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Abstract: Photorealistic rendering has a wide variety of applications, and so there
are many rendering algorithms and their variations tailored for specific use cases.
Even though practically all of them do physically-based simulations of light trans-
port, their results on the same scene are often different - sometimes because of
the nature of a given algorithm or in a worse case because of bugs in their imple-
mentation. It is difficult to compare these algorithms, especially across different
rendering frameworks, because there is not any standardized testing software or
dataset available. Therefore, the only way to get an unbiased comparison of
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Introduction
Rendering is a technique of obtaining 2D images from a virtual representation
of the world, called a scene. There is a realtime rendering where tens or even
hundreds of images need to be produced every second, which is only possible with
many simplifications and shortcuts. On the other hand, photorealistic rendering
tries to achieve as realistic images as possible and may need several hours of
rendering time to produce a single image of the required quality.

Photorealistic rendering has a wide variety of applications - to name a few:
architecture, product and design visualization, movies, and video games. It then
does not come as a surprise that there are many rendering frameworks (renderers)
and their rendering algorithms tailored to specific use cases - they may be opti-
mized for a specific purpose at the expense of others, or do fast approximations.
And so, although practically all of them are based on physically-based simula-
tions of light transport (usually some form of path tracing), their results on the
same scene can be very different. Human perception also has its limitations, and
we may even accept images that are not physically correct as more photorealistic
than authentic photographs [1]. Some algorithms may knowingly exploit that,
but others may have hidden bugs, which went unnoticed because their results
seemed to be correct.

If we want to choose the best rendering algorithm for a specific task, we need
to compare them with each other. That is usually done by comparison of rendered
images of the same scene. But it is way harder to replicate the same scene in
different rendering frameworks than it may look. Rendering frameworks usually
use incompatible scene description formats, so it may be straight-up impossible
to even define some scenes for a given renderer. On top of that, there is not any
standardized testing of renderers available.

In the end, the only way to compare multiple rendering algorithms is to reim-
plement them in one specific rendering framework and test them on the same
scenes or make a set of scenes that are perfectly reproducible across the tested
renderers. Often neither of these solutions is feasible because we lack under-
standing of the algorithms, do not have the required knowledge of the rendering
frameworks to create matching scenes, or are not ready to invest necessary time
because we are only interested in fast comparison of the algorithms and nothing
else.

Both of these approaches are even more problematic in the realm of propri-
etary renderers, which often use tricks and simplifications to fasten rendering
calculations or to allow artistic (non-physically-based) control. With them, we
know nothing of the code that should be reimplemented, and even if we recreate
a scene, its interpretation by the renderer may be different than expected. This
last issue applies to all renderers, but with open-sourced ones, we can find and
document reasons for the resulting differences and work around them. But to
do that, we need a testing environment and a set of matching scenes that would
supplement our endeavor.
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Goals
Rendering frameworks are complex pieces of software made of many interacting
subsystems. To get a matching rendered image across different renderers, their
subsystems must be able to make the same intermediate results, although their
approaches and implementations may be different. And so, even if we want to
compare one of these subsystems, we inadvertently end up comparing the system
as a whole.

In this thesis, we address issues of comparison and evaluation of different
renderers with a focus on physically-based rendering, which has only one sin-
gle correct solution. We specifically target a subsystem of the renderer, which
facilitates simulation of light transport in the scene - light transport algorithms.

We present an extensible test suite of light transport algorithms provided
with support for the two currently most popular rendering frameworks used for
rendering research: Mitsuba [2] and PBRT [3]. We also include a documented set
of canonical test scenes for non-volumetric rendering. With this thesis, we hope
to provide a foundation for standardized testing of light transport algorithms
across different rendering frameworks, which is currently missing in the field of
photorealistic rendering.

Thesis Structure
In the first two chapters, we introduce the basics of physically-based rendering
(1) and light transport theory (2). Then we continue with the specification of
methodology for evaluation of light transport computations (3) and present our
evaluation framework (4). Finally, we present our set of test scenes and discuss
their development (5).
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1. Physically-Based Rendering
In this chapter, we present the absolute basics of rendering: we explain what is
visible light (1.1) and color (1.2). Then we introduce the idea of rendering (1.3)
and finally discuss how does the rendering input look like (1.4).

1.1 Light
Visible light is electromagnetic radiation, which can be perceived by the human
visual system. That is radiation with wavelengths roughly between 360nm and
760nm [4] (exact range differs between individuals). Light is not usually radiation
of a single wavelength but consists of many waves of different wavelengths. Dis-
tribution of their intensities describes the light and is called a spectrum (figure
1.1).

Figure 1.1: Sunlight spectrum. (Source: Ye 2018 [5])
Visible wavelengths are colored by corresponding perceived colors.

1.2 Color
The observed color is a response of our brain to signals sent from light-sensitive
cells in retinas of our eyes - rods and cones. Rods are highly sensitive to the
intensity of light but can not perceive color. Three types of cones, with varying
sensitivities to light of different wavelengths, react to incoming light and send
signals to the brain. These signals can be understood as red, green, and blue
colors, and their subsequent processing by the brain causes the final color sensa-
tion. In the case of monochromatic light we can assign perceived color to a given
wavelength (figure 1.2), but generally speaking one specific color can come up
from an endless number of different spectra.
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Figure 1.2: Detailed spectrum of visible light. 1

Numbers represent wavelengths.

Different objects around us have different colors - so what happens during the
travel of light from, for example, sun, to our eyes? The light must be reflected
from the object to our eye, but not necessarily all of it - some may be refracted or
absorbed, so light does not necessarily have the same spectrum after it bounces
from the object. And because there is an endless amount of different surfaces
with varying properties, we perceive the world around us as so colorful.

1.3 Rendering
To render a photorealistic image of a virtual world, we need to simulate how
the light interacts with objects in the scene before it finally gets to the camera
(virtual eye) - figure 1.3. For the image to be physically correct, all parts of the
rendering system must be mathematically and physically sound - from the de-
scription of light sources, individual objects, and materials they are made from, to
the light transport simulation itself. Only then we get images that are practically
indistinguishable from reality (figure 1.4).

Figure 1.3: Light interactions in the scene.
Light from the sun bounces off the surface into the virtual eye. Only the green
part of the light spectrum is reflected. The corresponding pixel of the rendered
image registers incoming green light, but to calculate the correct color it needs to
combine contributions from as many light-carrying paths in the scene as possible.

Light transport calculations can be done while simulating interactions on the
spectrum of visible light (spectral rendering), but more often the light repre-
sentation is simplified to RGB values (RGB rendering). Some phenomena like
dispersion, polarisation, or fluorescence are impossible to simulate without calcu-
lations done on the spectral representation of light, yet, they are not necessary for
most use cases or would not make a big enough difference, which could warrant
the increased computation demands.

1Public domain, https://commons.wikimedia.org/wiki/File:Linear_visible_spectrum.svg
[Online; accessed 2020-07-20], modified.
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Figure 1.4: Architectural rendering. 2

In this thesis, we focus on renderers which primarily do their calculations in
the RGB space, because most of the current research is done on them and because
there is only a small number of spectral renderers. Nonetheless, our work can be
directly applied to spectral renderers too.

1.4 Rendering Input
For a renderer to produce an image, it needs to know what to draw and how
to draw it. The former is supplied by the scene description and the latter by
renderer settings (figure 1.5).

1.4.1 Scene Description
The scene is a virtual representation of the world. It is a file in a file format
supported by a renderer which describes:

• Light sources (position, shape, properties)

• The geometrical properties of the objects

• Definition of materials and their assignment to the objects

Even parts of the scene that are not visible in the final image are important
- for example, light sources that are not visible still emit light and objects cast
shadows, which may be seen in the resulting image. Light transport without
exception happens everywhere in the scene.

2Public domain, image by Giovanni Gargiulo, https://pixabay.com/photos/architecture-
house-3d-design-1477041/ [Online; accessed 2020-07-20].
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# Camera settings and image resolution
LookAt 3 3 3.5 0 0 0 0 0 1
Camera " perspective " " float fov" [45]
Film " image "

" integer xresolution " [512]
" integer yresolution " [512]

# Rendering settings
Integrator "path" " integer maxdepth " [9]
Sampler " halton " " integer pixelsamples " [256]

WorldBegin # Scene definition

# Light sources
LightSource " infinite " "rgb L" [.4 .45 .5]
LightSource " distant " " point from" [ -30 40 100]

" blackbody L" [3000 1.5]

# Objects and their materials
Material " matte " "rgb Kd" [.449 , .245 , .682]
Shape " sphere " " float radius " 1

Translate 0 0 -1
Material " matte " "rgb Kd" [.8, .8, .8]
Shape " trianglemesh "

" integer indices " [0 1 2 0 2 3]
" point P" [ -20 -20 0 20 -20 0 20 20 0 -20 20 0]

WorldEnd

Figure 1.5: PBRT input file and corresponding rendered image.

1.4.2 Renderer Settings
Renderer settings tell the renderer how to produce the final image. They are
usually passed to the renderer together with the scene or as a part of the file
describing the scene. They allow to specify:

• Selection light transport algorithm or at least specification of its properties

• Target quality of the image (e.g. rendering time)

• Post-processing options (e.g. denoising settings)

1.4.3 Camera
Camera controls position, orientation, and properties of the virtual eye from
which the resulting image is rendered. The handling of the camera differs between
renderers. On the one hand, it can be seen as a physical object and be a part of
the scene description, as it is usually done in digital content creation tools like
Autodesk 3ds Max [6] or Blender [7]. But on the other hand, it can be regarded
just as a set of settings that dictates how the virtual scene should be viewed (i.e.
not a part of the scene itself), as it is done in the PBRT or Mitsuba renderers.
Because the camera is closely tied to a specific scene (position and orientation
in the scene) it is in both cases shipped together with the scene. We will, in the
following text, also think of a camera as a part of the scene.
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2. Light Transport Theory
This chapter introduces the basics of the light transport theory, which we use
throughout this work. First, we present the rendering equation and methods
used for its computation (2.1), then we discuss how different kinds of materi-
als are modeled (2.2) and finally introduce algorithms that are used to resolve
light transport and discuss their difficulties (2.3). Note that the presented light
transport theory does not address participating media.

For most topics in this chapter, we also recommend Veach’s thesis [8] or PBRT
book [3].

2.1 Rendering Equation and
Monte Carlo Integration

In this section, we describe the fundamental equation of light transport (2.1.1)
and discuss Monte Carlo integration methods, which are often used in its com-
putations (2.1.2). Furthermore, we introduce importance sampling and multiple
importance sampling techniques (2.1.3), which further improve the efficiency of
the Monte Carlo integration.

2.1.1 Rendering Equation
All of the current research and algorithms are based on a rendering equation, first
introduced by Kajiya [9]. It assumes that light travels in the scene instantly, and
so we can observe a constant distribution of light over a fixed time (equilibrium).
For rendering, it means that we can make an image of some constant state of the
scene. Here a slightly modified version:

L(x, ωo) = Le(x, ωo) +
∫︂

S2
L(x, ωi)fr(x, ωi, ωo)cosθidωi.

Where:
x is a point in the space.
ωo is the direction of outgoing light from the point x.
ωi is a reversed direction of the incoming light.
L is the equilibrium radiance.
Le is the emitted radiance.
S2 is a sphere centered at the point x.
fr(x, ωi, ωo) is the Bidirectional Scattering Distribution Function (BSDF)

describing how much of the incoming light from direction ωi

gets scattered into the outgoing direction ωo at the point x
(see 2.2.1).

cosθi is the cosine of the angle between the wi and normal on the
same side of the surface (e.g. it is a reversed surface normal
for an incoming refracted light from the other side of a glass
object).
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Radiance is a radiometric quantity defined by:

L(x, ω) = d2Φ
cosθdAdω

[Wm−2sr−1].

It is a radiant flux density (Φ) per unit area perpendicular to the ray (cosθdA),
per unit solid angle (dω), in the direction of the ray ω. For all of our purposes, it
is enough to understand radiance as an amount of light which is traveling from a
point in a specific direction.

Rendering equation above can be loosely interpreted as: outgoing light from
the point x in the direction ωo is equal to the light emitted from that point in
the same direction plus all of the light that is scattered from any incoming (ωi)
to the outgoing direction.

