

MASTER THESIS

Harun Ćerim

Extending C# with a Library of Functional Programming

Concepts

Department of Distributed and Dependable Systems

Supervisor of the master thesis: doc. RNDr. Pavel Parízek, Ph.D.

Study programme: Computer Science

Specialization: Software and Data Engineering

Prague 2020

I declare that I carried out this master thesis independently, and only with the cited

sources, literature and other professional sources.

I understand that my work relates to the rights and obligations under the Act No.

121/2000 Coll., the Copyright Act, as amended, in particular the fact that the Charles

University has the right to conclude a license agreement on the use of this work as a

school work pursuant to Section 60 paragraph 1 of the Copyright Act.

In…...... date............ Harun Ćerim

 signature

This thesis is a result of the hard work and support of many people that have been by

my side throughout this journey.

Living in Prague and studying at Charles University has been a wonderful experience

where I met a lot of smart, interesting, and good people that changed my perspective

for better on many things related to both life and school.

I would like to thank my family for their love and support. I would also like to thank

my friends for being by my side throughout this journey.

Lastly, I would like to thank my supervisor doc. RNDr. Pavel Parízek, Ph.D., and

express my gratitude for his guidance and patience over the last few months.

This thesis is dedicated to my brother, Faris.

Title: Extending C# with a Library of Functional Programming Concepts

Author: Harun Ćerim

Department: Department of Distributed and Dependable Systems

Supervisor of the master thesis: doc. RNDr. Pavel Parízek, Ph.D., Department of

Distributed and Dependable Systems

Abstract: The main goal of this thesis was to implement a functional programming

(FP) library named Funk that extends C# with support for concepts present in

functional programming languages, such as F# and Scala. Funk utilizes many

functional programming concepts, including immutability, pattern matching, and

various types of monads, together with stronger typing. Introduction of these concepts

into C# helps in avoiding many runtime errors and boilerplate code, and it also lets

developers write C# code in a declarative rather than in an imperative way, making the

day-to-day software development easier and less error-prone. Additionally, the thesis

analyzes and compares Funk with existing functional programming libraries such as

Language-ext and FuncSharp. Finally, it analyzes the new features of C# 8, which

include nullable reference types and pattern matching and compares them with the

functionalities of the Funk library.

Keywords: csharp, functional programming, category theory, monads, asynchronous

programming

Table of Contents
1. Introduction ... 1

2. Functional Programming ... 4

2.1. Overview ... 4

2.2. Function purity .. 5

2.3. Function signature and honesty .. 6

2.4. Concepts .. 8

2.5. Benefits ... 9

3. Functional C# ... 11

3.1. Functions as first-class values ...11

3.2. Thinking functionally in C# ...13

3.3. LINQ ...15

3.4. Problems ..18

4. The Funk Library .. 22

4.1. Category Theory ...22

4.2. Types ..24
4.2.1. Unit.. 24
4.2.2. Record ... 27
4.2.3. Maybe ... 30
4.2.4. OneOf .. 34
4.2.5. Exc ... 38
4.2.6. Patterns ... 44

4.3. Functional prelude ...48

4.4. Extensions ..51
4.4.1. Funk types ... 51
4.4.2. Partial application .. 55
4.4.3. Currying ... 57
4.4.4. Applicative functors ... 58
4.4.5. IEnumerable sequences ... 61
4.4.6. LINQ compatibility.. 63

5. Implementation ... 66

5.1. Structure, technologies, and tools ..66

5.2. Technical challenges ...66

6. Case Study ... 68

6.1. Small demo project ..68

6.2. Large demo project...71

7. Related Work and Comparison .. 77

7.1. FuncSharp ...77

7.2. Language-ext ..79

7.3. C# 8...79

8. Future Plans and Conclusion .. 82

8.1. Funk in .NET community ...82

8.2. Final remarks ..82

Bibliography .. 84

List of Figures .. 85

List of Snippets .. 86

List of Tables.. 88

1

1. Introduction

The goal of this project and the main motivation behind Funk is to make C# less error-

prone and more powerful programming language to work with. As C# is primarily an

object-oriented programming (OOP) language, many concepts from that paradigm

make it difficult for developers to trust their codebase which leads to defensive

programming and focusing on avoiding unexpected errors rather than on concrete

problems. Developers tend to write code either expecting that everything will go as

planned or that everything can go wrong. The latter is not incorrect but the way it is

solved is tedious and repetitive. Repetitive is boring and error-prone and anything

repetitive can be abstracted away which is the main goal of any modular (component-

oriented) programming language.

/// <summary>
/// Returns latest stock price.

/// </summary>
/// <exception cref="ArgumentException"></exception>

/// <exception cref="InvalidOperationException"></exception>
public async Task<StockPrice> GetLatest(string companySymbol)

{
 if (string.IsNullOrWhiteSpace(companySymbol))
 throw new ArgumentException("Company symbol not provided!");

 if (Symbols.All(s => s != companySymbol))
 throw new InvalidOperationException("Company symbol not supported!");
 try
 {
 var response = await Client.GetAsync(url + companySymbol);

 var content = await response.Content.ReadAsStringAsync();
 return JsonConvert.DeserializeObject<StockPrice>(content);

 }
 catch (ArgumentNullException e)
 {

 throw new InvalidOperationException("Url not provided.");
 }

 catch (HttpRequestException e)
 {

 throw new InvalidOperationException("Request failed.");
 }
 catch (JsonException e)

 {
 throw new InvalidOperationException("Response not in a correct format.");

 }
}

Snippet 1

2

From Snippet 1 we can see the usual way of writing safe code in C#. This function

performs a simple operation to get the response from the external service regarding the

latest stock price for the specified company provided as an argument. It only takes 3

lines of code including the deserialization process to express that operation. However,

this function spreads to more than 20 lines because of possible failures that may occur.

Some of those failures are business-related and others are related to the exceptions that

may occur in other functions that this function calls. This is tedious and also quite

possibly wrong as not all possible failures might be covered. Additionally, it

completely drives us from the problem we are trying to solve to dealing with possible

failures and finding the best possible way to handle them. Moreover, the caller of this

function will also need to look into the implementation of the function or follow the

instructions in the comments to understand how to handle possible failures. Since none

of this is forced by the compiler, usually bad things (unexpected bugs) occur.

The major contribution of this thesis is the exploration of functional programming

(FP) concepts and patterns in the context of their implementation. The thesis contains

an analysis of the most useful concepts including various types of monads and different

types of pattern-matching techniques that are not fully present in C#. The results of the

analysis show the advantages of thinking and writing code functionally and point out

the flaws that object-oriented (OO) thinking brought to C#. Funk is a library that

simplifies the developer's work and increases confidence in the codebase.

Additionally, we have analyzed the previous work done by the community to address

the kinds of issues that functional programming is trying to solve and compare it to the

features implemented in Funk. Finally, through demo programs that use Funk, we

show how easily and fluently one can write code with increased expressiveness and

safety regarding unexpected bugs due to the incorrect data representation.

The structure of this thesis is as follows.

The second chapter opens with the introduction of functional programming. It talks

about the concepts and patterns, pointing out the advantages of the paradigm and

disadvantages that can be addressed.

The third chapter talks about C# as a multi-paradigm programming language. It

points out the functional programming-related capabilities of the language and how

3

they can be improved. It concludes with the problems that C# and the .NET framework

teams introduced into C# and .NET over the years.

The fourth chapter describes Funk and the concepts that are implemented. It talks

about available monads and monadic structures, functional prelude, extension methods

for different types, and exception types.

The fifth chapter describes the tools used to develop the Funk library as well as the

technical challenges that we had to face during the development.

The sixth chapter describes the case study and the evaluation of Funk.

The seventh chapter analyses other functional programming libraries and compares

them with Funk. It also analyzes improved functional programming concepts in C# 8.

The last chapter mentions the current adoption of Funk in the .NET community,

features planned for the future, and concludes this thesis with final remarks.

4

2. Functional Programming

In this chapter, we will introduce the functional programming (FP) paradigm together

with the most important concepts and patterns and the benefits that it brings.

2.1. Overview

Functional programming is a declarative programming paradigm where functions are

first-class values. Those functions are usually pure, which means that besides always

returning the same result for the same input, they never have any side effects. Those

side effects come in a form of state mutation of non-local variables or any other

mutation of the global state.

Functional programming insists on honest functions. Honest functions represent

functions that tell you by their interface what kind of computation do they perform,

which parameters do they accept, and what is their return type. Honest functions never

have unexpected behaviors (the ones not stated in the interface) that can be caused by

inner or outside factors.

Functional programming gives the developer power, safety, and clarity. Every line

of code is an asset but a liability as well. Functional programming helps you reduce

the code size which results in keeping the assets and getting rid of the liability

(Bounanno, 2018). Stronger typing with guaranteed immutability ensures that the

program will perform without breaking or having unexpected results in a concurrent

environment. Additionally, having less code that is safe ensures easier maintainability

and better readability of the code.

In mathematics, a function is simply a map between elements from one set to

elements of another set. We call these sets a domain and a codomain.

Figure 1: Function

5

The types for the domain and codomain represent the function signature or interface.

That function represented as an arrow in Figure 1 given an element from the domain

returns the element from the codomain.

2.2. Function purity

Pure functional programming languages don’t allow state mutation to ensure one of

the principles of pure functions. The other principle, referential transparency, stating

that the result of the computation should always be the same for the same input, can

be ensured by any language as it is more of a logical decision. Referential transparency

is not widely adopted even in some functional programming languages. However, by

the definition, for the function to be pure, it must satisfy both of these rules.

In object-oriented programming, function purity is not that common as it is in

functional programming. Usually, object-oriented programming languages are used in

commercial and enterprise solutions where communication with the outside world is a

must for the program to perform some useful operation. The outside world represents

an external resource such as file system, database, external Application Programming

Interface (API), etc. Communication with these resources means working with the data

that might change (mutate) either by that operation or during some other computation.

One simple example is a function in Snippet 2 that returns the current time.

public static DateTime GetCurrentTime()
{
 // return current time.
}

Snippet 2

No matter how simple the GetCurrentTime function can be, it is still not pure as at

any given time it is going to return a different result.

The more functional approach in object-oriented programming is to have the

impure-pure-impure function relationship. It is also called an impure-pure-impure

sandwich. The motivation behind that concept is to reduce the footprint of impure

functions and the amount of impure code in the codebase. The communication with

the external resource is impure but any computation based on results can be extracted

into a separate function that can be pure. The impure function would call the pure

6

function to perform that specific computation and continue with the rest of the process

which is again most probably impure.

public async Task<UserViewModel> ProcessUsersRequest(UpdateUserRequest request)
{
 var user = await db.Users.Get(request.Id);
 var newUser = user.Update(request);
 var response = await db.Users.Update(newUser);
 return response.ToViewModel();
}

Snippet 3

From Snippet 3 we can see a function that calls four other functions. The first three

functions represent an impure-pure-impure sandwich. The first function is impure as

it performs an I/O operation and tries to find a user with the specified id. The second

function is pure as it only creates an updated user that is going to be stored in the

database by calling again the impure function. By separating pure from impure

operations we are increasing the amount of pure code where we make smaller units

more testable. An important thing to note is that any function that calls impure function

is itself impure. So overall ProcessUserRequest is an impure function but at least we

can be certain for some parts of it to be completely pure.

Function purity can significantly improve the codebase to minimize the number of

unexpected behaviors, especially in concurrent environments.

2.3. Function signature and honesty

Similarly, as function purity, function honesty can significantly improve code

readability and reduce the number of unexpected behaviors.

The function interface or signature is responsible for telling the caller what the

function does, what parameters it accepts, and what it is going to return. Its name is

also a part of the interface and it helps describe the behavior without looking into the

implementation.

In object-oriented programming, developers are used to writing dishonest

functions where in some cases the function either returns the null value or it does not

return (throws an exception). We can have a simple function that returns the user from

the database based on the user id.

7

public User GetUser(Guid id)
{
 // communication with the db.
 // return result
}

Snippet 4

Now, this function in Snippet 4 is obviously not pure, but it is also not honest, and we

should always tend to write honest code that tells you exactly what is going to happen.

We can see that the function accepts the Guid type of id and based on the value it

retrieves the User object from the database. The problem with this function is that if

there is no user for the given id, the function will fail to retrieve the user. The return

value will be either null or the exception will be thrown. Both are incorrect solutions

and introduce confusion. It is forcing the caller to look into the implementation and to

handle the call properly. This way of writing code is introducing something called

defensive programming. In defensive programming, we usually have the case where

every function is either wrapped in a try-catch block where the exception needs to be

handled or there are null checks in front of every computation to avoid Null-Reference

Exception (NRE).

public static string GetUserName(Guid id)
{
 try
 {
 var user = GetUser(id);
 return user == null ? "User not found" : user.Name;
 }
 catch (UserNotFoundException e)
 {
 return "Exception thrown";
 }
}

Snippet 5

The example function in Snippet 5 performs a very simple operation and yet it requires

more than 10 lines of code. Even if we ignore the fact that this program could be

written in one line there are still many things wrong here including the fact that unless

you look into the implementation you are not aware from the signature of the method

that the method might not return the valid username. In case the user is not found, or

the exception is thrown the primitive return type that was meant to indicate success

now contains a reason for failure in the same format. The response could, however, be

8

a tuple of success and failure where in case of success, the failure would be null.

However, that approach can also introduce bugs because of incorrect handling as the

caller would not be forced by the compiler to handle the response properly. The

program usually has hundreds of functions like this one which means a lot of repetitive

work regarding null checking and exception handling. This increases the codebase and

makes the code less readable and completely vulnerable to bugs. Additionally, it

significantly lowers the level of abstraction the object-oriented programming should

bring in the first place.

2.4. Concepts

To address the kinds of issues that developers face in the object-oriented world, we

can look at the concepts and patterns that functional programming introduces to

support better expressiveness and declarative style of writing code.

Functional programming is all about avoiding state mutation, so as mentioned

earlier in purely functional programming languages everything defined (objects,

variables, fields, etc.) is immutable. In most OOP languages everything is mutable by

default. To make a field immutable in C# it must be marked as readonly. Variables

cannot be read-only.

Functional programming also introduces a concept called a monad. The concept of

a monad is better known from a Category Theory as a monoid in the category of

endofunctors (Lane, 1971). However, the definition is more understandable for

someone who has a strong mathematical background and not suitable for developers

who are trying to understand the concept. The simplest way to explain a monad is to

say that it amplifies the specific type by additional features specific for that monad.

So, we can say that monads are type amplifiers.

public interface IMonad<T>
{
 IMonad<T> Return(T item);
 IMonad<R> Bind<R>(Func<T, IMonad<R>> selector);
}

Snippet 6

From Snippet 6 we can see two methods defined for the IMonad interface. The type

that is going to implement it and to be generic as the interface will represent a type

9

constructor. It means that it is not a concrete type until a specific type is provided

during its construction. In pure functional programming languages like Haskell,

monadic structures are a natural way of representing data. For a type to be considered

a monad it needs to satisfy two things as described in the interface. The first one is the

return function which can be also called wrapping or lifting function. It is responsible

for lifting any type to a given monad. The second one is a flattening function that

results in having one type of a given monad transformed into another type of that same

monad based on its value. It can be also called a binding function. These two

requirements need to be fulfilled to call a specific structure a monadic structure.

Additionally, some languages like Scala require also mapping function that works

similarly as flattening function but instead of having already monadic structure as a

result of the transformation specified by the selector, mapping function lifts the result

type automatically. The mapping function usually uses the flattening function

internally. Unwrapping function is not a requirement of a monad.

Pattern-matching is also a concept present in functional programming. It is a very

useful feature where a specific value is matched on a sequence of given values. In C#,

switch statements can be considered a form of pattern matching but they are not nearly

as powerful as the ones available in languages like Scala or F#. C# 8 has switch

statements improved and now they resemble the ones in other functional programming

languages. However, it is the newest release fully compatible only with the latest .NET

(Core 3.0, Standard 2.1) and cannot be used in many situations (existing applications

on older frameworks or legacy systems).

