadic precipitation accom-

panied by intense evapotranspiration driven by relatively high summer temperatures 

results in drought stress being the most limiting abiotic factor at low elevations. At 

higher elevations, the water regime is more balanced due to the increase in precipita-

tion with elevation and the decrease in evapotranspiration, so that dry conditions are 

less intensive and low-temperature stress prevails as the dominant limiting factor. 

Therefore, the most suitable zone is situated approximately in the middle of the 

elevation gradient (4500–5000), where vegetation attains the highest species richness 

(Klimeš, 2003). Temperature decreases monotonically with elevation, although on a 
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local scale the pattern can be influenced by slope, aspect and microtopography (Scher-

rer & Körner, 2011). The adiabatic lapse rate of atmospheric temperature in this arid 

region is about 0.8 K per 100 m (Fig. 2). The lowest elevations are semideserts. Cold 

steppe stretches approximately from 3700 up to 5400 m a.s.l., thus represents the most 

widespread vegetation type (Dvorský et al., 2011). High elevations host relatively diverse 

subnival vegetation (Dvorský et al., 2015). Brackish and rarely fresh-water wetlands host 

azonal vegetation, together with Kobresia grasslands and salt marshes.  

 

 

FIGURE 2  Distribution of vegetation plots and in situ measured climate in the study region in 

Ladakh, NW Himalayas. Floristic data were collected in 4,150 plots (100×100 m, black dots) and 

climate measured at 36 sites (red dots) between 2013 and 2014. Histogram on the left side shows 

the frequency of vegetation plots within respective elevational bands. Mean air temperature of the 

growing season decreases with elevation (Pearson’s r = -0.96), while mean soil moisture increases 

(Pearson’s r = 0.49; graphs on the right side). The trend lines were fitted with GAM and shaded 

regions represent 95% confidence intervals. Background map is based on SRTM 

(http://www2.jpl.nasa.gov/srtm/) and OpenStreetMap data. 

CLIMATIC GRADIENTS  

We explored the relationship between elevation and climate to test our assumption that 

elevation is a valid proxy for drought and low-temperature stress. For this purpose, we 

compared high-resolution interpolated climate data set CHELSA (Karger et al., 2016) 

and direct field measurements of soil moisture and ground temperature performed with 

TMS3 data loggers (TOMST, Czech Republic, www.tomst.cz/tms). We extracted mean 

annual temperature and precipitation values of CHELSA grids for each plot location. 

http://www.tomst.cz/tms
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Additionally, average soil moisture and ground temperature (15 cm above ground) 

during the vegetation season were obtained from field measurements taken by 36 TMS3 

units, covering elevational gradient from 3070 to 6150 m a.s.l., recording in 15 minute 

intervals between August 2013 and September 2014 (Fig. 2). To explore the relationships 

between climatic variables and elevation, we calculated their linear dependence 

(Pearson’s r) and rank correlation (Spearman’s rho). 

SPECIES RESPONSES ALONG ELEVATIONAL GRADI ENT  

Species distributions along the elevation gradient were derived from 95,812 floristic 

records collected from 1997–2006 at 4,062 localities (each 100 × 100 m) over the entire 

Ladakh region (Fig. 2). The sampled area is ca. 117,000 km2, the vertical range of floristic 

records begins at 2640 m a.s.l. (Suru Region in the northwest part of Ladakh) and 

reaches 6150 m a.s.l. (Changthang Region in east Ladakh). As many as 1395 taxa of 

vascular plants have been recorded (Klimeš & Dickoré, 2006). To reliably quantify shape 

of species response curves, we analyzed only species with more than 30 occurrences in 

our dataset, and further excluded: 1) Synanthropic and tree species, because their 

distribution is determined by human activities, and 2) Aquatic plants, because their 

distribution reflects the patchy distribution of their habitats.  

To quantify species responses along the elevation gradient, we used Huismann-Ollf-

Fresco (HOF) hierarchic regression models introduced by Huisman et al. (1993) and 

implemented in the R package `eHOF‘ (Jansen & Oksanen, 2013). To test the symmetry 

of the response, we limited the possible model types to unimodal shapes (types IV and 

V) with model type I (flat response) to control for species with random patterns. To 

select between the models, we used the model with better fit according to the small-

sample-size corrected version of Akaike information criterion (AICc). To increase 

robustness of the selection, we repeated the model selection 50 times for each species, 

each time on a different bootstrapped sample of the plots. We used bootstrap sampling 

with replacement keeping the original frequency of the focal species (Jansen & Oksanen, 

2013). Finally, we selected the HOF model type with the most frequent best fit among 

the bootstrapped samples.  

From the resulting species response curves, we calculated three niche parameters 

for each species: optimum as the position of the species response maximum; central 

niche as the part of the gradient where the species response exceeds e-0.5 times the 

species response in the optimum, this corresponds to 1 SD for the Gaussian curve 

(Heegaard, 2002); response interval as the part of the gradient between the optimum 

and the closer central niche border (cf. Normand et al., 2009). To avoid a bias caused by 

truncated lower elevation limit, we eliminated all species where their central niche was 

overlapping with elevations below 2800 m a.s.l., and we avoided interpretation of the 

lower end of the gradient (below 3000 m a.s.l.). A different approach was applied to the 

upper end of the gradient, since the upper limit of the study corresponds to the current 

https://en.wikipedia.org/wiki/Akaike_information_criterion
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global limit for vascular plants (Dvorský et al., 2015). To reflect this and to stabilize the 

response curves, we supplemented the vegetation matrix with 20 artificial plots contain-

ing no species, evenly distributed at elevations between 6150 and 6500 m a.s.l. The 

application of different selection rules described above resulted in a set of 395 species, 

on which we based all presented results. 

STATISTICAL ANALYSIS  

We tested the independence between the species central niche position on the gradient 

and its response shape with the use of a null model. The null model simulated a 

situation where the species response type distribution along the gradient is independent 

of the central niche position, but keeping the same overall proportion of response types. 

Therefore, we permuted response types of the species (lef skewed, right skewed, 

symmetric), while keeping their central niche range, and for each position along the 

gradient (25 m altitudinal intervals) we calculated proportion of species response types. 

Species were considered present at a particular elevation if their central niche over-

lapped with that elevation. We repeated this procedure 10,000 times and calculated 95% 

and 99% permutation confidence intervals and compared them with observed response 

type proportions. This procedure generates confidence intervals that reflect an unbal-

anced species-pool along the gradient and autocorrelation caused by overlapping 

species ranges. 

To test our third hypothesis, we analyzed the pattern of response intervals along the 

gradient. To control for geometric constraints (Colwell & Lees, 2000), we used a 

bounded null model, where central niche positions were randomly shifted within the 

gradient limits applied in our study. Next, using 10,000 permutations we calculated 

median response intervals of species present at each position along the gradient with 

interval of 25 m. Finally we calculated 95% and 99% confidence intervals and compared 

them to observed median response interval values along the gradient. 

SPECIES GROUPS  

To test if species responses differ among species with different properties, we classified 

them by their moisture demands and functional group. Three classes of species accord-

ing to their moisture demand were recognized with regard to their prevailing habitat of 

occurrence: 1) dry (semideserts, steppes); 2) mesic (alpine grasslands and meadows, 

screes, subnival zone); and 3) moist (wetlands). Further, we differentiated five function-

al groups: 1) graminoids; 2) forbs; 3) tall shrubs (>2 m); 4) low shrubs and subshrubs; and 

5) ferns and fern allies. Finally, we tested the differences in the proportions of the 

particular response types among these species groups using chi-square tests; only 

groups with more than two species were considered.  
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4.5 RESULTS 

Temperature linearly decreased with increasing elevation (CHELSA mean annual 

temperature: Pearson’s r = -0.95; Spearman’s rho = -0.96 and field measurement of 

mean temperature during vegetation season: r = -0.96; rho = -0.96; Fig. 2). Water 

availability correlated with elevation moderately (CHELSA mean annual precipitation: r 

= 0.39; rho = 0.43 and field measurement of mean soil moisture during vegetation 

season: r = 0.49; rho = 0.54; Fig. 2). 

We fitted the HOF models for 395 vascular plant species (Table 1). All modeled spe-

cies had a distinct elevational optimum (Table 1). Most species (61.5%) displayed a 

symmetric response (HOF model type IV). Among species with asymmetric responses 

(HOF model type V), right-skewed responses were rare (2.3%), while left-skewed 

responses prevailed (36.2%).  

 

TABLE 1  Response curve types of vascular plant species in Ladakh, India. Responses to 

elevational gradient of 395 species were determined by HOF models. Proportion of 

response curve types within respective habitat types and functional groups is shown. 

 Left-skewed  Symmetric  Right-skewed  Total 

 n %  n %  n %  n % 

 143 36.2  243 61.5  9 2.3  395 100.0 

Habitat type                    

Semideserts 4 30.8  8 61.5  1 7.7  13 3.3 

Steppes 47 41.2  65 57.0  2 1.8  114 28.9 

Grasslands 51 38.1  83 61.9  0 0.0  134 33.9 

Screes 21 36.2  35 60.3  2 3.4  58 14.7 

Subnival 7 31.8  13 59.1  2 9.1  22 5.6 

Wetlands 13 24.1  39 72.2  2 3.7  54 13.7 

Functional group                    

Graminoids 29 39.2  43 58.1  2 2.7  74 18.7 

Forbs 99 34.4  184 63.9  5 1.7  288 72.9 

Shrubs 0 0.0  2 100.0  0 0.0  2 0.5 

Dwarf shrubs 15 51.7  13 44.8  1 3.4  29 7.3 

Ferns, fern allies 0 0.0  1 50.0  1 50.0  2 0.5 
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 The proportion of response curve types was not constant along the elevational 

gradient (Fig. 3). While asymmetric right-skewed responses were rare along the whole 

elevational gradient with no clear tendency (Fig. 3a), symmetric response curves 

prevailed at lower elevations, escaping the upper 95% confidence interval up to 3800 m 

a.s.l., and the lower 95% confidence interval between 5250 and 5400 m a.s.l. (Fig. 3b). 

Conversely, asymmetric left-skewed responses accumulated at higher elevations from 

4775 to 5400 m a.s.l., while being underrepresented below 3750 m a.s.l. (Fig. 3c).  

 

 

Figure 3 Proportion of species with (a) right-skewed; (b) symmetric; and (c) left-skewed response 

types along the elevation gradient. The proportion of left-skewed responses increases almost 

monotonically between 3000 and 5400 m a.s.l., and is significantly underrepresented at lower 

elevations up to 3750 m a.s.l. and overrepresented at high elevations (5150 – 5450 m a.s.l.). Right-

skewed responses are rare along the whole gradient and show no departure from random expecta-

tion. Symmetric responses are significantly overrepresented at lower elevations between 3000 and 

3750 m a.s.l., and their proportion decreases with elevation. The unbroken line shows the propor-

tion of species which have their central niche at a given elevation (sampled in 25 m intervals), 

shaded areas represent 95% and 99% permutation interval of the null model simulating random 

distribution of response types along an elevation gradient with the same overall proportions. CI, 

confidence interval. 
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 Frequency of the response curve types differed neither among species groups 

defined by moisture demands (Chi-sq. = 4.33, p = 0.36), nor among functional groups 

(Chi-sq. = 4.63, p = 0.33).  

Response interval generally decreased with increasing elevation, and was signifi-

cantly wider below 3800 m a.s.l., and significantly narrower above 4750 m a.s.l. (Fig. 4). 

 

 

Figure 4 Response interval decreases with increasing elevation. The line shows the median 

response interval of species which have their central niche at a particular elevation and shading 

shows confidence interval of the null model, where the position of each species was shifted 

randomly along the elevational gradient. The response interval is the distance between optimum 

and the closer central niche border, the narrower the response interval, the steeper the decrease of 

the probability of species occurrence along the gradient. 

 

4.6 DISCUSSION 

Over one third of species showed an asymmetric response to the elevational gradient. In 

fact, this is a conservative estimate with the real proportion probably being higher (due 

to AICc penalization of HOF model V, which needs one parameter extra compared to 

model IV). Most of these species had a left-skewed response, meaning that their 

probability of occurrence decreased faster towards their cold limit. The proportion of 

the left-skewed responses increased monotonically between 3000 and 5400 m a.s.l. 

Moreover, the response interval was shortening with increasing elevation, therefore 

response curves were steeper towards species cold limits. On the other hand, species 
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with right-skewed responses occurred infrequently along the whole gradient and 

showed no departure from a random distribution. These findings provide evidence of 

increasing limitation towards the cold end of species distributions, while no distinct 

limitation towards lower elevations (drought) occurred. Some studies have already 

reported a significant proportion of species with steeper responses towards their cold 

limits (e.g. Normand et al., 2009; Murphy et al., 2010), concluding that the steeper side 

in asymmetric response curves indicates the direction of the stronger limiting abiotic 

factor. In our study, however, we also documented an increasing proportion of asym-

metric responses as well as an increasing steepness of responses with increasing 

elevation, thus supporting all crucial aspects of AASL hypothesis. 

Our findings suggest that the skewness of a species response curve may depend on 

the position of its optimum relative to gradient extremes (see also Rydgren et al., 2003). 

Climatic extremes, more frequently closer to gradient ends, are probably responsible for 

an abrupt decrease in the probability of occurrence (Zimmermann et al., 2009). Vetaas 

(2002), for example, demonstrated that extreme cold temperature sets an absolute 

boundary for survival, while warm temperature does not. Hence, periodic bad years 

associated with irregular recruitment and a greater likelihood of extinction events may 

be decisive for the dynamics of marginal populations, causing - in the long run - the 

asymmetric pattern of distribution. Extreme climatic events during sensitive life stages 

or vulnerable phenologic phases should therefore be considered decisive factors setting 

species range limits (Kollas et al., 2014; Doležal et al., 2016). The strong limitation by low 

temperatures found in our study is in agreement with Butterfield (2015), who reported 

increasing environmental filtering at the cold end of climatic gradient, with frost having 

the strongest effect. This could also explain the underrepresentation of left-skewed 

responses below 3750 m a.s.l. in our study region, where frost practically does not occur 

during growing season.  

