
Charles University in Prague

Faculty of Mathematics and Physics

Mathematical Properties

of Dependency Trees

and their Application

to Natural Language Syntax

Ji°í Havelka

Ph.D. Thesis

Prague, June 2007

Doctoral thesis

Author: Ji°í Havelka

Institute of Formal and Applied Linguistics
Charles University in Prague
Faculty of Mathematics and Physics
Malostranské nám¥stí 25, 118 00 Praha 1, Czech Republic
email: jiri.havelka@mff.cuni.cz

Supervisor: Prof. PhDr. Eva Haji£ová, DrSc.
Institute of Formal and Applied Linguistics
Charles University in Prague
Faculty of Mathematics and Physics
Malostranské nám¥stí 25, 118 00 Praha 1, Czech Republic

Department: Institute of Formal and Applied Linguistics
Charles University in Prague
Faculty of Mathematics and Physics
Malostranské nám¥stí 25, 118 00 Praha 1, Czech Republic

Contents

List of Algorithms 4

List of Figures 5

List of Tables 6

Preface 8

Introduction 9

I Theoretical results 12

1 Preliminaries 13
1.1 Rooted trees and dependency trees 13
1.2 Data representations of rooted trees and dependency trees . . 18

1.2.1 Data representation of a node 18
1.2.2 Data representation of a whole dependency tree 19

1.3 Remark on processing rooted trees 20

2 Projectivity and basic properties of non-projective edges 22
2.1 Condition of projectivity in dependency trees 22
2.2 Non-projective edges and their gaps 24
2.3 Simple algorithm for �nding non-projective edges and deter-

mining their gaps . 26

3 Projectivity and projective orderings of dependency trees 27
3.1 An alternative condition of projectivity 27
3.2 Projective orderings of a rooted tree 30

1

3.3 Algorithm for projectivizing 34
3.4 Using the algorithm for checking projectivity 37

4 Level types of non-projective edges 38
4.1 Basic properties of level types and their relationship to pro-

jectivity . 38
4.2 Algorithm for �nding non-projective edges of non-negative

level type . 42
4.3 Using the algorithm for checking projectivity and for �nding

all non-projective edges . 47
4.4 Combining algorithms for �nding non-projective edges of non-

negative level types and for projectivizing 49

5 Planarity and non-projective edges 51
5.1 Condition of planarity . 51
5.2 Planarity and non-projective edges 54
5.3 Characterization of planarity using single non-projective edges 56
5.4 Checking planarity . 58
5.5 Remark on NP-completeness of multiplanarity 60

6 Well-nestedness and non-projective edges 62
6.1 Original formulation of well-nestedness 62
6.2 Reformulation of well-nestedness in terms of edges 64
6.3 Characterization of well-nestedness using pairs of non-projective

edges . 65
6.4 Su�cient condition for ill-nestedness 66
6.5 Characterization of well-nestedness using single edges 66
6.6 Checking well-nestedness . 68

7 Partitioning of gaps of non-projective edges 71
7.1 Partitioning of gaps into intervals 71
7.2 Partitioning of gaps into components 72
7.3 Combining levels of nodes and partitioning of gaps into intervals 74

8 Formulas for counting some classes of trees 76
8.1 Unrestricted dependency trees 76
8.2 Projective and planar trees . 77
8.3 Well-nested trees . 77
8.4 Note on asymptotic growths 78

2

II Empirical results 80

9 Empirical evaluation of algorithms for �nding non-projective
edges 81

10 Evaluation of tree and edge properties on natural language
data 83
10.1 Experimental setup . 83

10.1.1 Natural language treebanks 84
10.1.2 Reported tree and edge properties 85
10.1.3 Note on computing the tree and edge properties 86
10.1.4 Program tools . 87

10.2 Empirical results . 87
10.2.1 Arabic . 88
10.2.2 Basque . 89
10.2.3 Bulgarian . 91
10.2.4 Catalan . 92
10.2.5 Czech . 93
10.2.6 Danish . 95
10.2.7 Dutch . 96
10.2.8 English . 98
10.2.9 German . 100
10.2.10 Greek . 102
10.2.11 Hungarian . 103
10.2.12 Italian . 105
10.2.13 Japanese . 106
10.2.14 Latin . 108
10.2.15 Portuguese . 113
10.2.16 Slovene . 115
10.2.17 Spanish . 116
10.2.18 Swedish . 117
10.2.19 Turkish . 119

10.3 Discussion . 121
10.3.1 Tree properties . 121
10.3.2 Edge properties . 121

10.4 Conclusion . 123

Index 124

Bibliography 127

3

List of Algorithms

1 Sketch of algorithm for determining gaps of non-projective edges 26
2 Sketch of algorithm for general projectivization 34
3 Algorithm for general projectivization 35
4 Sketch of algorithm for �nding non-projective edges of non-

negative level type . 43
5 Algorithm for �nding non-projective edges of non-negative

level type . 44
6 Sketch of algorithm for �nding non-projective edges of non-

negative level type and general projectivization 49
7 Sketch of algorithm for checking planarity 58
8 Sketch of algorithm for determining upper non-planar sets . . 59
9 Sketch of algorithm for determining ill-nested sets 69
10 Sketch of algorithm for determining upper ill-nested sets . . . 69

4

List of Figures

1.1 Sample non-projective dependency tree and its data represen-
tation . 20

2.1 Sample projective and non-projective dependency trees 23

3.1 Sample non-projective dependency tree showing that condi-
tion (†) is not equivalent to projectivity 29

3.2 Example of canonical projectivization 31

4.1 Sample con�gurations with non-projective edges of negative,
zero, and positive level types 40

4.2 Sample minimal non-projective dependency tree with a non-
projective edge of level type −1 41

5.1 Sample non-planar dependency trees 52
5.2 Relationship between planar totally ordered unrooted trees

and projective dependency trees 53

6.1 Schematic visualization of well-nested and ill-nested depen-
dency trees . 63

6.2 Sample ill-nested dependency trees 64

7.1 Sample dependency trees showing mutual independence of in-
terval degree and component degree of a non-projective edge . 73

10.1 Sample non-projective dependency tree considered planar in
empirical evaluation . 87

5

List of Tables

8.1 Counts of trees of some classes of rooted trees on small num-
bers of nodes . 79

9.1 Summary of non-projective dependency trees and edges on
analytical layer of PDT 2.0 82

9.2 Running times of Algorithm 5 and simple Algorithm 1 for
�nding non-projective edges on PDT 2.0 82

10.1 Arabic: Counts of dependency trees violating global constraints 88
10.2 Arabic: Counts of properties of non-projective edges 88
10.3 Basque: Counts of dependency trees violating global con-

straints . 89
10.4 Basque: Counts of properties of non-projective edges 89
10.5 Bulgarian: Counts of dependency trees violating global con-

straints . 91
10.6 Bulgarian: Counts of properties of non-projective edges . . . 91
10.7 Catalan: Counts of dependency trees violating global con-

straints . 92
10.8 Catalan: Counts of properties of non-projective edges 92
10.9 Czech: Counts of dependency trees violating global constraints 93
10.10 Czech: Counts of properties of non-projective edges 93
10.11 Danish: Counts of dependency trees violating global constraints 95
10.12 Danish: Counts of properties of non-projective edges 95
10.13 Dutch: Counts of dependency trees violating global constraints 96
10.14 Dutch: Counts of properties of non-projective edges 96
10.15 English: Counts of dependency trees violating global con-

straints . 98
10.16 English: Counts of properties of non-projective edges 98

6

10.17 German: Counts of dependency trees violating global con-
straints . 100

10.18 German: Counts of properties of non-projective edges 100
10.19 Greek: Counts of dependency trees violating global constraints102
10.20 Greek: Counts of properties of non-projective edges 102
10.21 Hungarian: Counts of dependency trees violating global con-

straints . 103
10.22 Hungarian: Counts of properties of non-projective edges . . . 103
10.23 Italian: Counts of dependency trees violating global constraints105
10.24 Italian: Counts of properties of non-projective edges 105
10.25 Japanese: Counts of dependency trees violating global con-

straints . 106
10.26 Japanese: Counts of properties of non-projective edges 106
10.27 Latin � Cicero: Counts of dependency trees violating global

constraints . 108
10.28 Latin � Cicero: Counts of properties of non-projective edges . 108
10.29 Latin � Caesar: Counts of dependency trees violating global

constraints . 109
10.30 Latin � Caesar: Counts of properties of non-projective edges 109
10.31 Latin � Vergil: Counts of dependency trees violating global

constraints . 110
10.32 Latin � Vergil: Counts of properties of non-projective edges . 110
10.33 Latin � Jerome: Counts of dependency trees violating global

constraints . 112
10.34 Latin � Jerome: Counts of properties of non-projective edges 112
10.35 Portuguese: Counts of dependency trees violating global con-

straints . 113
10.36 Portuguese: Counts of properties of non-projective edges . . . 113
10.37 Slovene: Counts of dependency trees violating global con-

straints . 115
10.38 Slovene: Counts of properties of non-projective edges 115
10.39 Spanish: Counts of dependency trees violating global con-

straints . 116
10.40 Spanish: Counts of properties of non-projective edges 116
10.41 Swedish: Counts of dependency trees violating global con-

straints . 117
10.42 Swedish: Counts of properties of non-projective edges 117
10.43 Turkish: Counts of dependency trees violating global con-

straints . 119
10.44 Turkish: Counts of properties of non-projective edges 119

7

Preface

Both theoretical and empirical results presented in this thesis have been, at
least partially, published.

Preliminary versions of our approach to projectivity were published in
[Veselá and Havelka, 2003], [Veselá et al., 2004], and [Haji£ová et al., 2004];
these papers contain an error recti�ed in [Havelka, 2005a], see also remark
on page 29 in Section 3.1.

Preliminary results on our alternative condition of projectivity and level
types of non-projective edges (Chapters 3 and 4) were �rst published in
[Havelka, 2005a] and [Havelka, 2005b].

The characterization of the condition of well-nestedness through non-
projective edges (Chapter 6) was presented in a shorter form in [Havelka,
2007b].

An empirical evaluation of formal means for describing non-projective de-
pendency structures in natural language was presented in [Havelka, 2007a].
These means have been utilized in a continuing collaborative work on depen-
dency parsing, published as [Hall et al., 2007].

8

Introduction

This thesis studies properties of mathematical structures used as models
of syntactic structures in dependency analysis of natural languages. These
mathematical structures are rooted trees, supplemented with a total order
on the set of their nodes; as our primary �eld of application is computational
linguistics, we call these mathematical structures simply dependency trees.
We also empirically evaluate how mathematical properties of dependency
trees can be used to describe dependency structures occurring in natural
languages on treebanks from several languages.

In the theoretical part, we develop new formal tools capable of describing
the interaction of the tree structure of a rooted tree with total orders on the
set of its nodes. We also present several algorithms for related problems.

First, we develop tools for describing projective dependency trees and all
projective orderings on arbitrary rooted trees. A novel alternative condition
of projectivity for dependency trees is the key result, which allows us to
derive easily the results for projective orderings.

Second and most importantly, we show that properties of non-projective
edges, combined with levels of nodes, provide powerful mathematical tools
for describing arbitrary non-projective dependency trees. We use them to
characterize three global constraints on dependency trees, namely projectiv-
ity, planarity, and well-nestedness. (Although all three constraints can be
applied to more general structures, we concentrate on their application to
dependency trees.)

The approach to properties of rooted trees and dependency trees pre-
sented in this thesis can be characterized as analytical or graph-theoretic (an
approach exempli�ed by Marcus [1967]), as opposed to generative or formal-
language-theoretic (i.e., an approach using theory of formal languages, for
dependency syntax starting with the work of Gaifman [1965]). The recently
renewed interest in dependency analysis of natural languages has brought

9

also new results taking to the other approach, applying the theory of formal
languages to dependency syntax [Kuhlmann and Möhl, 2007].

Even though our theoretical results for dependency trees and rooted trees
are general and independent of any particular way of drawing the trees, to
a large extent they have been inspired by geometric intuition. We use a
visualization of dependency trees that utilizes the two dimensions of a plane
to capture both the tree structure and the total order on all nodes explicitly.
The reader is encouraged to draw pictures of dependency trees to get a better
grasp of the presented results.

In the empirical part, we evaluate on natural language treebanks some of
the presented theoretical results. Most importantly, we present an extensive
evaluation on nineteen languages of some of the mathematical properties
of dependency trees that can be used to describe non-projective structures
occurring in natural languages. We show that our principal analytical tool,
properties of non-projective edges combined with levels of nodes, are capable
of delimiting non-projective structures in natural languages most accurately.

Outline of the thesis

We begin the theoretical part by Chapter 1 presenting formal preliminaries,
i.e., basic notions and notation.

Chapter 2 presents formally the condition of projectivity; we also intro-
duce the notion of a non-projective edge and its gap, which is the main
analytical tool in this thesis.

In Chapter 3, we derive an alternative condition of projectivity, which al-
lows us to develop formal tools for the characterization of all possible projec-
tive total orders on a rooted tree. We introduce the notion of a projectiviza-
tion of a rooted tree, which can be informally described as an underspeci�ed
description of a projective total order of nodes of a general dependency tree,
speci�ed through total orders on parts of the rooted tree. We also present a
linear algorithm for computing projective total orders, based on our charac-
terization of projectivity.

Chapter 4 discusses the interaction of levels of nodes and gaps of non-
projective edges in a dependency tree. We de�ne level types of non-projective
edges and show how they give yet another characterization of projectivity.
We derive a linear algorithm for �nding all non-projective edges of the level
types that characterize non-projectivity.

Using non-projective edges and levels of nodes as tools, we give new char-
acterizations of planarity in Chapter 5 and of well-nestedness in Chapter 6.
We also derive algorithms for checking planarity and well-nestedness that
utilize the algorithm for �nding non-projective edges in a dependency tree.

10

In Chapter 7, we look at ways of partitioning the gaps of non-projective
edges. These properties of individual non-projective edges can be used to de-
scribe non-projective dependency structures occurring in natural languages;
they are, among others, used in the empirical evaluation.

To close the theoretical part, in Chapter 8 we brie�y review formulas for
counting trees in the classes of trees we are concerned with in this thesis.

In the empirical part, we �rst evaluate in Chapter 9 the actual run-
ning time of our algorithm for �nding non-projective edges characterizing
non-projectivity. We compare it with a naive algorithm for �nding all non-
projective edges to empirically verify its theoretical complexity bound.

In Chapter 10, we present an extensive evaluation of some of the tree and
edge properties of non-projective dependency trees we study in the theoretical
part. Our empirical results corroborate theoretical results and show that
an edge-based approach using levels of nodes provides accurate and at the
same time expressive tools for capturing non-projective structures in natural
language.

11

Part I

Theoretical results

12

Chapter 1
Preliminaries

This chapter introduces basic notions and notation used in this thesis. The
reader may skip it and consult it only when need arises, all terms are refer-
enced in the index.

We presuppose knowledge of basics of graph theory and algorithm theory.
In our analysis of algorithms, we assume a generic one-processor, random-
access machine model of computation. The reader can consult any standard
book on graph theory and any standard book on algorithms (we recommend
the book [Cormen et al., 2001]) for further details not covered here.

1.1 Rooted trees and dependency trees

We give a de�nition of rooted trees and dependency trees, without proofs
brie�y review some basic properties of rooted trees, and introduce some fur-
ther notions and notation.

1.1.1 De�nition. A rooted tree T is a pair (V,→), where V is a �nite set
of nodes and → is a binary relation on V satisfying

a) relation → is acyclic;

b) for all v ∈ V , there is at most one node p ∈ V such that p→ v; we call
every such pair of nodes an edge;

c) there is a root node r ∈ V such that for all nodes v ∈ V there is a path
r →∗ v from the root node r to node v. (For any binary relation R, we
denote its re�exive and transitive closure as R∗.)

13

Preliminaries 14

If we drop the condition c) from De�nition 1.1.1, we get a de�nition of
a forest , which allows for multiple root nodes. In this thesis, we are by and
large concerned with rooted trees; we will need the notion of a forest only at
one place in the thesis.

For every node i of a rooted tree T = (V,→) we call the tree Ti = (Vi,→i),
where Vi = {v ∈ V | i →∗ v} and →i = → � Vi (i.e., relation →i is the
restriction of relation→ to Vi), the subtree of rooted tree T rooted in node i.
(The restriction of a binary relation R to a set S is the relation R∩ (S×S).)

Relation → models linguistic dependency, therefore we call it the depen-
dency relation of a rooted tree T . Relation →∗ is often called subordination.

Remark. Rooted trees can be conceived of both as undirected and directed.
In the undirected case, the direction of edges can be induced on them using
paths connecting all nodes with the root node. The de�nition of a directed,
rooted tree we give here is one of many equivalent ways of de�ning rooted
trees.

A dependency tree is a rooted tree supplemented with a total order on
the set of its nodes.

1.1.2 De�nition. A dependency tree is a triple (V,→,�), where (V,→) is
a rooted tree and � is a total order on V .

Dependency trees could be called totally ordered rooted trees, but through-
out this thesis we prefer to use the shorter term dependency trees.

The set of nodes V is often taken to be [n] = {1, . . . , n}, totally ordered
by the natural total order on integers. Our formulation is equivalent and we
use the symbol � to clearly mark the total order on the set of nodes V .

For every node i of a rooted tree T = (V,→,�) we call the tree Ti =
(Vi,→i,�i), where Vi = {v ∈ V | i →∗ v}, →i = → � Vi, and �i = � � Vi,
the subtree of dependency tree T rooted in node i (i.e., relations →i and �i

are the restrictions of relations → and � to Vi, respectively).
For every node j in a rooted tree T such that j 6= r, we call the unique

node p such that p→ j the parent of node j. Analogously, for every node i
we call any node c such that i→ c a child of node i (we also say that node c
depends on node i). Nodes with the same parent are called siblings . A node
with no child nodes is called a leaf , a node which is not a leaf is an internal
node.

We extend the terms parent and child also to edges: For an edge i → j
in a rooted tree T , we call node i its parent node and node j its child node.

For any two nodes a, d in a dependency tree T such that a →∗ d, we

Preliminaries 15

say that a is an ancestor of d, or that d is a descendant of a, or that d is
subordinated to a. (Note that the relation of dependency → is irre�exive,
whereas the relation of subordination →∗ is de�ned as re�exive.)

In a rooted tree, there is a one-to-one correspondence between its edges
and nodes di�erent from the root node (edges correspond uniquely to their
child nodes).

In a rooted tree T , there is a unique path from the root node r to every
node i, say v0 = r, v1, . . . , vk = i, k ≥ 0, where vl → vl+1 for 0 ≤ l < k.
Therefore every node i has a uniquely de�ned level equal to the length of the
path connecting it with the root, i.e. k, which we denote leveli. The height
of a rooted tree is de�ned as the maximum level occurring in it.

Although we de�ne rooted trees as directed, it is often advantageous to
treat them as undirected. We have already noted that both approaches to
rooted trees are equivalent.

The symmetrization ↔ df

=→∪→−1 of relation → represents undirected
dependency relation. It allows us to talk about edges without explicitly
specifying their direction, i.e. their parent and child nodes. In other words,
relation → represents directed edges and relation ↔ represents undirected
edges. We will use the symbol ↔ exclusively for the symmetrization of
dependency relation →.

To retain the ability to talk about the direction of edges when using the
relation ↔, for any edge i↔ j in a rooted tree T = (V,→) we de�ne

Parenti↔j =

{
i if i→ j

j if j → i

and

Childi↔j =

{
j if i→ j

i if j → i
.

We write i → j ∈ S as a shortcut for i → j & i, j ∈ S; analogous
convention applies also to undirected edges represented by relation ↔.

To make the exposition clearer through using geometric intuition (and to
enhance intelligibility by avoiding overuse of the symbol →), we introduce
notation for sets of descendants and ancestors of both nodes and edges in a

Preliminaries 16

rooted tree T = (V,→)

Subtreei = {v ∈ V | i→∗ v} ,

Subtreei↔j = {v ∈ V | Parenti↔j →∗ v} ,

Anci = {v ∈ V | v →∗ i} ,

Anci↔j = {v ∈ V | v →∗ Parenti↔j} .

Note that both notions of ancestors and descendants of an edge are de�ned
relative to the parent node of the edge.

When talking about the tree structure of a rooted tree T = (V,→) (and
thus also of a dependency tree), we use vertical-axis terms such as �above�,
�below�, �upper�, �lower� etc.; we draw dependency trees as is usual with the
root node at the top, cf. Convention on page 17.

To be able to talk concisely about the total order � on the set of nodes
V in a dependency tree, we de�ne open and closed intervals in a total order
� on V whose endpoints need not be in a prescribed order

(i, j) = {v ∈ V | min�{i, j} ≺ v ≺ max�{i, j}} ,

[i, j] = {v ∈ V | min�{i, j} � v � max�{i, j}} .

We do not mark explicitly with respect to which total order we take the
intervals, it will be always clear from context.

For an edge i→ j in a dependency tree T , we also refer informally to an
interval (be it open or closed) delimited by the endpoints of the edge also as
the span of edge i→ j.

When talking about the total order � on nodes of a dependency tree T =
(V,→,�), we use horizontal-axis terms such as �left�, �right�, �in between�
etc. (with the obvious meaning: we say that i is to the left from j when i ≺ j,
etc.).

For total orders, we freely switch between a total order and its re�exive
reduction, denoted by the presence and absence of an �or equals� part of the
total order symbol, respectively. (A re�exive reduction of a binary relation
R is the minimal binary relation R′ such that the re�exive closure of R′ is
R; i.e., R′ is obtained from R by removing all self-loops.)

We also use the notion of transitive reduction of a binary relation R,
which is any minimal binary relation R′ such that the transitive closure of
R′ is R (for total orders, the transitive reduction is unique). We use the
notation Rtr for the transitive reduction of a binary relation R.

For the sake of brevity of formulas concerning projectivity of dependency
trees, we introduce an auxiliary ternary predicate representing the �being

Preliminaries 17

siblings� relation

Sibl(j1, j2, i)
df⇐⇒ (i→ j1 & i→ j2 & j1 6= j2) .

An expanded reading of this predicate is �nodes j1 and j2 are di�erent child
nodes of their common parent node i�. Note that predicate Sibl is symmetric
in its �rst and second arguments.

Convention. In sample �gures, vertically nodes are drawn top-down ac-
cording to their increasing level, with nodes on the same level being the
same vertical distance from the root; horizontally nodes are drawn from left
to right according to the total order on nodes. We draw edges as solid lines,
non-trivial paths as dotted curves. Subtrees may be schematically drawn as
triangles with their upper tips representing their roots.

Remark. Figures may represent only subgraphs of dependency trees, not
their full subtrees (i.e., subtrees in the above de�ned sense).

We conclude this section with a simple property of rooted trees we will
use in proofs presented further in the thesis.

1.1.3 Proposition. Let i be a node and u↔ v any edge disjoint from i in
a rooted tree T = (V,→). Then

u ∈ Subtreei ⇐⇒ v ∈ Subtreei .

Proof. From the assumption u 6= i 6= v it immediately follows that u, v ∈
Subtreei ⇐⇒ Parentu↔v ∈ Subtreei, which is equivalent to the statement of
the proposition. 2

Remark. Note that the notion of a dependency tree (which can be thought
of as a totally ordered rooted tree, cf. De�nition 1.1.2) di�ers from the notion
of an ordered rooted tree, where for every internal node only a total order on
the set of its child nodes is given (i.e. there is not a single total order on all
nodes of the tree, there are only total orders on sets of sibling nodes). In this
thesis, we are concerned with rooted trees with a total order on the set of all
their nodes.

Preliminaries 18

1.2 Data representations of rooted trees and

dependency trees

Since we are concerned mainly with the interaction of the tree structure with
a total order on nodes, we will discuss in detail only the data representation
of dependency trees.

For rooted trees, we do not presuppose a speci�c data representation.
The reader may assume the standard left-child, right-sibling representation
of rooted trees, or a slight modi�cation thereof described below as a subset
of the data representation of dependency trees.

The data representation of dependency trees described in this section is
a minimal representation of both the tree structure of a dependency tree
and the total order on its nodes. Hence the representation subsumes a data
representation of rooted trees. The presented data representation is the data
representation we presuppose in the detailed versions of presented algorithms.

First we give the data structure for the representation of single nodes
and then we describe the requirements we pose on the data representation
of whole dependency trees.

If a di�erent data representation is used, it either has to be transformed
into the described one and the complexity of the transformation has to be
added to the complexity of the presented algorithms, or some of the op-
erations used in the algorithms that are assumed to be atomic have to be
implemented in a di�erent way and again their computational cost has to be
included in the resulting complexity of the modi�ed algorithms.

In this thesis, we present some algorithms only as high-level sketches.
For those algorithms, no speci�c data representation is presupposed, but we
assume that the data representation can be converted to the one described
in this section in linear time; cf. Section 1.2.2 for more details.

1.2.1 Data representation of a node

A node of a rooted tree or a dependency tree is represented as an object with
�elds containing pointers. Unless explicitly speci�ed otherwise, we assume
that the object contains the following pointer �elds:

left_child pointer to the linked list of the node's child nodes to the left
from the node (for dependency trees, the linked list is ordered inversely
to the total order on nodes; cf. below)

Preliminaries 19

right_child pointer to the linked list of the node's child nodes to the right
from the node (for dependency trees, the linked list is ordered according
to the total order on nodes; cf. below)

sibling pointer to a sibling (left sibling if the node is a left child of its
parent, right sibling if it is a right child)

prev pointer to previous node in the total order (used for dependency trees)

next pointer to next node in the total order (used for dependency trees)

We list here only those pointer �elds which are presupposed by the algorithms
concerning projectivity, rooted trees and dependency trees that we present in
full detail. In other algorithms, we need to be able to determine the relative
order of an arbitrary pair of nodes (this can be achieved e.g. by assigning each
node an order �eld containing an integer representing its order); we also need
access to parent nodes (e.g. by using a parent �eld containing for each node
except the root node a pointer to its parent node). In practical applications,
there would also be �elds containing other information associated with nodes
or edges (represented by their child nodes).

Convention. A pointer with no value assigned (i.e. an unde�ned pointer)
is considered as a null reference; we do not use a special value for the null
reference. The notation field[i] is used for the contents of the field �eld
of the object represented by pointer i.

1.2.2 Data representation of a whole dependency tree

We assume that for each node i in a dependency tree T = (V,→,�), its child
nodes can be traversed according to the total order � in linear time. This
assumption allows us to disregard any possible cost of ordering sibling nodes
according to �.

One possible way of achieving this is to require that in the data represen-
tation of a dependency tree the linked list of left (right) child nodes of a node
be ordered inversely (according) to the total order on nodes (respectively);
cf. the data representation of a node described in the previous section. In
fact, such a representation is only a minor variation of the standard left-child,
right-sibling representation of rooted trees and we use it for ease of exposi-
tion. We could equivalently use the standard representation with the sibling
list ordered according to the total order on nodes.

Preliminaries 20

Figure 1.1: Sample non-projective dependency tree and its data representa-
tion

This requirement on ordering of nodes is natural, but may not be present
in a di�erent data representation of dependency trees. Transforming dif-
ferent data representations so as to meet this requirement is usually quite
straightforward.

Figure 1.1 presents a sample a dependency tree and its data representa-
tion. Pointers to child nodes are depicted by solid arrows, pointers to siblings
by dashed arrows, and pointers representing the total order by dotted arrows.