Besides the concepts mentioned, functional programming offers many more

interesting and useful patterns that can be used to simplify and make the code more

robust and powerful. These patterns include functors, applicatives, partial application,

the concept of currying, etc. They will be described in detail in the following chapters.

2.5. Benefits

As mentioned earlier, functional programming gives the developer power, safety, and

clarity. Functional programming allows the developer to replace statements with

expressions. It means switching from imperative style to declarative style of writing

code as illustrated in Figure 2.

10

Figure 2: Railway-oriented programming

With monadic structures and pattern-matching that were mentioned earlier, it brings

railway-oriented programming (ROP) (Wlaschin, 2014) style into the code. It helps

developers more naturally express themselves when trying to avoid a happy path

without lots of boilerplate code and defensive style. The railway analogy is correct as

it properly describes the way expressions should work. As shown in Figure 2, the initial

computation might indicate success or failure. To perform the second computation, the

initial computation must be in a successful state or the right path. If it is in the wrong

path the next computation will not be executed and the whole computation will end up

as a failure. Only if all the computations succeed, the result will be in a success state.

As it is visible from the figure, once the wrong path is entered, there is no going back

to the right path.

With immutability, it ensures that the data is not going to mutate once created which

builds trust, especially when working with sequences and abstracted code. Functional

programming brings more benefits than drawbacks, but it is worth mentioning them as

well. Drawbacks are usually linked to performance due to immutability. Instead of

updates, new objects are created that might impact the memory consumption.

However, when designed properly, functional programs can perform as well as object-

oriented programs and sometimes even better. Functional data structures have been

invented to provide a way of working with data safely ensuring immutability but taking

into account performance by making immutable objects reusable without the need of

constructing new objects every time they are required. In times where hardware is not

an issue, functional programming concepts are worth implementing even when there

is a small performance impact. It is better to have a more reliable program than the

best performing program that often breaks.

11

3. Functional C#

This chapter talks about the functional programming features of the C# that make it

possible to extend with additional features and concepts that are currently missing from

C# and the .NET.

3.1. Functions as first-class values

C# as a multi-paradigm but primarily an object-oriented programming language has

properties of a functional programming language as well. It had functional

programming features from the earliest versions when the Delegate type was

introduced. It is a type that makes functions first-class values in the language and

makes everything else that is functional, including Language Integrated Query

(LINQ), possible. In later versions of C#, working with the raw Delegate type was

replaced with Func and Action delegates that represent a function that returns and a

void function respectively. Lambda expressions were also introduced which made

syntax even more fluent and enabled easier delegate representation.

static Func<int, int, int> Add1 => delegate(int first, int second)
{
 return first + second;
};
static Func<int, int, int> Add2 => (first, second) => first + second;

Snippet 7

As it is visible from Snippet 7 the first Add function uses the older way of representing

delegates by using the keyword delegate along with the anonymous method.

Anonymous methods are just inline statements used in place of delegates to create an

anonymous function. They can be completely omitted using lambda expressions as

lambdas also create anonymous functions. The second Add function is using lambda

expression which makes it much clearer and straightforward.

In C#, there are different types of functions: methods, delegates, lambda

expressions, properties, and events. Methods are types of functions that are common

in the object-oriented programming world. They can implement an interface, can be

overloaded, etc.

12

public interface ICalculator
{
 int Add(int first, int second);
}

public class Calculator : ICalculator
{
 public int Add(int first, int second)
 {
 return first + second;
 }
}

Snippet 8

Delegates represent function objects or more accurately type-safe function pointers.

Snippet 8 shows the usual way of defining an interface with its implementation.

Delegate, as viewed from the object-oriented programming standpoint, is similar to an

interface and its implementation resembles the method that implements that interface.

public delegate int Add(int first, int second);

Add add = (first, second) => first + second;

Snippet 9

In Snippet 9, we can see how the delegate is defined similarly as the interface in

Snippet 8. The contract is therefore defined in the interface and the delegate, and the

responsibility of the class in Snippet 8 and the function object in Snippet 9 is to

implement it.

However, delegates in this form are rarely used today and are replaced with a much

more straight-forward types: Func and Action with various arities.

Func<int, int, int> add = (first, second) => first + second;

Snippet 10

The code from Snippet 9 can be replaced with the one-liner from Snippet 10 in C# 3.0

and higher. It is much more straightforward and readable as shown in the comparison

in Snippet 7, and therefore it is the preferred way of defining delegates.

Lambda expressions are represented with an arrow (=>) sign. It is sometimes called

just lambda and it represents an inline function as already explained. However, it is

also possible to define a body with the lambda expression using curly braces ({}). With

13

each lambda expression, a closure is captured and it represents that lambda along with

the context in which it is declared.

Func<User, string> GetGreeting = user =>
{
 var greet = GetGreeting(user.Localization);
 return $"{greet} {user.Name} {user.Surname}";
};

Snippet 11

As shown in Snippet 11, we can define variables inside of the body of the lambda

expression. Closure represents this delegate with its enclosing environment including

the User argument when invoking this function or any other passing variable along

with everything that is defined in the body.

3.2. Thinking functionally in C#

Even though C# is a functional programming language to some degree, many

developers don’t use those features that it offers and are more comfortable using it in

a plain object-oriented way. C# was created as Microsoft's response to Java and many

developers that use C# view it as a powerful but still just an object-oriented

programming language. Java doesn’t have features that C# offers from a functional

programming standpoint and therefore Scala was created to address those missing

features. C# is not nearly as powerful functional programming language as Scala but

as the programming language with the great support of the community and the .NET

ecosystem, it is usually a language of choice for many organizations. Overall, thinking

functionally in C# is possible and worth discovering for the benefit of any

organization.

As described in Section 3.1., C# has functions as first-class values. It means one

can create an object that points to a specific function. It is a very powerful feature that

enables developers to think of functions as objects and not just the functions as class

members. Another great feature of the language is the ability to create extension

methods. Those are functions available as static methods that are accessed as class

functions rather than instance functions but make an impression that are available in

the object directly. It is achieved by the keyword this.

14

public static class IntExtensions
{
 public static int Add(this int first, int second) => first + second;
}

var result = 1.Add(2); // 3

Snippet 12

As shown in Snippet 12, the second line shows that the extension method Add can be

accessed directly without the need for further qualification. However, it is also possible

to call this method with class qualification as shown in Snippet 13.

var result = IntExtensions.Add(1, 2); // 3

Snippet 13

By comparing the two function calls, we can see that the extension methods are

powerful because they can be called without class qualification which adds to the code

writing fluency. This fluency is one of the features of functional programming

languages and is what makes Fluent API possible in C#.

public static class ObjectExt
{
 public static R Match<T, R>(
 this T obj,
 T case1, Func<T, R> selector1,
 T case2, Func<T, R> selector2,
 T case3, Func<T, R> selector3
)
 {
 if (obj.Equals(case1))
 {
 return selector1(obj);
 }
 if (obj.Equals(case2))
 {
 return selector2(obj);
 }
 return selector3(obj);
 }
}

Snippet 14

The extension method from Snippet 14 is a naive pattern-matching function for any

type. It matches the value of the provided object with the ones specified in expressions

and returns the result of the selector that is related to the correct case.

15

var dummyResponse = Console.ReadLine().Match(
 "a", a => $"{a} chosen",
 "b", b => $"{b} chosen",
 "c", c => $"{c} chosen"
);

Snippet 15

We can call Match function with any type and in Snippet 15 the String is used. It

matches the value of the input and returns a response specified by the selector. The

input might differ from the three cases provided as the String is an infinite set of

values. This was an example to demonstrate how extension methods can amplify the

type and enable developers to write expressions fluently without the need for creating

intermediate statements or variables. This enables developers to write powerful

reusable components for specific types. C# developers use extensions provided by

Language Integrated Query (LINQ) for the IEnumerable interface all the time. LINQ,

as one of the most important components (collection of types and extension methods)

in the whole .NET, will be described in the following section.

3.3. LINQ

Language Integrated Query is a .NET Framework component that adds native querying

capabilities to .NET languages. It is also a grammar, which is added directly into C#

in the form of the query syntax. It is a replacement for older technologies like

ADO.NET that adds a level of abstraction over data manipulation (database

integrations, working with sequences, etc). Instead of writing raw Structured Query

Language (SQL) queries, developers can express their queries more natively with

compile-time checks and IntelliSense support. LINQ supports querying objects in

memory (LINQ to Objects), SQL data (LINQ to SQL), XML data (LINQ to XML),

and ADO.NET datasets.

Before LINQ and Entity Framework, .NET developers were writing raw queries.

Sometimes it is desirable when it comes down to the performance when a complex

query needs to be executed as the LINQ query is internally converted to SQL.

However, in most cases, queries are rather simple, and having an integrated query

technology is a big advantage.

16

SELECT UPPER(Name) FROM
(
 SELECT *, RN = row_number()
 OVER (ORDER BY Name)
 FROM Customer
 WHERE Name LIKE 'A%'
) A
WHERE RN BETWEEN 21 AND 30
ORDER BY Name

Snippet 16

The query in Snippet 16 is quite big for the amount of work it does. It returns the top

10 customers while skipping the first 20. This query can be written using LINQ syntax

as shown in Snippet 17 which internally calls LINQ extension methods.

var query =
 from c in db.Customers
 where c.Name.StartsWith ("A")
 orderby c.Name
 select c.Name.ToUpper();
var thirdPage = query.Skip(20).Take(10);

Snippet 17

The comprehensive list of differences and the advantages of using LINQ over raw

SQL that includes the examples shown in Snippet 16 and Snippet 17 is explained in

detail by Joseph Albahari in his article „Why LINQ beats SQL“. In this thesis, we are

going to focus only on the functional features of LINQ.

Many developers are not aware that LINQ is a functional library. The idea behind

fluent API and IEnumerable interface with its corresponding implementations was to

create a facility for working with sequences in a functional style as it is done in

languages like Haskell and Scala. IEnumerable represents the base interface that all

sequences compatible with LINQ are implementing and it satisfies both conditions of

a monadic structure. There are lifting functions to create a sequence of any

implementation class that can be represented as IEnumerable<T> where T can be of

any type. There are also SelectMany functions that act as binding (flattening)

functions along with Select functions that represent mapping functions from

languages like Scala.

17

var result = Enumerable.Range(0, 100)
 .Where(i => i % 2 == 0)
 .OrderByDescending(i => i)
 .Select(i => $"{i}")
 .Aggregate((i, j) => $"{i}, {j}");

// 98, 96, 94, 92, … , 4, 2, 0

Snippet 18

From Snippet 18, fluent API syntax is visible where functions Where,

OrderByDescending, Select, and Aggregate represent higher-order functions

(HoF). A higher-order function is a function that either accepts or returns a function or

does both and it is a concept from functional programming. Functions from the

example in Snippet 18 are extension methods that accept a predicate as an argument

and all of them except Aggregate return IEnumerable which means they can be

chained. Because of this, we can express operations fluently. Therefore, LINQ

extension methods are sometimes referred to as the fluent API.

C# also has a LINQ grammar where expressions can be written using query syntax

as syntactic sugar that internally calls LINQ extension methods as already shown in

Snippet 17.

var result = from i in Enumerable.Range(0, 100)
 where i % 2 == 0
 orderby i descending
 select $"{i}";

Snippet 19

However, not every extension method has its query syntax sibling. As it is visible from

Snippet 19, the Aggregate method is missing as there is no way of expressing the

aggregation using query syntax. It needs to be handled either by calling the extension

method or manually by using a loop, which is not a functional approach. The advice

from Microsoft is to use the fluent API as much as possible, as it is the most correct

way of working with LINQ.

Developers use LINQ and generally work with sequences correctly and in a

functional way, but with the rest of the types, developers work in an object-oriented

(imperative) way which leads to unexpected behaviors. These unexpected behaviors

are caused because of the problems that C# and .NET framework teams introduced

into the language and the framework over the years.

18

3.4. Problems

One of the biggest mistakes in computer science was the invention of the null

reference. It is referred to by its inventor as the billion-dollar mistake (Hoare, 2009).

The concept of null became present in object-oriented programming languages and it

found its way to C# as well. The null reference does not represent any object and it

means there is nothing there. It is the default value of reference type variables. In C#,

there are also nullable value types. They are represented as Nullable<T> where T is

a value type. C# introduced a syntactic sugar where nullable value types can be defined

as T?. In C# 8, the language team introduced nullable reference types that can be

marked as T? as well. However, there is no framework support and therefore no

Nullable<T> for reference types. The language team from the start introduced the

problem that is now deeply integrated into the language and the runtime and will

probably never change. Attempts to fix the issue are visible through partial solutions

that we saw gradually taking place in C# and the .NET.

Another troubling issue in C# is the default mutability. Whenever you define a

variable or a field that is not marked as readonly is mutable by default. Also, many

framework types and their properties are mutable as well. There are a few immutable

types like String and DateTime as well as immutable sequence types from the

System.Collections.Immutable framework namespace. The idea behind

immutability is that once the object is created it cannot be changed anymore. To make

changes, a new object needs to be constructed. This ensures that unwanted mutations

can never occur. Additionally, it ensures that in a concurrent environment, the objects

are thread-safe and immune to race conditions. C# 6.0 had an improvement in this

direction when the team introduced getter-only auto-properties that can be set only in

the class constructor as shown in Snippet 21. This enabled defining properties easier

if developers want to make sure the property is truly immutable.

public class User
{

 private readonly string name;

 public string Name { get { return name; } }

}

Snippet 20

19

Defining an immutable property was not straightforward as visible from Snippet 20.

Developers could not take advantage of automatically defined backing fields for auto-

properties as they needed to explicitly state that the field once set in the constructor

cannot be changed later on (even within a class).

public class User
{
 public string Name { get; }

}

Snippet 21

From Snippet 21, we can see that with getter-only auto-properties it is easier to create

immutable properties which shows a clear intention of the language team to make C#

follow more functional programming principles than it used to. However, no matter if

the property is get-only or not, the value of the object that is carried can be changed if

it is not immutable.

public class User

{

 public List<int> Accounts { get; }

 public User()

 {

 Accounts = new List<int> { 123, 234, 345 };

 }

}

public static class Mutator

{

 public static void Mutate(this List <int> sequence) => sequence.Add(456);

}

Snippet 22

In Snippet 22, the String is replaced with List which is an implementation of the

IEnumerable interface. List is a mutable sequence type, and therefore if the Mutate

function would be called on the Accounts property, it would be able to change its

value (add another item to the list). This leads to unexpected behaviors especially in

larger programs where developers don’t expect some function defined elsewhere to

mutate the object that they are working with. For that reason, immutable collections

are created in the .NET framework but are not widely used.

20

C# team has recently improved working with tuples. In the older versions, working

with tuples was not easy and they were quite heavy on the memory. It was a reference

type called Tuple with various arities. From the sixth version of C# onwards the team

made a significant improvement creating a new type called ValueTuple. Instead of

being a reference type, it is now a value type and the language even has syntactic sugar

for defining them with parentheses (()). Also, from the seventh version, developers can

assign meaningful names to tuple elements.

public (string Name, int Age) GetUser()
{

 return ($"John", 40);
}

var user = GetUser();
user.Age = 40;

Snippet 23

However, as it is visible from Snippet 23, ValueTuple is a mutable type and therefore

cannot replace the missing feature that is planned for the future versions of the

language referred to as Record.

Working with exceptions in C# is also a troubling task. Usually, exceptions are not

handled properly and method signatures cannot indicate whether a certain method will

throw an exception under a certain condition. Therefore, developers tend to write

comments above methods to warn callers what type of exceptions can occur. This is a

common practice throughout the whole .NET ecosystem including the framework. It

is a bad practice because technical details should be visible in code and only business-

related information should be commented on.

/// <summary>

/// Divides two decimal numbers.

/// </summary>

/// <exception cref="DivideByZeroException"></exception>

public static decimal Divide(this decimal first, decimal second)

{

 return first / second;

}

Snippet 24

From Snippet 24 it is visible how this function's signature is not telling the caller what

to expect if the second argument passed is 0. As it was described in the second chapter,

21

this is what makes this function dishonest. Therefore, developers write comments to

warn the caller of the possible exception and make them handle exceptions for

themselves.