Normand et al. (2009) reported a quarter of species with a steep decline towards 

lower water balance, suggesting the importance of drought stress. However, we did not 

observe such an obvious role of drought. There are two possible explanations why we 

did not detect strong limitation towards dry conditions. First, temperature and soil 

moisture differ in their spatial variability. While temperature varies smoothly in space, 

the distribution of dry and moist habitats is patchy. Plants therefore cannot avoid low 

ambient temperature at high elevations but can adjust to the spatially variable soil 

moisture at low elevations (Fig. 2). Although Scherrer & Körner (2011) demonstrated 

that the ruggedness of the alpine terrain produces substantial variation in mean 

temperature among micro-habitats,it is the low temperature extremes, that cannot be 

avoided. On the other hand, plants at lower elevations might avoid excessive drought by 

preferring relatively moist habitats along glacier streams, in terrain depressions, spring 

areas or at valley bottoms). As a result, their probability of occurrence declines more 

gradually towards the dry end of the elevational gradient. For example, Waldheimia 
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tridactylites is almost ubiquitous in the subnival zone, but restricted to gravel bars 

along streams at lower elevations. In other words, the changes in soil moisture with 

elevation are not significant enough to cause asymmetry in species response. Second, 

most species growing in Ladakh have evolved in Central Asia (zonal steppe species) or 

Tibet (alpine steppe and subnival species; Dickoré, 1995), where palaeoclimatic records 

show that these regions have always been arid (e.g. Tang et al., 2000). Hence, the plant 

species in Ladakh seem to be generally well adapted to dry conditions and therefore 

their individual reaction to increasing drought stress is gradual. Indeed, many species 

growing in Ladakh have extremely long roots (Klimešová et al., 2011) and are thus 

decoupled from drought stress by their ability to reach deep soil horizons. A similar 

effect was observed by Benavides et al. (2013), who found that the abundance of juve-

niles of Pinus sylvestris, which are more sensitive to drought stress due to their short 

roots, was skewed towards higher elevations compared to adults with deep roots. 

Nevertheless, the lack of right-skewed responses at lower elevations does not exclude 

drought stress as a possible range-limit determinant, but does suggest that temperature 

limitation is still the dominant factor even at these elevations. Despite the frost-free 

period lasting more than six months, the low sum of growing degree days or occasional 

freezing during winter can limit distribution of many sensitive species. 

Some studies stressed the importance of biotic interactions in producing skewed 

responses (Austin & Smith, 1989). However, in our study region at least, the above-

ground competition is negligible due to sparse vegetation cover. To some extent, 

livestock grazing could affect species distribution (Namgail et al., 2012), but we do not 

expect a strong elevational gradient in grazing pressure; nomadic shepherds utilize the 

whole landscape. Hence, we conclude that niche asymmetry could arise merely by two 

opposing abiotic stress gradients with differing effect strengths. 

The fact that we found an accumulation of species with left-skewed responses at 

5150–5450 m a.s.l. probably indicates a shared physiological response to low tempera-

ture. This elevation is the point where zonal steppe vegetation changes into true alpine 

vegetation (Dvorský et al., 2015), and where widespread steppe species, often tall 

graminoids and subshrubs, completely disappear. Although we found no evidence that 

the proportion of response types differed among habitats or functional groups, we could 

identify a group of species which responded in a similar way, thus highlighting the 

existence of a threshold elevation/temperature, which naturally delimits one vegetation 

zone from another in an otherwise unchanged relief. 

In conclusion, we highlight the strong influence of low temperature in determining 

species range limits. The prevailing gradual decline of the probability of occurrence 

towards dry conditions suggests that drought is a less restrictive determinant of range 

limits than cold. Contrary to low temperature, most species can either effectively adapt 

to drought, or avoid drought stress by preferring places with improved water balance. 
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Our results support the predictions of the AASL hypothesis that the steeper side of a 

response curve points to the end of a gradient particularly stressful to a species, and 

that the species growing closer to the more stressful extremes of the gradient have 

steeper responses. 
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5.1 ABSTRACT 

Aim  Rapoport´s elevational rule predicts that species’ elevational range size 

increase with increasing elevation. However, this rule has been contradicted and its 

testing was often associated with null models artefacts. Here we explored the elevation-

al range sizes of 781 vascular plants species in NW Himalayas and separated underlying 

biological gradients from artefacts caused by the truncation of the elevational gradient 

and a miss-specified null model. To explore posible climatic drivers of elevational range 

size, we also assessed the relationship between in-situ measured climatic variables and 

range size patterns. 

Location  Northwest Himalaya, Ladakh, India (2650–6150 m a.s.l.). 

Time period 1997–2015. 

Major taxa studied Vascular plants. 

Methods  We used a spatially explicit dataset of 102999 species occurrences collect-

ed recently in Ladakh and air temperature data collected in-situ with TMS 

microclimatic dataloggers. To summarize range size distribution along the elevational 

gradient, we used Stevens and bin methods in parallel, because both were used to 

document Rapoport’s rule. To compare observed patterns to the random expectation 

accounting for geometric constrains of the geographical domain and inherent diversity 

gradient, we constructed a null model assuming no dependence between range size and 

its position along elevational gradient. 

Results  We found no systematic trend in species range size distribution when an 

appropriate null model was used. Seasonal and diurnal temperature range did not 

change along the elevational gradient but average daily minimum temperature of the 

coldest month decreased with elevation. 

Main conclusions Our results contradict Rapoport´s elevational rule, and we argue 

that the often-described patterns supporting this rule may be statistical artefacts caused 

by an inappropriate null model. Since climate-based hypotheses on range-size drivers 

gained no direct support in our study, random range sizes imply species-specific drivers 

of range size variation along elevational gradients. 

 

Keywords: Climatic Variability Hypothesis, cold desert, diurnal temperature range, 

elevational gradient, Rapoport´s rule, species distribution, species range size, tempera-

ture variability, TMS dataloggers 
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5.2 INTRODUCTION 

As broad-scale diversity patterns are co-determined by species´ distributional range 

sizes, the examination of factors involved in driving distributional ranges plays an 

important role in ecological theory. Mountains are particularly remarkable for the 

exceptional biodiversity they support, which is estimated as one-third of all terrestrial 

species (Körner, 2004). Understanding the processes shaping species´ elevational range 

sizes can therefore provide insights into the mechanisms influencing the distribution of 

global biodiversity.     

Rapoport´s elevational rule, an extension of Rapoport’s latitudinal rule (Stevens, 

1989), posits that species´ range sizes increase with elevation (Stevens, 1992). The 

rationale behind his prediction is that climatic variability increases with elevation, so 

that species inhabiting more elevated zones are ultimately selected for broader climatic 

tolerance, which in turn enables them to be spread over larger areas and a broader 

elevational extent. To date, this is the most commonly-accepted mechanistic explana-

tion of the evolution of range sizes and it is known as the Climatic Variability 

Hypothesis (CVH): “the more predictable the environment, the smaller the change in that 

environment needs to be to serve as an immediate or long-term barrier to dispersal” 

(Janzen, 1967). Its logic is appealing and the pattern of increasing range size with 

elevation has been documented for various taxonomic groups (e.g. Patterson, Pacheco, 

& Solari, 1996; Fleishman, Austin, & Weiss, 1998; Sanders, 2002; Chatzaki, Lymberakis, 

Markakis, & Mylonas, 2005; Hausdorf, 2006; Beketov, 2009; Kwon, Kim, & Chun, 2014). 

On the other hand, a multitude of studies failed to find support for Rapoport´s rule (e.g. 

Fu, Wu, Wang, Lei, & Chen, 2004; Bhattarai & Vetaas, 2006; Lee, Chun, Song, & Cho, 

2013). The debate over such discrepancies eventually led to the conclusion that 

Rapoport´s rule was a local phenomenon (Rohde, 1996; Gaston et al. 1998; Gaston & 

Chown, 1999a) with inconsistent predictive value for understanding patterns in species 

range size (McCain & Knight, 2013). The rule has since been more often referred to as 

just an effect (Lawton, 1999), which may, or may not be exhibited in specific situations. 

In addition, the original statistical approach to evaluate Rapoport´s rule (Stevens´ 

method) was strongly criticized (Colwell & Hurtt, 1994; Gaston et al. 1998; Colwell & 

Lees, 2000) and other methods were therefore developed (Letcher & Harvey 1994; Lyons 

& Willig, 1997; Ribas & Schoereder, 2006). The fact that results may depend on the 

computation method, data quality, scale or taxonomic group is now widely agreed on. 

In particular, the presence of geographic barriers, truncating the potential range size, 

was identified as the main confusing factor, and this was even able to reverse the 

patterns of the underlying biological gradients (Šizling, Storch, & Keil, 2009). 

Despite the controversy around Rapoport´s rule, there still is a need to identify the 

species-specific controls of range size. Experiments with individual species can bring 

insights into fundamental niches (e.g. Gaston & Chown 1999b; Calosi et al., 2010; 
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Taschler & Neuner, 2004; Körner et al., 2019), which can be readily related to a species’ 

actual distribution. Such studies are laborious to conduct and are hence too rare to 

cover a significant number of taxa. Hence, the climate-based hypotheses for variation in 

range size provide a promising theoretical background because they advocate for a 

direct testing of the link between species range sizes and the climatic variability or 

extremes within species range (Pither, 2003; Pintor, Schwarzkopf, & Krockenberger, 

2015; Chan et al., 2016). Importantly, they may provide a realistic explanation even in 

situations when Rapoport´s rule has no explanatory power (Pintor et al., 2015). There-

fore, it is not the particular pattern of range size distribution that is of ecological 

relevance; what are crucial are the underlying mechanisms which enable meaningful 

generalizations and predictions.   

In this paper, we analyzed the distribution of species elevational range sizes in 

Ladakh, NW Himalaya (ca. 50,000 km2, elevational range 2650–6150 m a.s.l.). We used a 

dataset of 102999 species occurrences recorded between 1997 and 2015, providing 

spatially explicit information about species distribution combined with temperature 

data collected in-situ with 59 microclimatic dataloggers. Here we 1) describe the pattern 

of realized distribution of species elevational range sizes; 2) separate underlying 

biological gradients from artefacts caused by the truncation of elevational gradient and 

the statistical method used as a null model; 3) explore the temperature patterns along 

elevational gradient. 

 

5.3 METHODS 

STUDY REGION  

We studied the elevational ranges of vascular plant species occurring in the Ladakh 

region, NW India (for a map, see Figure 2 in Dvorský, Macek, Kopecký, Wild, & Doležal, 

2017). The  area studied covers ca 50,000 km2, spanning over almost the complete extent 

of Ladakh territory under Indian administration. The lowest elevations at the bottoms 

of the largest river valleys (Upper Indus, Shyok, and their tributaries) go down to 2650 

m. Several peaks reach elevation above 7000 m, but the highest known plant occurrence 

in the region is at 6150 m (Dvorský et al., 2015), which is not far below the globally 

highest record of vascular plants at 6400 m on the slopes of Mt. Everest, observed, 

however, almost a century ago (Dentant, 2018). The upper elevational limit of vascular 

plants in Ladakh is directly set by climatic factors, not by the lack of habitable places 

(Dvorský et al., 2016).  

The climate of Ladakh is determined by the high average elevation of the region and 

low precipitation caused by a strong rain shadow effect; the main Himalayan Range 
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blocks most of summer monsoon coming from the south, while Hindu Kush and 

Karakoram block most of winter snowfall borne by midlatitude westerlies. Therefore, 

the climate is predominantly arid  with 50–300 mm annual precipitation. The aridity is 

most pronounced at the lowest elevations which experience the highest potential 

evaporation rates. With increasing elevation, more water becomes available for plants as 

a result of increasing precipitation and decreasing evaporation (Dvorský et al. 2017). 

However, above ca. 5000 m, most precipitation falls as snow, though this usually melts 

the same day (Doležal et al. 2016). The mean annual temperature is about 5°C as 

reported from Leh (3600 m) and this drops with an adiabatic lapse rate of about -8 °C 

km-1. The maximum temperature may reach above 30°C, the minimum as low as -40°C, 

and a great diurnal variation is a typical feature. Freezing air temperatures occur 

throughout the whole region, with freezing minima occuring regularly year-round 

above ca 5500m.  

Following the climatic gradients, the vegetation zonation starts with deserts and 

semideserts at lower elevations, succeeded by alpine steppes as the zonal and most 

widespread vegetation exists between approximately 3700 and 5400 m, and reaches the 

upper limit in the subnival zone (Hartmann, 2009; Dvorský, Doležal, de Bello, Klimešo-

vá, & Klimeš, 2011; Dvorský et al., 2015). Azonal vegetation includes brackish and 

occasional fresh-water wetlands. The vegetation of river banks and river beds often 

supports large shrub and tree species, which are otherwise absent from the region. 

Synanthropic ruderal vegetation includes plant assemblages developed on eutrophi-

cated ground by stables of domestic animals and nearby villages; weedy assemblages 

grow in irrigated fields up to the limits of cultivation at 4700 m.  

DATA SOURCES  

We compiled species range data from 4,062 sites (each 100 × 100 m) sampled by the late 

L. Klimeš during his systematic floristic exploration of Ladakh between 1997 and 2006. 

This exceptional dataset contains 95,812 species occurences, and we added an additional 

7,187 species occurrences recorded between 2008 and 2015 (Fig. 1). The joined dataset 

contains information about 1395 taxa of vascular plants. However, we excluded all 

cultivated species, taxonomically unresolved observations and infrequent species with 

less than 10 observations, from the analyses. This filtering resulted in 781 species 

analysed in this study. 
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Figure 1 Histograms 

showing (a) terrestrial area 

distribution within the 

study area as a fraction of 

total area, excluding 

glaciated areas and large 

water bodies and (b) 

sampling effort expressed as 

a number of unique sites 

with plant occurrence 

records used to calculate 

elevation ranges of 781 

species of vascular plants. 