1.3 Remark on processing rooted trees

In the algorithms presented in this thesis, we use some simple facts concerning
the processing of rooted trees.

We take advantage of the fact that a rooted tree can be processed in
linear time using a tree traversal. Two natural ways of traversing a general
rooted tree are pre-order and post-order tree traversals. Since the out-degree
of nodes in a rooted tree is not bounded, sibling nodes can be processed in
any order.

We use the term general post-order traversal of a rooted tree to stress
that in post-order traversal sibling nodes may be processed in any relative
order before processing their parent node.

Preliminaries 21

As a special case of a general post-order traversal, we will be using traver-
sal by levels from the deepest level to the root node, which can be achieved
e.g. using a queue as an auxiliary data structure.

Here is a sketch how to build such a queue: put the root node in the
queue; until you have reached the end of the queue, move to the next node
in the queue, append its child nodes (e.g., in the order corresponding to their
relative order in the total order on nodes; the actual order is irrelevant, as in
the case of general post-order traversal) at the end of the queue. If you want
to process nodes by levels bottom up, read the queue backwards.

Since we are also concerned with levels of nodes, we make a note that
using a pre-order traversal of a rooted tree, it is easy to compute levels of
all nodes in linear time. (The computation of levels for all nodes can by also
straightforwardly incorporated into the construction of a queue for bottom-
up traversal described above.)

In some of the algorithms discussed below, we need to be able to deter-
mine for a pair of nodes of a rooted tree whether one is subordinated to
the other one. Since it does not a�ect the worst-case time bounds we de-
rive for the relevant algorithms, we assume a simple quadratic algorithm for
pre-computing the subordination relation →∗ in a rooted tree T = (V,→).

We would like to remark that a more thorough analysis of the relevant
algorithms presented below might take advantage of more e�cient algorithms
for determining subordination, or of more general algorithms for determining
least common ancestors (in this thesis called lowest common ancestors).

Chapter 2
Projectivity and basic properties of

non-projective edges

This section reviews the condition of projectivity in dependency trees. We
present classical de�nitions of projectivity and introduce the notion of a non-
projective edge. Properties of non-projective edges will be studied in further
detail in subsequent chapters.

2.1 Condition of projectivity in dependency

trees

We begin by giving a de�nition of projectivity using three conditions pro-
posed in the early 1960's and proved to be equivalent by Marcus [1965]; we
denote the conditions by the names of those to whom Marcus attributes their
authorship.

2.1.1 De�nition (Marcus [1965]). A dependency tree T = (V,→,�) is
projective if the following equivalent conditions hold

(∀i, j, v ∈ V)
(
i→ j & v ∈ (i, j) =⇒ v ∈ Subtreei

)
,

(Harper & Hays)

(∀i, j, v ∈ V)
(
j ∈ Subtreei & v ∈ (i, j) =⇒ v ∈ Subtreei

)
,

(Lecerf & Ihm)

(∀i, j1, j2, v ∈ V)
(
j1, j2 ∈ Subtreei & v ∈ (j1, j2) =⇒ v ∈ Subtreei

)
.

(Fitialov)

A dependency tree not satisfying the conditions is called non-projective.

22

Projectivity and basic properties of non-projective edges 23

(a) projective (b)
non-projective

Figure 2.1: Sample projective and non-projective dependency trees

See Figure 2.1 for examples of projective and non-projective dependency
trees. From De�nition 2.1.1 it immediately follows that a non-projective
dependency tree has to have at least 3 nodes; the non-projective dependency
tree in Figure 2.1(b) is an example of a minimal non-projective dependency
tree.

Remark. Marcus [1965] derived the equivalence of conditions in De�ni-
tion 2.1.1 for more general structures than dependency trees: totally ordered
�nite sets with any binary relation →.

We do not give a proof of the equivalence of the three conditions in
De�nition 2.1.1, it is quite straightforward and relies on the fact that for
every two nodes in the relation of subordination there exists a unique �nite
path between them formed by edges of the dependency relation →.

We see that the antecedents of the projectivity conditions in De�ni-
tion 2.1.1 move from edge-focused to subtree-focused (i.e. from talking about
dependency to talking about subordination).

It is the condition of Fitialov that has been mostly explored when studying
so-called relaxations of projectivity. However, we �nd the condition of Harper
& Hays to be the most appealing from the linguistic point of view because it
gives prominence to the primary notion of dependency edges over the derived
notion of subordination. The condition of Harper & Hays is also the basis
for the formal tools for describing non-projective dependency trees that we
develop in this thesis.

Remark. The condition of Fitialov is perhaps the most transparent as far
as regards the structure of the whole tree. It can be easily reformulated to

Projectivity and basic properties of non-projective edges 24

make the point even more clear∗

(∀i, j1, j2 ∈ V)(Fitialov') (
j1, j2 ∈ Subtreei =⇒ ¬(∃v ∈ V)(v ∈ (j1, j2) & v /∈ Subtreei)

)
.

This reformulation gives immediately the following commonly used condition
of projectivity: A dependency tree is projective if the nodes of all its subtrees
constitute contiguous intervals in the total order on nodes.

2.2 Non-projective edges and their gaps

We introduce the notion of a non-projective edge and show its simple prop-
erties we use in subsequent chapters.

2.2.1 De�nition. For any edge i ↔ j in a dependency tree T = (V,→,�)
we de�ne its gap as follows

Gapi↔j = {v ∈ V | v ∈ (i, j) & v /∈ Subtreei↔j} .

An edge with an empty gap is projective, an edge whose gap is non-empty is
non-projective.

We see that non-projective are those edges i ↔ j for which there is a
node v such that together they violate the condition of Harper & Hays; we
group all such nodes v into Gapi↔j, the gap of the non-projective edge i↔ j.

2.2.2 Observation. Let i → j be a non-projective edge in a dependency
tree T = (V,→,�) with root node r. Then i 6= r.

Convention. In �gures with sample con�gurations we adopt this conven-
tion: for a non-projective edge, we draw all maximal nodes in its gap explic-
itly and assume that for any upward path from the maximal nodes, no node

∗The equivalence of conditions (Fitialov) and (Fitialov') is straightforward, see the
following �rst-order-logic reasoning:

(∀i, j1, j2, v ∈ V)(j1, j2 ∈ Subtreei & v ∈ (j1, j2)⇒ v ∈ Subtreei)
⇔ (∀i, j1, j2, v ∈ V)(j1, j2 ∈ Subtreei ⇒ (v ∈ (j1, j2)⇒ v ∈ Subtreei))
⇔ (∀i, j1, j2, v ∈ V)(j1, j2 ∈ Subtreei ⇒ (v /∈ (j1, j2) ∨ v ∈ Subtreei))
⇔ (∀i, j1, j2, v ∈ V)(j1, j2 ∈ Subtreei ⇒ ¬(v ∈ (j1, j2) & v /∈ Subtreei))
⇔ (∀i, j1, j2 ∈ V)(j1, j2 ∈ Subtreei ⇒ (∀v ∈ V)(¬(v ∈ (j1, j2) & v /∈ Subtreei)))
⇔ (∀i, j1, j2 ∈ V)(j1, j2 ∈ Subtreei ⇒ ¬(∃v ∈ V)(v ∈ (j1, j2) & v /∈ Subtreei)) .

Projectivity and basic properties of non-projective edges 25

on the path lies in the span of the non-projective edge. (By a maximal node
in a gap we mean any node in the gap such that its parent node does not
belong to the gap.)

Remark. The notion of gap is de�ned di�erently for subtrees of a depen-
dency tree [Holan et al., 1998, Bodirsky et al., 2005]. There it is de�ned
through the nodes of the whole dependency tree not in the considered sub-
tree that intervene between its nodes in the total order on nodes �.

Formally, based on the condition of Fitialov', the gap of a subtree Ti

rooted in node i of a dependency tree T = (V,→,�) is de�ned as follows

Gapi = {v ∈ V | v ∈ (min� Subtreei, max� Subtreei) & v /∈ Subtreei} .

This notion of gap of a subtree in a dependency tree was �rst used by
Holan et al. [1998], who introduce measures of non-projectivity based on
it and present a class of dependency-based formal grammars allowing for a
varying degree of word-order freedom. Holan et al. [2000] present linguistic
considerations concerning Czech and English with respect to this notion.

Next we present a couple of simple properties of non-projective edges.
We will use them in proofs of theorems we present in subsequent chapters.

2.2.3 Proposition. Let i↔ j, u↔ v be disjoint edges in a dependency tree
T = (V,→,�). If u, v ∈ (i, j), then

u ∈ Gapi↔j ⇐⇒ v ∈ Gapi↔j .

Proof. The statement follows immediately from the de�nition of Gapi↔j and
Proposition 1.1.3. 2

2.2.4 Proposition. Let i↔ j, u↔ v be disjoint edges in a dependency tree
T = (V,→,�). If u ∈ Gapi↔j and v /∈ Gapi↔j, then v /∈ [i, j].

Proof. For the sake of argument assume v ∈ (i, j) and arrive at a contradic-
tion with Proposition 2.2.3. 2

Projectivity and basic properties of non-projective edges 26

2.3 Simple algorithm for �nding

non-projective edges and determining

their gaps

Algorithm 1 presents a high-level sketch of a straightforward way of deter-
mining gaps of non-projective edges in a dependency tree. It is based directly
on De�nition 2.2.1.

Algorithm 1 Determine gaps � high-level sketch
Input: dependency tree T
Output: gaps of non-projective edges in T
1: for each edge i↔ j do
2: for each node v ∈ (i, j) do
3: check v ∈ Gapi↔j

4: end for
5: end for

The time complexity of Algorithm 1 is quadratic: there are linearly many
edges and at most linearly many nodes in the span of any edge, which gives
the quadratic bound. (We assume that checking subordination on line 3 takes
constant time, e.g. using pre-computation; cf. Section 1.3.) Let us express
this result as a theorem.

2.3.1 Theorem. Algorithm 1 returns for a dependency tree T the gaps of
all its non-projective edges; its time complexity is O(n2).

There are also other possibilities of looking for non-projective edges, but
we do not discuss them here. We will return to the problem of �nding non-
projective edges in detail in Chapter 4.

Chapter 3
Projectivity and projective orderings of

dependency trees

We introduce a new reformulation of the condition of projectivity and show
its equivalence with the classical ones. We de�ne the notion of a projec-
tivization of a rooted tree and show its uniqueness, and using our alternative
condition of projectivity we derive a characterization of all projective order-
ings of a rooted tree.

3.1 An alternative condition of projectivity

All three conditions in De�nition 2.1.1 have in common the following: in a
con�guration where two (or three) nodes have some structural relationship
(i.e. a relationship via the dependency relation) and there is a node v between
them in the total order, the conditions predicate that the node v be in an
analogous structural relationship to one of the nodes in the antecedent.

Let us now present in the form of a theorem another condition which is
equivalent to the conditions in De�nition 2.1.1.

3.1.1 Theorem. A dependency tree T = (V,→,�) is projective if and only
if the following condition holds

(ACP�3.1) (∀i, j1, j2, u1, u2 ∈ V)([
i→ j1 & u1 ∈ Subtreej1

&
(
[j2 = i & u2 = i] ∨ [Sibl(j1, j2, i) & u2 ∈ Subtreej2]

)]
=⇒ [j1 ≺ j2 ⇔ u1 ≺ u2]

)
.

27

Projectivity and projective orderings of dependency trees 28

Before giving the proof of this theorem, let us give in words the meaning
of condition (ACP�3.1): it says that for any subtree rooted in a node i the
relative order of all nodes in distinct subtrees of the child nodes of i with
respect to each other and to i has to be the same as the relative order of i
and its child nodes. To put it succinctly, condition (ACP�3.1) requires that
the total order of nodes in every subtree respect the order of the root node
and the nodes on the �rst level of the subtree.

The substantial di�erence between condition (ACP�3.1) and the condi-
tions in De�nition 2.1.1 is that while the conditions in De�nition 2.1.1 predi-
cate that nodes in a structural and ordering relationship have a structural re-
lationship, condition (ACP�3.1) predicates that nodes in a structural relation-
ship have an ordering relationship, i.e. the antecedent of condition (ACP�3.1)
is concerned only with the tree structure, while the consequent only with the
total order. We will take advantage of this fact when proving theorems and
when discussing the algorithms concerning projectivity of dependency trees
further below.

Proof of Theorem 3.1.1. (Harper & Hays)⇒ (ACP�3.1): We proceed by con-
tradiction. Let us suppose that the antecedent in the implication in condition
(ACP�3.1) holds, but the consequent does not, and arrive at a contradiction
with condition (Harper & Hays).

First let us discuss the case where j2 = u2 = i. Let us suppose w.l.o.g.
that j1 ≺ j2 (we can proceed using duality in the opposite case). Then by
assumption u1 � u2 = j2, and hence u1 6= j1. As u1 ∈ Subtreej1 , there is a
non-trivial path y0 = j1, y1, . . . , yk = u1, k > 0, from j1 to u1. Let l be the
smallest integer such that yl ≺ j2 ≺ yl+1. Edge yl → yl+1 and node j2 are in
contradiction with condition (Harper & Hays).

Now let us discuss the remaining case, i.e. suppose that Sibl(j1, j2, i) &
u2 ∈ Subtreej2 . Using the symmetry of predicate Sibl in its �rst two argu-
ments and duality for �, let us assume w.l.o.g. that j1 ≺ j2 and u1 6= j1

(from the assumption that the consequent of (ACP�3.1) does not hold, for at
least one node uk it has to hold that uk 6= jk, k = 1, 2). There are two cases:

• u1 � j2: Then there is a non-trivial path y0 = j1, y1, . . . , yk = u1,
k > 0, from j1 to u1. Let l be the smallest integer such that yl ≺ j2 ≺
yl+1. Edge yl → yi+1 and node j2 are in contradiction with condition
(Harper & Hays).

• u1 ≺ j2: By assumption we have u2 ≺ u1, thus u2 6= j2 and there is a
non-trivial path z0 = j2, z1, . . . , zm = u2, m > 0, from j2 to u2. Let n
be the smallest integer such that zn+1 ≺ u1 ≺ zn. Edge zn → zn+1 and
node u1 are in contradiction with condition (Harper & Hays).

Projectivity and projective orderings of dependency trees 29

Figure 3.1: Sample non-projective dependency tree satisfying condition (†)

(ACP�3.1) ⇒ (Harper & Hays): Let us again proceed by contradiction.
Using duality for �, let us w.l.o.g. suppose that for nodes of edge i → j it
holds that i ≺ j, v is such a node that i ≺ v ≺ j, and v /∈ Subtreei. There
are two cases to be discussed:

• i ∈ Subtreev: Then there is a non-trivial path x0 = v, x1, . . . , xk = i,
k > 0, from v to i, with two possibilities: if x1 ≺ v, then the assumption
j � v is in contradiction with (ACP�3.1); if v ≺ x1, then the assumption
v � i is in contradiction with (ACP�3.1).

• i /∈ Subtreev: Let a be the lowest common ancestor of i and v. Then
there are non-trivial paths y0 = a, y1, . . . , yl = i, l > 0, from a to i
and z0 = a, z1, . . . , zm = v, m > 0, from a to v. If y1 ≺ z1, then the
assumption j � v is in contradiction with (ACP�3.1); if y1 � z1, then
the assumption i ≺ v is in contradiction with (ACP�3.1).

This �nishes the proof. 2

Remark. After giving the proof of the equivalence of condition (ACP�3.1)
and the conditions in De�nition 2.1.1, let us remark that the preliminary
results concerning this approach to projectivity presented in [Veselá et al.,
2004], [Haji£ová et al., 2004], and [Veselá and Havelka, 2003] contain an
error: the condition presented therein and claimed to be equivalent to the
conditions discussed above is in fact weaker; the sketches of the algorithm
for projectivization, which will be discussed in detail below, are correct.

The condition presented in the articles has the following form

(∀i, j, v ∈ V)
((

i→ j & j ≺ i & v ∈ Subtreej =⇒ v ≺ i
)

(†)

&
(
i→ j & j � i & v ∈ Subtreej =⇒ v � i

))
.

We do not prove formally that condition (†) is weaker than the above pre-
sented conditions of projectivity; it follows easily from comparing condi-

Projectivity and projective orderings of dependency trees 30

tion (†) with condition (ACP�3.1). For a minimal counterexample, see Fig-
ure 3.1: it is easy to verify that the sample dependency tree satis�es condi-
tion (†), but is non-projective according to the conditions in De�nition 2.1.1
and condition (ACP�3.1).

3.2 Projective orderings of a rooted tree

In this section, we address the issue of what possible projective orderings
of a given rooted tree there are. Using condition (ACP�3.1), we derive a
characterization of all projective total orders on a given rooted tree.

First, we introduce the notion of canonical projectivization of a depen-
dency tree, which is de�ned as a projective dependency tree naturally related
to a given (possibly non-projective) dependency tree. Then, we generalize
it to the notion of a general projectivization of a rooted tree. We prove the
existence and uniqueness of a general projectivization of a rooted tree, which
gives as a corollary the existence and uniqueness of the canonical projec-
tivization of a dependency tree. Using these results, we then characterize all
projective total orders on a rooted tree.

3.2.1 De�nition. For a dependency tree T = (V,→,�), we call a tree
T can = (V,→,≤) the canonical projectivization of T if it is projective and
the following condition holds

(CanP�3.2) (∀i, j1, j2 ∈ V)([
i→ j1 & (j2 = i ∨ Sibl(j1, j2, i))

]
=⇒ [j1 ≺ j2 ⇔ j1 < j2]

)
.

In the canonical projectivization of a dependency tree, its original total
order gets possibly modi�ed in such a way that a projective total order is
obtained and at the same time for all nodes the original relative ordering of
the node and its child nodes is preserved.

For an example of a canonical projectivization, see Figure 3.2. The pro-
jective dependency tree in �gure (b) is the canonical projectivization of the
non-projective dependency tree in �gure (a).

Condition (CanP�3.2) can be generalized so as to take any total order for
each node and its child nodes (the orders induced on these sets by the total
order on all nodes of a dependency tree are a special case). The following
de�nitions formalize this idea for rooted trees supplemented with local total
orders.

Projectivity and projective orderings of dependency trees 31

(a) non-projective dependency tree

(b) its canonical projectivization

Figure 3.2: Example of canonical projectivization

3.2.2 De�nition. Let T = (V,→) be a rooted tree. For every node i ∈ V ,
let �i be a total order on the set Li = {i} ∪ {v ∈ V | i→ v}, the local tree
of node i. We call any such total order �i, i ∈ V , a local order of the local
tree of node i, and the set {�i | i ∈ V } of local orders for all nodes a local
ordering of the rooted tree T . We denote the local ordering induced by L on
a subtree Ti as Li = {≺v | v ∈ Subtreei}.

3.2.3 De�nition. Let T = (V,→) be a rooted tree and L = {�i | i ∈ V } a
local ordering of T . We call a dependency tree T genL = (V,→,≤) the general
projectivization of T with respect to L if it is projective and the following
condition holds

(GenP�3.3) (∀i, j1, j2 ∈ V)([
i→ j1 & (j2 = i ∨ Sibl(j1, j2, i))

]
=⇒ [j1 ≺i j2 ⇔ j1 < j2]

)
.

Note that the rooted tree T and the dependency tree T genL share the set of
nodes V and dependency relation →.

Using these notions we can present a theorem stating the existence and
uniqueness of a general projectivization of a rooted tree. The existence and

Projectivity and projective orderings of dependency trees 32

uniqueness of canonical projectivization of a dependency tree is just its corol-
lary.

3.2.4 Theorem. Let T = (V,→) be a rooted tree and L = {�i| i ∈ V }
a local ordering of T . Then the general projectivization T genL = (V,→, 4)
exists and is unique. Furthermore, for every node i in T , the subtree T

genL
i

of T genL rooted in node i is the general projectivization with respect to Li of
the subtree Ti of T rooted in node i (i.e., the total orders of (T genL)i and
(Ti)

genLi are isomorphic).

Proof. We proceed by induction on the height n of rooted trees. Throughout
the proof, we say that a node i ∈ V satis�es the projectivization condition for
subtrees if for all nodes u ∈ Subtreei it holds that the total orders of (T genLi)u

and (Tu)
genLu are isomorphic.

First let us prove the basis step: A rooted tree of height n = 0 consists of
a single node; there is only one total order on one node, which corresponds
at the same time to the general projectivization of the rooted tree. Since in
a one-node tree there are no proper subtrees, the projectivization condition
for subtrees is vacuously true.

Now let us prove the induction step: Suppose that for every rooted tree
of height at most n there is a unique general projectivization given any local
ordering and the projectivization condition for subtrees holds. Let T =
(V,→,�) be a rooted tree of height n + 1 and let L = {�i| i ∈ V } be a local
ordering of T .

Let i1, . . . , im, m > 0, be the child nodes of the root node r of T ordered
as follows

i1 ≺r · · · ≺r ij ≺r r ≺r ij+1 ≺r · · · ≺r im, 1 ≤ j ≤ m .

From the induction hypothesis there are unique general projectivizations
T
genLik
ik

of subtrees rooted in ik, 1 ≤ k ≤ m, which satisfy the projectivization
condition for subtrees. Let us consider a dependency tree T ′ = (V,→,≤),
where ≤ is obtained by concatenating the general projectivizations of the
subtrees (i.e. the total orders on their nodes) and the root r in the following
order

T
genLi1
i1

, . . . , T
genLij

ij
, r, T

genLij+1

ij+1
, . . . , T

genLim
im

.

From the de�nition of ≤ tree T ′ satis�es the condition (ACP�3.1) for its root
r, and from the induction hypothesis the condition also holds for all other
nodes in T ′, hence T ′ is projective. Since ≤ is de�ned in the only way in
which condition (GenP�3.3) can be satis�ed for i = r, tree T ′ is uniquely

Projectivity and projective orderings of dependency trees 33

determined. Obviously, T ′ also satis�es the projectivization condition for
subtrees. This �nishes the proof that T ′ = T genL . 2

We obtain easily as a corollary the following result for the canonical pro-
jectivization of a dependency tree.

3.2.5 Corollary. For every dependency tree T = (V,→,�), the canonical
projectivization T can = (V,→,≤) of T exists and is unique. Furthermore,
for every node i in T , the subtree T can

i of T can rooted in i is the canonical
projectivization of the subtree Ti of T rooted in node i (i.e., the total orders
of (T can)i and (Ti)

can are isomorphic).

Proof. Observe that condition (CanP�3.2) is equivalent to condition (GenP�3.3)
with local ordering {� � Li | i ∈ V }, where Li = {i}∪{v ∈ V | i→ v} is the
local tree of node i. The statement thus follows from Theorem 3.2.4. 2

We are ready to derive the characterization of all projective total orders
on a rooted tree. By a projective total order on a rooted tree T = (V,→) we
mean any total order � on V for which the dependency tree T ′ = (V,→,�),
obtained by supplementing the rooted tree T with the total order �, is pro-
jective.

3.2.6 Theorem. Every projective total order on a dependency tree T =
(V,→) corresponds uniquely to a local ordering of T .

Proof. We will show that there is a one-to-one correspondence between pro-
jective total orders on T and local orderings of T .

Theorem 3.2.4 states that for every local ordering L = {�i | i ∈ V } of T
there is a unique general projectivization T genL of T , i.e. a projective total
order on T satisfying condition (GenP�3.3) with respect to L. For di�erent
local orderings the corresponding projective total orders obviously also di�er.

Each projective order � on T speci�es a local ordering L = {� � Li | i ∈
V }; we know from Theorem 3.2.4 that � is isomorphic to the projective total
order of the corresponding general projectivization. We will show that for
two di�ering projective total orders �1,�2 on T , the local orderings L1,L2

corresponding to �1,�2, respectively, also di�er.
Let u1, u2 ∈ V be nodes such that u1 ≺1 u2 and u1 �2 u2. Let us consider

their lowest common ancestor i. Then there are two possible cases:

• Node i is disjoint from nodes u1, u2, i.e., u1 6= i 6= u2. Let j1, j2 be an-
cestors of u1, u2, respectively, such that i→ j1 and i→ j2. Since both
total orders �i,�2 are projective, according to condition (ACP�3.1)

Projectivity and projective orderings of dependency trees 34

it holds that j1 ≺1 j2 and j1 �2 j2, and hence the local orderings
L1 = {�1 � Li | i ∈ V }, L2 = {�2 � Li | i ∈ V } di�er in the local
orders for the local tree Li.

• Node i is equal to one of nodes u1, u2, w.l.o.g. assume that i = u2. Let
j1 be an ancestor of u1 such that i→ j1. Since both total orders �i,�2

are projective, according to condition (ACP�3.1) it holds that j1 ≺1 i
and j1 �2 i, and hence the local orderings L1,L2 di�er in their local
orders for the local tree Li.

This �nishes the proof. 2

3.3 Algorithm for projectivizing

In this section, we present an algorithm for computing general projectiviza-
tions. A high-level sketch of the algorithm is given as Algorithm 2.

Algorithm 2 Projectivize � high-level sketch
Input: rooted tree T , local ordering L of T
Output: general projectivization of T with respect to local ordering L
1: for each node i in a general post-order traversal do
2: concatenate i and subtrees rooted in its child nodes according to the

local order for i in L
3: end for

The algorithm returns for an input rooted tree T and a local ordering L
of T its general projectivization with respect to L. The projective total order
on nodes is constructed recursively using local orders.

We assume that local trees can be processed in linear time according to the
corresponding local orders in a given local ordering; we do not assume any
particular data representation of local orders. In our data representation,
this is guaranteed for the special case of canonical projectivization, where
we assume that local orders are represented by pointer �elds left_child,
right_child, and sibling, thanks to our requirement on the data repre-
sentation of dependency trees.

Algorithm 3 presents a detailed version of the algorithm. For the resulting
total order it uses pointer �elds prev and next. It consists of two subsequent
loops over all nodes, the �rst one on lines 1�18 is the main one, performing the
projectivization itself, the second one on lines 19�22 is just an auxiliary loop
for deleting auxiliary pointers left_span and right_span for the leftmost

Projectivity and projective orderings of dependency trees 35

Algorithm 3 Projectivize
Input: rooted tree T , local ordering L of T
Output: general projectivization of T with respect to local ordering L
1: for each node i in a general post-order traversal do

. �rst process left child nodes

2: left_span[i]← i . initialize auxiliary pointer

3: d← i . auxiliary node variable for creating projective total order

4: for each left child cleft of i inversely to local order for i in L do
5: prev[left_span[d]]← right_span[cleft]
6: next[right_span[cleft]]← left_span[d]
7: d← cleft
8: end for
9: left_span[i]← left_span[d]

. analogously process right child nodes

10: right_span[i]← i . initialize auxiliary pointer

11: d← i . auxiliary node variable

12: for each right child cright of i according to local order for i in L do
13: next[right_span[d]]← left_span[cright]
14: prev[left_span[cright]]← right_span[d]
15: d← cright
16: end for
17: right_span[i]← right_span[d]
18: end for
19: for each node i do . loop for deleting auxiliary pointers

20: delete left_span[i]
21: delete right_span[i]
22: end for

and rightmost nodes in the subtree of a node, i.e. for the span of the subtree.
In the main loop, the algorithm processes nodes in any general post-order
traversal; cf. Section 1.3. For the data representation used in the detailed
versions of algorithms and the requirement on it, cf. Section 1.2.