Rendering equation is an integral equation with unknown quantity L not just
inside of the integral, but also on the left side of the equation. Thus to compute
the value of L(x, ωo) we need to know values of L(x, ωi) which are L(xωi

, ωo) -
the same kind of value that we are trying to compute but at different points and
with different outgoing orientations. In this way, we could recursively unroll the
integral (to the infinity), which is an idea applied in many rendering techniques
(for example see: 2.3.1)). It is also a reason why the rendering equation can not
be solved analytically, and because of the infinite integral, many of the numerical
methods are not feasible either.

2.1.2 Monte Carlo Integration
Monte Carlo integration is a stochastic numerical method of integration. Because
it allows us to efficiently compute even complex integrals, it is used in practically
all light transport algorithms based on the evaluation of the rendering equation.

For a function f(x) and integral over its domain:

I =
∫︂

f(x)dx,

secondary Monte Carlo estimator of the I is:

FN = 1
N

N∑︂
i=1

f(Xi)
p(Xi)

Xi ∝ p(x).

The estimator is a weighted average of N independent samples Xi of a random
variable with probability density function (PDF) p(x). It can be proven that the
expected value of the estimator is equal to the I:

E[FN ] = E

[︄
1
N

N∑︂
i=1

f(Xi)
p(Xi)

]︄
= 1

N

N∑︂
i=1

E

[︄
f(Xi)
p(Xi)

]︄
∗= 1

N

N∑︂
i=1

∫︂ f(x)
p(x) p(x)dx

= 1
N

N∑︂
i=1

∫︂
f(x)dx =

∫︂
f(x)dx = I,

where ∗= from F = f(X)
p(X) and E[F ] =

∫︁ f(x)
p(x) p(x)dx = I, in other words expected

value of a single sample (primary Monte Carlo estimator) is equal to the I.
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There are two basic properties of estimators:

• We say that the estimator F is unbiased if its expected value E[F ] is equal
to the estimated quantity Q. In our case, the Monte Carlo estimator is
unbiased because E[FN ] = I. If E[F ] ̸= Q, we call the estimator biased,
and B[F ] = Q − E[F ] is the amount of its bias.

• We say that the estimator F is consistent if its bias converges to zero, with
the number of samples approaching infinity - i.e. if limN→inf B[F ] = 0.

This terminology is often extended to light transport algorithms as a whole.
We can think of them as estimators of the rendering equation.

Note that the only requirement for use of the Monte Carlo integration is the
ability to evaluate integrand f(x) at any point in its domain. Additionally, the
number of samples does not depend on the dimension of the integral (compared
to other numerical methods like numerical quadrature), which is important for
the estimation of infinite-dimensional integrals likes of the rendering equation.

Until now, we have ignored the variance of the estimator and its change with
an increasing number of samples. It can be proven (similarly as in the derivation
of the expected value above) that error of the Monte Carlo estimator decreases at
a rate of O(

√
N) [8]. So to half an error, we need four times the amount of samples.

This can be observed during the rendering when the rendered image clears up
relatively quickly at the start, but additional improvements get gradually smaller.

2.1.3 Multiple Importance Sampling
Variance can be further reduced by multiple methods. We will discuss the two
most commonly used ones in rendering practice: importance sampling and mul-
tiple importance sampling.

Importance sampling is based on the idea that samples from parts of the
integration domain with higher values of the integrand have a higher impact on
the result. It can be observed that if we had a PDF proportional to the function
of the estimated integral (p(x) = cf(x)), our samples would have zero variance:

f(Xi)
p(Xi)

= 1
c

∗= 1
1∫︁

f(x)dx

=
∫︂

f(x)dx,

where ∗= from c, which is a normalization factor of p(x). Integral of PDF p(x)
must be 1:

∫︁
p(x)dx = 1 [3].

Because all the samples are constant (1/c), the resulting variance is zero.
Nonetheless, if we had a PDF that is proportional to the estimated integral,
we would not have to use Monte Carlo integration at all. In practice, this is a
motivation for importance sampling. Importance sampling tries to preferentially
take samples from areas of high contribution by using PDF as similar to the shape
of the integrand as possible. So with an increasingly similar shape of the PDF,
the variance of the Monte Carlo integration decreases. It is important to keep
in mind that this also works the other way around, so with poorly chosen PDF
importance sampling may increase variance (figure 2.1).
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Figure 2.1: Importance Sampling.
If we are estimating integral of the function f(x) with Monte Carlo integration
and we had choose to take samples from one of the two available PDFs: p1(x) and
p2(x), we would select p2(x). Its shape is similar to the shape of the integrand,
therefore samples drawn from it will have a smaller variance compared to samples
from the PDF p1(x), which would even increase variance in comparison to a simple
uniform sampling of the integral domain.

Even with importance sampling, we rarely have a PDF that would mimic
integrand on its entire domain. Instead, we can have multiple different PDFs
where each is a good match of the integrand in part of its domain (figure 2.2).
This is especially the case when we are trying to estimate integral, which is a
product of multiple functions

∫︁
f(x)g(x) (also rendering equation integral). Here

if we have two PDFs similar in shape to the f(x) and g(x) respectively, which one
should we choose? Ideally, we would want to combine the best of both of them.
Multiple importance sampling (MIS) is a technique introduced by Veach [8] that
addresses this issue.

Figure 2.2: Monte Carlo integration and multiple PDFs.
If we are estimating integral of the function f(x) and have available PDFs p1(x)
and p2(x), we would want to use p2(x) as the sampling distribution of the left
part of the integrand domain and p1(x) for its right part to minimize the variance
of the estimator.
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The idea of the MIS is to draw samples from multiple available sampling
distributions (PDFs) and weight them together in a single combined estimator:

F =
n∑︂

i=1

1
ni

ni∑︂
j=1

wi(Xi,j)
f(Xi,j)
pi(Xi,j)

,

where i is a sampling technique providing ni samples Xi,j with PDF pi(Xi,j),
and wi is a combination weight of the technique. This equation is similar to
the secondary Monte Carlo estimator, with the addition of different sampling
techniques and MIS weights. It can be proven that the combined estimator is
unbiased as long as ∀x : ∑︁n

i=1 wi(x) = 1.
The next step is to define combination weights in a way that minimizes the

variance of the combined estimator. Naive averaging does not work, because
variance is additive in this case [3]. Veach [8] introduced a weighting function
which provably reduces variance called balance heuristic:

wi(x) = nipi(x)∑︁
k nkpk(x) ,

where k are individual sampling techniques. If we plug these weights into the
combined estimator we get:

F =
n∑︂

i=1

ni∑︂
j=1

f(Xi,j)∑︁n
k=1 nkpk(x) .

As we can observe, the contribution of a sample no longer depends on which
technique it came from - it is not weighted by its PDF but by a weighted average
of all the individual PDFs. Balance heuristic is by no means optimal function for
weights, and so, a lot of current research is focused on finding better weighting
functions (see [10] or [11]).
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2.2 Modeling Materials
This section introduces functions used for the representation of surface reflectance
(2.2.1), discusses laws of geometric optics for reflection and refraction (2.2.2), and
finally presents an approach that is often used to model roughness of the surfaces
(2.2.3).

2.2.1 BRDF
Reflective properties of materials determine the appearance of the object, whether
it is a color or perceived roughness and glossiness. These properties are described
by the Bidirectional reflectance distribution function (BRDF):

fr(x, ωi, ωo) = dLo(x, ωo)
dE(x, ωi)

= dLo(x, ωo)
Li(x, ωi)cosθidωi

[sr−1].

Where:
x is a point on the surface.
ωo is the direction of outgoing light from the point x.
ωi is a reversed direction of the incoming light.
Li(ω), Lo(ω) is the incoming and reflected radiance in the direction ω,

respectively.
cosθi is the cosine of the angle between the ωi and normal of the

surface
dE(x, ωi) is the differential irradiance at point x (amount of incoming

light from a differential cone around ωi).

Figure 2.3: Bidirectional Reflectance Distribution Function.
Note the differential cone around ωi.

BRDF describes how much of the incident light from the direction ωi is re-
flected to the direction ωo (figure 2.3). Range of the BRDF values is: [0,∞).
After a normalization we can also view BRDF as a probability density over all
possible ωo on the hemisphere around the surface normal.

Physically plausible BRDFs must follow two properties:

1. Helmholz reciprocity: ∀ ωi, ωo : fr(x, ωi, ωo) = fr(x, ωo, ωi).

2. Energy conservation: ∀ ωo :
∫︁

H2(n) fr(x, ωi, ωo)cosθidωi ≤ 1 [3]. Surface can
not reflect more light that it receives.
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Depending on the distribution of the reflected light from the surface we can
define basic types of surface reflections (figure 2.4):

• Ideal diffuse surface reflects light in all directions equally, also called the
Lambertian surface. It is a mathematical model that does not exist in
nature. In the following text, we will refer to them as diffuse or Lambertian
surfaces.

• Glossy (glossy specular) surface reflects light predominately in a set of di-
rections.

• Ideal mirror (mirror, or perfect specular) surface reflects incident light in a
single outgoing direction based on the law of reflection (2.2.2).

• Retro-reflective surface reflects light primarily back towards the incident
direction.

Most of the surfaces in nature have reflectance properties, which would come
up from a combination of these basic types of reflection.

Ideal diffuse Glossy

Ideal mirror Retro-reflective

Figure 2.4: Basic types of reflective surfaces. 1

1Public domain, https://commons.wikimedia.org/wiki/File:BRDF_diffuse.svg (also:
File:BRDF_glossy.svg and File:BRDF_mirror.svg) [Online; accessed 2020-07-20]
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BRDF describes light reflectance at a point on the surface, but there are other
interactions of light with a surface, which are expressed by various distribution
functions:

• Bidirectional transmittance distribution (BTDF) function describes light
transmission (ωi and ωo are in opposite hemispheres around x - refraction
of the light)

• Bidirectional scattering distribution functions (BSDF) is a combination of
BRDF and BTDF into a single distribution function.

• Bidirectional surface scattering reflectance distribution function (BSSRDF)
takes into account light transport under the surface, so the surface point of
the incident light may be different than of the outgoing light.

Note that we can also define spatially varying distribution functions, with
different distribution at each point of the surface.

2.2.2 Reflection and Refraction
In the previous section, we have introduced functions describing reflective and
refractive properties of surfaces. For these functions to describe physically plau-
sible surfaces, they have to follow laws of geometric optics: the law of reflection,
Snell’s law, and Fresnel equations.

The law of reflection describes ideal mirror reflection and states that direction
of the reflected light ωr makes the same angle as the incident direction ωi on the
opposite side of the surface normal n in the plane formed by ωi and ωr (figure
2.5).

Law of reflection Snell’s law

Figure 2.5: Reflection and refraction laws.

Snell’s law describes direction of refracted light on a boundary between two
media (figure 2.5):

ηisinθi = ηtsinθt,

where η refers to the index of refraction (IOR) which describes how fast light
travels through the medium (n = c/v).

Finally, with Fresnel equations, we can compute how much of the incident
light is reflected and how much of it is refracted. Their result depends on the
direction of the incident light and IORs of the media.
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It is important to note that there are a few types of materials with distinctive
refractive and transmissive properties:

1. Dielectrics are materials that do not conduct electricity. These materials
transmit part of the incoming light. Examples are air, water, glass, and
most of the gemstones.

2. Conductors are materials that conduct electricity, such as metals. Com-
pared to dielectrics, these materials reflect most of the incoming light and
appear to be opaque. They also transmit part of the incoming light, but it
is quickly absorbed inside of the conductor.

3. Semiconductors like silicon or germanium are not usually considered in
rendering practice.

2.2.3 Microfacet Models
To account for varying roughness of materials, microfacet-based BRDF models
are often used. Microfacet models were introduced to graphics by Cook and
Torrance [12], and are a staple in the modern rendering practice. These models
assume that the macrostructure of the surface consists of small randomly oriented
microfacets, where each microfacet behaves as an ideal mirror.

The resulting BRDF models are based on stochastical modeling of light in-
teractions on a patch of microfacets, where aggregate behavior determines the
resulting scattering of light (figure 2.6).

Rough surface Smooth surface

Reflection Masking Shadowing

Figure 2.6: Microfacet model.
Three main light interactions on the microfacets are considered (bottom row).
During reflection, light bounces between microfacets before it gets to the viewer,
with masking microfacet is occluded by another one and during shadowing micro-
facet is not reached by the light. Distribution of the microfacets directly influences
the roughness of the surface (top row).