 

 

 

 

 

 

The elevational gradient in our study region is truncated. While its upper boundary 

is set by climate, the lower boundary is defined by the geographic extent of the area, 

and is thus artificial. Therefore, we distinguish between local and regional elevational 

ranges. The local elevational range is defined by the minimum and maximum elevation 

of species occurrence contained in the dataset. Regional elevational range size refers to 

species range in a wider region at comparable latitudes, extracted from the Flora of 

Pakistan (https://www.tropicos.org/Project/Pakistan), the Flora of China 

(www.eFloras.org), the Flora of Nanga Parbat (Dickoré & Nüsser, 2000), The Himalayan 

Uplands Plant database (Dickoré, 2011) and the Global Biodiversity Information Facility 

(GBIF, https://www.gbif.org). Records from the GBIF were rounded to nearest hundred. 

Unreliable outliers based on historical records (i.e. proclaimed elevation more than 

1000 m apart from other records) were not taken into account and the next reliable 

occurrence extreme was used instead.  

 Depending on the phytogeographical affinities, species reached their minima and 

maxima in different parts within this wider region. Range maxima, if not recorded from 

Ladakh (which, interestingly, mostly are - about 84 %), come especially from the 

Central Himalayas and Tibet (for Himalayan and Tibetan elements), or from Karakoram 

and western Tibet (Central Asian or Pamiran elements). Range minima are, however, 

disputable. Many Eurasian or Central Asian elements occuring in Ladakh may descend 

close to sea level in other parts of their distributional range, unrealistically inflating 

their elevational range under very different climatic conditions. Hence the need for a 

practical, though artificial delimitation of the Ladakh´s wider region, with macroclimate 

https://www.gbif.org/
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as similar as possible. Here, we took into account records from Pakistan, Afghanistan 

and Tajikistan (most often West Himalayan, Central Asian, Pamiran, or Eurasian 

elements), southwestern Xinjiang and western Tibet (Tibetan elements), or Himachal 

Pradesh, Uttarakhand or southern Tibet (Himalayan elements).  

DATA ANALYSES  

To summarize range size distribution along elevational gradient, we used two metrics 

often used to document Rapoport’s rule: 1) the average range size of all species spanning 

over focal elevational band (“Stevens method”); 2) the average range size of species 

having their range mid-point in the focal elevational band (“bin method”). Here we 

divided the whole range of elevations coverd by our field data from Ladakh (2650 - 

6150 m) into 20 equal intervals.  

To compare observed patterns to the random expectation based on the geometric 

constrains of the geographical domain, we constructed the null model assuming no 

dependence between range size and its position along an elevational gradient and 

accounting for the inherent diversity gradient (Šizling et al. 2009). To construct 1000 

realizations of the null model, we randomized species positions along the elevation 

gradient. For each species in each simulation run, we randomly sampled its upper range 

limit from the empirical cummulative distribution function of the upper range limits 

observed in our dataset to account for the decline of species richness with elevation. We 

used upper limits in randomization because upper limits in our dataset are not affected 

by range truncation (Fig. 1) and because these species are more strictly limited at their 

upper elevational limit (Dvorský et al. 2017). Next, we calculated the lower range limit 

by subtracting the range size from the chosen upper range limit of the sampled species. 

To calculate the simulated local (truncated) range, we restricting the simulated range by 

domain limits. Because the observed local ranges are also affected by incomplete 

sampling and local absence in part of the regional species range, we adjusted simulated 

local ranges according to the equation:  

adjLRi = simLRi * ∑(simLR)/∑(obsLR) 

where adjLRi is the adjusted local range of species i; simLRi is the simulated local 

range of species i; ∑(simLR) is the sum of simulated local range over all species; and 

∑(obsLR) is the sum of observed local range sizes over all species. Finally, we calculated 

the mean and 95% confidence intervals of simulated range size distribution metrics at 

each elevation band. 

CLIMATE VARIABILITY  AND EXTREMES  

Weather stations in Ladakh are scarce and no station operates above 3660 m. Therefore, 

to assess climate variability and temperature extremes along the whole elevational 

gradient relevant for our study, we performed our own measurements using 59 
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TMS3microclimatic dataloggers, recording the air temperature at a height of 0.15 m in 

15 min intervals (Wild et al., 2019). This measurement network covered the full range of 

elevations holding vascular plants in Ladakh (from 3070 m to 6150 m). Here we used 

annual data from August 2013 to August 2014 to calculate the minimum temperature as 

the average of the daily minimum temperatures of the coldest month (Pither 2003), the 

diurnal temperature range (°C) as the average difference between daily maxima and 

daily minima and the seasonal range (°C) as the difference between the average monthly 

maximum temperature of the warmest month and the average monthly minimum 

temperature of the coldest month (Chan et al. 2016). Pearson’s coefficient was used to 

test whether climate variability and minimum temperature are associated with eleva-

tion.  

5.4 RESULTS  

SPECIES ELE VATIONAL RANGES  

Species´ regional elevational range sizes varied between 415 m and 5085 m, with an 

average range size of 2437 m (Fig. 2). Local range sizes realized within Ladakh varied 

between 220 m and 2970 m with an average range size of 1563 m (Fig. 2). Regional 

minima were lower than local minima for most of the species (89.9%) and more than 

half of the species (56.8%) had their lower regional range limit below the lowest 

elevations of the whole Ladakh (Fig. 2). In contrast, only 15.9% species were ever 

spotted at higher elevations than were recorded in Ladakh and only two species (0.26%) 

were reported from elevations higher than the highest vascular plant occurrence 

currently known in Ladakh. 
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Figure 2 Range distribution for 781 vascular plant species occuring in Ladakh sorted 

according their upper elevational limit. Species local ranges in Ladakh are drawn by dark 

blue lines, regional ranges by light blue lines and shaded area represents elevations 

existing in Ladakh, setting the domain limit for our null models. While local upper range 

limits usually represent regional upper range limits, most local ranges are truncated at 

their lower elevational limit. This geometric constraint results in an apparent increase of 

range size with elevation as predicted by Rapoport´s rule, however, this artificial pattern 

disappears when we look at species elevational ranges in the whole region. 

RANGE SIZE DISTRIBUTI ON  

The average regional range size examined by Stevens’ method monotonously decreased 

with increasing elevation (Fig. 3). This general pattern was expected under the null 

model, slight deviations from the null model confidence interval were found for 

elevations < 3500 m, where range sizes were narrower, and for elevations 4000–4750 m, 

where range sizes were broader than expected. Local range sizes were considerably 

smaller than regional range sizes due to their truncation at the domain boundary (Fig. 

3). The observed relation between average range size and elevation was decreasing 

between 2650 and 3500 m, then increasing up to 5500 m and then decreasing again 
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towards 6150 m. This pattern was well reproduced by the null model, with significant 

deviations only at the lowest elevations (<3000 m) and between 4500 m and 5250 m. 

 

Figure 3 Range size distribution calculated with Stevens’ method generally follows the 

prediction from the null model. Open circles and the gray-filled area represent observed 

average range size of species present in particular elevation belt based on regional data 

from Ladakh and adjacent regions and 95% conf. int. from the respective null model. Full 

blue circles and blue area represents average range size of species present in particular 

elevation belt based on local data from Ladakh and 95% conf. int. of the null model. 

Difference between the local and regional range sizes is caused by range truncation, local 

absence in part of the gradient and by possible range size underestimation due to incom-

plete sampling. 

 

Range size examined by ‘bin’ methods resulted in decreasing range size with eleva-

tion for regional range and unimodal relation for local ranges (Fig. 4). These shapes 

were expected by random chance; regional range size distributions followed exactly the 
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prediction of the null model, while local range size deviated from the random expecta-

tion at low elevation bins (< 3400 m) and at around 4000 m. 

 

Figure 4 Range size distribution calculated with ‘bin’ method is hardly affected by 

artefacts caused by calculating average range size of species according to their mid-point 

position. Observed regional range size is plotted by open circles and respective null model 

is grey-shaded area. Full circles and blue shaded area refer to the local range size. The bin 

method is sensitive to geometric constrains, because the position of mid-point cannot be 

closer to the domain limit than half of the range. The observed pattern in regional range 

size corresponds with null model prediction. Observed local range sizes had the same 

unimodal shape as prediction from the null model, but significant deviation were found in 

several bins. 

TEMPERATURE VARIABILITY AND EXTREMES  

The observed seasonal temperature range was between 35.5°C and 63.8°C (mean = 

45.7°C; s.d. = 5.2°C) and the diurnal temperature range was between 5.9°C and 27.6°C 

(mean = 17.2°C; s.d. = 4.7°C;). Neither of the two climatic variability indices were 

associated with elevation (Fig. 5). The correlation between climate variability and 

elevation was insignificant for both seasonal range (cor = -0.145, p = 0.26) and for 

diurnal range (cor = 0.02, p = 0.87). The average temperature minima of the coldest 
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month ranged between -32°C and -8.9°C and strongly decreased with increasing 

elevation by 0.0062°C m-1, (cor = -0.91, p < 0.001). 

 

 

Figure 5 Temperature variability along the elevation gradient based on in-situ measurements: 

seasonal range (top), diurnal range (middle) and average minimum temperature of the coldest 

month (bottom). A significant relation with elevation was found only for minimum temperature 

(slope = -0.0062, p < 0.001). The full line represents significant fit, dashed line unsignificant fit of 

linear regression models and shaded areas 95% confidence intervals around these lines. 

5.5 DISCUSSION 

Patterns of range size distribution observed along elevational gradient followed the 

expectation of the null models which assume decreasing diversity towards high eleva-

tions and random position of range sizes. The discrepancy between patterns observed 

on local and regional scales was caused by range truncation close to the geographic 

limit of the studied region. Our results based on real distribution data thus fully support 

the previous results based on simulated data, showing that the presence of geographic 

limits can reverse the relation between observed range size distribution and the 

underlying intrinsic ecological gradient (Šizlink et al., 2009). From this perspective, the 

effects of range truncation observed in our study provide an example of how strong 

such artefacts can be, and complement previous studies showing that species´ eleva-
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tional range sizes are distributed randomly, irrespective of elevation (e.g. Bhattarai and 

Vetaas, 2006; Lee et al., 2013; Zhou et al., 2019).  

Having refuted the pattern predicted by Rapoport´s rule, we have to ask what drives 

range size variability in our study system? From the multitude of factors influencing 

range size evolution, climate-based hypotheses are still top of the list of possible 

explanations (Pintor et al., 2015; Chan et al., 2016), especially for perennial plants. In 

theory, climatic tolerance is strongly influenced by the climatic variability (or extremes) 

an organism experiences, and elevational range size broadens with increasing tolerance 

(Gilchrist, 1995; Ghalambor, Huey, Martin, Tewksbury, & Wang, 2006; Sheldon & 

Tewksbury, 2014). Our climatic measurements suggest that the whole elevational 

gradient experiences a similar high magnitude of temperature variability, both seasonal 

and diurnal, typical of a continental desert climate, which can be one reason why we 

found a random arrangement of species ranges when geometric constraints were 

considered. Even though the freezing minima increased with elevation, the absence of 

any trend in elevational range size distribution means that higher freezing resistance 

does not translate into broader ranges either. This is in contrast to tropical mountains, 

where plants growing in low elevations never experience freezing temperatures and 

evolutionary adaptations to freezing temperatures may dramatically affect species 

elevational range. 

The role of climate in structuring species´ elevational ranges, while intuitively act-

ing at a certain level, may thus be overemphasized (Nowrouzi, Andersen, Bishop, & 

Robson, 2018). It can be well illustrated by the often-neglected fact that the elevational 

ranges of all lowland species are naturally truncated at sea level. From the perspective of 

climatic tolerance, these species would flourish several hundred metres below their 

current limit if there was land (cf. vegetation of the Dead Sea region, -400 m a.s.l.). 

Narrow ranges of lowland species, or the support for Rapoport´s rule often observed on 

islands (e.g. Chatzaki et al., 2005; Ogwu et al., 2019) may thus have other reasons (e.g. 

geometric constraints), rendering the attempts to establish a direct link between range 

size and climate debatable.  

Species range sizes are distributed randomly in our study system, hence every eleva-

tion harbours a mixture of species with different ranges. The subnival zone provides a 

clear example. Highly specialized species with some of the narrowest ranges (ranking 

within 10 species with narrowest ranges of all Ladakh species with more than 30 

occurrences) make a considerable proportion of the local species pool, e.g. Ladakiella 

klimesii, Eritrichium hemisphaericum, Desideria pumila or Draba himachalensis 

(Dvorský et al., 2015). These species must endure the particularly challenging conditions 

at the cold edge of vascular plant life, but adaptations to these extreme conditions 

become useless towards the lowlands where other qualities are demanded in order to 

succeed, e.g. competitive strength, tolerance of grazing, and, perhaps the most im-
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portant in arid Ladakh, drought resistance. A similar trade-off is common in other 

taxonomic groups, too, with upper thermal tolerance declining with an improvement in 

the ability to tolerate low temperatures (Gaston & Chown, 1999b; Stillman, 2003; Calosi, 

Bilton, Spicer, & Atfield, 2008; Dixon et al., 2009; Calosi et al., 2010). Thus, the reverse of 

what Rapoport´s rule would predict, narrow-ranged high-elevation species, seems to be 

a logical consequence of ecological specialization. 

The species pool of the subnival zone, however, also contains broad-ranged species. 

In fact, of the 11 species growing above 6000 m there are five species which simultane-

ously occur as low as 3500 m and their ranges are thus among the broadest in the whole 

regional species pool. Of those five, three species (Aphragmus oxycarpus, Waldheimia 

tridactylites, Stellaria decumbens) are ubiquitous above ca. 5600 m, and spread along 

streams downwards from their high-elevation centre, and subsequently have a skewed 

elevational distribution with the longer tail towards lower elevations (Dvorský et al. 

2017). These species take advantage of improved moisture conditions near glacial 

streams at their low elevation limit, but disappear when the increasing competition 

from clonal graminoids leaves no space in the beneficial proximity of watercourses. 

