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1. Introduction
This thesis is built on FastR [1], an interpreter of R programming language based
on Graal [2] and Truffle [3]. This introduction should give the reader a general
idea of how FastR works and how the ALTREP API relates to FastR. In the
following text, we provide a high-level description of the components of FastR,
and state the goal of this thesis.

R and ALTREP

R is an interpreted, dynamically-typed, programming language with a rich pack-
age-based extension system. Many packages use native code (typically C or
C++), that interoperates with R objects via a native extensions API called R
Internals API. In GNU-R, the standard interpreter of R, up until version 3.5.0,
every object had the same memory layout - a header and a continuous array
of data. With the introduction of ALTREP, this is no longer true - ALTREP
(alternative data representation) is a part of the R Internals API that allows
R package developers to provide an alternative data representation, i.e., the al-
ternative memory layout of the objects. With ALTREP one can, for example,
define an object with the data that are dynamically fetched from some database
or shared with another process.

GraalVM and Truffle

GraalVM is a JDK that is an extension of a standard JDK and atop of ”standard”
components it provides many others including GraalVM Compiler, a Just in Time
(JIT) compiler, and Truffle. Truffle is a platform for building high-performance
language implementations. With Truffle, a language is implemented as a self-
optimizing Abstract syntax tree (AST) interpreter where the nodes represent the
semantics of the implemented language operations.

FastR

FastR is an implementation of the R language interpreter built on top of GraalVM
and Truffle. It aims to be compatible with GNU-R. The ALTREP API is part
of GNU-R since version 3.5.0. and is not yet implemented in FastR. This makes
FastR incompatible with GNU-R, as there already exist some packages that use
the ALTREP API.

FastR already supports many native packages (packages that use the native
code) and implements the majority of functions in the R Internals API. This
means that FastR supports calls from the R code to the native code, as this is
what the native packages frequently do. However, as we will see in chapter 2, the
calls from the R code to the native code and vice versa, in the context of ALTREP,
are different than the ”standard” already existing calls. Therefore, we have to
explore the options of how to support ALTREP in the current infrastructure for
native code calls in FastR.
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Goals

The goal of this thesis is to analyze the semantics and implementation of mostly
undocumented ALTREP API in GNU-R, and implement the ALTREP API in
FastR, along with extensive tests, and also to explore the possibilities of opti-
mizations in FastR in the context of the ALTREP API.
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2. Technical background
In this chapter, we provide a high-level overview of the technologies used later in
the thesis.

2.1 R
R is a dynamically-typed, interpreted programming language mostly used in
statistics and data analysis domains with a rich package-based extension system.
We provide a list of concepts and constructs of R that we will use throughout the
rest of the thesis:

• Vectors . . . ”Vectors can be thought of as contiguous cells containing data”
[4]. We will use integer, double, and raw vectors. Raw vectors are vectors
containing bytes.

• Vectors are immutable. In fact, many other objects in R are immutable,
but we will focus on vectors.

• R interpreter uses copy-on-write semantics. Let us demonstrate this prin-
ciple on the following snippet:

x <- c(1,2,3)
y <- x # x is not copied yet
y[[1]] <- 42 # x is copied before the assignment
x[[1]] != y[[1]]

• Lists ... A list is essentially a vector of vectors.

• Attributes ... Attributes are a set of name=value pairs that can be attached
to any object (except NULL).

• Pairlists ... A pairlist is a list where every item has a header (CAR), a tail
(CDR) that can be either NULL or a reference to another item, and optionally
a TAG which is typically a string. ”Pairlists are extensively used in the
internals of R and are rarely visible in the interpreted code” [4].

For the complete R language specification please refer to [4].
There exist more implementations of R interpreter:

• GNU-R is the standard interpreter.

• Renjin is an R interpreter implemented in Java. It was initially designed
to be embedded into JVM as a scripting engine - similarly to Jython [5].

• terr (TIBCO Enterprise Runtime for R) which is a closed-source implemen-
tation of R in C++.

• pqR (a ”pretty quick” version of R) is a fork of GNU-R interpreter with
some minor differences causing pqR to be faster for certain operations, e.g.,
pqR claims to have a faster garbage collector.

6



• riposte is another open-sourced implementation of R written mostly in
C++, no longer maintained.

This thesis focuses on GNU-R and on FastR, because terr is commercial and
other interpreters do not implement ALTREP.

As is the case for many other dynamically-typed languages, there is a native
API that enables package authors to use C or C++ in their packages to interoper-
ate between native code and R, where interoperation typically means allocating
R objects from C, modification of the objects from C, or calling various other
functionality from C. This native API, denoted as R Internals API [6] is widely
used in packages, especially in packages where substantial performance is crucial.

2.1.1 Packages
A package in R is a collection of the source files (mostly R, C, and C++), data
files, manuals, and various other optional files, that together may be built, pub-
lished to the CRAN repository [7], and later downloaded and installed by other
users. The entire structure of a package is described in [8]. The package has to
conform to the standard directory layout - all native source files in the directory
src, all R source files in the directory R, all data files in the directory data, and
so on. In the NAMESPACE file, the developer provides a list of all the R functions
accessible from outside the package, i.e., a list of public functions. This is called
a namespace of a package and is described in ”Search path” section in [4].

In the rest of the thesis, we will focus on the packages that contain native code,
denoted as native packages. A native package has to provide at least an initialize
function, which is called when the package is loaded by the R interpreter, and
optionally a deinitialize function, which is called when the package is unloaded by
the R interpreter. These functions must conform to certain naming conventions
so the R interpreter can locate them once the shared library of the package
is loaded. Initialize function typically registers native functions that should be
treated as ”public” and therefore used by the .Call and .C R functions (see
”Interface functions .Call and .External” section in [8]). Such registration is done
with R registerRoutines function and will be used by the R interpreter later
for lookups of the native functions.

Build

Building a package is as simple as invoking R CMD build <pkgdir> command
from the shell, which does everything necessary to build a package - checks for
syntax errors in R sources, compiles native sources if there are any, checks validity
of manual pages, and so on. Optionally, a developer may provide a Makevars file,
which adds new options for the compiler or overrides the existing ones. A build of
a native package ultimately produces a shared library that exports initialization
and deinitialization functions. Once the native package is loaded, the shared
library is loaded into the memory and the initialization function is called, which
in turn typically registers the native functions with R registerRoutines and
the R interpreter stores the names of the functions for later lookup. When the
developer uses .Call, the R interpreter looks up the symbol in the registered
native functions.
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Figure 2.1: Integer vector memory layout

2.1.2 Object memory layout
Up until GNU-R version 3.5.0, every object in GNU-R was represented in memory
by a header containing various metadata like length and type of the object, and
by a continuous range of memory denoted as object’s data. A header along with
data represents one R object and is denoted as a node in GNU-R terminology.

In Figure 2.1 we can see the memory layout of an integer vector. Note that
this layout is specific for GNU-R version 3.5.2 and is subject to change in the
future versions. The header consists of:

• 64 bit long sxpinfo that contains 5 bit SEXPTYPE, which identifies 32 pos-
sible data types, in our case it is INTSXP - an integer type.

• attrib ... Pointer to the attributes node.

• gen gc next ... Pointer to the next node, used by the Garbage collector
(GC).

• gen gc prev ... Pointer to the previous node, used by the GC.

• length ... Length of the data.

• truelength field, which is the same as length field for an integer vector.

After the header, possibly with some alignment, there is the data part. The
data is represented as a continuous region of length int elements.

2.1.3 R Internals API
The R Internals API is a C API through which a developer can manipulate R
objects. The majority of functions and macros that comprises this API is in the
Rinternals.h and R.h header files.

In this section, we will briefly describe just those functions, macros and types
that are used throughout the thesis inside various code snippets. Note that for
many of these functions we will not provide a precise signature for the sake of
clarity. Below is a list of functions, macros, and types with their description:

• SEXP ... An opaque pointer type used to point to almost every object in
memory. In fact, SEXP is a pointer to SEXPREC structure, which is not
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exposed to package developers. The vast majority of functions have SEXP
as parameters or return values.

• R NilValue ... A singleton value equivalent to NULL.

• SEXP allocVector(int length, int type) ... Allocate a vector object
with some type and length

– type is, for example, INTSXP (integer), REALSXP (double), STRSXP
(string), etc.

• int TYPEOF(SEXP x) ... Returns the type of the object x. The type is
inside the header of the object.

• int LENGTH(SEXP x) ... Returns the length of the data part of an object
x. Length is also inside the header.

• void * DATAPTR(SEXP x) ... This is by far the most important function in
the R internals API. This function returns a pointer to the data of an object
x. Before ALTREP, it was the only way how to iterate over an object, which
generally looked like this:

int summarize(SEXP vec) {
assert(TYPEOF(vec) == INTSXP);
int sum = 0;
int *ptr = (int *) DATAPTR(vec);
for (int i = 0; i < LENGTH(vec); i++) {

sum += ptr[i];
}
return sum;

}

Note that DATAPTR has many variants depending on the type of the pointer
that it returns, i.e., INTEGER for returning an integer pointer. In GNU-R,
these variants usually just call DATAPTR and cast the pointer.

• SEXP duplicate(SEXP object, Rboolean deep) ... Duplicates the given
object. The deep argument is only considered when object is a list (vector
of vectors) - in such a case, with deep = true, all the inner atomic vectors
are duplicated right away, whereas with deep = false, the reference count
of the elements of the inner atomic vectors is set to the maximal value. Note
that there is no R counterpart of this function - the R interpreter duplicates
objects transparently, based on the copy-on-write semantics (see 2.1).

2.1.4 Garbage collector
GNU-R has a generational, single-threaded, stop-the-world, non-compacting
GC [6]. Garbage collection may be triggered only from functions that allo-
cate some memory or from some other functions like allocVector, eval, or
forceAndCall.
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Protection of values

The allocated objects might be protected against garbage collection via PROTECT
function call. The protection mechanism is stack based - there is a pointer protec-
tion stack internal data structure - PROTECT pushes a new value and UNPROTECT
pops a value. Every native code application should protect every value it allo-
cates either directly or indirectly, and unprotect it once it is no longer needed.
However, the native package developers sometimes misuse the fact that most of
the functions in R Internals API do not call the GC, and they do not protect the
values. Note that the documentation suggests protecting all values, there is no
mention about some functions being safe from the garbage collection - it is just
an artifact of the implementation [6].

With ALTREP, the lack of the protection of the values returned from certain
functions causes problems. With ALTREP, the list of functions that might trigger
garbage collection grew - almost all of the functions within the ALTREP API
might trigger a garbage collection. A particularly good example is the INTEGER
function call, which is used in many packages. Before ALTREP, INTEGER never
triggered a garbage collection, therefore the native package developers did not
protect the values they had created before the INTEGER function call. With
ALTREP, this behavior changes, and it might break some packages. The current
solution chosen by the R core developers to address this issue is to suspend the
garbage collection within these ALTREP API functions [9]. This, unfortunately,
means that if INTEGER tries to allocate a new object and there is not enough
memory, then GNU-R fails immediately, even if there would be enough memory
after the garbage collection.