3.3.1 Theorem. Algorithm 3 returns for a rooted tree T and a local ordering
L of T the general projectivization T genL of T with respect to L. Its time
complexity is O(n). (We assume that local trees can be processed in linear
time according to the corresponding local orders.)

Proof. First let us prove the correctness of the algorithm, i.e. that for any

Projectivity and projective orderings of dependency trees 36

input rooted tree T and a local ordering L of T it returns general projec-
tivization T genL of T with respect to L.

We will prove by induction the following invariant for the main loop on
lines 1�18: after processing each node, the pointers prev and next of all nodes
in the subtree rooted in this node represent the general projectivization of the
subtree with respect to L, the doubly linked list representing the total order
on the subtree is contiguous, and the pointers left_span and right_span

contain the leftmost and rightmost nodes of the subtree, respectively.
Let us prove the invariant by discussing the main loop in detail. As it

consists of two analogous sub-blocks, processing left and right child nodes of
node i, we will go line by line only through the sub-block processing the left
child nodes (lines 2�9); the processing of the right child nodes (lines 10�17)
is analogous, using duality for total order on nodes.

First, the auxiliary pointer left_span of the processed node i is initialized
to the node itself (line 2) and the auxiliary pointer d is initialized to i (line 3).
The pointer d is used in the loop over left child nodes of node i (lines 4�8)
for setting the pointers prev and next of the doubly linked list representing
the total order on nodes.

The doubly linked list representing the total order on the nodes of the
subtree rooted in i is created using the information already stored at the
child nodes of i (when processing i, all its child nodes have already been
processed thanks to the general post-order traversal, and so by induction
satisfy the invariant). In the loop over left child nodes of i, the child nodes
are processed according to the data representation (and therefore reversely
with respect to the total order on nodes). On lines 5 and 6, the doubly linked
lists of the subtrees rooted in cleft and d are concatenated (in the �rst pass,
d is equal to i, thus i gets correctly concatenated with the subtree of its �rst
left child thanks to the initialization of left_span on line 2). On line 7,
the auxiliary pointer d is reset. After processing all left child nodes of i, the
auxiliary pointer d contains the leftmost child of i, and therefore line 9 sets
the left_span pointer correctly for i (if i does not have any left child nodes,
left_span is set correctly thanks to the initialization on line 2).

After the iteration of the main loop for node i, the subtree is projective
according to condition (ACP�3.1), and since it respects the local order for i
in L, it is the general projectivization of the subtree rooted in i with respect
to L. Furthermore, the doubly linked list representing the total order is
constructed in such a way (subtrees are concatenated) that the total order
on the subtree rooted in i is contiguous. Thus we have proved the invariant
for the algorithm, and so its correctness.

In the auxiliary loop on lines 19�22, the auxiliary pointers left_span

and right_span are deleted for all nodes.

Projectivity and projective orderings of dependency trees 37

Now let us show that the time complexity of the algorithm is O(n).
There are two consecutive loops in the algorithm: the main loop on

lines 1�18 and the auxiliary loop on lines 19�22. The time complexity of
the auxiliary loop is obviously O(n). Therefore it remains to show the time
complexity of the main loop.

The main loop is processed exactly as many times as there are nodes in
the tree. To see that the sub-loops for processing left and right child nodes
(lines 4�8 and 12�16, respectively) have overall linear time complexity, let
us observe that the two loops together are processed exactly as many times
as there are nodes (except the root). (Every node except the root node is a
child node of some other node, and therefore it is processed exactly once by
one of these loops). Hence the time complexity of the main loop is O(n).

The overall time complexity of the algorithm is therefore O(n) and the
proof is �nished. 2

The auxiliary pointers left_span and right_span can be deleted already
in the main loop, but this would only unnecessarily complicate the presented
algorithm due to technicalities.

3.4 Using the algorithm for checking

projectivity

Algorithm 3 can also serve for linear-time checking of projectivity of a de-
pendency tree. We just have to compare the total orders of the original tree
and the projectivized one. If they di�er, the original tree is non-projective.

The main disadvantage of this way of checking projectivity is that for
a non-projective tree, we do not learn much about the causes of its non-
projectivity. If we are interested in which edges are non-projective, we have
to use some other algorithm, e.g. the simple Algorithm 1 for �nding non-
projective edges.

In the next section, we introduce level types of non-projective edges and
we also present an e�cient algorithm for �nding non-projective edges of non-
negative level types. We also give a hint on using its output if we want to
�nd all non-projective edges, i.e. also non-projective edges of negative level
types.

Chapter 4
Level types of non-projective edges

We introduce level types of non-projective edges, which combine proper-
ties of their gaps with levels of nodes. A fundamental property of level
types of non-projective edges allows us to derive another characterization
of the condition of projectivity. We present a linear algorithm for �nding
non-projective edges of non-negative level types (the ones that characterize
non-projectivity), which will be the basis of e�cient algorithms for checking
planarity and well-nestedness presented in subsequent chapters.

4.1 Basic properties of level types and their

relationship to projectivity

We discuss the relationship of properties of non-projective edges, levels of
nodes, and projectivity. Level types of non-projective edges give yet another
characterization of projectivity.

4.1.1 De�nition. The level type of a non-projective edge i↔ j in a depen-
dency tree T = (V,→,�) is de�ned as follows

Typei↔j = levelChildi↔j
−minu∈Gapi↔j

levelu .

Level type of an edge is the distance of its child node and a node in its gap
closest to the root (distance here means relative di�erence in levels). Note
that there may be more than one node witnessing an edge's level type. Level
type of an edge is not bounded�it can take any integer value. In any given
dependency tree, however, it is bounded by the height of the dependency
tree.

38

Level types of non-projective edges 39

We use the word witness in two slightly di�erent meanings, which will be
clear from context: (a) when talking about nodes testifying the exact value
of level type of an edge, and (b) when talking about nodes testifying a lower
bound on the level type of an edge.

4.1.2 Observation. For any non-projective edge i↔ j in a dependency tree
T = (V,→,�) it holds

Typei↔j = maxu∈Gapi↔j
(levelChildi↔j

− levelu) .

Figure 4.1 schematically shows sample con�gurations in dependency trees
of di�erent level types of non-projective edges. All edges are examples of
edges of the corresponding level type, but let us stress that they do not
represent all possible con�gurations with non-projective edges.

Let us look in more detail at the �rst con�guration with a non-projective
edge of level type 0 in �gure (b): the �rst edge on the upward path from
the maximal node in the gap of the non-projective edge (this edge is not
shown explicitly) is also non-projective, of level type 1. The two edges can
be said to �cause� each other's non-projectivity. As this simple example
shows, relationships between non-projective edges in a dependency tree can
be rather complex.

It is easy to see that a non-projective edge of negative level type can
occur only in dependency trees with height at least 3 and at least 6 nodes�
see Figure 4.2 with a sample minimal dependency tree with a non-projective
edge of level type −1. Note that the sample dependency tree contains also
a non-projective edge of level type 1. This is in fact an example of a general
property of non-projective edges of non-positive level type.

Remark. Algorithm 1 for determining gaps of non-projective edges can be
easily modi�ed to compute also the level types of non-projective edges. The
level types of non-projective edges can be, e.g., determined on the �y in
the inner loop on lines 2�4; or they can be computed only after all gaps
have been fully determined. The time complexity bound for the modi�ed
algorithm remains quadratic.

We now show a fundamental property of level types of non-projective
edges: In a dependency tree, the presence of a non-projective edge of non-
positive level type implies the presence of a non-projective edge of non-
negative level type. The sample con�gurations with non-projective edges
of negative and zero level types in Figure 4.1 illustrate well the proof.

Level types of non-projective edges 40

(a) negative level type

(b) level type 0

(c) positive level type

Figure 4.1: Sample con�gurations with non-projective edges of negative, zero,
and positive level types

Level types of non-projective edges 41

Figure 4.2: Sample minimal non-projective dependency tree with a non-
projective edge of level type −1

4.1.3 Theorem. Let i ↔ j be a non-projective edge in a dependency tree
T = (V,→,�) of non-positive level type, i.e., Typei↔j ≤ 0. Then for each
edge v → u in T such that u ∈ arg minn∈Gapi↔j

leveln it holds that one of the

endpoints of edge i ↔ j (i.e., either i, or j) is in Gapu↔v and it witnesses
that

Typeu↔v ≥ −Typei↔j .

Proof. Let u be any node in arg minn∈Gapi↔j
leveln. From the assumption

that Typei↔j ≤ 0, node u has a parent node v, which satis�es v /∈ Gapi↔j.
Obviously, edges i ↔ j, v → u are disjoint, thus from Proposition 2.2.4 we
have that v /∈ [i, j], and so either i ∈ (u, v), or j ∈ (u, v). Since levelv ≥
levelParenti↔j

, we have that Parenti↔j /∈ Subtreev, and so either i ∈ Gapu↔v,
or j ∈ Gapu↔v. Immediately from de�nition we obtain that Typeu↔v ≥
levelu − levelChildi↔j

= −Typei↔j. The simple facts that leveli ≤ levelChildi↔j
,

levelj ≤ levelChildi↔j
imply that the endpoint of edge i↔ j in the span of edge

v → u indeed witnesses the inequality for the level types, which �nishes the
proof. 2

From Theorem 4.1.3 we get as a corollary the following important theo-
rem, giving a characterization of projectivity of a dependency tree in terms
of presence of non-projective edges of non-negative level types. It also allows
us to check projectivity of a tree by looking only for non-projective edges of
non-negative level types, which will be important in algorithms we present
further below.

4.1.4 Theorem. A dependency tree is projective if and only if it contains
no non-projective edges of non-negative level type.

Proof. Let T be an arbitrary non-projective tree. According to Theorem 4.1.3,

Level types of non-projective edges 42

if T contains a non-projective edge of negative level type, then it also contains
a non-projective edge of positive level type. Hence every non-projective tree
contains at least one non-projective edge of non-negative level type, which is
equivalent to the statement of the theorem. 2

The previous theorem reveals the importance of non-projective edges of
non-negative level types. It will show also later in the algorithms utiliz-
ing properties of non-projective edges. The following notion of upper gap
straightforwardly incorporates non-negative level types into the notion of
gap.

4.1.5 De�nition. For any edge i ↔ j in a dependency tree T = (V,→,�)
we de�ne its upper gap as follows

Gap
↑
i↔j = {v ∈ V | v ∈ (i, j) & v /∈ Subtreei↔j & levelChildi↔j

≥ levelv} .

4.1.6 Observation. Let i ↔ j be an edge in a dependency tree T =
(V,→,�). Then Gap

↑
i↔j 6= ∅ if and only if edge i ↔ j is non-projective

of non-negative level type.

The notion of upper gap of an edge leads to the following reformulation
of Theorem 4.1.4.

4.1.7 Theorem. A dependency tree T = (V,→,�) is non-projective if and
only if Gap↑i↔j 6= ∅ for some edge i↔ j in T .

4.2 Algorithm for �nding non-projective edges

of non-negative level type

We present a linear algorithm for �nding non-projective edges of non-negative
level types. From Theorem 4.1.4 we obtain that �nding non-projective edges
of non-negative level types is su�cient for checking projectivity. At the end
of this section we suggest how the output of the algorithm can be used to
�nd also non-projective edges of negative level type.

Algorithm 4 is a high-level sketch of the algorithm. It processes the input
dependency tree by levels bottom up. For all nodes on the processed level,
it goes through all edges going down from the nodes (i.e. through their child
nodes) and checks against the total order on nodes whether there is a node
causing some non-projectivity of non-negative level type. After processing
all edges with parent nodes on one level, the nodes below this level are
deleted from the total order on nodes. This is in fact the crucial point that

Level types of non-projective edges 43

Algorithm 4 Find non-projective edges of non-negative level types � high-
level sketch
Input: dependency tree T
Output: non-projective edges of non-negative level type in T
1: for each level of nodes in T bottom up do
2: for each edge i→ c with parent node i on processed level do
3: check Gap

↑
i→c 6= ∅ using nodes on the same level as or above c

4: end for
5: delete all nodes below processed level from the total order on T
6: end for

allows the check for projectivity to be performed without explicitly checking
subordination. Note that the algorithm does not determine the exact level
types of returned non-projective edges.

Algorithm 5 presents a detailed version of the algorithm. For the sake of
simplicity of exposition, the algorithm as presented here is destructive in the
sense that it destroys the original total order on nodes of the tree. This can
be easily remedied either by working with a copy of the whole input tree, or
by working with copies of the pointers prev and next representing the total
order for all nodes of the tree.

4.2.1 Theorem. Algorithm 5 returns for any dependency tree T the set of
all non-projective edges of non-negative level types occurring in T , and its
time complexity is O(n).

Proof. First let us prove the correctness of the algorithm, i.e. that for any
input dependency tree it returns exactly all its non-projective edges of non-
negative level type.

We will prove the following invariant holding after processing each level
of the input tree: the algorithm �nds all non-projective edges of non-negative
level type whose parent nodes are on this level, all nodes on lower levels are
deleted from the total order, and all non-projective edges of non-negative
level type whose parent nodes are on higher levels are preserved in the total
order (restricted to the nodes on the processed and higher levels).

The algorithm processes nodes by levels bottom-up. Lines 1, 2 and 3
represent this traversal decomposed into two embedded loops, the outer one
over levels, the inner one over nodes on individual levels.

In order to prove the invariant, we have to discuss the main loop on
lines 2�30. For nodes on the lowest level the invariant is vacuously true

Level types of non-projective edges 44

Algorithm 5 Find non-projective edges of non-negative level types
Input: dependency tree T
Output: non-projective edges of non-negative level types in T
1: lmax ← maximal level in T
2: for l = lmax, . . . , 0 do . main loop

3: for each node i on level l do . loop over nodes on one level

. �rst process left child nodes

4: d← i . auxiliary variable for keeping the previously processed node

5: p← true . suppose that edges to the left are projective

6: for each left child node cleft of i inversely to total order do
7: if (cleft = prev[d] & p) then . edge is projective

8: d← cleft . keep the processed node

9: else . we found a non-projectivity and mark remaining edges

10: p← false . important only in the �rst pass

11: mark cleft as non-projective
12: end if
13: end for

. analogously process right child nodes

14: d← i . auxiliary variable for keeping the previously processed node

15: p← true . suppose that edges to the right are projective

16: for each right child node cright of i according to total order do
17: if (cright = next[d] & p) then . edge is projective

18: d← cright
19: else . we found a non-projectivity and mark remaining edges

20: p← false
21: mark cright as non-projective
22: end if
23: end for
24: end for

. delete nodes on level l + 1 from the total order

25: for each node i on level l do
26: for each child node c of i do
27: delete c from the total order on T
28: end for
29: end for
30: end for

Level types of non-projective edges 45

(there are no edges with parent nodes on the lowest level of a tree), which
proves the basis step.

Now let us prove the induction step: Let us suppose that we process
nodes on level l. From the induction hypothesis we get that in the tree there
are only nodes on levels 0, . . . , l+1 left (in the previous iteration of the main
loop nodes on level l + 1 were processed, and so all nodes on lower levels got
deleted) and all non-projective edges of non-negative level type whose parent
nodes are on levels 0, . . . , l are preserved.

The main loop contains two sub-loops: the loop on lines 3�24 �nds the
non-projective edges and the loop on lines 25�29 deletes the nodes on the
level below the processed one from the total order on nodes.

Now let us discuss in detail the loop for �nding non-projective edges of
non-negative level types. It goes through all nodes on the current level (recall
that the order of processing is irrelevant) and for each node processes all edges
going down from it.

Let us go line by line through the sub-block on lines 4�13 processing the
left child nodes of i (i.e. edges going down and left from node i); the processing
of the right child nodes of i (lines 14�23) is analogous, using duality for the
total order on nodes.

The variable d initialized on line 4 is an auxiliary variable used when
looking for a non-projectivity of non-negative level type. The variable p
initialized on line 5 is a boolean auxiliary variable used for storing the in-
formation whether we already have found a non-projective edge (at �rst we
suppose that the edges are projective).

The loop on lines 6�13 processes all left child nodes of i according to the
data representation, i.e. inversely to the total order on nodes. The condition
on line 7 is crucial: it checks whether the edge i→ cleft has a non-empty upper
gap. If cleft = prev[d] holds (and we have not found a non-projective edge yet,
i.e. p is true), we know that all left child nodes up the current child cleft form
with i a contiguous interval in the total order on nodes. If cleft 6= prev[d],
there is some node v between d (either i itself, or the previous left child)
and the currently processed child cleft: from the induction hypothesis node v
is on level l + 1 or higher, and obviously it is not subordinated to i, which
means that the edge i → cleft is a non-projective edge of non-negative level
type (its gap containing at least v). When we �nd a non-projective edge,
then all remaining edges going down and left from i are also non-projective
of non-negative level type (because their gaps contain as a subset the gap
of the �rst found non-projective edge) � by setting the auxiliary variable p
to false, the algorithm marks all remaining edges as non-projective in the
subsequent iterations of the loop over left child nodes.

Obviously, in this way we �nd all non-projective edges of non-negative

Level types of non-projective edges 46

level types whose parent nodes are on level l (using the induction hypothesis
that all such non-projectivities are preserved for edges with parent nodes on
levels 0, . . . , l).

The loop on lines 25�29 deletes the nodes on level l + 1 from the doubly
linked list representing the total order on nodes. Obviously, this does not
destroy any non-projective edges of non-negative level type with parent nodes
on levels 0, . . . , l−1, because any such non-projectivity involves nodes on the
same or higher levels than the level of the child node of the non-projective
edge. Thus all non-projectivities of non-negative level type with parent nodes
on levels 0, . . . , l−1 are preserved, and since all nodes below level l are deleted
from the total order on nodes, this �nishes the proof of the invariant, and so
proves the correctness of the algorithm.

Now let us show that the time complexity of the algorithm is O(n):
The main loop on lines 2�30 contains two sub-loops on lines 3�24 and 25�

29. These two sub-loops are processed exactly as many times as there are
nodes in the tree. The innermost sub-loops contained in these two loops
do not add to the overall complexity, because for both these loops they are
processed exactly as many times as there are nodes (except the root node).

The overall time complexity of the algorithm is therefore O(n) and the
proof is �nished. 2

Let us remark that for Algorithm 5 to work it is essential to process
the input dependency tree by levels bottom up. To be able to �nd all non-
projective edges of non-negative level types, we can make do for any such
edge with nodes on the same or higher levels as the child node of the edge;
thus removing nodes on the already processed levels from the total order on
nodes allows us not to perform explicit subordination checks.

No edge from the root can be non-projective (of any type), therefore the
main loop of Algorithm 5 over levels on lines 2�30 need not process level
0, i.e. the root. This modi�cation does not however a�ect the overall time
complexity of the algorithm in the general case (although for trees of height
1 it indeed does).

Algorithm 5 does not return the gaps of the found non-projective edges of
non-negative level type. If we want to fully determine the gaps, we can e.g.
perform subordination checks for all nodes in the spans of the returned non-
projective edges. In the next section, we show how the output of Algorithm 5
can be used to �nd all non-projective edges.

Level types of non-projective edges 47

4.3 Using the algorithm for checking

projectivity and for �nding all

non-projective edges

From Theorem 4.1.4 we know that for checking projectivity it su�ces to
look for non-projective edges of non-negative level type. Algorithm 5 �nds
non-projective edges of non-negative level type; however, it does not �nd
non-projective edges of negative level type, nor it determines the exact level
types of the found non-projective edges.

Algorithm 5 can therefore also serve for linear-time checking of projec-
tivity of a dependency tree. In comparison with using an algorithm for
projectivizing for this purpose (cf. Algorithm 3 in Section 3.3), it provides
much more detailed information about the causes of non-projectivity: all
non-projective edges of non-negative level type.

If we are interested in �nding all non-projective edges, one way of look-
ing for them is the simple quadratic algorithm, derived directly from the
de�nition of gap of a non-projective edge (cf. Algorithm 1 in Section 2.3).

But we can do better: Theorem 4.1.3 gives us a useful hint where to look
for non-projective edges of negative level type. Based on this hint, we can
take some advantage of the output of Algorithm 5.

Let us suppose that for a dependency tree T = (V,→,�) we know the
set of all its non-projective edges of non-negative level type; let us denote it
as

Nonneg = {u↔ v ∈ T | Gap↑u↔v 6= ∅} .

We will show that the following set contains all non-projective edges of neg-
ative level type:

CandNeg = {i↔ j ∈ T | i↔ j /∈ Nonneg & (∃ v → u ∈ T)

(v 6= r & u ∈ (i, j) & i ∈ (u, v)

& levelChildi↔j
< levelu ≤ levelChildi↔j

+ Typeu↔v)} .

To see that set CandNeg indeed contains all non-projective edges of neg-
ative level type, i.e.

{i↔ j ∈ T | Gapi↔j 6= ∅ & Typei↔j < 0} ⊆ CandNeg ,

observe that Theorem 4.1.3 tells us that for any non-projective edge of neg-
ative level type i ↔ j there is a non-projective edge of positive level type
v → u such that u ∈ arg minn∈Gapi↔j

leveln and Typeu↔v ≥ −Typei↔j, wit-
nessed by an endpoint of edge i ↔ j (recall also that any non-projective

Level types of non-projective edges 48

edge is disjoint from the root node). An easy manipulation with the inequal-
ity for level types, using the fact that Typei↔j = levelChildi↔j

− levelu, gives
levelChildi↔j

+Typeu↔v ≥ levelu. Since node u witnesses the negative level type
of the non-projective edge i↔ j, it obviously holds that levelChildi↔j

< levelu.
This shows that any non-projective edge of negative level type in the de-
pendency tree T satis�es the de�ning conditions of set CandNeg, and thus
belongs to it.

We now have a set with �candidate� non-projective edges of negative level
type. For each edge in CandNeg we still have to verify whether it really is non-
projective of negative level type. The reasoning in the previous paragraph
shows that if an edge i ↔ j ∈ CandNeg is non-projective of negative level
type, then the set

CandGapi↔j = {u ∈ T | (∃v ∈ T)(v → u & v 6= r & u ∈ (i, j)

& [i ∈ (u, v) ∨ j ∈ (u, v)]

& levelChildi↔j
< levelu ≤ levelChildi↔j

+ Typeu↔v)}

contains all nodes witnessing its exact level type (in other words, all nodes
lying on the highest level in its gap). Therefore, if we only want to �nd
out whether an edge i ↔ j ∈ CandNeg is non-projective of negative level
type, it su�ces to check that at least one node in the set CandGapi↔j is not
subordinated to edge i ↔ j; if we want to determine the exact level type of
edge i↔ j, we must check all nodes in CandGapi↔j.

Although Algorithm 5 returns all non-projective edges of non-negative
level type, it does not specify level types of the non-projective edges. We
can still use its output by considering the following modi�cations to the sets
de�ned above:

Since we do not know the exact level types of edges of non-negative level
types, we can consider the set

CandNeg′ = {i↔ j ∈ T | i↔ j /∈ Nonneg & (∃ v → u ∈ T)

(v 6= r & u ∈ (i, j) & i ∈ (u, v)

& levelChildi↔j
< levelu)} .

which removes from the de�ning conditions the upper bound on levels of
child nodes of considered edges v → u. Obviously CandNeg ⊆ CandNeg′, so
set CandNeg′ contains all non-projective edges of negative level type.

Analogously, to determine whether a �candidate� edge i ↔ j really is

Level types of non-projective edges 49

non-projective of negative level type, we can consider the set of nodes

CandGap′i↔j = {u ∈ T | (∃v ∈ T)(v → u & v 6= r & u ∈ (i, j)

& [i ∈ (u, v) ∨ j ∈ (u, v)]

& levelChildi↔j
< levelu)} .

Again, since CandGapi↔j ⊆ CandGap′i↔j for any edge i ↔ j ∈ CandNeg, we
can use the set CandGap′i↔j to �nd out whether edge i↔ j is non-projective
of negative level type and to determine its exact level type in the same way
as described above.

We have only sketched a way of taking advantage of the output of Al-
gorithm 5 for �nding all non-projective edges. We do not give a detailed
analysis of the time complexity of the resulting algorithm, but let us note
that it is obviously O(n2).

4.4 Combining algorithms for �nding

non-projective edges of non-negative level

types and for projectivizing

Algorithms 3 and 5 presented above can be straightforwardly combined, pre-
serving the linear time complexity. A high-level sketch of the algorithm is
presented as Algorithm 6.

Algorithm 6 Find non-projective edges of non-negative level type and pro-
jectivize � high-level sketch
Input: dependency tree T , local ordering L of T
Output: non-projective edges of non-negative level type in T , general pro-

jectivization of T with respect to local ordering L
1: for each level of nodes in T bottom up do
2: for each edge i→ c with parent node i on processed level do
3: check Gap

↑
i→c 6= ∅ using nodes on the same level as or above c

4: end for
5: delete all nodes below processed level from original total order on T
6: concatenate i and subtrees rooted in its child nodes according to the

local order for i in L to create new projective total order
7: end for

Algorithm 6 performs both detection of non-projective edges of non-
negative level types and computes the general projectivization of the input

Level types of non-projective edges 50

dependency tree. As the original total order gets destroyed during the detec-
tion of non-projective edges, the projective total order of the projectivization
has to be returned in another doubly linked list (using another couple of
pointers, e.g. prev_proj and next_proj).

The algorithm consists of a main loop processing levels bottom-up. The
sub-loop on lines 2�4 and line 5 perform the detection of non-projective edges
(the lines correspond to the main loop of Algorithm 5); line 6 performs the
projectivization (it corresponds to the main loop of Algorithm 3), only the
projectivized total order has to use another set of pointers.

Since the combination of the algorithms is perspicuous, we will not delve
into unnecessary detail. The correctness of the algorithm follows easily from
Theorems 3.3.1 and 4.2.1.

The time complexity O(n) of Algorithm 6 follows easily from the fact
that all sub-loops of the main loop on lines 1�7 have overall linear time
complexities.

4.4.1 Theorem. Algorithm 6 returns for a dependency tree T and a local
ordering L of T the canonical projectivization T genL of T with respect to L
and the set of all non-projective edges of non-negative level types occurring
in T . Its time complexity is O(n).

Chapter 5
Planarity and non-projective edges

Planarity is a relaxation of projectivity that can be characterized as the �no
crossing edges� constraint. Although it might get confused with projectivity,
it is in fact a strictly weaker constraint.

In this chapter, we show how planarity relates to non-projective edges
and their level types. First we study the properties of pairs of edges forming
a non-planar pair of edges, then we show how planarity can be characterized
using properties of single non-projective edges.

Our results allow us to derive an original algorithm that can be used for
checking planarity; its running time is linear for all projective dependency
trees and scales gracefully with increasing number of non-projective edges
with non-empty upper gaps; its worst-case complexity bound is quadratic.

We conclude the chapter with a remark on intractability of multiplanarity,
which has been proposed as a measure of the complexity of natural language
syntax.

5.1 Condition of planarity

Planarity forbids crossing of edges when we draw nodes on a horizontal line
and edges as arcs in one half-plane (e.g., above the nodes). Beware, this
notion di�ers from the graph-theoretic notion of planarity of a graph, where
one is allowed to use the whole plane.