Indeed, biotic interactions influence the warm ends of a species distribution more than 

climate (Normand et al., 2009; Meier et al., 2010; Wisz et al., 2013). The elevation itself 

therefore matters not so much to plant distribution, and species elevational range size 

without the knowledge of the range of microclimate a species experiences can be 

misleading (Scherrer and Körner, 2011; Dvorský et al., 2015).   

To provide one more example, we compare two species with similar ecology and 

elevational centre of distribution (4500–5000 m), but one having the broadest range 

size from all plant species growing in Ladakh, while the other is narrow-ranged. 

Kobresia schoenoides, spanning between 2680 and 5650 m, is a strong competitor and 

its stout dense tufts are avoided by grazing animals. Its habitat requirements, mesic to 

wet grasslands and turf along streams, lake margins and wetlands, are the same as for 

Gentianella pygmaea, which does not occur below 4520 m, being small and a weak 

competitor. Moreover, it is easily eliminated by grazing. Therefore, the main difference 

behind the opposite elevational extent of these two species is not their ability to 

withstand a wider range of climatic conditions, but their different ability to cope with 

competition and disturbance. This example illustrates that species distribution can be 

shaped by many non-climatic drivers which can override the importance of the climatic 

ones (see also Sexton et al., 2009; Boulangeat et al., 2012). This, despite „an almost 

suicidal tendency for many ecologists to celebrate complexity and detail at the expense of 

bold, first-order phenomena“ (Lawton 1999), seems to be the most probable conclusion 

from our analyses.  

 In summary, our results support the conclusions of a meta-analysis by McCain & 

Knight (2013) that the predictive value of Rapoport´s elevational rule is at best weak,  
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and that elevational gradients in range sizes are the exception rather than the rule. We 

argue that the often-described patterns supporting this rule may be statistical artefacts 

caused by an inappropriate null model. Since climate-based hypotheses on range size 

drivers gained no direct support in our study, random range sizes imply species-specific 

responses, influenced both by climatic and non-climatic factors. 
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6.1 ABSTRACT 

Midpoint attractor models (MPA) were introduced recently as a promising statistical 

tool capable of reproducing unimodal empirical elevational species richness gradients 

and differentiating the underlying gradient of environmental favourability from neutral 

effects forced by geometric constraints. Here we used a comprehensive dataset of the 

elevational distribution of 1054 vascular plant species growing in NW Himalaya to 

evaluate model performance in a system constrained geographically at low elevations 

and physiologically at high elevations. We tested how the inclusion of functionally, 

biogeographically and taxonomically distinct species groups affects model performance. 

We compared two alternative variants of MPA, with respect to fit to the data and 

interpretation of mid-point attractor parameters. MPA successfully fitted species 

richness gradients, both of vascular plants as a whole, and of separate species groups. 

The greatest variability was between biogeographic elements, while taxonomic subset-

ting by families revealed limited variability of midpoint attractor parameters. The two 

MPA variants provided similar fit to the data, but with considerable differences in 

midpoint attractor parameters. MPA proved to be useful model, able to synthesise 

underlying ecological drivers and neutral constraints on species richness. 

  

6.2 KEYWORDS 

Mid-domain effect; midpoint attractor; Himalaya; plant species richness; sampling bias; 

neutral theory; null models; elevational gradient, climatic favorability, geometric 

constrains, species ranges 
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6.3 INTRODUCTION 

Species diversity patterns along altitudinal and latitudinal gradients have always 

fascinated scientists (Lomolino 2001). Monotonic decrease of diversity with increasing 

elevation used to be a generally accepted and universal pattern attributed to general 

decrease of temperature with elevation, but conflicting evidence of humped-shaped 

species diversity patterns resulted in a search for alternative explanations of empirical 

diversity patterns (Rahbek 1995, 2005). Mid-elevation peaks were found more frequently 

in dry climates, where productivity at low elevations is limited by increasing aridity 

caused by high evaporation rates and low precipitation (McCain 2009). Furthermore, 

anthropogenic ecosystem disturbances have been concentrated mostly in lowlands, 

with negative effects on the biodiversity documented (Nogués-Bravo et al. 2008). 

However, the observed mid-elevation diversity peak may be just an artefact of the 

sampling effort or the method used to estimate elevational diversity pattern from 

available observations (Colwell and Hurtt 1994, Grytnes and Vetaas 2002). When the 

species range is estimated from point-samples, it is likely that the absolute range would 

be underestimated and this consequently causes the underestimation of actual diversi-

ty, especially at the domain margins and when the sampling effort is limited. 

A simple and ecologically neutral explanation of diversity peak at middle elevations 

emerged with the concept of ‘mid-domain effect’ (MDE), using only geometric con-

straints and random placement of species ranges within these constraints (Colwell and 

Hurtt 1994, Colwell and Lees 2000). MDE predicts formation of symmetrical, hump-

shaped distributions, just by random overlap of species ranges placed within the 

domain. Mid-domain effect thus represents an ecologically neutral null model, simulat-

ing how the richness pattern within a bounded domain would look, when species range 

placement is not governed by climate suitability. The support for MDE varied widely 

among studies, according to the geographic extent and organism group studied (see 

Dunn et al. 2007 for review). The MDE prediction is more likely to fit empirical richness 

patterns when species ranges and the scale of analysis are both large (Jetz and Rahbek 

2001, Dunn et al. 2007). When a domain hosts a higher proportion of large-ranged 

species, the overlap in the middle of the domain is more likely. Second, MDE fit is 

expected to be stronger when the environmental gradients are weak (Colwell et al. 

2005), or under conditions of high environmental tolerances (Rangel and Diniz-Filho 

2005). On the other hand, small-ranged (relative to domain size) species are usually 

found along prominent gradients with sharply changing environmental conditions; such 

systems are accordingly less prone to the influence of MDE. 

While MDE quickly attained recognition of biogeographers, it had also been strong-

ly criticized (Zapata et al. 2005, Currie and Kerr 2008, but see Colwell et al. 2004, 2005). 

MDE opponents stressed the conceptual difficulties in defining domain boundaries, as 

well as purported latent effects of environmental factors on the range size frequency 
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distribution used to generate mid-domain null models (Hawkins et al. 2005) or evidence 

that water-energy hypothesis can provide a better fit to empirical richness gradients 

than MDE (Hawkins et al. 2003). It is true that, with the exception of islands and other 

domains with sharp ecotones (e.g. lakes and their aquatic life), practically no other parts 

of global surface have effective hard boundaries. This seems to be the major constraint 

for the application of MDE in practice – how to define the domain and its boundaries? 

As a rule of thumb, the lowest elevation of land surface in the study area (usually the 

sea-level) is considered as the lower domain limit. In contrast, the decision where to set 

the upper limit is more arbitrary – it can be the elevation of the highest summit in the 

area, but also the physiological limit for survival of the organisms studied (Grytnes 

2003a, Zapata et al. 2005). The growing body of macroecological studies on diversity 

distributions reveals that most authors regret they cannot define their domain unam-

biguously, and are accordingly cautious interpreting their results. Currently, there 

seems to be a consensus that the effects of geometric constraints can jointly influence 

the observed richness pattern together with other ecological drivers of diversity, and its 

contribution can eventually be separated and quantified. In fact, MDE is not important 

for what it does explain, but rather for what it does not. The unexplained residuals from 

MDE model require further explanation, because they may include deterministic, non-

random biologically-relevant drivers (Colwell and Lees 2000). 

To overcome the limitations of MDE, the mid-point attractor model (MPA) was re-

cently developed, extending the conceptual framework of MDE by replacing a uniform 

distribution of midpoint positions within the domain by a midpoint attractor with 

Gaussian distribution (Colwell et al. 2016). The MPA model is more flexible than MDE 

because the Gaussian attractor allows MPA to fit also skewed hump shapes, peaking 

apart from the center of the domain. The Gaussian attractor has two parameters, the 

first identifies the position of the peak of Gaussian curve (hereafter called parameter A), 

and second (parameter B) is the standard deviation of the Gaussian curve, an inverse 

measure of attractor´s strength. The curve is truncated by the limits of the domain. The 

position and shape of mid-point attractor can be interpreted as an ecologically mean-

ingful shared ‘optimum’, favouring diversity of the studied taxa, shifting the MPA model 

from purely neutral towards a model with biological meaning. 

However, even the MPA model has several limitations and assumptions to be met. 

Artefacts in underlying empirical data, i.e. incomplete sampling of species diversity and 

arbitrary decisions about where to set domain boundaries, may confound the model-

fitting and interpretation. Furthermore, species whose fundamental niche goes beyond 

the environmental gradient present in the domain will have their realized range 

truncated, i.e. one or both of their range boundaries will likely be aligned with the 

domain boundary. The presence of such species may cause deviations from normal 

distribution of midpoints. To deal with this issue, Colwell et al. (2016) proposed modifi-

cation of the MPA algorithm. While the primary MPA model (hereafter called MPA 1) 
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uses a doubly truncated normal distribution as a midpoint sampler, a modified algo-

rithm (MPA 2) samples midpoints from complete Gaussian distribution and then 

adjusts midpoints of the species with ranges exceeding domain boundaries to the 

closest possible position to respective domain boundary that will keep the complete 

species range within the domain boundaries. Both variants prevent the simulated 

species ranges from overlapping domain boundaries, but the second approach increases 

the probability that species range limit is placed directly on domain limit. The fit to the 

data presented by Colwell at al. (2016) was comparable between the alternative MPA 

model modifications, but the consequences of the decision which model to use on 

estimated model parameter values and their interpretation were not sufficiently 

discussed. 

The basic assumption underlying the MPA is the existence of a universal, unimodal 

gradient of environmental favourability that underlies the realized richness patterns in a 

bounded domain. In reality, the ecological niche of taxonomically or functionally 

related groups of organisms tends to be similar, and this niche conservatism is mirrored 

in the pattern of species richness along altitudinal and latitudinal gradients (Peterson et 

al. 1999, Wiens and Graham 2005). Moreover, species richness patterns of distinct 

taxonomic or functional groups may follow different climatic drivers (Hawkins et al. 

2003, Šímová et al. 2011). In plants, water-energy measures (i.e. annual precipitation, 

actual evapotranspiration, potential evapotranspiration) or climatic extremes (tempera-

ture minima and maxima) are usually considered the most relevant climatic variables 

controlling species ranges and  richness. While the average temperature universally 

decreases with elevation, other climatic measures potentially controlling species 

richness exhibit more complex relation to altitudinal gradients (McCain and Grytnes 

2010). It is therefore legitimate to ask how the inclusion of ecologically distinct groups 

of species affects the resulting species richness curve and, consequently, model perfor-

mance. The decision how to define a species group used for richness assessment is 

usually made ad-hoc; taxonomic or life-form criteria are usually applied (Zhou et al. 

2019). In the case of plants, studies dealing with altitudinal richness gradients generally 

consider either all vascular plants (Grytnes and Vetaas 2002, Grytnes 2003b), or selected 

functional or taxonomic groups, such as ferns (Watkins et al. 2006, Colwell et al. 2016), 

epiphytes (Cardelús et al. 2006), trees (Carpenter 2005, Rana et al. 2019) or palms 

(Bachman et al. 2004). However, studies aiming to directly address differences among 

groups are surprisingly scarce (Grytnes and Beaman 2006, Peters et al. 2016, Rana et al. 

2019). 

In this paper we use a comprehensive dataset on vascular plant diversity from the 

Ladakh region in the Western Himalaya to explore diversity patterns along an altitudi-

nal gradient spanning more than 3500 m. We tested the performance of the MDE and 

MPA models, addressing elevational diversity patterns in the study area, where the 

lower domain boundary is defined geographically by a regional boundary, while the 
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upper domain boundary is set by climatic hospitability to vascular plant life. We aimed 

to compare the performance of different models for plant diversity along this altitudinal 

gradient and to decompose effects of geographic constraints, sampling bias, species 

functional grouping, phylogenetic structure and biogeographic origin on realized 

diversity patterns and their interpretation. 

6.4 METHODS 

EMPIRICAL SPECIES DIVERSITY DATA  

We studied diversity patterns along an elevation gradient in NW Himalaya, Ladakh 

region, India (Fig. 1). This region is partly isolated from adjacent areas by biogeograph-

ical barriers – glaciated ranges of Great Himalaya to the south, and Karakoram Range to 

the north-west. To the east, the region is connected to the Tibetan plateau. Orographic 

barriers are also responsible for a strong rain-shadow effect, causing overall aridity in 

the region, with total annual precipitation as low as 100 mm·year-1. Elevations with 

available unglaciated land area span from 2650 to ca 7050 m a.s.l., but the highest 

occurrences of vascular plants have been reported from 6150 m a.s.l. (Dvorský et al. 

2015). Combined effects of low temperature stress and aridity restrict regional species 

ranges and dominant life forms (Dvorský et al. 2017). The prevailing vegetation is 

treeless due to high aridity, except for shrubby formations along streams. At higher 

elevations, where the water regime is more balanced due the decrease in evapotranspi-

ration, low temperature is the dominant limiting factor (Dvorský et al. 2015). 

We compiled species ranges using 95,812 georeferenced floristic records from the 

study region collected on 4062 plots (1 ha each) in surveys conducted between 1997-

2006 and from 7187 floristic records made in 2008-2015, maintained by the Institute of 

Botany of the Czech Academy of Sciences. The total extent of the study area covered by 

field sampling is ca. 50,000 km2 and the vertical range of floristic records spans from 

2650 m a.s.l. in Suru Region in northwest Ladakh to 6150 m a.s.l. in Changthang Region, 

in eastern Ladakh. We excluded all cultivated plant species and taxonomically unre-

solved records from the genus Taraxacum. This selection resulted in a dataset 

comprising 90,489 records of 1054 plant species, used for further analyses. For each 

species we identified the elevation of its lowest and highest occurrence in the dataset. 