2.2 ALTREP
In this section, we will define ALTREP and describe its basic constructs and how
it is implemented in GNU-R. We first define ALTREP and then provide some
examples in 2.2.4.

ALTREP (alternative data representation) was first introduced in GNU-R
version 3.5.0. As the name suggests, ALTREP enables package developers to
provide an alternative data representation of R objects, as opposed to standard
memory layout described at 2.1.2.

Some goals of ALTREP are:

• Data of vectors may be:

– In a memory-mapped file.
– Distributed, e.g., within Apache Spark or Hadoop.
– Shared with different applications, e.g., with Apache Arrow.

• Allow compact representation of arithmetic sequences.

• Allow adding meta-data to objects.

• Allow computations or allocations to be deferred.

• To existing C code, ALTREP objects should look like ordinary R objects.
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Figure 2.2: ALTREP abstract class hierarchy
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In a high-level overview, ALTREP provides a hierarchy of abstract classes
with the ALTREP base class, ALTVEC extending this base class, and ALTINTEGER,
ALTREAL, ALTSTRING, and others extending ALTVEC and representing basic R data
types as depicted in Figure 2.2. Note that a more detailed description of the figure
is further in the text. Unless specified otherwise, a class will denote an ALTREP
class, and a method will denote an ALTREP method, in the rest of the thesis.
The list of methods is not complete and the signatures are simplified. Also note
that the authors of ALTREP claim that the class hierarchy may not be final, i.e.,
some classes may be added or some may be merged [10].

Most of the methods have clear semantics based on the name. The documen-
tation of all the ALTREP methods is not in the codebase of GNU-R, as is the
case for most other functions, neither it is in [6]. Let us, therefore, describe the
semantics of some of the methods:

• void * Dataptr() ... The semantics for this method is the same as for
DATAPTR function (see section 2.1.3) - a valid pointer to a continuous array
with the size given by the Length method and with the type of the elements
given by the type of this ALTREP instance, e.g., int for altinteger, double
for altreal, Rbyte for altraw, etc. Note that the data of an ALTREP instance
does not have to be represented as a continuous array in memory, but once
the Dataptr method is called, the ALTREP instance has to materialize its
data. We say that an ALTREP instance is materialized when its data is
converted to the continuous array format. In the rest of the thesis, the term
materialization is used for other objects with the same meaning.
We generally want to avoid materialization of objects, therefore we avoid
calling the Dataptr method unless it is necessary.

• const void * Dataptr or null() ... This method should return NULL in
case the underlying ALTREP object is not materialized, otherwise it returns
a pointer to the data. Note that unlike Dataptr, it returns a constant
pointer that should be used only for reading the data.

• Elt(int n) ... Returns the n-th element of the ALTREP object. The
return type of this method differs based on what class it is defined in.

• void Set elt(int index, SEXP element) ... This method is declared
only for ALTSTRING because string vectors are not atomic (they are lists),
and the garbage collector has to ensure that the elements of such a non-
atomic vector are at least as old as the vector itself. This is described in
”Write barrier” section in [6].

• int Is sorted() ... Lazily returns an enum value of sortedness - which may
be ascending, ascending with NAs as first elements, decreasing, decreasing
with NAs as first elements, and unknown sortedness. Lazily means that
Is sorted method should not do any computation and should only return
the information about sortedness of the ALTREP object that is known at
the time.

• bool No NA() ... Lazily returns true if there are no NA values in the vector,
or false if there are some NA values or if the information is unknown.
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• SEXP Sum(bool na rm) ... Computes the sum of the elements of the in-
stance, treating NAs as defined by na rm argument. Note that the return
value is not a primitive type but a SEXP, which gives the method flexibility
to return a vector.

• Min and Max have the same signature as Sum and return the minimal and
the maximal element, respectively.

Let us describe Figure 2.2 in greater detail:

• The greyed-out classes are the ones that correspond to some basic R data
type. These are the only classes that a developer can extend.

• The method is either abstract, or it provides some default implementation.

• The yellow class is a user-defined altinteger. It overrides all the abstract
methods, therefore it is a valid class.

2.2.1 Implementation in GNU-R
This section provides the implementation details of ALTREP objects in GNU-R.
All the information provided in this section can be deduced from the GNU-R
sources src/main/altrep.c and src/include/R ext/Altrep.h.

Each ALTREP object has a class, denoted as class descriptor, and instance
data. The class descriptor can be thought of as a virtual method table with
pointers to the implementation of the methods. An ALTREP method invocation
corresponds to the virtual method dispatch. Every ALTREP instance is limited
to two SEXP objects as instance data.

Class descriptors

Class descriptors are raw vectors with:

• Attributes representing the class name, the package name, and the type of
the ALTREP instance.

• Data containing pointers to ALTREP methods.

As of GNU-R version 3.5.2, there is little error handling implemented - for exam-
ple, not overriding an abstract method results in an error during the invocation
of such method, rather than returning some error result from the R alt* set -
method functions.

Instances

ALTREP instances (objects) are pairlists with:

• alt bit set in their sxpinfo in header (see section 2.1.2).

• A pointer to the class descriptor as their TAG.

• A pointer to data1, i.e., first instance data as their CAR.
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• A pointer to data2, i.e., second instance data as their CDR.

Pairlist is an already-existing data structure in R used mostly internally in the
interpreter (see 2.1). The advantage of representing an ALTREP object with a
pairlist is that it does not require additional work spend on programming and
debugging new data structures. The disadvantage is that the package developers
may use standard R internals API for accessing pairlists to access various meta-
data about an ALTREP object. And obviously, ALTREP object should not be
treated as a pairlist, because they have different semantics. Unfortunately, as
we can see in the package vroom, this knowledge of internal representation of an
ALTREP object is already used by the package developers.

Note that the instance may use an arbitrary object as its data, including
R NilValue.

2.2.2 Class definition API
In this section, we will give an example of how the ALTREP API is used to define
an ALTREP class. We will define a simple ALTREP class that is a wrapper for
an ordinary integer vector. The creation of ALTREP classes is usually done
in the package initialization function. Bellow is the commented code snippet
demonstrating the usage of this API.

R_altrep_class_t class_descriptor;

R_xlen_t my_Length_method(SEXP instance) {
// Get the instance data - in this case we use only the first instance data.
SEXP wrapped_data = R_altrep_data1(instance);
// Return the length of the wrapped vector.
return LENGTH(wrapped_data);

}

void * my_Dataptr_method(SEXP instance, Rboolean writeabble) {
SEXP wrapped_data = R_altrep_data1(instance);
return DATAPTR(wrapped_data);

}

/**
* A package initialization function.
*/

void R_init_mypackage(DllInfo *dll) {
// Create a new altrep class via R_make_*_class functions
// Other alternatives are: R_make_altreal_class, R_make_altstring_class, etc.
class_descriptor = R_make_altinteger_class("ClassName", "PackageName", dll);

// We override all the "abstract" methods.
R_set_altrep_Length_method(class_descriptor, &my_Length_method);
R_set_altvec_Dataptr_method(class_descriptor, &my_Dataptr_method);

// We could override more methods, e.g., Elt, but let us keep the exaple
// simple and clear.

}
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/**
* Function exported in the package’s namespace, i.e., this function is called
* from .Call R function.
*/

SEXP create_wrapper(SEXP data) {
// Create new instance of class_descriptor, with data as first instance data,
// and R_NilValue as the second instance data.
return R_new_altrep(class_descriptor, data, R_NilValue);

}

Let us summarize the class definition API:

• Functions R make alt* class are used for creating a class descriptor. These
class descriptors are objects used to describe which methods the class over-
rides.

• Functions R set * * method register a specific method for the class de-
scriptor. Note the terminology: we say that we register a method on a class
descriptor rather than override some method from class descriptor. Note
that some methods need to be registered because there are no defaults for
them.

• Finally, with the function R new altrep we create a new instance of the
given ALTREP class. Furthermore, we specify two instance data - both of
them might be R NilValue.

• With functions R altrep data1, R altrep set data1 and their versions
for data2, we can get or set the data associated with a particular instance.
Note that we may access the instance data both from ALTREP methods
and outside ALTREP methods, so there is no encapsulation as in typical
object-oriented programming language.

2.2.3 Rest of ALTREP API
In this section, we will show the rest of the ALTREP API that is an extension
of R Internals API. Note that most of the functions presented take any kind of
object as an argument, not necessarily an ALTREP object, but if the argument
is an ALTREP object, usually some specific ALTREP method on the object is
invoked. All these functions are present in GNU-R from version 3.5.0. Some of
the presented functions are specific for the integer data type - those with the
INTEGER prefix in the name. Note there are also functions specific for all other
basic R data types - real, raw, logical, complex and string - that are not included
in the list below as they differ only in the signature and not in the semantics.
Also, note that the list is not complete, we present only the functions that will
be used in the rest of the thesis.

• int INTEGER ELT(SEXP object, int i) ... This function returns the i-
th element of the object. Before GNU-R version 3.5.0, the only possible
way to get the i-th element of an object was with INTEGER(object)[i]
statement (see section 2.1.3). That is: first obtain a pointer to a continuous
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array in memory via the INTEGER function call, then do pointer arithmetics
on the result. From a certain perspective, the INTEGER function represents
a flaw in the design of the API, because it leaks an implementation detail
- there has to be a continuous array of elements as the data of the object.
INTEGER ELT, on the other hand, does not expose the underlying object’s
memory layout.

• const void * DATAPTR OR NULL(SEXP object) ... This function is an ad-
dition to the DATAPTR function. It is the DATAPTR’s lazy counterpart -
DATAPTR OR NULL may return NULL if the underlying object is not materi-
alized. On the other hand, DATAPTR must return a valid pointer, therefore
materialize the object if necessary.

• int INTEGER_GET_REGION(SEXP object, int from_idx,
int size, int *buffer)

This function fills the given buffer with contents of an object’s data region
defined by from id and size arguments. When this function is called with
an ALTREP object as the argument, its Get region method is invoked.
The default implementation just iterates over the vector via INTEGER ELT
function described above. In the current version of GNU-R, this is the
preferred way of iteration over vectors, as we will later see on ITERATE -
BY REGION macro.

• Rboolean INTEGER_IS_SORTED(SEXP object)

This function returns true if the given object is sorted. This function is
lazy - it does not compute anything, it just returns false when the result
is unknown at the time of the invocation. If the object is an ALTREP
object, its Is sorted method is invoked.

