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Abstract

Cyber risk or data breach risk can be estimated similarly as other types of
operational risk. First we identify problems of cyber risk models in existing
literature. A large dataset consisting of 5,713 loss events enables us to apply
extreme value theory. We adopt goodness of fit tests adjusted for distribution
functions with estimated parameters. These tests are often overlooked in the
literature even though they are essential for correct results. We model aggregate
losses in three different industries separately and then we combine them using a
copula. A t-test reveals that potential one-year global losses due to data breach
risk are larger than the GDP of the Czech Republic. Moreover, one-year global
cyber risk measured with a 99% CVaR amounts to 2.5% of the global GDP.
Unlike others we compare risk measures with other quantities which allows
wider audience to understand the magnitude of the cyber risk. An estimate of
global data breach risk is a useful indicator not only for insurers, but also for

any organization processing sensitive data.

Keywords cyber risk, operational risk, data breach, extreme
value theory, copula, value at risk, conditional

value at risk

Title Cyber risk modelling using copulas

Abstrakt

Kybernetické riziko nebo riziko uniku dat lze odhadnout podobné jako ostatni
typy operacniho rizika. Nejprve identifikujeme problémy modelta kybernetického
rizika v soucasné literature. Rozsahly datovy soubor obsahujici 5 713 pozorovani
nam umoznuje aplikovat teorii extrémnich hodnot. Pouzivame testy dobré
shody prizptsobené distribu¢nim funkcim s odhadnutymi parametry. Tyto
testy jsou v literature casto prehlizeny, prestoze jsou nezbytné pro spravné
vysledky. Ztraty modelujeme samostatné ve tfech riznych odvétvich a pak je
zkombinujeme pomoci kopule. Prostrednictvim t-testu zjistujeme, Ze potencialni
roéni celosvétové ztraty v diisledku rizika tniku dat jsou vétsi nez HDP Ceské
republiky. Navic ro¢ni kybernetické riziko mérené s 99% CVaR dosahuje 2,5 %
svetového HDP. Na rozdil od ostatnich porovnavame miry rizika s jinymi

hodnotami, coz umoznuje pochopit zavaznost kybernetického rizika i sirsimu



publiku. Odhad globalniho rizika iniku dat je uziteénym ukazatelem nejen pro

pojistovny, ale také pro jakoukoli organizaci zpracovavajici citliva data.

Klic¢ova slova kybernetické riziko, operacni riziko, tnik
dat, teorie extrémnich hodnot, kopule, hod-

nota v riziku, podminéna hodnota v riziku

Nazev prace Modelovani kybernetického rizika pomoci

kopula funkci
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rising while at the same time the level of cyber risk research is globally far behind
what is needed. Cyber risk research is currently concentrated around consulting firms
and insurance companies which share their findings only exceptionally. The supply
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to actuaries specialising in cyber risk.



Master's Thesis Proposal XV

Outline
1. Introduction
2. Theoretical background

a) Definition of cyber risk

(c
(d

(a)
(b) Trends in cyber risk assessment
) Current cyber threats

)

GDPR and the data breach risk
3. Literature review

4. Methodology

5. Empirical analysis

6. Discussion of results

7. Results

8. Conclusion

The theoretical part will begin with a definition of cyber risk as a part of the
operational risk. It will be followed by literature review concentrated on trends in the
cyber risk assessment and current cyber threats. Next, there will be a short analysis
of the impact of GDPR on the data breach risk. An overview of basic actuarial
models, risk measures, extreme value theory and copulas will conclude this part.

The empirical part will include a specification of a particular aggregate loss model
where a copula explains dependencies among severities of losses in different industries.
This model will be estimated using real-world data. Resulting risk measures such as

value at risk or conditional value at risk will be presented with scenario analysis.

Core bibliography

Abbate, D., Farkas, W., & Gourier, E. (2009). Operational Risk Quantification

using Extreme Value Theory and Copulas: From Theory to Practice.

Biener, C., Eling, M., & Wirfs, J. (2015). Insurability of Cyber Risk: An

Empirical Analysis. Geneva Papers on Risk and Insurance, 40(1), 32.

Clemente, A., & Romano, C. (2004). A copula-Extreme Value Theory approach
for modelling operational risk. In Operational Risl Modelling and Analysis:

Theory and Practice.



Master's Thesis Proposal XVi

Genest, C., Rémillard, B., & Beaudoin, D. (2009). Goodness-of-fit tests for
copulas: A review and a power study. Insurance: Mathematics and Economics,
44(2), 199-213.

Herath, H., & Herath, T. (2011). Copula Based Actuarial Model for Pricing

Cyber-Insurance Policies.

Chernobai, A., Rachev, S., & Fabozzi, F. (2007). Operational Risk: A Guide
to Basel II Capital Requirements, Models, and Analysis.

Lebovi¢, M. (2012). The use of coherent risk measures in operational risk

modeling.

Lloyd’s. (2017). Counting the cost. Retrieved from https://www.lloyds.com /news-
and-risk-insight /risk-reports/library /technology /countingthecost

Shah, A. (2016). Pricing and Risk Mitigation Analysis of a Cyber Liability
Insurance using Gaussian, t and Gumbel Copulas — A Case for Cyber Risk
Index. CANADIAN ECONOMICS ASSOCIATION.

Verizon. (2018). 2018 Data Breach Investigations Report. Retrieved from

https://www.verizonenterprise.com/verizon-insights-lab /dbir/

Author Supervisor



Chapter 1
Introduction

Cyber attacks have become a part of our daily lives. Lloyd’s and Cyence (2017)
discovered that a mass vulnerability attack can cost as much as USD 9.7 billion
or USD 28.7 billion if it is an extreme event. Everybody knows that we cannot
avoid them. The best alternative is to be prepared. If we want to prepare, we
have to know how large the threat is. This is the reason why we need to calculate
the size of cyber risk. IBM Security and Ponemon Institute (2019) estimate
average total cost of a data breach at USD 3.92 million. Moreover, 71 percent of
data breaches are financially motivated and 25 of data breaches are motivated
by espionage (Verizon 2019). Data breaches constitute particularly dangerous
part of cyber risk. This is the reason why we concentrate our investigation on
data breach risk.

The objective of this thesis is to model data breach risk with respect to
all specifics of this type of risk. Cyber risk or data breach risk is a type of
operational risk. It is well known that severity distribution of operational
losses has heavy right tail. Therefore we have to use extreme value theory in
order to properly take care of this property. Also there can be a dependence
structure between losses in different industries. Therefore we have to verify if this
dependence structure cannot be described with a copula. We have to establish
a model. We use an actuarial model suitable for modelling operational risk. It
consists of estimating parameters of distributions from pre-selected distribution
families. We consider different distribution families for loss frequency and
loss severity. For instance discreet probability distributions are more suitable
for loss frequency while continuous distributions are more appropriate for loss
severity. Second part of the model involves combining loss frequency and severity

distributions into an aggregate loss distribution. We extend this model with
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extreme value theory and copula. Then we calculate risk measures and we
obtain an estimate of the data breach risk.

Based on literature review we test the following hypotheses:

Hypothesis #1: Frequencies of losses caused by data breaches follow a

Poisson distribution.

Hypothesis #2: Severities of losses caused by data breaches follow a

log-normal distribution.

Hypothesis #3: A Gaussian copula describes dependencies between ag-

gregate losses caused by data breaches in different industries.

Hypothesis #4: The possible total worldwide cost of data breaches per
one year is less than the nominal GDP of the Czech Republic.

In order to test these hypotheses we propose a statistical model described in
the rest of this thesis.

The thesis is structured as follows: Chapter 2 gives theoretical background.
Chapter 3 provides literature review. Chapter 4 gives detailed information about
methodology. Chapter 5 describes our dataset. Chapter 6 contains results and
their interpretation. Chapter 7 describes contribution of this thesis. Chapter 8

summarizes our findings.



Chapter 2

Theoretical background

2.1 Definition of cyber risk

“Operational risk is defined as the risk of loss resulting from inadequate or
failed internal processes, people and systems or from external events. This
definition includes legal risk, but excludes strategic and reputational risk. Legal
risk includes, but is not limited to, exposure to fines, penalties, or punitive
damages resulting from supervisory actions, as well as private settlements”
(Basel Committee on Banking Supervision, Bank for International Settlements
2019).

One part of operational risk is cyber risk. “Operational cyber security risks
are defined as operational risks to information and technology assets that have
consequences affecting the confidentiality, availability, or integrity of information
or information systems” (Cebula, Popeck, and Young 2014).

We will concentrate only on one part of the cyber risk and it is the data
breach risk. Nonetheless, it is one of the largest parts of cyber risk. “A data
breach is defined as an event in which an individual’s name and a medical
record and/or a financial record or debit card is potentially put at risk, either
in electronic or paper format” (IBM Security and Ponemon Institute 2019).
Other definition by NortonLifeLock (2020) says that a data breach is a security
incident in which information is accessed without authorization. Verizon (2019)
distinguishes between an incident and a breach. Incident is “a security event
that compromises the integrity, confidentiality or availability of an information
asset.” Breach is “an incident that results in the confirmed disclosure, not just

potential exposure, of data to an unauthorized party.”
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2.2 Trends in cyber risk assessment

Cyber attacks come in many forms. Fewer organizations surveyed by Department
for Digital, Culture, Media & Sport, Her Majesty’s Government (2019) reported
a data breach in 2019 than a year ago while more data breaches happened
on average to those organizations which experienced at least one data breach.
The attackers themselves choose which types of attacks are the most prevalent.
They prefer attacks that yield the highest income. By causing a disruption they
do not gain much reward. If they decide to disable certain service it might be
because they have other than financial interests such as self-realization. They
can cause a disruption using a denial of service attack or a distributed denial of
service attack if they use a network of compromised computers called botnet to
conduct the attack. Verizon (2019) reports that distributed denial of service
attacks make the majority of all reported security incidents. In any of these
two types of denial of service the attackers normally cannot gain access to
information stored in the attacked system or cause any damage to it. This
is also confirmed by Verizon (2019). Information systems running in clouds
are usually able to recover by themselves without a human interaction. If we
assume that attackers make rational decision regarding the use of their skills we
can expect to see a shift from other types of cyber attacks into cyber attacks
with an intention of a data breach.