To assess the contribution of various species groups to the overall diversity pattern, 

we classified the species according to the following criteria: taxonomic rank (family 

level), biogeographical affinity, and life form (annuals, graminoids, forbs,  shrubs, and 

trees). Detailed classification of species and the rules applied can be found in Appendix 

1. 
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Figure 1 Study area with sampling localities. Inset histograms show sampling effort and terrestrial 

land-area by 100m elevation bands. Hillshade and land area histogram is based on digital elevation 

model (Jarvis A., H.I. Reuter, A.  Nelson, E. Guevara, 2008, Hole-filled  seamless SRTM data V4, 

International  Centre for Tropical  Agriculture (CIAT), available  from http://srtm.csi.cgiar.org) 

DATA ANALYSES  

We defined our domain by the extent of elevations with species occurrence data, i.e. 

2650 m a.s.l. as the lower domain limit, and 6150 m a.s.l. as the upper domain limit. We 

then transformed elevation values to unit domain values for model fitting purposes and 

back-transformed values for the interpretation of results. 

To calculate empirical elevational species richness (ESR), we used the interpolation 

method, supposing that each species is continuously present to elevations between its 

extreme occurrences (Grytnes and Vetaas 2002). Interpolation method ESR was then 
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calculated as number of overlapping species ranges in 100 elevations uniformly placed 

along the elevation gradient of the modeling domain. 

We performed two independent analyses to reveal how is ESR affected by sampling 

bias and uneven distribution of planimetric area along elevational gradient. First, we 

calculated ESR from species ranges based on a limited number of observations. We 

subsampled floristic records used for ESR calculation to mimic limited sampling effort. 

We used sequence of samples consisting of 5% to 95% records sampled randomly 

without replication from the full dataset. We repeated this procedure 1,000 times and 

calculated median ESR for each sampling intensity. Second, we calculated species 

richness in elevational bands using incidence data from point samples and applied 

corrections for sampling effort and total land area. This method is less sensitive to 

elevational richness pattern distortion close  to domain boundaries (Grytnes and Vetaas 

2002). We calculated uncorrected empical richness as the number of species present in 

35 elevational bands (100-m each). To account for sampling effort we calculated total 

species richness using the abundance-based asymptotic richness estimator from the 

iNEXT R package (Chao et al. 2014, Hsieh et al. 2019), and to account for total land area 

in elevation belts we divided elevation gradient into 35 variable elevational bands with 

equal total land area. 

To compare congruence between different null models and ESR, we used a mid-

domain effect (MDE) model (Colwell and Lees 2000) and four modifications of mid-

point attractor (MPA) models (after Colwell et al. 2016).  

To fit the MDE model, we randomly sampled midpoint positions for each species 

from a uniform probability distribution function restricted by interval [half range; 1 – 

half range]. This restriction ensures that sampled ranges cannot extend beyond domain 

limits (Colwell and Hurtt 1994). We repeated the sampling 1000 times and stored 

median and the 95% confidence interval (2.5 and 97.5 percentiles) from species richness 

predicted by MDE models. 

The MPA model fits empirical diversity using a Gaussian attractor defined by two 

parameters: the parameter A, which controls location of the attractor‘s peak, and 

parameter B, which is the standard deviation of the attractor, controlling the strength of 

the attractor. We tested two variants of MPA as proposed by Colwell et al. (2016), 

differing in the probability distribution function used for midpoint sampling – algo-

rithm MPA 1 uses a doubly truncated Gaussian probability density function, where 

truncation prevents sampled ranges from extending beyond domain limits. Algorithm 

MPA 2 uses a full Gaussian probability density function, and in case that sampled 

midpoint distance from the domain limit is less than half range distance, it is moved to 

half range distance to prevent ranges from extending beyond domain boundaries. For 

each algorithm MPA 1 and MPA 2 we tested two different settings: first, with mid-point 

attractor parameter A values restricted to the unit [0, 1] interval (i.e. constrained to lie 
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within the domain) and parameter B restricted to the unit [0, 1] interval, henceforth 

referred to as algorithm MPA 1a and MPA 2a, respectively. This first setting for A and B 

corresponds to the original setting used by Colwell et al. (2016). In the second setting, 

the mid-point attractor parameter A is allowed to fall outside the domain limits, within 

an interval restricted to [-0.5, 1.5], and parameter B is limited to the interval [0, 2] 

(algorithm MPA 1b and MPA 2b). This second setting allows mid-point attractor to be 

located below/above actual domain limits, which is a possible scenario in our high-

altitude study area. We compiled MPA models using Bayesian inference through ‘RStan’ 

package (Stan Development Team 2018). Flat priors were used to define both parame-

ters. For Bayesian inference, we used a likelihood function for midpoint distribution, 

directly, instead of using a goodness-of-fit measure for empirical species richness as 

proposed by Colwell et al. (2016). Our approach gives equal weight to each species, 

whereas the original approach gives more weight to wide-ranged species. We used four 

chains and 1000 iterations for warmup and 1000 post-warmup iterations, with a thin-

ning factor of five, resulting in 800 draws used for model inference. We stored posterior 

mean and 95% credible interval values of estimated mid-point attractor parameters A 

and B, and median and 95% credible intervals for predicted species richness values 

(PSR) at 100 evenly spaced positions along the elevation gradient for each model. 

For model performance evaluation, we calculated four goodness-of-fit measures 

based on median PSR and ESR: Pearson correlation (cor); mean absolute error (MAE); 

root mean squared error (RMSE); and normalized RMSE (RMSE divided by total species 

richness). 

We fitted MDE and MPA models to the full species list and to subsets of species, 

with species groups selected according to taxonomic rank, biogeographic affinity, or 

life-form. Only groups with more than 10 species were used for model fitting. We tested 

effects of decomposition of the total diversity into species groups using taxonomic, 

biogeographic and life-form criterion on MPA model parameters A and B. We quanti-

fied between-group variability in midpoint attractor position as the standard deviation 

of MPA parameter A and variability in attractor strength as average MPA parameter B, 

using posterior mean parameter estimates for the selected species groups. We used 

randomized species classification (randomization without replication) to provide a null 

expectation, given numbers and sizes of species groups equal to the actual groups. We 

expected that, if the applied grouping criterion were ecologically relevant, the variability 

in MPA parameter A (attractor position) would be higher and average MPA parameter B 

(inverse measure of attractor strength) would be lower as compared to the null expecta-

tion. Increased variability on parameter A indicates differenciation of midpoint 

positions between the groups and lower parameter B indicates higher homogeneity of 

midpoint positions within the groups. We used a one-tailed F-test to test our hypothesis 

that variability of MPA parameter A will be higher and a one-tailed paired t-test to test 
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the hypothesis that average MPA parameter B will be lower for empirical parameter 

estimates compared to null expectations for ecologically differenciated species groups. 

All statistical analyses were performed in R 3.4.4 (R Core Team 2018). 

6.5 RESULTS 

Many species ranges had their lower range limit at - or close to - the lower limit of 

the domain (Fig. 2). The ESR curve was unimodal and positively skewed, peaking at 

3875 m a.s.l. (0.35 on unit domain); maximum ESR was 660 species (Fig. 3). However, 

species diversity completely diminished towards upper elevations and reached zero 

below the physical limit of available unglaciated land-area at high elevations. 

 
Figure 2 Empirical species ranges. Position of species range mid-point (x-axis) is plotted by points 

against its range size (y-axis). Horizontal lines display species range defined by minimum and 

maximum elevation of occurrence.  Triangle bounds possible locations of midpoints within the 

domain. 

SAMPLING BIAS  

Random subsampling of the species-occurrence dataset affected the shape of the 

ESR (Fig. 3). Richness estimates based on interpolation method at the domain margins 



Chapter Six: Mid-point attractor models of plant species richness along elevational gradient 

 

  
159 

proved to be the most sensitive to simulated less-intensive sampling. The lower part of 

the elevational domain was more sensitive to sampling bias than the upper part. The 

shape of the ESR converged as sampling effort increased. With very limited sampling 

effort (<10% of the original dataset) the ESR became more symmetric, with its peak 

closer to domain midpoint. 

Species richness estimate from point-samples in elevational bands produced hump 

shaped patterns, too (Fig. 4). Applying an asymptotic estimate for total species richness 

in altitudinal bands conserved a hump-shaped pattern, with maximum of 769 species 

estimated for altitudinal band 3,650 – 3,750 m a.s.l. (Fig. 4b). When band planimetric 

area was standardized, a hump was less pronounced, reaching maximum values at 

3,280-3,500 m, both uncorrected and corrected for sampling intensity (Fig. 4c,d). 

 

 

Fig. 3 Species richness estimates for limited sampling effort using the range interpolation method. 

Sampling bias is relatively most pronounced at domain margins and in the lower part of the 

gradient. Absolute (left) and relative (to the full dataset, right) species richness estimated using 

random fractions (0.05-1) of species occurrence records.  
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Figure 4 Estimated species richness using point-samples in 35 elevational bands, a) using equally 

spaced 100-m elevational bands, b) using equally spaced 100-m elevational bands corrected for  

sampling intensity using asymptotic richness estimate, c) using variable bandwidth with equal 

planimetric land area, d) using variable bandwidth with equal planimetric land area corrected for  

sampling intensity using asymptotic richness estimate. Horizontal whiskers indicate width of 

elevational bands used. 

 

MODEL PERFORMANCE  

Full dataset 

MDE prediction produced a symmetrical, bell-shaped curve, which reproduced the 

empirical species richness pattern poorly, underestimating diversity at lower elevations 

and overestimating diversity at upper elevations (Fig. 5a, f). All MPA models fitted the 

empirical species richness well, with algorithm MPA 1b providing best results (Fig. 5; 

table 1). Algorithms MPA 1 and 2 differed only slightly in the goodness-of-fit metrics, but 

they provided significantly different estimates of midpoint attractor parameters. 

Midpoint attractor position estimated by MPA 1b was situated below the lower domain 

limit. Algorithm MPA 2b produced similar midpoint attractor position estimates as 
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algorithm  MPA 2a, with the attractor centered approximately at the observed peak of 

diversity. 

Table 1 Estimated parameters and model performance for evaluated richness models using the full set of species. 
Parameter A controls the Gaussian mid-point attractor location (in m a.s.l.); parameter B controls strength 
(standard deviation, in m) of the Gaussian mid-point attractor. Fit between observed and predicted elevational 
richness is presented by goodness-of-fit measures: Pearson correlation (cor); mean absolute error (MAE); root-
mean-squared error (RMSE) and normalized root-mean-squared error (nRMSE). 

Richness 
model 

Param. A 
mean (95% CI) 

Param. B 
mean (95% CI) 

cor MAE RMSE nRMSE 

MDE - - 0.718 140.88 155.74 0.148 

MPA1a 2848 (2659; 3114) 1078 (946; 1185) 0.993 17.66 25.86 0.025 

MPA1b 2431 (1324; 3044) 1229 (989; 1595) 0.994 16.67 24.49 0.023 

MPA2a 3913 (3873; 3949) 600 (570; 630) 0.990 26.03 32.90 0.031 

MPA2b 3913 (3876; 3948) 600 (570; 632) 0.990 26.02 32.94 0.031 

 

 

 
Figure 5 Observed elevational species richness and null model predictions for MDE model 

(a, f); MPA 1a (b, g); MPA 1b (c, h); MPA 2a (d, i); and MPA 2b (e, j). Upper panels (a-e) shows 

empirical richness (dots); predicted species richness by null models (blue line and light blue 

area for median and 95% confidence/credible interval) and the probability function of the 

mid-point attractor (dashed red line). Lower panels (f-j) display predicted vs. observed species 

richness and the 1:1 line. While the MDE model provided poor fit to the empirical richness, all 

variants of the MPA models provided excellent fit.  

Species grouping 

Splitting the dataset into species groups significantly affected MPA shape parame-

ters (Fig. 6), but goodness-of-fit measures were on average worse than for whole 

vascular plant richness (Appendix 2, Table S1).  
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Grouping based on life-form resulted in a the marginally significant (p < 0.1) effect 

on the variance of attractor positions (parameter A) only for model MPA 2b. A margin-

ally significant effect on attractor strength (parameter B) was found for all four MPA 

models (Table 2). The absolute difference from random expectation was, however, 

largest among tested grouping criteria, but the low number of life-form groups (n = 5) 

resulted in low test power.  

Grouping based on biogeographical affinity significantly affected both attractor po-

sition and strength in all MPA models. Attractor location for Eurasian, Mediterranean, 

Eurasian and Cosmopolitan biogeographic elements was estimated to lie below the 

lower domain limit by the model MPA 1b. In contrast, the midpoint attractor for 

Tibetan elements was located at 5290 m a.s.l., far above mid-point attractors of other 

biogeographic groups (Fig. 6). 

Grouping according to taxonomic rank marginally affected the variance of attractor 

position (parameter A) only in the MPA 1a model, and affected attractor strength 

(parameter B) in models MPA 2a and MPA 2b (Table 2). Attractor position estimated by 

MPA 1b for 13 out of 23 families lay below domain limit. The highest attractor position 

was reported consistently by all MPA models for family Saxifragaceae. A very weak 

attractor (MPA 1b parameter B > 3000 m) was reported for four families (Brassicaceae, 

Crassulaceae, Papaveraceae, and Saxifragaceae). 

 

Table 2 Variability in parameter estimates according to the species grouping criterion applied. An F-test was 
applied to test the effects of grouping on the variance of attractor location (parameter A) and a t-test to test 
effects on attractor strength (parameter B). 

Groups Model Parameter A  Parameter B 

  SD 
(obs) 

SD  
(rnd) 

F-value p-value Signif  Avg. 
(obs) 

Avg 
(rnd) 

t-value p-value Signif 

Life form MPA1a 208.5 19.4 0.81 0.579  714.8 1160.4 -1.97 0.060 (.) 

(N = 5) MPA1b 518.0 40.0 1.46 0.362  857.4 1688.4 -1.71 0.082 (.) 

 MPA2a 217.4 62.5 5.38 0.066 (.) 480.6 703.6 -2.05 0.055 (.) 

 MPA2b 230.9 109.1 1.82 0.287  498.4 926.4 -1.70 0.082 (.) 