• ITERATE BY REGION(vec, size, expr) ... A macro that iterates over the
given vector vec. For simplicity, we omit some parameters (the real macro
has 6). This macro is not a part of the ALTREP API but uses some
functions from it, so we decided to describe it in this section rather than in
section 2.1.3. Using the macro in the following way:

int acc = 0;
ITERATE_BY_REGION(vec, nbatch, {

for (int i = 0; i < nbatch; i++) {
acc += dataptr[i];

}
})

has the following simplified expansion:

int acc = 0;
int *dataptr = DATAPTR_OR_NULL(vec);
if (dataptr != NULL) {

for (int i = 0; i < LENGTH(vec); i++) {
acc += dataptr[i];
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}
}
else {

int buff[512];
for (int k = 0; k < LENGTH(vec); k += 512) {

INTEGER_GET_REGION(vec, k, 512, buff);
dataptr = buff;
for (int i = 0; i < 512; i++) {

acc += dataptr[i];
}

}
}

In other words, if DATAPTR OR NULL returns a valid pointer, then we iterate
over this valid pointer. If DATAPTR OR NULL returns NULL, then we iterate
over batches retrieved with INTEGER GET REGION.

2.2.4 ALTREPs in GNU-R
In this section, we list some use cases of ALTREP already implemented in GNU-R
in version 3.5.2. Note that besides the ALTREP classes we mention in this section,
there are also ”deferred string conversions” and ”memory-mapped vectors” [9].

Compact sequences

In the following code snippet:

for (item in 1:1e10) {
do.some.sideeffect()

}

Pre-3.5.0 GNU-R (GNU-R without ALTREP) would allocate 1010 ∗ 4 bytes of
memory and fill it with the values of the sequence, although this allocation is
unnecessary - we do not even read the values of the sequence.

Post-3.5.0 GNU-R (GNU-R with ALTREP) has an alternative representation
for this kind of sequences with only three integers - the start of the sequence, the
end of the sequence, and the step. As long as we do not write into this sequence,
the compact representation is preserved.

Wrapped meta-data

Because all vectors in R are immutable, it makes sense to cache some computed
values on these vectors. For example, whether the vector is sorted or whether it
contains some NA values.

In the following code:

x <- rnorm(1e8)
y <- sort(x)
sort(y)
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non-ALTREP GNU-R would first sort the unsorted vector (the sort(x) state-
ment), and then it would sort the already sorted vector again (the sort(y) state-
ment). The ALTREP GNU-R would only sort the vector once. In ALTREP
GNU-R, this is possible because y is an ALTREP object containing not only
the data, but also the information about sortedness. Therefore, the statement
sort(y) will be a no-op in ALTREP GNU-R.

2.2.5 Packages using ALTREP
These three packages are the most popular real-world packages on CRAN using
ALTREP:

• vroom [11] ... A package for reading structured files. In this package,
ALTREP is used to lazily read just a portion of a file once it is needed. It is
a native package that uses a thread pool for the actual reading. In [12] the
package authors claim that vroom is faster than readr on larger datasets.
According to the blogpost at https://www.tidyverse.org/blog/2019/
05/vroom-1-0-0/, vroom will be merged with readr eventually.

• stringfish ... This package contains an altstring class definition that is a
wrapper for C++’s STL std::string.

• qs ... Package for fast serialization and deserialization of objects. This
package depends on the stringfish package for fast serialization of char-
acter vectors.

There are also the following packages that are not published on CRAN. They
mostly serve as demo packages showing the usage of the ALTREP API.

• AltWrapper [13] . . . A package that contains R wrapper functions for the
ALTREP native API.

2.3 GraalVM
GraalVM [14] is a Java Development Kit (JDK) that is an extension of a standard
JDK (OpenJDK or Oracle JDK). On top of the components and features that
the standard JDK provides, it also provides:

• The GraalVM Compiler - A JIT compiler that uses the JVM Compiler
Interface and is itself implemented in Java. This is in contrast to previous
JIT compilers, like the HotSpot JIT compiler, which is implemented in
C++.

• Truffle - A platform for building high-performance language implementa-
tions.

• Interoperability between languages that are implemented in Truffle.

• Native Image - A tool for Ahead of Time (AOT) compilation of Java into
a standalone self-contained executable which also contains the runtime.
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2.3.1 GraalVM Compiler
The JVM Compiler Interface started as an experimental feature in JDK 9. It
provides access to the Java Virtual Machine (JVM) data structures like classes,
methods, fields, various profiling information, and a way to install compiled code
into the memory of the JVM. More details can be found in [15].

The GraalVM Compiler is a successful demonstration of the usage of this API
- the peak performance is on par with C2 JIT compiler across a wide range of
benchmarks [15].

The GraalVM Compiler does some additional dynamic optimizations in con-
trast to the ”older” ones found in HotSpot - for example partial escape analysis
[16]. The GraalVM Compiler aims to produce a highly optimized code through
extensive use of speculative optimizations [17].

Dynamic compilation Let us provide a brief description of what dynamic
compilation is. Unlike static compilation, dynamic compilation happens at run-
time. One of the initial phases of a dynamic compilation is the profiling phase,
during which the bytecode interpreter profiles various information. The compila-
tion starts after the profiling phase and the profiles collected previously are used
for the compilation. This resembles the standard Profile-guided optimizations
(PGO) of the static compilers. The speculative optimizations assume that the
types of the objects frequently seen at the runtime will not change in the future
and the compiler compiles only a subset of code handling these types, therefore
leaving out a lot of unnecessary cases. Because the speculations might turn out to
be false in the future, Truffle (or Graal) inserts guard statements and deoptimiza-
tion points in the code. The guard statements check whether the assumption still
holds and if not, the native code is discarded and the control is transferred back
to the interpreter. Note that unlike PGO, the speculative optimizations cannot
be done by the traditional static compilers.

2.4 Truffle

Motivation
To implement an interpreted language, we have to implement at least the parser
and the interpreter. Such an implementation would have poor performance com-
pared to languages with industry-scaled interpreters and dynamic optimizers -
like the Javascript V8 engine [18]. A dynamic optimizer (compiler) is a different
component than the interpreter and it usually cannot share much of its code,
therefore we need to develop the compiler separately from the interpreter. More-
over, we usually need to maintain a specification of some IR that is emitted by
the parser. To make the implementation even more difficult, compilers and inter-
preters are usually written in a low-level system programming language like C or
C++. All in all, producing a completely new interpreted (dynamic) language or
developing a new interpreter along with the compiler for an existing language, is
a lot of work.

With Truffle, we can implement the interpreter in a high-level host language
- in Java. The IR of the Truffle language implementation (TLI) is an AST. This

19



means that for every operation in a guest language, there is a separate node
implementing the operation. More specifically, the guest language operations are
represented as classes extending the Node abstract base class and overriding its
execute method. At runtime every node of this AST is traversed by calling the
execute methods on its children and then on this node. During the traversal,
various profiling information is collected, e.g., types of values returned by nodes.

TLI is a self-optimizing AST interpreter. Truffle does a lot of optimizations
in context of the AST, as described in [19], [2], and [3]. The following text is a
reworded excerpt from these papers.

Node specialization
A particular guest language operation may have different semantics based on the
type of its operands, e.g., + operator in R either adds two integer vectors, two
real vectors, or a combination of them where the R interpreter has to first coerce
one of the arguments. In Truffle, the nodes have to implement the whole guest
language operation semantics. However, having the code for the whole semantics
active all the time would not lead to any performance improvement, therefore the
node has different specializations for different subsets of semantics, often linked
to different types of operands. For example, the + operator in R would have
one specialization for adding two integer vectors, one specialization for adding
two real vectors, and other specializations that handle coercion from integer to
real or vice versa, recycling, attributes, etc. After a new node is created, it is
in an uninitialized state. Later, it specializes itself (activates one specialization)
for particular types of operands. At one moment only one specialization can be
active, and only active specializations are eventually compiled into the machine
code, whereas inactive specializations are replaced with deoptimization points.

AST rewriting
The specializations have guard conditions that check the types of operands for
that specialization, e.g., in a case when a specialization for integer vector operands
is active and the node gets a real vector as an operand, the guard condition
fails. In such a case, the specialization can no longer be active, and the node
has to transition from one specialization to another. This process is called node
rewriting. Node rewriting has these limitations that are not enforced by Truffle:

• Finiteness: After a finite number of node rewrites, the last specialization has
to be able to cover the whole semantics of the operation. This is important
because we want the AST to stabilize eventually.

• Completeness: Every specialization can handle every possible input by
rewriting to another specialization

Method inlining
”Whenever there is a hot call site, the AST of the called method is copied and
put back into uninitialized state. This way, the AST of the called method is
specialized based on its usage patterns from the call site. Figure 2.3 illustrates this
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Figure 2.3: Method inlining in the dynamic call graph, taken from [19]

method inlining process, where the big circles represent methods, and the small
circles represent AST nodes.” [19]. This is an important optimization because
it allows the compiler to optimize across the method boundaries, but also to
specialize for call sites.

Compilation
Once the AST becomes stable, Truffle partially evaluates [2] the AST with the
Graal Compiler, resulting in a highly optimized speculative machine code with
inserted deoptimization points. If one of the guard statements of this machine
code fails, the machine code is discarded and control is transferred back to the
interpreter.

2.4.1 Truffle DSL
In this subsection, we will focus on Truffle from the perspective of the TLI devel-
oper. Truffle provides a Domain specific language (DSL) for specification of nodes,
node specializations, guard statements and various other constructs required for
a TLI [3]. The majority of constructs are implemented as Java annotations. We
will describe some of these constructs very briefly. For a full reference, please refer
to the javadoc located in [20] and tutorials contributed by third parties located
in [21] and in [22].

Specialization

As mentioned before, a node typically corresponds to a Java class that ex-
tends Node abstract class. The different node specializations are achieved with
@Specialization annotation on methods of this node. For example, the + oper-
ator in R can have this simplified implementation:

class AddOperatorNode extends Node {
public abstract Object execute(Object vec1, Object vec2);
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@Specialization
Object addIntegerVectors(RIntVector vec1, RIntVector vec2) { }

@Specialization
Object addRealVectors(RRealVector vec1, RRealVector vec2) { }

}

Truffle generates code for a class that extends AddOperatorNode and im-
plements execute method. In the execute method, this generated class dis-
patches either to addIntegerVectors or to addRealVectors based on the types
of the arguments, and it also keeps track of which particular specialization is
active. We denote a specialization activation as specialization instantiation. The
@Specialization annotation have various parameters to control the behavior of
the specialization, e.g., with guards parameter we can specify further conditions
that have to be satisfied in order to execute the corresponding specialization, and
the replaces parameter specifies which specialization will be replaced by this
specialization.