IBM Security and Ponemon Institute (2019) find that the reason for 51
percent of data breaches in 2019 was malicious attack. This is 21 percentage
points more than in 2014. This finding can have several reasons. Either the
employees are generally more aware about data protection possibly due to
GDPR. Or more attackers started to operate due to existence of positive profit
margin. Also attacker focusing on other types of cyber attacks might have
switched to cyber attacks with an intention of a data breach. Data breach itself
does not constitute a cyber attack. Data breach is a result of a cyber attack
during which an attacker obtains sensitive information and decides to release
them either for free or for a compensation. Various malware can be used to
perform a data breach depending on what information is targeted, how it is
protected and to what extent social engineering can be used. The number of
data breaches utilising social engineering rose by 18 percentage points between
2013 and 2018 (Verizon 2019).

In 2019 it took longer to identify and contain a data breach resulting from a

malicious attack than from other sources (IBM Security and Ponemon Institute
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2019). These types of data breaches cost 27 percent more than data breaches
due to human error and 37 percent more than data breaches due to system
glitches (IBM Security and Ponemon Institute 2019). When an attacker creates
a data breach it is usually with an intention of making some profit. Whereas
the other two reasons do not involve intentional profit driven behaviour. It can
be discussed, if the 27 percent difference is not too little for such a substantial
difference in the type of the data breach. Also human error resulting data
breaches can be of two types. They are either intentional or not. Given the
punishments for intentional data breaches caused by employees, this category
should not be disturbing. Unintentional human error data breaches might be
difficult to discover, but nobody tries to sell the breached records what would
rise the cost. Also preventive measures can be applied. They can include
mandatory password changes, etc. Verizon (2019) describes an attack which
starts with a malicious outsider and at a later stage through the use of social
engineering results to a data breach caused by a human error. It happens as
follows. The attacker compromises an email account of one employee and enters
a conversation between several people. By forwarding emails to the right targets
the attacker forces other employee to make a fraudulent financial transaction.

On average the cost of data breach for large organizations in 2019 was USD
204 per employee while the same figure for small organizations was USD 3,533 per
employee (IBM Security and Ponemon Institute 2019). Smaller organizations,
which profit from economies of scale to a smaller extent than larger organizations,
have to face higher cost of data breaches. This disproportionality can block new
entrants into the industry. Or can make entry more risky because a random
event such as a data breach can cause a business loss to an immature company.
According to Verizon (2019) 43 percent of data breaches were targeted against
small business.

IBM Security and Ponemon Institute (2019) found that involvement of third
parties and complexity of infrastructure are major reasons for high data breach
costs. The communication between an organization and a partner naturally
creates an extra burden which causes a rise in the data breach cost. Data
breach liquidation is often about information and time. When information is
hidden inside the infrastructure of the third party then it influences the ability
to provide an adequate response to the data breach in a timely manner. The
additional time it takes to exchange information with partner can be used by the
attacker to further misuse acquired data. Potentially legal fees for a dispute with

the third party might come into play. Cloud platforms operated by third parties
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became the main storage platform for sensitive data (Thales 2019). There are
two reasons why attackers target software as a service. First, the investigation
of a data breach is more complicated which gives them some extra time to hide
their malicious activities and make use of the data. Second, organizations prefer
to save their data into such services and therefore the concentration of possible
victims is higher.

Presence of a dedicated incident response team drops the cost of a data
breach on average by USD 1.23 million per data breach (IBM Security and
Ponemon Institute 2019). The question is not whether a data breach happens,
but when it happens. For an organization of a certain size it is legitimate to
expect that a data breach happens in the near future. By spending now for the
incident response team the organization can save money when the data breach
happens. The cost saving can be such large that it covers the cost of having
this team during calm periods. Nevertheless even then they can run simulations
and prepare for the inevitable. Department for Digital, Culture, Media & Sport,
Her Majesty’s Government (2019) suggest that organizations should take more
steps to protect themselves against cyber risk. For instance they should plan
an incident response.

IBM Security and Ponemon Institute (2019) reports 95 percent higher
average costs of data breach at organizations without automated systems for
data breach response than at organizations with such tools installed. The
aftermath of a data breach constitutes a period of an emergency for multiple
departments. Using automation for other tasks than data breach response can
also be vital in such an event because at least some operations of the data
breach response can be automated.

Data breaches in the United States cost on average more than twice as
much as globally (IBM Security and Ponemon Institute 2019). Healthcare is
an industry where data breaches cost the most. An average data breach in
healthcare costs 60 percent more than an average data breach in all industries
combined (IBM Security and Ponemon Institute 2019). Health data are together
with financial data among the most sensitive. Out of all data breach victims 15
percent are from healthcare industry and 10 percent are from financial industry
(Verizon 2019). An attacker might have several different reasons for trying
to perform a data breach. First, the reason might be to make a fraudulent
financial transaction in order to steal money. Second, the reason can be to
blackmail either the user whose data are breached or the organization which

suffers the data breach. Third, the reason can be to gain information either
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for own needs or to sell it. Depending on the breached data they can be
replaced without any further loss. For example if the breached data are account
credentials and the accounts do not contain any sensitive information then in
the worst case scenario the attacker or its client might use the service tied to
the account without paying for it. If the accounts contain sensitive information
it depends on how quickly the attacker can extract the information from the
accounts before being discovered. If the breached data directly constitute the
sensitive information then the breached organization has substantially limited
options. We can call the data breach in this case a data theft. One solution can
be to accept the situation, apologize and provide a compensation if possible.
Healthcare data breaches usually create a situation in which the organization
cannot do anything else to prevent the harm because the harmful potential
is already included in the breached data. When this is combined with the
high sensitivity of the breached data it makes sense that the data breaches in
healthcare have a high cost.

Data breaches have various consequences for organizations. Among the
most common are loss of customer trust and lost business (IBM Security and
Ponemon Institute 2019). Even if an organization makes sure that accounts
with breached credentials are secured and no information is leaked the trust
of the public always suffers. All users always have to understand that data
which they provide to any organization can be breached. Nonetheless, some
organization are more successful at protecting their users’ data than other. Loss
of business can happen when the organization does not have enough capital to
cover the cost of the data breach. For this purpose it is necessary to model data
breach risk and calculate risk measures. Even if a company knows how much
cyber risk its operation involves, it might not be able to raise enough capital
to cover this risk. This might be the reason why lost business is so common
consequence of a data breach. Huge data breaches are rare and in general it
might be an acceptable solution to let the few unlucky companies go bankrupt.
Nonetheless knowing how much capital is needed is still a useful idea because at
least it can guide the mangers towards the goal of sufficient capital to protect
against losses due to data breaches.

The danger of a data breach does not lie only in its immediate consequences.
On average one-third of data breach related expenses are incurred more than
one year after the data breach itself (IBM Security and Ponemon Institute 2019).
Negligence to indemnify the victims of the data breach immediately is unlikely

to reduce the cost of the data breach. If an organization compensates victims for
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the data breach instantly, it might not only be able to preserve its reputation,
but also save on legal fees. It is not because the organization would not be
able to determine if a legal case is worth defending, it is because some of their
customers are loyal are they are willing to accept certain amount of mistakes.
Nowadays this factor is even more intensified because many companies are
building communities of customers both online and offline. Irritating certain
key members of the community can lead to a herd effect which displeases
practically the whole community. Such situation could lead to unprecedented
losses. Nonetheless, there are exceptions represented by organizations which do
not pay particular attention to their public relations. It might be for example
because they produce a commodity. Managers should always examine each
data breach of their organization on a case by case basis. One-quarter of data
breaches were conducted by an act of espionage (Verizon 2019). State or state
financed attackers represent a specific type of threat. Their attacks usually
do not influence consumers directly. Their interests are often propaganda and
secret information. On the other hand they can influence people indirectly
through manipulations of elections or promoting extremism.

There are differences between industries in a timing of the costs after the data
breach. In highly regulated industries like healthcare and finance 53 percent and
32 percent of costs related to a data breach appear in the first and the second
years after the data breach, respectively. For the whole sample the figures are
67 percent and 22 percent, respectively (IBM Security and Ponemon Institute
2019). This suggests that in highly regulated industries the organizations cannot
just hide the data breaches. They must have procedures for dealing with them
and properly follow these procedures. Another reason might be that the highly
regulated industries also happen to be the industries where customers care much
more about what happens with their data. The average cost of a data breach is
USD 3.34 million if it is contained in less than 200 days and USD 4.56 million
if it is contained in more than 200 days. Thomson Reuters (2019)

In 2019 it took on average 279 days to identify and contain a data breach.
This is an increase from 266 in 2018 (IBM Security and Ponemon Institute
2019). Verizon (2019) reports that 56 percent of data breaches were discover
after months or later. The faster the organization identifies the data breach the
lower the final cost might be. When an attacker acquires data the time goes
against the organization. The more time it takes to discover the data breach,
the longer the attacker can use the data for malicious purposes. The attacker

might decide to wait some time before using the acquired data in order to hide
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the exact date and time of the attack. Nonetheless as the time passes the data
start becoming irrelevant. Therefore the attacker balances between these two
factors when deciding when to take what kind of action with the breached data.
The time between the first interaction of the attacker with the targeted system
and acquisition of data is generally measured in minutes while the time between

the incident and its discover is generally measured in months (Verizon 2019).

2.3 Current cyber threats

More than 90 percent of identified malware comes from email attachments
(Thomson Reuters 2019). It is worrying on one hand, that such a simple
and naive method can be used to overcome robust security measures recently
implemented by most organizations. Moreover, it is always easier to block
malware than to fight with it. If it is let inside the information systems by
an employee then the most powerful weapon against attackers is disabled. On
the other hand it means that an easy solution is available. While many news
articles, projects and influencers have been informing about the dangers of
opening email attachments, they might not have been targeting those who need
this information the most. Many organizations would benefit from improved
guidance regarding cyber risk. Department for Digital, Culture, Media & Sport,
Her Majesty’s Government (2019) Nonetheless, they are not actively seeking
this information and they expect that regulators provide the information to
them. Only 16 percent of businesses and 11 percent of charities have set up
formal cyber security procedures. A proper response to cyber threats involves
action from all participants in the economy and in all industries.