            

Biogeographic MPA1a 621.9 146.7 17.97 < 0.001 *** 826.8 1025.3 -2.97 0.007 ** 

(N = 11) MPA1b 950.9 344.7 7.61 0.002 *** 1048.8 1355.9 -2.95 0.007 ** 

 MPA2a 342.1 86.5 15.63 < 0.001 *** 541.5 643.1 -3.26 0.004 ** 

 MPA2b 380.0 134.5 7.98 0.001 ** 572.3 672.3 -2.72 0.011 * 

            

Taxonomic MPA1a 536.5 382.1 1.97 0.060 (.) 1115.2 1212.6 -0.69 0.249  

(N = 23) MPA1b 931.8 714.2 1.70 0.110  1773.2 1846.5 -0.26 0.400  

 MPA2a 250.1 200.3 1.56 0.153  594.0 794.5 -2.84 0.005 ** 

 MPA2b 267.2 313.9 0.72 0.772  637.2 1111.3 -2.91 0.004 ** 

Significance codes: 0 *** < 0.001 ** < 0.05 (.) < 0.1 
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Figure 6 Estimated mid-point attractor position and strength using the MPA 1b model for species 

groups: a) full dataset; b) life-form groups; c) biogeographic elements; d) taxonomic rank (family). 

Gaussian mid-point attractor position (parameter A) is plotted by dots and its strength (standard 

deviation of Gaussian attractor (parameter B) as a vertical blue bar. The shaded area depicts 

domain limits. Note that if a mid-point attractor is located below domain limit, then only a 

monotonically decreasing part of the Gaussian curve was used for mid-point sampling. 

6.6 DISCUSSION 

Empirical observations and sampling bias 

Despite intensive sampling effort, the actual species ranges may have been slightly 

underestimated. Underestimation of species ranges leads to underestimated diversity, 

especially close to domain boundaries, when the interpolation method for richness 

estimation is used (Grytnes and Vetaas 2002). Simulation of less intensive sampling 
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effort in this study showed that empirical species richness at lower part of the elevation-

al gradient is more sensitive to range underestimation with limited sampling, while in 

the upper part of the elevational gradient estimated diversity was less affected (Fig. 3). 

Nevertheless, a hump-shaped richness pattern remained apparent in alternative point-

sample based richness estimation, even when sampling effort was accounted for (Fig. 4). 

When we corrected for land area using equal-area bands, the hump was less pro-

nounced, peaking at 3,280-3,500 m. Therefore, we conclude that the unimodal 

elevational richness pattern has a real basis, although accentuated by sampling bias and 

land area distirubion to a certain degree – either controlled by neutral processes or in 

underlying climate gradients, as discussed below. 

MDE and MPA models performance 

MPA models fitted almost perfectly the empirical species richness curves, regardless 

of the MPA algorithm used. The full set of regional vascular plant species richness was 

matched with a correlation coefficient > 0.99, reached by all four alternative MPA 

models. This is in contrast to MDE, which failed to reproduce the observed, positively-

skewed diversity pattern  because MDE produces only symmetric, humped-shaped 

curves (Fig. 5). The clear advantage of MPA models is in their flexibility, which allows 

them to fit different curves, using only two additional parameters (Gaussian attractor 

position and strength) compared to MDE, which has none. 

However, the shape parameters of mid-point attractors were sensitive to the model 

algorithm used. The MPA model parameters A and B were restricted to a unit range in 

the original work of Colwell et al. (2016), but we see no strict reason for this limitation, 

because the center of diversity may in fact lie outside the domain, especially when the 

studied region covers only a part of altitudinal gradient, as in this case. When we 

allowed the midpoint attractor to be located outside the domain (model MPA 1b), the 

model fit to the data slightly increased and the estimated attractor position (parameter 

A) for all species was situated at 2430 m a.s.l., about 220 m below the domain limit. 

When the midpoint attractor peak is situated below the domain limit, then the underly-

ing distribution function within the domain is monotonically decreasing part of 

Gaussian curve. When this is true, then the unimodality of empirical species richness 

must be caused solely by neutral processes linked to geometric constraints, in conjunc-

tion with an approximately Gaussian distribution of environmental favorability for the 

group in question.  

The mid-point attractor probability function of the MPA 2 algorithm places species 

ranges at domain boundaries with substantially higher probability than the MPA 1 

algorithm. In contrast, the MPA 1 algorithm compensated for the truncation of the 

midpoint attractor distribution by shifting the midpoint attractor to lower elevations; in 

the case of MPA 1b (attractor not restricted by domain limits), the estimated mid-point 

attractor was situated even below the lower domain limit for the whole flora, for 13 
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families; four biogeographic groups and three life-forms (Appendix Table S1). The 

maximum difference in estimated mid-point attractor position between the MPA 1b and 

MPA 2b models for same species group was as much as 2250 m. The discrepancy 

between models was accentuated when we fitted species groups with a center of 

diversity in lower elevations, probably as a consequence of a high proportion of truncat-

ed ranges. The sensitivity of MPA parameters to model assumptions means that 

midpoint position must be interpreted with caution, particularly if a substantial portion 

of evaluated species ranges reach domain limits. Despite the fact that many species 

ranges were truncated in our study domain, the algorithm MPA 1 performed equally 

well, or even slightly better than MPA 2. Because the interpretation of the underlying 

midpoint attractor probability function is also more straightforward for algorithm MPA 

1, we recommend this algorithm for further use. We also question the restriction of 

parameter B to unit definition range. There is no strict mathematical reason of such 

restriction, this limitation in Colwell et al. (2016) was strictly arbitrary. Theoretically, if 

parameter B was set to infinity, than the MPA 1 would be equal to MDE. We recorded, 

in several instances, that the estimated value for parameter B exceeded the unit interval 

in the MPA 1b models for certain species groups, when the a priori range for parameter 

B was set to the [0,2] interval. This result indicates low climatic control on midpoint 

placement for these groups, or, in other words, high ecological plasticity of the group. 

Ecological interpretations 

The absolute decline of species richness towards high elevations is climatically de-

termined, as was confirmed experimentally in our study region (Klimeš and Doležal 

2010, Dvorský et al. 2016). Conditions above the elevation of the highest vascular plant 

occurrence are clearly inhospitable: annual mean temperature falls below –10°C and 

freezing temperatures occur here every single day of the year (Klimeš and Doležal 2010, 

Dvorský et al. 2015). The upper limits of plant species in this area belong to the highest 

records on Earth (Dvorský et al. 2015) and we repeatedly searched for plants growing 

above the current highest record at 6150 m a.s.l., but so far with negative results. We are 

therefore confident that the upper range limits used in this study are not truncated due 

to the geographic extent of our study area, but are set by species´ physiological toler-

ance. 

A different picture can be seen at the lower limit of our modelling domain. Species 

richness at the lowest elevations may be limited by increasing aridity, but not so strictly 

as by the low temperatures at upper domain limits (Dvorský et al. 2017). Climate in the 

lower parts of Ladakh is arid, but even moisture-demanding species can find suitable 

habitats along streams and on occasional spring fens. However, the decline in species 

richness towards the lower domain limit have several non-biological explanation: 

Elevations below 3000 m a.s.l. in the study region are geographically restricted to valleys 

of the Indus, Dras and Shyok rivers in the NW part of the region (Fig. 1). It is thus 
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possible that species growing in comparable elevations in adjacent regions are truly 

missing from the same elevations in Ladakh, simply due to dispersal limitations and/or 

stochastic extinctions of small populations, following the principles of the species-area 

relationship. 

To assess how common range truncation may be, by geographic constraints, we 

conducted a literature survey on species range limits in adjacent regions (see Appendix 1 

for the description of data sources). We identified 615 species (60% of the total plant 

diversity), that were reported from lower elevations in other regions than their actual 

lowest elevation of occurence in Ladakh. This finding provides additional support to our 

conclusion that climatic favourability (which underlies ESR in Ladakh) is monotonically 

decreasing with elevation, while the unimodality in observed richness is controlled by 

neutral processes. With regard to regional climatic gradients, this means that thermal 

tolerance is the driving factor of plant diversity rather than productivity, which is 

limited by water deficit in lower part of elevational gradient in Ladakh, similarly to 

conclusions of Šímová et al. (2011) about drivers of global tree diversity. This inference is 

not in conflict with a hump-shaped pattern of total diversity, using the asymptotic 

point-sample estimates, because this approach corrects only for sampling bias, while the 

inherent species-area relationship, controlled by available land area, still has an impact. 

Species groups 

The fit of MPA models to the full set of species was almost perfect, therefore dataset 

separation into distinct species groups could not have improved the overall model fit. 

On the contrary, we observed slightly worse fit for separately-fitted groups than for the 

whole plant diversity of the area. Nevertheless, the evaluation of models for species 

subsets revealed considerable variation in attractor shape parameters among the groups 

(Fig. 6). We interpret the perfect fit to the full species set, despite the presence of 

ecologically distinct species groups, as the analogy to the central limit theorem, predict-

ing that regardless of the distribution of separate samples, the summation converges 

towards normal distribution (see also Šizling et al. 2009). This is likely the reason why 

the Gaussian attractor is so successful in MPA models. The only model parameter that 

suggests ecological divergence among species groups contributing to the overall 

richness pattern, is the inflated (for all species, compared to within groups) attractor 

parameter B, regulating the strength of the attractor. When we separated species to 

groups using various grouping criteria, the strength of midpoint attractor generally 

increased. 

Species groupings based on their biogeographical affinity had the greatest signifi-

cance for attractor positions and strength. This is not so surprising given that climatic 

niche is mirrored in both altitudinal and latitudinal range. Similarly, Rana et al. (2019) 

concluded that trees with different biogeographic affinity in E Himalaya greatly differed 
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in their elevation predominance, but mixing of the groups in the middle elevations 

couldn’t explain the formation of richness peak. 

Surprisingly, phylogenetic signal in attractor parameters was relatively weak. With 

the exception of the family Saxifragaceae, midpoint attractor positions were greatly 

overlapping and midpoint attractors were relatively weak. Variability in thermal 

tolerances within the taxonomic groups at the rank of families is obviously still high, 

probably due to parallel evolution of adaptations to climatic stress. Notably, the twelve 

species found at elevations ≥6,000 m belonged to six different families. This example 

illustrates well the limited niche conservatism with respect to thermal tolerances at the 

level of families (see also Prinzing et al. 2001). 

Classification based on life-form provided seemingly striking results: the midpoint 

attractor in the MPA 1b model for trees was located higher than for forbs, graminoids or 

shrubs (Fig. 6b). This result may seem contradictory, but only at first glance: midpoint 

attractor strength was much higher for trees, which means that their midpoints are 

restricted to elevations around 3,000 – 3,500 m, while the midpoints of the latter life-

forms are distributed more evenly along the altitudinal gradient. Drought limitation 

and human pressure may be responsible for a steeper decline of tree species richness at 

low elevations as compared to other groups and physiologic constraints control the 

upper tree-line (Dolezal et al. 2019b). 

Here we compared fit to separate models for each group, but integration of species 

grouping into one model is potentially feasible. The question is, what then should be 

the optimization criterion, when the fit to the empirical richness of less complex model 

treating all species together is equal or even better than fit to subdivided dataset. This  

is critical for understanding the ecology of species, hiding otherwise behind the univer-

sal richness gradient. 

6.7 CONCLUSIONS 

Mid-point attractor models are useful in fitting and interpretation of empirical 

richness data. However, interpretation must be done with caution, because model 

parameters are sensitive to the setting of model algorithm and the two parameters of 

midpoint attractor interact in their effects. 

Our results showed that unimodal species richness pattern in the Himalaya is joint-

ly driven by a general climatic suitability gradient and also by neutral processes, 

including domain boundary effects. Sampling bias is a potential source of richness 

underestimation, especially at the geographically truncated domain boundaries, but 

with our extensive dataset it played a minor role. The inclusion of ecologically distinct 

groups did not decrease goodness-of-fit measures, but it weakened the strength of the 

midpoint attractor. According to differences in midpoint attractor parameters among 
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species groups, the main distinction criterion was biogeographic affinity, rather than 

taxonomic rank or life-form. 
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6.10 SUPPLEMENTARY INFORMATION 

APPENDIX 1:  SUPPLEMENTARY TEXT  

6.10.1 SPECIES CLASSIFICATION 

Naturalness of occurrence:  

Cultivated species (crops, fruits, vegetables, ornamental and medicinal plants) – 

adventive or cultural species of uncertain origin; their distribution is fully bound 

to human settlements in irrigated oases and gardens. These species were excluded 

from analysis. 

Ruderal species – indigenous species, or naturalized adventive species, occupying 

mostly disturbed semi-natural habitats (field margins, along roads, eutrophic plac-

es in settlements). Although their occurrence is spontaneous, the distribution and 

density of their habitats is more or less influenced by human activities. 155 species. 

Species from natural habitats; distribution of these indigenous species is considered 

uninfluenced by human activities. 899 species. 

Biogeographical elements.  

Only species groups with more than 10 species were used for separate model fitting 

1. Central Asiatic steppe and desert elements, widely distributed in semi-arid to arid 

areas of Inner Asia, or mountains of High Asia - Mongolia, Altai, Tian Shan, Pamir, 

Karakorum, Tibet. 167 species (C AS). 

2. Circumpolar distribution, taxa occurring in temperate to arctic zones of Europe, Asia 

and N America, occasionally to Antarctic South America. 81 species (CIRCPOL). 

3. Cosmopolitan taxa distributed almost world-wide, although predominantly in 

temperate zones, either anthropogenically (weeds) or naturally (mostly water 

plants). 14 species (COSMO). 

4. Microarealophytes or relatively widely distributed local taxa of the Upper Indus 

Valley, S Karakorum, Zanskar and SW Tibet. 39 species (ENDEM). 

5. Distribution covering temperate to Arctic Europe, occasionally N Africa, and Asia, 

sub.=,humid to arid areas, often temperate subhumid Euro-Siberian types. 140 

species (EURAS). 

6. (Sino-)Himalayan elements, subhumid to perhumid areas of the Outer Himalayas (S 

slopes), usually extending along the S rim of the Tibetan Plateau from E Afghani-

stan, N Pakistan or Kashmir to SE Tibet and China. 131 species (HIMAL). 