Cached

We can also cache various values inside specializations. In the example of +
operator, we can have two specializations for integer vectors - one that has the
length of the first vector cached, and the other that is uncached:

@Specialization(guards = "vec1.getLength() == cachedLen")
Object addIntVecCachedLen(RIntVector vec1, RInteVector vec2,

@Cached("vec1.getLength()") int cachedLen) { ... }

@Specialization(replaces = "addIntVecCachedLen")
Object addIntVecUncached(RIntVector vec1, RIntVector vec2) { ... }

When a specialization is instantiated, all the @Cached statements are executed
and the return values are cached in the generated class. Note that the @Cached
statements are executed just once. We should insert a guard condition that checks
whether the dynamic parameters (dynamic parameters are parameters without an
annotation) have not changed since the specialization instantiation and, therefore,
the cached value is the correct one. The example above is artificial and useless
because the guard conditions are evaluated every time before a specialization is
executed. Let us provide a more useful example, although still artificial:

@Specialization(guards = "vec == cachedVec")
Object someMethod(RIntVector vec,

@Cached("vec") RIntVector cachedVec,
@Cached("vec.getLength()") int cachedLen) {...}

This is useful if getLength() is an expensive operation - getLength() will
be called just once in the specialization instantiation, and in the subsequent
executions only references will be compared (the vec == cachedVec statement).
Note that in this example we assume that the length of the RIntVector instance
does not change.
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Truffle library

A Truffle library is similar to a Java interface, where the implementations of that
interface can use the Truffle DSL inside their methods. Note that we denote a
method from the library as a message and we say that a class exports a library if
it implements the messages of the library. There is a guide about Truffle libraries
in [23].

Let us demonstrate this concept on an example of com.oracle.truffle.
api.interop.InteropLibrary - a Truffle library that specifies the interoper-
ability message protocol between Truffle languages. The simplified definition of
InteropLibrary is as follows:

@GenerateLibrary
public class InteropLibrary extends Library {

public abstract boolean isExecutable(Object receiver);
public abstract Object execute(Object receiver, Object... args);
public abstract boolean hasArrayElements(Object receiver);
public abstract Object readArrayElement(Object receiver, long index);
// More messages
// ...

}

Let us have a Java class RVector that represents some R vector and exports
InteropLibrary.

@ExportLibrary(InteropLibrary.class)
class RVector {

@ExportMessage
boolean hasArrayElements() {

return true;
}

@ExportMessage
Object readArrayElement(long i, @Cached(...) someCachedValue) {

// return i-th element
}

}

Example usage of this library would be:

@Specialization
Object useLibrary(Object vec,

@CachedLibrary("vec") InteropLibrary vecInterop) {
if (vecInterop.hasArrayElements(vec)) {

return vecInterop.readArrayElement(vec, 0);
}

}

If vec is RVector, then corresponding messages in RVector are called, and
their cached values (if any) are initialized in the same way as for any other
specialization.

We will use InteropLibrary in the implementation for invoking ALTREP
methods.
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2.5 FastR
FastR is a TLI of R. The fact that FastR is implemented with Truffle implicitly
provides these features:

• Interoperability with other TLIs.

• High peak performance.

• Various tools for TLIs.

FastR aims to be compatible with GNU-R. There are some tests with expected
output in R source repository that can be thought of as a Test compatibility kit
(TCK) for R. FastR passes most of these tests. However, support for base R
language is just one portion of the compatibility with GNU-R, another portion
is support for packages, mostly native packages.

In previous sections, we noted that native packages use the R Internals API,
or at least they should use this API. Unfortunately, it is common to see a native
package that bypasses this API and uses the knowledge of internal structures
layout for some reason 1.

In FastR, the semantics of the R language by defined as Truffle nodes in Java.
However, FastR also has to handle native packages and calls to C functions from
the R Internals API.

2.5.1 Native code evaluation
In this section, we will provide a high-level overview of native code evaluation in
FastR. Remember that a native package has to contain a shared library with the
compiled code as described in 2.1.1. In FastR, there are two possible implemen-
tations for an evaluation of the native code - the NFI backend, and the LLVM
backend. NFI uses Java Native Interface (JNI) under the hood, which means that
it calls the native code directly. NFI loads the shared library and looks up the
corresponding function.

The LLVM backend is actually Sulong [24] - a Truffle interpreter of the LLVM
bytecode. Being able to install and run all the native packages in Sulong is the
ultimate goal of FastR, because it has many advantages over NFI:

• The performance is better because Sulong is yet another TLI and as such
generates a Truffle AST that can be inlined into other ASTs and GraalVM
Compiler can perform optimizations across the whole AST.

• The safety is potentially better because with Sulong we can intercept some
memory accesses.

• The debugging of a native package is much easier because we can use just
one tool to debug both R and C code and the calls between them.

FastR version 20.0.0 is not able to install and run all the packages in Sulong,
there are still some fundamental native packages that are installed and run in
NFI.

1data.table is an example
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For Sulong to function properly, the shared library has to be compiled into
LLVM bytecode rather than into machine code. FastR package installation pro-
cess takes care of the compilation transparently.

Downcalls

A call from R code into native code via .Call or .C is denoted as a downcall in
a sense that from R we downcall into the native code. A downcall in GNU-R is
fairly straightforward as R is interpreted in C and has no moving GC, there is
even no need to marshall arguments or to copy them into a different section of
memory. In FastR this process is more complicated, as we need at least to convert
the arguments to their native representation and keep them alive (protect them
from the JVM GC) as long as the downcall does not return.

Further in the text, we will use the term downcall return for a return from the
downcall, i.e., when the down-called native code stops execution and returns to
the JVM (it might return some value but that is not important for this definition).

FastR has to simulate the behavior of the garbage collector (see section 2.1.4),
which means that we have to make sure that those R Internals functions that
are expected to not cause GC in GNU-R, should also not trigger GC in FastR.
collector.

Upcalls

An upcall denotes a call from the native code (C or C++) to the JVM. The
upcall typically happens when we call some function from the R Internals API.
In FastR, the implementation of most of the functions from the R Internals API
has this pattern:

int LENGTH(SEXP x) {
return ((int (*) (SEXP)) callbacks[LENGTH_x])(x);

}

where callbacks is a table of pointers to functions that callback into JVM and
LENGTH x is an index into this table. This callback takes us to the implementation
of LENGTH in FastR - which is implemented as a Truffle node. In fact, the majority
of functions from the R Internals API are implemented as Truffle nodes.

Further in the text, we will use the term upcall return for a return from the
upcall, i.e., when we return from the JVM to the native code.

From a downcall, we can do arbitrary many upcalls, and from an upcall we
can do a downcall. The scheme of such interactions is depicted in Figure 2.4.
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vec <- create_altrep(...)
.Call("native_func", vec)

LENGTH(vec)

get length of ALTREP
(call Length method)

U

D

DR

return length of ALTREP

return;

int Length(SEXP instance) {
  return 42;
}

UR

DR

FastRNFI / Sulong

...

void native_func(SEXP vec) {
  LENGTH(vec);
  return;
}

Figure 2.4: Scheme of downcalls/upcalls interaction
Legend: D (downcall), U (upcall), DR (downcall return), UR (upcall return)
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3. Design and implementation
In this chapter, we will analyze the design and the possible implementation of
ALTREP. As we know from section 2.2, ALTREP consists of the class definition
API, and of some other functions (see section 2.2.3). We will start the analysis
with the observations about the ALTREP methods, and then we will analyze
possible support for the whole ALTREP object lifecycle, which is as follows:

• Create an ALTREP class descriptor.

• Register some methods on this descriptor.

• Create a new ALTREP instance, optionally with some instance data.

Later on, we will analyze the rest of the ALTREP API (see section 2.2.3).

3.1 ALTREP method contracts
ALTREP is a relatively new API and as is the case for the whole R Internals
API, it is rather undocumented. GNU-R base developers themselves claim that
the best - and many times the only - documentation is inferred by looking at the
R codebase. This is not only time consuming, but in many cases also ambiguous.
This section describes the contracts of various ALTREP methods (see section 2.2)
infered from the GNU-R codebase. We will build on these contracts for the rest
of the thesis.

Dataptr
Signature: void * Dataptr(SEXP instance, Rboolean writeable)

Dataptr forces the ALTREP instance to materialize - to return a pointer to
valid memory with the data of the instance with the correct length. Most objects
in R are immutable and once the data pointer for the object is returned to the
caller, it should not change in the future. In other words: once a vector is materi-
alized, the data for this vector stays at the same memory location. Consequently,
the following code snippet should run without an error:

void *dataptr = DATAPTR(object);
// do something
// ...
assert(dataptr == DATAPTR(object));

For a specific ALTREP instance, it means that the Dataptr method should
always return the same value. Therefore, we can cache the return value after the
Dataptr method is invoked.

Sum
Signature: SEXP Sum(SEXP instance, Rboolean narm)

From the behavior of the sum R builtin function, implemented in do summary
C function in the summary.c source file, we infer that the Sum method is expected
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to return the summary of the elements in the ALTREP instance, although it could
theoretically return an arbitrary object. The analysis follows.

The sum R builtin function works as follows:

• If there is just one argument and it is an ALTREP instance, its Sum method
is invoked.

• If there are more arguments they are all iterated one-by-one via the
ITERATE BY REGION macro and summed together. This means that even if
there are two ALTREP vectors as arguments, their Sum methods are not
invoked.

By considering the behavior for more arguments mentioned in the second point,
we infer that the sum builtin function expects the Sum ALTREP method to return
the actual sum of all its elements.

This contract is not forced anywhere and if broken, some operations might
return nonsensical results, as demonstrated in the following code snippet:

x <- altrep.with.bad.sum(...)
print(x) # [1, 2, 3]
y <- 1:3
sum(x) # 100 - altrep method invoked
sum(y) # 6
sum(x, y) # 12
sum(x, y) != sum(x) + sum(y)

Duplicate
Signature: SEXP Duplicate(SEXP instance, Rboolean deep)

Under normal circumstances, Duplicate just duplicates the object’s data and
attributes. There is no R function that can be called in order to duplicate an
object - the interpreter does that transparently with copy-on-write semantics (see
section 2.1). While there is no R function that would duplicate an object, there is
a C function in the R Internals API SEXP duplicate(SEXP object, Rboolean
deep) (see section 2.1.3).

When the object argument is an ALTREP, its Duplicate method is invoked
and the object’s attributes are duplicated - the Duplicate method itself should
not copy the attributes. When the object argument is not an ALTREP instance,
or the ALTREP instance does not have the Duplicate method registered, the
instance’s data is copied into a new non-ALTREP vector.

In conclusion: Duplicate may return both ALTREP and non-ALTREP vec-
tors with the same data as the original object.

3.2 Class descriptors
In this section, we will analyze the requirements for a data structure that will
represent a class descriptor.

In GNU-R, the class descriptor is a raw vector with the class name and the
package name as attributes (see section 2.2.1). This is an internal information
and different access to class descriptors than via the ALTREP API is discouraged.
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However, there is already at least one violation in the vroom package - in order
to get the name of the class descriptor, the authors of vroom access directly the
attributes of a class descriptor, with this code: CAR(ATTRIB(ALTREP CLASS(x))),
where x is an ALTREP instance. In this particular case, it might be a temporary
solution as there is currently no other way to get the name of a class descriptor
via the ALTREP API. But as long as the ALTREP API does not provide a
function for getting the name of the class descriptor, we should expect even more
packages to access the attributes of class descriptor directly. Therefore, we have
to make sure that class descriptors in FastR also have the appropriate attributes.
This is not too difficult as it should not require any modifications of the existing
codebase.