Planarity is a recent name for a constraint studied under di�erent names
already in the 1960's. We are aware of independent work in the USSR (weakly
non-projective dependency trees) and in Czechoslovakia (smooth dependency
trees). The paper by Dikovsky and Modina [2000] surveys mathematical
results on dependency syntax obtained in the former Soviet Union; it also

51

Planarity and non-projective edges 52

Figure 5.1: Sample non-planar dependency trees

gives references to many works hardly accessible in the former West. Nebeský
[1979] presents a survey of his results on projective and smooth trees.

5.1.1 De�nition. A dependency tree T = (V,→,�) is non-planar if there
are two edges i1 ↔ j1, i2 ↔ j2 in T such that

(npp�5.1) i1 ∈ (i2, j2) & i2 ∈ (i1, j1) .

Otherwise a dependency tree T is planar . We say that any two edges satis-
fying (npp�5.1) form a non-planar pair of edges .

From the de�nition of planarity it follows that a non-planar dependency
tree has to have at least 4 nodes. Figure 5.1 shows sample minimal non-
planar dependency trees.

Planarity reduces to projectivity for dependency trees with their root
node at either the left or right fringe of the tree. We prove this observation
as Proposition 5.2.4 in the following section.

Remark. We would like to mention informally a close relationship be-
tween projective and planar dependency trees, which was derived by Ladislav
Nebeský.

To make the idea most perspicuous, we will also use totally ordered un-
rooted trees (i.e., also undirected). Obviously, condition (npp�5.1) can be
applied to such structures.

The relationship between planar totally ordered unrooted trees and planar
dependency trees is straightforward: A planar totally ordered unrooted tree
can be rooted in any of its nodes to form a planar dependency tree (i.e., a
totally ordered rooted tree). But a dependency tree obtained in this way
need not be projective.

The key notion in the relationship between planar totally ordered un-
rooted trees and projective dependency trees is the chief path of a planar
totally ordered unrooted tree. It is de�ned as the path in a totally ordered

Planarity and non-projective edges 53

(a) planar totally ordered unrooted tree

(b) two of corresponding projective dependency trees

Figure 5.2: Relationship between planar totally ordered unrooted trees and
projective dependency trees: (a) sample planar totally ordered unrooted tree
with its chief path and (b) two of the corresponding planar dependency trees

unrooted tree that connects its leftmost and rightmost nodes (i.e., minimal
and maximal nodes in the total order on the tree).

The nodes on the chief path of a planar totally ordered unrooted tree
correspond uniquely to roots of projective dependency trees with the same
set of nodes, edges, and total order on nodes. Rooting a planar totally
ordered unrooted tree in a node that is not on its chief path results in a
non-projective dependency tree.

Figure 5.2 gives a sample totally ordered unrooted tree and two of the

Planarity and non-projective edges 54

projective dependency trees corresponding to it (there are four in total, as its
chief path has four nodes). The visualization of the sample totally ordered
unrooted tree does not follow fully our convention for drawing dependency
trees; for convenience, we draw the chief path on a horizontal line, all other
nodes below it with vertical distances corresponding to the length of the path
connecting a node with the closest node on the chief path.

5.2 Planarity and non-projective edges

In this section, we study the properties of non-planar pairs of edges. We
show how planarity relates to properties of non-projective edges and their
level types.

5.2.1 Proposition. Any non-planar pair of edges i1 ↔ j1, i2 ↔ j2 in a
dependency tree T = (V,→,�) satisfy

(5.2) i1 ∈ Gapi2↔j2 ∨ i2 ∈ Gapi1↔j1 .

Proof. Suppose for the sake of contradiction that i1 /∈ Gapi2↔j2 and i2 /∈
Gapi1↔j1 . This implies that i1 ∈ Subtreei2↔j2 and i2 ∈ Subtreei1↔j1 . Since
condition (npp�5.1) implies that edges i1 ↔ j1, i2 ↔ j2 are disjoint, using
Proposition 1.1.3 we get a non-trivial cycle Parenti1↔j1 →∗ Parenti2↔j2 →∗

Parenti1↔j1 , which is a contradiction with T being a tree. 2

5.2.2 Corollary. If a dependency tree T = (V,→,�) is projective, then it
is also planar.

Proof. Follows immediately from Proposition 5.2.1, which states that in any
non-planar pair of edges at least one of them is non-projective. 2

5.2.3 Corollary. Any two edges i1 ↔ j1, i2 ↔ j2 in a dependency tree
T = (V,→,�) form a non-planar pair if and only if the following condition
(possibly after renaming the edges) holds

(npp'�5.3) i1 ∈ (i2, j2) & i2 ∈ Gapi1↔j1 .

Proof. Direction (npp'�5.3) ⇒ (npp�5.1) is obvious. Direction (npp�5.1) ⇒
(npp'�5.3) follows from Proposition 5.2.1 (possibly after renaming the edges),
which states that in any non-planar pair of edges at least one of them is non-
projective with an endpoint of the other edge as a witness. 2

Planarity and non-projective edges 55

5.2.4 Proposition. Let T = (V,→,�) be a dependency tree such that its
root node r is either at its left or right fringe (i.e., r = min� V , or r =
max� V). Then T is planar if and only if it is projective.

Proof. From Corollary 5.2.2 we know that every projective dependency tree
is also planar.

Let us suppose that T is planar and at the same time non-projective.
Then it contains a non-projective edge i → j; from Observation 2.2.2 we
know that i 6= r. Let u be any maximal node in Gapi↔j. From the assumption
that r is at a fringe of T it follows that u 6= r, so there is a parent node v of
u and it satis�es v /∈ [i, j]. Edges i → j, v → u form a non-planar pair and
hence T is non-planar. 2

5.2.5 Lemma. Let i1 ↔ j1, i2 ↔ j2 be a non-planar pair of edges in a
dependency tree T = (V,→,�) satisfying

i1 /∈ Gapi2↔j2 & i2 ∈ Gapi1↔j1 .

Then
levelChildi1↔j1

− leveli2 > 0 ,

i.e., Typei1↔j1 > 0 with node i2 as a witness.

Proof. Using Proposition 1.1.3 and disjointness of edges i1 ↔ i2, j1 ↔ j2,
from the assumption i1 /∈ Gapi2↔j2 we get that i1 ↔ j1 ∈ Subtreei2↔j2 .
The disjointness of edges i1 ↔ j1, i2 ↔ j2 further implies levelParenti1↔j1

>
levelParenti2↔j2

, which is equivalent to levelChildi1↔j1
> levelChildi2↔j2

. Since
levelChildu↔v ≥ levelu holds for any edge, we �nally get levelChildi1↔j1

> leveli2 .
2

5.2.6 Lemma. Let i1 ↔ j1, i2 ↔ j2 be a non-planar pair of edges in a
dependency tree T = (V,→,�) satisfying

i1 ∈ Gapi2↔j2 & i2 ∈ Gapi1↔j1 .

Then for at least one of the edges, say edge i1 ↔ j1, it holds that

levelChildi1↔j1
− leveli2 ≥ 0 ,

i.e., Typei1↔j1 ≥ 0 with node i2 as a witness.

Proof. Let edges i1 ↔ j1, i2 ↔ j2 satisfy the assumption. Let us �rst suppose
that levelChildi1↔j1

≥ levelChildi2↔j2
. Since levelChildu↔v ≥ levelu for any edge

Planarity and non-projective edges 56

u↔ v, we have that levelChildi1↔j1
≥ leveli2 , which we wanted to prove. If it is

the case that levelChildi1↔j1
≤ levelChildi2↔j2

, it is analogously proved that edge
i2 ↔ j2 is of non-negative level type. 2

5.2.7 Lemma. Let i1 ↔ j1, i2 ↔ j2 be a non-planar pair of edges in a
dependency tree T = (V,→,�). Then for at least one of the edges, say edge
i1 ↔ j1, it holds that

i2 ∈ Gap
↑
i1↔j1

,

i.e., Typei1↔j1 ≥ 0 with node i2 as a witness.

Proof. From Lemma 5.2.1 we know that every non-planar pair of edges satisfy
condition (5.2). In this condition, either only one, or both of the disjuncts
are true. These two possible cases are dealt with by Lemmas 5.2.5 and 5.2.6;
in either case, possibly after renaming the edges, it holds that i2 ∈ Gapi1↔j1

and levelChildi1↔j1
− leveli2 ≥ 0, i.e., i2 ∈ Gap

↑
i1↔j1

. 2

5.2.8 Theorem. Any two edges i1 ↔ j1, i2 ↔ j2 in a dependency tree
T = (V,→,�) form a non-planar pair if and only if the following condition
(possibly after renaming the edges) holds

(npp��5.4) i1 ∈ (i2, j2) & i2 ∈ Gap
↑
i1↔j1

.

(Speci�cally, Typei1↔j1 ≥ 0 with node i2 as a witness.)

Proof. Direction (npp��5.4) ⇒ (npp�5.1) is obvious. Direction (npp�5.1) ⇒
(npp��5.4) follows from Lemma 5.2.7. 2

5.2.9 Corollary. A dependency tree T = (V,→,�) is non-planar if and
only if there are two edges i1 ↔ j1, i2 ↔ j2 in T that satisfy any of the
equivalent conditions (npp�5.1), (npp'�5.3), and (npp��5.4).

5.3 Characterization of planarity using single

non-projective edges

We show that non-planarity can be characterized in terms of properties of
single non-projective edges only. The non-planar set of an edge presents an
immediate characterization. Using our results on planarity and level types of
non-projective edges, we show that even upper non-planar sets characterize
planarity; they will also allow us to check planarity e�ectively.

Planarity and non-projective edges 57

5.3.1 De�nition. The non-planar set of any edge i ↔ j in a dependency
tree T = (V,→,�) is de�ned as follows

Npi↔j = {u↔ v ∈ T | u ∈ Gapi↔j & v /∈ [i, j]} .

The non-planar set of a non-projective edge i ↔ j can be thought of as
the set of all edges with which the edge interacts through nodes in its gap.

5.3.2 Observation. Let i ↔ j be an edge in a dependency tree T =
(V,→,�). Then Npi↔j 6= ∅ only if edge i↔ j is non-projective.

The next proposition exposes the relationship of edges in Npi↔j to the
gap of i↔ j.

5.3.3 Proposition. For any edge i↔ j in a dependency tree T = (V,→,�)
it holds that

Npi↔j = {u↔ v ∈ T | u ∈ Gapi↔j & v /∈ Gapi↔j & v 6= Parenti↔j} .

Proof. The inclusion ⊆ follows immediately from the observation that v /∈
[i, j] implies both v /∈ Gapi↔j and v 6= Parenti↔j.

Inclusion ⊇: The assumption u ∈ Gapi↔j implies that u /∈ Subtreei↔j, and
speci�cally u 6= Parenti↔j. Together with the assumption v 6= Parenti↔j this
gives us that edge u↔ v is disjoint from Parenti↔j, so using Proposition 1.1.3
we get that v /∈ Subtreei↔j. Hence edges i↔ j, u↔ v are disjoint, and from
Proposition 2.2.4 it follows that v /∈ [i, j]. 2

5.3.4 Theorem. A dependency tree T = (V,→,�) is non-planar if and only
if Npi↔j 6= ∅ for some non-projective edge i↔ j in T .

Proof. Direction ⇐ follows from the simple fact that edge i ↔ j and any
edge u ↔ v from Npi↔j form a non-planar pair. Direction ⇒ follows from
Proposition 5.2.1, which states that in any non-planar pair of edges at least
one of them is non-projective with an endpoint of the other edge as a witness.

2

Theorem 5.2.8 justi�es the following notion of upper non-planar set and
will allow us to speed up planarity checking.

5.3.5 De�nition. The upper non-planar set of any edge i↔ j in a depen-
dency tree T = (V,→,�) is de�ned as follows

Np
↑
i↔j = {u↔ v ∈ T | u ∈ Gap

↑
i↔j & v /∈ [i, j]} .

Planarity and non-projective edges 58

5.3.6 Theorem. A dependency tree T = (V,→,�) is non-planar if and only
if Np↑i↔j 6= ∅ for some non-projective edge i↔ j in T .

Proof. Direction ⇐ follows from the simple fact that edge i ↔ j and any
edge u ↔ v from Np

↑
i↔j form a non-planar pair. Direction ⇒ follows from

Lemma 5.2.7, which states that in any non-planar pair of edges at least one
of them is non-projective of non-negative level type with an endpoint of the
other edge as a witness. 2

Note that an analogy of Proposition 5.3.3 holds obviously also for upper
non-planar sets.

5.4 Checking planarity

In this section, we address the problem of checking planarity of a dependency
tree. First we present a straightforward way of checking planarity, then we
show how our results on upper non-planar sets lead to a simple yet e�ective
algorithm for determining them, which can also be used to check planarity.

Algorithm 7 Check planarity � high-level sketch
Input: dependency tree T
Output: planarity of T
1: for each edge i↔ j do
2: for each edge u↔ v s.t. u ∈ (i, j) do
3: check whether i↔ j, u↔ v cross
4: end for
5: end for

Algorithm 7 presents a straightforward way of checking planarity, based
directly on De�nition 5.1.1. Its time complexity is quadratic: each of the
embedded loops processes at most linearly many edges, and the check on
line 3 obviously takes constant time. So we have the following theorem.

5.4.1 Theorem. Algorithm 7 returns for a dependency tree T all its non-
planar pairs of edges; its time complexity is O(n2).

Algorithm 7 can be easily modi�ed to determine non-planar sets of non-
projective edges (change line 3 to: check u ↔ v ∈ Npi↔j). Although this
modi�cation does not increase the worst-case bound, it complicates matters
by the need to check subordination; we can compute subordination relation
on demand for the subtree of the processed edge i ↔ j (once for all edges

Planarity and non-projective edges 59

u↔ v processed in loop on lines 2�4), preserving worst-case quadratic com-
plexity.

Using our results concerning upper non-planar sets and non-projective
edges of non-negative level types, we can devise an algorithm that is linear
for projective trees and faster for random input and that remains worst-
case quadratic. We can achieve this by incorporating the determination of
upper non-planar sets into the algorithm for �nding non-projective edges of
non-negative level types from Section 4.2.

Algorithm 8 Determine upper non-planar sets � high-level sketch
Input: dependency tree T
Output: upper non-planar sets of edges in T
1: for each level of nodes in T bottom up do
2: for each edge i→ c with parent node i on processed level do
3: compute Gap

↑
i→c using nodes on the same level as or above c

4: end for
5: for each edge i→ c with parent node i on processed level do
6: for each edge u↔ v s.t. u ∈ Gap

↑
i→c do

7: check u↔ v ∈ Np
↑
i→c

8: end for
9: end for
10: delete all nodes below processed level from original total order on T
11: end for

Algorithm 8 modi�es and expands the loop over levels on lines 2�4 of
Algorithm 4.

First, in the loop on lines 2�4, upper gaps of edges with parent nodes on
the processed level are computed. We can proceed similarly to the detailed
Algorithm 5 when computing upper gaps by processing child nodes of a node
from the closest to the farthest one, as their upper gaps are included in one
another.

The loop on lines 5�9 computes upper non-planar sets of edges on the
processed level. Note that for the purpose of determining membership of
some edge u ↔ v in the upper non-planar set of edge i → c on line 7, total
order also for nodes one level below c is needed; we can, for example, keep a
copy of the whole total order for this purpose.

Worst-case time complexity of Algorithm 8 remains quadratic, but the
actual running time is linear for projective dependency trees and scales with
the number of edges whose endpoints are in the upper gap of some non-
projective edge of non-negative level type. Hence we obtain the following
theorem.

Planarity and non-projective edges 60

5.4.2 Theorem. Algorithm 8 returns for a dependency tree T all its upper
non-planar sets; its time complexity is O(n2).

Both presented algorithms can also serve to simply check planarity of a
dependency tree (for Algorithm 8 this follows from Theorem 5.3.6). If used
for this purpose, they can be modi�ed to �nish as soon as the �rst non-planar
pair of edges or non-empty upper non-planar set is found, respectively.

5.5 Remark on NP-completeness of

multiplanarity

Yli-Jyrä [2003] proposes a generalization of planarity that he calls multipla-
narity . We show that determining the multiplanarity of a graph is a special
case of a general problem for chord graphs, and therefore it is NP-complete.

In this section, we use general totally ordered undirected graphs; the
statements for them specialize to dependency trees. We say that G = (V,↔)
is a simple, undirected graph with set of nodes V and relation↔ representing
undirected edges. (Note that in this section we use the symbol ↔ in a
di�erent sense than elsewhere in this thesis; the presented notation is non-
standard.) We call an undirected graph supplemented with a total order on
the set of its nodes a totally ordered undirected graph.

We say that a totally ordered undirected graph G = (V,↔,�) is non-
planar if it contains two edges i1 ↔ j1, i2 ↔ j2 such that i1 ∈ (i2, j2) and
i2 ∈ (i1, j1); otherwise G is planar (cf. De�nition 5.1.1).

5.5.1 De�nition (Yli-Jyrä [2003]). A totally ordered undirected graph
G = (V,↔,�) is k-planar if G can be split into k planar totally ordered
undirected graphs G1 = (V,↔1,�), . . . , Gk = (V,↔k,�) such that ↔ =
↔1] · · ·]↔k (] is disjoint union).

Next, using our terminology, we present an NP-completeness result for
vertex-colouring of circle graphs, or equivalently edge-colouring of chord
graphs [Garey et al., 1980]. In current graph-theoretic literature, the terms
book embedding and stack layout are used for colourings of edges such that no
two edges with the same colour cross (form a non-planar pair in our terminol-
ogy). For a review paper on edge-colouring problems in graphs with totally
ordered sets of nodes and current terminology in the �eld, see Dujmovi¢ and
Wood [2004].

Planarity and non-projective edges 61

5.5.2 Theorem (Garey et al. [1980]). Determining k-planarity of totally
ordered undirected graphs is NP-complete.

Dependency trees are a special case of totally ordered undirected graphs.
Hence, it is NP-complete to �nd minimal k such that a dependency tree is
k-planar. For this reason, we do not include multiplanarity in our empirical
evaluation presented in Part II.

Chapter 6
Well-nestedness and non-projective

edges

The condition of well-nestedness was proposed by Bodirsky et al. [2005].
They used it to characterize trees derivable by Tree Adjoining Grammars
(together with one more constraint, namely gap degree for subtrees at most
1). The condition of well-nestedness can be also applied to dependency trees.
Informally, it can be characterized as the �no interleaving of disjoint subtrees�
constraint.

In this chapter, we show how well-nestedness relates to properties of non-
projective edges and their level types. We derive characterizations of well-
nestedness in terms of pairs of non-projective edges and in terms of properties
of single non-projective edges. We also show that the presence of a non-
projective edge of non-positive level type implies ill-nestedness of the whole
dependency tree.

Our results allow us to derive original algorithms that can be used for
checking well-nestedness. Both have worst-case quadratic time complexities;
analogously to Algorithm 8, the running time of one of them is linear for all
projective dependency trees and scales gracefully with increasing number of
non-projective edges with non-empty upper gaps.

6.1 Original formulation of well-nestedness

In this section, we present the original formulation of the condition of well-
nestedness; we also give its reformulation we will use further below.

62

Well-nestedness and non-projective edges 63

(a) well-nested dependency tree (b) ill-nested dependency tree

Figure 6.1: Schematic visualization of well-nested and ill-nested dependency
trees

6.1.1 De�nition (Bodirsky et al. [2005]). A dependency tree T =
(V,→,�) is ill-nested if there are disjoint subtrees T1, T2 of T and nodes
x1, y1 ∈ T1 and x2, y2 ∈ T2 such that

x1 ≺ x2 ≺ y1 ≺ y2 .

Otherwise the dependency tree T is well-nested .

The constraint of well-nestedness can be schematically visualized as shown
in Figure 6.1

We will be using the following straightforward reformulation of well-
nestedness. It allows us to disregard alternative orderings of endpoints of
edges.

6.1.2 Observation. A dependency tree T = (V,→,�) is ill-nested if and
only if there are disjoint subtrees T1, T2 of T and nodes x1, y1 ∈ T1 and
x2, y2 ∈ T2 such that

x1 ∈ (x2, y2) & x2 ∈ (x1, y1) .

From the de�nition of well-nestedness it follows that an ill-nested de-
pendency tree has to have at least two disjoint subtrees with at least two
nodes each, i.e., at least 5 nodes in total. Figure 6.2 shows sample minimal
ill-nested dependency trees.

Well-nestedness and non-projective edges 64

Figure 6.2: Sample ill-nested dependency trees

6.2 Reformulation of well-nestedness in terms

of edges

Well-nestedness can be expressed in terms of edges�it will prove crucial in
subsequent sections.

6.2.1 Lemma. A dependency tree T = (V,→,�) is ill-nested if and only
if there are two edges i1 ↔ j1, i2 ↔ j2 in disjoint subtrees T1, T2 of T ,
respectively, such that

i1 ∈ (i2, j2) & i2 ∈ (i1, j1) .

Proof. Direction ⇐ is obvious.
Direction ⇒: We show the existence of a pair of edges satisfying the

condition by construction. Let rk be the root node of subtree Tk, k = 1, 2.
We will �rst �nd an edge i1 ↔ j1 in subtree T1. There are two possi-

ble cases. Let us �rst suppose that r1 ∈ (x2, y2). Consider the �rst edge
vk → vk+1 on the downward path v0 = r1, v1, . . . , vm = y1, m > 0, such
that vk ∈ (x2, y2) and vk+1 /∈ [x2, y2]. If it is the case that r1 /∈ [x2, y2],
consider the �rst edge vk+1 → vk on the upward path v0 = x1, v1, . . . ,
vn = r1, n > 0, such that vk ∈ (x2, y2) and vk+1 /∈ [x2, y2]. Let us de-
note i1 = vk and j1 = vk+1, and possibly rename x2, y2 so that i1 ∈ (x2, y2)
and x2 ∈ (i1, j1).

In order to �nd an edge i2 ↔ j2 in subtree T2 such that i1 ∈ (i2, j2)
and i2 ∈ (i1, j1), let us proceed similarly as above. As the construction is
analogous to the one presented above, we do not give it in full detail. Again
there are two possible cases: either r2 ∈ (i1, j1), or r2 /∈ [i1, j1]. In the former
case, let us consider the downward path from r2 to y2, in the latter case,
the upward path from x2 to r2, and �nd an edge i2 ↔ j2 with the desired
properties. Obviously, edges i1 ↔ j1, i2 ↔ j2 are in disjoint subtrees. 2

Well-nestedness and non-projective edges 65

6.3 Characterization of well-nestedness using

pairs of non-projective edges

In this section, we show that the condition of well-nestedness can be expressed
using pairs of non-projective edges.

First we give a characterization of pairs of edges in Lemma 6.2.1 in terms
of their gaps.

6.3.1 Theorem. Let i1 ↔ j1, i2 ↔ j2 be two edges in a dependency tree
T = (V,→,�). They are in disjoint subtrees T1, T2, respectively, and satisfy
i1 ∈ (i2, j2), i2 ∈ (i1, j1) if and only if the following condition holds

(inp�6.1) i1 ∈ Gapi2↔j2 & i2 ∈ Gapi1↔j1 .

Proof. Direction ⇐: Let us consider subtrees Tk rooted in Parentik↔jk
, k =

1, 2. Condition (inp�6.1) obviously implies i1 ∈ (i2, j2), i2 ∈ (i1, j1), which in
turn implies that edges i1 ↔ j1, i2 ↔ j2 are disjoint. From Property 1.1.3
we get that both Parenti2↔j2 /∈ Subtreei1↔j1 and Parenti1↔j1 /∈ Subtreei2↔j2 ,
hence subtrees T1, T2 are disjoint.

Direction ⇒: Let us consider edge i2 ↔ j2 and node i1. Since T1 is
disjoint from T2, we have that i1 /∈ Subtreei2↔j2 , and hence i1 ∈ Gapi2↔j2 .
The proof that i2 ∈ Gapi1↔j1 is analogous. 2

Condition (inp�6.1) allows us to talk about pairs of edges causing ill-
nestedness and so characterize well-nestedness using properties of pairs of
non-projective edges.

6.3.2 De�nition. We say that any two non-projective edges i1 ↔ j1, i2 ↔ j2

in a dependency tree T = (V,→,�) satisfying condition (inp�6.1) form an
ill-nested pair of edges .

6.3.3 Corollary. A dependency tree T = (V,→,�) is ill-nested if and only
if it contains an ill-nested pair of edges.

Proof. Follows from Lemma 6.2.1 and Theorem 6.3.1. 2

Note that condition (inp�6.1) is identical to the case of planarity dealt
with by Lemma 5.2.6. Therefore, in any ill-nested pair of edges, at least one
of the edges is of non-negative level type, witnessed by an endpoint of the
other edge.

Well-nestedness and non-projective edges 66

6.3.4 Theorem. Any two edges i1 ↔ j1, i2 ↔ j2 in a dependency tree
T = (V,→,�) form an ill-nested pair if and only if the following condition
(possibly after renaming the edges) holds

(inp'�6.2) i1 ∈ Gapi2↔j2 & i2 ∈ Gap
↑
i1↔j1

.

(Speci�cally, Typei1↔j1 ≥ 0 with node i2 as a witness.)

Proof. Direction (inp'�6.2) ⇒ (inp�6.1) is obvious. Direction (inp�6.1) ⇒
(inp'�6.2) follows from Lemma 5.2.6, which states that in any ill-nested pair
of edges at least one of them is non-projective of non-negative level type with
an endpoint of the other edge as a witness. 2

6.3.5 Corollary. A dependency tree T = (V,→,�) is ill-nested if and only
if there are two edges i1 ↔ j1, i2 ↔ j2 in T satisfying any of the equivalent
conditions (inp�6.1) and (inp'�6.2).

6.4 Su�cient condition for ill-nestedness

The results of Section 4.1 give the following relationship between level types
of non-projective edges and well-nestedness.

6.4.1 Theorem. If a dependency tree contains a non-projective edge of non-
positive level type, then it is ill-nested.

Proof. From Theorem 4.1.3 it follows that when a dependency tree contains
a non-projective edge of non-positive level type, then it contains another non-
projective edge such that the two edges form an ill-nested pair of edges. This
in turn by Corollary 6.3.3 implies that the dependency tree is ill-nested. 2

We see that types of non-projective edges and well-nestedness share a
common ground; however, the statement of Theorem 6.4.1 cannot be strength-
ened to equivalence. It is easy to see that also two edges of arbitrary positive
level type can satisfy condition (inp�6.1)�cf. the �rst dependency tree in
Figure 6.2.

6.5 Characterization of well-nestedness using

single edges

We show that well-nestedness can be characterized in terms of properties
of single non-projective edges only. We de�ne the ill-nested set of an edge

Well-nestedness and non-projective edges 67

and show that it gives the desired characterization. Analogously to upper
non-planar sets, we de�ne upper ill-nested sets and show that they also char-
acterize well-nestedness.

6.5.1 De�nition. The ill-nested set of any edge i↔ j in a dependency tree
T = (V,→,�) is de�ned as follows

Ini↔j = {u↔ v ∈ T | u ∈ Gapi↔j & v /∈ [i, j] & u, v /∈ Anci↔j} .

6.5.2 Observation. Let i ↔ j be an edge in a dependency tree T =
(V,→,�). Then Ini↔j 6= ∅ only if edge i↔ j is non-projective.

The next proposition exposes the relationship of edges in Ini↔j to the gap
of i↔ j.