7. Irano-Turanian elements, occurring in subarid to subhumid winter-rain areas on the 

border of temperate and subtropical regions of SW Asia, approximately from Tur-

key to W Himalaya, or east of Iran only. 45 species  (IRAN). 

8. Taxa widely distributed mainly in warm-arid areas from the Mediterranean and N 

Africa to SW Asia, occasionally eastwards 24 species (MEDITER). 
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9. Adventive flora spreading from the New World, usually temperate elements occupy-

ing disturbed habitats. 9 species (NEW WORLD). 

10. Subtropical and tropical elements of the Old World – Africa, Arabia, India, China, 

Japan, Malaysia, occasionally as far east as Oceania and Australia. 9 species 

(PALEOTROP). 

11. Pamiran elements, taxa concentrated mainly in montane-alpine winter rain regions 

on the western fringe of High Asia,Tian Shan, Pamir, W Himalaya. 59 species 

(PAMIR). 

12. Taxa with pantropic distribution. 3 species (PANTROP). 

13. Tibetan elements, alpine or subnival high-altitude flora of the Tibetan Plateau itself, 

or occasionally (disjunctively) occurring also in N Karakorum, E Pamir and Central 

Tian Shan. 126 species (TIBET). 

14. West Himalayan elements, taxa concentrating in moderately monsoon-influenced, 

subhumid to subarid regions of the Inner West Himalayas, approximately E Af-

ghanistan, SW Karakorum, Kashmir to W Nepal. 205 species (W HIM). 

 

Phylogenetic classification  

Species were grouped according to their taxonomic position at the rank of families. 

Only families with more than 10 representatives were used for richness modelling 

(species number in parentheses): 

Amaranthaceae (38), Apiaceae (23), Boraginaceae (39), Brassicaceae (61), Caprifoli-

aceae (11), Caryophyllaceae (37), Asteraceae (133), Crassulaceae (12), Cyperaceae (50), 

Gentianaceae (34), Lamiaceae (28), Fabaceae (57), Onagraceae (13), Orobanchaceae (19), 

Papaveraceae (22), Plantaginaceae (21), Poaceae (132), Polygonaceae (32), Primulaceae 

(19), Ranunculaceae (51), Rosaceae (40), Saxifragaceae (20). 

In total, 892 species were used for analysis of species richness according to phyloge-

netic grouping. 

 

Life-form classification 

1. Graminoids. 193 species 

2. Forbs. 769 species 

3. Trees – trees and large woody shrubs > 2 m. 10 species 

4. Shrubs - shrubs, dwarf shrubs, subshrubs, shrublets, lianas. 55 species 

5. Ferns - ferns, fern-allies. 26 species 
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6.10.2 LITERARURE SURVEY ON RANGE LIMITS 

Elevational range limits in regions adjacent to our study area (Ladakh, India) were 

compiled from the following resources: the Flora of Pakistan 

(https://www.tropicos.org/Project/Pakistan), the Flora of China (www.eFloras.org), the 

Flora of Nanga Parbat (Dickoré & Nüsser, 2000), The Himalayan Uplands Plant database 

(Dickoré, 2011) and the Global Biodiversity Information Facility (GBIF, 

https://www.gbif.org). Records from the GBIF were rounded to nearest hundred. 

Unreliable outliers based on historical records (i.e. proclaimed elevation more than 

1000 m apart from other records) were not taken into account and the next closest, 

reliable occurrence extreme was used instead.   
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APPENDIX 2:  SUPPLEMENTARY TABLE S   

Table S1 Model results ordered by species grouping applied and model used. Number of species 
(n), Goodness-of-fit measures: Pearson correlation (cor), mean absolute error (MAE), root mean  
squared error (RMSE, normalized root mean squarred error (nRMSE) 

Grouping Model Species group n Atractor: mean Atractor: sd Goodness of fit 

    estimate (95% CI) estimate (95% CI) cor MAE RMSE nRMSE 

none MDE - 1054 - - 0.718 140.875 155.743 0.148 

 MPA1a - 1054 2848 (2659; 3114) 1078 (946; 1185) 0.993 17.655 25.862 0.025 

 MPA1b - 1054 2431 (1324; 3044) 1229 (989; 1595) 0.994 16.665 24.493 0.023 

 MPA2a - 1054 3913 (3873; 3949) 600 (570; 630) 0.990 26.025 32.897 0.031 

 MPA2b - 1054 3913 (3876; 3948) 600 (570; 632) 0.990 26.015 32.936 0.031 
Biogeo-
graphic MDE Central Asia 167 - - 0.813 22.820 25.202 0.151 

  Circumpolar 81 - - 0.791 10.980 12.160 0.150 

  Cosmopolitan 14 - - 0.174 3.215 3.643 0.260 

  Endemic 39 - - 0.822 4.260 4.958 0.127 

  Eurasia 140 - - 0.147 34.875 38.711 0.277 

  Himalaya 131 - - 0.700 16.305 18.459 0.141 

  Iran 45 - - 0.291 9.650 11.126 0.247 

  Mediterran 24 - - 0.024 6.220 7.161 0.298 

  Pamir 59 - - 0.804 7.900 8.836 0.150 

  Tibet 126 - - 0.923 11.785 13.628 0.108 

  West Himalaya 205 - - 0.630 35.050 39.134 0.191 

 MPA1a Central Asia 167 3391 (2772; 3776) 819 (599; 1122) 0.995 3.190 4.379 0.026 

  Circumpolar 81 3203 (2692; 3684) 854 (605; 1164) 0.992 1.970 2.481 0.031 

  Cosmopolitan 14 3007 (2663; 3495) 663 (407; 1118) 0.888 1.100 1.510 0.108 

  Endemic 39 3497 (2704; 4115) 1112 (573; 2330) 0.988 1.255 1.563 0.040 

  Eurasia 140 2825 (2657; 3109) 609 (505; 698) 0.982 4.200 6.784 0.048 

  Himalaya 131 3645 (3234; 3850) 706 (558; 969) 0.990 2.760 3.699 0.028 

  Iran 45 3085 (2691; 3454) 588 (396; 796) 0.984 1.405 1.996 0.044 

  Mediterran 24 2868 (2659; 3217) 611 (451; 864) 0.941 1.375 2.194 0.091 

  Pamir 59 3625 (2914; 3987) 733 (492; 1194) 0.989 1.620 2.236 0.038 

  Tibet 126 5071 (4691; 5910) 990 (636; 1748) 0.992 4.020 5.204 0.041 

  West Himalaya 205 3155 (2717; 3495) 805 (631; 1007) 0.994 4.290 5.665 0.028 

 MPA1b Central Asia 167 3279 (1872; 3769) 866 (611; 1435) 0.995 3.280 4.431 0.027 

  Circumpolar 81 2744 (1061; 3684) 1018 (576; 1676) 0.992 1.955 2.455 0.030 

  Cosmopolitan 14 2181 (972; 3337) 920 (475; 1594) 0.881 1.115 1.547 0.110 

  Endemic 39 2860 (1009; 4142) 1701 (602; 5350) 0.986 1.585 1.886 0.048 

  Eurasia 140 2212 (1001; 2979) 773 (549; 1059) 0.983 4.360 6.646 0.047 

  Himalaya 131 3628 (3240; 3853) 710 (558; 950) 0.990 2.720 3.712 0.028 

  Iran 45 2640 (1079; 3447) 727 (429; 1183) 0.984 1.460 2.020 0.045 

  Mediterran 24 1869 (937; 3060) 863 (532; 1244) 0.950 1.420 2.088 0.087 

  Pamir 59 3489 (1677; 3976) 795 (486; 1680) 0.989 1.675 2.227 0.038 

  Tibet 126 5291 (4678; 7361) 1143 (659; 2521) 0.991 4.345 5.678 0.045 

  West Himalaya 205 3012 (1776; 3481) 858 (649; 1284) 0.993 4.400 5.824 0.028 
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Table S2 continued 

Grouping Model Species group n Atractor: mean Atractor: sd Goodness of fit 

    estimate (95% CI) estimate (95% CI) cor MAE RMSE nRMSE 

Biogeo-
graphic 

MPA2a Central Asia 167 4036 (3955; 4111) 482 (427; 548) 0.994 3.950 5.007 0.030 

 Circumpolar 81 3948 (3828; 4057) 516 (437; 623) 0.990 2.350 2.926 0.036 

  Cosmopolitan 14 3385 (2707; 3844) 779 (399; 1732) 0.954 0.700 1.010 0.072 

  Endemic 39 4062 (3866; 4242) 564 (443; 755) 0.985 1.015 1.501 0.038 

  Eurasia 140 3527 (3436; 3615) 457 (401; 533) 0.985 4.555 6.269 0.045 

  Himalaya 131 3924 (3825; 4019) 540 (466; 630) 0.987 3.110 4.122 0.031 

  Iran 45 3608 (3459; 3727) 434 (341; 554) 0.977 1.660 2.392 0.053 

  Mediterran 24 3307 (2751; 3639) 621 (394; 1063) 0.969 1.110 1.706 0.071 

  Pamir 59 4023 (3910; 4148) 474 (395; 577) 0.993 1.300 1.761 0.030 

  Tibet 126 4610 (4517; 4704) 530 (467; 612) 0.984 5.320 6.031 0.048 

  West Himalaya 205 3850 (3777; 3923) 504 (455; 566) 0.992 4.960 6.251 0.030 

 MPA2b Central Asia 167 4035 (3962; 4107) 482 (435; 540) 0.994 3.905 4.976 0.030 

  Circumpolar 81 3941 (3823; 4054) 513 (437; 615) 0.989 2.435 3.090 0.038 

  Cosmopolitan 14 2846 (1082; 3809) 1170 (432; 3183) 0.946 0.780 1.114 0.080 

  Endemic 39 4057 (3859; 4241) 572 (445; 750) 0.985 1.000 1.478 0.038 

  Eurasia 140 3525 (3426; 3611) 458 (392; 538) 0.985 4.510 6.183 0.044 

  Himalaya 131 3920 (3814; 4014) 542 (475; 626) 0.987 3.145 4.132 0.032 

  Iran 45 3615 (3474; 3732) 433 (344; 578) 0.975 1.695 2.464 0.055 

  Mediterran 24 3152 (1718; 3631) 693 (383; 1457) 0.973 1.060 1.631 0.068 

  Pamir 59 4021 (3906; 4146) 479 (396; 583) 0.992 1.350 1.826 0.031 

  Tibet 126 4615 (4531; 4710) 531 (473; 607) 0.984 5.220 5.985 0.047 

  West Himalaya 205 3849 (3769; 3917) 508 (456; 565) 0.993 4.790 6.070 0.030 

Life form MDE Graminoids 193 - - 0.791 22.420 24.860 0.129 

  Forbs 769 - - 0.722 101.425 112.598 0.146 

  Trees 10 - - 0.288 2.840 3.219 0.322 

  Shrubs 55 - - 0.602 11.430 12.570 0.229 

  Ferns 26 - - 0.102 3.895 4.275 0.164 

 MPA1a Graminoids 193 3048 (2678; 3495) 1037 (809; 1274) 0.991 3.970 5.428 0.028 

  Forbs 769 2833 (2661; 3144) 1120 (979; 1228) 0.993 13.995 20.050 0.026 

  Trees 10 3334 (2804; 3598) 286 (144; 557) 0.972 0.440 0.762 0.076 

  Shrubs 55 3062 (2668; 3541) 755 (536; 993) 0.992 1.375 2.033 0.037 

  Ferns 26 3313 (2884; 3493) 376 (254; 637) 0.942 0.820 1.378 0.053 

 MPA1b Graminoids 193 2575 (1125; 3502) 1218 (813; 1779) 0.991 4.145 5.497 0.028 

  Forbs 769 2131 (1054; 2924) 1371 (1074; 1738) 0.993 13.295 18.620 0.024 

  Trees 10 3154 (1293; 3573) 328 (145; 929) 0.972 0.440 0.762 0.076 

  Shrubs 55 2276 (990; 3448) 986 (582; 1431) 0.992 1.340 1.918 0.035 

  Ferns 26 3291 (2746; 3501) 384 (254; 712) 0.941 0.830 1.395 0.054 

 MPA2a Graminoids 193 3943 (3855; 4026) 598 (535; 681) 0.992 4.410 5.139 0.027 

  Forbs 769 3929 (3877; 3975) 611 (575; 650) 0.988 20.225 25.950 0.034 

  Trees 10 3618 (3322; 3856) 373 (199; 811) 0.969 0.455 0.820 0.082 

  Shrubs 55 3851 (3716; 3977) 462 (382; 576) 0.990 1.905 2.439 0.044 

  Ferns 26 3446 (3257; 3597) 359 (258; 537) 0.959 0.670 1.170 0.045 
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Table S2 continued 

Grouping Model Species group n Atractor: mean Atractor: sd Goodness of fit 

    estimate (95% CI) estimate (95% CI) cor MAE RMSE nRMSE 

Life form MPA2b Graminoids 193 3942 (3846; 4033) 599 (534; 675) 0.991 4.540 5.308 0.028 