In GNU-R, the class descriptors form a hierarchy (as explained in section
2.2). This hierarchy, however, is not complete and new types might be added, or
some might be removed. In [10], Luke Tierney (one of the authors of ALTREP)
mentions that ALTENV might be added or ALTVEC might be removed. Moreover,
new methods might be added to the existing types, which is the case for the
Match method that was added after GNU-R version 3.5.0. Because of these
ongoing changes, it seems like a good idea to implement the same hierarchy in
FastR. In the future, it might be easier to stick to the modifications introduced
in GNU-R if the hierarchy is the same.

Storage for class descriptors
We have to store the class descriptors inside some data structure that represents
a global state of an R session.

In FastR, there is a class RContext that encapsulates the runtime state of an
R session, e.g., R profile, paths to libraries, command-line options, etc. Class
descriptors are also specific for a session, therefore RContext seems as a natural
destination for some data structure containing the ALTREP class descriptors.
More precisely, class descriptors are specific for a particular package, therefore
some Java class that represents an R package might more suitable location for
class descriptors. In FastR, it is DLLInfo class - a static inner class of DLL class.
Since the implementation of serialization of ALTREP vectors and classes does
not have a high priority, let us keep the implementation simple and put all the
class descriptors inside RContext, rather than in DLLInfo.

Methods in class descriptors
In GNU-R, a class descriptor is a raw vector containing pointers to the methods
(see section 2.2.1). It makes no sense for a native package developer to extract a
particular method from some class descriptor and call it manually. Consequently,
we do not have to care about the data of these raw vectors and leave them
empty. In FastR, an ALTREP method might have two types, depending on
which backend was used to load the corresponding shared library - either LLVM
or NFI. References to methods of both of these types conform to the interop API
(see Truffle libraries in section 2.4.1), which means that we can invoke such a
method as easily as in this snippet:
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Object method = ...;
InteropLibrary interop = InteropLibrary.getUncached(method);
Object retValueFromMethod = interop.execute(method, argsToMethod);

In conclusion, the references to the ALTREP methods can be stored as
Objects in class descriptors.

Redefining methods In GNU-R, it is possible, although not very useful, to
redefine an already registered method in a particular class descriptor. Caching
methods is a good optimization in FastR, but we have to make sure that the
method is not redefined while being in a cache. For this purpose, a Truffle as-
sumption is appropriate. Note that in the future, the GNU-R core developers
might disallow method redefinition.

3.3 Downcalls and upcalls
In this section, we will first describe the already existing downcall infrastructure
of FastR (introduced in section 2.5.1) in greater detail, and then discuss how
ALTREP-specific downcalls could fit into this infrastructure. For an ALTREP
instance, we expect that the downcalls will happen frequently. Therefore, the
design of the downcall infrastructure is essential.

In FastR, there exists a complex downcall infrastructure that handles all pos-
sible downcalls specified by R: .Call, .Internal, and .Primitive interfaces [6].
We will describe the downcall mechanism on an example.

3.3.1 Simple example
In Diagram 3.1 we can see an overview of the steps described below. The entry
point for this example is located in the source file CallAndExternalFunctions
.java. For the sake of simplicity, we will omit some details like package initial-
ization code, package namespace declaration, etc. Consider this simple native
function defined in my package:

SEXP print_length(SEXP arg) {
Rprintf("Length is: %d\n", LENGTH(args));
return R_NilValue;

}

that just prints the length of the argument it receives, and this snippet of R code
that calls the aforementioned native function:

arg <- 1:5 #Create an integer vector of length 5
.Call("print_length", arg, PACKAGE="my_package")

We start in R and allocate arg. It will be represented as RIntVector, which
is a class in FastR representing an integer vector.

Now we evaluate the .Call downcall:

1. The symbol print length is looked up in a loaded shared library from
my package.
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Figure 3.1: Diagram of downcalls and upcalls
Legend: D (downcall), U (upcall), DR (downcall return), UR (upcall return)
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2. We have to keep track of the downcalls because, e.g., we have to keep the
arguments passed to the downcall alive until the downcall returns. To do
that, we call RFFIContext.beforeDowncall. Note that this method has a
different implementation for NFI and LLVM.

3. We materialize arg with FFIMaterializeNode. Note that the material-
ization in context of FFIMaterializeNode has a different meaning than
the materialization that we defined previously in this thesis. The materi-
alization in context of FFIMaterializeNode means that all the primitive-
type arguments are converted to vectors of length one. This is because
the target of the .Call function receives all the arguments as SEXP. In
the rest of the example, materialization will mean materialization with
FFIMaterializeNode.
In our case the materialization does not actually do anything - arg is already
RIntVector.

4. We wrap arg in a NativeMirror. NativeMirror is a native represen-
tation of an RBaseObject, which is a Java object representing some R
object. NativeMirror roughly corresponds to SEXP in the native code.
NativeMirror is stored in a hash map and if it will get into some upcall
later, we will retrieve it from the hash map. More specifically, the key in
the hash map is used as the actual value of the pointer to the native code
(the key is a long value). In this step, no native memory is allocated.

5. We execute the function print length via InteropLibrary -
InteropLibrary.execute(nativeFunc). This step is different for NFI and
LLVM backends. In NFI, the native function is invoked via JNI. In LLVM,
the Sulong starts interpreting the root node of the AST corresponding to
the native function.

Now we switch to the native code and start evaluating print length. The
print length function has two upcalls - Rprintf and LENGTH. Every upcall is
implemented as a native function that looks like this:

int LENGTH(SEXP x) {
return ((int (*) (SEXP)) callbacks[LENGTH_x])(x);

}

where callbacks is a table of pointers to functions that callback into the JVM
and LENGTH x is an index into this table. Once we callback into the JVM, the JVM
knows the mapping between callbacks and upcall nodes. Therefore, JVM invokes
the corresponding upcall node. Upcall node receives a pointer as the argument
and it looks up this pointer in the hash map of NativeMirrors, and unwraps the
underlying object. Now we are in an upcall node (in our case LENGTHNode) with
RIntVector as the argument.

We return to the native code and do another upcall from there - Rprintf.
We will not explain the steps of this upcall as it is similar to the LENGTH upcall.

After the downcall returns to R, we discard the references to the objects that
were allocated in the native code, and thus JVM’s GC will be able to eventually
collect the unused objects. Implemented in RFFIContext.afterDowncall.
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3.3.2 Nativization
The aforementioned example used upcalls with primitive return values - LENGTH
returns an integer and Rprintf does not return anything. The upcalls might
return SEXP or a different kind of pointer. The upcalls that return a SEXP comply
with the principles mentioned in the example - some Java object is wrapped into
NativeMirror and the returned SEXP is represented as NativeMirror. However,
for DATAPTR, INTEGER, and similar upcalls we have to return a pointer to valid
native memory.

Consider this C code snippet:

SEXP vec = ...; // vec is an integer vector
int sum = 0;
int *dataptr = INTEGER(vec);
for (int i = 0; i < LENGTH(vec); i++) {

sum += dataptr[i];
}

We will focus on the INTEGER upcall. In GNU-R, the INTEGER function returns
a valid pointer to the vector’s data. In FastR with NFI backend, the INTEGER
upcall has to nativize the vector (a Java object), where nativization means allo-
cating a native memory and copying the vector’s data into that memory, i.e., it
is a materialization of the vector into the native memory. However, with LLVM
(Sulong) this does not have to be the case - the INTEGER upcall does not have
to nativize the vector immediately, it can rather delay the nativization up to the
point where a write into that memory occurs.

Here is how the delay of the nativization works. The INTEGER(vec) statement
returns RObjectDataPtr, that is just a wrapper for the data of the actual vector.
RObjectDataPtr is a type that exports InteropLibrary (see Truffle libraries in
section 2.4.1). The dataptr[i] statement calls readArrayElement message on
RObjectDataPtr, which retrieves the i-th element from the underlying vector.
No native memory has been allocated.

For ALTREP vectors there are two options - we can either eagerly nativize or
delay the nativization as mentioned above. In GNU-R, the materialization of an
ALTREP instance happens once its Dataptr method is called, and INTEGER is an
R Internals API function that dispatches to this method. Simply put: INTEGER
calls Dataptr in GNU-R. Although discouraged, the Dataptr method might have
some side effects and some part of the system might depend on the Dataptr
method being called once INTEGER is called. To achieve the full compatibility
with GNU-R, the eager nativization would be necessary.

The delayed nativization for ALTREP vectors is also possible, but more com-
plicated and not as beneficial as delayed nativization for standard vectors. Let
us use the code snippet at the beginning of section to explain. The main is-
sue is what to do in the dataptr[i] statement. If Elt method is registered,
we could dispatch to this method and avoid nativization. If Elt method is not
registered, we need to nativize and obtain the element via Dataptr method. So
for the delayed nativization to work for an ALTREP vector we need the Elt
method registered for that vector. But is this kind of delay worth it? Invoking
Elt method has certainly less overhead than invoking Dataptr for the first time,
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but in the long run, invoking Dataptr once and then obtaining elements straight
from the native memory is faster than invoking Elt method all the time.

In conclusion, FastR can delay the nativization of all types of vectors with
LLVM. The delayed nativization for the standard vectors is already implemented,
but we will not implement it for the ALTREP vectors.

3.3.3 Specifics for ALTREP
An ALTREP-specific downcall is a call from the JVM to some ALTREP method,
that is, native function. The aforementioned downcall infrastructure supports
.Call and .C R functions. All the parameters of the native functions called
through .Call and .C R functions are expected to have the SEXP type, in-
cluding the return type, if any. This is in contrast to ALTREP, where some
methods have primitive type parameters, e.g., the Elt method has R xlen t idx
parameter which is long or integer. This means that we cannot use the ex-
isting downcall infrastructure without some modifications, specifically, we need
to ensure that not all the arguments are wrapped. We still need to call the
methods in FastR that record the downcalls (RFFIContext.beforeDowncall and
RFFIContext.afterDowncall) though, but they are, luckily, independent of the
existing downcall infrastructure.

So the wrapping of the arguments and return types is incompatible for AL-
TREP downcalls and standard downcalls. Another incompatibility that might
cause issues in the future is in performance. For ALTREP downcalls, we want
to be able to cache the ALTREP method. This seems tricky to implement in
the existing downcall infrastructure but is not complicated to implement from
scratch - it requires just a few @Cached annotations and guard conditions.

Apart from the downcall infrastructure that would do just the low-level down-
call into a specific ALTREP method, we also need some Truffle nodes that will
dispatch to a particular ALTREP method based on the provided ALTREP in-
stance. For example, the Elt method needs different handling for altstring and
altinteger. This is implemented as nodes in AltrepRFFI. See javadoc for more
information.