6.5.3 Proposition. For any edge i↔ j in a dependency tree T = (V,→,�)
it holds that

Ini↔j = {u↔ v ∈ T | u ∈ Gapi↔j & v /∈ Gapi↔j & u, v /∈ Anci↔j} .

Proof. The inclusion ⊆ follows immediately from the observation that v /∈
[i, j] implies v /∈ Gapi↔j.

The prove the inclusion ⊇, observe that u ∈ Gapi↔j implies u is disjoint
from edge i↔ j, and that v /∈ Anci↔j and v /∈ Gapi↔j imply v is disjoint from
edge i ↔ j. So edges i ↔ j, u ↔ v are disjoint, and the desired inclusion
follows from Proposition 2.2.4. 2

We are ready to formulate the main result of this section, which gives
as a corollary a characterization of well-nestedness using properties of single
edges.

6.5.4 Theorem. Let i↔ j be an edge in a dependency tree T = (V,→,�).
The edges that form an ill-nested pair with the edge i ↔ j are exactly the
edges in Ini↔j.

Proof. Direction ⇒: Let u ↔ v be an edge forming an ill-nested pair with
the edge i ↔ j, i.e. i ∈ Gapu↔v and u ∈ Gapi↔j. This implies i ∈ (u, v)
and u ∈ (i, j), which immediately gives v /∈ [i, j]. Supposing u ∈ Anci↔j or
v ∈ Anci↔j we get i ∈ Subtreeu↔v, which is in contradiction with i ∈ Gapu↔v,
and hence u, v /∈ Anci↔j. Therefore u↔ v ∈ Ini↔j.

Direction ⇐: Let u ↔ v ∈ Ini↔j (i.e. u ∈ Gapi↔j, v /∈ [i, j], and u, v /∈
Anci↔j; without loss of generality assume i ∈ (u, v)). From the assumptions
u ∈ Gapi↔j and v /∈ [i, j] we get that edges i↔ j, u↔ v are disjoint. Using

Well-nestedness and non-projective edges 68

Property 1.1.3, from the assumption u, v /∈ Anci↔j we get i /∈ Subtreeu↔v,
thus i ∈ Gapu↔v. Therefore i↔ j, u↔ v satisfy (inp�6.1). 2

6.5.5 Corollary. A dependency tree T = (V,→,�) is ill-nested if and only
if Ini↔j 6= ∅ for some non-projective edge i↔ j in T .

Proof. Follows directly from Theorem 6.5.4. 2

Next we de�ne upper ill-nested sets and show that they also capture
well-nestedness. We will use the notion of upper ill-nested set to derive an
e�ective algorithm for checking well-nestedness.

6.5.6 De�nition. The upper ill-nested set of any edge i↔ j in a dependency
tree T = (V,→,�) is de�ned as follows

In
↑
i↔j = {u↔ v ∈ T | u ∈ Gap

↑
i↔j & v /∈ [i, j] & u, v /∈ Anci↔j} .

6.5.7 Theorem. A dependency tree T = (V,→,�) is ill-nested if and only
if In↑i↔j 6= ∅ for some non-projective edge i↔ j in T .

Proof. Direction ⇐ follows from the simple fact that edge i ↔ j and any
edge u ↔ v from In

↑
i↔j form an ill-nested pair. Direction ⇒ follows from

Theorem 6.5.5 (recall that this implication amounts to Lemma 5.2.6). 2

Note that an analogy of Proposition 6.5.3 holds obviously also for upper
ill-nested sets.

6.6 Checking well-nestedness

In this section, we address the problem of checking well-nestedness of a de-
pendency tree. Our characterizations of well-nestedness give novel ways of
checking it; the results on ill-nested sets and upper ill-nested sets lead to
simple yet e�ective algorithms. The algorithms are analogous to the ones for
planarity presented in Section 5.4.

Algorithm 9 presents a straightforward way of determining ill-nested sets
of non-projective edges in a dependency tree. Its time complexity is O(n2)
because of the two embedded loops processing at most linearly many edges
each (the check on line 3 can be implemented so as to take constant time,
e.g. by pre-computing subordination →∗, which can be done in O(n2) time;
cf. Section 1.3). Hence we obtain the following theorem.

Well-nestedness and non-projective edges 69

Algorithm 9 Determine ill-nested sets � high-level sketch
Input: dependency tree T
Output: ill-nested sets of non-projective edges in T
1: for each edge i↔ j do
2: for each edge u↔ v s.t. u ∈ (i, j) do
3: check u↔ v ∈ Ini↔j

4: end for
5: end for

6.6.1 Theorem. Algorithm 9 returns for a dependency tree T all its ill-
nested sets; its time complexity is O(n2).

The bound is the same as for the reported algorithms for checking well-
nestedness, but without relying on any assumptions about the operations
used, namely that bit-vector operations are O(1) [Möhl, 2006].

Using Theorem 6.5.7 for upper ill-nested sets, we can present an algo-
rithm that is linear for projective trees and faster for random input and that
remains worst-case quadratic. Analogously to Algorithm 8, this is achieved
by incorporating the determination of upper ill-nested sets into the algorithm
for �nding non-projective edges of non-negative level type from Section 4.2.

Algorithm 10 Determine upper ill-nested sets � high-level sketch
Input: dependency tree T
Output: upper ill-nested sets of edges in T
1: for each level of nodes in T bottom up do
2: for each edge i→ c with parent node i on processed level do
3: compute Gap

↑
i→c using nodes on the same level as or above c

4: end for
5: for each edge i→ c with parent node i on processed level do
6: for each edge u↔ v s.t. u ∈ Gap

↑
i→c do

7: check u↔ v ∈ In
↑
i→c

8: end for
9: end for
10: delete all nodes below processed level from original total order on T
11: end for

First, in the loop on lines 2�4, upper gaps of edges with parent nodes on
the processed level are computed. Second, the loop on lines 5�9 computes
upper ill-nested sets of edges on the processed level. Again, we point out
that for the purpose of determining membership of some edge u ↔ v in the

Well-nestedness and non-projective edges 70

upper ill-nested set of edge i → c on line 7, total order also for nodes one
level below c is needed.

In the check on line 7, ancestry check is the only trickier part. We can, for
example, compute ancestry relation on demand for ancestors of the processed
edge i↔ j (once for all edges u↔ v processed in the loop on lines 6�8). We
can also optimize the order in which we process edges incident on node u:
�rst process the edge for which u is its child node, then the edges for which
u is their parent node, and always check for ancestry the parent node of the
considered edge (this way, we can utilize the simple fact that if an edge's
child node is an ancestor of a node, so is its parent node).

Worst-case time complexity of Algorithm 10 remains quadratic, but the
actual running time is linear for projective dependency trees and scales with
the number of edges whose endpoints are in the upper gap of some non-
projective edge of non-negative level type. Hence we get the following theo-
rem.

6.6.2 Theorem. Algorithm 10 returns for a dependency tree T all its upper
ill-nested sets; its time complexity is O(n2).

Both presented algorithms can also serve to simply check ill-nestedness
of a dependency tree (this follows from Corollary 6.5.5 and Theorem 6.5.7,
respectively). If used for this purpose, they can be modi�ed to �nish as soon
as a non-empty ill-nested set or a non-empty upper ill-nested set is found,
respectively.

Chapter 7
Partitioning of gaps of non-projective

edges

In this chapter, we study properties of individual non-projective edges that
can serve as edge-based measures of non-projectivity of dependency trees; we
will use them in the empirical evaluation presented in Chapter 10. Some of
the edge-based measures have corresponding tree-based counterparts, which
we brie�y mention.

We present two ways of partitioning gaps of non-projective edges: into
intervals and into components. We show how levels of nodes can be combined
with the partitioning of gaps into components; we propose a new edge-based
measure of non-projectivity of dependency trees, level signatures.

7.1 Partitioning of gaps into intervals

7.1.1 De�nition. For any edge i ↔ j in a dependency tree T = (V,→,�)
we de�ne its interval degree as follows

idegi↔j = number of intervals in Gapi↔j with respect to � .

By an interval we mean a maximal contiguous interval in�, i.e. a maximal
set of nodes comprising all nodes between its endpoints in the total order on
nodes �. (By de�nition, the interval degree of a projective edge is 0.)

Formally, the interval degree of edge i ↔ j in a dependency tree T =
(V,→,�) is the number of equivalence classes of the equivalence relation

((≺tr ∪ �tr) � Gapi↔j)
∗ .

71

Partitioning of gaps of non-projective edges 72

This measure corresponds to the tree-based gap degree measure, which
was �rst introduced by Holan et al. [1998]. The gap degree of a subtree is the
number of maximal contiguous intervals in the gap of the subtree. Obviously,
the interval degree of an edge is bounded from above by the gap degree of
the subtree rooted in its parent node.

Interval degree takes non-negative integer values; it is 0 exactly for pro-
jective edges. Interval degree is unbounded; in any given dependency tree,
however, it is bounded by its size.

7.2 Partitioning of gaps into components

7.2.1 De�nition. For any edge i ↔ j in a dependency tree T = (V,→,�)
we de�ne its component degree as follows

cdegi↔j = number of components in Gapi↔j with respect to ↔ .

By a component we mean a connected component in the relation ↔,
in other words a weak component in the relation → (we consider relations
induced on the set Gapi↔j by relations on T). (By de�nition, the component
degree of a projective edge is 0.)

Formally, the component degree of edge i ↔ j in a dependency tree
T = (V,→,�) is the number of equivalence classes of the equivalence relation

(↔� Gapi↔j)
∗ .

This measure was introduced by Nivre [2006]; he uses it to characterize
a whole dependency tree by taking maximum over all its edges.

Similarly to interval degree, component degree takes non-negative integer
values and is 0 exactly for projective edges. Component degree is unbounded;
in any given dependency tree, however, it is bounded by its size.

Each component of a gap can be represented by a single node, its root in
the dependency relation induced on the nodes of the gap (i.e. a node of the
component closest to the root of the whole tree). Note that a component need
not constitute a full subtree of the dependency tree (there may be nodes in
the subtree of the component root that lie outside the span of the particular
non-projective edge).

Remark. Partitioning of the gap of a non-projective edge into intervals
and components is independent of each other. Figure 7.1 shows two sample
dependency trees; tree (a) contains a non-projective edge with interval degree
1 and component degree 3, tree (b) contains a non-projective edge with

Partitioning of gaps of non-projective edges 73

(a) dependency tree with a non-
projective edge (in blue) with interval
degree 1 and component degree 3

(b) dependency tree with a non-projective edge (in
blue) with interval degree 3 and component de-
gree 1

Figure 7.1: Sample dependency trees showing mutual independence of inter-
val degree and component degree of a non-projective edge

Partitioning of gaps of non-projective edges 74

interval degree 3 and component degree 1 (and also other non-projective
edges).

7.3 Combining levels of nodes and

partitioning of gaps into intervals

We propose a new edge-based measure of non-projectivity combining level
types and component degrees. (We do not use interval degrees, i.e. the
partitioning of gaps into intervals, because we cannot specify a unique rep-
resentative of an interval with respect to the tree structure.)

7.3.1 De�nition. The level signature of an edge i↔ j in a dependency tree
T = (V,→,�) is a mapping Signaturei↔j : P(V)→ ZN0 de�ned as follows

Signaturei↔j = {levelChildi↔j
− levelr |

r is component root in Gapi↔j} .

The right-hand side is considered as a multiset, i.e. elements may repeat. We
call the elements of a level signature component levels .

The signature of an edge is a multiset consisting of the relative distances in
levels of all component roots in its gap from its child node. Level components
are not bounded; in any given dependency tree, however, level components
of any non-projective edge are bounded in absolute value by the height of the
dependency tree. Level signature is the empty multiset exactly for projective
edges.

Further, we disregard any possible orderings on signatures and concen-
trate only on the relative distances in levels. In Chapter 10, we present
signatures as non-decreasing sequences and write them in angle brackets 〈 〉,
component levels separated by commas (by doing so, we avoid combinatorial
explosion).

Another natural ordering on level signatures could for example be to order
component levels according to the order of the corresponding component
roots in the total order on nodes �.

Notice that level signatures subsume level types: the level type of a non-
projective edge is the component level of any of possibly several component
roots closest to the root of the whole tree. In other words, the level type of an
edge is equal to the largest component level occurring in its level signature.

Level signatures share interesting formal properties with level types of
non-projective edges. The following result is a direct generalization of The-
orem 4.1.3.

Partitioning of gaps of non-projective edges 75

7.3.2 Theorem. Let i ↔ j be a non-projective edge in a dependency tree
T = (V,→,�) with a non-positive component level in its level signature.
Then for each edge v → rc in T such that rc is root of component c in
Gapi↔j with component level lc = levelChildi↔j

− levelrc ≤ 0 it holds that one
of the endpoints of edge i ↔ j (i.e., either i, or j) is in Gapv↔rc

and it
witnesses that

Typev↔rc
≥ −lc .

Proof. The proof proceeds along similar lines as the proof of Theorem 4.1.3.
From the assumptions that rc is maximal in Gapi↔j and lc = levelChildi↔j

−
levelrc ≤ 0, node rc has a parent node v, which satis�es v /∈ Gapi↔j. Ob-
viously, edges i ↔ j, v → rc are disjoint, thus from Proposition 2.2.4
we have that v /∈ [i, j], and so either i ∈ (v, rc), or j ∈ (v, rc). Since
levelv ≥ levelParenti↔j

, we have that Parenti↔j /∈ Subtreev, and so either
i ∈ Gapv↔rc

, or j ∈ Gapv↔rc
. Immediately from de�nition we obtain that

Typev↔rc
≥ levelrc − levelChildi↔j

= −lc. The simple facts that leveli ≤
levelChildi↔j

, levelj ≤ levelChildi↔j
imply that the endpoint of edge i ↔ j in

the span of edge v → rc indeed witnesses the inequality for the level types,
which �nishes the proof. 2

This result links level signatures to well-nestedness: it tells us that when-
ever an edge's level signature contains a non-positive component level, the
whole dependency tree is ill-nested.

7.3.3 Corollary. If a dependency tree contains a non-projective edge with a
non-positive component level in its level signature, then it is ill-nested.

Proof. From Theorem 7.3.2 it follows that when a dependency tree contains
a non-projective edge with a non-positive component level, then it contains
an ill-nested pair of edges, which in turn by Corollary 6.3.3 implies that the
dependency tree is ill-nested. 2

Chapter 8
Formulas for counting some classes of

trees

In this chapter, we review known formulas for the numbers of trees of given
sizes for classes of trees that we study in this thesis: projective, planar, well-
nested, and unrestricted. We use the notation Cn for the number of trees
with n nodes in the class of trees speci�ed as superscript to the symbol.

The chapter is intended to provide the reader with some further intuitions
regarding the relative �distances� between di�erent classes of trees, based on
the numbers of trees on a given number of nodes in the classes.

8.1 Unrestricted dependency trees

Unrestricted dependency trees are in fact rooted labelled trees�consider la-
belling nodes of a dependency tree of size n by natural numbers 1, . . . ,
n; this labelling induces a total order on the set of nodes.

Labelled trees are counted by the well-know Cayley's formula. The for-
mulas for labelled unrooted (LU) and rooted (LR) trees are closely related,
since an unrooted tree can be rooted in any or its nodes. For reference, see
sequences A000272 and A000169 in the On-Line Encyclopedia of Sequences
[Sloane, 2007], respectively.

CLU
n = nn−2

CLR
n = nn−1

76

Formulas for counting some classes of trees 77

8.2 Projective and planar trees

To our knowledge, the general formula for the number of projective trees
(Pr) was �rst derived by Ji°i£ka [1975]. His derivation uses the relationship
between projective dependency trees and planar totally ordered unrooted
trees (PlU) we mentioned in Section 5.1 on page 52. Ji°i£ka also derived
the formula for planar unrooted trees we present in the next section; he
attributes a previous derivation of the formula to Ladislav Nebeský. (Recall
that a planar totally ordered unrooted tree can be rooted in any node to
give a planar dependency tree; we denote the class of planar totally ordered
rooted trees as PlR.)

It seems that these results had been forgotten for many years. They
re-appeared in the �eld of enumerative combinatorics under the name of
noncrossing trees with the work of Noy [1998]. For further references on
recent results concerning these two mutually related classes of trees, see se-
quences A006013 (o�set 1) and A001764 (o�set 1) for projective dependency
trees and planar totally ordered unrooted trees, respectively, in the On-Line
Encyclopedia of Sequences [Sloane, 2007].

CPr
n =

1

n

(
3n− 2

2n− 1

)
CPlU

n =
1

n− 1

(
3n− 3

2n− 1

)
CPlR

n = nCPlU
n =

n

n− 1

(
3n− 3

2n− 1

)
The relationship between planar totally ordered unrooted trees and pro-

jective dependency trees shows also in the simple relationship between for-
mulas counting them

CPr
n =

3n− 2

n
CPlU

n

8.3 Well-nested trees

For well-nested dependency trees, only a recursive formula enumerating them
is known.∗ For further details and references, see sequence A113882 in the
On-Line Encyclopedia of Sequences [Sloane, 2007].

∗For more details on deriving the recurrence, see Manuel Bodirsky's web page http:

//www.informatik.hu-berlin.de/~bodirsky/publications/drawings.html.

http://www.informatik.hu-berlin.de/~bodirsky/publications/drawings.html
http://www.informatik.hu-berlin.de/~bodirsky/publications/drawings.html

Formulas for counting some classes of trees 78

The recursive formulas are given below. To give the reader at least a
feeling for them, here is what the sequences count: tn is the number of well-
nested dependency trees on n nodes; wn is the number of well-nested totally
ordered forests on n nodes; wn,k is the number of k-tuples of well-nested
dependency forests with n as the total number of nodes.

tn = nwn−1

wn = wn,1

wn,1 =
n∑

i=1

tiwn−i,i

wn,k =
n∑

i=0

wiwn−i,k−1 for k ≥ 2

where

t0 = t1 = 1

w0 = w1 = 1

w0,k = 1 for k ≥ 0

No closed-form formula is known, nor is the exact asymptotic growth of
tn and wn. The scatter plot from the On-Line Encyclopedia of Sequences
suggests that the growth is super-exponential.

8.4 Note on asymptotic growths

Using Stirling formula, it is easy to show that numbers of projective and
planar trees of any sort have exponential asymptotic growth. Labelled rooted
trees grow super-exponentially, as do (most probably) well-nested trees; cf.
remark in last section.

Table 8.1 shows counts of trees on small numbers of nodes for the classes
in which we are interested in this thesis. It is worth noticing that even the
number of projective dependency trees, the smallest class, grows enormously
with increasing number of nodes.

The On-Line Encyclopedia of Sequences [Sloane, 2007] provides longer
initial subsequences for all the sequences that we brie�y presented in this
chapter.

Formulas for counting some classes of trees 79

n CPr
n CPlR

n CWnR
n CLR

n

1 1 1 1 1
2 2 2 2 2
3 7 9 9 9
4 30 48 64 64
5 143 275 605 625
6 728 1,638 6,996 7,776
7 3,876 9,996 94,556 117,649
8 21,318 62,016 1,452,928 2,097,152
9 120,175 389,367 24,921,765 43,046,721
10 690,690 2,466,750 471,091,360 1,000,000,000
11 4,032,015 15,737,865 9,720,039,120 25,937,424,601
12 23,841,480 100,975,680 217,285,778,700 743,008,370,688

Table 8.1: Counts of trees of some classes of rooted trees on small numbers
of nodes

Part II

Empirical results

80

Chapter 9
Empirical evaluation of algorithms for

�nding non-projective edges

To check the theoretical results on the worst-case bound of Algorithm 5, we
implemented both this algorithm and the simple Algorithm 1 and compared
their running times on data from PDT 2.0, a dependency treebank of Czech
[Haji£ et al., 2006]. Let us remind the reader that Algorithm 5 �nds only
non-projective edges of non-negative level types.

Algorithm 1 looks for all non-projective edges by checking subordination
for all nodes in their spans. Due to memory limitation, we implemented
it with cubic worst-case time complexity and linear space complexity (we
computed subordination on the �y).

The algorithms were run on a 2.2GHz 4-CPU Dual Core AMD Opteron
Processor 275 computer with 10GB of memory. The test was performed on
the whole analytical layer (i.e., surface-syntax layer) of PDT 2.0.

Relevant characteristics of the analytical layer of PDT 2.0 are shown in
Table 9.1. From average tree height and average edge span we see that on
this data our implementation of the simple algorithm does not reach its cubic
worst-case time complexity.

Level types of non-projective edges in the whole PDT 2.0 are distributed
as follows: there are 28, 426 edges of positive level types, 82 edges of level
type 0, and 5 edges of negative level types (very rare!). We see that on
this data set Algorithm 5 �nds virtually all non-projective edges. A more
detailed evaluation of formal properties of non-projective structures in lan-
guage syntax using dependency treebanks in several languages can be found
in Chapter 10.

Both algorithms were implemented in Perl within the tree editor TrEd
[Pajas, 2007]. The data occupy about 5GB of memory (in the standard in-

81

Empirical evaluation of algorithms for �nding non-projective edges 82

all trees non-projective trees
trees 87, 980 20, 380

nodes 1, 592, 827 483, 030

edges 1, 330, 878 421, 712

avg. tree height 5.97 (sd 2.70) 7.41 (sd 2.46)
avg. edge span 1.59 (sd 3.31) 1.79 (sd 3.55)

Table 9.1: Summary of non-projective dependency trees and edges on ana-
lytical layer of PDT 2.0 (edges from arti�cial root are omitted, edge span
excludes the edge's endpoints, sd means standard deviation)

all trees non-projective trees
simple Algorithm 1 52.38s (sd 0.25) 20.78s (sd 0.16)
Algorithm 5 25.31s (sd 0.16) 11.00s (sd 0.15)

Table 9.2: Running times on analytical layer of PDT 2.0 (averages of 100
runs, sd means standard deviation)

memory representation of TrEd); for the implementation of Algorithm 5, we
created additional data structures as described in Section 1.2.

Table 9.2 gives running times of both algorithms on the data; the run-
ning times exclude the time of loading the data into memory. Algorithm 5
outperforms the simple algorithm, the relative gain seems to be justi�ed by
the average edge span and tree height reported in Table 9.1. The relative
deterioration of performance for non-projective trees only might be caused
by the time cost of accessing the trees in memory (accessing all trees took
average 3.93s, accessing non-projective trees took average 2.41s, although
they amount to only about a quarter of all trees).

Our empirical results on real natural language data show that the con-
stant in the O(n) bound of Algorithm 5 is small. On the other hand, they
suggest that for the purposes of analysis of natural language data, due to the
characteristics of the data, even simple algorithms with worse than optimal
complexity bounds work well enough.

Chapter 10
Evaluation of tree and edge properties

on natural language data

This chapter presents an extensive empirical evaluation on data from nineteen
natural languages of some of the tree and edge properties of non-projective
dependency trees that can be used to describe and/or delimit non-projective
structures occurring in natural language; it is an extension of results pub-
lished in [Havelka, 2007a]. The experiments show that properties of non-
projective edges provide accurate and expressive tools for capturing non-
projective structures occurring in natural language.

Although we evaluate only properties derived directly from the tree struc-
ture and total order of a dependency tree, we would like to point out that
properties of individual non-projective edges provide tools allowing for a more
detailed and linguistically appropriate analysis. In particular, properties of
a non-projective edge allow for �local� lexicalization, be it of its endpoints,
of nodes in its gaps (e.g., the component roots), of edges in its non-planar
set, or any other sets of nodes de�ned relative to the edge.

10.1 Experimental setup

First, we brie�y list the languages that we use in our empirical evaluation.
Second, we describe the properties we report. Third, we describe how we
deal with the fact that the data formats of all treebanks we work with use an
arti�cial root node for each sentence. Last, we mention the program tools for
computing properties of non-projective edges that we used for the evaluation.

83

Evaluation of tree and edge properties on natural language data 84

10.1.1 Natural language treebanks

We evaluate the tree and edge properties described further below on depen-
dency treebanks in nineteen languages. All but one of the treebanks were
made available in CoNLL 2006 and 2007 shared tasks on dependency pars-
ing [Buchholz and Marsi, 2006, Nivre et al., 2007];∗ the only exception is the
Latin Dependency Treebank.†

Here is the list of all the languages and corresponding references:

Arabic Haji£ et al. [2004], Smrº et al. [2002]
Basque Aduriz et al. [2003]
Bulgarian Simov et al. [2005], Simov and Osenova [2003]
Catalan Martí et al. [2007]
Czech Böhmová et al. [2003], Haji£ et al. [2001]
Danish Kromann [2003]
Dutch van der Beek et al. [2002b,a]
English Marcus et al. [1993], Johansson and Nugues [2007]
German Brants et al. [2002]
Greek Prokopidis et al. [2005]
Hungarian Csendes et al. [2005]
Italian Montemagni et al. [2003]
Japanese Kawata and Bartels [2000]
Latin Bamman and Crane [2006, 2007]
Portuguese Afonso et al. [2002]
Slovene Dºeroski et al. [2006]
Spanish Civit Torruella and Martí Antonín [2002], Navarro

et al. [2003]
Swedish Nilsson et al. [2005]
Turkish O�azer et al. [2003], Atalay et al. [2003]

We take the data �as is�, although we are aware that structures occurring
in di�erent languages depend on the annotations and/or conversions used.

∗All data sets are the train parts of the CoNLL 2006 and 2007 shared tasks on depen-
dency parsing. The following treebanks were used in versions from year 2006: Bulgarian,
Czech, Danish, Dutch, German, Japanese, Portuguese, Slovene, Spanish, and Swedish; the
following treebanks in versions from year 2007: Arabic, Basque, Catalan, English, Greek,
Hungarian, Italian, and Turkish.

†The Latin Treebank is comprised of four excerpts from work by four di�erent authors.
To be able to attest the large stylistic variation between the texts, we evaluate them
separately.

Evaluation of tree and edge properties on natural language data 85

Some languages in the CoNLL shared tasks were not originally annotated
with dependency syntax, but only converted to a uni�ed dependency format
from other representations; and even for dependency treebanks the annota-
tion schemata can vary considerably.

In all the treebanks, an arti�cial root node for each sentence placed before
the sentence itself is used. To this root node, possibly several dependency
analyses of parts of the sentence are attached. Equivalently, the representa-
tion of a sentence can be viewed as a forest consisting of dependency trees
representing dependency analyses of parts of the sentence.

10.1.2 Reported tree and edge properties

We evaluate all global constraints dependency trees we studied in this thesis:
we give counts of trees violating projectivity, planarity, and well-nestedness.
The counts are also expressed in percentages relative to the total numbers of
dependency trees.

Reported edge properties are: component and interval degrees; level types
and counts of non-projective edges with negative and non-positive level types;
level signatures and level signatures complemented with ancestry information
(explained below); counts of non-projective edges with non-empty non-planar
and ill-nested sets. Because of their theoretical importance, we also give
counts of non-projective edges of non-positive and negative level types. All
above properties are also enumerated in percentages relative to total numbers
of non-projective edges. We also give the total numbers of non-projective
edges and their percentages relative to all edges in the evaluated languages.

All but one of the tree and edge properties listed above have been thor-
oughly described in the theoretical part of the thesis. The only exception is
level signature complemented with ancestry information: for each component
level we indicate by a superscript whether the corresponding component root
is an ancestor of the particular non-projective edge��a� means that it is its
ancestor, �n� means that it is not.