Using encryption in an organization is the largest factor for lowering data
breach cost (IBM Security and Ponemon Institute 2019). Other factors include
threat intelligence sharing and integrating security protection into software
development process. Using encryption should go without saying because it
instantly disables a substantial amount of attacks. It is relatively easy and
cheap to implement. Since the penetration of encryption use is relatively high,
we can assume that organizations, which experienced high data breach costs and
did not use encryption, also neglected other factors of cyber security protection.
The more organizations widely use encryption, the less profitable it is to develop
malware targeting this type of vulnerability. Since the use of encryption is
so widespread and because it is such a critical component of software, the

encryption libraries are well maintained. Therefore it would be natural to see a
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growth in the attacks targeting specific vulnerabilities of encryption protocols.
Using encryption by an organization has the potential to decrease the cost of a
data breach by USD 360,000 on average. Thales (2019) found in their survey
that only a half of organizations currently use encryption in some way while
almost all are planing to start using it in the next 12 months. And only 30
percent of organizations use file encryption in most of their applications (IBM
Security and Ponemon Institute 2019).

Sharing security information is a reasonable protection against cyber attacks.
Attackers might design an attack in such a way that it does not target a specific
organization but specific software. Depending on how well that particular
software is maintained, this approach can be more efficient for the attacker.
However, sharing threat intelligence is a powerful tool against this attack.
Nevertheless, it always depends on the purpose for which the information
obtained from other sources is used. Of equal significance is how much willingness
other organizations using the same software product have to share their data.
Embedding security into software should be considered a necessity. However
given the pace of some industries, it sounds impossible to give integrating
security into development process a high priority. If embedding security into
the software by the same team which makes the software decreases the speed
of software production to such extent that competitiveness of the company is
threatened then it makes sense considering if it is worth it. Integrating security
protection into newly written software still does not solve issues with legacy
software. It is always a difficult decision whether to keep using old software and
patch it as often as possible or to create new software with security in mind but
potentially introducing new security vulnerabilities. Department for Digital,
Culture, Media & Sport, Her Majesty’s Government (2019) reports that in 2019

more organizations improved their cyber security than a year ago.



Chapter 3
Literature review

Existing literature related to cyber risk research can be divided into these

categories:
1. studies on cyber risk,
2. studies on general operational risk,
3. theoretical studies and monographies, and

4. reports on cost of data breaches and reports on cyber risk.

3.1 Studies on cyber risk

Studies focused primarily on cyber risk are rare and not all of them use copulas.
On the other hand, there are many studies on general operational risk modelling
which can also be used in the context of cyber risk. The core studies on cyber
risk include Eling and Wirfs (2019), Mukhopadhyay et al. (2013), Biener, Eling,
and Wirfs (2014) and H. Herath and T. Herath (2011).

Eling and Wirfs (2019) study cyber risk with an actuarial model. They use
extreme value theory, but no copulas. Mukhopadhyay et al. (2013) do a meta
study on the feasibility of cyber risk insurance. Biener, Eling, and Wirfs (2014)
analyse cyber risk from the point of view of cyber risk insurance. H. Herath
and T. Herath (2011) calculate cyber risk premiums with the use of copulas.
Shah (2016) propose a cyber risk index that would facilitate trade with cyber
risk. Shah (2016) use copulas to model dependence.

Eling and Wirfs (2019) criticise other research papers on cyber risk for
being limited to data breach risk. At the same time Eling and Jung (2018),
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by assessing purely data breach risk, do exactly what Eling and Wirfs (2019)
criticise.

Aldasoro et al. (2020) use a comprehensive dataset of losses due to cyber
risk to investigate which variables have effect on the cost of cyber attacks. They
have enough evidence to say that both a development of technological skills
by staff and a higher reliance on cloud technology reduces the cost. They also
recommend an optimal level of investment into information technology security

for each sector and compare it with actual spending.

3.2 Studies on general operational risk

Main studies on operational risk in general include Di Clemente and Romano
(2004), Valle, Fantazzini, and Giudici (2008), Abbate, Gourier, and Farkas
(2009) and Chavez-Demoulin, Embrechts, and Hofert (2016).

Di Clemente and Romano (2004) represents a typical research paper on
operational risk. The use of copulas makes it exceptional. It starts with an
overview of extreme value theory and copula theory. The part dealing with
extreme value theory closely follows Embrechts, Kliippelberg, and Mikosch
(1997) as most papers on operational risk do. A small disadvantage might
be slightly vague explanation of how aggregate loss distribution is calculated.
Valle, Fantazzini, and Giudici (2008) are similar to Di Clemente and Romano
(2004). They discovere that the choice of margins has larger impact on risk
measures than the choice of copula. Abbate, Gourier, and Farkas (2009) show
that operational risk models can have high sensitivity to the parameters of
the generalized Pareto distribution. Moreover they claim that full dependence
structure produces higher value at risk than when the dependence structure is
modelled with copulas. Di Clemente and Romano (2004) claim the opposite
that under copula dependence structure the risk measures are on average 10
percent lower than under full dependence.

Both Chavez-Demoulin, Embrechts, and Hofert (2016) and Chavez-Demoulin,
Embrechts, and Neslehova (2006) build an operational risk model with appli-
cation of peaks over threshold method and they explain the application of
extreme value theory in a great detail. They do not use copulas. Chapelle
et al. (2008) explain a gap between a robust mathematical models on one hand
and simplified pragmatic approaches on the other hand. Gengay, Sel¢uk, and
Ulugiilyagei (2003) introduces an approach combining extreme value theory,
value at risk and GARCH model. Jarrow (2008) criticises the operational risk
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models based on distribution of aggregate losses. Y. Wang, Li, and Zhu (2017)
improves traditional model for operational risk with piecewise loss frequency
and severity distribution functions.

Carrillo-Menéndez and Suéarez (2012) analyse pitfalls of operational risk
modelling. They point out insufficiency of relevant data and they question
the suitability of extreme value theory. Han, W. Wang, and J. Wang (2015),
Lu (2011), Yao, Wen, and Luan (2013) and Xu et al. (2019) analyse capital
requirements for operational risk in Chinese banks. Pan et al. (2019) combine
copula theory with Bayesian approach. Even though Bhatti and Do (2019) do

not focus on operational risk, they build a robust model with copula.

3.3 Theoretical studies and monographies

The core theoretical studies include Ghosh and Resnick (2010), Darling (1957),
Braun (1980), Anderson and Darling (1954), Rockafellar and Stanislav Uryasev
(2000) and Artzner et al. (1999).

Using mean excess plots correctly is challenging. Ghosh and Resnick (2010)
start with definitions and then they give practical advice for using mean excess
plot in empirical research. They also warn against common mistakes. Watson
(1958) explains the use of Pearson’s chi-squared test for testing goodness of
fit. Braun (1980) introduces a novel approach for goodness of fit tests which
allows using distribution functions with estimated parameters. Anderson and
Darling (1954) introduces the well-known Anderson-Darling goodness of fit
test. Darling (1957) provide description of Kolmogorov-Smirnov and Cramér-
von Mises goodness of fit tests. Anderson and Darling (1952) provide further
description of goodness of fit tests. Stephens (1974) give formulas for calculating
goodness of fit test statistics. Rockafellar and Stanislav Uryasev (2000) introduce
conditional value at risk and advocate about its advantages. Stan Uryasev
(2010) in detail explains properties of conditional value at risk. Artzner et al.
(1999) introduce coherent risk measures. Yamai and Yoshiba (2002a) and Yamai
and Yoshiba (2002b) describe differences between risk measures and advantages
of coherent risk measures.

Several monographies related to operational risk, actuarial models, extreme
value theory and copula theory are also available. Chernobai, Rachev, and
Fabozzi (2007) provide simple instructions for modelling operational risk. It
includes an overview of applicable frequency and severity loss distribution

families, extreme value theory and risk measures. Chernobai, Rachev, and
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Fabozzi (2007) often do not go into details, but there are always references to
research paper. In the end of each chapter there is always a review of empirical
research papers related to the topic of the chapter. Embrechts, Klippelberg,
and Mikosch (1997) is one of the first books on extreme value theory. The book
contains a large amount of various figures which complement otherwise very
technical content. Only relatively small part of the book is concerned with
peaks over threshold method. It is still more than enough for the purpose of
application of this method in our model.

Hofert et al. (2018) present definition of copula and related terms along with
plenty of motivational examples and figures. Furthermore they guide the reader
through the process of copula parameter estimation, copula family selection,
goodness of fit testing and graphical representation. Hofert et al. (2018) has
two advantages. First, R code is provided for each example which simplifies
practical application of concepts presented in the book. Second, they start with
simple ideas and gradually extend them. Especially useful is their attention to
detail. They cover a broad range of topics related to application of copulas in
empirical research. Nelsen (2006) is more technical than Hofert et al. (2018)
and therefore not intended as an introduction into copula theory. On the other
hand, this might be useful in certain situations when simple explanations in
other resources are too simple to explain complicated ideas. Klugman, Panjer,
and Willmont (2012) provide introduction into actuarial models. The book
is intended for a broad audience. Mejstiik, Pecend, and Teply (2015) explain
many concepts in finance and banking. Few pages are related to value at risk
and risk assessment in general. D’Agostino and Stephens (1986) is a traditional
book on goodness of fit tests. They provide a comprehensive comparison of

tests in regards to their power in various situations.

3.4 Reports on cost of data breaches and reports

on cyber risk

IBM Security and Ponemon Institute (2019) and Verizon (2020) are two most
comprehensive reports on data breach costs. We use the cost from IBM Security
and Ponemon Institute (2019) to test our hypothesis regarding the size of data
breach risk. IBM Security and Ponemon Institute (2019) are more serious and
organized while Verizon (2020) tries to put more weight on a few surprising
findings. Verizon (2018) and Verizon (2019) are older versions of Verizon (2020).
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Reports on cyber risk include Lloyd’s and Cyence (2017), Department for
Digital, Culture, Media & Sport, Her Majesty’s Government (2019) and Thales
(2019). Lloyd’s and Cyence (2017) focus on cyber attacks from the perspective
of cyber insurance. The purpose of their publication was to help insurers
quantify cyber risk. They create two scenarios and calculate possible losses.
The scenarios are cloud service provider hack and mass vulnerability attack.
The first scenario can result into a loss between USD 4.6 and 53.1 billion. The
amount for the second scenario is between USD 9.7 and 28.7 billion.

Department for Digital, Culture, Media & Sport, Her Majesty’s Government
(2019) represents a survey of organizations in the United Kingdom about their
experience with cyber attacks. Thales (2019) is a summary of a survey which
targeted executive officers. Presented statistics are related to data security.
Gaidosch et al. (2019) and Bouveret (2018) provide recommendations from a

perspective of a financial regulator in regards to cyber attack prevention.