Figure 3: Visual Studio tooltip function description

In Figure 3, we can see how Visual Studio shows the description of the function with

the exceptions that could be thrown. This is a very weak approach to warning about

possible errors and usually leads to program crashes as developers are not forced by

the compiler to handle them.

The following chapter will describe in detail how to address these issues in a

functional programming style and describe other functional programming concepts

implemented in Funk.

22

4. The Funk Library

This thesis addresses the issues that mostly come from C# and not the .NET

framework. The thesis does not address or discuss architectural decisions of making

programs. Funk addresses the problems that developers face on day-to-day

programming tasks using C# and focuses on solving code-related problems rather than

on the architectural challenges of making robust programs. Concepts and solutions to

those problems can be applied to other object-oriented programming languages as

well.

In this chapter, the problems that are described in Section 3.4 will be addressed using

concepts from functional programming that are inspired mostly from the Category

Theory. Specific types created in Funk will be described in detail together with the

functional Prelude and extension methods that can significantly improve and make

day-to-day development easier and less error-prone. The chapter will conclude with

the current state of Funk in the .NET community.

4.1. Category Theory

This section can be started with a quote: „Abstraction is the elimination of the

irrelevant and the amplification of the essential“ (Martin, 2006). Abstractions help us

understand things around us while letting us initially ignore the details that may

distract us. Abstractions are very important in programming and many computer

scientists and programmers came up with various kinds of abstractions to make

complex and repeatable problems easier to tackle. We can see these abstractions from

programming languages evolution through design patterns to new programming

paradigms. Most of those abstractions have mathematics as the source of inspiration

and more specifically the Category Theory.

A category is in the simplest sense a collection of objects along with the arrows

that go between them. We call these arrows morphisms. Properties of the category are

the associative composability of those arrows and the identity arrow for every object

that serves as the unit under composition (Milewski, 2019). Category Theory is a

branch of mathematics that is trying to unify all mathematics in terms of categories

ignoring the details of what those objects and arrows represent.

23

Figure 4: Category

In programming, we can look at these morphisms as functions where objects that are

connected with them represent a function signature. In Figure 4 we have a function f1

that takes an object of type A and returns an object of type B. We also have a function

f2 that takes an object of type B and returns an object of type C. Therefore, with the

composability property, we have a function f3 (f2 ∘ f1) that takes an object of type A

and returns an object of type C.

The idea behind the Category Theory is that objects are abstractions and the only

thing we care about is how they relate to other objects via morphisms. In object-

oriented programming, we have interfaces that represent these abstractions and classes

that are the concrete implementations. Functions are those morphisms and if we are

forced to look into the implementation rather than just looking at the interface to

understand the concrete object, we lose all the benefits of the paradigm.

Composability as the main property of the category is the essence of programming

as well. Developers are trying to break down complex problems into smaller ones and

solve them separately while being able to assemble the results back thus solving

complex problems much easier. Types and a strong type system can help a lot with

composability. The following section explains how Funk took concepts from the

Category Theory and implemented them to make data representations more accurate

and to help developers abstract away the repetitive and tedious work when dealing

with the problems stated in Section 3.4.

24

4.2. Types

As already mentioned, Category Theory can be applied to all mathematics but in

programming, we can look at the Category Theory as the category of sets. A set as a

collection of distinct objects can be finite and infinite. A type in simple terms

represents a set. For example, Boolean is a finite set of 2 values: true and false. String

on the other hand is an infinite set of values as the string is a sequence of characters

and there can be infinitely many distinct character sequences.

C# has a stronger and more powerful type system when compared to dynamic

programming languages like JavaScript and Python. However, C#'s generic type

system does not support type classes or higher-kinded types as opposed to what

Haskell and some other functional programming languages support. From C# 8, we

can say that the language now lays in the middle of object-oriented programming and

functional programming. For a widely accepted industry language with a lot of

functional programming features, this is enough to get started. Funk takes the language

one step further into the functional programming direction and provides some of the

missing types and features that are proven to be useful not only in functional

programming but in programming in general. The types that Funk provides are Unit,

Record, OneOf, Exc, Maybe, Pattern, AsyncPattern, TypePattern, and

AsyncTypePattern.

4.2.1. Unit

There is a Void type in functional programming which is also familiar to developers

from the object-oriented programming paradigm. In .NET, Void is a type (struct)

and it is also part of the language through a keyword void. However, Void as a type

cannot be used directly in C# nor an instance of it can be created. Therefore the

following signature in Snippet 25 and the intended implementation of the method are

not correct.

public static Void Do()

{
 // return Void instance.

}

Snippet 25

25

The void return type is used for functions that never return. In some sense, it is

understandable to have functions that perform certain operations and don’t return any

result because there is simply nothing to return. From the functional programming

perspective, the void is acceptable if the function does something consistently.

However, when we have a void return type, from the signature, we can never be sure

if the operation may fail. Since C# is not a pure language and usually the code that is

written is not pure, there are possibilities that the void-returning function is impure and

also dishonest. From Snippet 25 we could call the Do method without wrapping it in a

try-catch block expecting that the operation will succeed and cause a program failure

if it doesn’t. A partial solution to this problem can be solved with the concept called

the Unit. In functional programming, it is a well-known concept. It is represented with

closed parentheses (()) and in some sense, we have it in many programming languages.

Any function that takes no parameters takes the value of some hidden type. It is the

only instance of that type and therefore unnecessary to explicitly define. We can also

see it in C# in defining Func or Action variables after the equality sign and before the

lambda expression as shown in Snippet 26.

Func<string> greeting = () => "Hello World!";

Snippet 26

Since we cannot use this representation of a single value set outside of these

boundaries, we cannot take full advantage of the concept. Therefore, Funk implements

a custom type called Unit which provides a representation that can be used in these

and many other situations where we need to represent the data absence.

The Unit in Funk represents the absence of data (an empty value) and it only has

one possible value, itself. From a mathematical standpoint which is expressed in

Russell’s paradox and later in the modern Set Theory, there is no such set that contains

itself. However, since this is not a thesis that focuses on the Set Theory nor does it try

to prove that there is such set we can say that the Unit is the one value set where that

value is the Unit.

The value is not accessed from the instance level but from the struct level (Unit

is a struct). The instance of the Unit contains no information. However, as already

explained in the Category Theory section, the important thing about the object are the

26

morphisms (functions) that go from or to it. The Unit is used heavily throughout the

whole library and every other type depends on it.

var unit = new Unit();

var anotherUnit = Unit.Value;

Snippet 27

From Snippet 27, we can see two ways of creating an instance of the Unit type

excluding the functional Prelude that is going to be described in the following

sections. The first way is simply calling the Unit constructor and the second way is

calling the Value property that returns the instance of the Unit by calling the

underlying constructor.

Creating an instance of the Unit type while using this library will rarely be needed

as any type provides it already through any expression. In the end, the Unit is there to

denote the absence of data.

public static async Task<Unit> DoAsync()

{
 // implementation.

 return Unit.Value;

}

Snippet 28

However, when designing functions that return nothing, developers could instead use

the Unit to indicate the operation completion as shown in Snippet 28.

Func<string, Unit> writer = message =>

{

 Console.WriteLine(message);

 return Unit.Value;

};

Snippet 29

It is also better to replace Action to Func functions that instead of being void return

the Unit as shown in Snippet 29. By doing that, we are also able to unify the

implementations where instead of having different methods that accept either Func or

Action, reduce the code size and depend only on the Func.

27

The Unit type provides two Match functions following other types in the library.

One returns the result specified by the selector passed as an argument during the call

and the other is void-returning function as it accepts Action. These operations in

normal situations would be rarely used but in case of completely avoiding statements,

they help with additional expressiveness.

var unit = Unit.Value;

unit.Match(_ => Console.WriteLine(_.Match(__ => "John")));

Snippet 30

In Snippet 30, the outer Match function accepts the Action<Unit> parameter. The

Unit type in the expression is denoted with the underscore (_) by the Funk convention.

The inner Match accepts the Func<Unit, T> parameter where T is a result of the

selector. Therefore, this expression prints „John“ to the console.

Calling a ToString method on the Unit object results in the string „empty“

indicating that the Unit contains no value. Calling the GetHashCode method which is

used during equality check results in 0. It is also possible to check for equality using

equal (==) and not equal (=!) operators besides Equals functions. Two Unit objects

are always equal.

The Unit type object cannot be null as it is the value type!

4.2.2. Record

In C# there is a type that replaced the old reference type Tuple and it is called

ValueTuple. It is a value type and it is mutable. The fact that it is mutable is enough

motivation to create an immutable substitute. Value types in C# are mutable no matter

what, but we can at least make members of that type immutable.

Record the same as the ValueTuple represents a concept from the Category

Theory called a product. It is more specifically a Cartesian product. For a product of

2 sets, we have a set of pairs.

Record is a value type as well and in Funk, there are currently Record types from

arity of 1 to the arity of 5 (Record<T1,..,T5>). Of course, implementing more would

28

follow the same logic but as a proof of concept, Funk in most cases stops with the

number 5 regarding generic type arguments.

var tuple = ValueTuple.Create("John Doe", 40);

var record = Record.Create("John Doe", 40);

var recordFromTuple = Record.Create(tuple);

var toRecord = tuple.ToRecord();

var single = "John Doe".ToRecord();

Snippet 31

From Snippet 31 it is visible that the creation of Record follows the ValueTuple API.

It is not possible to use parentheses as C# provides syntactic sugar only for native

types. However, there are extension methods that provide more fluent syntax as shown

in lines 4 and 5. It is possible to create a Record object from the tuple and a single

element as well. A functional Prelude way of creating the Record object will be

described in the following sections.

Record type follows the same naming of its members for an easy replacement of

ValueTuple in the code. It provides much more powerful handling and

transformations. The Record type is also a monad because of the flattening functions

it provides as shown in Snippet 33 and Snippet 34.

There are two Match functions that the Record type provides. The first one accepts

Func and the second one Action similar to the Unit. By using pattern-matching

functions, we can access the underlying members and perform desired operations

without the need for having an imperative style of code.

public static Record<string, int> GetUser()

{

 return ("John Doe", 40);

}

GetUser().Match((name, age) =>
 $"User’s name: {name} and age: {age}."

).ToRecord().Match(Console.WriteLine);

Snippet 32

29

As it is visible from Snippet 32, the first Match function returns the result of the

specified selector. In this case, since the GetUser function returns the

Record<string, int> type object, two underlying arguments are projected to the

resulting string. That string is lifted to the Record<string> again where the second

Match function is the void one and the projected underlying value is printed to the

console (method group used instead of lambda). Another interesting detail to notice is

in the return statement of the GetUser function. The return value is of type

ValueTuple and the compiler does not complain since there is an implicit conversion

between the Record type objects and ValueTuple type objects. This is to enable even

more natural feel when working with the Record type.

What makes the Record type a monad is the ability to lift any type to the Record

type object as well as the flattening ability that is available through mapping functions.

There are four mapping functions: Map, FlatMap, MapAsync, and FlatMapAsync. The

first two are synchronous and the second two are for the async environment.

var newUser = GetUser().Map((name, age) =>

 (new { Name = name }, new { Age = age })

);

Snippet 33

Now Map function is not enough to make the Record type a monad but it is still useful

in case when we don’t want to create or don’t rely on the Record type directly in the

expression. As visible from Snippet 33, Map projects underlying values to the result of

the selector lifting the return value to the same structure as it was before. In this case,

it was the ValueTuple type. The Map function is a structure-preserving mapping

function where the type of the underlying arguments is not relevant but the overall

structure of the Record is. If the Record was a product of 2 sets, it is required to stay

like that after the mapping. In this case, the Record<string, int> after the mapping

function becomes the Record<‘a, ‘b> where primitives are now anonymous types

but the Record object still has two underlying values.

30

public class User
{
 public string Name { get; private set; }

 public int SpouseId { get; private set; }
}

var john = await GetUserAsync(123);

var jane = await john.FlatMapAsync(j => GetUserAsync(j.SpouseId));

Snippet 34

In the concurrent environment having types compatible with asynchronous operations

is crucial. In the example from Snippet 34, FlatMapAsync returns the

Task<Record<..>> that can later be awaited to get the underlying Record. The

FlatMap function makes the Record a monad since it preserves the structure and

instead of returning Record<Record<..>>, it flattens it to the single Record object.

Map functions use FlatMap functions under the hood.

Calling a ToString method on the Record object returns the result that

ValueTuple‘s ToString method returns. GetHashCode method as well uses the

underlying ValueTuple‘s method. It is also possible to check for equality using equal

(==) and not equal (=!) operators besides Equals functions. Equality is checked using

the underlying Equals method that ValueTuple provides. Because of the implicit

conversion comparing the Record object and the ValueTuple object of the same arity

is perfectly legal.

The Record type object cannot be null as it is the value type!

4.2.3. Maybe

As it was already mentioned, C# embraced null reference and now reference type

variables' default value is null. That causes the notorious NullReferenceException

when the object reference is not set to an instance of the object which is the most

common exception that occurs in the .NET. From C# 8, C# has nullable reference types

which in some ways helps in warning the developer that a certain reference type could

be null. However, since it is not enforced by the compiler to be handled in any way,

the feature appears to be a helper for Integrated Development Environments (IDEs) to

warn about the possible NullReferenceException rather than providing a concrete

31

solution. Additionally, since this feature is available only in C# 8, all previous versions

cannot take advantage of it.

Maybe type is the monad that exactly addresses this issue. It is a type constructor

for both value and reference types. In some of the other functional programming

languages, it is referred to as the Option. It is a concept from Category Theory called

a coproduct or a disjoint union. Coproduct is the opposite category compared to the

product. It means that a coproduct of two sets can be a value from either one of these

sets but not all. It is going to be described in more detail in Section 4.2.4. Maybe type

is a coproduct of two sets: specified type used in the type constructor (T) and Unit. In

Figure 5 we can see that Maybe<T> is a disjoint union of two sets: T and Unit. As

already explained, the Unit type represents the absence of data. If the object wrapped

in a Maybe type object is null, then the value of the Maybe will be empty (Unit).

Otherwise, it will be the value of T.

Figure 5: Disjoint union of 2

What makes the Maybe type a monad are the lifting and binding functions that it

provides.

object empty = null;
int? nullable = 2;

var firstMaybe = Maybe.Create(empty); // Maybe<object>
var secondMaybe = nullable.AsMaybe(); // Maybe<int>

Snippet 35

From Snippet 35 it is visible that there are two different lifting functions (there is also

Maybe.Empty<T> function to create an empty Maybeobject). One is a factory method

32

and the other is an extension method. Both of them perform the same operation and

that is lifting the object to the higher construction of Maybe. The first variable, empty,

is null, and therefore when wrapped in the Maybe type will result in an empty Maybe

object. The second variable, nullable, is a nullable value type but it is not null, and

therefore when wrapped in the Maybe type will result in a non-empty Maybe. The

important thing to notice is the underlying type of Maybe when constructed with the

nullable value type. It stops being a nullable value type as the value is resolved during

the construction. Therefore T? when lifted becomes Maybe<T>. Maybe type is not only

a more powerful replacement for manual handling of the null references but also for

the Nullable type provided by the framework.

public static Maybe<User> GetUser(int id)
{
 return context.Users.FirstOrDefault(id);
}

var john = GetUser(123);

var jane = john.FlatMap(j => GetUser(j.SpouseId));

Snippet 36

This example from Snippet 36 is similar to the examples for the Record type. It is

because monads follow the same principle when working with the underlying data. In

this example, we can see the GetUser method is now, comparing to the dishonest

functions mentioned in the earlier sections, letting the caller explicitly know that it

may not return the user for a specified id as the return type is now wrapped in the

Maybe type object. Now the caller is forced by the compiler to handle it to perform the

desired operation. In this case, the binding function is called where the underlying

value (if present) is used in the expression to retrieve another User object which may

also not be found. If the value of the john object is empty, the function passed as an

argument in the FlatMap method will not be executed. Using this approach, we can

completely avoid statements and imperative style by being able to express the desired

operation safely without the need to worry about the possible

NullReferenceException. Another thing to notice is the implicit conversion

between any object and the Maybe type object in the GetUser function. Because of

that, we are not forced to call some of the lifting functions to turn the result into Maybe

type of that result as it is done automatically.