Finally, let us discuss the behavior of some upcalls for ALTREP instances.
Consider the INTEGER upcall as an example, and suppose that we run FastR with
LLVM. For the standard vectors, the INTEGER upcall returns RObjectDataPtr
which is a representation that allows delayed nativization of these vectors. We
have already decided that ALTREP instances will not implement delayed na-
tivization. So the best return value for the INTEGER upcall for an ALTREP
instance is just a wrapper for its data pointer (returned by its Dataptr method).
In this way, Sulong will interpret the value returned from INTEGER as just a
pointer, and interpret the statement dataptr[i] from the following snippet as
access to native memory.

SEXP alt_vec = ...; // alt_vec is an altinteger
int sum = 0;
int *dataptr = INTEGER(alt_vec);
for (int i = 0; i < LENGTH(alt_vec); i++) {

sum += dataptr[i];
}
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To summarize, we have decided to design a new downcall infrastructure that
is specific for ALTREP. The most important concepts we want to implement are:

• The ability to choose which arguments to wrap and whether to wrap the
return value.

• Cache the target of the ALTREP method.

• Profile LLVM or NFI backend, i.e., whether to choose LLVM-specific or
NFI-specific RRFFIContext.beforeDowncall and
RFFIContext.afterDowncall methods.

Moreover, we have decided that we will not implement delayed nativization of
the ALTREP instances.

3.4 ALTREP instances
In GNU-R, an ALTREP instance is a pairlist with instance data and a pointer to
a class descriptor in the attributes (see section 2.2.1). From the ALTREP API
perspective everything a developer can do with an ALTREP instance is:

• Create an instance with R new altrep(descr, data1, data2).

• Read or modify the instance data (with R altrep data1, R altrep data2,
R set altrep data1 and R set altrep data2).

• Check whether an instance is of a particular class with
R altrep inherits(instance, class).

In FastR, there is no reason to make an ALTREP instance look like a pairlist,
as there are no packages that access any ALTREP instance via the pairlist API,
at least currently (GNU-R version 3.5.2). This gives us the freedom to represent
an ALTREP instance similar to how standard vectors are represented - with
VectorDataLibrary, which is a Truffle library (see section 2.4.1).

In FastR, a vector is just a wrapper for the data and the attributes. The data
is represented with VectorDataLibrary, which contains messages for reading
and writing the elements of the vector. This access is type-aware, i.e., there is a
getInt message as well as a getDouble message. For the complete reference of
VectorDataLibrary, please refer to the javadoc in the attachments. This design
allows every class that represents some vector data to export VectorDataLibrary,
and thus access all the possible vector’s data in a unified way.

We can implement a class exporting VectorDataLibrary for each ALTREP
type. In that way, an ALTREP vector would be represented as a standard vector,
like RIntVector, with some ALTREP vector data. Consequently, the ALTREP
vectors would be transparent to the rest of FastR and minimal modifications to
the existing codebase would be required.
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Figure 3.2: Diagram of ALTREP instance

3.4.1 ALTREP vector data
Let us focus on implementing the vector data for altintegers, other ALTREP types
stick to similar principles and, therefore, have similar implementation. Most of
the exported messages from VectorDataLibrary have to call various ALTREP
methods, which means that we have to keep a reference to the class descriptor.
Note that there might be more ALTREP instances with the same class descriptor.
In Diagram 3.2 we can see the layout of an ALTREP instance in FastR:

• RIntVector has RAltIntVectorData as its field.

• RAltIntVectorData has a reference to the class descriptor.

• AltIntegerClassDescriptor has all the possible ALTREP methods as
field. In Diagram, we depict only the Elt method.

• The Elt method is represented by AltrepMethodDescriptor - a Java class
that encapsulates an ALTREP method along with information how to in-
voke it.

• RAltIntVectorData has an instanceData field that includes pairlist, be-
cause in GNU-R, the instance data is represented as pairlist (see section
2.2.1).

• See javadoc in the attachments for more information.

Below we enumerate the messages that we have to implement from
VectorDataLibrary and provide a discussion about the implementation. Note
that the enumeration is not complete - we omit the trivial messages.
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getInt

The implementation of this message depends on whether the Elt ALTREP
method is registered. If it is registered, we call this method, otherwise, we return
an offset from the address obtained with the Dataptr method.

We also want to cache the return value from the Dataptr method. But this
is the responsibility of DataptrNode in AltrepRFFI.

copy

First, we have to introduce deep parameter to the current implementation of
VectorDataLibrary.copy method to better reflect the signature of duplicate
from the R Internals API (see section 2.1.3). Note that deep parameter can be
ignored in FastR because in GNU-R it is used only internally by the interpreter
with no visible effects on the outside. However, the deep argument must still be
forwarded to the ALTREP method.

Next, the implementation of this message will dispatch to the Duplicate AL-
TREP method if it is registered, otherwise, it will do the standard duplication.
The return value from the Duplicate method needs some additional handling
because this method might return NULL. So an ALTREP instance without regis-
tered Duplicate method, and an ALTREP instance with a Duplicate method
that returns NULL will be duplicated in the same way.

We do not need to handle the attributes as they are handled by other nodes.

materialize

The materialization happens once Dataptr method is called. More specifically,
nativization happens. As we cache the return value from the Dataptr method,
we know whether it was called or not. Therefore, in the materialize message
we call the Dataptr method only if it was not called yet.

asPointer

The asPointer message returns the address as long, therefore, it is sufficient to
call the Dataptr method (if it was not called yet).

isComplete

The isComplete message returns true if the vector does not contain any NAs. This
means that this message has the same semantics as the No NA method, including
lazy evaluation. So to implement the isComplete message, we dispatch to the
No NA method if it is registered, otherwise, we return false as the default.

isSorted

The isSorted message and the Is sorted method have similar semantics but
different signatures, and they are both lazily evaluated. It is, therefore, sufficient
to dispatch to the Is sorted method if it is registered. If it is not registered, the
isSorted message returns false.
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3.5 Rest of ALTREP API
Apart from the API that handles the creation of class descriptors, registration of
the methods and instantiation of the ALTREP instances, there is an ALTREP
API that can be used for any kind of vectors. Below we provide a list of these
functions with their possible design. For the full signatures and the semantics of
these functions, please refer to 2.2.3.

Note that all these upcalls, similarly to other upcalls, are implemented as Truf-
fle nodes and, therefore, may take advantage of cached Truffle libraries, cached
parameters, etc. We want to use Truffle libraries as much as possible - more
specifically, we want to use VectorDataLibrary as much as possible. Therefore,
in the implementation of the upcalls, we will try to primarily use some messages
from VectorDataLibrary or add new ones.

INTEGER ELT, INTEGER NO NA, and INTEGER IS SORTED are straightforward to
implement, as they can dispatch to getIntAt, isComplete, and isSorted mes-
sages of VectorDataLibrary respectively.

INTEGER GET REGION

The most useful solution is to implement getIntegerRegion as a message to
VectorDataLibrary. That way, we can provide a default implementation with
reasonable performance. Moreover, ALTREP instances, i.e., ALTREP vector
data can have an implementation of this message that considers whether the
Get region method is registered.

DATAPTR OR NULL

At the beginning of this section, we stated that we want to implement new mes-
sages in VectorDataLibrary if necessary. But only if such a message would
have some use inside other parts of FastR as well. For example, isSorted is a
very useful message inside VectorDataLibrary that is used inside many differ-
ent parts of FastR. A message for DATAPTR OR NULL would be used only in this
upcall, and nowhere else. Thus, we will not implement a new message for the
DATAPTR OR NULL upcall. We will rather implement it as an isolated upcall node.

The documentation says that DATAPTR OR NULL function should return NULL
rather than allocate any memory. In FastR, we represent R objects as Java object,
but only some of them are nativized (see section 3.3.2). More specifically, only
the objects for which the DATAPTR function was called are nativized. In other
words, not all the R objects are materialized in the native memory in FastR.
We either break the contract of the DATAPTR OR NULL function and nativize the
vector, or we return NULL for many objects. We decided to stick to the contract
of the DATAPTR OR NULL function and return NULL for not-yet-nativized objects.
Note that this is in contrast to GNU-R which returns a valid pointer for the vast
majority of the objects except for some ALTREP objects. This design decision
will have non-trivial performance impact, as DATAPTR OR NULL function is used in
ITERATE BY REGION macro (prefered way of iteration over a vector in the native
code - see section 2.2.3). We will discuss the performance in section 4.1.

In conclusion, we decided that we will implement DATAPTR OR NULL as an
isolated upcall node that, by default, returns NULL for many objects.
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3.6 Tests
In this section, we will describe how the ALTREP implementation is tested.

3.6.1 Unit tests
Let us first discuss unit tests. Unit tests, as defined by [25], are used sparsely in
FastR. The reason is that most of the implementation consists of Truffle nodes
and it might be difficult to isolate and test one particular node, as many nodes
require some parts of FastR to be initialized. In the end, it turns out that in
order to allow FastR to be entirely covered by this kind of unit tests, it would
require significant changes in the design.

assertEval

So taking one class or few classes, initialize them with some mock dependencies,
and unit testing them conventionally is not a great option for FastR. FastR ac-
tually uses jUnit testing framework and inside the testing methods it uses void
assertEval(String input) method. This method evaluates the input argu-
ment, which is some R code snippet, in FastR and in GNU-R, and then compares
their outputs. When the outputs are more or less equal the test passes, otherwise,
it fails. assertEval uses a lot of components - it constructs an AST from the
given R code snippet, initializes the interpreter, and interprets the AST. From
a software engineering perspective, these tests are rather integration tests than
unit tests. And because assertEval is easy to use and has decent coverage, it is
used frequently in FastR.

For ALTREP, assertEval is not a feasible option, because it can take only
R expressions as the input, whereas for ALTREP we also need to evaluate some
C statements, or even install a native package.

3.6.2 Package tests
FastR has to be able to install and run as many packages as possible in order
to be compatible with GNU-R. In package tests, FastR tries to install certain
package, run tests for this package, if there are any, or run at least examples of
that package. In most of the packages, FastR uses the examples, demos, or tests
published by the package authors to test the package. There are some packages,
particularly those very popular on CRAN, for which we have some internal tests
in FastR.

In an R package, tests are a collection of R scripts that uses, e.g., stopifnot R
function to test some condition or even something more sophisticated like RUnit.
Executing these tests in FastR without any errors is a good indicator of whether
the package is supported by FastR. Packages that are not published with tests
usually contain at least demos or examples, which are again a collection of R
scripts. Executing the demo or an example in FastR is not enough - we also
need to execute it in GNU-R and compare their outputs. The outputs do not
necessarily have to be exactly the same - there might be some differences in
producing various warning or informational messages. Only after the outputs
match, we can safely claim that the package is supported by FastR.
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In summary, a package test consists of executing the tests, examples or demos
of the package by both FastR and GNU-R, and comparing their outputs.