Chapter 4

Methodology

4.1 Frequency and severity distributions

In order to measure the data breach risk we first build a model, second we
calibrate the model with data of past loss events and finally we calculate risk
measures. We use a parametric approach for modelling loss frequency and loss
severity distributions. For loss frequency we consider Poisson and negative
binomial distributions. For loss severity we consider normal, exponential, log-
normal, Weibull and Cauchy distributions.

For random variable X following Poisson distribution with parameter A > 0

we have
ATe A

z!

P(X =x) , r=0,1,2,..

For random variable X following negative binomial distribution with param-

eters n > 0 and p € (0, 1] we have

I'(z+n)

P(X:x):W

p"(1—p)", x=0,1,2,..

Normal distribution with parameters 4 € R and o > 0 has density function

f(@:\/%a{ 222, reR

Figure 4.1 shows a plot of density function of normal distribution with two

different choices of parameters.

Exponential distribution with parameter A > 0 has density function

f(x) =Xe*, 1>0.
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Figure 4.1: Density function of normal distribution with two different
choices of parameters
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Figure 4.2 shows a plot of density function of exponential distribution with two
different choices of parameter.

Figure 4.2: Density function of exponential distribution with two dif-
ferent choices of parameter
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function .
(log(z)—p)
f(z) = %2, zeR

2oz
Figure 4.3 shows a plot of density function of log-normal distribution with two

different choices of parameters.
Figure 4.3: Density function of log-normal distribution with two dif-

ferent choices of parameters

0.6
0.4
= — u=0,0=1
- u=05,0=05
0.2
00 ===
0 1 2 3 4 5
X

Weibull distribution with shape parameter a > 0 and scale parameter ¢ > 0

has density function

=2 () e (- (2)). =5

Cauchy distribution with location parameter [ > 0 and scale parameter

s > 0 has density function

f(:c):i (1+<x8_l>2>_1, z €R.

s

Figure A.1 and Figure A.2 in Appendix show plots of density functions of

Weibull and Cauchy distributions with two different choices of parameters.
It is a stylized fact that severity distributions of operational loss data have

heavy tails. Normal and exponential distributions are light tailed. Log-normal
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distribution is moderately heavy tailed. Weibull and Cauchy distributions are
heavy tailed (Chernobai, Rachev, and Fabozzi 2007).

4.2 Goodness of fit tests

Suppose X = X, ..., X,, is a random sample from a distribution with a distri-

bution function Fx. Then
Xay <X <o <Xy < Xy

is ordered random sample and
F,(u) 1 En {X, <u}
u) = — . u
n n 1:1 7 —

is empirical distribution function.
Suppose F is a fully specified distribution function. We can use a goodness

of fit test for the following null and alternative hypotheses:

Hy: Fx(z)=F (z) Vo € R,
Hi:dz e R:Fx(z) # F(x).

We use Kolmogorov-Smirnov, Anderson-Darling and Cramér-von Mises goodness
of fit tests to determine which severity and frequency distributions provide the
best fit to the data.

A statistic measuring the difference between F,_ (z) and F (x) is called
empirical distribution function (EDF) statistic. We work with three tests based
on different EDF statistics. The null hypothesis is always rejected when the test
statistic exceeds corresponding critical value. First, the Kolmogorov-Smirnov

test described for example by Darling (1957) has test statistic

D = vasup | F, (z) — F () | = vmax (D¥,D")

zeR

where

Dt = sup (F, (z) = F(2)),
D™ =sup (F (z) —F, (z)).

AN
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DT is the largest difference between F_ (x) and F () while D™ is the largest
difference between F (z) and F, () (Chernobai, Rachev, and Fabozzi 2007).
Second, the Anderson-Darling test invented by Anderson and Darling (1952)

has test statistic

s [PE@F@?
x=n F(a)(1_F(z) 1T @)

— o0

Anderson and Darling (1954) argues that the Anderson-Darling test is
“sensitive to discrepancies at the tails of the distribution rather than near the
median.”

Finally, the Cramér-von Mises test described for instance by Darling (1957)

has test statistic

W2 = n/w (F, (z) —F (2))® dF (z).

D’Agostino and Stephens (1986) recommend using the Anderson-Darling
test instead of the Cramér-von Mises test because the former is more powerful
when F departs from Fy in the tails. Nonetheless, if the distribution tail is
modelled separately this can also be a disadvantage. For instance this can
happen if the extreme value theory is applied to the severity distribution. In
general, the Kolmogorov-Smirnov test is often the least powerful among all
three considered goodness of fit tests (D’Agostino and Stephens 1986).

Stephens (1974) provides formulas for calculation of the test statistics from

random sample:

D = vimas (max (== F (X)) max (F (X)) = )).

1 n

A2 ﬁ; (2i — ) (log (F (X)) +log (1 = F (X(s1-)) ) -
, 1 n 2 —1\?
W :er;(F(X@)— on ) '

If the distribution function F has parameters estimated from a random
sample then these tests might have lower power to reject the null hypothesis
than if the distribution function was fully specified. In other words, if F
has estimated parameters, the sampling distribution of the test statistics are
different from those presented above. Let Fgx) be the distribution function

with estimated parameters which depends on the random sample. For instance
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the test statistic of the Kolmogorov-Smirnov test becomes

D= \/ﬁsup | F, (I‘) _FG(X) (I‘) |7

zeR

which makes finding a closed form formula for the p-value practically impossible.

Goodness of fit tests represent a specific statistical method. Consider using a
test for testing the same null hypothesis as the t-test with the same assumptions
as the t-test, but with lower power than the t-test. Such test would require
more evidence against the null hypothesis in order to reject it than the t-test.
It might not be beneficial to use such test, but it would certainly not be a
problem from a methodological point of view. This is not true for goodness of
fit tests. When we use the t-test we usually draw a useful conclusion after we
reject the null hypothesis. With goodness of fit tests we draw a conclusion that
a particular distribution is suitable for a particular random sample when we do
not reject the null hypothesis. Therefore using a goodness of fit test with lower
power than conventional tests can lead to misleading conclusions.

Braun (1980) proposes a modification of goodness of fit tests which solves the
previously described problem. The suggested method works with distribution
functions with estimated parameters. The idea is to randomly divide data into
a large number of groups of equal size. The test statistic is calculated for each
group separately. If there are m groups and we aim for significance level «
then the test statistic in each group is compared with (1 — a)) /m quantile of
sampling distribution of test statistic. The composite null hypothesis is rejected
if the null hypothesis in any group is rejected. We always use this method with
Anderson-Darling and Cramér-von Mises tests.

Other solution is to use the Pearson’s chi-squared test studied by Watson
(1958) which does not suffer from this disadvantage. It is based on a proposition
that observed frequencies of some events should follow theoretical frequencies.
Pearson’s chi-squared test usually performs worse than any of the three previ-
ously discussed tests based on the empirical distribution function (D’Agostino
and Stephens 1986). The reason is that this test needs to group data into
bins. It constitutes a loss of information which results into a drop in the test
power. Other disadvantage of grouping data into bins is that there is not any
rule for choosing the number and length of bins. Situation might be easier for
discreet probability distributions where the bins can be equivalent with the
values that a random variable following this distribution attains. Nonetheless,

for continuous distribution the choice of bins is not natural at all. Thus the
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test result substantially depends on the researcher’s judgement. It opens an
opportunity for the researcher to manipulate the results. Therefore we do not

use this test.

4.3 Extreme value theory

We can use extreme value theory (EVT) to describes high severity losses which
happen with low frequency. “EVT is considered as a useful set of tools for
analysing rare events” (Chavez-Demoulin, Embrechts, and Neslehova 2006). We
use an approach of extreme value theory called peaks over threshold (POT)
to model the right tail of loss severity distribution. This approach is based on
exceedances of high thresholds (Embrechts, Kliippelberg, and Mikosch 1997).

Let F be a distribution function. Then F (z) = 1 — F (z) for > 0 is the
tail of the distribution function F.

The following steps loosely follow Embrechts, Klippelberg, and Mikosch
(1997). Suppose Xi,...X,, are independent identically distributed random
variables following a distribution with distribution function F. Suppose u > 0
is a high threshold. Then

Nu:zn:I{Xi > u}

=1

is the number exceedances. Let Y;,..., Yy be the corresponding excesses. The

excess distribution function of X is
F,x)=PX—-—u<y|X>u)=PY¥Y <y|X>u), y=>0.
Using the definition of conditional probability we obtain
Fluty) =F(u)F,({y).

The distribution function of the generalized Pareto distribution (GPD) G¢ 4
with parameters £ € R and # > 0 has the following tail:

_ |4 ge) 0,
Gw(a:)—{5+5) E:o z €D(B)

i

w8
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where

We have for F,, (y):!

lim sup |F, (x)— Ge o) ()| = 0.

U0 g<x<oo

Therefore we can use an approximation

A natural estimator for F (u) is an empirical distribution function

— 1

() :EiI{Xi >u}:%

and for F, (y) it is

—_

F, (y) =Gz 5(y)

where é and BA are parameters estimated from fitting GPD to excesses Y7, ..., Yy .
In other words, we use only data above the threshold u to fit the generalized
Pareto distribution. Finally, combining the previous two results we get an

estimator for F (u + y) for y > 0:

P - (144

my=

Substituting x for u + y in the previous equation and solving for x yields the

following estimator for quantile q, (p):

m:u—Fg((]\%(l—p))_g—l).

Suppose that body and tail of loss severity distribution are modelled with
different distribution functions. Di Clemente and Romano (2004) combine body
and tail distribution functions into a piecewise function. We use a similar

approach for combining body and tail quantile functions. Combining body

'For details see Theorem 3.4.13(b) in Embrechts, Kliippelberg, and Mikosch (1997).
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quantile function ¢, and tail quantile function (/1; gives quantile function

b X
q,(p) p>1-—=x

q(p)_{qb(p) p<1—=m,

We can use this quantile function when generating random numbers from the
loss severity distribution.