33

var name = jane.Match(
 ifEmpty: _ => "No user found!",
 ifNotEmpty: j => j.Name
);

Snippet 37

In Snippet 37 we can see one way of retrieving the underlying value or its properties.

Match is a pattern-matching function where the first parameter is the expression in

case the Maybe type object is empty and the second one is the expression if the Maybe

type object is not empty. Specifying the name of the arguments is not necessary but is

used in this example for an easier distinguishment. In the first argument expression,

underscore is used as the type is the Unit type object which represents empty value.

In the second argument expression, j represents the User object. This way we can

write expressions instead of statements and completely omit null checks, reduce the

code size, and introduce additional safety. There are also two other Match functions.

One accepts Action parameters for void operations and the other is used in the case

when we want to throw the exception if the Maybe type object is empty.

var name = jane.Match(
 j => j.Name,
 _ => new NotFoundException()
);

Snippet 38

In Snippet 38, the second expression, where the NotFoundException is returned, is

optional and if we don’t supply it and the Maybe type object is empty, Match function

will throw the EmptyValueException which is a custom exception from Funk to

indicate that the Maybe type object was empty.

var jane = john.Map(j => GetUser(j.SpouseId).UnsafeGet());

Snippet 39

There is also a Map function similar to the one in the Record type. Instead of flattening

the result, it lifts the result of the expression to the Maybe of the result. As visible from

Snippet 39, it is used since the result of the expression is the User and not

Maybe<User>. This is because the UnsafeGet method was called indicating that

instead of using the functional way of getting the value, we are using the imperative

style. UnsafeGet function should be avoided as it throws EmptyValueException if

the Maybe type object is empty and is not a functional way of resolving the underlying

34

value. There are also asynchronous mapping functions available in the Maybe type.

Other functions for the Maybe type related to its transformations will be described in

the following sections.

Calling a ToString method on the Maybe object returns the result the underlying

types‘ ToString method returns. GetHashCode method as well uses the underlying

types‘ method. It is also possible to check for equality using equal (==) and not equal

(=!) operators besides Equals functions. Equality is checked using the Equals method

that the underlying type provides.

The Maybe type object cannot be null as it is the value type!

4.2.4. OneOf

In Category Theory, there is always a dual of some concept. As we already mentioned,

a Record type represents a product of sets and a dual of a product is a coproduct. Maybe

type is also a coproduct as it was already explained in the previous section. OneOf type

represents the opposite construction of the Record type. The Record type is a product

of values and OneOf type is a coproduct of values. A coproduct is a disjoint union

sometimes called discriminated or tagged union. If a coproduct is a construction of

two sets, then the value is an element of one of those two sets. In functional

programming languages like Haskell, there is a construction called Either which

represents a coproduct of two sets. OneOf type, on the other hand, is a more suitable

name for this construction as it supports more than 2 sets (up to 5) and an additional

set that represents an empty value. It is a type that handles the possible absence of data

(null reference). It handles null reference similarly as the Maybe type does, but OneOf

type is not a construct that should be used for that purpose. OneOf type is a reference

type and therefore can be used as a base class for the custom implementation and

modeling that will be described in the following examples. In Funk, OneOf<T1, T2>

is used as a base class for the exceptional monad that is going to be described in the

following section. Figure 6 shows the representation of the disjoint union of 3 sets that

OneOf<T1, T2> represents.

35

Figure 6: Disjoint union of 3

Even though we define OneOf type as the construct of two sets there is an additional

set added implicitly because of the null reference handling and that is why OneOf<T1,

T2> is a coproduct of three sets.

The OneOf type is not a monadic structure as it does not provide binding

operations. However, it is still a very useful construct that can serve as a base class for

custom types representing your data models.

For example, we can imagine an event-sourced system and how the OneOf type is

a natural fit for designing data models. The core entity in event-sourced systems is an

event. Events represent what happened in the system and are the transition footprint of

states. In event-sourced systems, states are constructed from events and are usually not

stored in the database unless they need to be cached for performance purposes. Each

event can be constructed from the command received from the caller (user, client

application, etc.), and together with the previous state which is constructed from the

past events, using state transitions, produce a new state. State transitions are normal

binary functions that take the current state and a new event (or command) and produce

a new state and an event (in case the command was used). After that, the new state (or

a state view model) is returned to the caller, the event is stored in the database and is

published (to client applications or other interested parties).

The goal of the event-sourced architecture is to, because of constant changes,

minimize the amount of transferred data, enable real-time data streaming, and store

everything that is happening in the system. In an event-sourced system, data is never

36

overwritten, only new data is stored. Therefore, an event-sourced system has all the

necessary infrastructure for data analytics. Because of this type of architecture, usually

a single entity like a User on some E-Commerce platform has many commands and

events related to it. Soon, it can become quite overwhelming to work with hundreds of

different commands and events in the system. OneOf type is a construct that can help

minimize the complexity and abstract away some tedious and repetitive work.

We can construct a UserEvent class, as shown in Snippet 40, that implements

OneOf<T1, T2, T3> type to work with user-related events using expressions with

pattern-matching without the noise of statements.

public class UserEvent : OneOf<AccountCreated, InfoUpdated, AccountClosed>
{
 public UserEvent()
 {
 }

 public UserEvent(AccountCreated first)
 : base(first)
 {
 }

 public UserEvent(InfoUpdated second)
 : base(second)
 {
 }

 public UserEvent(AccountClosed third)
 : base(third)
 {
 }
}

Snippet 40

UserEvent class represents a simplified collection of possible events related to the

User in some event-sourced system. As only one event can occur at a time, the OneOf

type is a suitable container for these events. The first constructor is a default one but

to work with OneOf type correctly all the overloaded constructors should be properly

defined as shown in Snippet 40. The default constructor can be called in case the

resulting OneOf object needs to be in an empty state without the need for calling one

of the overloaded constructors passing a null argument as shown in Snippet 41.

37

Now, we can have the same representation for commands as well and the following

snippet shows how we can work with the OneOf type using Match functions.

public Record<UserEvent, User> GetNew(UserCommand cmd, User user = null)
{
 return cmd.Match(
 _ => (new UserEvent(), user),
 f =>
 {
 var (newUser, created) = f.Create();
 return (new UserEvent(created), newUser);
 },
 s =>
 {
 var (newUser, updated) = user.Update(s);
 return (new UserEvent(updated), newUser);
 },
 t =>
 {
 var (_, closed) = user.Close(t);
 return (new UserEvent(closed), _);
 }
);
}

Snippet 41

The GetNew function in Snippet 41 is responsible for creating a new UserEvent object

together with the new state of the User object based on the UserCommand object and

the current state of the User object passed as arguments. The UserCommand object is

pattern-matched on its possible values and for each case, a different operation is

performed. In the case the UserCommand object was empty, we are returning the empty

UserEvent object together with the User object passed as an argument (if we omit the

empty case and if the object is empty, the Match function will throw the

EmptyValueException). In case the UserCommand object contained CreateAccount

command object, the first case would be executed where Create function returns a

ValueTuple object of the newly created User object and AccountCreated event

object. The ValueTuple object of UserEvent object and the User object is returned

which is implicitly converted to the Record type object. The other operations specified

in the Match function for other possible cases follow the same logic. This example

shows us how we can write a computation where we depend on different types without

the need for statements and a lot of code. The example from Snippet 41 could also

perform checking for possible null reference of the User object and return a Maybe

38

type object of the result but the focus was on showing how pattern-matching works for

OneOf type.

The OneOf type can be also used in the combination with the Maybe type as it

exposes properties for its underlying members wrapped in the Maybe type object.

private void Log(UserEvent @event)
{
 @event.Third.Map(c => $"Account {c.Id} closed").Match(
 ifNotEmpty: m => _logger.Log(m)
);
}

Snippet 42

The function Log from Snippet 42 is interested in logging only if the UserEvent object

is AccountClosed object. Therefore, Third property is of type

Maybe<AccountClosed> and in case it is not empty the Map function will return

Maybe<string> which is then pattern-matched using Match function. In Match

function, we are interested only in the case when the Maybe type object is not empty.

We pattern-match on the message and in case it is not empty, _logger.Log function

will log the message. If the object is empty on the other hand, the function does

nothing.

Calling a ToString method on OneOf object returns the result the underlying

types‘ ToString method returns. GetHashCode method as well uses the underlying

types‘ method. It is also possible to check for equality using equal (==) and not equal

(=!) operators besides Equals functions. Equality is checked using the Equals method

that the underlying type provides. Underlying type is the non-empty object or the

default value which is the Unit object.

OneOf type is not an abstract class and therefore can be used independently without

the need to implement it in a custom type. Since OneOf type is a class, it is a reference

type and therefore can be null!

4.2.5. Exc

Exception handling in C# is tedious work. Try-catch blocks are what makes code less

readable and increases the overall codebase. Additionally, handling exceptions with a

39

try-catch technique forces the caller to look into the implementation of a specified

function to figure out the logic and to properly handle other exceptions that may occur

or that may be thrown in that function or other related functions.

Exc is a type specifically created to solve this problem. As with previous types

introduced by Funk, we are trying to abstract away repetitive and tedious work. Exc

type is an exceptional monad sometimes referred to as a Try or a Result monad in other

functional programming languages like Haskell and Scala. Exc is a type that is

responsible for handling the possible failure of a specified operation. Like Maybe type

is a container of a value where the value might not be present, Exc type is a container

of a result of the operation that may have failed during the execution. Exc type

implements OneOf<T1, EnumerableException<T2>> where T2 needs to be any type

of Exception. Since Exc type implements OneOf type, it handles the possible absence

of data as well. EnumerableException is a type of Exception provided by Funk that

is a more powerful replacement for AggregateException. It can contain one or more

failures that happened during the computation depending on whether the operation was

related to validation or a normal railway-oriented process. EnumerableException is

a type that can be used outside of Exc type as well. Since EnumerableException

exception type implements an IImmutableList interface, it is immutable.

In the rest of this section, we illustrate the usage of the Exc type on realistic

examples. We can have an extension method that is responsible for deserializing a

string into a specified type using the Newtonsoft.Json library. Traditionally, we

would write this function as the following function shown in Snippet 43.

public static T SafeDeserialize<T>(this string content)
{
 try
 {
 return JsonConvert.DeserializeObject<T>(content);
 }
 catch (JsonException e)
 {
 return default;
 }
}

Snippet 43

40

The first problem with this approach shown in Snippet 43 is that we are forced to

manually handle the possible failure of the DeserializeObject function. The second

and even bigger problem is that, in case of an exception, we are returning the default

value of T. Not only that it doesn’t make sense since the operation failed, but we are

also forcing the caller to look into the implementation to understand why the function

SafeDeserialize returned null (in case the type T was a reference type). This

function could be modified to return a ValueTuple object of T and an Exception. In

this case, the caller would not be aware of whether the operation failed or not and

would be forced to check if the Exception is null or not which again forces the caller

to handle everything manually and could potentially introduce additional bugs into the

code. The third option would be to throw a custom Exception and as shown in

previous chapters, add a section in comments which states that the SafeDeserialize

function throws some Exception which would make it unsafe immediately and the

name of the function would not make any sense anymore.

SafeDeserialize function could be rewritten in a way that instead of returning T

it returns an Exc type object of T and a JsonException as shown in Snippet 44.

public static Exc<T, JsonException> SafeDeserialize<T>(this string content)
{
 return Exc.Create<T, JsonException>(_ => JsonConvert.DeserializeObject<T>(content));
}

Snippet 44

As we can see from Snippet 44, SafeDeserialize is now an honest function. It tells

the caller that the operation may fail and it can be caused by possible JsonException

or any other derived Exception type. Additionally, we reduced the code size, made

the function much more readable and we did not have to wrap anything in a try-catch

block as it is done for us when we call the Exc.Create method. The Exc.Create

method accepts a Func<Unit, T> argument where the provided function is internally

wrapped in a try-catch block. Omitting the explicit Exception type definition during

the call returns Exc<T, Exception> type object. Even though it makes much less

noise, it is not advised to create it without the explicit exception definition as not all

exceptions should be handled. Only the expected ones should be handled as we don’t

want to handle possible developer errors. There is also the asynchronous version of

Create method called CreateAsync which accepts Func<Unit, Task<T>> argument

41

and returns a Task<Exc<T, E>>. If the provided function during the invocation of the

Create method returns null, the Exc type object will be empty.

Exc type is a monad because of the binding functions it provides. There are many

different binding functions for the Exc type. All of them have the same signature but

perform a different operation. Some binding functions represent a continuation in case

the result is in a successful state. Some represent a fallback in case the result is in an

empty Exc object or if the result is in the failure state. Most of them will be described

in the following sections related to extension methods. In this section, we will describe

binding functions that perform a continuation.

public static async Task<Exc<string, Error>> GetContent(this HttpResponseMessage
message)
{
 var response = await message.Content.ReadAsStringAsync();
 return message.StatusCode.Match(
 HttpStatusCode.Unauthorized, _ =>

 Exc.Failure<string, Error>(new UnauthorizedError(response)),
 HttpStatusCode.Forbidden, _ =>

 Exc.Failure<string, Error>(new ForbiddenError(response)),
 HttpStatusCode.BadRequest, _ =>

 Exc.Failure<string, Error>(new InvalidRequestError(response)),
 HttpStatusCode.OK, _ =>

 Exc.Success<string, Error>(response),
 _ =>

 Exc.Empty<string, Error>()
);
}

Snippet 45

We can have a function like the one shown in Snippet 45 that reads the content of the

HttpResponseMessage and returns the appropriate Exc result based on the content.

The function first reads the content of the HttpResponseMessage object. Then the

function pattern-matches on the StatusCode value of the message. This Match

function is the extension method provided by Funk that will be described in detail in

the following sections. It is similar to the naive Match function shown earlier in Section

3.2 but it handles more cases and has a default case and fallback capabilities as well.

Exc.Failure, Exc.Success and Exc.Empty functions are factory methods to directly

create an Exc type object in a specified state when there is no operation to perform as

in the case when the Exc.Create function is used. The Match function returns the

result of the selector that is specified under the correct case. It returns the result in the

42

form of an Exc<string, Error> type object. If the HttpStatusCode value was OK, the

result will indicate success. Otherwise, it is going to be either failure or, in case none

of the specified cases were matched, the result will be an empty Exc object as specified

in the default case.

Now, with functions GetContent and SafeDeserialize we can get the

deserialized object based on the HttpResponseMessage using binding functions that

perform continuation as shown in Snippet 46.

var response = await Http.SendAsync(request);

var obj = response.GetContent().FlatMapAsync(r =>
 Task.FromResult(r.SafeDeserialize<User>().MapFailure(e =>
 new Error(e.Root.Map(ex => ex.Message).GetOr(_ =>

 "Unable to properly deserialize response returned by the server."
))

))
);

Snippet 46

As we can see from Snippet 46, once we get the HttpResponseMessage object we call

the GetContent function from Snippet 45 and as a continuation in the process of

getting the deserialized User object, we call the asynchronous FlatMapAsync binding

function. Inside of the FlatMapAsync function, we pass the continuation argument of

type Func<string, Task<Exc<User, Error>>> that will be evaluated only if the

GetContent returns the successful result. Inside the continuation, we are calling

SafeDeserialize function from Snippet 44 that will perform deserialization of the

string to the specified object type. The problem here is that since GetContent function

returns an Exc object of type Exc<string, Error> and SafeDeserialize function

returns an Exc object of type Exc<User, Error> the compiler cannot infer the

resulting type as the Exception types differ. The rule of binding and mapping Exc

type objects is that the Exception type stays the same as only semantically similar

operations should be chained. However, in this case, we have a SafeDeserialize

function that is a generic function that can be used anywhere, but since it handles

JsonException which is an Exception type from Newtonsoft.Json library, we can

use MapFailure function to map one Exception type to another. Therefore we are

mapping JsonException to Error type and the compiler is now able to infer the return

type. Inside of the MapFailure, we are provided with the EnumerableException of

43

the JsonException type that we can use to create a new message.