There are many different distributions of microfacets used. Two important and
widely used physically-based ones are Beckmann distribution [13] and GGX [14]
(also Trowbridge and Reitz [15]).
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2.3 Light Transport Algorithms
In this section, we introduce the path tracing algorithm (2.3.1), discuss what light
transport situations are difficult to evaluate (2.3.2) and finally make an overview
of the currently popular light transport algorithms (2.3.3).

2.3.1 Path Tracing
Path tracing is one of many light transport algorithms whose objective is to
resolve the rendering equation. Because of its relative simplicity, and in most
cases, reasonable efficiency, it is the most used rendering algorithm in practice.
Path tracing is an unbiased Monte Carlo algorithm introduced by Kajiya [9]. Its
basic idea is to generate light carrying paths via tracing of rays from the camera
through interactions in the scene and ending at light sources.

Let’s denote xi as an ith point on the path from the camera (camera being
at x0) and r(xi, ωi) and as a ray with an origin x and direction ωi. Then path
construction of the path tracer can be described in the following steps:

1. Generate ray from the camera r(x0, ω0), also called a primary ray. The
direction ω0 is sampled according to the sampling technique and camera
properties. Primary ray will intersect a pixel of the rendered image to
which the completed light carrying path will contribute.

2. Cast the primary ray (determine first surface point hit by the ray) r(x0, ωo)
to find a point x1. If the point is on a light source surface, the path is com-
pleted. Otherwise, new direction ω1 needs to be sampled and ray r(x1, ω1)
cast. This is repeated for xi until ray intersects a light source surface.

The sampling of the direction ωi at a surface point xi is usually based on
the importance sampling of BRDF - recall that BRDF can be normalized to
a probability density function (2.2.1). If it is not possible, at least sampling
proportional to the cosine term of the rendering equation can be used.

The total contribution of the light carrying path is based on the radiance
emitted by the light source and all of its interactions along the path. These are
described by the BRDF (fr(x, ωinc, ωout)) and cosine terms (cosθinc) at each point
of the path between the camera and the light source (see the rendering equation).
Also, PDF corresponding to the importance sampling of ωi is included in the
calculation (p(ωi)):

Linc(x0, R(ω0)) = Le(xn, R(ωn−1))
n−1∏︂
i=1

fr(xi, ωi, R(ωi−1))cosθi

p(ωi)
,

where R(ω) is the reversed orientation of the ω, Le(xn, R(ωn−1)) is the emitted
radiance by the point on the light source, and Linc(x0, R(ω0)) is the incident
radiance from the path at the camera. Depending on the type of the camera,
PDFs of x0 and ω0 sampling may also need to be included.

At this point, it should be apparent that path tracing is in its approach
very similar to the rendering equation. We can understand path tracing of a
path starting from the ray r(xi, ωi), as an estimation of the incoming light from
the direction ωi to the point xi. Every generated path is a sample of the Monte
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Carlo integration, where each bounce of the path unwinds the infinite-dimensional
integral of the rendering equation by an additional step.

With each bounce, the throughput (the relative amount of light which is
transported by the path - product in the equation above) usually decreases (except
for specular bounces). So the longer the paths are, the less they contribute to
the final image. For this reason, it makes sense to terminate inefficient paths
preemptively, but methods like limiting the maximal number of bounces or setting
a minimum acceptable throughput introduce bias. This issue is addressed by
the Russian roulette technique: at each bounce, we decide if the path should
continue with some probability p, and if it does throughput is multiplied by 1/p.
It is straightforward to prove that this approach maintains unbiasedness of the
resulting estimator:

E[En] = E[Eo]
p

p + 0(p − 1) = E[Eo],

where the expected value of the new estimator En is the same as the expected
value of the original estimator Eo.

In the current formulation, the path would not be completed until the ray gets
to the light source. That is very difficult in cases where the light source is small
or even impossible if it is a point light (often used in practice). This problem
can be addressed by an explicit sampling of light sources - by a sampling of a
point on the light source and connecting it to the currently traced path if it is
not occluded by other objects.

Both BRDF sampling and explicit light source sampling have their strong and
weak points, but because both of them are estimators of direct illumination at
a point, they can be combined with multiple importance sampling into a single
robust estimator (figure 2.7, for details see [8] or [3]).

Path tracing in practice usually does the direct illumination estimation at
each bounce of the path until the path is terminated because of Russian roulette
or other termination criteriums (figure 2.8). The total contribution of the traced
path is effectively the sum of contributions from paths of different lengths, where
all the paths share the same primary ray r(x0, ω0) and thus contribute to the
same pixel of the rendered image.
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(a) BRDF sampling (b) Light source sampling

(c) Multiple importance sampling

Figure 2.7: Direct illumination sampling techniques. (Source: Veach 1997[8])
These images compare direct illumination sampling techniques on glossy surfaces
of varying roughness with four spherical light sources of varying sizes but the
same total emitted power.
a) BRDF sampling is more efficient on smooth glossy surfaces with a sharp spec-
ular highlight (top row) and bigger light sources. Smooth surfaces reflect most
of the light predominately in a set of directions, and BRDF sampling samples
them efficiently. With a bigger light source, there is a better chance that sampled
directions will lead towards it.
b) Light source sampling is a better strategy for rougher surfaces (bottom row)
and smaller light sources. Rough surfaces reflect light more uniformly, and BRDF
sampling has issues finding reflection directions towards smaller light sources. An
explicit sampling of light sources finds light carrying paths easily, but they may
be inefficient because the surface does not reflect too much light in the sampled
direction (top left).
c) Multiple importance sampling of both sampling strategies. The advantages of
both techniques were retained while the disadvantages were avoided.
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(1) (2)

(3) (4)

(5)

Figure 2.8: Path tracing visualization.
1) Ray r(x0, ω0) is generated from the camera and traced to find point x1.
2) Direct illumination sampling at x1. Light source sample (orange) is occluded,
and the BRDF sample (blue) has not intersected light source. Zero contribution.
3) ω1 is sampled from the BRDF at the point x1. Ray r(x1, ω1) is traced to find
x2.
4) Direct illumination sampling at x2. The light source sample is not occluded,
and the BRDF sample has not intersected light source. Contribution to the path
will be added.
5) ω2 is sampled from the BRDF at the point x2. Ray r(x2, ω2) is traced to find
x3. Light source was hit, terminating the path. No contribution added, direct
illumination estimation at x2 has already estimated contribution from this path.
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2.3.2 Difficult Light Paths
If we want to discuss what kinds of light transport paths are difficult to compute,
we need a system for their classification. Heckbert [16] introduced a notation for
path classification, and we are going to discuss Veach’s extension of it [8]. In this
notation, paths are described as regular expressions like:

LDD D(SD)+(S|D)∗ SDE

Where:
X+ denotes at least one occurrence of X.
X∗ denotes any number of occurrences of X.
() parentheses express grouping.
X|Y denotes choice between X and Y .
L together with the two following letters describes the light source .
E together with the two preceding letters describes the eye (camera).
S represents a perfectly specular event like ideal mirror reflection or

ideal refraction (BSDF is infinite).
D represents any other type of scattering from the surface (BSDF is

finite).
Although S and D letters in the definition of the light source and camera are

not real scattering events like the rest of them, they can be interpreted as such.
Out of all the possible variations of great importance to us are especially: SDE,
representing pinhole camera (the most often used type of the camera in practice),
LDD representing area light source, and LDS representing a point light.

Veach also proved [8] that any algorithm based on a local path sampling,
where the continuation of the path is determined at its every point based on the
sampling of possible directions (like in the path tracing), is unable to sample a
path if it does not contain the substring DD.

These kinds of paths are not rare at all, for example, a simple scene with a
pinhole camera, mirror, and a point light:

LDS S SDE,

contributions of these paths will be missing in an image rendered with a path
tracer because no ray from the camera will hit the point light after reflection
from the mirror (similar case also in the figure 2.10).

It is possible to avoid this issue by not using perfectly specular surfaces at all,
but they are a staple in the rendering practice. Another approach is to introduce
DD substring in the camera or the light sources. Algorithms based on the local
path sampling will then produce unbiased results, but it will not make previously
impossible situations easy. If we switch the point light from the example above
for an area light, then the smaller the area light is, the closer (in the limit) we
get to the original situation. Therefore even if the algorithm is unbiased, we will
observe extremely high variance, which will make the algorithm unusable for the
rendering of such a scene in practice.

But this is not the only problematic case. In truth, any path with a substring
SD is, to a varying degree, hard to evaluate. These kinds of paths represent caus-
tics that can be observed all around us: light coming through the window, light
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Figure 2.9: Examples of caustics.
Glass with water (Source: Otterstedt 2006 [17]) and pool viewed from top. 2.

bulb illuminating the room, light focused through the glass or the characteristic
shimmering of the pool or the ocean (figure 2.9).

The reason why these paths are problematic is that if we trace a path from
the camera, we do not know what direction to choose at the diffuse surface to
hit the light source (or any other particularly interesting part of the scene) after
the subsequent perfectly specular refraction (figure 2.10)). We could also try to
trace the paths from the light towards the camera, but the same issue would come
up with paths containing substring DS and if the path contains substring SDS
neither of the approaches or even their combination is no longer able to efficiently
resolve it.

Figure 2.10: Path tracing of DS path.
Path tracer samples continuation of the path at the diffuse surface but it does
not take into account the specular boundary in front of the light source that
will refract the rays, therefore it can not efficiently generate paths that will lead
to the light source (red connections are impossible to use because of the ideal
refraction). In the case of the point light, it is unable to find any light carrying
paths: LDS SD SDE does not contain DD substring.

2Public domain, https://www.publicdomainpictures.net/en/view-image.php?image=
126102&picture=pool-water [Online; accessed: 2020-07-20]
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2.3.3 Overview of Light Transport Algorithms
Algorithms presented in this section are not all light transport algorithms ever
made - we only cover the most researched and often used ones currently. Also,
keep in mind that we introduce them in their original, not state of the art versions.

• Path tracing (see section 2.3.1) traces the paths from the camera to recur-
sively solve the rendering equation. It is one of the simplest and most used
unbiased algorithms.

• Bidirectional path tracing (introduced by Lafortune and Willems [18]) traces
paths from both the camera and light sources and connects them into com-
plete light-transmitting paths. It is an unbiased algorithm that can handle
paths containing substring DS, making it a good option for resolving many
different caustics. Paths containing substring SDS are still problematic.

• Metropolis light transport (introduced by Veach and Guibas [19]) is an unbi-
ased algorithm that takes a unique approach to the exploration of the path
space. It generates a path in the scene by mutation of the previous one in
a way that ensures that the distribution of the sampled paths is propor-
tional to the contributions they have. MLT can perform local exploration of
path space: when it finds a path with a high contribution, it can find other
similar paths, which allows MLT to compute many caustics efficiently.

• Photon mapping (introduced by Jensen, see: [20]) methods are based on the
idea of tracing of photons from the light sources, saving them on the scene
surfaces and then using them to approximate incident illumination during
subsequent path tracing. These methods are able to handle even paths
without the substring DD, and resolve indirectly viewed caustics (SDS
subpaths) well. But because there is a limited amount of photons traced,
the approximation of illumination causes bias.
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3. Evaluation of Light Transport
Computations
In this chapter, we introduce a methodology for the comparison of light transport
algorithms (3.1). Based on it, we specify the needs of the supporting evaluation
framework (3.2) and its test dataset (3.3). We also discuss which rendering frame-
works we decided to support first (3.4).

3.1 Methodology
It should not come as a surprise that evaluation of renderers, which are complex
systems, is difficult. That is especially the case with regards to the light transport
algorithms, which are the part of the renderer that ties everything together. It is
impossible to test and evaluate them in the vacuum - indeed if there is no scene
in which the light travels, there is no light transport to be simulated. And if
there is a scene there are also light sources, individual objects with their different
materials, and many other pieces that are necessary for the rendering. Therefore,
if there are issues with the resulting image, it may be hard to tell what part of the
system is responsible. Additionally, if we want to compare as many light transport
algorithms as possible, we need to do that across different rendering frameworks,
which only brings extra difficulties. So in the first place, it is necessary to discuss
what can we evaluate, if there are good reasons to attempt that, and only then
think about how it can be done.