  Forbs 769 3930 (3882; 3974) 611 (574; 650) 0.988 20.430 26.100 0.034 

  Trees 10 3544 (1966; 3869) 455 (199; 1809) 0.969 0.460 0.825 0.082 

  Shrubs 55 3853 (3722; 3978) 464 (376; 593) 0.989 1.930 2.499 0.045 

  Ferns 26 3448 (3251; 3601) 363 (258; 550) 0.961 0.680 1.158 0.045 

Habitat MDE Ruderals 155 - - 0.103 41.470 46.878 0.302 

  Natural 899 - - 0.804 101.855 114.032 0.127 

 MPA1a Ruderals 155 2720 (2652; 2869) 578 (519; 646) 0.965 6.855 11.432 0.074 

  Natural 899 3286 (2918; 3543) 977 (836; 1172) 0.996 12.545 16.941 0.019 

 MPA1b Ruderals 155 1388 (915; 2221) 856 (687; 987) 0.972 5.740 10.025 0.065 

  Natural 899 3274 (2853; 3518) 983 (842; 1190) 0.996 12.745 17.099 0.019 

 MPA2a Ruderals 155 3483 (3398; 3576) 482 (419; 557) 0.974 6.910 9.690 0.063 

  Natural 899 3995 (3954; 4035) 581 (551; 613) 0.989 23.270 28.704 0.032 

 MPA2b Ruderals 155 3485 (3387; 3572) 482 (416; 564) 0.974 6.900 9.691 0.063 

  Natural 899 3993 (3952; 4032) 581 (552; 612) 0.989 23.405 28.738 0.032 

Taxonomic MDE Amaranthaceae 38 - - 0.574 7.735 8.767 0.231 

  Apiaceae 23 - - 0.602 3.910 4.412 0.192 

  Boraginaceae 39 - - 0.534 5.995 7.072 0.181 

  Brassicaceae 61 - - 0.961 3.100 3.736 0.061 

  Caprifoliaceae 11 - - 0.550 2.310 2.733 0.248 

  Caryophyllaceae 37 - - 0.808 4.885 5.503 0.149 

  Compositae 133 - - 0.562 20.385 22.980 0.173 

  Crassulaceae 12 - - 0.910 1.230 1.546 0.129 

  Cyperaceae 50 - - 0.944 2.575 3.285 0.066 

  Gentianaceae 34 - - 0.745 4.615 5.150 0.151 

  Juncaceae 10 - - 0.720 2.115 2.335 0.234 

  Lamiaceae 28 - - 0.638 5.030 5.645 0.202 

  Leguminosae 57 - - 0.750 6.875 7.778 0.136 

  Onagraceae 13 - - 0.530 3.330 3.814 0.293 

  Orobanchaceae 19 - - 0.586 3.640 4.157 0.219 

  Papaveraceae 22 - - 0.928 1.950 2.317 0.105 

  Plantaginaceae 21 - - 0.559 3.855 4.268 0.203 

  Poaceae 132 - - 0.720 17.875 20.098 0.152 

  Polygonaceae 32 - - 0.555 6.970 7.744 0.242 

  Primulaceae 19 - - 0.862 2.120 2.683 0.141 

  Ranunculaceae 51 - - 0.865 5.135 5.889 0.115 

  Rosaceae 40 - - 0.886 3.290 3.971 0.099 

  Saxifragaceae 20 - - 0.906 1.580 2.025 0.101 
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Table S2 continued 

Grouping Model Species group n Atractor: mean Atractor: sd Goodness of fit 

    estimate (95% CI) estimate (95% CI) cor MAE RMSE nRMSE 

Taxonomic MPA1a Amaranthaceae 38 2916 (2658; 3395) 753 (553; 1006) 0.966 1.920 2.818 0.074 

  Apiaceae 23 3048 (2669; 3597) 836 (528; 1256) 0.982 0.770 1.046 0.045 

  Boraginaceae 39 3340 (2715; 3973) 1038 (588; 1758) 0.935 2.365 3.052 0.078 

  Brassicaceae 61 3546 (2684; 5112) 2408 (1340; 3434) 0.978 2.525 3.098 0.051 

  Caprifoliaceae 11 3224 (2679; 3935) 777 (377; 2328) 0.970 0.450 0.806 0.073 

  Caryophyllaceae 37 3176 (2677; 4199) 1568 (858; 3110) 0.951 2.470 2.921 0.079 

  Compositae 133 2828 (2655; 3184) 1147 (954; 1399) 0.944 7.270 9.291 0.070 

  Crassulaceae 12 4065 (2765; 5811) 1811 (485; 3412) 0.928 1.045 1.387 0.116 

  Cyperaceae 50 3174 (2668; 3882) 1491 (875; 2997) 0.972 1.900 2.319 0.046 

  Gentianaceae 34 3075 (2668; 3648) 932 (615; 1399) 0.982 1.095 1.447 0.043 

  Juncaceae 10 3698 (2729; 5360) 1352 (350; 3339) 0.925 1.110 1.360 0.136 

  Lamiaceae 28 3108 (2671; 3682) 949 (581; 1591) 0.977 1.135 1.550 0.055 

  Leguminosae 57 2981 (2661; 3512) 1131 (834; 1491) 0.966 2.510 3.131 0.055 

  Onagraceae 13 3559 (2785; 3905) 436 (215; 908) 0.987 0.435 0.716 0.055 

  Orobanchaceae 19 3129 (2676; 3682) 740 (436; 1248) 0.974 0.835 1.163 0.061 

  Papaveraceae 22 4176 (2782; 5736) 1648 (511; 3393) 0.952 1.455 1.850 0.084 

  Plantaginaceae 21 3175 (2676; 3752) 850 (492; 1463) 0.955 1.185 1.521 0.072 

  Poaceae 132 3053 (2682; 3504) 954 (714; 1223) 0.989 3.350 4.372 0.033 

  Polygonaceae 32 3035 (2675; 3480) 598 (409; 831) 0.989 0.960 1.364 0.043 

  Primulaceae 19 3730 (2834; 4142) 733 (356; 1862) 0.945 1.160 1.575 0.083 

  Ranunculaceae 51 3942 (3501; 4175) 591 (427; 1020) 0.989 1.355 1.674 0.033 

  Rosaceae 40 3443 (2716; 4046) 1160 (594; 2440) 0.977 1.490 1.825 0.046 

  Saxifragaceae 20 5186 (3665; 6096) 1747 (662; 3309) 0.973 0.855 1.197 0.060 

 MPA1b Amaranthaceae 38 1786 (929; 3025) 1044 (678; 1388) 0.966 1.995 2.755 0.073 

  Apiaceae 23 2080 (945; 3481) 1143 (602; 1780) 0.979 0.870 1.127 0.049 

  Boraginaceae 39 2717 (1046; 3943) 1378 (616; 2780) 0.938 2.355 3.052 0.078 

  Brassicaceae 61 2818 (972; 6813) 4110 (1772; 6767) 0.976 2.555 3.103 0.051 

  Caprifoliaceae 11 2410 (969; 3718) 1219 (435; 4717) 0.970 0.480 0.837 0.076 

  Caryophyllaceae 37 2103 (947; 4239) 2247 (1064; 5877) 0.963 2.135 2.498 0.068 

  Compositae 133 1590 (930; 2727) 1547 (1144; 1918) 0.954 6.475 8.307 0.062 

  Crassulaceae 12 3870 (1089; 7488) 4020 (702; 6853) 0.928 1.060 1.414 0.118 

  Cyperaceae 50 2175 (937; 3750) 2016 (996; 4344) 0.973 1.850 2.296 0.046 

  Gentianaceae 34 2158 (976; 3471) 1257 (720; 1905) 0.982 1.060 1.442 0.042 

  Juncaceae 10 3089 (1004; 7278) 2869 (460; 6685) 0.888 1.380 1.643 0.164 

  Lamiaceae 28 2242 (929; 3618) 1220 (514; 2055) 0.980 1.030 1.453 0.052 

  Leguminosae 57 1890 (949; 3170) 1511 (1002; 2140) 0.969 2.325 2.926 0.051 

  Onagraceae 13 3075 (1147; 3842) 651 (212; 1664) 0.983 0.570 0.877 0.067 

  Orobanchaceae 19 2214 (977; 3476) 1066 (543; 1738) 0.971 0.975 1.262 0.066 

  Papaveraceae 22 3944 (1230; 7397) 3570 (679; 6869) 0.938 1.720 2.115 0.096 

  Plantaginaceae 21 2536 (1001; 3830) 1078 (472; 2096) 0.951 1.230 1.584 0.075 

  Poaceae 132 2423 (1011; 3438) 1182 (763; 1695) 0.988 3.650 4.625 0.035 
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Grouping Model Species group n Atractor: mean Atractor: sd Goodness of fit 

    estimate (95% CI) estimate (95% CI) cor MAE RMSE nRMSE 

Taxonomic MPA1b Polygonaceae 32 2274 (948; 3370) 811 (447; 1256) 0.988 1.050 1.466 0.046 

  Primulaceae 19 3446 (1338; 4250) 1235 (371; 5658) 0.947 1.150 1.628 0.086 

  Ranunculaceae 51 3947 (3538; 4176) 591 (424; 917) 0.989 1.385 1.721 0.034 

  Rosaceae 40 2743 (1025; 4139) 1784 (631; 5434) 0.977 1.545 1.877 0.047 

  Saxifragaceae 20 5695 (1938; 7761) 3235 (797; 6781) 0.965 1.010 1.373 0.069 

 MPA2a Amaranthaceae 38 3742 (3510; 3926) 547 (413; 758) 0.988 1.265 1.677 0.044 

  Apiaceae 23 3618 (2992; 3944) 674 (423; 1275) 0.967 1.090 1.425 0.062 

  Boraginaceae 39 3935 (3693; 4126) 625 (471; 857) 0.932 2.455 3.034 0.078 

  Brassicaceae 61 4234 (4017; 4441) 755 (598; 1000) 0.979 2.050 2.584 0.042 

  Caprifoliaceae 11 3679 (2937; 4027) 590 (280; 1551) 0.936 0.680 1.149 0.104 

  Caryophyllaceae 37 4070 (3804; 4272) 660 (500; 945) 0.960 2.300 2.665 0.072 

  Compositae 133 3847 (3674; 3987) 722 (616; 872) 0.967 5.420 6.839 0.051 

  Crassulaceae 12 4253 (3766; 4666) 607 (336; 1591) 0.942 0.800 1.183 0.099 

  Cyperaceae 50 3998 (3657; 4218) 755 (566; 1100) 0.943 2.775 3.253 0.065 

  Gentianaceae 34 3824 (3531; 4073) 627 (458; 914) 0.959 1.535 2.196 0.065 

  Juncaceae 10 4016 (3369; 4376) 536 (267; 1810) 0.962 0.680 0.917 0.092 

  Lamiaceae 28 3897 (3648; 4108) 562 (414; 824) 0.974 1.190 1.694 0.061 

  Leguminosae 57 3877 (3618; 4076) 702 (555; 933) 0.945 3.325 3.925 0.069 

  Onagraceae 13 3811 (3640; 3962) 284 (182; 448) 0.986 0.460 0.735 0.057 

  Orobanchaceae 19 3697 (3297; 3950) 539 (351; 933) 0.968 0.960 1.296 0.068 

  Papaveraceae 22 4311 (3996; 4583) 619 (416; 1075) 0.959 0.990 1.478 0.067 

  Plantaginaceae 21 3755 (3136; 4039) 617 (376; 1287) 0.977 0.710 1.082 0.052 

  Poaceae 132 3896 (3785; 3997) 580 (501; 670) 0.991 3.230 3.903 0.030 

  Polygonaceae 32 3711 (3530; 3878) 465 (349; 645) 0.988 1.030 1.432 0.045 

  Primulaceae 19 4007 (3765; 4223) 455 (317; 707) 0.936 1.375 1.674 0.088 

  Ranunculaceae 51 4109 (3986; 4237) 457 (376; 566) 0.989 1.365 1.727 0.034 

  Rosaceae 40 4061 (3856; 4246) 582 (462; 754) 0.966 1.805 2.256 0.056 

  Saxifragaceae 20 4705 (4359; 5152) 702 (447; 1310) 0.962 0.985 1.312 0.066 

 MPA2b Amaranthaceae 38 3755 (3523; 3944) 544 (408; 756) 0.988 1.285 1.704 0.045 

  Apiaceae 23 3576 (2352; 3944) 716 (425; 1564) 0.970 1.010 1.353 0.059 

  Boraginaceae 39 3910 (3621; 4135) 640 (470; 954) 0.934 2.435 2.989 0.077 

  Brassicaceae 61 4231 (4012; 4456) 754 (593; 1006) 0.978 2.110 2.636 0.043 

  Caprifoliaceae 11 3576 (1431; 4157) 847 (297; 4570) 0.939 0.660 1.122 0.102 

  Caryophyllaceae 37 4065 (3830; 4280) 672 (499; 957) 0.960 2.280 2.631 0.071 

  Compositae 133 3846 (3679; 3999) 724 (612; 877) 0.967 5.385 6.810 0.051 

  Crassulaceae 12 4281 (2764; 5970) 988 (327; 5708) 0.944 0.790 1.196 0.100 

  Cyperaceae 50 4010 (3708; 4255) 740 (555; 1102) 0.943 2.780 3.253 0.065 

  Gentianaceae 34 3821 (3497; 4054) 627 (459; 943) 0.960 1.550 2.169 0.064 

  Juncaceae 10 3980 (3234; 4305) 617 (283; 2915) 0.963 0.650 0.911 0.091 

  Lamiaceae 28 3886 (3576; 4139) 572 (412; 873) 0.975 1.170 1.666 0.059 

  Leguminosae 57 3876 (3588; 4070) 705 (547; 936) 0.945 3.300 3.899 0.068 

  Onagraceae 13 3808 (3648; 3980) 290 (190; 511) 0.988 0.420 0.693 0.053 

  Orobanchaceae 19 3667 (3002; 3945) 567 (350; 1279) 0.963 1.020 1.378 0.073 
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Grouping Model Species group n Atractor: mean Atractor: sd Goodness of fit 

    estimate (95% CI) estimate (95% CI) cor MAE RMSE nRMSE 

Taxonomic MPA2b Papaveraceae 22 4297 (4014; 4602) 647 (425; 1083) 0.961 1.000 1.442 0.066 

  Plantaginaceae 21 3738 (3143; 4020) 598 (377; 1258) 0.974 0.770 1.151 0.055 

  Poaceae 132 3895 (3782; 3991) 581 (506; 679) 0.991 3.200 3.866 0.029 

  Polygonaceae 32 3713 (3518; 3860) 463 (352; 628) 0.988 0.985 1.445 0.045 

  Primulaceae 19 4006 (3808; 4207) 456 (319; 714) 0.933 1.380 1.709 0.090 

  Ranunculaceae 51 4109 (3989; 4235) 453 (368; 569) 0.989 1.330 1.687 0.033 

  Rosaceae 40 4060 (3860; 4247) 583 (450; 783) 0.965 1.825 2.277 0.057 

    Saxifragaceae 20 4752 (4295; 5948) 872 (446; 3456) 0.966 0.930 1.251 0.063 
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