EnumerableException has Root and Nested properties that represent the root and

nested failures of an Exc type object in a failed state. Both of these properties are

wrapped in a Maybe type object as they can be empty. Therefore, to get the message of

the root exception inside of the EnumerableException, we need to use the Map

function. The Map function, as already explained, returns the Maybe type object of the

specified selectors return value. Therefore, we get a Maybe<string> type object.

However, the constructor of the Error exception accepts a string as an argument. To

avoid calling the Match function, we can use GetOr which is one of the extension

methods for the Maybe type that will be described in the following section. The GetOr

function either returns the value of the non-empty Maybe type object or returns the

result of the specified selector. The whole result inside of the FlatMapAsync function

is wrapped in a Task object as it the asynchronous binding operation which is used

because GetContent function returns a Task of the result as well. The whole process

can be expressed in the same way in a synchronous environment as well. This quite

complicated operation in terms of possible failures, type incompatibility, and possible

absences of data is solved in a single line of code. We completely avoided using

statements and relied only on expressions and the fluent API Funk library provides.

Exc type provides Map functions as well that perform semantically the same

operation as what Map functions perform for the Maybe monad. They, instead of

flattening the result, lift the result of the selector to the higher construction of Exc by

wrapping a selector in the Exc.Create function.

public Exc<User, NotFoundException> Get(int id)
{
 // implementation
}

var name = Get(123).Map(u => u.Name); // Exc<string, NotFoundException>

Snippet 47

We can have a function Get from Snippet 47 that returns an Exc type object of the

User and the NotFoundException in case the User object is not found for a specified

id. To get the name, we can call the Map function providing a selector that returns a

Name value of the User object. The result of the operation is of type Exc<string,

NotFoundException> as the Get function might not return the User object.

44

As we can see from both binding and mapping functions, the value always stays

wrapped in the Exc type object. Actually, for every monad, the result always stays in

the elevated value of that monad.

Since Exc type inherits from the OneOf type, it provides the same Match functions.

Comparing two Exc type objects is also based on the implementations that OneOf type

provides.

4.2.6. Patterns

Pattern-matching is one of the most important features of any functional programming

language. It is so powerful because it simplifies the code by enabling developers to use

expressions instead of statements. Pattern-matching is a process of checking the value

of a given object by a given number of possible cases where, for the expression to be

evaluated, the value of the object needs to exactly match the value of the specified

case.

We saw an example of pattern-matching in Snippet 45 where we had to match the

value of an enum to several specified cases and corresponding actions. The Match

function from Snippet 45 is generic and works for any type. Additionally, all of the

Match functions that available directly in types provided by Funk are considered

pattern-matching functions.

The matching functions covered so far are useful in situations when we want to get

the result immediately. For example, we are matching on an Int type object and based

on the value, we are returning a corresponding string. Or we are matching on the

Maybe<HttpResponseMessage> type object and based on its state, we are returning a

Task of a string. However, sometimes we don’t want to execute the operation

immediately but would rather have the whole computation as a lazy object. Lazy is

also a concept from functional programming and a native type in .NET. and is an object

that contains the computation. Once invoked, the Lazy object invokes the computation

and returns the result of the computation. Lazy type in .NET is a wrapper around

Func<R> which also, like the rest of the delegate types, represents a lazy computation.

For lazy pattern-matching, we are introducing 4 new types: Pattern,

AsyncPattern, TypePattern, and AsyncTypePattern. All of them are value types

45

and implement the IEnumerable interface. They implement IEnumerable because of

the Add method even though it is not necessary to properly implement the

IEnumerable interface. However, when the correct Add method (needs to be void) is

present it can be used implicitly through collection initializers from C# 6 onwards.

Every item in the collection initializer calls the underlying Add method. The compiler

is following the pattern because it can find a correct Add method and therefore it is not

necessary to call Add method anymore. This magic happening inside of the compiler

is outside of the scope of this thesis as we only care about how we can take advantage

of that. This convention-based pattern-matching is explained in detail by Eric Lippert

in his article „Following the Pattern“.

Now we can imagine a scenario when we want to have a lazy pattern-matching

computation. In Snippet 48, we have a function that performs an expensive

computation based on input value that will be provided later on in the process.

Task<Exc<Resource, Error>> GetResource(ResourceType type)
{
 // ..
}

public static AsyncPattern<Exc<Resource, Error>> GetResource()
{
 return new AsyncPattern<Exc<Resource, Error>>
 {
 (ResourceType.Info, i => GetResource(i)),
 (ResourceType.Publications, p => GetResource(p)),
 (ResourceType.Contributors, c => GetResource(c)),
 ("info", _ => GetResource(ResourceType.Info)),
 ("publications", _ => GetResource(ResourceType.Publications)),
 ("contributors", _ => GetResource(ResourceType.Contributors)),
 ("I", _ => GetResource(ResourceType.Info)),
 ("P", _ => GetResource(ResourceType.Publications)),
 ("C", _ => GetResource(ResourceType.Contributors)),
 (1, _ => GetResource(ResourceType.Info)),
 (2, _ => GetResource(ResourceType.Publications)),
 (3, _ => GetResource(ResourceType.Contributors))
 };
}

Snippet 48

Now this function, instead of evaluating the expression immediately, creates the

AsyncPattern type object where the correct value will be matched using the Match

function. We achieved that, instead of performing a possibly unnecessary computation,

46

we have an object that contains a computation that can be executed when desired. This

pattern-matching is more powerful compared to Match functions we saw until now

because we were able to define cases of different types (enum, string, int), all in one

expression. Additionally, this way of pattern-matching has no limitations regarding the

number of cases whereas the Match extension method is limited to 10 cases.

This AsyncPattern type object can then be evaluated with the Match function as

shown in Snippet 49.

var resource = await GetResource().Match(Console.ReadLine());

Snippet 49

The important thing to note here is the return type of the Match function. The Match

function accepts an argument of type object and returns a Maybe type object of the

result. It is because the case might not be matched and also because it does not provide

the default operation as the default value can be later specified using some of the

extension methods for Maybe type (like the GetOr function that we saw earlier). This

pattern that we created is not only compatible with string inputs but with

ResourceType enums and integers as well and can be used in multiple situations.

Pattern type behaves similarly as the AsyncPattern type but in the synchronous

environment.

Another useful scenario is when you need to pattern-match on the type of the

object. Now we can imagine a case where we have classes (User, Account, Cart) that

represent a domain model in our system and they all implement the IEntity interface.

We have a generic Repository class with the generic Update function that calls the

Log function once the update operation is successfully finished. Since we want to for

some reason log the information in the Persistence layer rather than in the Business

layer of our application we need to somehow know with what entity are we exactly

working with at the moment.

47

public void Log(IEntity entity)
{
 _logger.Log(entity.GetType().Match(
 typeof(User), _ =>
 {
 var user = (User) entity;
 return $"User with id {user.Id} was updated.";
 },
 typeof(Account), _ =>
 {
 var account = (Account) entity;
 return $"Account with number {account.Number} was updated.";
 },
 typeof(Cart), _ =>
 {
 var cart = (Cart) entity;
 return $"Cart from the user {cart.User.Id} was updated.";
 },
 _ => "Something else."
));
}

Snippet 50

In Snippet 50 we can see one way to do this operation. The problem here is that we are

forced to use the typeof operator together with the dangerous casting to make use of

the Match extension method. Instead, we could use TypePattern type.

public void Log(IEntity entity)
{
 _logger.Log(new TypePattern<string>
 {
 (User u) => $"User with id {u.Id} was updated.",
 (Account a) => $"Account with number {a.Number} was updated.",
 (Cart c) => $"Cart from the user {c.User.Id} was updated."
 }.Match(entity).GetOr(_ => "Something else."));
}

Snippet 51

This modified function from Snippet 51 looks much clearer. There was no need to use

the typeof operator or to cast anything. We also reduced the code size and gained the

optional laziness (but we called the Match function immediately). Since the function

returns a Maybe<string> object we needed to unwrap the Maybe type object to get the

string. Here we can see how the default value can be provided using the extension

method for the Maybe type.

48

AsyncTypePattern type behaves similarly as the TypePattern type but in the

asynchronous environment.

All pattern types are value types and therefore cannot be null!

4.3. Functional prelude

The majority of functional programming languages have certain operations, specific

constructs, expressions, or complex values available through some fields or properties.

Prelude in Funk is a class that can be imported as a static reference from C# 6

onwards. It provides simplifications for some constructs that are tedious to write.

Prelude mostly focuses on providing functions for creating Funk types or native .NET

types that sometimes cannot be inferred by the compiler when defined as local

variables using the var keyword instead of the explicit type definition.

Creating a Maybe type object can be done using the may function as shown in

Snippet 52.

using static Funk.Prelude;

// ..

var maybe = may("Funk");

Snippet 52

Working with immutable collections is great but sometimes it can be painful to create

them.

var l1 = ImmutableList.Create(1, 2, 3);

var l2 = list(1, 2, 3);

Snippet 53

From the example in Snippet 53 we can see two ways of creating an immutable list.

The function Create returns ImmutableList object whereas the list function returns

an IImmutableList object. As we can see from the example, the second option

requires less writing.

Defining the Exc type object in a successful or a failed state is also tedious work.

It is much easier to use the function available in Prelude as shown in Snippet 54.

49

var suc = success<string, InvalidOperationException>("Funk");

var fail = failure<string, Exception>(new InvalidOperationException());

Snippet 54

Defining a Record type object can be painful when using the factory method. Prelude

also provides the substitute for the Record type factory method as we can see from

Snippet 55.

var record = rec("John", "Doe", 30);

Snippet 55

The rec function makes it easy to replace locally defined ValueTuple type objects

with the Record type objects by adding rec in front of parenthesis.

Sometimes we need to create an empty value under a certain condition in the

expression. Since there is an implicit conversion between the Unit type and Maybe and

Exc types, we can use the empty function from Prelude. In most cases (when the type

is not wrapped in some other type like Task), the compiler can infer which type is

meant to be used.

private static Exc<string, Exception> Get(this Exc<int, Exception> exc)
{
 return exc.Match(
 _ => _,
 v => success<string, Exception>($"{v}"),
 e => empty
);
}

Snippet 56

In Snippet 56, we have a function that pattern-matches on the Exc type object. In this

case, we are only interested in a successful case. If the state of the exc object is not

successful, we are just returning an empty Exc type object. In the first case, we are

returning the value of the Unit type provided in the expression. In the second case, we

are creating a string from the integer value wrapping it in a successful Exc type object,

and in the last case, we are again returning the value of the Unit type by calling the

empty function. The empty function is the static property that returns the Unit type

object. We can do the same with the Maybe type.

50

Defining local Func, Action, and Expression variables is also tedious work as it

requires an explicit type definition because the compiler cannot infer the type.

Func<int, int, int> Add = (first, second) => first + second;

var add = func((int first, int second) => first + second);

Snippet 57

As we can see from Snippet 57, we can define a local Func type objects without the

explicit type definition using the func function. For Action types, there are act

functions and for the Expression types, there are exp functions. func, act, and exp

functions are available for Func, Action, and Expression types of various arities.

Creating the EnumerableException type object when working with it outside of

the Exc type can be tedious as well.

var ex = EnumerableException.Create(new InvalidOperationException());

var e = exception(new InvalidOperationException());

Snippet 58

From Snippet 58, we can see how we can use exception function from Prelude to

simplify the creation of the EnumerableException type object. The exception

function also works with the sequence of exceptions.

Another type that is simplified by the Prelude regarding its creation is the Task

type from .NET. In Snippet 59 we can see the traditional way of creating and running

a Task.

var task = Task.FromResult("Funk");

var another = Task.Run(() => "Funk");

Snippet 59

Using functions provided by Prelude we can define the variables from the example

in Snippet 59 much easier.

var task = result("Funk");

var another = run(() => "Funk");

Snippet 60

51

From Snippet 60 we can see how to define or run a Task using result or run

functions. There are also overloaded run functions in Prelude that resemble Run

functions provided by the Task type.

4.4. Extensions

As we already covered in Section 3.2, extension methods are functions available as

static methods that are accessed as class functions rather than instance functions but

make an impression that are available in the object directly. They make fluent API

possible in C#. Funk provides various types of extensions for different types and use

cases. There are currently more than 200 extension methods available in Funk but we

will cover only the most important ones.

4.4.1. Funk types

We already saw a few extension methods earlier in Section 4.2 while covering

available types. We saw an example of the GetOr function that is quite useful in case

when we want to get the value from the Maybe type object but provide a fallback in

case the object is empty. There is also an asynchronous version of the GetOr function

as shown in Snippet 61.

Task<Maybe<string>> GetAccessToken(string username, string password)
{
 // ..
}

var token = await GetAccessToken("John", "Doe123").GetOrAsync(async _ =>
{
 var other = await GetAccessToken("John", "JohnDoe123");
 return other.GetOr(__ => $"Basic {GenerateBasicToken("John", "Doe")}");
});

Snippet 61

We can have a function like in Snippet 61 that generates access token based on

credentials. However, because the credentials might not be correct, we are returning a

Maybe type object of the generated token. Since we don’t want to perform any

operation with the token until we are satisfied that we have at least the basic token

generated, the easiest way is to call the GetOr function. We call the GetAccessToken

function with the first credential pair. Since credentials might not be correct, we are

calling the GetAccessToken function again with the new credential pair inside of the

52

GetOrAsync fallback argument. Since those credentials might also not be correct we

are returning a basic token generated from the user’s name and surname.

Another useful extension is when we want to perform a similar operation to the one in

Snippet 61 but we want to stay in the elevated world of the Maybe type.

var token = await GetAccessToken("John", "Doe123").OrAsync(_ =>
 GetAccessToken("John", "JohnDoe123")
);

Snippet 62

In Snippet 62, we defined an expression where we stated that if the Maybe type object

as a result of the first GetAccessToken function call is empty, we want to perform

another GetAccessToken function call that will be evaluated only if the previous one

evaluates to the empty Maybe type object.

Lifting an object to the elevated world of the Maybe type using a factory method is

tedious. Prelude can help is certain cases but extension methods are usually a perfect

fit as they provide the most functional way of working with the data in C#. Therefore,

Funk provides an extension method for lifting any type to the Maybe type.

var funk = "Funk".AsMaybe();

int? nullable = 2;
var two = nullable.AsMaybe();

Snippet 63

In the example from Snippet 63, we lifted a string to the Maybe type object using the

AsMaybe extension method. We also lifted a Nullable<int> type object to the

elevated world of the Maybe type using the same function.

Lifting objects to the elevated world of the Record type can also be painful if we

don’t use the function provided by Prelude. However, as for the Maybe type, Funk

provides an extension method for lifting types to the Record type.

var record = "Funk".ToRecord();

var fromTuple = ("John", "Doe", 30).ToRecord();

Snippet 64

53

In Snippet 64, we can see that the first ToRecord function lifts the String type object

to the Record<string> and the second ToRecord function lifts the

ValueTuple<string, string, int> type object to the Record<string, string,

int> type object.

Checking equality and casting are sometimes dangerous operations to perform

when we don’t know the underlying value of the object we are working with. Funk

provides safe alternatives called SafeEquals and SafeCast functions.

var first = "Funk";
var second = "Funky";
var areEq = first.SafeEquals(second);

Snippet 65

In Snippet 65, we can see that we can compare only the objects of the same type. There

is also the SafeNotEquals function that checks for inequality. Additionally, there are

SafeAnyEquals, SafeAllEquals, SafeEqualsToAny, SafeEqualsToAll functions

that compare a single object to items from the IEnumerable sequence.

public object GetUser(int id)
{
 // ..
}

var user = GetUser(123).SafeCast<User>(); // Maybe<User>

Snippet 66

In Snippet 66 we can see how SafeCast function is returning a Maybe<T>. It is because

the casting operation might not be successful. Therefore, if it is not the correct type of

the object, the Maybe type object will be empty.