3.1.1 Motivation
Multiple properties of light transport algorithms could be evaluated - correctness
and efficiency, rendering speed, but also things like level of supportable artistic
control (for example, disabling shadows of an object). To discuss them in turn:

• Correctness and efficiency

– There is only one physically correct result of the rendering of a given
scene

– Algorithms have varying efficiency, and when confronted with more in-
tricate light transport situations, they may even be unable to properly
render some scenes

– Scenes, in general, are not fully reproducible across different rendering
frameworks

• Rendering speed

– Depends on the performance of the hardware and the level of imple-
mentation optimization

– The same algorithm across various rendering frameworks can have dif-
ferent rendering speed
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– Directly usable only when comparing algorithms in the same rendering
framework

• Artistic control

– Non-physically-based features used to fulfill an artistic vision, not to
simulate proper light transport

– Impossible to define fair rating system - the importance of supportable
feature depends on the application

– Important in proprietary renderers used in production (product visu-
alization, movies)

Out of all three discussed properties, only the correctness of the result and
to some degree efficiency of the algorithm on difficult scenes can be directly
compared between light transport algorithms implemented in different rendering
frameworks. These are also the most important properties of a physically-based
renderer, and so it would be our choice of what to evaluate.

The questions, whenever an algorithm solves light transport situations cor-
rectly or if it can even solve them at all, are fundamental to the physically-based
rendering. There are numerous rendering frameworks developed independently,
and if we could efficiently compare them, we would be able to spot any differences
in their results and ask questions about why they happen, and ultimately, which
result is correct and which one is not. This would enhance the development of
all evaluated renderers, spotting any of their hidden flaws, and help with their
growth towards a common goal - correct and efficient physically-based rendering.

It is important to point out that no implementation of light transport algo-
rithms can produce a physically-correct rendering. Although the theory presented
in chapter 2 is mathematically sound, and it is correctly applied in many light
transport algorithms, there are still practical issues that can not be resolved. For
example, it is impossible to trace light paths of infinite length, even though, based
on the recursive nature of the rendering equation, they exist and contribute to
the illumination in the scene. Thus, if we want to compare two light transport
algorithms, we must make sure that the same set of limitations is applied to both
of them, so they resolve the same subset of the global illumination of the scene.

3.1.2 Approach
We can tell whenever two renderings of the same scene converge to the same
result with their direct pixel-by-pixel comparison. Specifically, we ask if, and by
how much are pixels of an image brighter or dimmer in comparison to the other
image (usually absolute or relative differences between pixels are used). These
differences are usually visualized as difference image (figure 3.1).

We can say that two renderings of the same scene converge to the same result
if their difference image shows only random noise caused by the randomness of
sampling of the Monte Carlo integration (figure 3.1).
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Figure 3.1: Difference image - convergent.
From left to right, these images showcase Mitsuba and PBRT renderings of the
same scene and their difference image. Because we can observe red-green noise
in the majority of the difference image, we can with confidence declare that
both renderers converge to the same result. The only difference mainly at the
edges of the teapot could be explained by differences in ray casting, or we would
alternatively have to look more into the behavior of light transport at grazing
angles.

Figure 3.2: Difference image - divergent.
From left to right, these images showcase Mitsuba and PBRT renderings of a
similar scene and their difference image. Even when observed by eye, we can
spot many differences. If we would try to look for them on the walls, we would
be a bit more hard-pressed to find some of them, but we can not miss them on
the difference image. The cause of the differences is twofold: material of the
objects in the Mitsuba scene is more specular and objects have smooth surfaces
in comparison to PBRT with faceted objects and rougher surfaces.
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So if we have a physically-based and highly converged rendering of a scene
(reference image) and an algorithm that we want to test, all we need to do
is render the same scene with it and evaluate the difference image made from
comparison with the reference. If some usually continuous part of the difference
image has the same color (i.e. part of the image is too bright or too dim in
comparison to the reference), we can immediately spot it and get to know that
the algorithm gives incorrect results for these pixels (figure 3.2). Usually, we can
then proceed with an educated guess about what is causing the issue.

To render an image of the same scene with light transport algorithms from
different rendering frameworks, we can choose two approaches:

• Reimplement algorithms in the rendering framework of choice and render
the scene with them

• Reproduce the scene in all rendering frameworks and render it with the
native implementations of the algorithms

Reimplementation of the algorithms is not feasible, because we can not as-
sume that source code for the algorithms will be available. Additionally, it is
not a sustainable long-term solution because each existing and newly introduced
algorithm would have to be reimplemented.

Scenes, on the other hand, have to be created only once (for each rendering
framework). Although it is practically impossible to exactly reproduce an arbi-
trary scene in different rendering frameworks, as long as we have scenes that are
made to minimize any potential issues of their translation, we should achieve very
good or even perfect reproduction of them in many cases.

Even though matching scenes would be possible to use on their own, if we
want to efficiently evaluate many algorithms with varying parameters, it will
quickly become necessary to have an evaluation framework that would hide as
many details of the individual renderers as possible, handle interaction with them
and save and present the results. We can not expect potential users to master all
the different rendering frameworks only to get a basic evaluation of the rendering
algorithms of their interest.

In the following two sections, we summarize properties that the evaluation
framework and scenes should have.

3.2 Evaluation Framework
For an evaluation framework, to properly and efficiently support testing of light
transport algorithms across different rendering framework, it must:

• Be automated. The framework should be able to handle multiple renderers
using different light transport algorithms (with varying settings) all at once
with minimal user involvement. We want the user to need to interact with
the evaluation framework only once - during its launch.

• Be extensible. New scenes, light transport algorithms, and even whole ren-
derers are created continuously. If they could not be easily supported by
the evaluation system, it would defeat its purpose.
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• Be easy to use. If the entry-level for the use of the framework is too high
or its learning curve too steep, some potential users won’t even try to use
it. Frequent use cases must be readily available without the need to adjust
the inner workings of the evaluation framework. The only exception to this
may be extensions to supported renderers.

• Be transparent. The inner workings of the evaluation system should be clear
to the users who will try to delve into them. The code of the framework
will be freely available and as straightforward as possible.

• Present evaluation results. As we have discussed, the results of the evalu-
ation will be difference images that come from the comparison of rendered
images with each other or with reference images. We want to facilitate a
straightforward way to quickly view them without a need for any additional
software.

3.3 Evaluation Scenes
An evaluation framework with no test data would not be complete at all. There-
fore, we need to provide a set of scenes that can be used for the evaluation of
light transport algorithms across different renderers. Specifically, we want the
resulting set of scenes to:

• Cover as many different light transport situations as possible. If a light
transport situation is not covered by the current set of scenes yet, we want
to include it with an additional scene.

• Avoid unnecessary complexity. Our scenes will be provided for testing and
comparison of different algorithms - not to look nice. Additions that do not
fundamentally enhance or change the light transport situation in the scene
should be omitted. Their cost would be an increased rendering time and
detraction from the testing purpose of the scene.

• Be as small as possible. We do not want to limit the number of scenes, but
we should avoid several scenes testing the same light transport situation as
long as there is not a valid reason to include them all.

• Be exactly documented. Both what is tested and how is the scene designed
to facilitate that, must be documented. It is important for organization,
development, and presentation of the scenes to the users.

• Be compatible with as many potential rendering frameworks as possible. We
want to avoid any features native to a specific renderer, and build our scenes
from as simple building blocks as possible.

• Provide reference images for all the supported renderers.
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3.4 Supported Renderers
Although our evaluation framework will be extensible, we can only provide sup-
port for a limited number of renderers from the get-go. To support a renderer we
need:

• Infrastructure for the handling of renderer settings and its scene files (code)

• Scenes in a file format supported by the renderer (data)

– Made so the renderer will produce comparable results to other already
supported renderers (ideally renderers should produce the same result
on all scenes).

• Reference images of the scenes (especially in a case when different renderers
do not generate same resulting image)

As a first step, we want to support the two most popular research-oriented
open-source renderers: Mitsuba and PBRT. These renderers have similar scene
description formats and/or capabilities like a lot of other open-sourced render-
ers (e.g. LuxCoreRenderer1 or Tungsten Renderer2), so they can also work as
an example implementation in our evaluation framework for a lot of additional
renderers. We do not plan to provide support for any proprietary renderers in
the scope of this thesis. As we have discussed in the introduction, it is almost
impossible to replicate the same rendering results between them, because of their
focus on rendering speed and user’s efficiency and not so much on the physical
correctness of their solutions.

3.4.1 Mitsuba 0.5
Mitsuba [2] is the most heavily used rendering framework in computer graphics
research. It is highly modular - each piece of functionality is implemented as an
independent module, so new algorithms are simple to add. It offers support for
large-scale parallelization (rendering on a server) and even its single-threaded ex-
ecution is quite optimized (SIMD). We have picked version 0.5, which is available
on the main web page. There is also version 0.6, which must be downloaded from
the repository3 and manually compiled. Additionally, there is version 2.X [21],
which is a completely new modernized rendering framework meant to replace
older versions of Mitsuba.

The decision to use (and stick) with version 0.5 was based on multiple factors:

• Scenes showcased in recent research papers often come up from a set of
scenes originally provided by Benedikt Bitterli [22]. Mitsuba scenes in this
set are of version 0.5.

• We are not aware of any difference between scene description formats of
versions 0.5 and 0.6. All scenes which we were working on were possible to
render with version 0.6.

1https://luxcorerender.org/ [Online; accessed 2020-07-20]
2https://github.com/tunabrain/tungsten [Online; accessed 2020-07-20]
3https://github.com/mitsuba-renderer/mitsuba [Online; accessed 2020-07-20]
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• We have tested version 0.6, and the rendering results of our scenes were the
same as with version 0.5.

• Mitsuba 2.X is backward compatible - able to take older scene description
versions as an input.

• Mitsuba 2.X was a newly available software at the time of work on this
thesis. It may have had some unknown and unresolved bugs, and many of
the light transport algorithms of older versions were not yet supported by.

3.4.2 PBRT 3
PBRT [3] is both an open-source renderer and accompanying book explaining
both its implementation and theory behind it. With its focus on the educational
aspect, it is not as well optimized, but it makes up for that with its straight-
forward, easy to understand code and good documentation. We have used its
latest version: PBRT 3. It is not backward compatible, but nowadays, there is
no reason to use older versions.
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4. Evaluation Framework
In this chapter, we present a framework for the evaluation and comparison of
light transport algorithms across different rendering frameworks. We discuss its
purpose (4.1) and explain its requirements (4.2), installation process (4.3), and
structure (4.4). Following that, we present the main features of the evaluation
framework contained in three of its scripts: lteval.py (4.5), ltevalwebgen.py (4.6),
ltevalwebdisplay.py (4.7). Then we at length explain configuration files, which are
used as an input of the evaluation framework (4.8). Finally, we describe some of
its implementation details, including methods of its extension (4.9).

4.1 Purpose
The purpose of the (light transport) evaluation framework is to ease up evaluation
of light transport algorithms based on the comparison of rendered and reference
images (for full discussion refer to 3). For this reason, it needs to be possible
to select scenes to be rendered and specify light transport algorithms and their
parameters (test cases) that should be used for the rendering. All of that, while
supporting different rendering frameworks, having no knowledge of specific light
transport algorithms and their parameters, maintaining reasonable ease of use
and allowing the addition of new scenes and rendering frameworks. Additionally,
the evaluation framework can generate a simple website for a fast evaluation of
the rendered images.

4.2 Requirements
The light transport evaluation framework is operating system agnostic, but few
requirements must be fulfilled for its use:

• Python 3 environment of version 3.7.4. The framework was developed and
tested with this version, but there is nothing of our knowledge that could
cause issues when using higher versions.

• Python packages: Dominate 1 and lxml 2. Both packages can be installed
with PIP, or with the help of a Python environment provider (e.g., Ana-
conda). Other necessary packages should be installed as part of the Python
distribution.

Python editor and basic knowledge of the Python language are recommended,
but not necessary. Some input files must be written in Python, but the framework
is easy to use even with no prior experience of the language.

For practical use of the framework except for the generation of supplemen-
tary website (see 4.6), renderer executables are necessary. Evaluation framework
currently supports Mitsuba 0.5, and PBRT 3 renderers (3.4) whose executables
for Windows are provided together with it. To use additional renderers, the
framework must be extended (refer to 4.9.4).

1https://pypi.org/project/dominate/ [Online; accessed 2020-07-20]
2https://pypi.org/project/lxml/ [Online; accessed 2020-07-20]
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4.3 Installation
The light transport evaluation framework, including the evaluation scenes (5),
does not need any specific installation steps. It can be extracted from the attached
zip file provided together with this document, or its current (updated) version
can be downloaded from a GitHub repository 3.