Note that a component level less than 2 cannot represent an ancestor
component root; and a non-ancestor component root with any component
level implies ill-nestedness (because it implies a non-empty ill-nested set of
the corresponding non-projective edge). We hope that by including this
property in the empirical evaluation we provide to the reader an even more
detailed insight into what non-projective con�gurations occur in natural lan-
guage treebanks.

Both level signatures and level signatures complemented with ancestry
information are provided primarily to give a more detailed insight into non-
projective structures occurring in di�erent languages. We think that com-

Evaluation of tree and edge properties on natural language data 86

bined with lexical information for nodes they can serve as a well-grounded
basis for a linguistic inquiry into non-projective constructions in natural lan-
guages.

For all properties of non-projective edges taking several values, the val-
ues are always listed according to decreasing frequency; values with the same
frequency are ordered according to increasing value of the particular prop-
erty. Level signatures complemented with ancestry information are presented
similarly to level signatures: component levels are ordered non-decreasingly,
components di�ering only in ancestry information are ordered ancestors �rst,
non-ancestors second.

Since the numbers of di�erent values for level signatures and level signa-
tures complemented with ancestry information are too large, for most lan-
guages we give only values whose counts are at least 5 and which at the same
time amount to at least 0.1% of non-projective edges. Exceptions are Latin
and Spanish; for both languages all values �t into the tables.

10.1.3 Note on computing the tree and edge properties

By conjoining dependency analyses of parts of a sentence under one arti�cial
root node, we let all their edges interact. Since the arti�cial root comes before
the sentence itself, it does not turn any edge non-projective. Edges from ar-
ti�cial roots may, however, introduce non-planarity. From Proposition 5.2.4
we know that if we considered these edges when examining properties of
dependency trees, planarity and projectivity would get con�ated.

Therefore, in our empirical evaluation we treat in a special way all edges
from arti�cial root nodes. They are excluded from non-planar sets of non-
projective edges (also from ill-nested sets of non-projective edges, but this
does not a�ect them in any way). We also exclude them from the total
numbers of edges.

Since we determine planarity and well-nestedness of whole dependency
trees using non-planar and ill-nested sets, respectively, this in particular af-
fects the counts of trees conforming to the planarity constraint; counts of
well-nested trees are not a�ected. All other edge properties of non-projective
edge are de�ned through their gaps, and so are left una�ected too.

Figure 10.1 exempli�es how this may a�ect counts of non-planar trees
and non-planar sets of non-projective edges. The sample tree is non-planar
according to De�nition 5.1.1, however we do not consider it as such, because
the pair of �crossing edges� involve an edge from the arti�cial root.

Evaluation of tree and edge properties on natural language data 87

Figure 10.1: Sample non-projective dependency tree that we consider planar
in empirical evaluation; edge in blue is considered non-projective, however
its non-planar set is considered to be empty.

10.1.4 Program tools

All reported tree and edge properties were obtained using a dedicated Perl
module for computing properties of non-projective edges. The module was
used within the tree editor TrEd [Pajas, 2007].

The module provides functions for computing gaps of non-projective edges
as well as other mathematical structures derived from them, such as non-
planar and ill-nested sets. We report only a small subset of properties that
it can compute.

Petr Pajas provided conversion tools from the CoNLL data format and
the Latin Treebank data format into PML, the native data format of the tree
editor TrEd.

The module for computing properties of non-projective edges has also
been utilized in joint work on dependency parsing [Hall et al., 2007].

10.2 Empirical results

In this section, we present the counts for tree and edges properties. The
section for each language starts on a new page and contains two tables:
one with tree properties, the second one with edge properties. In the case
of Latin, four subsections corresponding to four di�erent authors (and four
di�erent works) are given.

Evaluation of tree and edge properties on natural language data 88

10.2.1 Arabic

Table 10.1: Counts of dependency trees violating global constraints

Class count (proportion of all trees)

ill-nested 1 (0.07%)

non-planar 150 (10.27%)

non-projective 163 (11.16%)

all 1460

Table 10.2: Counts of properties of non-projective edges

Property value / count or count (proportion of non-projective edges)

cdeg 1 / 200 (94.79%), 2 / 10 (4.74%), 3 / 1 (0.47%)

ideg 1 / 211 (100.00%)

Type < 0 0 (0.00%)

Type ≤ 0 0 (0.00%)

Type 1 / 101 (47.87%), 2 / 58 (27.49%), 3 / 18 (8.53%),
4 / 10 (4.74%), 5 / 7 (3.32%), 6 / 6 (2.84%), 7 / 4 (1.90%),
9 / 1 (0.47%), 12 / 1 (0.47%), 13 / 1 (0.47%), 15 / 1 (0.47%),
16 / 1 (0.47%), 18 / 1 (0.47%), 21 / 1 (0.47%)

Signature 〈1〉 / 92 (43.60%), 〈2〉 / 56 (26.54%), 〈3〉 / 18 (8.53%),
〈4〉 / 10 (4.74%), 〈1, 1〉 / 8 (3.79%), 〈5〉 / 7 (3.32%),
〈6〉 / 6 (2.84%), . . .

Signatureancestry 〈1n〉 / 92 (43.60%), 〈2a〉 / 30 (14.22%), 〈2n〉 / 26 (12.32%),
〈3n〉 / 12 (5.69%), 〈4n〉 / 9 (4.27%), 〈1n, 1n〉 / 8 (3.79%),
〈3a〉 / 6 (2.84%), 〈6n〉 / 6 (2.84%), 〈5n〉 / 5 (2.37%), . . .

In 6= ∅ 2 (0.95%)

Np 6= ∅ 192 (91.00%)

non-projective 211 (0.42% of all edges)

all edges 50097

Evaluation of tree and edge properties on natural language data 89

10.2.2 Basque

Table 10.3: Counts of dependency trees violating global constraints

Class count (proportion of all trees)

ill-nested 78 (2.45%)

non-planar 448 (14.04%)

non-projective 836 (26.21%)

all 3190

Table 10.4: Counts of properties of non-projective edges

Property value / count or count (proportion of non-projective edges)

cdeg 1 / 1251 (84.41%), 2 / 177 (11.94%), 3 / 32 (2.16%),
4 / 12 (0.81%), 5 / 3 (0.20%), 6 / 3 (0.20%), 8 / 1 (0.07%),
10 / 1 (0.07%), 12 / 1 (0.07%), 14 / 1 (0.07%)

ideg 1 / 1383 (93.32%), 2 / 85 (5.74%), 3 / 7 (0.47%),
4 / 2 (0.13%), 6 / 1 (0.07%), 8 / 1 (0.07%), 10 / 1 (0.07%),
12 / 1 (0.07%), 14 / 1 (0.07%)

Type < 0 59 (3.98%)

Type ≤ 0 96 (6.48%)

Type 2 / 638 (43.05%), 1 / 471 (31.78%), 3 / 160 (10.80%),
4 / 77 (5.20%), 0 / 37 (2.50%), -1 / 33 (2.23%),
-2 / 21 (1.42%), 5 / 20 (1.35%), 6 / 10 (0.67%),
7 / 5 (0.34%), -3 / 3 (0.20%), 8 / 3 (0.20%), 9 / 2 (0.13%),
-5 / 1 (0.07%), -4 / 1 (0.07%)

Signature 〈2〉 / 561 (37.85%), 〈1〉 / 415 (28.00%), 〈3〉 / 120 (8.10%),
〈2, 2〉 / 50 (3.37%), 〈4〉 / 46 (3.10%), 〈1, 1〉 / 40 (2.70%),
〈0〉 / 34 (2.29%), 〈−1〉 / 31 (2.09%), 〈−2〉 / 20 (1.35%),
〈5〉 / 12 (0.81%), 〈2, 4〉 / 10 (0.67%), 〈3, 3〉 / 10 (0.67%),
〈1, 2〉 / 9 (0.61%), 〈0, 2〉 / 7 (0.47%), 〈2, 3〉 / 7 (0.47%),
〈1, 3〉 / 5 (0.34%), 〈1, 4〉 / 5 (0.34%), 〈4, 4〉 / 5 (0.34%),
〈6, 6〉 / 5 (0.34%), 〈1, 1, 1〉 / 5 (0.34%),
〈2, 2, 2〉 / 5 (0.34%), . . .

continued on next page

Evaluation of tree and edge properties on natural language data 90

Property value / count or count (proportion of non-projective edges)

Signatureancestry 〈1n〉 / 415 (28.00%), 〈2a〉 / 380 (25.64%),
〈2n〉 / 181 (12.21%), 〈3n〉 / 60 (4.05%), 〈3a〉 / 60 (4.05%),
〈1n, 1n〉 / 40 (2.70%), 〈0n〉 / 34 (2.29%), 〈4n〉 / 32 (2.16%),
〈−1n〉 / 31 (2.09%), 〈2n, 2n〉 / 25 (1.69%),
〈2a, 2n〉 / 25 (1.69%), 〈−2n〉 / 20 (1.35%),
〈4a〉 / 14 (0.94%), 〈2a, 3n〉 / 7 (0.47%), 〈0n, 2a〉 / 6 (0.40%),
〈5n〉 / 6 (0.40%), 〈5a〉 / 6 (0.40%), 〈1n, 1n, 1n〉 / 5 (0.34%),
〈1n, 2n〉 / 5 (0.34%), . . .

In 6= ∅ 223 (15.05%)

Np 6= ∅ 717 (48.38%)

non-projective 1482 (3.25% of all edges)

all edges 45630

Evaluation of tree and edge properties on natural language data 91

10.2.3 Bulgarian

Table 10.5: Counts of dependency trees violating global constraints

Class count (proportion of all trees)

ill-nested 0 (0.00%)

non-planar 677 (5.28%)

non-projective 690 (5.38%)

all 12823

Table 10.6: Counts of properties of non-projective edges

Property value / count or count (proportion of non-projective edges)

cdeg 1 / 723 (99.72%), 2 / 1 (0.14%), 3 / 1 (0.14%)

ideg 1 / 724 (99.86%), 2 / 1 (0.14%)

Type < 0 0 (0.00%)

Type ≤ 0 0 (0.00%)

Type 2 / 674 (92.97%), 3 / 32 (4.41%), 1 / 12 (1.66%),
4 / 5 (0.69%), 5 / 2 (0.28%)

Signature 〈2〉 / 674 (92.97%), 〈3〉 / 32 (4.41%), 〈1〉 / 10 (1.38%),
〈4〉 / 5 (0.69%), . . .

Signatureancestry 〈2a〉 / 672 (92.69%), 〈3a〉 / 32 (4.41%), 〈1n〉 / 10 (1.38%),
〈4a〉 / 5 (0.69%), . . .

In 6= ∅ 0 (0.00%)

Np 6= ∅ 712 (98.21%)

non-projective 725 (0.41% of all edges)

all edges 177394

Evaluation of tree and edge properties on natural language data 92

10.2.4 Catalan

Table 10.7: Counts of dependency trees violating global constraints

Class count (proportion of all trees)

ill-nested 9 (0.06%)

non-planar 440 (2.94%)

non-projective 440 (2.94%)

all 14958

Table 10.8: Counts of properties of non-projective edges

Property value / count or count (proportion of non-projective edges)

cdeg 1 / 448 (94.32%), 2 / 23 (4.84%), 3 / 3 (0.63%), 4 / 1 (0.21%)

ideg 1 / 469 (98.74%), 2 / 6 (1.26%)

Type < 0 3 (0.63%)

Type ≤ 0 7 (1.47%)

Type 1 / 204 (42.95%), 2 / 200 (42.11%), 3 / 45 (9.47%),
4 / 17 (3.58%), 0 / 4 (0.84%), 6 / 2 (0.42%), -4 / 1 (0.21%),
-3 / 1 (0.21%), -1 / 1 (0.21%)

Signature 〈2〉 / 196 (41.26%), 〈1〉 / 190 (40.00%), 〈3〉 / 42 (8.84%),
〈4〉 / 12 (2.53%), 〈1, 1〉 / 12 (2.53%), . . .

Signatureancestry 〈1n〉 / 190 (40.00%), 〈2a〉 / 151 (31.79%), 〈2n〉 / 45 (9.47%),
〈3a〉 / 27 (5.68%), 〈3n〉 / 15 (3.16%), 〈1n, 1n〉 / 12 (2.53%),
〈4a〉 / 8 (1.68%), . . .

In 6= ∅ 20 (4.21%)

Np 6= ∅ 475 (100.00%)

non-projective 475 (0.11% of all edges)

all edges 415884

Evaluation of tree and edge properties on natural language data 93

10.2.5 Czech

Table 10.9: Counts of dependency trees violating global constraints

Class count (proportion of all trees)

ill-nested 79 (0.11%)

non-planar 13783 (18.96%)

non-projective 16831 (23.15%)

all 72703

Table 10.10: Counts of properties of non-projective edges

Property value / count or count (proportion of non-projective edges)

cdeg 1 / 23190 (98.39%), 2 / 292 (1.24%), 3 / 66 (0.28%),
4 / 11 (0.05%), 6 / 5 (0.02%), 5 / 2 (0.01%), 9 / 2 (0.01%),
12 / 2 (0.01%)

ideg 1 / 23376 (99.18%), 2 / 189 (0.80%), 3 / 3 (0.01%),
4 / 2 (0.01%)

Type < 0 4 (0.02%)

Type ≤ 0 75 (0.32%)

Type 2 / 18594 (78.89%), 1 / 3061 (12.99%), 3 / 1570 (6.66%),
4 / 203 (0.86%), 0 / 71 (0.30%), 5 / 40 (0.17%),
6 / 11 (0.05%), 7 / 6 (0.03%), -1 / 4 (0.02%), 9 / 4 (0.02%),
8 / 3 (0.01%), 11 / 2 (0.01%), 10 / 1 (0.00%)

Signature 〈2〉 / 18507 (78.52%), 〈1〉 / 2886 (12.24%),
〈3〉 / 1515 (6.43%), 〈4〉 / 154 (0.65%), 〈1, 1〉 / 115 (0.49%),
〈0〉 / 70 (0.30%), 〈2, 2〉 / 58 (0.25%), 〈1, 1, 1〉 / 48 (0.20%),
〈2, 4〉 / 44 (0.19%), 〈1, 3〉 / 32 (0.14%), 〈5〉 / 29 (0.12%),
. . .

Signatureancestry 〈2a〉 / 18292 (77.61%), 〈1n〉 / 2886 (12.24%),
〈3a〉 / 1438 (6.10%), 〈2n〉 / 215 (0.91%),
〈4a〉 / 119 (0.50%), 〈1n, 1n〉 / 115 (0.49%),
〈3n〉 / 77 (0.33%), 〈0n〉 / 70 (0.30%), 〈2a, 2n〉 / 50 (0.21%),
〈1n, 1n, 1n〉 / 48 (0.20%), 〈2a, 4a〉 / 41 (0.17%),
〈4n〉 / 35 (0.15%), 〈1n, 3a〉 / 32 (0.14%), . . .

In 6= ∅ 171 (0.73%)

continued on next page

Evaluation of tree and edge properties on natural language data 94

Property value / count or count (proportion of non-projective edges)

Np 6= ∅ 18758 (79.58%)

non-projective 23570 (2.13% of all edges)

all edges 1105437

Evaluation of tree and edge properties on natural language data 95

10.2.6 Danish

Table 10.11: Counts of dependency trees violating global constraints

Class count (proportion of all trees)

ill-nested 6 (0.12%)

non-planar 787 (15.16%)

non-projective 811 (15.63%)

all 5190

Table 10.12: Counts of properties of non-projective edges

Property value / count or count (proportion of non-projective edges)

cdeg 1 / 842 (89.10%), 2 / 78 (8.25%), 3 / 22 (2.33%),
4 / 3 (0.32%)

ideg 1 / 940 (99.47%), 2 / 5 (0.53%)

Type < 0 0 (0.00%)

Type ≤ 0 3 (0.32%)

Type 2 / 570 (60.32%), 1 / 197 (20.85%), 3 / 103 (10.90%),
4 / 43 (4.55%), 5 / 16 (1.69%), 6 / 7 (0.74%), 0 / 3 (0.32%),
7 / 3 (0.32%), 8 / 1 (0.11%), 10 / 1 (0.11%), 15 / 1 (0.11%)

Signature 〈2〉 / 555 (58.73%), 〈1〉 / 115 (12.17%), 〈3〉 / 100 (10.58%),
〈1, 1〉 / 63 (6.67%), 〈4〉 / 41 (4.34%), 〈5〉 / 16 (1.69%),
〈1, 1, 1〉 / 16 (1.69%), 〈2, 2〉 / 7 (0.74%), . . .

Signatureancestry 〈2a〉 / 537 (56.83%), 〈1n〉 / 115 (12.17%), 〈3a〉 / 92 (9.74%),
〈1n, 1n〉 / 63 (6.67%), 〈4a〉 / 39 (4.13%), 〈2n〉 / 18 (1.90%),
〈1n, 1n, 1n〉 / 16 (1.69%), 〈5a〉 / 10 (1.06%),
〈3n〉 / 8 (0.85%), 〈2a, 2n〉 / 7 (0.74%),
〈2a, 2n, 2n〉 / 6 (0.63%), 〈5n〉 / 6 (0.63%), . . .

In 6= ∅ 13 (1.38%)

Np 6= ∅ 888 (93.97%)

non-projective 945 (1.06% of all edges)

all edges 89171

Evaluation of tree and edge properties on natural language data 96

10.2.7 Dutch

Table 10.13: Counts of dependency trees violating global constraints

Class count (proportion of all trees)

ill-nested 15 (0.11%)

non-planar 4115 (30.83%)

non-projective 4865 (36.44%)

all 13349

Table 10.14: Counts of properties of non-projective edges

Property value / count or count (proportion of non-projective edges)

cdeg 1 / 10264 (97.14%), 2 / 238 (2.25%), 3 / 47 (0.44%),
4 / 8 (0.08%), 5 / 6 (0.06%), 7 / 3 (0.03%)

ideg 1 / 10209 (96.62%), 2 / 349 (3.30%), 3 / 8 (0.08%)

Type < 0 0 (0.00%)

Type ≤ 0 2 (0.02%)

Type 2 / 8129 (76.94%), 3 / 1509 (14.28%), 1 / 660 (6.25%),
4 / 228 (2.16%), 5 / 29 (0.27%), 6 / 5 (0.05%), 0 / 2 (0.02%),
7 / 2 (0.02%), 8 / 2 (0.02%)

Signature 〈2〉 / 8061 (76.29%), 〈3〉 / 1461 (13.83%), 〈1〉 / 512 (4.85%),
〈4〉 / 201 (1.90%), 〈1, 1〉 / 118 (1.12%), 〈2, 2〉 / 52 (0.49%),
〈1, 1, 1〉 / 25 (0.24%), 〈5〉 / 23 (0.22%), 〈1, 3〉 / 16 (0.15%),
〈3, 3〉 / 15 (0.14%), 〈2, 4〉 / 12 (0.11%), . . .

Signatureancestry 〈2a〉 / 8002 (75.73%), 〈3a〉 / 1452 (13.74%),
〈1n〉 / 512 (4.85%), 〈4a〉 / 200 (1.89%),
〈1n, 1n〉 / 118 (1.12%), 〈2n〉 / 59 (0.56%),
〈2a, 2n〉 / 33 (0.31%), 〈1n, 1n, 1n〉 / 25 (0.24%),
〈5a〉 / 22 (0.21%), 〈2n, 2n〉 / 19 (0.18%),
〈1n, 3a〉 / 15 (0.14%), 〈3n, 3n〉 / 13 (0.12%),
〈2a, 4a〉 / 12 (0.11%), . . .

In 6= ∅ 33 (0.31%)

Np 6= ∅ 9054 (85.69%)

non-projective 10566 (5.90% of all edges)

continued on next page

Evaluation of tree and edge properties on natural language data 97

Property value / count or count (proportion of non-projective edges)

all edges 179063

Evaluation of tree and edge properties on natural language data 98

10.2.8 English

Table 10.15: Counts of dependency trees violating global constraints

Class count (proportion of all trees)

ill-nested 116 (0.62%)

non-planar 1248 (6.72%)

non-projective 1248 (6.72%)

all 18577

Table 10.16: Counts of properties of non-projective edges

Property value / count or count (proportion of non-projective edges)

cdeg 1 / 1170 (79.43%), 2 / 242 (16.43%), 3 / 37 (2.51%),
4 / 9 (0.61%), 5 / 4 (0.27%), 6 / 4 (0.27%), 7 / 2 (0.14%),
9 / 2 (0.14%), 8 / 1 (0.07%), 11 / 1 (0.07%), 12 / 1 (0.07%)

ideg 1 / 1432 (97.22%), 2 / 25 (1.70%), 3 / 6 (0.41%),
4 / 5 (0.34%), 5 / 5 (0.34%)

Type < 0 0 (0.00%)

Type ≤ 0 5 (0.34%)

Type 2 / 868 (58.93%), 3 / 338 (22.95%), 1 / 210 (14.26%),
4 / 41 (2.78%), 5 / 9 (0.61%), 0 / 5 (0.34%), 6 / 1 (0.07%),
7 / 1 (0.07%)

Signature 〈2〉 / 824 (55.94%), 〈3〉 / 173 (11.74%), 〈1〉 / 140 (9.50%),
〈0, 3〉 / 70 (4.75%), 〈1, 3〉 / 67 (4.55%), 〈1, 1〉 / 51 (3.46%),
〈4〉 / 25 (1.70%), 〈2, 2〉 / 13 (0.88%), 〈1, 1, 1〉 / 9 (0.61%),
〈0, 1〉 / 6 (0.41%), 〈0, 0, 3〉 / 6 (0.41%), 〈1, 4〉 / 6 (0.41%),
〈2, 4〉 / 6 (0.41%), 〈1, 1, 3〉 / 6 (0.41%), 〈−1, 3〉 / 5 (0.34%),
〈0〉 / 5 (0.34%), . . .

continued on next page

Evaluation of tree and edge properties on natural language data 99

Property value / count or count (proportion of non-projective edges)

Signatureancestry 〈2a〉 / 817 (55.47%), 〈3a〉 / 169 (11.47%),
〈1n〉 / 140 (9.50%), 〈0n, 3a〉 / 70 (4.75%),
〈1n, 3a〉 / 67 (4.55%), 〈1n, 1n〉 / 51 (3.46%),
〈4a〉 / 24 (1.63%), 〈1n, 1n, 1n〉 / 9 (0.61%), 〈2n〉 / 7 (0.48%),
〈2n, 2n〉 / 7 (0.48%), 〈0n, 0n, 3a〉 / 6 (0.41%),
〈0n, 1n〉 / 6 (0.41%), 〈1n, 1n, 3a〉 / 6 (0.41%),
〈1n, 4a〉 / 6 (0.41%), 〈2a, 2n〉 / 6 (0.41%), 〈0n〉 / 5 (0.34%),
〈2n, 4a〉 / 5 (0.34%), . . .

In 6= ∅ 278 (18.87%)

Np 6= ∅ 1473 (100.00%)

non-projective 1473 (0.34% of all edges)

all edges 427946

Evaluation of tree and edge properties on natural language data 100

10.2.9 German

Table 10.17: Counts of dependency trees violating global constraints

Class count (proportion of all trees)

ill-nested 416 (1.06%)

non-planar 10865 (27.71%)

non-projective 10883 (27.75%)

all 39216

Table 10.18: Counts of properties of non-projective edges

Property value / count or count (proportion of non-projective edges)

cdeg 1 / 13107 (82.73%), 2 / 2206 (13.92%), 3 / 434 (2.74%),
4 / 77 (0.49%), 5 / 13 (0.08%), 6 / 5 (0.03%), 7 / 1 (0.01%),
8 / 1 (0.01%)

ideg 1 / 14605 (92.18%), 2 / 1198 (7.56%), 3 / 37 (0.23%),
4 / 4 (0.03%)

Type < 0 0 (0.00%)

Type ≤ 0 41 (0.26%)

Type 2 / 9018 (56.92%), 1 / 5018 (31.67%), 3 / 1566 (9.88%),
4 / 172 (1.09%), 0 / 41 (0.26%), 5 / 24 (0.15%), 6 / 5 (0.03%)

Signature 〈2〉 / 8407 (53.06%), 〈1〉 / 3112 (19.64%),
〈1, 1〉 / 1503 (9.49%), 〈3〉 / 1397 (8.82%),
〈2, 2〉 / 476 (3.00%), 〈1, 1, 1〉 / 312 (1.97%),
〈4〉 / 136 (0.86%), 〈3, 3〉 / 98 (0.62%), 〈2, 2, 2〉 / 69 (0.44%),
〈1, 1, 1, 1〉 / 59 (0.37%), 〈1, 3〉 / 47 (0.30%),
〈0〉 / 38 (0.24%), 〈0, 2〉 / 22 (0.14%), . . .

Signatureancestry 〈2a〉 / 7970 (50.30%), 〈1n〉 / 3112 (19.64%),
〈1n, 1n〉 / 1503 (9.49%), 〈3a〉 / 1389 (8.77%),
〈2n〉 / 437 (2.76%), 〈2a, 2n〉 / 331 (2.09%),
〈1n, 1n, 1n〉 / 312 (1.97%), 〈2n, 2n〉 / 145 (0.92%),
〈4a〉 / 136 (0.86%), 〈3a, 3n〉 / 84 (0.53%),
〈1n, 1n, 1n, 1n〉 / 59 (0.37%), 〈2a, 2n, 2n〉 / 49 (0.31%),
〈1n, 3a〉 / 47 (0.30%), 〈0n〉 / 38 (0.24%),
〈0n, 2a〉 / 22 (0.14%), 〈2n, 2n, 2n〉 / 20 (0.13%), . . .

continued on next page

Evaluation of tree and edge properties on natural language data 101

Property value / count or count (proportion of non-projective edges)

In 6= ∅ 1013 (6.39%)

Np 6= ∅ 15824 (99.87%)

non-projective 15844 (2.40% of all edges)

all edges 660394

Evaluation of tree and edge properties on natural language data 102

10.2.10 Greek

Table 10.19: Counts of dependency trees violating global constraints

Class count (proportion of all trees)

ill-nested 0 (0.00%)

non-planar 454 (16.78%)

non-projective 549 (20.30%)

all 2705

Table 10.20: Counts of properties of non-projective edges

Property value / count or count (proportion of non-projective edges)

cdeg 1 / 738 (98.40%), 2 / 10 (1.33%), 3 / 2 (0.27%)

ideg 1 / 741 (98.80%), 2 / 9 (1.20%)

Type < 0 0 (0.00%)

Type ≤ 0 0 (0.00%)

Type 2 / 460 (61.33%), 1 / 177 (23.60%), 3 / 87 (11.60%),
4 / 11 (1.47%), 5 / 9 (1.20%), 6 / 3 (0.40%), 7 / 1 (0.13%),
8 / 1 (0.13%), 10 / 1 (0.13%)

Signature 〈2〉 / 456 (60.80%), 〈1〉 / 169 (22.53%), 〈3〉 / 87 (11.60%),
〈4〉 / 11 (1.47%), 〈5〉 / 9 (1.20%), 〈1, 1〉 / 6 (0.80%), . . .

Signatureancestry 〈2a〉 / 407 (54.27%), 〈1n〉 / 169 (22.53%), 〈3a〉 / 60 (8.00%),
〈2n〉 / 49 (6.53%), 〈3n〉 / 27 (3.60%), 〈4n〉 / 7 (0.93%),
〈5n〉 / 7 (0.93%), 〈1n, 1n〉 / 6 (0.80%), . . .