We already saw an improvement in creating a Task object using the functions from

Prelude. Funk also provides extension methods that enable the creation of the Task

object more fluently as shown in Snippet 67.

var task = "Funk".ToTask();

Snippet 67

54

Sometimes, we have methods in our codebase that perform some async operation

without returning a result. They return a Task instead of Task<R> type object. Funk

provides an extension method that addresses this issue.

public async Task DeleteItem(int id)
{
 // ..
}

var taskWithResult = await DeleteItem(123).WithResult();

Snippet 68

From Snippet 68 we can see that DeleteItem function returns a Task object that can

be awaited but not assigned. However, sometimes we want a result of the operation

because we want to follow the best practices of functional programming and to avoid

non-returning functions as much as possible. With the WithResult function, we are

returning a Task<Unit> object if we don’t provide an argument. There is an

overloaded version that returns the result specified by the selector that will be executed

after the provided Task object is finished processing.

When we are working with IDisposable objects we should dispose them after the

usage. C# provides a nice way of doing this by wrapping it in a using statement.

However, if we are working with more IDisposable objects at the same time, the

code can get messy soon. Funk provides a nice way of doing this with the

DisposeAfter extension method.

using (var client = new HttpClient())
{
 var exampleResult = await client.GetAsync("www.example.com");
}

var funkResult = await new HttpClient().DisposeAfterAsync(c =>
 c.GetAsync("www.funk.com")
);

Snippet 69

From Snippet 69, we can see the first part of the example that shows the C# way of

working with IDisposable objects. The problem here is that the object is not disposed

until we leave the scope of the using statement. With the DisposeAfterAsync

55

function, the IDisposable object is disposed immediately after the function returns

the result. Additionally, we managed to express this operation more fluently.

We already saw an improvement in creating the EnumerableException type

object using the functions from Prelude. Funk also provides extension methods that

enable the creation of the EnumerableException type object more fluently as shown

in Snippet 70.

var e = new InvalidOperationException().ToEnumerableException();

Snippet 70

Working with the Exc type using mapping and binding operations in case of a

continuation is sufficient but sometimes we want to react in case the Exc type object

is empty or in a failed state. Therefore, Funk provides these functions as well.

var result = await Exc.CreateAsync<string, ArgumentException>(_ =>
GetNameByIdAsync(invalidId)).OnFailureAsync(e => GetNullStringAsync())
 .OnEmptyAsync(_ => GetNameByIdAsync(validId))
 .MapAsync(async s => s.Concat(await GetNameByIdAsync(validId)));

Snippet 71

In Snippet 71 we can see a pipeline of operations around the Exc type. First, we are

creating the Exc type object calling a function and passing an invalid argument that is

going to result in an Exc type object in a failed state. Then, we are reacting in case it

is failed by calling the OnFailureAsync function providing a callback. In the callback

function we passed as an argument, we are calling a function that returns a null String

object. Then, we are reacting in case the Exc type object is now empty by calling the

OnEmptyAsync function. In the end, we are simply mapping the resulting object to the

new one specified by the selector. From this example, we can see how we can fluently

express a pipeline of operations that may not be successful and a way to react in that

case without using statements and helper variables. We expressed quite a complex

asynchronous pipeline of operations in a single line of code.

4.4.2. Partial application

One of the most useful concepts in programming is partial application. It was not

covered in previous chapters as it is not only related to functional programming or C#.

However, in programming languages where functions are the bread and the butter of

56

programs, partial application is a very important concept. Partial application is a

concept where we are producing functions of smaller arity from functions of bigger

arity by supplying a number of arguments to them. Usually, partial application is done

by supplying arguments one by one. Therefore, if there is a function that accepts two

arguments and returns a value we are, by using the partial application and by providing

an argument to it, producing a function that accepts one argument and returns a value.

The partial application can be quite useful when we want to abstract away or hide

certain details of some operation.

For example, we can imagine a system that has a three-layer architecture including

the Core layer, the Infrastructure layer, and the API layer and how the partial

application can help with the necessary abstraction. Usually, we would create different

classes responsible for dealing with operations specific to a certain layer in the system.

Those services would be injected as dependencies using some Dependency Injection

(DI) framework. In functional programming languages, we can think of dependencies

as functions rather than classes or interfaces and we can use that approach in C# as

well. Instead of creating classes with different responsibilities, we can define a

function that is going to be partially applied and passed as dependency throughout the

system.

public Func<IClient, Configuration, Request, Response> Function => (cl, co, r) =>
{
 return cl.DisposeAfter(c =>
 {
 c.AddConfiguration(co);
 return c.Process(r);
 });
};

Snippet 72

In Snippet 72 we can see a function that performs some processing operation. First,

we need an IClient object that will be provided in the Core layer. Next, we need a

Configuration object that will be provided in the Infrastructure layer. In the end, the

API layer is providing the Request object that is received from the user and returns

the Response object that will be the result of this function. By providing an argument

one by one, we can abstract away unnecessary details of a specified function from

certain layers by providing a function of a different signature.

57

// created in the Core layer.
// Func<Configuration, Request, Response>
var coreFunction = Function.Apply(new SmartClient());

// created in the Infrastructure layer.
// Func<Request, Response>
var infrastructureFunction = coreFunction.Apply(configuration);

// created in the API layer.
// Response
var response = infrastructureFunction.Apply(request);

Snippet 73

In Snippet 73 we can see the Apply function used in all three cases. The Apply function

is a partial application function provided by Funk. We started with the Function

object from Snippet 72 and by applying the first argument in the Core layer we ended

up with the new function of smaller arity. The argument applied is remembered and

will be used of course during the execution of the function but from the signature of

the function, it is not visible in the next layer. Applying argument by argument we are

separating the concerns where each layer is responsible for a specific set of operations

and responsibilities. By using the partial application we can reason about the

abstraction on a whole new level that we cannot do by using the traditional dependency

injection approach.

4.4.3. Currying

A similar yet different concept is the concept of currying. Currying is the process of

decomposing a function with any arity to the unary function that takes a single

argument and returns another unary function that takes a single argument and so on.

We can use currying with the partial application as well. We can take the same function

from Snippet 72 and, by using Curry function provided by Funk, convert it to unary

function with the signature Func<IClient, Func<Configuration, Func<Request,

Response>>>. Currying does not perform any operation but is rather used for function

optimization. Currying can be used as a preprocessing function for the code example

shown in Snippet 73.

58

// Func<IClient, Func<Configuration, Func<Request, Response>>>
var curriedFunction = Function.Curry();

// created in the Core layer.
// Func<Configuration, Func<Request, Response>>
var coreFunction = curriedFunction.Apply(new SmartClient());

// created in the Infrastructure layer.
// Func<Request, Response>
var infrastructureFunction = coreFunction.Apply(configuration);

// created in the API layer.
// Response
var apiFunction = infrastructureFunction.Apply(request);

Snippet 74

As we can see from Snippet 74, only the first line is added to the code shown in Snippet

73. It creates a unary function that when invoked with the Apply function (or by the

native Invoke function or by just adding parenthesis, because the partial application

for unary functions is the method invocation). The important thing to notice is the

signature of the coreFunction method. It is, compared to the binary function from

Snippet 73, a unary function. Using the partial application with or without currying is

a personal preference. Many developers stick only to the partial application as currying

can be sometimes hard to grasp.

4.4.4. Applicative functors

The concept of monads and the monad laws are already explained in previous sections.

However, there are other interesting concepts that include functors and applicative

functors (applicatives) that are less powerful than monads but are sometimes sufficient

enough to tackle a more general problem. The types that Funk provides that are

monadic structures are also functors. A functor is a type for which the Map function is

defined. Therefore, the Record type, the Maybe type, and the Exc type are functors,

and because of the return and binding functions that they provide, they are also

monads. Applicatives, on the other hand, are a similar concept but more powerful than

functors and less powerful than monads. Applicatives are types for which the Apply

and the return functions are provided. The return function is the same as for the monad

type. It lifts the value from the regular world to the world of elevated values. The

Apply function, on the other hand, is different. It is not the Apply function from the

59

partial application concept but a mapping function that works in the elevated world.

However, there are some similarities between them as we will see in Snippet 75.

Functors and monads as we already said provide mapping and binding functions

respectively. They are classified as world-crossing functions (Wlaschin, 2015). World-

crossing functions are functions that either take a value in the regular world and return

a value in the world of elevated values or vice versa. Mapping functions take a value

in the elevated world and a regular function (T -> R) and return a value in the elevated

world. Binding functions take a value from the elevated world and a world-crossing

function (T -> E<R>) and return a value in the elevated world. Applicatives, on the

other hand, work in the elevated world. The Apply functions they provide take a

function in the elevated world and a value in the elevated world and return a value in

the elevated world.

using static Funk.Prelude;

public static Maybe<int> AddM(this Maybe<int> first, Maybe<int> second)
{
 var add = func((int a, int b) => a + b);
 return first.FlatMap(f => second.Map(s => add(f, s)));
}

public static Maybe<int> AddA(this Maybe<int> first, Maybe<int> second)
{
 var add = func((int a, int b) => a + b);
 return add.AsMaybe().Apply(first).Apply(second);
}

Snippet 75

In Snippet 75 we can see two functions for adding numbers. The AddM function is an

addition function with the monadic implementation. The AddA function is an addition

function with the applicative implementation. They produce the same result but we

can reason about them differently. The monadic implementation first binds on the

first variable and then maps on the second variable. If any of them is empty, the

result of the operation will be empty as well. If both values are present, the add

function that is called inside the Map function will be executed. The applicative

implementation as already said stays in the elevated world. We are first lifting the add

function to the elevated world of the Maybe type. Then we are applying the first

argument to the Apply function and then immediately we are applying the second

60

argument to the Apply function. We are actually, partially applying arguments in the

elevated world. The Apply function for the applicative functor uses the Apply partial

application function in its implementation. Now with the Apply function available, the

Maybe type besides being a functor and a monad is also an applicative functor.

The Exc type is also the applicative functor as it provides the Apply functions

following the same logic as the Maybe type. However, the Exc type provides validation

functions as well. They are a different type of applicative functions created specifically

for the Exc type. When we work with the Exc type, we usually use the continuation

mapping or binding functions where we want to chain the operations as long as the

result is successful. Sometimes, we use the callback mapping and binding functions

when we want to prevent the operation for failing or resulting in an empty value. The

problem in all of these cases is that when we get the failed Exc type object, we have

the information about the failure of a single operation (unless we manually fill in the

EnumerableException object with additional errors). It is of course a correct

approach when we are interested in the usual operation pipeline (we either continue on

success, or we prevent the failure). But in terms of validation, we are interested in

getting all failures that happened along the way. Therefore, Funk provides Validate

functions that, as opposed to Apply functions in case of failure, return all the errors

that occurred.

public static Exc<int, DivideByZeroException> Add(
 this Exc<int, DivideByZeroException> first,
 Exc<int, DivideByZeroException> second
)
{
 var add = func((int a, int b) => a / b);
 return success<Func<int, int, int>, DivideByZeroException>(add)

.Validate(first)

.Validate(second);
}

Snippet 76

In the example from Snippet 76, from all items that represent a failure, the

EnumerableException object will be merged with the rest of EnumerableException

objects from other failures. Therefore, we will know all the operations that failed and

the errors that caused that. Additionally, the add function will be executed only if the

61

applied arguments in Validate functions all evaluate to success. In case the add

function itself fails, it will result in a failed Exc type object.

4.4.5. IEnumerable sequences

When working with the IEnumerable interface, developers have good support from

LINQ regarding the available extension methods for various operations. However,

Funk provides interesting and useful extension methods that, instead of returning

IEnumerable, return the IImmutableList object (if the return type is a sequence). It

is because Funk is trying to make developers get used to working with immutable types

as much as possible.

LINQ provides the FirstOrDefault function that finds the first element in the

sequence or returns the default value (there is also the First function which throws

an exception if the element is not found). Since we want to minimize the number of

possible null values, Funk provides the AsFirstOrDefault function that instead of

returning T returns the Maybe<T> type object.

var l = list(null, "Funk", "Funky", null);

var empty = l.AsFirstOrDefault();
var element = l.AsFirstOrDefault(i => i.IsNotNull());

Snippet 77

In Snippet 77, we can see the IImmutableList object initialized where the first and

the last items are null. The first AsFirstOrDefault function is called without a

predicate and returns the empty Maybe type object. The second AsFirstOrDefault

function is called with a predicate where it is specified that the item cannot be null

(using the IsNotNull extension method provided by Funk) and it will evaluate to non-

empty Maybe type object where the underlying value will be "Funk". There are also

WhereOrDefault and AsLastOrDefault extension methods that behave similarly.

Sometimes, we have a sequence of items that might be itself null or contain no

values. There are native Any and Count function but they are usually combined with

statements. Instead, we can use the AsNotEmptyList function, as shown in Snippet

78, that returns the Maybe type object of the IImmutableList sequence which enables

us to map on it, and only in case it is not empty, we are calling the First function.

62

var first = list.AsNotEmptyList().Map(li => li.First());

Snippet 78

By using the AsNotEmptyList function, we are certain that the First function will

not throw the exception in case the sequence was empty. In Funk, the majority of

extension methods provided for the IEnumerable objects are handling possible null

sequence objects.

Another useful extension method is when we are working with a sequence of

objects that can be split into two categories. Instead of grouping them, we can use the

ConditialSplit function provided by Funk.

var l = list("Funk", "Funky", "Fun", "FYI");

var split = l.ConditionalSplit(i => i.Contains("Funk"));

Snippet 79

From Snippet 79, we can see the ConditialSplit function is called with a predicate.

It returns the Record type object of two IImmutableList objects. The first member

of the Record type object is a sequence that satisfies the predicate and the second one

is the one that doesn‘t.

Funk also provides different versions of the MapReduce function. Instead of first

projecting and then aggregating items from the sequence, we can use the MapReduce

function instead and do everything at once.

var l = list(1, 2, 3, 4);

var maybe = l.MapReduce(i => $"{i * 3}", (i, j) => $"{i} < {j}");

Snippet 80

As we can see from Snippet 80, the MapReduce function returns the Maybe type object

of the result. It is because the sequence might be empty. In the MapReduce function,

we are first projecting each item to the new object (like the Select method does) and

then we are aggregating on the projected values (like the Aggregate method does).

The underlying value of the maybe object in the example from Snippet 80 will be "3 <

6 < 9 < 12".

63

4.4.6. LINQ compatibility

The last thing we will cover in this section is the LINQ query support for the Maybe

and the Exc types. We already explained that the LINQ query support is the syntactic

sugar for expressing LINQ extension methods functions with the LINQ query syntax.

To be able to do that for some type, the appropriate Select, SelectMany, and Where

functions need to be defined. Since Funk provides these functions, sometimes complex

mapping and binding operations can be expressed in a much simpler and more readable

way. The following example shown in Snippet 81 shows the expression of the

operation using the LINQ fluent API (using extension methods directly).

var listOfKeywords = list("Funk", "Funky", "C#", "Functional");

var filtered = listOfKeywords.WhereOrDefault(i => i.Contains("Funk"));

var result = filtered.SelectMany(
 s => s.AsLastOrDefault(j => j.Contains("Funky")),
 (s, i) => new {s, i}
)
 .Select(t => new {t, len = t.i.Length})
 .Where(t => t.len == 5)
 .Select(t => filtered);

Snippet 81

In the example from Snippet 81, we are filtering the list for items that contain the word

"Funky". Then, we are getting the last item on the list only if it contains the word

"Funky". After that, we are projecting the optional filtered sequence with the optional

last item (optional because they can be empty), where we are evaluating the length of

the last item. If it satisfies the condition of having a length of 5, we are returning the

filtered list. If any of the values evaluates to empty, the result will be empty. Only if

all conditions are met, the underlying value of the return object will contain two

elements: "Funk" and "Funky". From Snippet 81, it is quite hard to understand what is

going on. In this case, it is much clearer to represent this query using the LINQ query

syntax.

var result = from s in filtered
 from i in s.AsLastOrDefault(j => j.Contains("Funky"))
 let len = i.Length
 where len == 5
 select filtered;

Snippet 82

64

In Snippet 82, we can see the quite complex pipeline that is expressed in Snippet 81 is

now much more readable and understandable. First, we are getting the underlying

value from the filtered sequence if not empty. Then, we are getting the underlying

value of the last item in the sequence that satisfies the condition that it needs to contain

the word "Funky" if not empty. Then we are defining an intermediate variable that we

will use in our condition to be satisfied that the length must be equal to 5. In the end,

we are returning the filtered sequence. And again, if all the conditions are met, the

resulting sequence will contain two elements: "Funk" and "Funky".