4.4 Structure

/

scenesdata

scene_a

renderers

Provided
renderers

jeri

Web page
generator data

meshes

Shared meshes

.ply

scripts

.py

renderers
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abstractrenderer.py

lteval scripts

.py
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results
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Scene files and
reference image

.xml .exr

dev

scene_a.max scene_a.fbx

Development files

pbrt_3

Scene files and
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.pbrt .exr

configurations

.py

Examples

Figure 4.1: Evaluation framework folder structure.

Figure 4.1 presents the folder structure of the evaluation framework. Its un-
derstanding is not essential for the use of the framework, but it is necessary for
its modifications, including its extensions.

• The main features of the evaluation framework are available in the form of
three python scripts in its root directory: lteval.py, ltevalwebgen.py, and
ltevalwebdisplay.py.

• configuration: Examples of configurations files that are taken as a manda-
tory parameter of the main lteval.py script.

• data: Other parts of the framework.

– jeri: Data necessary for the generation of supplementary website.
– renderers: Executables of Mitsuba 0.5 and PBRT for Windows, pro-

vided together with the framework.
3https://github.com/tazlarv/lteval
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– scripts: Additional Python scripts necessary for the run of the frame-
work.

– scripts/renderers: Python scripts providing support for specific ren-
dering frameworks - support for Mitsuba 0.5 and PBRT 3 is provided.

• dev: Autodesk 3ds Max scenes created during the development of the eval-
uation scenes. FBX version added for use in other modeling software.

• scenes: Evaluation scenes of all supported renderers. In a folder named after
the scene, we can find subfolders for each supported rendering framework
(containing scene files and a reference image of the scene) and shared 3D
geometry files (meshes).

• results: Used for saving of results (rendered images, generated website) if
no result folder is specified.

4.5 lteval.py
The lteval.py script is the main script of the evaluation framework. Its job is
to render evaluation scenes based on settings in the configuration file (the only
mandatory parameter of the script). Configuration file describes what scenes
should be rendered and what light transport algorithms and parameters should
be used for it (see 4.8).

Execution of the lteval.py consists of the following steps:

1. Load a configuration file.

2. Create an output folder.

3. Load scripts for the handling of necessary rendering frameworks.

4. Load specified evaluation scenes.

5. Prepare individual test cases specified in the configuration file (parameters
of light transport algorithms to be used).

6. For every scene and every test case:

(a) Generate a new, modified scene file based on the test case. This file
is saved in the same folder as the evaluation scene (e.g., scenes/scene_

a/mitsuba_0_5 - see 4.4) named __lteval_{test case name}.
(b) Render the modified scene.
(c) Copy the resulting image and reference image of the scene to the output

folder (figure 4.2).

7. Potentially generate a website showcasing the rendered images.

8. Potentially open up the generated website.
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scene_a
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.exr

web

Website data

test_caseX.exr

test_caseX_lteref.exr

Figure 4.2: Output folder structure.
cfg.py: Copy of the configuration file used to run the lteval.py script that gener-
ated this output folder.
log.txt: Console output of the evaluation framework. Includes console output
from the renderers.
index.html: Index page of the website generated by ltevalwebgen.py, web folder
contains additional data.
scenes: All rendered scenes. Subfolders, named after individual scenes, contain
images rendered by lteval.py and corresponding reference images. Images are
named after the individual test cases, while references have an additional _lteref
suffix. Additional images are handled as if they were produced by the lteval.py
script.

Other than the configuration file, which is a mandatory parameter, lteval.py
script offers few optional arguments:

• -c, --c n, y, fy: Clear - specifies what to do with the generated scene files from
step 6a. They may be left alone (n), deleted when the rendering successfully
finishes (y - default), or always deleted even if the rendering fails (fy). We
recommend the default because invalid scene files generated from incorrectly
set up configuration files are often the cause of failed rendering.

• -fc, --fc: Force clear - deletes all generated scene files (from previous runs).
If set, the configuration file is ignored, therefore can be specified as an empty
string: python lteval.py "" -fc.

• --eof (default), --no-eof: End on failure - whenever execution of the script
should be stopped when rendering of scene fails.
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4.6 ltevalwebgen.py
The ltevalwebgen.py script generates a website that allows immediate evaluation
of the lteval.py renderings. It has one mandatory parameter - path to the out-
put folder of one of the lteval.py runs. After a search of the output folder for
rendered images is completed, ltevalwebgen.py builds up the website, including
not just the expected renderings (ones specified by the configuration file of this
output folder) but everything it has found. Therefore, if the output folder has an
expected structure (figure 4.2), ltevalwebgen.py can generate the website, making
it usable even outside of the evaluation framework. Currently, only .exr images
are supported, but this is not a big limitation if we consider that most of the
renderers can render images in this format.

There is also one optional parameter available:

• -d, --d: Display - displays the generated website with ltevalwebdisplay.py
(default parameters).

4.7 ltevalwebdisplay.py
The generated website can not be displayed directly because of the HDR (high
dynamic range) images produced by rendering - they need special treatment.
Therefore, the ltevalwebdisplay.py script is necessary to handle the displaying
of the website. It starts a web server on the local machine and opens up the
generated website in the browser. It takes one mandatory parameter, which is a
path to the output folder (same as ltevalwebgen.py) or the index.html file inside
of it.

One optional parameter is available:

• -p, --p: Port - port of the local web server (default 8000).

The main web page (index.html) of the displayed website presents a list of
test cases with their descriptions and a list of scenes with links to additional web
pages for viewing and evaluation of their renderings (figure 4.3).

It is highly recommended to have only a single ltevalwebdisplay.py running on
a port, otherwise, the behavior of multiple webservers on the same port becomes
unpredictable.

Execution of the script can be stopped by closing the console or sending
an interrupt signal (SIGINT) with Ctrl+C. If the script does not react to the
interrupt signal immediately, we recommend forced refresh of the web page in
the browser (usually Ctrl+F5) - so the preferred order is to try to interrupt the
script before the web page is closed in the browser. The same recommendation
applies whenever multiple ltevalwebdisplay.py scripts were run on the same port.
Forced refresh clears the cached files of the browser before it reloads the web
page. These issues happen because of caching on the side of the browsers and
interactions of browsers with the webserver, where we do not have control over
what happens.
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Figure 4.3: Evaluation framework website - image viewer.
One of the available web pages on the website presenting all rendered scenes in a
single image viewer. We can observe from the URL that the web page is hosted
on the current computer on port 8000.
We can select the displayed image in the menus:
First (top) row - scene selection.
Second row - image type selection. Following rows depend on the selected type.
For Img and References, a third row will allow selection from rendered test cases
of the scene and their references, respectively.
The rest of the available options offer various ways of image comparison. If any
of them is selected, two additional rows are displayed to select images to be
compared. In the figure, we can observe a difference image of mitsuba and pbrt
test cases in the cbox_classic scene.
It is possible to move the image around (mouse) or zoom in and out (scroll wheel).
Additional options (e.g., increasing or decreasing of the image exposure) are de-
scribed in the help menu opened with ? shortcut. Note that all the shortcuts
presented in the help menu are case sensitive.
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4.8 Configuration File
Configuration files are the centerpiece of the evaluation framework. They, as the
only mandatory parameter of the lteval.py script, specify what light transport
algorithms with their settings are used to render selected evaluation scenes.

Because the configuration file (figure 4.4) is a Python file, proper Python syn-
tax is required, and all strings and identifiers are case sensitive. When it is loaded
by lteval.py it is executed as a Python script, so it is possible to use any valid
Python code inside of it. At the end of the execution of the configuration file,
the four following variables must be defined and have required content: configu-
ration, scenes, renderers, and test_cases. That can be easily done even without
knowledge of Python because baring a few details syntax is the same as in JSON
- popular and simple file format.

Note that we can specify any path in the configuration file as absolute or
relative. Relative paths are relative to the folder of the lteval.py script that
executes the configuration file. Also, we recommend using forward slashes /
instead of backslashes, which need to be escaped \\.

In the following sections, we discuss all parts of the configuration file from
figure 4.4. This file and other additional commented examples of configuration
files can be found in the configurations folder of the evaluation framework (see
4.4).

4.8.1 configuration
This dictionary allows us to control some of the decisions made by the lteval.py
script:

• "name": string - Name of the configuration and the output folder. If not
defined, the name of the configuration file is used instead.

• "description": string - Description of the configuration, shown on the
index page of the generated website.

• "output_dir": path - Path to the folder inside of which the output folder
of the configuration will be created.

• "output_dir_date": boolean - Whether the current date and time should
be appended to the name of the output folder. This allows us to repeatedly
run the same configuration without overwriting results from its previous
runs.

• "webpage_generate": boolean - Whether the ltevalwebgen.py website
should be generated in the output folder.

• "webpage_display": boolean - Whether the generated website should also
be displayed with ltevalwebdisplay.py.

All of these parameters are optional, but because the configuration variable
itself is mandatory, at least configuration = {} must be defined.
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# MANDATORY - Dictionary of settings
configuration = {

"name": "cfg example ", # OPTIONAL , default : name of the configuration file
" description ": " Configuration file basic example ", # OPTIONAL
" output_dir ": " results ", # OPTIONAL , default : results
" output_dir_date ": True , # OPTIONAL , default : True
" webpage_generate ": True , # OPTIONAL , default : False
" webpage_display ": True , # OPTIONAL , default : False

}

# MANDATORY - List of scenes
scenes = [" cbox_classic ", " cbox_indirect "]

# MANDATORY - Dictionary of renderers
renderers = {

" mitsubaRenderer_0_5 ": {
"type": " mitsuba_0_5 ", # MANDATORY
"path": "data/ renderers / mitsuba_0_5 / mitsuba .exe", # MANDATORY
" options ": "", # OPTIONAL

},
}

# OPTIONAL - Dictionary of re -used sets of parameters
parameter_sets = {

" mitsubaLQ ": {
" integrator ": [

["type", "", "bdpt"],
[" maxDepth ", " integer ", 10]

],
" sampler ": [

["type", "", " independent "],
[" sampleCount ", " integer ", 2],

],
" rfilter ": [["type", "", "box"]],

},
" mitsubaHQ ": {

"base": [" mitsubaLQ "],
" sampler ": [[" sampleCount ", " integer ", 8]] ,

},
}

# MANDATORY - List of test cases
test_cases = [

{
"name": " LQ_test_case ", # MANDATORY
" description ": "Fast preview rendering ", # OPTIONAL
" renderer ": " mitsubaRenderer_0_5 ", # MANDATORY
" params ": {"base": [" mitsubaLQ "]}, # OPTIONAL

},
{

"name": " HQ_test_case ",
" description ": "High quality rendering ",
" renderer ": " mitsubaRenderer_0_5 ",
" params ": {"base": [" mitsubaHQ "]},

},
]

Figure 4.4: Configuration file example.
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4.8.2 scenes
List of scenes to be rendered. Names of selected scenes must match the names
of folders in the scenes directory (see 4.4). Scenes described in chapter 5 are
provided as part of the evaluation framework. We discuss how to add a new
scene to the framework in section 4.9.4.

As a mandatory variable, the minimal definition is: scenes = []. But then
no scene is selected, thus nothing is rendered.

4.8.3 renderers
Dictionary of renderers that may be used for rendering of scenes with settings
defined in test_cases.

Every renderer in the dictionary is identified by its key (e.g., mitsubaRen-
derer_0_5 in figure 4.4), and defined by the dictionary value, which is another
dictionary with the following parameters:

• "type": string - Type of input (scene) files of the renderer. Type must
be the same as one of the scripts in the data/scripts/renderers folder (see
4.4). These scripts are used to prepare input files for the renderer based on
the test_cases.

• "path": string - Path to the executable of the renderer.

• "options": string - Command-line parameters that are passed to the
renderer when rendering starts.

Note that renderer is defined just as a named executable with a specified input
file format. This loose definition is important - it allows us to define multiple
renderers with different executables and same scene format (testing of different
algorithms across derivations of the same rendering framework), or to use a new
version of the renderer which is backward compatible with older input format.

Same as with scenes, we need to define renderers variable (at least renderers
= {}), but if there is no renderer, we will be unable to define test_cases, hence
unable to render anything.