The choice of the high threshold u is arbitrary. There is no universal
approach. Nonetheless we can use a method based on mean excess function
(Embrechts, Klippelberg, and Mikosch 1997). Suppose X is a random variable
following generalized Pareto distribution G 5. The mean excess function of
G g is
B+ &u
1-¢&7
For £ € (0,1) and 84 &u > 0 the mean excess plot is linear and upward sloping.
“The heavier the tail of the loss distribution (i.e., the closer £ is to 1), the steeper
the plot.”(Chernobai, Rachev, and Fabozzi 2007) The empirical mean excess

e(u) =E(X —u|lX >u) = ueD(,P).

function is

1 n
en(u):F E H{X, >u} (X, —u), u>0.
U j—1

A plot of the mean excess function is called mean excess plot. Ghosh and
Resnick (2010) suggest to choose such value of u that that the plot of e, () is

roughly linear for x > u.

4.4 Risk measures

We use a simple actuarial model detailed by Klugman, Panjer, and Willmont
(2012) to measure the amount of global data breach risk. First we define a
model for estimating aggregate losses in one industry. Later we extend this
model so that it captures the dependence structure between aggregate losses
in different industries. This does not affect how risk measures are calculated.
What follows is a definition of the former model.

Let N be a random variable representing the number of loss events during

one week, and let X, ..., X be random variables representing loss amounts.
Then

S=Y X,

N
=1
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is a random variable representing the total or aggregate losses during one week.
This model has the following assumptions (Klugman, Panjer, and Willmont
2012):

1. conditional on N =n, Xy,..., X, are independent identically distributed

random variables,

2. conditional on N = n, the multivariate probability distribution of

Xy, ..., X,, does not depend on n and
3. the probability distribution of N does not depend on any of X, X,, ...

Simply put, we assume that loss events happen independently. We also assume
that the probability that a loss event happens and the amount of that loss
do not depend on each other. Random variable N follows the loss frequency
distribution. Random variables X, ..., X follow the loss severity distribution.
And random variable S follows an aggregate loss distribution.

This model enables us to model loss frequency and loss severity distributions
separately. We use a parametric approach for these distributions. Which means
that for each considered distribution family we estimate distribution parameters
from the data. Then with the help of goodness of fit tests and experience we
choose the most suitable distribution families for loss frequency and loss severity
distributions. These two distributions are then aggregated into an aggregate
loss distribution with the previously described model. Figure 4.4 illustrates this
principle. It tries to explain the essence of the model.

We calculate risk measures of random variable S which follows the distri-
bution of aggregate losses. We consider two risk measures. They are value
at risk (VaR) and conditional value at risk (CVaR). “Value at risk (VaR) is
the maximum expected portfolio (asset) depreciation at a specified confidence
level over a specified holding period” (Mejstiik, Pecend, and Teply 2015). For
instance, a one-year 99% VaR is such a quantity that a random variable, which
is observed once a year, exceeds the quantity exactly once in every 100 years.

If random variable S has distribution function F and o € [0,1] then
VaR,, (5), i.e. VaR of S at confidence level (100 - «)% is the (1 — a)) quantile
of F:

VaR, (S) =F! (1 —a).

Rockafellar and Stanislav Uryasev (2000) and Artzner et al. (1999) criticised

VaR because it is not a coherent risk measure. Rockafellar and Stanislav Uryasev
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Figure 4.4: The principle of aggregation of loss frequency and loss
severity distributions. N follows Poisson distribution with
parameter A = 5 and X follows Weibull distribution with
shape parameter 2 and scale parameter 1. Aggregate
loss distribution is obtained from loss frequency and loss
severity distributions with Monte Carlo simulation. For
illustration purposes only, aggregate loss distribution is
smoothed with Gaussian kernel density.

N ~ 1-week loss frequency distribution X ~ loss severity distribution
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Source: Author based on Chernobai, Rachev, and Fabozzi (2007).
(2000) introduced CVaR which is defined by
CVaR, () = E(S|S > VaR,, (9)).

CVaR,, (S) is CVaR of S at confidence level (100 - «)%, a € [0,1]. Yamai
and Yoshiba (2002a): “Expected shortfall measures how much one can lose on
average in states beyond the VaR level.”

Rockafellar and Stanislav Uryasev (2000) and Stan Uryasev (2010) defined
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VaR and CVaR more flexibly as

VaR, (S) =min(s| F(s) > a),

CVaR,, (5) = /OO sdF® (s)

— 00

where

B (s) 0 s < VaR, (9),
sS) =
Fle ¢ > vaR,, (9).

1—a
Artzner et al. (1999) introduced a coherent risk measure which describes
properties that a regulator can reasonably require a risk measure to have.
Suppose L = {X;, X5, ...} is a set of all losses and p (X) is a risk measure.

Then p is a coherent risk measure if it satisfies the following four axioms:

1. Translation invariance. For X € L and o € R we have p (X + a) =
p (X) — a.. This means that by reducing the value of a risky asset by «

we reduce the risk measure p by a.

2. Sub-additivity. For X;, X, € L we have p (X; + X5) < p(X;)+p(Xs).
This means that “a merger does not create extra risk” (Artzner et al.
1999). In other words, the opposite effect of diversification does not exist.
It is not possible to split certain risk into two separate entities and reduce
the total risk. Such risk must be either the same or greater. Diversification

still decreases the risk measure though.

3. Positive homogeneity. For A > 0 and X € L we have p (AX) = Ap (X).
This means that a larger amount of the same type of risk increases the

risk measure proportionally.

4. Monotonicity. For X;, X, € L such that X; < X, we have p(X;) <
p (X5). This means that a greater possible loss must result into greater

value of risk measure than a smaller possible loss does.

If the distribution of the aggregate losses S is not normal then VaR does
not satisfy the axiom of sub-additivity and it is not a coherent risk measure.
Contrarily, CVaR is always a coherent risk measure (Yamai and Yoshiba 2002a).
Therefore in most cases CVaR should be preferred over VaR. On the other
hand, simplicity of VaR might outweigh its deficiencies. Especially when the

properties of coherent risk measures are not relevant for the discussed type
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of risk. Yamai and Yoshiba (2002b): “One should not conclude that VaR is
inappropriate only because it is not sub-additive, since sub-additivity itself may

be irrelevant for risk managers.” Figure 4.5 demonstrates the difference between
VaR and CVaR.

Figure 4.5: Aggregate loss distribution and risk measures. One-week
aggregate loss distribution is a probability distribution
of the sum of future losses happening over a period of
one week. Risk measures quantify the associated risk.
Losses below and above expected value are called expected
and unexpected losses, respectively. 99% value at risk
(VaR) is 0.99 quantile of the aggregate loss distribution.
99% conditional value at risk (CVaR) is expected value of
loss amounts exceeding 0.99 quantile of the aggregate loss

distribution.
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Source: Author based on Chernobai, Rachev, and Fabozzi (2007).

We should note that the following three parameters should be specified
together with risk measure values: confidence level, forecast horizon, and unit
of measurement (Chernobai, Rachev, and Fabozzi 2007). In our case the unit
of measurement is number of breached records. Nonetheless, there are several
studies which estimated the monetary cost of one breached record. For instance
IBM Security and Ponemon Institute (2019) discovered in their 2019 study

that one breached record results on average into USD 150 cost. Using this
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information we can convert our estimates of risk measures measured in numbers
of breached records into estimates of risk measures measured in USD.

The advantage of VaR is that it allows directly comparing various types of
risk (Chernobai, Rachev, and Fabozzi 2007). We can use the following formula

to convert between one-week and one-year VaR at the same confidence level:
VaR e, = V52 VaR eex -

“Disclosure of quantitative measures of market risk, such as value at risk is
enlightening only when accompanied by a thorough discussion of how the risk
measures were calculated how they relate to actual performance” (Greenspan
1996). We should always remember that VaR and CVaR are just numbers which
have no meaning unless we know exactly what these numbers represent and
under what assumptions we calculated them.

We can improve the trustworthiness of VaR estimates by VaR backtesting. It
involves testing adequacy of VaR in regards to its confidence level on historical
data. One way how to do this is by using Kupiec’s proportion of failures test
studied by Chernobai, Rachev, and Fabozzi (2007). Let T be the total number
of days in the VaR backtesting period. In our case it is the number of days in 6
years. Let N be the number of days when the total daily loss is greater than
one-day VaR. N is also called a number of exceedances or violations. N is a

sum of Bernoulli trials and therefore it has binomial distribution:
T T—x
P(N=x)= p* (1 —p) ,x=0,1,2,...,T.
T

Under the null hypothesis, the empirical probability of exceedance N /T is
equal to the population probability p from the previous equation. A likelihood-
ratio test can be used to calculate confidence intervals for the numbers of
exceedances N consistent with the null hypothesis. The confidence intervals
for a period of 6 years are (8,24) and (60,94) for VaR at confidence levels 99%
and 95%, respectively. This test is designed for one-day VaR, therefore we have
to convert our one-week VaR estimates into one-day VaR estimates.

We use Monte Carlo simulations to obtain a distribution of weekly aggregate

losses from which we can calculate risk measures. The algorithm goes as follows:

1. Generate N = 100,000 random numbers nq,...,ny from a frequency

distribution.
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2. For each ¢ =1, ..., N generate n, random numbers from a severity distri-

bution and sum them up.

3. The resulting N numbers from the previous step constitute weekly aggre-

gate losses.

The process of obtaining aggregate loss distribution can be described either
as a calculation or as an estimation. It is a calculation because we perfectly
understand the data generating process. It is a question if the underlying
loss and severity distributions are estimated correctly, but let us leave that
aside for now. The loss and severity distributions are specified with parametric
distribution families with fixed parameters. By generating large number of
random numbers from this aggregate loss distribution we obtain such a smooth
estimate of the distribution function that we can say that we calculate the
distribution function. It is also an estimation because we do not have a formula
for the aggregate loss distribution and via an empirical distribution function we
estimated the underlying distribution function of aggregate losses. Under this
approach we consider the random numbers generated from the aggregate loss

distribution to be observations.

4.5 Copulas

We model data breach risk in three industries. There are three options how
we can do this. First, we can have one model for all industries combined and
estimate risk measure from weekly aggregate losses of all industries combined.
The second and third options require having a separate model for aggregate
losses for each industry.

Second, we calculate risk measures from weekly aggregate losses for each
industry individually. We sum these risk measures and we obtain one final risk
measure. This option is called perfect dependence.

Third, we find dependence structure between weekly aggregate losses. Using
this dependence structure we combine models for individual industries into one
model of weekly aggregate losses. Then we calculate risk measure from these
losses. We try all three options and compare them.