LINQ query syntax for the Exc type object follows a similar logic. Only if every

part of the expression evaluates to success, the result of the operation will be

successful. However, in case some condition is not met along the way, the operation

will result in the empty Exc type object.

var success = Exc.Success<string, Exception>("John");

var result = success.SelectMany(
 s => Exc.Success<string, Exception>($"{s} Doe"),
 (s, f) => new { s, f }
)
 .Where(t => !t.f.Contains("John"))
 .Select(t => t.f);

Snippet 83

In Snippet 83, we can again see the fluent API way of expressing the operation. As

with the previous comparison, we will see how to make this expression much more

readable using the LINQ query syntax. In this example, we are defining a successful

Exc type object. Then we are binding on its value similarly as we did in the example

from Snippet 81. Then we are projecting both values (first success, and the second one

that is created from the underlying value of the first one) to the new object that will be

evaluated in the Where extension method. Here, we are working with success values

for simplification but we could instead use the Exc.Create function to evaluate the

specific operation. If everything is satisfied, the resulting operation will return the Exc

type object in a successful state. Otherwise, it can be either failed or an empty Exc type

object. In this example, since the condition specified in the Where function is not met

because the second object contains the word "John", the result will be an empty Exc

type object. As we can see, even though it is a simpler operation then the one we

65

expressed in the example for the Maybe type, it is still hard to understand what is going

on. We can make this much more readable using the LINQ query syntax.

var result = from s in success
 from f in Exc.Success<string, Exception>($"{s} Doe")
 where !f.Contains("John")
 select f;

Snippet 84

In Snippet 84, the expressed operation is much more readable compared to the one in

Snippet 83. We can understand what is happening in the operation as we read one line

after another. First, we are getting the optional value from success. Then, we are

getting the optional value from another success. After that, we are expressing the

condition that has to be met. In the end, we are returning the second optional value.

Again, they are all optional as they can be successful, failed, or empty.

As we can see, Funk can simplify a very complex pipeline of operations. It does

so by either providing dedicated types with their transformations to abstract away

repetitive and tedious work or by taking it one step further where it simplifies the

already simplified code.

66

5. Implementation

This chapter will talk about the way the Funk library is implemented. It is going to talk

about the structure of the projects that are part of the Funk solution. It is also going to

cover the tools and technologies used to develop the Funk library as well as the

technical challenges encountered during the Funk design and development.

5.1. Structure, technologies, and tools

The Funk solution contains three projects: Funk, Funk.Tests and Funk.Demo. Funk

is a project that contains the library and is targeting the .NET Standard 2.0 framework.

It is written in C# 7.3. .NET Standard 2.0 is compatible with .NET Framework 4.6.1

and .NET Core 2.0. Some older projects might not be able to use the Funk library, but

it is possible to compile the Funk library from the source code targeting the older

framework versions. Funk.Tests project contains unit tests and is targeting .NET

Core 3.1 and is using xUnit and FsCheck testing libraries for assertion-based and

property-based testing. There are around 150 unit tests in the Funk.Tests project.

Funk.Demo is a project that contains the demo application that is built on top of the

Funk library. It will be described in detail in the next chapter.

Table 1 shows the tools used for the development of the Funk library.

Table 1

Purpose Tool

Development Visual Studio 2019, Visual Studio Code, JetBrains ReSharper

Testing Visual Studio 2019, JetBrains dotCover, GitHub

Communication Gmail

Planning Taskade

DevOps git, GitHub, NuGet

5.2. Technical challenges

The development of the Funk library was an interesting journey where we faced a few

difficult problems that we had to find a solution for. These problems were more related

to reasoning about the functional programming concepts and how to implement them

by making them useful and easy to grasp for a .NET developer. Functional

67

programming, being a completely different paradigm from object-oriented

programming, requires a different state of mind and a different problem-solving

approach.

The first problem that was difficult to tackle was the representation of the absence

of data. It may seem easy now after we went through the previous chapters but properly

representing the absence of data is hard when there is no great language support. As

we already mentioned, the Void type cannot be used directly in C#. Therefore, creating

the Unit type was the foundation of reasoning about the representation of the absence

of data in Funk in the functional programming way. After the Unit type was

implemented, implementing the Maybe and the OneOf types that handle the possible

absence of data was much easier to reason about.

One of the difficult problems to solve was the pattern-matching functionality

outside of the Match extension method. The Match function is intended to be used for

simple pattern-matching operations that don’t have to be lazy-evaluated. Additionally,

the Match function has a limitation of 10 cases excluding the fallback functions.

Pattern types in Funk for value and type evaluation were first planned to be normal

structs. However, implementing them as the IEnumerable (not generic) objects

made it possible to define cases with different types whereas the Match extension

method is limited to the type that is being evaluated. Additionally, it made the pattern-

matching syntax look more like the one that is available in C# 8.

It was also quite hard to reason about pattern-matching, mapping, and binding

functions for Funk types and making them feel the same as if C# had higher-kinded

types. Therefore, all Funk types are made in a way to follow a similar pattern. A lot of

duplicate code was needed to be written. For every Funk type, a dedicated set of

pattern-matching, mapping, and binding functions needed to be created.

Additionally, during testing and the demo program writing process, the Exc type

was the type that changed the most. It is because of many edge cases that we found

worth exploring and that needed to be covered enabling seamless adoption of the type

without the need for developers to write mapping and binding fallback functions

themselves.

68

6. Case Study

The case study includes demo projects written on top of the Funk library and the

evaluation of results. Demo projects include the smaller project that is created on top

of Funk from scratch and the larger project that was refactored to use the Funk library.

6.1. Small demo project

The small demo project is a console application that implements the client for Medium,

an online publishing platform, for communicating with Medium open APIs. It is built

on top of the Funk library using C# 8 and .NET Core 3.1. The Funk.Demo project as

already mentioned is part of the Funk solution.

The usage of the application is rather simple. Users are asked for their integration

tokens in the beginning. After that, users can choose what resources they are interested

to see. Users can check their information, publications, and publication contributors.

The Medium client is limited only to GET requests for the sake of simplicity.

The integration token is represented as the Identity class.

public sealed class Identity
{
 public Maybe<string> Token { get; }

 public Identity(string token)
 {
 Token = token.AsNotEmptyString();
 }
}

Snippet 85

In Snippet 85, we can see that the Identity class is the simple type where the

constructor accepts the token parameter and applies it to the Token property where

the AsNotEmptyString function is called. AsNotEmptyString function checks

whether a specified string is null or empty, and returns a Maybe type object of that

string.

Resource as the base entity is implemented as the OneOf<T1, T2> type.

69

public sealed class Resource : OneOf<Info, Publication>
{
 public Resource(Info info)
 : base(info)
 {
 }

 public Resource(Publication publication)
 : base(publication)
 {
 }
}

Snippet 86

From Snippet 86, we can see that it implements the OneOf type constructor with the

Info and Publication types. Info type is a type with the user properties whereas the

Publication type is also the OneOf<T1, T2> type where T1 represents the list of

publications and T2 represents the list of contributors.

All functions in the Funk.Demo program are static and made as extension methods

so that they can be chained together with functions that Funk provides making the code

more readable and more expressive. The core function in the program is the Get

function.

private static Task<Exc<T, Error>> Get<T>(this Identity identity, Uri uri)
{
 return identity.Token.ToExc<string, Error>(_ =>
 new InvalidRequestError("Token cannot be empty.")).FlatMapAsync(token =>
 uri.CreateGetRequest(token).DisposeAfterAsync(req =>
 req.SendAsync().DisposeAfterAsync(res =>
 res.GetContent().FlatMapAsync(r =>
 result(r.SafeDeserialize<T>().MapFailure(e =>
 new Error(e.Root.Map(ex => ex.Message).GetOr(_ =>
 "Unable to deserialize response returned by the server.")
)
)

)
)

)
)
);
}

Snippet 87

From Snippet 87, we can see that we can write a complex pipeline of operations in a

few lines of code (in this example, the code is written in more lines because of the

70

readability and can be written in a single line of code). Here, we can see a complete

code of the example shown in Snippet 46 when we were talking about the Exc monad.

Here we express quite a few operations that are important to get the correct result.

From the interface of the Get function, we can see that it is a generic function and that

it accepts the Identity object and a Uri object and returns the Exc type object of the

T type and the Error exception (wrapped in the Task object).

The Get function first checks the Identity object by applying the ToExc

extension method to the Token property. The ToExc function is an extension method

for the Maybe type that, in case the Maybe type object is empty, returns the Exc type

object in a failed state. In the argument of the ToExc function, we are specifying the

exception that we want to create in case the Maybe type object is empty. If it is not

empty, on the other hand, the Exc type object will be in a successful state. Then, we

are binding on the resulting Exc type object, where we are defining a continuation in

case the object is successful. Using the CreateGetRequest function, we are creating

a new HttpRequestMessage object. Since HttpRequestMessage implements the

IDisposable interface, we are calling the DisposeAfterAsync function while

passing the next operation. In the next operation, we are calling the SendAsync

function that returns the HttpResponseMessage object which is also IDisposable.

Then, we are again calling the DisposeAfterAsync function where we are passing the

next operation. The next operation calls the GetContent function passing the

HttpResponseMessage object as an argument. The GetContent function returns the

serialized response (string object) in case the response was successful. After that, we

are binding on that response, and we are calling the SafeDeserialize function that

tries to deserialize the string to the specified type T. Since the SafeDeserialize

function returns the Exc type object with a different kind of exception, we are calling

the MapFailure function to map the JsonException to the Error exception type in

case the SafeDeserialize function returns the failed Exc type object.

var info = await identity.Get<Info>(new Uri($"{Medium.BaseUrl}{Medium.Info}"));

Snippet 88

From Snippet 88, we can see how the Get function is called to return the user’s

information. The Get function is used by the GetResource function that, based on the

user's input, decides what resource to return. Then, in the Main function, based on the

71

user's input, the resource is pattern-matched to return the appropriately formatted

response.

As we can see from this small demo application, we were able to define a complex

set of operations in a very simple and readable way and any developer that looks at

this code will be able to deduce what is happening in the code after a single reading.

Additionally, we also took care of the memory by disposing managed objects without

impacting the readability and without breaking the fluent way of expression. This

example in Snippet 87 shows the power, safety, and clarity that the Funk library

provides. Without using the Funk library, we would define this set of operations in a

way shown in Snippet 1 with manual exception handling, null checking and would still

end up with a dishonest function.

6.2. Large demo project

The large demo project is the refactoring of the backend part of the STOCK project

that was implemented as part of the Group Software Project course at MFF UK. The

purpose of the refactoring was to prove that the Funk library can be used in larger and

enterprise applications and can significantly simplify the overall codebase with its

powerful abstractions.

The STOCK project was developed throughout 2019 and was defended in April

2020. The purpose of the project was to create a platform for the creation and analysis

of the machine learning models built to predict future stock prices based on historical

data and sentiment extracted from financial articles. Users were able to create various

kinds of machine learning models including regression, decision tree, and neural

network machine learning models. Users were also able to read the latest financial

articles, see the latest stock prices, follow certain companies, etc. The project was split

into three modules: the backend, the frontend, and the Machine Learning (ML)

module. The backend module was split into 7 projects and it was built using C# 8 and

.NET Core 3.1 (ASP.NET Core 3.1 for the API project).

The backend is built using the Clean Architecture (Martin, 2017) approach. The

clean architecture is a software architecture pattern where the software is split into

three main modules: the core, the infrastructure, and the presentation. The core layer

72

defines the interfaces together with the domain models. The infrastructure layer

implements these interfaces. The presentation layer uses these implemented interfaces

through the Inversion of Control (IoC) pattern. The inversion of control is a pattern

that helps us depend on abstractions rather than concrete implementations.

Dependency injection frameworks provide mappings between these abstractions and

implementations. This way, we can inject corresponding dependencies with respect to

different environments and configurations which makes our system much more

flexible for potential change. In the clean architecture sense, it means that the

presentation and the infrastructure don’t communicate or depend on each other directly

but rather through the core layer. By abstracting away the implementation as much as

possible and by depending only on interfaces we can, when necessary, modify the

implementation of one part of the system without the need for modifying the rest.

Additionally, it makes unit testing much easier. The clean architecture does not have

strict rules as long as the core concepts of the pattern are kept intact.

Figure 7: STOCK architecture

In Figure 7, we can see how the backend of the STOCK project was designed. The

domain and the application layers represent the core unit of the clean architecture

pattern. The outer layer consists of the presentation and the infrastructure layers that

resemble the ones in the clean architecture pattern. As we can see from Figure 7, the

application layer depends on the domain layer, and the infrastructure and the

presentation layers depend on the core but not on each other. These layers are split into

separate projects as shown in Figure 7. However, describing the details of the

73

architecture of the backend is outside of the scope of this thesis. Here, we will see how

the Funk library improved some parts of the code and made some abstractions even

easier to implement.

In the domain layer of the STOCK backend, entities are constructed using factory

methods where the validation is immediately applied. Validation is based on the design

and business regulations of the entire application.

public static User Create(
 string username, string firstName, string lastName,
 string language, IEnumerable<Company> favoriteCompanies,
 IEnumerable<SearchedCompany> searchedCompanies
)
{
 var user = new User(username, firstName, lastName, language,
 favoriteCompanies, searchedCompanies
);
 user.Validate();
 return user;
}

Snippet 89

The problem with the Create function from Snippet 89 is that it is dishonest. The

Validate function throws the ValidationException if the constructed User object

is not valid. We cannot see that from the signature of the Create method which forces

us to look into the implementation. Additionally, we need to wrap the call of this

function with a try-catch block. We were able to fix that with the Exc type.

public static Exc<User, ValidationException> Create(
 string username, string firstName, string lastName,
 string language, IEnumerable<Company> favoriteCompanies,
 IEnumerable<SearchedCompany> searchedCompanies
)
{
 return Exc.Create<User, ValidationException>(_ =>
 {
 var user = new User(username, firstName, lastName, language,
 favoriteCompanies, searchedCompanies
);
 user.Validate();
 return user;
 });
}

Snippet 90

74

In Snippet 90, we can see the modified version of the Create function. The modified

version tells the caller that it may not return the User object because the creation may

fail due to the failed validation process which is visible from the return type. Now, the

caller is forced to handle the return type by either pattern-matching on the Exc type

object or by performing mapping or binding operations depending on the scenario.

The persistence layer implements one generic repository class with virtual

methods in case there is a need for overriding a behavior for a specific entity.

public virtual async Task<TEntity> GetAsync(
 IClientSessionHandle session,
 Func<FilterDefinitionBuilder<TEntity>, FilterDefinition<TEntity>> filter
)
{
 var many = await GetManyAsync(session, filter);
 return many.FirstOrDefault();
}

Snippet 91

In Snippet 91, taken from the original STOCK code, we can see the GetAsync method

for returning one item from the database. It calls the underlying GetManyAsync

function to return more items based on the FilterDefinition object (MongoDB

specific). Both GetAsync and GetManyAsync methods are dishonest as they may not

return anything. Therefore, the caller is forced to check if the returned object is null.

We were able to fix that with the Maybe type.

public virtual async Task<Maybe<TEntity>> GetAsync(
 IClientSessionHandle session,
 Func<FilterDefinitionBuilder<TEntity>, FilterDefinition<TEntity>> filter
)
{
 return await GetManyAsync(session, filter).MapAsync(e =>
 e.FirstOrDefault().ToTask()
);
}

Snippet 92

In Snippet 92, we can see the modified version of the GetAsync method. Since the

GetManyAsync function returns the Maybe type object of the sequence of elements, we

can map on the result and return the first or the default value. The resulting object will

be wrapped in the Maybe type object and in case it is null, it will be empty.