4.8.4 parameter_sets
Parameter sets represent named groups of parameters, which are, in the end,
translated to formats understandable by specific rendering frameworks. On their
own, they are an abstract structured grouping of values whose meaning depends
on their application. Their working is explained in figure 4.5.
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parameter_sets = {
# Parameter set name
" mitsubaLQ ": {

# Dictionary of statements
" integrator ": [

# List of parameters
["type", "", "bdpt"],
[" maxDepth ", " integer ", 10]

],
" sampler ": [

["type", "", " independent "],
[" sampleCount ", " integer ", 2],

],
" rfilter ": [["type", "", "box"]],

},
" mitsubaHQ ": {

# Take base parameter set ...
"base": [" mitsubaLQ "],

# ... and add/ modify parameters of " sampler "
" sampler ": [[" sampleCount ", " integer ", 8]] ,

},
}

Figure 4.5: Parameter sets.
There are two named parameter sets: mitsubaLQ and mitsubaHQ. Parameter set
itself is a dictionary of statements with their lists of parameters (parameter lists).
A parameter list is a list of lists of length three (it is a frequent mistake to forget
this when specifying a list with single parameter). We can interpret parameter
as: [name - string, type - string, value - anything], where both name
and type together identify the parameter (so multiple parameters of the same
name and different type can be defined). If there are multiple parameters with
the same name and type, the value of the last one in the parameter list is applied
(allows redefinition of parameters). Statement identifiers then identify individual
parameter lists and parameter sets group together statements.
Every parameter set may have one "base" statement, which is interpreted
uniquely (see mitsubaHQ). After the base identifier follows a list (not a list of
lists) of names of previously defined parameter sets.
Content of these sets is merged in the order of their declaration in the base
list in such a way that parameter sets under the same statement identifier are
concatenated, applying the last definition of the parameter from all the base
parameter sets (recall the rule that the last parameter of the same name and
type applies).
Now, the merged base is a current definition of the parameter set, and we are free
to define any statements. Furthermore, their parameter sets will take precedence
over the base ones because they are defined later.
Therefore, we can define completely new statements or add new parameters to
already existing parameter sets or modify values of parameters in the already
existing parameter sets.
In the mitsubaHQ set, we use mitsubaLQ as a base and only redefine the value of
one of the sampler’s parameters.
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4.8.5 test_cases
List of test cases - rendering configurations used for rendering of scenes. Each
test case is used for rendering of all scenes and is defined with the following
parameters:

• "name": string - Name of the test case. Test case names must be unique,
if they are not, an error message is printed, and execution of the lteval.py
script stopped.

• "description": string - Description of the test case, shown on the index
page of the generated website.

• "renderer": string - Identifier of renderer defined in the renderers dic-
tionary (dictionary keys are the identifiers).

• "params": parameter set - Parameter set whose parameters will be
passed to the renderer. Scenes will be rendered with default settings if
the parameter set is empty.

Test case ties together renderer and parameters. Altogether we have a ren-
dering executable, know its input file format and parameters which we want to
pass to it.

Because parameter sets are abstract groups of parameters, their interpretation
may differ between rendering frameworks. We provide support for Mitsuba and
PBRT (scripts in data/scripts/renderers folder - see 4.4), and as such, we have
specified the interpretation of parameter sets for them - see figure 4.6.

Note that every parameter set needs to be created with a renderer in mind
because, among other things, names of parameters vary between different ren-
dering frameworks. Therefore, basic knowledge of the renderers in question is
necessary 4.

As a mandatory variable, test_cases must be at least defined as an empty list:
test_cases = [].

4Mitsuba: https://www.mitsuba-renderer.org/releases/current/documentation_lowres.
pdf, PBRT: https://www.pbrt.org/fileformat-v3.html [Online; accessed 2020-07-20]
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# Parameter set to be interpreted as Mitsuba settings
" params ": {

" integrator ": [["type", "", "bdpt"], [" maxDepth ", " integer ", 10]] ,
" sampler ": [["type", "", " independent "],[" sampleCount ", " integer ", 2],],
" rfilter ": [["type", "", "box"]],

},

# Parameter set to be interpreted as equivalent PBRT settings
" params ": {

" Integrator ": [["type", "", "bdpt"], [" maxdepth ", " integer ", 9]] ,
" Sampler ": [["type", "", " random "], [" pixelsamples ", " integer ", 2]] ,
" PixelFilter ": [["type", "", "box"]],

},

<!-- Mitsuba interpretation -->
<integrator type="bdpt">

<integer name=" maxDepth " value ="10"/>
</ integrator >

<sampler type=" independent ">
<integer name=" sampleCount " value ="2"/>

</ sampler >

<rfilter type="box"/>

# PBRT interpretation
Integrator "bdpt" " integer maxdepth " [9]
Sampler " random " " integer pixelsamples " [2]
PixelFilter "box"

Figure 4.6: Parameter set interpretation in Mitsuba and PBRT.
Rendering settings of both Mitsuba and PBRT are defined inside of their input
scene files (see 1.4.1). Therefore, if we redefine some settings in the parameter
set (i.e., define statements with the same identifier), we may need to take the
existing evaluation scene files and modify them.
We have not wanted to allow mixing of parameters inside of the scene files with
the ones defined in the parameter lists of individual statements (to avoid un-
expected outcomes because of an unknown content of scene files). Thus, any
original settings in the scene files are overwritten by the newly defined ones in
the parameter set. Consequently, any statement in the parameter set must always
define a valid setting of the renderer.
Mitsuba and PBRT file formats are similar in structure, although one is an XML
file, and the other is a native text format of the renderer. Each statement (set-
ting) has an identifier (name) and type, so rfilter (Mitsuba) and PixelFilter
(PBRT) above are minimal valid statements. Type is defined with parameter
["type", "", "definition_of_type"], and any additional parameters are un-
derstood as ["parameter_name", "parameter_type", parameter_value]. For
the exact mapping of parameter sets to the rendering settings, refer to the figure
above.
Three settings (integrator, sampler, and filter) of this example are the only ones of
interest when it comes to comparison of the light transport algorithm of Mitsuba
and PBRT on the set of evaluation scenes. Nonetheless, it is possible to specify
any other setting in the same way. Also, not just integer, but other kinds of
values are supported: float, string, boolean, and lists - refer to examples in the
configurations folder (4.4).
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4.9 Implementation
The development of the evaluation framework presented in this chapter was
guided by the principles discussed in section 3.2. Nevertheless, a few specific
questions had to be answered:

• How to display rendered images on a website - 4.9.1.

• How should the configuration file look like - 4.9.2.

• How to pass settings from the configuration file to the renderer - 4.9.3.

• How to extend the framework to support new renderer, renderer file format,
or a new scene - 4.9.4.

Also, relationships between different scripts that make up the framework are
briefly discussed in section 4.9.5.

4.9.1 Third-Party Software
To display high dynamic range images directly in the website we use following
third-party software:

• Javascript Extended-Range Image Viewer (JERI) 5

– Modified Apache 2.0 license.
– Allows displaying of high dynamic range images (EXR) inside a web-

site.
– Provides the image viewer of the generated website.
– Extended to include difference and relative difference comparisons.

We have wanted to generate difference images on the fly because there can
be any number of test cases, and the number of possible comparisons between all
of the resulting images (and reference images) increases with the square of the
number of test cases.

JERI allowed to display rendered high dynamic range images and their com-
parisons (generated on the fly) inside of the browser, and also provided an image
viewer, which could be adjusted to our needs.

4.9.2 Configuration File Design
There are many different ways how to design a configuration file for the evaluation
framework. Its current presented form tries to achieve the following properties,
which were derived from the evaluation framework requirements (3.2):

5https://jeri.io/index.html [Online; accessed 2020-07-20]

44

https://jeri.io/index.html


• Be simple and efficient. Writing and adjustment of configuration files is
the most time-consuming part of the work with the framework. Therefore
configuration files must be as simple as possible. To do so, we tried to mini-
mize the number of mandatory components while retaining other discussed
properties. Additionally, we introduced the re-use of named parameter sets
("base" statement), which greatly cuts down the length of the test_cases.

• Handle multiple renderers. It must be possible to use different renderers
or multiple versions of the same renderer to allow direct comparison of
their algorithms in the framework. All of that is possible with the current
definition of renderer as a named executable with a specified input type
(see 4.8.3).

• Handle unknown settings and parameters. We do not know what algorithm
will be used and what are its valid parameters. Thus, we need to be able to
take any set of parameters and pass them to the renderer. This is achieved
by the translation of parameter sets into a renderer input with a fixed and
straightforward approach that ignores the purpose of the parameters (figure
4.6).

• Avoid ambiguos parameters. All rendering settings defined in the configura-
tion file are applied to evaluation scenes, which have their default rendering
settings. Therefore, we could theoretically use the default settings as an
implicit "base" parameter set, but we refrained from doing so. Currently,
any setting defined in the configuration file fully overwrites the default one.
So, for every setting, there is a full or no definition of it in the configuration
file. This helps to avoid unexpected rendering results caused by the ap-
plication of default parameters, which are not directly accessible from the
configuration file.

4.9.3 Scene Files and Passing of Parameters
Passing of settings from test cases to renderers and handling of scenes files are
closely tied together. Recall that some renderers have their settings specified
inside of scene files (1.4.1), which is exactly the case of both Mitsuba and PBRT.
Therefore, if we want to render a scene with modified settings, we need to create
new scene files based on both the original scene files and settings defined in the
test case.

Before we describe how are these new scene files created, it is necessary to
explain how are Mitsuba and PBRT scenes stored in the evaluation framework.
Take scene_a from figure 4.1, there is a folder for 3D objects of the scene (meshes)
but also a folder with a version of the scene for each of the supported rendering
frameworks. Content of these folders is the same for Mitsuba and PBRT:

• description.suffix - Scene description (geometry, light sources, materials).

• settings.suffix - Renderer settings, including camera (everything that is not
part of the scene description).

• scene.suffix - Main scene file, includes settings.suffix and description.suffix.
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• reference.exr - Reference rendering (image) of the scene.

Where .suffix depends on the renderer (.xml or .pbrt). The division of the
scene into description and settings files reflects the structure of Mitsuba and
PBRT scene formats. For particulars of this division see any of the provided
scenes. The scene file is not necessary for the rendering of the scene with the
evaluation framework, but it allows to render the scene outside of the framework.

When the evaluation framework needs to render a scene, it:

1. Reads the settings file.

2. Overwrites any settings which are defined in the test case.

3. Appends any remaining settings from the test case.

4. Appends directive to include the description file.

5. Outputs the modified version of settings file next to it as __lteval_{test_

case_name}.suffix file. It is used as an input of the renderer.

6. After the rendering finishes, this file is deleted (can be controlled - see 4.5).

It would be possible to do this even without the division of the scene into
multiple files. But that may not be the case for other renderers (e.g., scene
file passed to the renderer together with settings as command-line arguments),
moreover division to settings and scene description is quite natural and increases
performance because the description does not have to be loaded.

4.9.4 Extending the Framework
For all types of extensions, we first and foremost recommend having a look at
the presented evaluation framework. Its support of Mitsuba 0.5 and PBRT 3 is
implemented as would any other extension, and the same applies to the provided
evaluation scenes.

New Scene

To add a new scene, a corresponding folder must be created in the scenes folder
of the evaluation framework with subfolders containing the required files for each
of the supported scene formats (figure 4.1). Although requirements may differ,
they are very similar for both currently supported scene formats (Mitsuba 0.5
and PBRT 3), refer to 4.9.3.

New Renderer

To add a new renderer that uses already supported scene format, nothing needs
to be done - the renderer can be defined in the configuration file whenever it is
needed (4.8.3). If the scene format of the renderer is not supported, it must be
added to the evaluation framework first - refer to the following section.

46



New Scene Format

To support a new scene format, a corresponding script in data/scripts/renderers
must be created (figure 4.1). The name of this script must be the same as the
name of the scene format, and it must contain exactly one class derived from the
abstract base class AbstractRenderer, which is declared inside of data/scripts/ren-
derers/abstractrenderer.py. For implementation examples refer to the mitsuba_

0_5.py and pbrt_3.py scripts.

4.9.5 Architecture
The architecture of the evaluation framework is presented in figure 4.7. This
figure showcases the import relationship of individual Python scripts that make
up the framework:

• Public (front-end) scripts

– lteval.py - main script of the evaluation framework.
– ltevalwebgen.py - generation of website presenting images rendered by

the evaluation framework.
– ltevalwebdisplay.py - displaying of the generated website.

• Implementation of main features

– lteutils.py - implementation details of lteval.py.
– webgen.py - implementation of features provided by ltevalwebgen.py.
– webdisplay.py - implementation of features provided by ltevalwebdis-

play.py.