Dependence between two random vectors can be expressed in terms of a linear
correlation coefficient. Two alternatives of the linear correlation coefficient are
Spearman’s tho and Kendall’s tau. They are called rank correlation coefficients

and unlike the linear correlation coefficient they always exist (Hofert et al. 2018).
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Let (X;,X5) and (Y7,Y;) be independent random vectors with continuous

marginal distribution functions F; and F,. Then Spearman’s rho is defined by
ps (X1, Xy) = Cor (Fy (X;),F, (X3))
and Kendall’s tau is defined by
7(X1, Xp) = E (sign ((X; = Y}) (X3 —Y3))).

Hofert et al. (2018) argue that “a copula is a multivariate distribution
function with standard uniform univariate margins, that is, U (0, 1) margins.”

Sklar’s theorem is the fundamental building block of copula theory. It is
necessary for decomposing multivariate distribution into copula and margins and
also for generating random numbers from multivariate distributions described
by a copula and margins.

Nelsen (2006) presented Sklar’s theorem as follows. Let F be a d-dimensional
continuous multivariate distribution function with marginal distribution func-

tions Fy,...,Fyq. Then there exists a d-dimensional copula C such that
F(x)=C(F,(xy),..,Fq(z,), z=(xq,..,1,)€R?
and
C(u) =F (F! (uy), ..., Fi (ug)), w=(ug,...,uy) €10,1]7.

The dependence structure between industries can be described with a copula.
We consider an independence copula and two elliptical copulas: normal and t.
We also consider four Archimedean copulas: Clayton, Frank, Gumbel-Hougaard
and Joe.

Independence copula is defined by

d
d
H<u>:Huzv u:<u17"'7ud)€ [071] :
i=1
In other words, it is a multivariate distribution function of a random vector
with standard uniform univariate margins.
Let P be a correlation matrix. Let ®p and &1 be distribution function
of Ny (0, P) and quantile function of N (0, 1), respectively. Then Nelsen (2006)
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defines normal copula Cp by
Cp(u) =2 ( ( 1) @7 (u ))

exp ’Pilx)
/ / dxy ...dx,.
\/ det P

In other words, we obtain normal copula by applying Sklar’s Theorem to
distribution function of multivariate normal distribution and quantile function
of univariate normal distribution.

The t copula is obtained similarly. Let tp ,, be a multivariate t distribution
with correlation matrix P and v degrees of freedom. Let t,! be a quantile
function of univariate Student t distribution with v degrees of freedom. Then
Nelsen (2006) defines t copula Cfpy,, by

v+d

Ch, () =tp, (6, (ug), ., t," (uy))

1 (ug) ! (uq) T (ztd ' p-1 2
LTSy,
A T N AN

oo

Figure 4.6 and Figure 4.7 contain two panels. Figure 4.6 is for normal copula
and Figure 4.7 is for t copula. First panel displays a wireframe plot of copula
density function with such a value of the parameter p that Kendall’s tau of
observations from this copula is 7 = 0.5. Second panel depicts a sample of size
n = 1000 from this copula.

For normal and t copula we use the following symmetric correlation matrix

L p
P=1p 1 ,  wherep € R.
P p

D

Nelsen (2006) defines an Archimedean copula by

C (u) = w (wil (ul) +et wil (ud)> y U= (ula 7ud) € [07 l]d

where 9 is a function defined as follows. For Clayton copula

=

b)) =1+)7, 0e(0,00).



4. Methodology

33

Figure 4.6: Wireframe plot of density function of normal copula with
a Kendall’s tau 7 = 0.5 and a sample of size n = 1000
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Figure 4.7: Wireframe plot of density function of t copula with a
Kendall’s tau 7 = 0.5 and a sample of size n = 1000 from
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And for Joe copula

S

Y(t)=1—(1—e"?, fell,0).

Figure 4.8 contains two panels. First panel displays a wireframe plot of
Clayton copula density function and second panel displays a sample from this
copula. Figure A.3, Figure A.4 and Figure A.5 in Appendix provide similar

representations for Frank, Gumbel-Hougaard and Joe copulas, respectively.

Figure 4.8: Wireframe plot of density function of Clayton copula with
a Kendall’s tau 7 = 0.5 and a sample of size n = 1000
from the same copula
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Suppose X1, ..., X,, are d-dimensional random vectors with marginal dis-
tribution functions F,...,F;. These marginal distribution functions can be
estimated with (Hofert et al. 2018)

1 n
F,,(z)= d I{X,; <z}, z€R
=1

n+1

We can then use these empirical distribution functions to create a sample of

pseudo-observations

Ui,n = (Fn,l (le) yee- 7Fn,d (de)> , 1€ {1’ 7n}'

Finally, we can use these pseudo-observations to construct a maximum



4. Methodology 35

pseudo-likelihood estimator for estimating copula parameters

n
0, = argsup Z log cy (Um)
[ISC) i=1
where ¢, is copula density function.
We use a copula goodness of fit test proposed by Genest, Rémillard, and

Beaudoin (2009) based on the following Cramér-von Mises test statistic

n

sef = Z; (Co (Ui) = Co. (U)
i
where 6, is an estimator of a parameter vector # computed from pseudo-
observations Uy ,,,..., U, .

Hofert et al. (2018) describes leave-one-out cross validation copula informa-
tion criterion which can be used to compare copula families in a similar fashion
as Akaike information criterion can be used for univariate models.

We estimate copula parameters from weekly aggregate loss data. We use
the following algorithm for combining models for individual industries into one

distribution of weekly aggregate losses.
1. Generate N = 100,000 random vectors nq,...,ny from a copula.

2. For each i = 1,..., N and for each industry j € {1,2,3} select n, ;-th
quantile from empirical quantile function of weekly aggregate losses for

J-th industry and sum together all 3 obtained quantiles.

3. The resulting N numbers from the previous step constitute weekly aggre-

gate losses.

4.6 Comparing risk measures with other quantities

We do not have to stop with our research after calculating risk measures. 99%
CVaR is a property of the aggregate loss distribution. In our case the aggregate
loss distribution is unknown. We can only obtain an empirical aggregate loss
distribution function with a Monte Carlo simulation. This empirical distribution
function is an observation of an unknown population distribution function.
We can calculate an empirical 99% CVaR from this empirical aggregate loss
distribution function. This empirical 99% CVaR has a population counterpart

which is also unknown, but we know that it exists. This population 99% CVaR is
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a random variable following some distribution. The observed empirical aggregate
distribution function depends on random values generated from the frequency
and severity distributions. Simply put, there are two ways how we can look at the
empirical aggregate loss distribution function. First, it can be an observation
of the population aggregate loss distribution function. Second, it can be a
function that is so close to the population aggregate loss distribution function
that for practical purposes we assume that it is the population aggregate loss
distribution function. We use a large number of scenarios in the Monte Carlo
simulation in order to obtain an empirical aggregate loss distribution function
which is reasonably close to its population counterpart. Nonetheless, we cannot
remove the noise from the empirical aggregate loss distribution introduced by
generating random numbers from frequency and severity distributions. We can
only decrease its proportion by increasing the number of scenarios.

The empirical 99% CVaR calculated from an empirical aggregate loss distri-
bution function resulting from one Monte Carlo simulation is one observation
of the population 99% CVaR. In other words, one execution of the previous
algorithm produces one observation of the 99% CVaR. The algorithm can be
executed 100 times to create a random sample of 99% CVaR observations.
Consequently we can use a t-test to test a hypothesis about the mean of the
99% CVaR.

It would be natural to compare the 99% CVaR with a quantity that a broad
audience can easily imagine. Such quantity can be for instance the GDP of
the Czech Republic. Both quantities can be measured in USD, therefore we
can directly compare them. We chose 99% CVaR because it is a coherent
risk measure and the confidence level seems reasonable in terms of average
human lifespan. Nevertheless, a similar test could be conducted with other risk
measures. We still have to make one adjustment. The 99% CVaR calculated
from the model proposed earlier has a forecast horizon of one week. Since
we are comparing this risk measure with one-year GDP, we have to convert
the calculated one-week 99% CVaR to a one-year 99% CVaR. The null and

alternative hypotheses of the proposed t-test are following:

Hy: Mean of one-year 99% CVaR is equal or smaller than the GDP
of the Czech Republic in 2019.

H;: Mean of one-year 99% CVaR is greater than the GDP
of the Czech Republic in 2019.
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Data description

We downloaded data used for calibration of the model from a website called
Breach Level Index (Gemalto 2019). The main purpose of this website was
to “tracks publicly disclosed breaches.” One of its sections was Data Breach
Database and it contained a dataset with recorded data breaches. Apart from
this dataset the website used to offer an online assessment tool which allowed
its users to calculate a data breach risk score of their organization. Additionally
the website used to inform about news in the field of corporate information
systems protection.

Each loss event represents one data breach. The dataset contains loss events
recorded between years 2013 and 2018. The dataset has several variables. We
are interested in three of them. They are date of the data breach, number of
breached records and industry in which the data breach happened. We group
the industries into three groups in order to reduce the dimensionality of the
model. The three industries are technology, services and government. We try to
put similar industries in one group. We also try to make the groups balanced
in terms of number of observations.

Table 5.1 depicts summary statistics of the dataset. Losses are reported
in number of breached records. Even though the maximum loss in services
industry is more then twice as large as the maximum losses in technology and
government industries, the medians are close to each other.

Figure 5.1 and Figure 5.2 present the dataset. The most common source of
data breaches is malicious outsider. Accidental loss is the second most frequent
source. Most data breaches in the dataset come from North America.

Loss events in the dataset come from various organisations. Loss amount in

one organisation should not affect loss amount in a different organisation because
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Table 5.1: Summary statistics of numbers of breached records in indi-
vidual loss events broken down by industries

summary statistic all industries technology services government
number of observations 5,713 2,946 694 2,073
mean 2,576,163 1,963,863 6,672,738 2,074,866
standard deviation 43,057,592 31,647,109 87,939,504 33,083,023
median 1,661 1,934 1,434 1,250
min 1 1 1 1
max 2,200,000,000 1,200,000,000 2,200,000,000 1,340,000,000

Figure 5.1: Number of breached records between years 2013 and 2018
broken down by source of data breach and industry
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companies employ different security mechanism, store variously sensitive data
and attackers do not target all organisation equally. Simultaneous loss events in
different industries do not violate assumptions of the model. Other assumptions
of the model are trivial. Therefore it is reasonable to expect that the data meet
assumptions of the model.

