
1 / 2

Posudek diplomové práce
Matematicko-fyzikální fakulta Univerzity Karlovy

Autor práce Harun Ćerim

Název práce Extending C# with a Library of Functional Programming Concepts

Rok odevzdání 2020

Studijní program Informatika Studijní obor Softwarové a datové inženýrství

Autor posudku Mgr. Pavel Ježek, Ph.D. Role Oponent

Pracoviště UK MFF KDSS

Text posudku:

Author implemented a very interesting library that allows to take advantage of the C#

programming language concepts and "bend" them to extend the language with functional

programming concepts. The created Funk library has a very good design, and provides useful

features. The code has extensive comments, and together with the description of the library in

the thesis text provide a very good overview of the implementation. All the major parts of the

library are extensivelly covered by unit test. So from software engineering point of view

(without context - see below) is the implementation part of the thesis a solid piece of software.

The analytical part of the thesis evaluates different approaches on how to extend C# with

functional features, and shows directions where author tries to provide better features than

existing libraries. What is however missing, is some reasoning about why to implement the

framework from scratch and not extend some existing one - author is heavilly influenced by

the FuncSharp library, that his employer is using, and he has a lot of experience with it. So

why not extend FuncSharp if it is already used in production software and is open source on

github?

And while author presents that his Funk library was used by his team in MFF software project

STOCK, he does not provide any complex evaluation of the API designed. I would expect

some complex comparision with the FuncSharp library.

In the text author briefly mentions functional concepts of the C# 8 (from September 2019) and

states "we can only guess what interesting and powerful new features are coming in the future

versions of C#" - however the C# 9 with more functional features will be released in

November 2020, and almost final draft of these features is publically available at least since

May 2020, and initial drafts and blog post in community are available since end of 2019 - so

why author does not evaluate them in context of his thesis?

As author does not introduce in his thesis any strictly new ideas, but rather applies approaches

used elsewhere, I would categorize the thesis as an implementation one. And here lays the

major problem of the thesis - the size of the C# code is 150 kB plus additional 70 kB in unit

tests including documentation comments. However a lot of the code is very repetitive - as C#

lacks support for variadic templates, many generic methods and types author introduces have

to come in many copies for 1, 2, 3, etc. type parameters - this is not a problem by itself, as it is

a correct way how to cope with this C# language inefficiency. However it further diminishes

the "real" size of the code of the thesis. And while this would be definitely enough for a

bachelor thesis, it seems insufficient for an implementation master thesis.

Práci doporučuji k obhajobě.

2 / 2

Práci nenavrhuji na zvláštní ocenění.

Pokud práci navrhujete na zvláštní ocenění (cena děkana apod.), prosím uveďte zde stručné

zdůvodnění (vzniklé publikace, významnost tématu, inovativnost práce apod.).

Datum 8.9.2020 Podpis