Package tests for ALTREP

There are two native packages used to test ALTREP - classtests, and
altreprffitests. Both of these packages aim to have as little dependencies
as possible. They are listed as attachments in the thesis, as they represent a
substantial contribution to the thesis.

classtests classtests is the native package used as a TCK for the ALTREP
API. It gets an arbitrary object (not only ALTREP) as the input and it checks
whether the object conforms to various ALTREP contracts, like those mentioned
in section 3.1. More specifically, rather than just an object, it gets a factory
function as the input and this function is executed before every test to create
the object. The reason for a factory function is that in some tests we modify
the values of the object return by the factory function. classtests package
is implemented in C++ and contains a simple implementation of a unit testing
framework with C++ Standard Template Library (STL) as the only dependency.
The code and the comments of the tests inside classtests package serve also as
a documentation of the ALTREP API that is absent in the core R. In the future,
the classtests might be published on CRAN.

altreprffitests altreprffitests is a native package that tests whether AL-
TREP instances can be used transparently in R. It creates some ALTREP in-
stances and use them inside various R statements that dispatch to the ALTREP
methods, e.g., the vec[[i]] statement, where vec is an ALTREP instance, dis-
patches to the Elt or the Dataptr method . This package contains some ALTREP
class definitions in C++ but all the tests are written in R.

A key difference from classtests is that altreprffitests tests more AL-
TREP instances with different methods at the same time, while classtests tests
just one object. Moreover, classtests package may test non-ALTREP objects.
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4. Results
In this chapter, we will describe some obstacles found in the implementation of
altrep in FastR and how we managed to get across them. We will also describe
how the performance of the implementation was measured and what kind of
optimizations were implemented.

4.1 Benchmarks
Performance is one of the key features of FastR. This thesis aims to have the
performance of various ALTREP usages comparable to the GNU-R counterpart.

In this chapter, we will describe benchmarks and their properties used to
measure the performance of ALTREP implementation. In the whole chapter, we
will target the LLVM backend of FastR.

The purpose of the benchmarks is to see what are the limitations of FastR
compared to GNU-R and vice versa, and what are some possible future optimiza-
tions of FastR.

Note that all the benchmarks presented in this section are only micro bench-
marks. The focus of the performance measurement is solely the ALTREP API,
not the whole FastR. While we cannot conclude that the performance of the AL-
TREP API is generally better in FastR than in GNU-R, the microbenchmarks are
still very valuable for various optimizations. Moreover, implementing standard
benchmarks is currently impossible since vroom - the only real-world package that
uses ALTREP - is not supported by FastR 1.

The benchmarks are designed to resemble a portion of the most typical work-
flow in an R application - iteration over a standard vector or ALTREP vector. If
we iterate over an ALTREP vector, we invoke these ALTREP methods (for the
list of all ALTREP methods refer to 2.2):

• Elt

• Get region

• Length

• Dataptr or Dataptr or null

The list is roughly sorted by the frequency of the invocations - the methods
mentioned in the beginning of the list have higher probability of being called
more frequently than the methods mentioned in the end of the list. Note that
the list of the methods is inferred from the Itermacros.h source file, i.e., from
ITERATE BY REGION macro that is the most commonly used and preferred way of
iteration over any vector (see 2.2.3). In a typical R application, these methods
will be called most frequently.

The benchmarks are implemented with the goal of invoking the aforemen-
tioned ALTREP methods frequently. In GNU-R, the ALTREP method invoca-
tion does not present a large barrier - it is very similar to virtual method dispatch,

1The reason why vroom package and other features are not implemented is described in the
following sections
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which basically means double pointer dereference. But in FastR, the ALTREP
method invocation presents many difficulties. Some of these difficulties were al-
ready mentioned in section 3.3. The reason for such a design of the benchmarks
is that we want to know the impact of frequently calling a native function from
a managed context. Theoretically, with Sulong this impact should be minimal.

There are 19 micro benchmarks in total for the ALTREP. Most of the bench-
marks contain one loop or two nested loops that iterate over an ALTREP vector
and does some trivial arithmetic operation on them. Some benchmarks are im-
plemented in R, and some are implemented in C. Every benchmark has a baseline
benchmark that it is compared to. Baseline benchmarks just iterate over a normal
integer vector and do the same arithmetic operation as normal benchmarks.

Another goal of the implementation of benchmarks is simplicity. FastR is
a huge and complex system and as such, various of its functionality may inter-
fere with the measurements. Therefore, we stick to some best practices in the
performance evaluation:

• Try to allocate as little memory as possible during the measurement.

• Keep the code that does the actual measurement as simple as possible,
without unnecessary if branches and functions that do some side effects.

• Measure every benchmark in a separate process.

Note that the benchmarks only use altinteger and integer vectors. This should
be enough for our purposes - altreal, altlogical, altraw and altcomplex vectors all
have the same API and similar behavior with the difference just in the primitive
values as their data. Altstring vectors do not have benchmarks because they are
not used so frequently as numerical vectors and in cases where they are used, we
do not expect high performance.

4.1.1 Description of the benchmarking framework
There exists a benchmarking framework for FastR that is integrated with mx [26]
, along with many benchmarks from various sources. But these benchmarks along
with the framework are part of the proprietary repository and as such cannot be
published in this thesis. Therefore, the author implemented the framework along
with the benchmarks just for ALTREP, from scratch.

The benchmarking framework is also integrated with mx - it is basically a
Python script. This framework takes care of various setups and cleanups nec-
essary for the benchmarks - like installation of some packages containing some
ALTREP class definitions and native benchmarks.

One of the advantages of the integration with mx is that the mx fetches some
configuration data for us - like ids of specific commits or CPU architecture of
the host machine, and writes this information inside the output file together with
some other measurement-specific information.

In the end, we can use this framework from other scripts to automatically
obtain some measurement data and analyze them.
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4.1.2 Parameters
This is a list of the possible parameters for benchmarks:

• The length of the vector that is iterated.

• The count of nested loop iterations for the benchmarks that have a nested
loop - these are the native benchmarks.

• The durations of the warmup and measure phases.

• The ALTREP class used as a vector that is iterated over.

• Whether to run the benchmark in GNU-R or in FastR.

ALTREP classes

NativeMemVec NativeMemVec that is a simple wrapper around a region of
native memory. During the class initialization, certain size (given as the param-
eter) is malloced and the pointer to this memory is saved and later returned as
Dataptr. The Elt method simply returns an element from this native memory,
and the return value of theLength method is obvious.

VecWrapper VecWrapper is the ALTREP class that wraps some standard vec-
tor and in its methods dispatches to the standard functions, e.g., the Elt method
calls the INTEGER ELT function on the standard vector. The standard vector is
kept as an instance data and retrieved in each method with the R altrep data1
function. VecWrapper, while still being simple and artificial class, resembles a
real-world class more than NativeMemVec as it is very likely that real classes
access their instance data in every method. Note that we do not use data2
instance data, because accessing them has the same performance overhead as
accessing data1.

4.1.3 Measured data
In this section, we will provide an analysis of the measurements of the afore-
mentioned benchmarks. This analysis is an excerpt from the Jupyter notebook
inserted in the attachment.

The data were measured with 300 seconds warmup, 25 seconds of the mea-
surement phase, and 107 data length. It is our experience that for relatively small
code sizes involved in the benchmarks, most compilation and optimization activ-
ities of Truffle and Graal have already finished by the 300 seconds warmup time.
We chose 107 data length experimentally - with smaller data, the benchmarks
tend to invoke too many operations per second which may negatively impact the
measurements - the overhead for the loop in which the benchmark is executed
would have non-trivial overhead. On the other hand, larger data causes some
benchmarks to run too long, not even finishing one operation per one second.

In the rest of the text, the score represents throughput - the number of oper-
ations per second (higher is better).

In Table 4.1 we can see the measured data. In the upper part, we can see the
benchmarks that have a better score in FastR and in the lower part we can see
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Name FastR score GNU-R score
iterate-native-mem-vec 16.797427 1.034098
iterate-native-mem-vec-baseline 17.879114 1.135255
iterate-dataptr 1.409227 0.823220
iterate-dataptr-baseline 17.719459 1.134758
iterate-elt-baseline 18.197590 1.146264
native-dataptr-before-native-mem-vec 17.432065 3.939710
native-dataptr-before-baseline 736.569754 7.092524
native-dataptr-inside-baseline 8.388018 2.948475
native-iter-by-region-native-mem-vec 8.451850 7.772932
native-iter-by-region-vec-wrapper 4.218315 2.207535
iterate-elt 0.792010 0.918453
native-dataptr-before-vec-wrapper 0.345072 2.272194
native-dataptr-before-vec-wrapper-elt 0.361011 2.283996
native-dataptr-inside-native-mem-vec 0.188310 0.687725
native-dataptr-inside-vec-wrapper 0.182996 0.684873
native-dataptr-inside-vec-wrapper-elt 0.094913 0.886068
native-iter-by-region-vec-wrapper-elt 0.442845 4.134619
native-iter-by-region-vec-wrapper-get-region 3.270665 17.983512
native-iter-by-region-baseline 6.149700 24.723014

Table 4.1: Measured data

FastR GNU-R
Mean 45.204 4.411
Median 4.218 2.207
Variance 28081.729 41.135
Standard deviation 167.576 6.413

Table 4.2: Statistical characteristics of FastR and GNU-R scores

44



the benchmarks that have a better score in GNU-R. In the table 4.2 we can see
some statistical characteristics of both GNU-R and FastR scores.

From the names of the benchmarks we can infere some parametrization of the
benchmark:

• Benchmarks ending with -baseline are baseline benchmarks.

• The prefix iterate represents benchmarks that are implemented in R.

• The prefix native represents a benchmark implemented in C in an attached
native package.

• The suffix -native-mem-vec represents benchmarks that get NativeMemVec
class as parameter (defined later).

• The suffix vec-wrapper represents benchmarks that get VecWrapper class
as parameter (defined later).

– vec-wrapper-elt is a VecWrapper with Elt and Dataptr methods
registered.

– vec-wrapper-get-region is a VecWrapper with Dataptr and Get -
region methods registered.

The code of the benchmarks is located in the attachment.
We can see that most of the baseline benchmarks are faster in FastR. This is

an expected result because the baseline benchmarks iterate over standard vectors
and FastR is able to optimize such an iteration heavily.

4.1.4 Outliers
In this section, we will discuss various outliers, both in FastR and GNU-R. As
subsections, we will provide names of benchmarks that we consider outliers and
explain why do they behave in such a way.