In 6= ∅ 0 (0.00%)

Np 6= ∅ 621 (82.80%)

non-projective 750 (1.25% of all edges)

all edges 59983

Evaluation of tree and edge properties on natural language data 103

10.2.11 Hungarian

Table 10.21: Counts of dependency trees violating global constraints

Class count (proportion of all trees)

ill-nested 4 (0.07%)

non-planar 1590 (26.35%)

non-projective 1590 (26.35%)

all 6034

Table 10.22: Counts of properties of non-projective edges

Property value / count or count (proportion of non-projective edges)

cdeg 1 / 3013 (79.00%), 2 / 515 (13.50%), 3 / 201 (5.27%),
4 / 50 (1.31%), 5 / 17 (0.45%), 6 / 8 (0.21%), 7 / 6 (0.16%),
8 / 3 (0.08%), 10 / 1 (0.03%)

ideg 1 / 3483 (91.32%), 2 / 279 (7.32%), 3 / 43 (1.13%),
4 / 8 (0.21%), 5 / 1 (0.03%)

Type < 0 0 (0.00%)

Type ≤ 0 0 (0.00%)

Type 2 / 2553 (66.94%), 1 / 702 (18.41%), 3 / 461 (12.09%),
4 / 84 (2.20%), 5 / 10 (0.26%), 6 / 4 (0.10%)

Signature 〈2〉 / 2228 (58.42%), 〈3〉 / 406 (10.64%),
〈1, 1〉 / 312 (8.18%), 〈1〉 / 297 (7.79%),
〈2, 2〉 / 166 (4.35%), 〈2, 2, 2〉 / 118 (3.09%),
〈4〉 / 72 (1.89%), 〈1, 1, 1〉 / 58 (1.52%),
〈2, 2, 2, 2〉 / 30 (0.79%), 〈2, 3〉 / 18 (0.47%),
〈1, 1, 1, 1, 1〉 / 12 (0.31%), 〈3, 3, 3〉 / 11 (0.29%),
〈1, 1, 1, 1〉 / 11 (0.29%), 〈2, 3, 3〉 / 8 (0.21%),
〈5〉 / 7 (0.18%), 〈3, 3〉 / 6 (0.16%), 〈4, 4〉 / 6 (0.16%), . . .

continued on next page

Evaluation of tree and edge properties on natural language data 104

Property value / count or count (proportion of non-projective edges)

Signatureancestry 〈2a〉 / 2208 (57.89%), 〈3a〉 / 405 (10.62%),
〈1n, 1n〉 / 312 (8.18%), 〈1n〉 / 297 (7.79%),
〈2a, 2n〉 / 147 (3.85%), 〈2a, 2n, 2n〉 / 107 (2.81%),
〈4a〉 / 72 (1.89%), 〈1n, 1n, 1n〉 / 58 (1.52%),
〈2a, 2n, 2n, 2n〉 / 29 (0.76%), 〈2n〉 / 20 (0.52%),
〈2n, 2n〉 / 19 (0.50%), 〈2a, 3n〉 / 18 (0.47%),
〈1n, 1n, 1n, 1n, 1n〉 / 12 (0.31%),
〈1n, 1n, 1n, 1n〉 / 11 (0.29%), 〈2n, 2n, 2n〉 / 11 (0.29%),
〈3a, 3n, 3n〉 / 11 (0.29%), 〈2a, 3n, 3n〉 / 8 (0.21%),
〈5a〉 / 7 (0.18%), 〈1n, 1n, 1n, 1n, 1n, 1n〉 / 6 (0.16%),
〈3a, 3n, 3n, 3n〉 / 6 (0.16%), 〈4a, 4n〉 / 6 (0.16%), . . .

In 6= ∅ 8 (0.21%)

Np 6= ∅ 3814 (100.00%)

non-projective 3814 (3.03% of all edges)

all edges 125765

Evaluation of tree and edge properties on natural language data 105

10.2.12 Italian

Table 10.23: Counts of dependency trees violating global constraints

Class count (proportion of all trees)

ill-nested 6 (0.19%)

non-planar 139 (4.47%)

non-projective 229 (7.36%)

all 3110

Table 10.24: Counts of properties of non-projective edges

Property value / count or count (proportion of non-projective edges)

cdeg 1 / 304 (90.75%), 2 / 27 (8.06%), 3 / 2 (0.60%),
4 / 1 (0.30%), 5 / 1 (0.30%)

ideg 1 / 325 (97.01%), 2 / 10 (2.99%)

Type < 0 0 (0.00%)

Type ≤ 0 6 (1.79%)

Type 2 / 159 (47.46%), 1 / 114 (34.03%), 3 / 24 (7.16%),
4 / 13 (3.88%), 9 / 9 (2.69%), 0 / 6 (1.79%), 6 / 4 (1.19%),
5 / 2 (0.60%), 7 / 2 (0.60%), 8 / 2 (0.60%)

Signature 〈2〉 / 152 (45.37%), 〈1〉 / 97 (28.96%), 〈3〉 / 21 (6.27%),
〈1, 1〉 / 14 (4.18%), 〈4〉 / 12 (3.58%), 〈9〉 / 9 (2.69%),
〈2, 2〉 / 6 (1.79%), 〈0〉 / 5 (1.49%), . . .

Signatureancestry 〈2a〉 / 125 (37.31%), 〈1n〉 / 97 (28.96%), 〈2n〉 / 27 (8.06%),
〈3a〉 / 17 (5.07%), 〈1n, 1n〉 / 14 (4.18%), 〈4n〉 / 12 (3.58%),
〈9n〉 / 9 (2.69%), 〈0n〉 / 5 (1.49%), . . .

In 6= ∅ 14 (4.18%)

Np 6= ∅ 197 (58.81%)

non-projective 335 (0.50% of all edges)

all edges 67360

Evaluation of tree and edge properties on natural language data 106

10.2.13 Japanese

Table 10.25: Counts of dependency trees violating global constraints

Class count (proportion of all trees)

ill-nested 0 (0.00%)

non-planar 1 (0.01%)

non-projective 902 (5.29%)

all 17044

Table 10.26: Counts of properties of non-projective edges

Property value / count or count (proportion of non-projective edges)

cdeg 1 / 1484 (89.02%), 2 / 143 (8.58%), 3 / 26 (1.56%),
4 / 10 (0.60%), 5 / 4 (0.24%)

ideg 1 / 1570 (94.18%), 2 / 81 (4.86%), 3 / 12 (0.72%),
4 / 3 (0.18%), 5 / 1 (0.06%)

Type < 0 0 (0.00%)

Type ≤ 0 0 (0.00%)

Type 1 / 550 (32.99%), 2 / 231 (13.86%), 3 / 205 (12.30%),
4 / 203 (12.18%), 5 / 139 (8.34%), 6 / 122 (7.32%),
7 / 87 (5.22%), 8 / 54 (3.24%), 9 / 35 (2.10%),
10 / 20 (1.20%), 11 / 9 (0.54%), 13 / 6 (0.36%),
12 / 4 (0.24%), 14 / 1 (0.06%), 17 / 1 (0.06%)

Signature 〈1〉 / 466 (27.95%), 〈2〉 / 209 (12.54%), 〈4〉 / 186 (11.16%),
〈3〉 / 183 (10.98%), 〈5〉 / 126 (7.56%), 〈6〉 / 113 (6.78%),
〈7〉 / 78 (4.68%), 〈1, 1〉 / 63 (3.78%), 〈8〉 / 49 (2.94%),
〈9〉 / 35 (2.10%), 〈10〉 / 20 (1.20%), 〈3, 3〉 / 19 (1.14%),
〈4, 4〉 / 16 (0.96%), 〈2, 2〉 / 15 (0.90%), 〈5, 5〉 / 13 (0.78%),
〈1, 1, 1〉 / 10 (0.60%), 〈6, 6〉 / 8 (0.48%), 〈11〉 / 7 (0.42%),
〈1, 1, 1, 1〉 / 7 (0.42%), 〈13〉 / 6 (0.36%),
〈2, 2, 2〉 / 6 (0.36%), . . .

continued on next page

Evaluation of tree and edge properties on natural language data 107

Property value / count or count (proportion of non-projective edges)

Signatureancestry 〈1n〉 / 466 (27.95%), 〈2n〉 / 209 (12.54%),
〈4n〉 / 186 (11.16%), 〈3n〉 / 183 (10.98%),
〈5n〉 / 126 (7.56%), 〈6n〉 / 113 (6.78%), 〈7n〉 / 78 (4.68%),
〈1n, 1n〉 / 63 (3.78%), 〈8n〉 / 49 (2.94%), 〈9n〉 / 35 (2.10%),
〈10n〉 / 20 (1.20%), 〈3n, 3n〉 / 19 (1.14%),
〈4n, 4n〉 / 16 (0.96%), 〈2n, 2n〉 / 15 (0.90%),
〈5n, 5n〉 / 13 (0.78%), 〈1n, 1n, 1n〉 / 10 (0.60%),
〈6n, 6n〉 / 8 (0.48%), 〈1n, 1n, 1n, 1n〉 / 7 (0.42%),
〈11n〉 / 7 (0.42%), 〈2n, 2n, 2n〉 / 6 (0.36%),
〈13n〉 / 6 (0.36%), 〈7n, 7n, 7n〉 / 5 (0.30%), . . .

In 6= ∅ 0 (0.00%)

Np 6= ∅ 1 (0.06%)

non-projective 1667 (1.32% of all edges)

all edges 126511

Evaluation of tree and edge properties on natural language data 108

10.2.14 Latin

Cicero � Oratio in Catilinam

Table 10.27: Counts of dependency trees violating global constraints

Class count (proportion of all trees)

ill-nested 2 (2.99%)

non-planar 40 (59.70%)

non-projective 41 (61.19%)

all 67

Table 10.28: Counts of properties of non-projective edges

Property value / count or count (proportion of non-projective edges)

cdeg 1 / 61 (82.43%), 2 / 11 (14.86%), 3 / 2 (2.70%)

ideg 1 / 73 (98.65%), 2 / 1 (1.35%)

Type < 0 0 (0.00%)

Type ≤ 0 0 (0.00%)

Type 2 / 43 (58.11%), 1 / 22 (29.73%), 3 / 8 (10.81%), 4 / 1 (1.35%)

Signature 〈2〉 / 40 (54.05%), 〈1〉 / 14 (18.92%), 〈3〉 / 7 (9.46%),
〈1, 1〉 / 5 (6.76%), 〈0, 1〉 / 2 (2.70%), 〈2, 2〉 / 2 (2.70%),
〈1, 3〉 / 1 (1.35%), 〈2, 4〉 / 1 (1.35%), 〈1, 1, 1〉 / 1 (1.35%),
〈1, 2, 2〉 / 1 (1.35%)

Signatureancestry 〈2a〉 / 39 (52.70%), 〈1n〉 / 14 (18.92%), 〈1n, 1n〉 / 5 (6.76%),
〈3a〉 / 4 (5.41%), 〈3n〉 / 3 (4.05%), 〈0n, 1n〉 / 2 (2.70%),
〈2a, 2n〉 / 2 (2.70%), 〈1n, 1n, 1n〉 / 1 (1.35%),
〈1n, 2n, 2n〉 / 1 (1.35%), 〈1n, 3a〉 / 1 (1.35%),
〈2n〉 / 1 (1.35%), 〈2a, 4a〉 / 1 (1.35%)

In 6= ∅ 4 (5.41%)

Np 6= ∅ 71 (95.95%)

non-projective 74 (6.53% of all edges)

all edges 1133

Evaluation of tree and edge properties on natural language data 109

Caesar � Commentarii de Bello Gallico

Table 10.29: Counts of dependency trees violating global constraints

Class count (proportion of all trees)

ill-nested 0 (0.00%)

non-planar 32 (45.07%)

non-projective 33 (46.48%)

all 71

Table 10.30: Counts of properties of non-projective edges

Property value / count or count (proportion of non-projective edges)

cdeg 1 / 46 (97.87%), 3 / 1 (2.13%)

ideg 1 / 47 (100.00%)

Type < 0 0 (0.00%)

Type ≤ 0 0 (0.00%)

Type 2 / 26 (55.32%), 1 / 14 (29.79%), 3 / 7 (14.89%)

Signature 〈2〉 / 26 (55.32%), 〈1〉 / 13 (27.66%), 〈3〉 / 7 (14.89%),
〈1, 1, 1〉 / 1 (2.13%)

Signatureancestry 〈2a〉 / 26 (55.32%), 〈1n〉 / 13 (27.66%), 〈3a〉 / 7 (14.89%),
〈1n, 1n, 1n〉 / 1 (2.13%)

In 6= ∅ 0 (0.00%)

Np 6= ∅ 45 (95.74%)

non-projective 47 (3.32% of all edges)

all edges 1414

Evaluation of tree and edge properties on natural language data 110

Vergil � Aeneid

Table 10.31: Counts of dependency trees violating global constraints

Class count (proportion of all trees)

ill-nested 13 (7.30%)

non-planar 122 (68.54%)

non-projective 126 (70.79%)

all 178

Table 10.32: Counts of properties of non-projective edges

Property value / count or count (proportion of non-projective edges)

cdeg 1 / 270 (90.91%), 2 / 24 (8.08%), 3 / 3 (1.01%)

ideg 1 / 281 (94.61%), 2 / 16 (5.39%)

Type < 0 1 (0.34%)

Type ≤ 0 12 (4.04%)

Type 2 / 181 (60.94%), 1 / 56 (18.86%), 3 / 36 (12.12%),
0 / 11 (3.70%), 4 / 11 (3.70%), -1 / 1 (0.34%), 5 / 1 (0.34%)

Signature 〈2〉 / 176 (59.26%), 〈1〉 / 43 (14.48%), 〈3〉 / 34 (11.45%),
〈0〉 / 11 (3.70%), 〈1, 1〉 / 10 (3.37%), 〈4〉 / 4 (1.35%),
〈2, 4〉 / 4 (1.35%), 〈2, 2〉 / 3 (1.01%), 〈0, 2〉 / 2 (0.67%),
〈2, 2, 4〉 / 2 (0.67%), 〈−2, 1〉 / 1 (0.34%), 〈−1〉 / 1 (0.34%),
〈0, 1〉 / 1 (0.34%), 〈5〉 / 1 (0.34%), 〈1, 4〉 / 1 (0.34%),
〈2, 3〉 / 1 (0.34%), 〈3, 3〉 / 1 (0.34%), 〈1, 1, 1〉 / 1 (0.34%)

Signatureancestry 〈2a〉 / 172 (57.91%), 〈1n〉 / 43 (14.48%), 〈3a〉 / 34 (11.45%),
〈0n〉 / 11 (3.70%), 〈1n, 1n〉 / 10 (3.37%), 〈2n〉 / 4 (1.35%),
〈4a〉 / 4 (1.35%), 〈2a, 2n〉 / 3 (1.01%), 〈2a, 4a〉 / 3 (1.01%),
〈0n, 2a〉 / 2 (0.67%), 〈2a, 2n, 4a〉 / 2 (0.67%),
〈−2n, 1n〉 / 1 (0.34%), 〈−1n〉 / 1 (0.34%),
〈0n, 1n〉 / 1 (0.34%), 〈1n, 1n, 1n〉 / 1 (0.34%),
〈1n, 4a〉 / 1 (0.34%), 〈2n, 4a〉 / 1 (0.34%),
〈2a, 3n〉 / 1 (0.34%), 〈3a, 3n〉 / 1 (0.34%), 〈5a〉 / 1 (0.34%)

In 6= ∅ 28 (9.43%)

Np 6= ∅ 285 (95.96%)

non-projective 297 (12.25% of all edges)

continued on next page

Evaluation of tree and edge properties on natural language data 111

Property value / count or count (proportion of non-projective edges)

all edges 2424

Evaluation of tree and edge properties on natural language data 112

Jerome � Vulgate

Table 10.33: Counts of dependency trees violating global constraints

Class count (proportion of all trees)

ill-nested 0 (0.00%)

non-planar 104 (25.68%)

non-projective 110 (27.16%)

all 405

Table 10.34: Counts of properties of non-projective edges

Property value / count or count (proportion of non-projective edges)

cdeg 1 / 149 (98.03%), 2 / 2 (1.32%), 3 / 1 (0.66%)

ideg 1 / 150 (98.68%), 2 / 2 (1.32%)

Type < 0 0 (0.00%)

Type ≤ 0 0 (0.00%)

Type 2 / 104 (68.42%), 1 / 34 (22.37%), 3 / 11 (7.24%),
4 / 2 (1.32%), 5 / 1 (0.66%)

Signature 〈2〉 / 103 (67.76%), 〈1〉 / 32 (21.05%), 〈3〉 / 11 (7.24%),
〈4〉 / 2 (1.32%), 〈5〉 / 1 (0.66%), 〈1, 1〉 / 1 (0.66%),
〈2, 2〉 / 1 (0.66%), 〈1, 1, 1〉 / 1 (0.66%)

Signatureancestry 〈2a〉 / 101 (66.45%), 〈1n〉 / 32 (21.05%), 〈3a〉 / 11 (7.24%),
〈2n〉 / 2 (1.32%), 〈4a〉 / 2 (1.32%), 〈1n, 1n〉 / 1 (0.66%),
〈1n, 1n, 1n〉 / 1 (0.66%), 〈2a, 2n〉 / 1 (0.66%),
〈5a〉 / 1 (0.66%)

In 6= ∅ 0 (0.00%)

Np 6= ∅ 141 (92.76%)

non-projective 152 (1.92% of all edges)

all edges 7899

Evaluation of tree and edge properties on natural language data 113

10.2.15 Portuguese

Table 10.35: Counts of dependency trees violating global constraints

Class count (proportion of all trees)

ill-nested 7 (0.08%)

non-planar 1713 (18.88%)

non-projective 1718 (18.94%)

all 9071

Table 10.36: Counts of properties of non-projective edges

Property value / count or count (proportion of non-projective edges)

cdeg 1 / 2466 (91.27%), 2 / 151 (5.59%), 3 / 64 (2.37%),
4 / 14 (0.52%), 5 / 7 (0.26%)

ideg 1 / 2398 (88.75%), 2 / 272 (10.07%), 3 / 24 (0.89%),
4 / 7 (0.26%), 5 / 1 (0.04%)

Type < 0 0 (0.00%)

Type ≤ 0 3 (0.11%)

Type 2 / 1721 (63.69%), 1 / 742 (27.46%), 3 / 219 (8.11%),
4 / 12 (0.44%), 0 / 3 (0.11%), 6 / 3 (0.11%), 5 / 1 (0.04%),
7 / 1 (0.04%)

Signature 〈2〉 / 1670 (61.81%), 〈1〉 / 571 (21.13%), 〈3〉 / 208 (7.70%),
〈1, 1〉 / 113 (4.18%), 〈1, 1, 1〉 / 44 (1.63%),
〈2, 2〉 / 29 (1.07%), 〈2, 2, 2〉 / 13 (0.48%), 〈4〉 / 12 (0.44%),
〈1, 1, 1, 1〉 / 7 (0.26%), 〈1, 1, 1, 1, 1〉 / 6 (0.22%), . . .

Signatureancestry 〈2a〉 / 1604 (59.36%), 〈1n〉 / 571 (21.13%),
〈3a〉 / 201 (7.44%), 〈1n, 1n〉 / 113 (4.18%),
〈2n〉 / 66 (2.44%), 〈1n, 1n, 1n〉 / 44 (1.63%),
〈2n, 2n〉 / 20 (0.74%), 〈2n, 2n, 2n〉 / 13 (0.48%),
〈4a〉 / 10 (0.37%), 〈2a, 2n〉 / 9 (0.33%),
〈1n, 1n, 1n, 1n〉 / 7 (0.26%), 〈3n〉 / 7 (0.26%),
〈1n, 1n, 1n, 1n, 1n〉 / 6 (0.22%), . . .

In 6= ∅ 25 (0.93%)

Np 6= ∅ 2695 (99.74%)

non-projective 2702 (1.37% of all edges)

continued on next page

Evaluation of tree and edge properties on natural language data 114

Property value / count or count (proportion of non-projective edges)

all edges 197607

Evaluation of tree and edge properties on natural language data 115

10.2.16 Slovene

Table 10.37: Counts of dependency trees violating global constraints

Class count (proportion of all trees)

ill-nested 3 (0.20%)

non-planar 283 (18.45%)

non-projective 340 (22.16%)

all 1534

Table 10.38: Counts of properties of non-projective edges

Property value / count or count (proportion of non-projective edges)

cdeg 1 / 531 (96.55%), 2 / 11 (2.00%), 4 / 4 (0.73%),
3 / 2 (0.36%), 5 / 2 (0.36%)

ideg 1 / 548 (99.64%), 2 / 2 (0.36%)

Type < 0 2 (0.36%)

Type ≤ 0 3 (0.55%)

Type 2 / 385 (70.00%), 1 / 78 (14.18%), 3 / 50 (9.09%),
4 / 13 (2.36%), 5 / 13 (2.36%), 6 / 5 (0.91%), 7 / 2 (0.36%),
-5 / 1 (0.18%), -1 / 1 (0.18%), 0 / 1 (0.18%), 8 / 1 (0.18%)

Signature 〈2〉 / 384 (69.82%), 〈1〉 / 67 (12.18%), 〈3〉 / 45 (8.18%),
〈4〉 / 13 (2.36%), 〈5〉 / 12 (2.18%), 〈1, 1〉 / 6 (1.09%), . . .

Signatureancestry 〈2a〉 / 346 (62.91%), 〈1n〉 / 67 (12.18%), 〈2n〉 / 38 (6.91%),
〈3a〉 / 35 (6.36%), 〈5n〉 / 12 (2.18%), 〈3n〉 / 10 (1.82%),
〈4n〉 / 8 (1.45%), 〈1n, 1n〉 / 6 (1.09%), 〈4a〉 / 5 (0.91%), . . .

In 6= ∅ 6 (1.09%)

Np 6= ∅ 373 (67.82%)

non-projective 550 (2.13% of all edges)

all edges 25777

Evaluation of tree and edge properties on natural language data 116

10.2.17 Spanish

Table 10.39: Counts of dependency trees violating global constraints

Class count (proportion of all trees)

ill-nested 0 (0.00%)

non-planar 56 (1.69%)

non-projective 57 (1.72%)

all 3306

Table 10.40: Counts of properties of non-projective edges

Property value / count or count (proportion of non-projective edges)

cdeg 1 / 59 (100.00%)

ideg 1 / 58 (98.31%), 2 / 1 (1.69%)

Type < 0 0 (0.00%)

Type ≤ 0 0 (0.00%)

Type 2 / 46 (77.97%), 3 / 7 (11.86%), 4 / 4 (6.78%), 1 / 2 (3.39%)

Signature 〈2〉 / 46 (77.97%), 〈3〉 / 7 (11.86%), 〈4〉 / 4 (6.78%),
〈1〉 / 2 (3.39%)

Signatureancestry 〈2a〉 / 46 (77.97%), 〈3a〉 / 7 (11.86%), 〈4a〉 / 4 (6.78%),
〈1n〉 / 2 (3.39%)

In 6= ∅ 0 (0.00%)

Np 6= ∅ 58 (98.31%)

non-projective 59 (0.07% of all edges)

all edges 86028

Evaluation of tree and edge properties on natural language data 117

10.2.18 Swedish

Table 10.41: Counts of dependency trees violating global constraints

Class count (proportion of all trees)

ill-nested 71 (0.64%)

non-planar 1076 (9.74%)

non-projective 1079 (9.77%)

all 11042

Table 10.42: Counts of properties of non-projective edges

Property value / count or count (proportion of non-projective edges)

cdeg 1 / 1546 (81.50%), 2 / 204 (10.75%), 3 / 76 (4.01%),
4 / 27 (1.42%), 5 / 22 (1.16%), 6 / 10 (0.53%), 7 / 8 (0.42%),
8 / 2 (0.11%), 9 / 1 (0.05%), 14 / 1 (0.05%)

ideg 1 / 1829 (96.42%), 2 / 46 (2.42%), 3 / 9 (0.47%),
4 / 5 (0.26%), 6 / 5 (0.26%), 5 / 2 (0.11%), 7 / 1 (0.05%)

Type < 0 15 (0.79%)

Type ≤ 0 50 (2.64%)

Type 2 / 908 (47.87%), 1 / 686 (36.16%), 3 / 182 (9.59%),
4 / 41 (2.16%), 0 / 35 (1.85%), 5 / 17 (0.90%),
-1 / 13 (0.69%), 6 / 13 (0.69%), -2 / 2 (0.11%)

Signature 〈2〉 / 823 (43.38%), 〈1〉 / 530 (27.94%), 〈3〉 / 114 (6.01%),
〈1, 1〉 / 94 (4.96%), 〈0〉 / 31 (1.63%), 〈1, 3〉 / 27 (1.42%),
〈1, 1, 1〉 / 25 (1.32%), 〈4〉 / 21 (1.11%), 〈1, 2〉 / 19 (1.00%),
〈2, 2〉 / 16 (0.84%), 〈5〉 / 11 (0.58%), 〈−1〉 / 10 (0.53%),
〈0, 2〉 / 10 (0.53%), 〈2, 2, 2〉 / 7 (0.37%),
〈0, 0, 1〉 / 6 (0.32%), 〈0, 1, 2〉 / 6 (0.32%),
〈0, 1〉 / 5 (0.26%), 〈6〉 / 5 (0.26%), 〈3, 3〉 / 5 (0.26%), . . .

continued on next page

Evaluation of tree and edge properties on natural language data 118

Property value / count or count (proportion of non-projective edges)

Signatureancestry 〈2a〉 / 738 (38.90%), 〈1n〉 / 530 (27.94%), 〈3a〉 / 95 (5.01%),
〈1n, 1n〉 / 94 (4.96%), 〈2n〉 / 85 (4.48%), 〈0n〉 / 31 (1.63%),
〈1n, 3a〉 / 27 (1.42%), 〈1n, 1n, 1n〉 / 25 (1.32%),
〈1n, 2n〉 / 19 (1.00%), 〈3n〉 / 19 (1.00%), 〈4a〉 / 12 (0.63%),
〈−1n〉 / 10 (0.53%), 〈0n, 2a〉 / 9 (0.47%),
〈2a, 2n〉 / 9 (0.47%), 〈4n〉 / 9 (0.47%), 〈5a〉 / 9 (0.47%),
〈2n, 2n〉 / 7 (0.37%), 〈2n, 2n, 2n〉 / 7 (0.37%),
〈0n, 0n, 1n〉 / 6 (0.32%), 〈0n, 1n, 2n〉 / 6 (0.32%),
〈0n, 1n〉 / 5 (0.26%), . . .