• Helper scripts

– futils.py - methods for importing of modules from files. Used for on-
demand loading of configuration files and scripts providing support of
rendering frameworks.

– outputconsts.py - constants, which specify names of subfolders and files
in the output directory.

• Support of rendering frameworks

– abstractrenderer.py - abstract base class of classes providing support
of rendering frameworks.

– mitsuba_0_5.py - support of the Mitsuba 0.5 rendering framework.
– pbrt_3 - support of the PBRT 3 rendering framework.

• Handling of basic objects.

– scene.py - loading and representation of scenes in the framework.
– tcase.py - loading and representation of test cases in the framework.
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lteval.py ltevalwebgen.py ltevalwebdisplay.py

webgen.py webdisplay.py

tcase.pyscene.py

outputconst.py

lteutils.py

futils.py

abstractrenderer.py

mitsuba_0_5.py pbrt_3.py

Figure 4.7: Evaluation framework import graph.
Green - public (front-end) scripts. Blue - implementation of the main features.
Yellow - helper scripts. Red - support of rendering frameworks. Purple - handling
of basic objects.
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5. Evaluation Scenes
In this chapter, we present a set of test scenes for evaluation of light transport
algorithms. We explain the general decision process used to determine whenever
a new scene should be added to the set and its application and consequences (5.1).
Then we discuss the development of these scenes, issues that had to be resolved,
and limitations imposed by trying to match scenes across different rendering
frameworks (5.2). Finally, we showcase the resulting documented set of scenes
(5.3).

5.1 Introducing New Scene
Whenever an addition of a new scene is considered, we need to keep in mind
properties we want the evaluation set to have (introduced in 3.3). Especially
important is to try to cover as many different light transport situations while
avoiding multiple scenes for evaluation of the same case of light transport.

To achieve that, we have followed these steps for any potential new scene:

1. In a few words or short sentences describe (brief description), what light
transport situation is tested by the scene. The longer the description needs
to be, the bigger chance that the scene is too complicated and should be
simplified.

2. Describe the light transport situation of the scene in detail (complete de-
scription).

3. Go over the current scenes in the set and find any that test similar light
transport situations as the new scene. It should be possible to filter out
most of the scenes with just a comparison of the brief descriptions, and for
the remaining ones, complete descriptions need to be analyzed. This step
has 3 possible outcomes:

(a) No scene was found - we are safe to add the new scene to the set.
(b) Some similar scenes were found - if we can reasonably argue that the

new scene introduces different light transport situation(s), we can add
it to the set.

(c) Some highly similar scenes were found - we may swap the new scene
with one of them. There should not be a case when we would want to
swap multiple scenes for a single one because that would mean that
there were redundant scenes already or the new scene covers a wider
variety of light transport situations which are singled out by the found
scenes.

For the cases a) and b), we may be interested in differences between the similar
scenes and reasons why was a scene originally included despite their existence.
Therefore, we want to have easily available information about what scenes are
similar and reasoning what makes the scene special in comparison to them. This
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information will ease up navigation through the set and management of related
scenes.

If we put it all together, our documentation of the scene should contain the
following parts:

• Brief description of the tested light transport situation in the scene

• A complete and in-depth explanation of the light transport in the scene

• List of similar scenes with regards to light transport situations (if any exist)

• Discussion of what makes the scene unique compared to the other similar
scenes (if any exist)

We have gone through the explained procedure of new scene addition for each
scene that we present in this chapter. Documentation of all scenes contains at
least the four discussed main points.

5.2 Development
To be able to compare light transport algorithms across different rendering frame-
works on the same scene, we needed the scene to be as easily and well reproducible
in as many renderers as possible. For this reason, we had to use scene description
features that are as widespread as possible.

Nonetheless, even the simplest features often differ across the various ren-
derers: be it their names, available parameters, default, or accepted values. And
even if everything seems to be the same, the renderer may interpret them in unex-
pected ways. But we had to start somewhere, and so we have picked Mitsuba 0.5
and PBRT renderers as the ones to begin our endeavor to develop reproducible
scenes (for reasoning why these renderers were picked see 3.4).

Our approach was to plan the scenes with as simple features as possible (lim-
itations that we have imposed on the development ourselves) and if even then,
there were differences between the resulting renderings from the Mitsuba and
PBRT we tried to find out what caused them and if it was possible to adjust the
scenes to resolve them (limitations imposed by the individual renderers).

In the following sections, we discuss what limitations had to be accepted
(5.2.1) and present our full scene creation workflow (5.2.2).

5.2.1 Limitations
General

• Coordinate system handedness. Cameras in Mitsuba are right-handed, and
PBRT uses a left-handed system. We have decided to follow the right-
handed system (because it is also the system of the most 3D modeling tools
- e.g., Autodesk 3ds Max or Blender). For this reason, we reverse the X-axis
of PBRT by applying: Scale − 111 before the camera is defined.
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• Near and far plane distances. Cameras in the PBRT have a hardcoded near
and far plane distances, at values 0.01, and 1000 respectively 1, anything
closer or further away from the camera is not visible in the rendered image.
In Mitsuba, it is possible to adjust these values, but PBRT does not even
document them in its scene description specification. Our scenes are in sizes
of up to 500 units.

Geometry

• No shape primitives. We have avoided any shape primitives like Sphere,
Cone, or Cube. We can not assume that they are available in other rendering
frameworks (especially some more complex ones like hyperboloid in PBRT,
which is not even available in Mitsuba).

• Everything as a triangle mesh. Triangle mesh is the most simple and widely
supported representation of 3D geometry. Even if different renderers need
various 3D file formats (e.g., OBJ, PLY), triangle meshes can be translated
to practically all of them.

• Explicit vertex normals. Although vertex normals of triangle meshes can
be calculated from individual triangles (Mitsuba does it properly), we have
found out that PBRT was unable to do so. Specifically, while Mitsuba
can take into account that one single vertex is shared by multiple triangles
(smoothing), PBRT always interpreted such models as faceted (it is what
happens in the figure 3.2 where same 3D models are loaded).

• 3D models already in their places. We want models that are loaded by the
renderer to be already at their intended places to avoid declarations like
translation, rotation, and scaling for each of them. This should ease up
the translation of the scenes between different rendering frameworks. An
exception to this rule are models that are sizable and are in the scene in
multiple copies.

• Simple models. Complex models are unnecessary as long as they don’t
change light transport in some intended way. Some algorithms may face
difficulties depending on the geometry complexity (e.g., finding of nearby
photons of the photon mapping algorithm), but from the perspective of the
light transport, the situation is often the same no matter the complexity of
the models. This leads to simple scenes where light transport is the main
focus and not their look.

Light Sources

• All light sources as area lights (emissive geometry). An area light is both
the most basic type of light source (supported by every renderer) and one of
the more realistic ones (compared to often used point lights or spotlights).
It introduces the DD substring to all paths, which allows a wider variety of
light transport algorithms to evaluate some of the harder scenes - see 2.3.2.

1Code fragment: PerspectiveCameraMethodDefinitions at http://www.pbr-book.org/
3ed-2018/Camera_Models/Projective_Camera_Models.html [Online; accessed 2020-07-20]
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Which is is why we have used area lights in all the presented scenes, and
we can express all the possible light paths as LDD (D|S)∗ SDE.

• Only faceted area lights. This tricky limitation comes from the PBRT, which
is unable to use smooth models for area lights. Specifically, no matter what
normals the model has if it is used as an emissive geometry, it is interpreted
as if it was a faceted model. Luckily in most cases, we can get by with just
squares or rectangles, and in the worst-case, a highly subdivided faceted
model can be used because it will be indistinguishable from a smooth one.

Materials

• Basic materials. Materials are the biggest problem when it comes to the
reproducibility of scenes across different renderers. Lambertian diffuse sur-
faces and perfect mirrors are almost the only materials matching across the
rendering frameworks. Additionally, we also need dielectrics to model re-
fractions, and conductors are the simplest solution to the modeling of glossy
materials. Therefore, only these four materials are currently used: (Lamber-
tian) diffuse, perfect mirror, dielectric (glass), and conductor (metal). Lay-
ered materials should be avoided because they do not introduce new light
transport situations, which could not be modeled by the basic materials.
On top of that, they also add unnecessary complexity to the reproduction
of the scenes between renderers.

• Minimized number of material types in the scene. We can not assume that
the basic materials will be reproducible across different renderers. There-
fore, the fewer materials in the scene are used, the better chance it will be
reproducible.

• GGX for the microfacet distribution function. PBRT uses GGX in its ma-
terials (can not be changed), while Mitsuba allows selecting GGX. Luckily
GGX is quite popular and widespread, so it is a reasonable choice of micro-
facet distribution.

• Conductor roughness. The roughness of conductor in PBRT (metal mate-
rial), can not be less than 0.01. For this reason, it is impossible to model
perfectly smooth conductors, so if they are truly needed, it should be pos-
sible to use mirror material instead.

5.2.2 Workflow
When we decided to include a scene, our workflow of scene creation followed:

1. Model the scene in Autodesk 3ds Max [6] and use Corona Renderer[23] to
quickly iterate over various setups of light sources and materials until the
target look of the scene is achieved.

2. Export geometry of the scene and translate it to file formats supported by
Mitsuba and PBRT.
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3. Create a similar scene in Mitsuba (materials may slightly differ, but the
rest of the scene is reproducible).

4. Create a matching scene (to Mitsuba) in PBRT. Iterate until all issues are
resolved (as a consequence, Mitsuba scene may be modified if necessary) -
document the unresolvable ones. In this step, difference images are used
extensively.

5. Do final tweaks (e.g., small changes to now matching materials).

6. Render reference images of both versions of the scene.

5.3 Scenes
In this section, we present the created test scenes based on the methodology for
the evaluation of light transport algorithms introduced in 3 and previous sections
of this chapter.

Matching versions of these scenes are available for Mitsuba and PBRT ren-
derers as a part of the evaluation framework. If needed, their development files
from Autodesk 3ds Max are also provided in .max and .fbx formats. For both
refer to 3.4. We also include unbiased reference images for Mitsuba and PBRT,
for information about specific settings which were used for their rendering see
figure 5.2.

Presentation of every scene includes (for organization of images see figure 5.1):

• Big reference image from Mitsuba renderer.

• Small (corresponding) reference image from PBRT renderer.

• Difference and relative difference images between Mitsuba and PBRT (green
and red represent brighter and dimmer pixels of the Mitsuba reference com-
pared to the PBRT reference, respectively). Difference images have expo-
sure increased by 5 stops (equals to 32 times the brightness) to highlight
the differences.

• Documentation of the scene (see 5.1).

• Additional discussion about the scene, its development, and differences be-
tween Mitsuba and PBRT versions.

For other (non-matching) scenes for Mitsuba and PBRT renderers, we rec-
ommend Bitterli’s rendering resources [22]. PBRT scene repository is also quite
sizable 2.

2Public domain, https://www.pbrt.org/scenes-v3.html [Online; accessed 2020-07-20]
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Figure 5.1: Organization of scene images.

Name Maximum depth Samples per pixel
cbox_classic 10 20000
cbox_indirect 10 20000
cboxm_diffuse_lsame 10 50000
cbomx_diffuse_lvar 10 50000
cboxm_glossy_lsame 20 50000
cboxm_glossy_lvar 20 50000
veach_mis 2 20000
pool_simple 10 20000
pool_classic 10 200000
ring 10 100000

Figure 5.2: Reference images properties.
All of the reference images were rendered using bidirectional path tracing, box
reconstruction filter, and random sampling. The table above describes the only
settings which varied between the individual scenes.
Maximum depth specifies the longest path in the generated reference image -
where the path is measured in a number of segments, not bounces (i.e., for a
number of bounces on the path subtract 1).
The number of samples per pixel varied between the scenes, depending on the
approximate rate of convergence. For the pool_classic scene, even 200 000 samples
were not enough to get fully converged images (around 3 days of rendering time
on a single server machine).
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5.3.1 cbox_classic

Brief Description: Simple global illumination in Lambertian Cornell box.

Full Description: Recreation of the classical Cornell box 3 with Lambertian
diffuse surfaces, single area light source, and simple geometry. The focus of this
scene is not on some specific light transport situation and how well it is resolved
(light transport in the scene is almost as simple as it gets), but whenever an
algorithm works at all and produces unbiased results. If this scene is not rendered
correctly, some fundamental issues need to be resolved before the use of any other
evaluation scene can be considered.