75

In the infrastructure layer, the Transaction class implements the ITransaction

interface defined in the core layer. It is then used in the API project which is part of

the presentation layer.

public TTransactionResult TryTransaction<TTransactionResult>(
 Func<IClientSessionHandle, TTransactionResult> action
)
{
 using var session = _context.Client.StartSessionAsync();
 try
 {
 session.StartTransaction();
 var result = action(session);
 session.CommitTransaction();
 return result;
 }
 catch (Exception)
 {
 session.AbortTransaction();
 throw;
 }
}

Snippet 93

In Snippet 93, taken from the original STOCK code, we can see the TryTransaction

method that serves as a wrapper around a set of related operations where, in case one

operation fails, the whole transaction is aborted. It is used when executing background

jobs and that is why this method is synchronous. The first issue we can notice in this

example is the try-catch block and the second even bigger issue is that this method is

dishonest. It handles the exception only so it can abort the transaction and then it

rethrows the exception. It is much better to return the Exc type object and handle this

operation in a functional programming way. Another detail to notice is that the

IClientSessionHandle object (MongoDB specific) needs to be defined outside of

the try-catch block so it can be accessed in the catch block as well. We can improve

that as well using the DisposeAfter function provided by Funk.

76

public Exc<TTransactionResult, Exception> TryTransaction<TTransactionResult>(
 Func<IClientSessionHandle, TTransactionResult> action
)
{
 return _context.Client.StartSession().DisposeAfter(s =>
 {
 var result = Exc.Create<TTransactionResult, Exception>(_ =>

 {
 s.StartTransaction();
 return action(s);
 });

 exc.IsFailure.Match(f => s.CommitTransaction(), f => s.AbortTransaction());
 return result;
 });
}

Snippet 94

In Snippet 94, we can see the modified function which is now honest as it notifies the

user what exactly might happen. In the DisposeAfter function context, we are

executing the operation wrapped with the Exc.Create function. Then, we are pattern-

matching on the IsFailure property. In case the operation failed, we are aborting the

transaction. We simplified the code, used fewer lines, and made the implementation

much more powerful.

We can see from these examples how Funk improves the readability of the code

and makes abstractions even more powerful. The overall size of the STOCK backend

code is reduced by roughly 30 percent. Parts of the code that served as helper functions

to abstract away the exception handling and null checking were completely removed

as they were not necessary anymore. The overall performance of the application was

not impacted by this refactoring as most of the processing tasks including machine

learning model building happens in the background and is done by background jobs.

We can see how we can use functional programming concepts that give us power,

safety, and clarity and still have a performant application if designed properly. In the

next chapter, we will see related work regarding functional programming concepts in

C# and the comparison with the Funk library. We will also look at some of the new

functional programming features available in C# 8.

77

7. Related Work and Comparison

Functional programming is a programming paradigm that is becoming more popular

every year. Object-oriented programming languages are embracing and introducing

concepts from functional programming languages because of the power, safety, and

clarity that they provide. However, the introduction of these concepts is happening

slowly and usually only some concepts happen to be introduced. Therefore, the

community is usually one step ahead with new ideas and suggestions that get

implemented in the form of libraries and frameworks that enable working with these

concepts almost as if they were native to the programming language.

Since C# is a multi-paradigm programming language with good support for

functional programming, the community has done some interesting work

implementing these concepts similar to what we did in the Funk library. Additionally,

since the C# team noticed a late interest and the need for these concepts, the latest

versions of C# are now standing between object-oriented and functional programming.

In this chapter, some features from the FuncSharp (Široký, 2015) and the

Language-ext (Louth, 2014) functional programming libraries for C# will be described

and the overall set of their features will be compared with the features provided by the

Funk library. Additionally, some functional programming features from the latest

version of C# (version 8) will be analyzed.

7.1. FuncSharp

FuncSharp is a functional programming library for C# created by Jan Široký. It is a

simple yet powerful set of functional programming concepts. The project started in

2015 and now FuncSharp is already a mature library.

FuncSharp provides the Option type for handling the possible absence of data.

There are similar functions for the Option type as the ones described for the Maybe

type from the Funk library. Mapping and binding functions are also available for the

Option type as the Option type is a monad. However, there are some differences

between the Option in FuncSharp type and the Maybe type in Funk. The Option type

is a class and therefore can be null whereas the Maybe type is a struct and cannot

78

be null. We found that this difference is a big advantage in favor of the Funk library

as it introduces additional safety. Moreover, the FuncSharp library does not provide

asynchronous functions for the Option type where mapping and binding operations in

the asynchronous environment are not possible.

FuncSharp provides a Coproduct type which is similar to the OneOf type that the

Funk library provides. The difference is that the Coproduct type is a type constructor

with the larger arity (up to 19 arguments) whereas the OneOf type is currently limited

to 5. However, the advantage of using the OneOf type is because it handles the possible

absence of data whereas the Coproduct type does not. The Coproduct type is a base

type for the Option type.

FuncSharp also provides a Product type that is similar to the Record type that the

Funk library provides. Another difference is that the Product type is a type constructor

with the larger arity (up to 19 arguments) whereas the Record type is currently limited

to 5. The difference between them is that the Product type is a reference type whereas

the Record is a value type and therefore cannot be null. Additionally, they are targeting

different issues. The Product type is trying to make the creation of the immutable

reference types more straightforward whereas the Record type is intended to replace

the ValueTuple type.

Another type available in the FuncSharp library is the Try monad. It is similar to

the Exc type available in the Funk library. However, the Exc type is more powerful as

it provides asynchronous functions and handles the possible absence of data. The Exc

type is using the EnumerableException provided by Funk whereas the Try type from

FuncSharp is acting more like an Either type from the Haskell programming language

where the failure does not necessarily need to be the Exception type object. Moreover,

the Exc type provides fallback mapping and binding functions whereas the Try type

does not.

Finally, the Funk library provides more powerful pattern-matching capabilities as

it provides extension methods as well as the dedicated types for the lazy pattern-

matching evaluation. It also provides various extension methods for native .NET types

as well as the Prelude which are not available in the FuncSharp library.

79

7.2. Language-ext

Language-ext is a base class library for functional programming in C# created by Paul

Louth. It is the most popular functional programming library for C#. Language-ext is

split into more libraries that can be used individually (for code generation,

benchmarking, F# interoperability), however, all of them depend on the Language-

ext.Core library which implements the most important functional programming

concepts. For the rest of this section, we will be talking about the core part of this

library.

Language-ext is a library created for functional programmers who happen to be

using C# out of necessity. It is a very complex library with a lot of advanced functional

programming concepts that object-oriented programmers are not familiar with and can

find very hard to understand. Language-ext is almost like a new language and it

requires quite some time to learn it. It provides many more features than the Funk

library. However, Funk provides some interesting extension methods that are not

available in the Language-ext library (e.g. IEnumerable extensions). Additionally,

Funk provides a much easier and straightforward way of handling exceptions as the

Langauge-ext has two distinct types: Validation and Try (which is a Delegate type).

Funk on the other hand is created for C# developers who are more comfortable

with the object-oriented programming paradigm. It is trying to make the life of C#

developers much easier without the need for them to invest too much time learning

advanced functional programming concepts. Funk is a library that is intended to be

easily embraced by anyone familiar with basic functional programming concepts.

7.3. C# 8

The eight version of C# was released in September 2019. It is officially released as

part of the .NET Core 3 but it can be used in earlier versions of the framework as well

with some limitations. C# now stands in between object-oriented and functional

programming because of the new functional programming features it introduced in the

eight version and the possible direction it may take (C# 9 will bring mostly functional

programming features). In this section, we will show how to work with the nullable

reference types and the new pattern-matching that C# 8 brought.

80

public static User? Create(
 string username, string firstName, string lastName,
 string language, IEnumerable<Company> favoriteCompanies,
 IEnumerable<SearchedCompany> searchedCompanies
)
{
 try
 {
 var user = new User(username, firstName, lastName, language,
 favoriteCompanies, searchedCompanies

);
 user.Validate();

 return user;
 }
 catch (ValidationException)
 {
 return null;
 }
}

Snippet 95

In Snippet 95 we can see a similar function to the one defined in Snippet 90. Instead

of returning the Exc type object, we are returning a nullable User object. In case there

is some validation error, the User object will be null. If we would try to do some

operation on this object, we would get a warning that the object may be null similar to

the warning for the nullable value type. Nullable reference types are defined as the

usual reference types followed by the ? as we can see from the return type of the

Create method in Snippet 95. This feature is helpful to issue a warning about the

possible null-reference exception. However, developers are not forced by the compiler

in any way to resolve the nullable reference type objects. Instead, we could return a

Maybe type object (instead of the Exc type object in this example) where the caller of

the Create method would be forced to resolve the return value. This example shows

the advantage of using the Funk library over the new feature of C# 8 for working with

the possible absence of data.

Pattern-matching in C# 8 is a more powerful switch statement. There are different

types of pattern-matching including the normal switch expressions, property patterns,

tuple patterns, type patterns, and positional patterns.

81

var greeting = user switch
{
 { FirstName: "Jane" } => "Hello Mrs. Doe",
 { LastName: "Mouse" } => "Hello Mickey",
 _ => "Something else."
};

Snippet 96

In Snippet 96, we can see property based pattern-matching where we are pattern-

matching on a specific property of the object that is being evaluated. This is a powerful

feature that enables developers to avoid using statements and minimize the code size.

The only disadvantage of native pattern-matching operations is that they are evaluated

immediately. This issue can be addressed by creating functions instead of plain objects

inside the pattern-matching operation and invoking the function when the result is

needed.

As we can see from these examples, C# is evolving in the direction of the functional

programming and we can only guess what interesting and powerful new features are

coming in the future versions of C#.

82

8. Future Plans and Conclusion

This chapter will mention the current state of the Funk project with features planned

for the future and conclude with final remarks.

8.1. Funk in .NET community

Funk is an open-source library available as the NuGet package at

https://www.nuget.org/packages/Funk. NuGet is an open-source package manager

from where developers can get different kinds of useful libraries to use in their .NET

projects.

Developers can get the Funk library by adding a reference directly into their C#

projects or through .NET Command Line Interface (CLI) or using a Package Manager

Console (PMC) which is available in Visual Studio or JetBrains Rider. Funk has been

downloaded from NuGet more than a thousand times as of July 2020.

Funk is also available on GitHub at https://github.com/hcerim/Funk. GitHub is a

development platform where developers can cooperate on projects, look into the

content of other public repositories, follow other developers, and watch repositories

for the latest changes. Developers can also cooperate and contribute to projects,

therefore we are welcoming other developers who are interested in contributing to the

Funk library to make it even better in the future.

Funk is licensed under the MIT license.

Funk is under active development where currently mostly performance issues are

addressed. Funk is developed as part of this thesis as a proof of concept with a rich set

of features. More functional programming concepts are planned in the future that

include current types with larger arity of arguments, property-based pattern matching,

memoization, current types with lazy evaluation, I/O monads, F# interoperability, etc.

8.2. Final remarks

Working on this thesis and the Funk library project has been a wonderful experience

where we discovered and learned interesting concepts that most C# developers are not

https://www.nuget.org/packages/Funk
https://github.com/hcerim/Funk

83

familiar with. Switching from an object-oriented to the functional programming state

of mind in an object-oriented programming language was not easy. Functional

programming concepts are not related to any specific programming language but to a

paradigm that implies that certain rules need to be followed to implement these

concepts properly.

Even in future versions of C#, there will still be issues that the Funk library will be

able to address as C# will always stay object-oriented programming language and

certain issues of the paradigm will stay as they are now.

While developing the Funk library, we discovered that C# is not only a powerful

but also a beautiful programming language that enables great expressiveness and

fluency while still being simple and easily understandable.

Funk is a C# library devoted to any developer seeking for power, safety, and clarity

inside their codebase while still requiring performant programs.

84

Bibliography

Lane, S. M. (1971). Categories for the Working Mathematician. Springer.

Hoare, T. (2009). The Billion Dollar Mistake. QCon. London.

Martin, R. C. (2006). Agile Principles, Patterns, and Practices in C#. Pearson

Education.

Milewski, B. (2019). Category Theory for Programmers.

Bounanno, E. (2018). Functional Programming in C#. Manning Publications.

Wlaschin, S. (2014). Railway-oriented programming. NDC. London.

Albahari, J. (-). Why LINQ beats SQL.

Lippert, E. (2011). Following the Pattern.

Wlaschin, S. (2015). Elevated World.

Martin, R. C. (2017). Clean Architecture: A Craftsman's Guide to Software Structure

and Design. O’Reilly.

Široký, J. (2015-present). FuncSharp. https://github.com/siroky/FuncSharp.

Louth, P. (2014-present) Language-ext. https://github.com/louthy/language-ext.

https://github.com/siroky/FuncSharp
https://github.com/louthy/language-ext

85

List of Figures

Figure 1: Function .. 4

Figure 2: Railway-oriented programming ..10
Figure 3: Visual Studio tooltip function description ..21

Figure 4: Category ..23
Figure 5: Disjoint union of 2 ...31

Figure 6: Disjoint union of 3 ...35
Figure 7: STOCK architecture...72

86

List of Snippets

Snippet 1 .. 1

Snippet 2 .. 5
Snippet 3 .. 6

Snippet 4 .. 7
Snippet 5 .. 7

Snippet 6 .. 8
Snippet 7 ...11

Snippet 8 ...12
Snippet 9 ...12

Snippet 10 ...12
Snippet 11 ...13

Snippet 12 ...14
Snippet 13 ...14

Snippet 14 ...14
Snippet 15 ...15

Snippet 16 ...16
Snippet 17 ...16

Snippet 18 ...17
Snippet 19 ...17

Snippet 20 ...18
Snippet 21 ...19

Snippet 22 ...19
Snippet 23 ...20

Snippet 24 ...20
Snippet 25 ...24

Snippet 26 ...25
Snippet 27 ...26

Snippet 28 ...26
Snippet 29 ...26

Snippet 30 ...27
Snippet 31 ...28

Snippet 32 ...28
Snippet 33 ...29

Snippet 34 ...30
Snippet 35 ...31

Snippet 36 ...32
Snippet 37 ...33

Snippet 38 ...33
Snippet 39 ...33

Snippet 40 ...36
Snippet 41 ...37

Snippet 42 ...38
Snippet 43 ...39

Snippet 44 ...40
Snippet 45 ...41

Snippet 46 ...42
Snippet 47 ...43

87

Snippet 48 ...45

Snippet 49 ...46
Snippet 50 ...47

Snippet 51 ...47
Snippet 52 ...48

Snippet 53 ...48
Snippet 54 ...49

Snippet 55 ...49
Snippet 56 ...49

Snippet 57 ...50
Snippet 58 ...50

Snippet 59 ...50
Snippet 60 ...50

Snippet 61 ...51
Snippet 62 ...52

Snippet 63 ...52
Snippet 64 ...52

Snippet 65 ...53
Snippet 66 ...53

Snippet 67 ...53
Snippet 68 ...54

Snippet 69 ...54
Snippet 70 ...55

Snippet 71 ...55
Snippet 72 ...56

Snippet 73 ...57
Snippet 74 ...58

Snippet 75 ...59
Snippet 76 ...60

Snippet 77 ...61
Snippet 78 ...62

Snippet 79 ...62
Snippet 80 ...62

Snippet 81 ...63
Snippet 82 ...63

Snippet 83 ...64
Snippet 84 ...65

Snippet 85 ...68
Snippet 86 ...69

Snippet 87 ...69
Snippet 88 ...70

Snippet 89 ...73
Snippet 90 ...73

Snippet 91 ...74
Snippet 92 ...74

Snippet 93 ...75
Snippet 94 ...76

Snippet 95 ...80
Snippet 96 ...81

88

List of Tables

Table 1 ..66