Let us start with an outlier in the baseline benchmarks.

native-iter-by-region-baseline

The native-iter-by-region-baseline benchmark with FastR score 6.1497 and
GNU-R score 24.723014 is the only baseline that is slower in FastR. Let us see
the simplified C code of the benchmark with expanded macros:

int acc = 0;
for (int iter = 0; iter < ITERATIONS; iter++) {

const int *dataptr = DATAPTR_OR_NULL(instance);
// GNU-R falls into this branch
if (px != NULL) {

for (R_xlen_t k = 0; k < LENGTH(instance) - 1; k++) {
acc += dataptr[k] - dataptr[k + 1];

}
}
// Fast-R falls into this branch
else {
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int __buff__[512];
for (R_xlen_t outer_idx = 0; outer_idx < LENGTH(instance);

outer_idx += 512)
{

INTEGER_GET_REGION(instance, outer_idx, 512, __buff__);
int *dataptr = __buff__;
for (R_xlen_t k = 0; k < 512 - 1; k++) {

acc += dataptr[k] - dataptr[k + 1];
}

}
}

}

where ITERATION is a parameter to the benchmark and instance is a standard
integer vector.

The DATAPTR OR NULL function returns a pointer to data only if the data is
already materialized, otherwise it returns NULL. In other words, the DATAPTR -
OR NULL function should not allocate any memory. This implies that in GNU-R,
this function always returns a valid pointer for all the standard vectors, because
the memory for such vectors had already been allocated. For FastR, this is not
the case. We decided that, by default, the DATAPTR OR NULL function will return
NULL for all the standard vectors that had not been allocated in the native heap
before (see section 3.3.3).

The behavior of the DATAPTR OR NULL function in FastR and GNU-R implies
that GNU-R executes the if-branch, and FastR the else-branch (as denoted in
the snippet with comments). The for loop in the first branch is very simple and
the C compiler will probably vectorize it. On the other hand, the second branch
contains two nested for loops with calls to the INTEGER GET REGION function, and
in FastR this is an upcall, which has some overhead even for Sulong.

iterate-native-mem-vec

The iterate-native-mem-vec benchmark with FastR score 16.797 and GNU-R
score 1.034 is the greatest outlier in the standard benchmarks. This benchmark
is written in R and this is the code (iterate-native-mem-vec.r):

acc <- 0L
for (i in 1:(length(instance) - 1)) {

acc <- acc + instance[[i]] - instance[[i + 1L]]
}

Where instance is an ALTREP vector with NativeMemVec class (see 4.1.2). The
instance[[i]] statement invokes the Elt(i) method, which is a C function that
returns ((int *)native ptr)[i], where native ptr is a pointer to previously
malloc-ed memory.

In FastR, the whole benchmark is inlined - the AST representing the Elt
method consists of just a few nodes and is inlined into the AST representing the
whole benchmarking function. At the runtime, Graal and Truffle do optimizations
on the entire AST, no matter whether some part of the AST originates from C
and the other part from R (see 2.4).
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In GNU-R, the instance[[i]] statement is actually a double dispatch. Al-
though the call target of this dispatch is always the same (the NativeMemVec
class), GNU-R cannot optimize this at the runtime.

Note that native-dataptr-before-native-mem-vec (with FastR score
17.432 and GNU-R score 3.939) is faster in FastR because of the same reasoning,
even though it is written in C.

native-iter-by-region-vec-wrapper-elt

The native-iter-by-region-vec-wrapper-elt benchmark with FastR score
0.442 and GNU-R score 4.134 is the greatest outlier for GNU-R - being almost
ten times faster than FastR. This is not very surprising - we already explained
why native-iter-by-region-* benchmarks are generally faster in GNU-R.

native-iter-by-region-vec-wrapper

The native-iter-by-region-vec-wrapper benchmark with FastR score 4.218
and GNU-R score 2.207 is the only native-iter-by-region-* benchmark that
is faster in FastR. Remember that this benchmark iterates over the VecWrapper
ALTREP class that has only Dataptr and Length methods registered. This
means that we retrieve the elements of the ALTREP vector via the Dataptr
method, rather than via the Elt method. And the result of the Dataptr method
is cached (see section 3.4).

4.2 Future work
• Support for vroom package, and other CRAN packages using ALTREP.

– This is the most important future work as the compatibility of FastR
with GNU-R is measured in the count of the packages that are sup-
ported on both platforms.

• Serialization and deserialization of ALTREP class descriptors and instances.

– This functionality is not yet fully supported even in GNU-R.

• Add Match ALTREP method

– As mentioned in section 2.2, the ALTREP classes are not final, some
of them might be merged, and more methods might be added. The
Match method is an example of an ALTREP method that was added
after the initial ALTREP class hierarchy was introduced.

47



Conclusion
In this thesis, we designed and implemented ALTREP for FastR, and although the
current implementation is not sufficiently complete to run the complex existing
CRAN packages (notably vroom), it shows that supporting ALTREP in FastR is
feasible and can give some benefits compared to the ALTREP implementation in
GNU-R.

We managed to optimize the implementation of ALTREP, along with some
other parts of FastR, so that it is faster than GNU-R in some benchmarks pre-
sented in this thesis. We concluded that the results are acceptable with respect
to the current limitations of Sulong.

The modifications of the current codebase of FastR were minimal - the AL-
TREP vectors are simply new types of VectorData, therefore they share the same
interface as other types of vectors. In GNU-R, on the other hand, the ALTREP
vectors need special treatment since the dispatch to ALTREP methods has to
be done explicitly. Every builtin function in GNU-R that supports ALTREP has
the following scheme:

SEXP some_builtin_function(SEXP arg) {
SEXP ans = R_NilValue;
if (ALTREP(arg)) {

// Dispatch to some ALTREP method.
ans = ALTREP_DISPATCH(arg, Method);
if (ans != R_NilValue) {

return ans;
}

}
// Do standard operation as for standard vectors.

}

This is not the case for FastR, where we do not have to introduce special handling
for ALTREP objects.

We designed two native packages to test the ALTREP implementation. Both
of these packages are standalone packages with minimal dependencies, usable
by both GNU-R and FastR. One of the packages, classtests, takes an object,
not necessarily an ALTREP object, and tests whether it conforms to certain R
Internals API contracts. It serves both as a TCK for the ALTREP API, and as
a documentation that is currently missing in the sources of GNU-R. It might be
published to CRAN in the future, as we believe that it might provide valuable
information to the R community. Another package, altreprffitests, creates
many ALTREP instances with different methods and checks whether they behave
correctly in some R statements. The package tests represent a large contribution
to the thesis.

The overall count of Source lines of code (SLOC) is approximately 11000
with 7000 lines of Java code, 3000 lines of C++ code, and 1000 lines of R code,
not counting some Python code for the Jupyter notebook and the benchmarking
framework.
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Glossary
class descriptor Raw vector containing pointers to methods of a specific altrep

object. . 13, 15, 27–30, 35, 36, 38, 47

JVM Compiler Interface A Java API for querying JVM data structures and
profile information. . 18, 19

49



Acronyms
AOT Ahead of Time. 18

AST Abstract syntax tree. 4, 19–21, 24, 32, 39, 46

DSL Domain specific language. 21, 23

GC Garbage collector. 8–10, 25, 32

JDK Java Development Kit. 18, 19

JIT Just in Time. 4

JNI Java Native Interface. 24, 32

JVM Java Virtual Machine. 19, 25, 32, 34

PGO Profile-guided optimizations. 19

SLOC Source lines of code. 48

STL C++ Standard Template Library. 40

TCK Test compatibility kit. 24, 40, 48

TLI Truffle language implementation. 19–21, 24
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A. Attachments

A.1 Electronic attachments
The directories in the archive uploaded in Student Information System as elec-
tronic attachment of the thesis.

• altrep-benchmarks ... The benchmarking framework (integrated in mx)
along with all the benchmarks used in the thesis.

• altrep demo package ... A rather small package containing just one simple
ALTREP class for the purpose of demonstration.

• altrep tests package ... A classtests native package used for testing
the ALTREP.

• fastr ... An author’s fork of the FastR repository.

– fastr/documentation/dev/altrep.md ... The documentation of the
ALTREP implementation.

• javadoc ... The generated javadoc of FastR, Sulong, and Truffle.

• notebooks ... The directory containing the Jupyter notebook along with a
script used by the Jupyter notebook and mesaured data.

Note that fastr, altrep tests package, and altrep-benchmarks directories
are backed by Git VCS. All of these repositories are on the author’s Github
(Akirathan) and checked-out on dipl-thesis tag. Up until the date of the thesis
submission, the ALTREP is not yet merged into FastR upstream. We expect that
until the thesis defense, it will be merged into FastR.

The author’s contribution to the FastR codebase can be seen with git diff
master HEAD, or, more conveniently, at this link https://github.com/oracle/
fastr/compare/master...Akirathan:pm/altrep (accessed 30.7.2020).

Dockerfile
Besides other build dependencies, FastR has GNU-R version 3.6.1 as a depen-
dency and, by default, it builds the GNU-R from sources. And GNU-R version
3.6.1 requires specific versions of some libraries. Therefore, the simplest way to
demonstrate the thesis is to use Docker. We have included the Dockerfile based
on Ubuntu 20.04 that installs and downloads all the dependecies, builds FastR,
and installs the ALTREP testing packages along with a altrep demo package.
In the Dockerfile, the part that builds the Graal compiler is not included so the
overall build takes less time. Note that even without the Graal compiler, the build
of the whole Dockerfile takes approximately 18 minutes on the author’s laptop.
We need to build the Graal compiler only if we want to run the benchmarks.

The user can also download the Docker image from the author’s DockerHub at
https://hub.docker.com/r/akirathan/fastr-altrep. The image has 5GB.
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The entry point of the Dockerfile is on purpose the default shell as there are
more ways to start FastR - with Graal compiler or without Graal compiler. To
start FastR without Graal compiler, simply run mx r - this will run FastR with
LLVM backend. To run FastR with Graal compiler, we first have to build the
compiler with:

cd $GRAAL_HOME/compiler
mx build

Then run mx --dynamicimport graal/compiler r to start FastR with Graal
compiler.

Run demo

To run the demo, paste the following commands in R (run R with mx r):

library(altrepdemo)
demo("altrep_usage")

Run tests

There are classtests.sh and altreprffitests.sh scripts to run the
classtests and altreprffitests package tests respectively.

Unit tests can be run with mx rutdefault to run most of the unit tests, or mx
rutsimple to run just a subset of all the unit tests, which takes approximately
20 minutes.

All the package tests can be run with mx pkgtest, however we do not recom-
mend to actually run them on a laptop as they take several dozens of hours to
run for the first time, before the packages are cached.

Run benchmarks

For benchmarks, we first have to build the compiler with:

cd $GRAAL_HOME/compiler
mx build

then run some ALTREP benchmark with this form:

cd $FASTR_HOME
mx --dynamicimport altrep-benchmarks,graal/compiler \

benchmark altrep:<benchmark_name>

Please refer to the

$PMAREK_HOME/dev/altrep-benchmarks

directory for the names and specifications of the benchmarks.
Note that because of the recent upstream changes to mx benchmarking suite,

the ALTREP benchmarking framework does not currently work in its outdated
version. However, we expect to update and fix the ALTREP benchmarking frame-
work soon.
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