Similar Scenes: cbox_indirect

Included Because: Compared to other similar scenes, cbox_classic on purpose
presents a global illumination situation that can be resolved with minimal effort.

Additional Comments: We can observe that both Mitsuba and PBRT con-
verge to the same result, which is an indication that area lights and diffuse ma-
terials are evaluated in the same way and that any other scene using them will
also be highly reproducible.

3http://www.graphics.cornell.edu/online/box/ [Online; accessed 2020-07-20]
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5.3.2 cbox_indirect

Brief Description: Indirectly illuminated Lambertian scene.

Full Description: The area light on the floor of this scene is hidden behind
a wall, so most of the scene is illuminated indirectly by the light scattered from
the back of the scene. Because of Lambertian surfaces, additional bounces on the
light paths greatly diminish resulting contributions, therefore algorithms that can
find and exploit shorter paths achieve way faster convergence.

Similar Scenes: cbox_classic, cboxm_diffuse_lsame

Included Because: This scene simulates varying degrees of indirect illumina-
tion from a single light source.

Additional Comments: Both Mitsuba and PBRT converge to the same im-
age, except for the corner between the ceiling and back wall. This is surprising if
we consider that these walls are the same geometry as in the cbox_classic scene.
Because this difference has not leaked into the rest of the global illumination in
the scene, we guess that it is connected (or at least should be reproducible) with
just a direct illumination.
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5.3.3 cboxm_diffuse_lsame

Brief Description: Indirect illumination by many light sources of the same
intensity in the Lambertian scene.

Full Description: This scene made up of interconnected boxes showcases a
global illumination situation where many light sources greatly contribute to in-
direct illumination. Because of Lambertian surfaces and light sources of equal
intensity, the only property which influences the contribution of the light path
is a number of bounces on it. This makes all the light sources almost equally
important.

Similar Scenes: cbox_indirect, cboxm_diffuse_lvar, cboxm_glossy_lsame,
cboxm_glossy_lvar

Included Because: Like cbox_indirect, this scene simulates varying degrees of
indirect illumination but from many light sources where the majority of them is
always occluded, therefore adding another dimension to the indirect illumination
evaluation. Compared to other cboxm scenes, all light sources have the same
intensity, and contributions of paths depend only on the number of bounces.

Additional Comments: Differences in brightness at the corners between walls
of the boxes can be observed again (see cbox_indirect).
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This scene is one of the cboxm scenes targeting global illumination calculations
with many light sources in different conditions. These scenes share the same
design:

• 9x9x9 grid of interconnected boxes. Boxes on the sides of the grid are sealed
(i.e., the only way how the light can get outside of the grid is through its
front side).

• Boxes are instanced, so any adjustments to the content of boxes are simple
to do.

• 3x3 boxes at the front side of the grid are observed. The upper left box of
the rendered image is the center box of the front side (to introduce more
variance between the observed boxes, in situations where light sources have
the same intensity) - figure 5.6a.

• Changes to the shape or number of objects inside of the individual boxes
would not fundamentally change the properties of light transport inside of
the scene, it would only change what specific paths light needs to take to
get to the camera.

• Changes to the size and/or the number of holes connecting boxes could
introduce some interesting light transport situations, like brightly lit boxes
connected to the surrounding with small holes (similar to cbox_indirect but
on a bigger scale with more light sources). Nonetheless, with the presented
setup of connecting holes, similar cases are already happening (figure 5.6b).

• Changes to the intensity of light sources would make different paths of the
same kind bring varying contributions. We explore them by lvar variations
of cboxm scenes.

• Changes to the materials, influence what kinds of paths are the most con-
tributing. We explore them by glossy variations of cboxm scenes.

(a) (b)

Figure 5.6: cboxm diagrams.
a) Camera focus.
b) The further the box is, the harder it is to sample direction that will lead to it
and not to other boxes. If the light sources have varying intensities, some light
paths will behave the same way as in the case of the brightly lit box with small
holes.
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5.3.4 cboxm_diffuse_lvar

Brief Description: Indirect illumination by many light sources of varying in-
tensity in the Lambertian scene.

Full Description: Variation of the cboxm_diffuse_lsame scene with varying
intensities of light sources. Contributions of paths with the same number of
bounces differ, in extreme cases making even a longer path more efficient than
a shorter one. Algorithms that exploit higher contribution paths and minimize
time spent following low contribution paths will have an advantage in this scene.

Similar Scenes: cboxm_diffuse_lsame, cboxm_glossy_lsame, cboxm_glossy
_lvar

Included Because: Introduces an additional level of complexity to the cboxm_

diffuse_lsame scene, by making some light sources more preferable than others.

Additional Comments : Same as cboxm_diffuse_lsame applies.
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5.3.5 cboxm_glossy_lsame

Brief Description: Indirect illumination by many light sources of the same
intensity in a scene with glossy surfaces.

Full Description: Variation of the cboxm_diffuse_lsame scene with smooth
glossy (conductor) materials. Glossy specular reflections reflect most of the in-
coming light in roughly the same direction. That makes multiple glossy bounces
more efficient than a single bounce from the Lambertian surface (in terms of
transmitted radiance). Therefore, it can no longer be said that shorter paths are
always preferable.

Similar Scenes: cboxm_diffuse_lsame, cboxm_diffuse_lvar, cboxm_glossy_lvar

Included Because: Introduces different level of complexity than cboxm_dif-
fuse_lvar , this time making a specific type of light paths more preferable.

Additional Comments: Same as cboxm_diffuse_lsame applies. Glossy high-
lights of different brightness between Mitsuba and PBRT rendering are most
likely caused by differences in handling of conductor materials (the same issue
was observed in the veach_mis scene).
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5.3.6 cboxm_glossy_lvar

Brief Description: Indirect illumination by many light sources of varying in-
tensity in a scene with glossy surfaces.

Full Description: Combination of difficulties from the cboxm_glossy_lsame
and cboxm_diffuse_lvar scenes. Paths containing glossy specular reflections are
in a vacuum more efficient, but depending on the light source they connect to,
many of them are now almost worthless.

Similar Scenes: cboxm_diffuse_lsame, cboxm_diffuse_lvar, cboxm_glossy_

lsame

Included Because: Combination of complexities from other cboxm scenes.
They enhance each other and create a scene where the contribution of a light
path is unpredictable until it is connected to a light source.

Additional Comments: For discussion about the difference images, refer to
other cboxm scenes.
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5.3.7 veach_mis

Brief Description: Multiple importance sampling of direct illumination.

Full Description: Recreation of the well known Veach’s MIS scene that is
often used for evaluation of the efficiency of multiple importance sampling weights
for direct illumination estimation. We discussed the basics of MIS in 2.1.3 and
commented on this scene at length in figure 2.7.

Additional Comments: Mitsuba and PBRT converge to a similar result, but
specular highlights are not the same. The most likely cause is a difference in the
evaluation of the metallic material because sampling of area lights has introduced
no issues in the cbox_classic scene, and we can also observe the same issue in the
cboxm_glossy_lsame scene.
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5.3.8 pool_simple

Brief Description: Directly viewed SD caustics.

Full Description: This scene represents a pool viewed from the underwater.
We can easily observe classical pool caustics, caused by refractions from the
uneven water surface (in the scene modeled as a dielectric - glass). Small area
light allows even a path tracer to render the scene, albeit rather slowly. We can
express light paths of interest as LDD SD SDE, refer to 2.3.2.

Similar Scenes: ring

Included Because: Caustics are caused by refraction on a dielectric boundary.

Additional Comments: Fireflies (extremely bright pixels which are hard to
get rid of, by, for example, increasing the number of samples) can be observed
on the glass boundary in both Mitsuba and PBRT. It is an interesting challenge
to avoid them while maintaining the unbiasedness of many light transport algo-
rithms.

Difference images showcase that dielectrics behave differently in Mitsuba and
PBRT. These differences are not big enough to be observed when comparing
reference images by eye, although they are more apparent on the difference images
than in the case of conductors (see the veach_mis scene).
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5.3.9 pool_classic

Brief Description: Indirectly viewed SD caustics - SDS subpaths.

Full Description: This scene represents a pool viewed from outside of the
water. Like in the pool_simple scene, we can observe pool caustic but this time
indirectly through a glass wall placed at the side of the water body - making the
scene comparable to an aquarium. Light paths of interest can be expressed as
LDD SDS SDE, refer to 2.3.2.

Additional Comments: Like in the pool_simple scene, we can observe differ-
ences caused by dielectric materials used in the scene.

64



5.3.10 ring

Brief Description: Directly viewed S+D caustics.

Full Description: This scene simulates ring caustics. The curvature of the
ring focuses light towards the center, forming the observed caustic. Light re-
flected towards the other (shadowed) side of the ring is focused similarly, cre-
ating additional caustic in the shadow of the ring. Light paths of interest are
LDDS+DSDE, refer to 2.3.2.

Similar Scenes: pool_simple

Included Because: Caustics are caused by reflections from a highly smooth
conductor.

Additional Comments: Both Mitsuba and PBRT converge to the same result
(baring the negligible difference on the circumference of the ring in the relative
difference image).

65



Conclusion
In this thesis, we focused on the problems of comparison and evaluation of
physically-based renderers, in particular of their light transport algorithms. Our
goals were threefold. To define an approach that, without exceptions, can be used
for evaluation of light transport algorithms across different rendering frameworks.
Based on the approach, develop a curated test dataset for the evaluation (in our
case scenes). And finally, provide an automated framework that will facilitate the
evaluation. The goal of the thesis was not to evaluate different light transport
algorithms but to provide a means for it.

We have determined that the only objective approach to the comparison of
two algorithms that can be used across different rendering frameworks is their
correctness. As the most fundamental property of physically-based light trans-
port algorithms, it is indeed worthy of evaluation, but we had to address the
incompatibilities of different renderers and scene description formats they use.
Luckily there is only one correct solution to light transport in any scene, so if we
can create scenes in matching variations across different rendering frameworks,
we can also directly compare their renderings.

Therefore, we have developed a curated set of test scenes for the evaluation
of different properties of light transport algorithms. This set presents scenes
with hard global illumination situations like indirect illumination, many light
sources, or caustics. We provide this set of scenes in formats of the two most
popular research-oriented renderers Mitsuba and PBRT, together with their cor-
responding reference images. Renderings of our scenes in these two renderers are
comparable, but as we have observed, even these two popular and well-debugged
renderers give different results. Why is that so, and whichever one of these two
renderers is wrong, are questions for their developers, but these are also exactly
the kind of questions that we have wanted to introduce.

Finally, to facilitate the evaluation of light transport algorithms with these
scenes, we have developed an evaluation framework that allows us to define vari-
ous test cases (light transport algorithm, its properties, and even other rendering
settings), which are then used to render selected scenes. It can also generate a
simple website providing an immediate comparison of the rendered images. With
our framework, different renderers can be handled in one place, and furthermore,
it can be easily extended to support additional renderers or scenes.
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Future Work
The result of our work is a self-contained evaluation framework with its test
dataset. Therefore potential future work is focused on its improvements, exten-
sions, and practical applications, some concrete examples are:

• Support of additional renderers.

– LuxCoreRender and Cycles are the next obvious choices.
– Proprietary renderers are not usually physically-correct, but by sup-

porting some of them, we would bring the research and practical side
of the rendering closer together.

• Automated import of new scenes.

– Scenes of some formats would be possible to import to the evaluation
framework automatically.

– This has its limitations because we need to be able to handle arbitrary
content of scene files without knowledge of its purpose (e.g., never seen
before setting).

• Website working without a webserver.

• Additional test scenes

– Scenes with participating media. The focus of the presented set of
scenes is non-volumetric light transport. Although light transport in-
side of participating media is not fundamentally different, there are
many algorithms specifically made to resolve it.

– Other additions. Scenes may be added or replaced over time, thus we
expect that future development will bring many changes to the scene
set.

• Higher quality reference images. Provided reference images are mostly good
enough, but some of the more difficult scenes would benefit from longer
rendering time.

• Use of current results. Reasons for differences between renderings of Mit-
suba and PBRT could be tracked down, and corresponding bugs of these
renderers could be fixed.
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Attachment 1
Electronic attachment contents
The contents of the accompanying electronic attachment are:

• Evaluation framework, including the evaluation scenes, see 4.4 for more
details.

• README.txt - Basic information about the content of the electronic at-
tachment and URL of the public GitHub repository with an up-to-date
version of the framework.

• A Methodical Approach to the Evaluation of Light Transport Computa-
tions.pdf - PDF version of this document.
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