In 6= ∅ 285 (15.02%)

Np 6= ∅ 1891 (99.68%)

non-projective 1897 (1.05% of all edges)

all edges 180425

Evaluation of tree and edge properties on natural language data 119

10.2.19 Turkish

Table 10.43: Counts of dependency trees violating global constraints

Class count (proportion of all trees)

ill-nested 14 (0.28%)

non-planar 556 (11.13%)

non-projective 580 (11.61%)

all 4997

Table 10.44: Counts of properties of non-projective edges

Property value / count or count (proportion of non-projective edges)

cdeg 1 / 623 (74.08%), 2 / 146 (17.36%), 3 / 55 (6.54%),
4 / 13 (1.55%), 5 / 2 (0.24%), 6 / 2 (0.24%)

ideg 1 / 813 (96.67%), 2 / 27 (3.21%), 3 / 1 (0.12%)

Type < 0 2 (0.24%)

Type ≤ 0 8 (0.95%)

Type 2 / 403 (47.92%), 1 / 319 (37.93%), 3 / 67 (7.97%),
4 / 28 (3.33%), 0 / 6 (0.71%), 5 / 5 (0.59%), 7 / 5 (0.59%),
8 / 2 (0.24%), -4 / 1 (0.12%), -1 / 1 (0.12%), 6 / 1 (0.12%),
9 / 1 (0.12%), 10 / 1 (0.12%), 11 / 1 (0.12%)

Signature 〈2〉 / 341 (40.55%), 〈1〉 / 189 (22.47%), 〈1, 1〉 / 91 (10.82%),
〈3〉 / 53 (6.30%), 〈2, 2〉 / 31 (3.69%), 〈1, 1, 1〉 / 29 (3.45%),
〈4〉 / 19 (2.26%), 〈2, 2, 2〉 / 10 (1.19%), 〈3, 3〉 / 6 (0.71%),
〈1, 1, 1, 1〉 / 6 (0.71%), 〈2, 2, 2, 2〉 / 6 (0.71%),
〈5〉 / 5 (0.59%), 〈0〉 / 4 (0.48%), 〈7〉 / 4 (0.48%), . . .

Signatureancestry 〈2a〉 / 281 (33.41%), 〈1n〉 / 189 (22.47%),
〈1n, 1n〉 / 91 (10.82%), 〈2n〉 / 60 (7.13%), 〈3a〉 / 45 (5.35%),
〈1n, 1n, 1n〉 / 29 (3.45%), 〈2n, 2n〉 / 29 (3.45%),
〈4a〉 / 12 (1.43%), 〈2n, 2n, 2n〉 / 10 (1.19%),
〈3n〉 / 8 (0.95%), 〈4n〉 / 7 (0.83%),
〈1n, 1n, 1n, 1n〉 / 6 (0.71%), 〈2n, 2n, 2n, 2n〉 / 6 (0.71%),
〈3n, 3n〉 / 6 (0.71%), . . .

In 6= ∅ 34 (4.04%)

Np 6= ∅ 788 (93.70%)

continued on next page

Evaluation of tree and edge properties on natural language data 120

Property value / count or count (proportion of non-projective edges)

non-projective 841 (1.61% of all edges)

all edges 52273

Evaluation of tree and edge properties on natural language data 121

10.3 Discussion

The empirical results presented in the previous section show that projectiv-
ity can hardly be claimed to be a formal constraint that accurately delimits
dependency structures in natural languages. Constructions violating projec-
tivity are frequent; on the other hand, it seems that the edge-based tools
developed in the theoretical part of this thesis are expressive enough to cap-
ture them with a high degree of accuracy.

10.3.1 Tree properties

We see that projectivity is a too restrictive constraint for many languages.
The largest proportion of non-projective dependency trees occurs in Latin
(the largest deviation from projective word order occurs, unsurprisingly, in
the highly literary text of Vergil's Aeneid). However, also several modern
languages contain between 20 and 30% of non-projective dependency trees
(they are Basque, Czech, German, Greek, Hungarian, and Slovene); in Dutch
even more than 36% of dependency trees are non-projective!

The close relationship between planarity and projectivity shows also here:
both constraints are violated by considerable portions of trees in many lan-
guages, and usually planarity is almost or completely as restrictive as pro-
jectivity for whole dependency trees.

Well-nestedness �ts best with natural language data; it covers most trees
in all languages. Our results for global properties of dependency trees show
that the numbers of ill-nested dependency trees are quite low, but not as low
as was claimed by Kuhlmann and Nivre [2006] based on an evaluation on
two languages (Czech and Danish).

Some languages exhibit quite large numbers of ill-nested dependency
trees, namely Latin and Basque. It is these two languages that show that
there are languages in which the proportions of ill-nested dependency trees
are not entirely negligible; German, with more than 1%, is another language
with relatively many ill-nested dependency trees.

10.3.2 Edge properties

In contrast to global constraints, properties of individual non-projective edges
allow us to pinpoint the causes of non-projectivity. Therefore they provide
tools for a much more �ne-grained classi�cation of non-projective structures
occurring in natural language.

Both interval and component degrees take generally low values. On
the other hand, in several languages we see edges taking quite large val-

Evaluation of tree and edge properties on natural language data 122

ues for both degrees (e.g., for component degree Basque, Czech, English,
and Swedish take values larger than 10). Holan et al. [1998, 2000] show that
at least for Czech neither of these two measures of non-projectivity can in
principle be bounded. Our results seem to suggest that a natural explanation
could be the limited performance capabilities of human beings.

Taking levels of nodes into account seems to bring both better accu-
racy and expressivity. When compared with the global constraint of well-
nestedness, positive level types give an even better �t with real linguistic data
(recall that an ill-nested dependency tree need not contain a non-projective
edge of non-positive level type; cf. Theorem 7.3.2). For example, in German
less than one tenth of ill-nested trees contain an edge of non-positive level
types.

Only the following languages contain the very rare non-projective edges
of negative level types: Basque, Catalan, Czech, Latin (Vergil), Slovene,
Swedish, and Turkish. The lowest value of −5 is achieved by Basque and
Slovene, the other languages barely get below 0. Only in Basque, Catalan,
and Swedish non-projective edges of negative level types constitute more than
0.5% of all their non-projective edges.

Even for Basque, the language with the highest proportion of ill-nested
dependency trees, the counts of non-projective edges of non-positive (and
negative) level types are quite low�they amount only to slightly more than
0.2% (0.1%, respectively) of all edges.

Level signatures combine level types and component degrees, and so give
an even more detailed picture of the gaps of non-projective edges. Level
signatures complemented with ancestry information are meant to provide a
detailed insight into possible non-projective structures occurring in natural
languages. In some languages the actually occurring signatures are quite
limited, in others there is a large variation.

We see that the proportion of non-projective edges with ancestors in their
gaps varies among languages. This fact may be to some extent annotation-
dependent.

The last two properties of non-projective edges we present are non-empty
ill-nested and non-planar sets. Recall that the reported counts exclude edges
from arti�cal root nodes, as this may interact with the annotation schemata
for individual languages; cf. Section 10.1.3.

The counts of non-projective edges with non-empty non-planar sets tes-
tify that planarity is indeed almost as restrictive as projectivity; for Catalan,
English, and Hungarian they become identical. For most other languages, the
proportions of-projective edges with non-empty non-planar sets to all non-
projective edges are close to 100%. The most notable exception is Japanese;
its counts de�nitely seem to be due to a particular annotation scheme. Some-

Evaluation of tree and edge properties on natural language data 123

what surprisingly Basque has the second lowest proportion of edges with
non-empty non-planar sets among its non-projective edges�less than half of
them; again, this is most probably due to some peculiarities of the annotation
scheme.

As far as the counts of edges with non-empty ill-nested sets are concerned,
English, Basque, and Swedish have the largest proportions of them among
their non-projective edges (between 15 and 20%). The largest proportion
among all edges, however, is achieved by Vergil with slightly more than 1%
of all edges having non-empty ill-nested sets.

10.4 Conclusion

Empirical evidence shows that properties of non-projective edges taking into
account levels of nodes are capable of describing very accurately natural
language data. This is in good accord with the theoretical results presented
in this thesis.

We �nd an edge-based approach to non-projectivity also more appealing
linguistically than the traditional approaches based on properties of whole
dependency trees or their subtrees. Furthermore, it may prove suitable
also for statistical natural language processing, as properties of edges allow
machine-learning techniques to model global phenomena locally, resulting in
less sparse models.

Our empirical results on nineteen languages can be summarized as fol-
lows: Among the considered measures of non-projectivity, both tree-based
and edge-based, level types of non-projective edges are best at delimiting
non-projective structures in natural languages.

Furthermore, properties of non-projective edges, such as level signatures,
combining levels of nodes and gap components, provide both expressive and
accurate tools for describing non-projective constructions.

Therefore we hope that the edge-based tools developed in the theoretical
part will prove to be instrumental also in linguistic analysis of natural lan-
guages. We think that they can serve as a solid theoretical basis for further
investigations into natural language syntax.

Index

→, 13
↔, 15
�, 14
�i, 31
(i, j), 16
[i, j], 16
〈 〉, 74
�, see restriction, of binary relation to

set
∗, see closure, re�exive and transitive
tr, see reduction, transitive
Li, see tree, local of node
r, see node, root
Anci↔j, 16
Anci, 16
Childi↔j, 15
cdegi↔j, 72
Gapi↔j, 24
Gap

↑
i↔j, 42

idegi↔j, 71
Parenti↔j, 15
Signaturei↔j, 74
Subtreei↔j, 16
Subtreei, 16
field[i], 19
Sibl(j1, j2, i), 17

closure
re�exive, 16

re�exive and transitive, 13
transitive, 16

component root, see node, root of com-
ponent

convention
for drawing dependency tree, 17
for drawing gap of non-projective

edge, 24
for null pointers, 19

data representation
of dependency tree, 19
of node, 18

degree of edge
component, 72
interval, 71

dependency tree
ill-nested, 63
non-planar, 52
non-projective, 22
planar, 52
projective, 22
smooth, 51
weakly non-projective, 51
well-nested, 63

edge
non-projective, 24
projective, 24

edge of tree, 13

124

INDEX 125

forest, 14

gap
of non-projective edge, 24
upper, 42

gap degree of dependency tree, 72

height of tree, 15

ill-nested set of edge, 67
upper, 68

interval
closed, 16
open, 16

level
component, 74

level of node, 15
level signature of edge, 74
level type of non-projective edge, 38

model of computation, see random-
access machine

multiplanarity, 60

node, 13
ancestor, 15
ancestor of edge, 15
child, 14
child of edge, 14
descendant, 15
descendant of edge, 15
internal, 14
leaf, 14
maximal in gap, 25
parent, 14
parent of edge, 14
root, 13
of component, 72

sibling, 14
witnessing level type, 39

non-planar set of edge, 57
upper, 57

order
local, 31
total projective of rooted tree, 33

ordering
local of rooted tree, 31

pair of edges
ill-nested, 65
non-planar, 52

projectivization of dependency tree
canonical, 30
general, 31

random-access machine, 13
reduction

re�exive, 16
transitive, 16

relation
dependency, 14
undirected, 15

subordination, 14
requirement

on data representation of depen-
dency tree, see data represen-
tation, of dependency tree

restriction
of binary relation to set, 14

set of edge
ill-nested, see ill-nested set of edge
non-planar, see non-planar set of

edge
span of edge, 16
subtree

of dependency tree, 14
of rooted tree, 14

traversal of rooted tree
by levels bottom-up, 21
post-order, 20
general, 20

pre-order, 20

INDEX 126

tree
dependency, 14
local of node, 31
rooted, 13
ordered, 17
totally ordered, see tree, depen-
dency

Bibliography

Numbers appearing at the ends of bibliographical entries represent pages where
they are referenced.

A. Abeillé, editor. Treebanks: Building and Using Parsed Corpora. Kluwer,
2003. 128, 131

I. Aduriz, M. J. Aranzabe, J. M. Arriola, A. Atutxa, A. Diaz de Ilarraza,
A. Garmendia, and M. Oronoz. Construction of a Basque dependency
treebank. In Proc. of the 2nd Workshop on Treebanks and Linguistic The-
ories (TLT), pages 201�204, 2003. 84

S. Afonso, E. Bick, R. Haber, and D. Santos. �Floresta sintá(c)tica�: a
treebank for Portuguese. In Proc. of the 3rd Intern. Conf. on Language
Resources and Evaluation (LREC), pages 1698�1703, 2002. 84

N. B. Atalay, K. O�azer, and B. Say. The annotation process in the Turkish
treebank. In Proc. of the 4th Intern. Workshop on Linguistically Inter-
preteted Corpora (LINC), 2003. 84

David Bamman and Gregory Crane. The Design and Use of a Latin De-
pendency Treebank. In Jan Haji£ and Joakim Nivre, editors, Proc. of the
5th Workshop on Treebanks and Linguistic Theories (TLT), pages 67�78,
2006. 84

David Bamman and Gregory Crane. The Latin Dependency Treebank in
a Cultural Heritage Digital Library. In Proceedings of the Workshop on
Language Technology for Cultural Heritage Data (LaTeCH 2007), pages
33�40, 2007. 84

127

BIBLIOGRAPHY 128

Manuel Bodirsky, Marco Kuhlmann, and Matthias Möhl. Well-nested draw-
ings as models of syntactic structure. In Proceedings of Tenth Conference
on Formal Grammar and Ninth Meeting on Mathematics of Language,
2005. 25, 62, 63

A. Böhmová, J. Haji£, E. Haji£ová, and B. Hladká. The PDT: a 3-level
annotation scenario. In Abeillé [2003], chapter 7, pages 103�127. 84

S. Brants, S. Dipper, S. Hansen, W. Lezius, and G. Smith. The TIGER tree-
bank. In Proc. of the 1st Workshop on Treebanks and Linguistic Theories
(TLT), 2002. 84

S. Buchholz and E. Marsi. CoNLL-X shared task on multilingual dependency
parsing. In Proc. of the 10th Conf. on Computational Natural Language
Learning (CoNLL-X). SIGNLL, 2006. 84

M. Civit Torruella and Ma A. Martí Antonín. Design principles for a Span-
ish treebank. In Proc. of the 1st Workshop on Treebanks and Linguistic
Theories (TLT), 2002. 84

Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Cli�ord
Stein. Introduction to Algorithms. The MIT Press, Cambridge, Mas-
sachusetts, London, England, second edition, 2001. 13

D. Csendes, J. Csirik, T. Gyimóthy, and A. Kocsor. The Szeged Treebank.
Springer, 2005. 84

Alexander Dikovsky and Larissa Modina. Dependencies on the other side
of the Curtain. Traitement Automatique des Langues (TAL), 41(1):67�96,
2000. 51

Vida Dujmovi¢ and David R. Wood. On Linear Layouts of Graphs. Discrete
Mathematics and Theoretical Computer Science, 6:339�358, 2004. 60

S. Dºeroski, T. Erjavec, N. Ledinek, P. Pajas, Z. �abokrtsky, and A. �ele.
Towards a Slovene dependency treebank. In Proc. of the 5th Intern. Conf.
on Language Resources and Evaluation (LREC), 2006. 84

Haim Gaifman. Dependency systems and phrase-structure systems. Infor-
mation and Control, 8(3):304�337, 1965. 9

M. R. Garey, D. S. Johnson, G. L. Miller, and Papadimitriou C. H. The
complexity of coloring circular arcs and chords. SIAM J. Alg. Disc. Meth.,
1(2):216�227, 1980. 60, 61

BIBLIOGRAPHY 129

J. Haji£, O. Smrº, P. Zemánek, J. �naidauf, and E. Be²ka. Prague Arabic
dependency treebank: Development in data and tools. In Proc. of the
NEMLAR Intern. Conf. on Arabic Language Resources and Tools, pages
110�117, 2004. 84

Jan Haji£, Jarmila Panevová, Eva Haji£ová, Petr Sgall, Petr Pajas, Jan
�t¥pánek, Ji°í Havelka, Marie Mikulová, Zden¥k �abokrtský, and Magda
�ev£íková Razímová. Prague Dependency Treebank 2.0, 2006. Linguistic
Data Consortium, Philadelphia, PA, USA, ISBN 1-58563-370-4. 81

Jan Haji£, Petr Pajas, Jarmila Panevová, Eva Haji£ová, Petr Sgall, and
Barbora Vidová Hladká. Prague Dependency Treebank 1.0, 2001. 84

Eva Haji£ová, Ji°í Havelka, Petr Sgall, Kate°ina Veselá, and Daniel Zeman.
Issues of Projectivity in the Prague Dependency Treebank. The Prague
Bulletin of Mathematical Linguistics, 81:5�22, 2004. ISSN 0032-6585. 8,
29

Keith Hall, Ji°í Havelka, and David A. Smith. Log-linear Models of Non-
projective Trees, k-best MST Parsing and Tree-ranking. In Proceedings of
the CoNLL Shared Task Session of EMNLP-CoNLL 2007, 2007. 8, 87

Ji°í Havelka. Projectivity in Totally Ordered Rooted Trees: An Alterna-
tive De�nition of Projectivity and Optimal Algorithms for Detecting Non-
Projective Edges and Projectivizing Totally Ordered Rooted Trees. The
Prague Bulletin of Mathematical Linguistics, 84:13�30, 2005a. ISSN 0032-
6585. 8

Ji°í Havelka. Projektivita v úpln¥ uspo°ádaných ko°enových stromech: al-
ternativní de�nice projektivity a optimální algoritmy pro zprojektivn¥ní
a nalezení neprojektivních hran. In MIS 2005. Matfyzpress, Faculty of
Mathematics and Physics, Charles University in Prague, 2005b. 8

Ji°í Havelka. Beyond Projectivity: Multilingual Evaluation of Constraints
and Measures on Non-Projective Structures. In Proceedings of the 45th
Annual Meeting of the Association for Computational Linguistics, 2007a.
8, 83

Ji°í Havelka. Relationship between Non-Projective Edges, Their Level Types,
and Well-Nestedness. In Proceedings of Human Language Technologies
2007: The Conference of the North American Chapter of the Association
for Computational Linguistics, Companion Volume, Short Papers, pages
61�64, 2007b. 8

BIBLIOGRAPHY 130

Tomá² Holan, Vladislav Kubo¬, Karel Oliva, and Martin Plátek. On Com-
plexity of Word Order. Traitement Automatique des Langues (TAL), 41
(1):273�300, 2000. 25, 122

Tomá² Holan, Vladislav Kubo¬, Karel Oliva, and Martin Plátek. Two Use-
ful Measures of Word Order Complexity. In Alain Polguère and Sylvain
Kahane, editors, Proceedings of Dependency-Based Grammars Workshop,
COLING/ACL, pages 21�28, 1998. 25, 72, 122

Josef Ji°i£ka. The Number of Projective Trees with a Given Number of
Vertices. The Prague Bulletin of Mathematical Linguistics, 24:51�60, 1975.
77

R. Johansson and P. Nugues. Extended constituent-to-dependency conver-
sion for English. In Proc. of the 16th Nordic Conference on Computational
Linguistics (NODALIDA), 2007. 84

Y. Kawata and J. Bartels. Stylebook for the Japanese treebank in VERBMO-
BIL. Verbmobil-Report 240, Seminar für Sprachwissenschaft, Universität
Tübingen, 2000. 84

M. T. Kromann. The Danish dependency treebank and the underlying lin-
guistic theory. In Proc. of the 2nd Workshop on Treebanks and Linguistic
Theories (TLT), 2003. 84

Marco Kuhlmann and Mathias Möhl. Mildly Context-Sensitive Dependency
Languages. In Proceedings of the 45th Annual Meeting of the Association of
Computational Linguistics, pages 160�167, Prague, Czech Republic, 2007.
Association for Computational Linguistics. 10

Marco Kuhlmann and Joakim Nivre. Mildly Non-Projective Dependency
Structures. In Proceedings of the COLING/ACL 2006 Main Conference
Poster Sessions, pages 507�514, 2006. 121

M. Marcus, B. Santorini, and M. Marcinkiewicz. Building a large annotated
corpus of English: the Penn Treebank. Computational Linguistics, 19(2):
313�330, 1993. 84

Solomon Marcus. Sur la notion de projectivité [On the notion of projectivity].
Zeitschrift für Mathematische Logik und Grundlagen der Mathematik, 11:
181�192, 1965. 22, 23

Solomon Marcus. Algebraic Linguistics; Analytical Models. Academic Press,
New York and London, 1967. 9

BIBLIOGRAPHY 131

M. A. Martí, M. Taulé, L. Màrquez, and M. Bertran. CESS-ECE: A mul-
tilingual and multilevel annotated corpus. Available for download from:
http://www.lsi.upc.edu/∼mbertran/cess-ece/, 2007. 84

Mathias Möhl. Drawings as models of syntactic structure: Theory and al-
gorithms. Diploma thesis, Programming Systems Lab, Universität des
Saarlandes, Saarbrücken, 2006. 69

S. Montemagni, F. Barsotti, M. Battista, N. Calzolari, O. Corazzari,
A. Lenci, A. Zampolli, F. Fanciulli, M. Massetani, R. Ra�aelli, R. Basili,
M. T. Pazienza, D. Saracino, F. Zanzotto, N. Nana, F. Pianesi, and R. Del-
monte. Building the Italian Syntactic-Semantic Treebank. In Abeillé
[2003], chapter 11, pages 189�210. 84

B. Navarro, M. Civit, Ma A. Martí, R. Marcos, and B. Fernández. Syntactic,
semantic and pragmatic annotation in Cast3LB. In Proc. of the Workshop
on Shallow Processing of Large Corpora (SProLaC), 2003. 84

Ladislav Nebeský. Graph theory and linguistics. In R. J. Wilson and L. W.
Beineke, editors, Applications of Graph Theory, chapter 12, pages 357�380.
Academic Press, 1979. 52

J. Nilsson, J. Hall, and J. Nivre. MAMBA meets TIGER: Reconstructing
a Swedish treebank from antiquity. In Proc. of the NODALIDA Special
Session on Treebanks, 2005. 84

J. Nivre, J. Hall, S. Kübler, R. McDonald, J. Nilsson, S. Riedel, and D. Yuret.
The CoNLL 2007 shared task on dependency parsing. In Proceedings of
the CoNLL Shared Task Session of EMNLP-CoNLL 2007, pages 915�932,
2007. 84

Joakim Nivre. Constraints on Non-Projective Dependency Parsing. In Proc.
of the 11th Conf. of the European Chapter of the ACL (EACL), pages
73�80, 2006. 72

Marc Noy. Enumeration of noncrossing trees on a circle. Discrete Mathemat-
ics, 180:301�313, 1998. 77

K. O�azer, B. Say, D. Zeynep Hakkani-Tür, and G. Tür. Building a Turkish
treebank. In Abeillé [2003], chapter 15, pages 261�277. 84

Petr Pajas. Tree Editor TrEd, 2007. URL http://ufal.mff.cuni.cz/

~pajas/tred. 81, 87

http://ufal.mff.cuni.cz/~pajas/tred
http://ufal.mff.cuni.cz/~pajas/tred

BIBLIOGRAPHY 132

P. Prokopidis, E. Desypri, M. Koutsombogera, H. Papageorgiou, and
S. Piperidis. Theoretical and practical issues in the construction of a Greek
dependency treebank. In Proc. of the 4th Workshop on Treebanks and Lin-
guistic Theories (TLT), pages 149�160, 2005. 84

K. Simov and P. Osenova. Practical annotation scheme for an HPSG tree-
bank of Bulgarian. In Proc. of the 4th Intern. Workshop on Linguistically
Interpreteted Corpora (LINC), pages 17�24, 2003. 84

K. Simov, P. Osenova, A. Simov, and M. Kouylekov. Design and implemen-
tation of the Bulgarian HPSG-based treebank. In Journal of Research on
Language and Computation � Special Issue, pages 495�522. Kluwer Aca-
demic Publishers, 2005. 84

Neil J. A. Sloane. On-Line Encyclopedia of Integer Sequences, 2007. URL
http://www.research.att.com/~njas/sequences/. 76, 77, 78

O. Smrº, J. �naidauf, and P. Zemánek. Prague dependency treebank for
Arabic: Multi-level annotation of Arabic corpus. In Proc. of the Intern.
Symposium on Processing of Arabic, pages 147�155, 2002. 84

L. van der Beek, G. Bouma, J. Daciuk, T. Gaustad, R. Malouf, G. van Noord,
R. Prins, and B. Villada. The Alpino dependency treebank. In Algorithms
for Linguistic Processing, NWO PIONIER progress report 5. 2002a. 84

L. van der Beek, G. Bouma, R. Malouf, and G. van Noord. The Alpino
dependency treebank. In Computational Linguistics in the Netherlands
(CLIN), 2002b. 84

Kate°ina Veselá and Ji°í Havelka. Anotování aktuálního £len¥ní v¥ty v
Praºském závislostním korpusu [Annotation of Topic-Focus Articulation
in the Prague Dependency Treebank]. Technical report, ÚFAL/CKL MFF
UK, December 2003. 8, 29

Kate°ina Veselá, Ji°í Havelka, and Eva Haji£ová. Condition of Projectivity in
the Underlying Dependency Structures. In Proceedings of the 20th Interna-
tional Conference on Computational Linguistics, volume I, pages 289�295,
Geneva, Switzerland, August 23-27 2004. Association for Computational
Linguistics. ISBN 1-932432-48-5. 8, 29

Anssi Yli-Jyrä. Multiplanarity � a model for dependency structures in tree-
banks. In Proc. of the 2nd Workshop on Treebanks and Linguistic Theories
(TLT), pages 189�200, 2003. 60

http://www.research.att.com/~njas/sequences/

	List of Algorithms
	List of Figures
	List of Tables
	Preface
	Introduction
	I Theoretical results
	Preliminaries
	Rooted trees and dependency trees
	Data representations of rooted trees and dependency trees
	Data representation of a node
	Data representation of a whole dependency tree

	Remark on processing rooted trees

	Projectivity and basic properties of non-projective edges
	Condition of projectivity in dependency trees
	Non-projective edges and their gaps
	Simple algorithm for finding non-projective edges and determining their gaps

	Projectivity and projective orderings of dependency trees
	An alternative condition of projectivity
	Projective orderings of a rooted tree
	Algorithm for projectivizing
	Using the algorithm for checking projectivity

	Level types of non-projective edges
	Basic properties of level types and their relationship to projectivity
	Algorithm for finding non-projective edges of non-negative level type
	Using the algorithm for checking projectivity and for finding all non-projective edges
	Combining algorithms for finding non-projective edges of non-negative level types and for projectivizing

	Planarity and non-projective edges
	Condition of planarity
	Planarity and non-projective edges
	Characterization of planarity using single non-projective edges
	Checking planarity
	Remark on NP-completeness of multiplanarity

	Well-nestedness and non-projective edges
	Original formulation of well-nestedness
	Reformulation of well-nestedness in terms of edges
	Characterization of well-nestedness using pairs of non-projective edges
	Sufficient condition for ill-nestedness
	Characterization of well-nestedness using single edges
	Checking well-nestedness

	Partitioning of gaps of non-projective edges
	Partitioning of gaps into intervals
	Partitioning of gaps into components
	Combining levels of nodes and partitioning of gaps into intervals

	Formulas for counting some classes of trees
	Unrestricted dependency trees
	Projective and planar trees
	Well-nested trees
	Note on asymptotic growths

	II Empirical results
	Empirical evaluation of algorithms for finding non-projective edges
	Evaluation of tree and edge properties on natural language data
	Experimental setup
	Natural language treebanks
	Reported tree and edge properties
	Note on computing the tree and edge properties
	Program tools

	Empirical results
	Arabic
	Basque
	Bulgarian
	Catalan
	Czech
	Danish
	Dutch
	English
	German
	Greek
	Hungarian
	Italian
	Japanese
	Latin
	Portuguese
	Slovene
	Spanish
	Swedish
	Turkish

	Discussion
	Tree properties
	Edge properties

	Conclusion

	Index
	Bibliography