We convert the 99% CVaR measured in number of breached records into a
99% CVaR measured in USD using a cost of USD 150 per one breached record
estimated by IBM Security and Ponemon Institute (2019). Because we compare
the 99% CVaR with the global GDP and the GDP of the Czech Republic, we
have to obtain both these quantities in USD.

According to the Czech Statistical Office (2020) the GDP of the Czech
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Figure 5.2: Number of breached records between years 2013 and 2018
broken down by location and industry
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Republic in 2019 was CZK 5,751 billion. And according to the Czech National
Bank (2020) the average USD/CZK exchange rate in the fourth quarter of 2019
was 23.107. Therefore at this exchange rate the Czech GDP in 2019 was USD
249 billion. According to the World Bank (2020) the global GDP in 2019 was
USD 87,752 billion.



Chapter 6

Results and discussion

6.1 Results

First, we report results of goodness of fit methods applied to data. In particular
it includes histograms, Q-Q plots and goodness of fit tests applied to data and
estimated frequency and severity distributions. Second, we review estimates of
parameters of generalized Pareto distribution estimated under extreme value
theory. Third, we introduce copula parameter estimates along with copula
goodness of fit tests and copula information criterion to simplify copula family
selection. Fourth, we present risk measure estimates and compare results
between various risk measures and between different dependence modelling
approaches. We also report results of VaR backtesting. Finally, we discuss
result of the t-test comparing 99% CVaR with the GDP of the Czech Republic.
We explain decisions that led to the choices of particular distributions and
parameters.

Figure 6.1 and Figure 6.2 illustrate histograms of loss frequency data and
probabilities of fitted Poisson and negative binomial distributions, respectively.
There are four plots, one for all industries combined and then one for each
industry. Especially Poisson distribution seems to overestimate the number of
loss events per day. Overall, negative binomial distribution shows a better fit
to the data.

Figure 6.3 and Figure 6.4 depict Q-Q plots for loss frequency data against
Poisson and negative binomial distributions, respectively. There are four plots,
one for all industries combined and then one for each industry. Again, negative
binomial distribution shows a better fit. While histograms show discrepancies

for lower quantiles, Q-Q plots show differences between theoretical and empirical
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Figure 6.1: Histograms of loss frequency data and probabilities of
fitted Poisson distribution
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Figure 6.2: Histograms of loss frequency data and probabilities of
fitted negative binomial distribution
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distributions mainly in the right tails of the distributions. All industries show

similar patterns for both distributions.

Table 6.1 gives information about parameter estimates of loss frequency
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Figure 6.3: Q-Q plots against Poisson distribution for loss frequency
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Figure 6.4: Q-Q plots against negative binomial distribution for loss
frequency data
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distributions. Table 6.1 gives information about p-values of Anderson-Darling
and Cramér-von Mises goodness of fit tests for loss frequency distributions.

We have to reject all hypothesis regarding Poisson and negative binomial
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distributions being the distributions of loss frequency. Since goodness of fit
p-values do not constitute a ranking of distribution suitability, we have to
rely on histograms and Q-Q plots and use negative binomial distribution for

calculation of aggregate losses.

Table 6.1: Estimated parameters of loss frequency distributions

Poisson negative binomial
industry A n P
all industries  2.6099 1.7426 0.4004
technology 1.3458 1.7991 0.5721
services 0.3170 0.4627 0.5934
government 0.9470 1.1569 0.5499

Table 6.2: Anderson-Darling (AD) and Cramér-von Mises (CvM) good-
ness of fit tests p-values for loss frequency distributions

Poisson negative binomial
industry AD CvM AD CvM
all industries 0.00059982  0.04833411 0.00059982 0.00112033
technology 0.00059982  0.00282555 0.00061286 0.00002353
services 0.00059982  0.00000000 0.00059982 0.00000000
government  0.00059982  0.00000000 0.00059982 0.00000000

Figure 6.5 and Figure 6.6 depict Q-Q plots for loss severity data against
exponential and log-normal distributions, respectively. Figure A.6, Figure A.7
and Figure A.8 in Appendix show similar information for normal, Weibull and
Cauchy distributions, respectively. Log-normal distribution shows a better
fit especially in the body of the distribution. Since the tail is modelled with
extreme value theory anyway, some discrepancies in the tail are not concerning.

Table 6.3 gives information about parameter estimates of loss severity dis-
tributions. Table 6.4 gives information about p-values of Kolmogorov-Smirnov,
Anderson-Darling and Cramér-von Mises goodness of fit tests for loss severity
distributions. We cannot reject the null hypothesis that loss severity data come
from log-normal distribution. We can reject similar hypotheses for all other
considered loss severity distributions including those that are not included in
Table 6.4. Since only one distribution is not rejected, it makes the choice of

severity distribution for aggregate loss model straightforward.
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Figure 6.5: Q-Q plots against exponential distribution for loss severity
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Figure 6.6: Q-Q plots against log-normal distribution for loss severity

data
All industries combined Technology
. 1.25e+09 .
2.0e+09
1.00e+09 .
o 15409 . © 7500408
£ y g
£ 1.0e+09 . @ 5.00e+08 .
(%] w
5.0e+08 . 2.50e+08 ®
0.0e+00 0.00e+00 ﬁ/’
0e+00 56+08 16+09 0e+00 16+08 2e+08 3e+08
theoretical theoretical
Services Government
(] [ ]
2.0e+09
1e+09
o 15e+09 o
£ g
1.0e+09
& & 5e+08
Y [
5.0e+08 e o .
0.0e+00 0e+00
0e+00 26+08 4e+08 6e+08 0e+00 2e+08 4e+08
theoretical theoretical

Figure 6.7 shows mean excess plots. We use them to select threshold for
application of peaks over threshold method. The plot seems to be linear an

upward sloping above 3 x 10® for all industries combineed, above 1.2 x 10® for
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Table 6.3: Estimated parameters of loss severity distributions

normal exponential log-normal Weibull Cauchy

industry n o A I o a o l S

all industries 2,576,163 43,053,823  0.00000039 7.60 3.56 0.25 10,872 779 1,427
technology 1,963,863 31,641,737 0.00000051 7.85 3.32 0.27 12,494 1,021 1,588
services 6,672,738 87,876,124 0.00000015 7.51 4.04 0.22 12,570 502 1,178
government 2,074,866 33,075,042 0.00000048 7.26 3.69 0.25 8,290 516 1,145

Table 6.4: Kolmogorov-Smirnov (KS), Anderson-Darling (AD) and
Cramér-von Mises (CvM) goodness of fit tests p-values for
loss severity distributions

normal exponential log-normal
industry KS AD CvM KS AD CvM KS AD CvM

all industries  0.0000 0.0006 0.0000 0.0000 0.0006 0.0000 0.0000 0.4817 0.3490
technology 0.0000 0.0006 0.0000 0.0000 0.0006 0.0000 0.0000 0.0125 0.5924
services 0.0000 0.0006 0.0000 0.0000 0.0006 0.0000 0.0009 0.5342 0.5651
government  0.0000 0.0006 0.0000 0.0000 0.0006 0.0000 0.0034 0.2427 0.3967

technology, above 1.1 x 10® for services and above 1.8 x 10® for government.

Figure 6.7: Mean excess plots of loss severity data

All industries combined Technology
1.5e+09 1.06+09
1] [}
2 1.0e+09 @ 7.5e+08
o (&}
x x
o @ 50e+08
c c
$ 5.0e+08 o
£ £ 2.5¢+08
0.0e+00 0.0e+00
0e+00 1e+08 2e+08 3e+08 4e+08 5e+08 0.0e+00 5.0e+07 1.06+08 1.56+08
threshold threshold
Services Government
1.56+09
7.5¢+08
I @
Q 1.0e+09 8 5.0e+08
x x
[} (]
S 5.0e+08 S 2.5e+08
@ ]
€ €
0.0e+00 0.0e+00
0.0e+00 5.0e+07 1.0e+08 1.5e+08 0.0e+00 5.0e+07 1.0e+08 1.56+08  2.0e+08
threshold threshold

Table 6.5 summarizes parameter estimates of generalized Pareto distribution
and two summary statistics related to peaks over threshold method. Namely,
number of exceedances and proportion of exceedances. All industries combined

have the smallest scale parameter S and the largest shape parameter £, while
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government has the largest scale parameter $ and the smallest shape parameter

.

Table 6.5: Estimated scale () and shape (&) parameters of generalized
Pareto distribution along with threshold (u), number of
exceedances (N,,) and proportion of exceedances (N, /n)

in the peaks over threshold method

industry 6] 13 u N, N,/n
all industries 507,121,430 0.1229 300,000,000 10 0.0018
technology 326,250,000 0.1937 120,000,000 8 0.0027
services 374,014,287 0.3833 110,000,000 8 0.0115
government 221,348,867 0.4531 180,000,000 7 0.0034

Table 6.6 displays sample Kendall’s taus between aggregate losses in different
industries. We can see especially strong dependence between technology and

government and a weak dependence between technology and services.

Table 6.6: Kendall’s taus between aggregate weekly losses in three
different industries

technology services government

technology 1.0000  0.0201 0.1105
services 0.0201  1.0000 0.0931
government 0.1105  0.0931 1.0000

Figure 6.8 displays scatter plots of pseudo-observations of aggregate losses.
We provide these scatter plots for all combinations of industries. It is left to the
readers discretion where the dependence between aggregate losses confirmed by
Kendall’s taus can be seen in the scatter plots.

The estimated normal copula has parameter p = 0.11. The estimated t
copula has parameter p = 0.12 and 19.33 degrees of freedom. The estimated
Clayton, Frank, Gumbel-Hougaard and Joe copulas have parameter 1 equal to
0.18, 0.58, 1.05 and 1.02, respectively.

Figure 6.9 compares contour plots of two-dimensional fitted and empirical
copulas. There are contour plots for normal and Clayton copulas in Figure 6.9.
The fit seems to be relatively strong in both cases.

Table 6.7 presents copula goodness of fit test p-values and leave-one-out cross
validation copula information criterion. We do not reject any null hypothesis

that a particular copula describes dependence between aggregate losses in
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Figure 6.8: Scatter plots of pseudo-observations of aggregate losses in
three industries
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different industries. In particular, we do not reject the hypothesis that Clayton

copula describes such dependence.

Clayton copula also has the highest copula information criterion. Therefore

we prefer this copula when reporting risk measures or comparing 99% CVaR

using t-test. “It is proposed [..] that Gaussian or Normal-like copulas are not

to be used for operational risk modelling. For instance a T-Student copula with

few degrees of freedom (e.g. 3 or 4) in most cases appears more appropriate to

capture the dependencies between operational risk events” (European Banking

Authority 2014). Our results are consistent with this recommendation because

we prefer the Clayton copula. Nonetheless we have to mention that normal

copula scored second.
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Figure 6.9: Contour plots of two-dimensional fitted normal copula and
two-dimensional empirical copula, and the same situation
with Clayton copula

0.8 + 0.8

0.6 + 0.6

government
government

0.4 0.4

0.2 + 02

—— Fitted normal copula —— Fitted Clayton copula

ffffff Empirical copula ------  Empirical copula
0.0 P P 0.0 4 P P
T T T T T T T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
technology technology

Table 6.7: Copula goodness of fit test p-values and leave-one-out cross
validation copula information criterion

copula goodness of fit p-value cross-validation criterion
normal 0.7607 3.3643
t 0.7527 2.5206
Clayton 0.9955 6.2261
Frank 0.4481 2.9330
Gumbel-Hougaard 0.1044 0.0833
Joe 0.0085 -1.0251

Table 6.8 shows VaR and CVaR estimates when all industries are modelled
together. Table 6.9 shows VaR and CVaR estimates with either full dependence
or copula dependence structure. All risk measure estimates in Table 6.9 assume
log-normal loss severity distribution. All risk measure are reported in number
of breached records. Table A.1 in Appendix shows the same type of information
under the assumption of exponential loss severity distribution. When loss
severity is modelled with log-normal distribution and dependence between
aggregate losses is modelled with Clayton copula then at a cost of USD 150 per
one breached record the one-year 99% CVaR due to global data breach risk is
USD 2,213 billion. It is 38.7% less compared to a situation with full dependence
between aggregate losses in different industries.

Except for 95% VaR all other risk measures are higher when dependence is
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modelled with copulas than under full dependence. When dependence structure
is taken into account either through full dependence or through copulas, 99%
VaR is roughly at the level of 95% CVaR. Despite few exceptions, in general we
can say that modelling all industries together slightly underestimates the risk

measures.

Table 6.8: VaR and CVaR estimates when all industries are mod-
elled together, unit of measurement is number of breached

records
copula 95% VaR 99% VaR 95% CVaR 99% CVaR
normal 414,441,370 1,013,614,641 798,092,160 1,716,477,213
exponential 94,650,336 981,124,425 619,756,629 1,671,977,056
log-normal 42,852,552 962,526,680 592,344,919 1,630,533,583
Weibull 15,705,227 922,392,391 555,684,503 1,600,582,859
Cauchy 180,679 917,960,076 544,172,136 1,574,850,628

Table 6.9: VaR and CVaR estimates with either full dependence or
copula dependence structure, log-normal loss severity dis-
tribution is assumed in all cases, and unit of measurement
is number of breached records

copula 95% VaR 99% VaR  95% CVaR 99% CVaR
full dependence 30,708,450 1,364.493.909 909,416,623 3,340,172,762
independence 246,954,478 1,086,660,479 814,458,638 2,043,386,444
normal 249,717,098 1,075,442.171 838,306,929 2,144,085,524
t 232,013,098 1,020,231,460 817,907,213 2,135,745,465
Clayton 953,625,078 1,065,736,706 819,130,934 2,045,888 804
Frank 950,479,827 1,058,790,644 810,420,925 2,004,924.756
Gumbel-Hougaard 233,003,869 1,099,158,551 823,617,799 2,113,897,090
Joe 932,980,165 1,009,021,492 770,314,689 1,915.477,677

Table 6.10 shows number of violations (exceedances) in terms of Kupiec’s

proportion of failures test for VaR backtesting under an assumption of copula
dependence structure and log-normal loss severity distribution. The confidence
intervals for a period of 6 years are (60,94) and (8,24) for VaR at confidence
levels 95% and 99%, respectively. Results do not vary very much between
different copulas. 95% VaR seems to be very conservative while 99% VaR is
close to the lower bound of the corresponding confidence interval. Therefore
99% VaR is sightly conservative.

The t-test with a null hypothesis that the mean of one-year 99% CVaR
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Table 6.10: Number of violations (exceedances) in terms of Kupiec’s
proportion of failures test for VaR backtesting under an
assumption of copula dependence structure and log-normal
loss severity distribution

copula exceedances of 95% VaR exceedances of 99% VaR
independence 25 )
normal 25 )
t 28 5
Clayton 25 5
Frank 25 )
Gumbel-Hougaard 27 )
Joe 27 )

is equal or smaller than the GDP of the Czech Republic in 2019 has p-value
1.0993 x 107139, We have enough evidence to say that one-year global data
breach risk measured with 99% CVaR is greater than the GDP of the Czech
Republic in 2019.

Observations for this t-test come from a statistical model which is believed
to reasonably well represent the data generating process of 99% CVaR due
to global data breach risk. This statistical model assumes that loss frequency
distribution is negative binomial, loss severity distribution is log-normal with
generalized Pareto distribution in the right tail and Clayton copula captures
the dependence structure between aggregate losses in different industries.

It is also possible to directly compare risk measures with other quantities
without a test. Under the same assumptions as before one-year 99% CVaR due
to global data breach risk amounts to 2.5% of the global GDP in 2019.

Finally, we understand that many distribution families are possible options
for frequency and severity distributions. Also the dependence structure can be
modelled with many different copulas. There are many goodness of fit tests with
various modifications and there are many different risk measures. We believe
that we took all reasonable care to ensure that our model depicts reality to the
best of our abilities. Nonetheless, as Box (1976) explains, we should not forget
that “since all models are wrong the scientist cannot obtain a ‘correct’ one by

excessive elaboration.”
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6.2 Summary of results

In this section we compare our results with other researchers and highlight our

contribution. We test the following hypotheses with the following results.

Hypothesis #1: Rejected. We reject the hypothesis that Poisson distribution
is the distribution of loss frequencies. We use two tests to test this hypothesis,
namely Anderson-Darling and Cramér-von Mises goodness of fit tests, with the
same results. We prefer the negative binomial distribution for loss frequency
distribution based on Q-Q plots. This is consistent with Eling and Jung (2018).

Hypothesis #2: Not rejected. We do not reject the hypothesis that log-
normal distribution is the distribution of loss severities. We use Anderson-
Darling and Cramér-von Mises goodness of fit tests to test this hypothesis. Both
provide the same results. Log-normal distribution clearly provides the best fit
to the data. This result is consistent with Abbate, Gourier, and Farkas (2009).

Second best option would be the exponential distribution.

Hypothesis #3: Not rejected. We do not reject the hypothesis that the
Gaussian copula describes dependencies between aggregate losses in different
industries. Nonetheless, the Clayton copula has higher leave-one-out cross
validation copula information criterion and other researchers like European
Banking Authority (2014) do not suggest using the Gaussian copula in the
context of operational risk modelling. Therefore we proceed with the Clayton
copula to estimate VaR and CVaR. We use a copula goodness of fit test to test
this hypothesis.

Hypothesis #4: Rejected. We reject the hypothesis that the possible total
worldwide cost of data breaches per one year is smaller than the nominal GDP
of the Czech Republic in 2019. We have enough evidence to say that it is greater
than the GDP of the Czech Republic. We use a t-test on a random sample of
99% CVaR observations to test this hypothesis.

Table 6.11 compares our results with other authors studying operational
risk and cyber risk in particular.

To the best of our knowledge, Eling and Jung (2018) is so far the most
advanced study of cyber risk modelling using extreme value theory and copula.

We extend their research with the following four improvements. First, in contrast
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Table 6.11: Comparison of methodology and results in this thesis with
previous studies
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Di Clemente and yes no no yes t Poisson log-normal
Romano (2004)
Valle, Fantazzini, yes no mno no multiple multiple gamma
and Giudici (2008)
Abbate, Gourier, yes no mno yes Frank Poisson log-normal
and Farkas (2009)
H. Herath and no no no no Gumbel Poisson Weibull
T. Herath (2011)
Lu (2011) yes yes mno yes t multiple multiple
Carrillo-Menéndez no mno mno yes none Poisson log-normal
and Suérez (2012)
Eling and Jung yes yes no yes vine negative binomial log-normal
(2018)
Eling and Wirfs yes 1no 1no yes none Poisson none
(2019)
this thesis yes yes yes yes Clayton negative binomial log-normal

Note: The data are considered to be publicly available only if the authors provide
a public source. Copula, frequency distribution and severity distribution columns
represent the authors’ recommended distribution.

Source: Author based on individual papers and own results.

to them we use goodness of fit tests adjusted for distribution functions with
estimated parameters. Second, unlike them we are backtesting our risk measures
using Kupiec’s proportion of failures test. Third, they neither compare the
estimated cyber risk with other quantities, nor their report the cyber risk as a
percentage of other quantity. We do both. Fourth, their dataset is a database
of data breaches provided by Privacy Rights Clearinghouse. This database is
limited to loss events recorded in the United States. We have access to a much

larger dataset containing 5,713 loss events recorded around the whole world.
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Neither study presented in Table 6.11 uses goodness of fit tests adjusted for
distributions with estimated parameters. Their choices of distribution families
for frequency and severity distributions might be heavily biased. We use a
method described by Braun (1980) to solve this problem.

H. Herath and T. Herath (2011), Abbate, Gourier, and Farkas (2009), Di
Clemente and Romano (2004) and Carrillo-Menéndez and Suarez (2012) do not
compare risk measures with quantities known to the general public. We extend
their research by comparing the 99% CVaR of data breach risk with the GDP
of the Czech Republic. So that even a reader with practically no understanding
of the topic is able to understand some of our results.

Han, W. Wang, and J. Wang (2015) and Lu (2011) interpret risk measures
in terms of regulatory capital which might not mean much to a reader without
any further knowledge about the topic. Especially when they do not disclose
the company whose capital requirements they calculate. As a consequence it is
difficult for a reader to put their results into a wider concept. We extend their
research by giving the 99% CVaR an easy to understand interpretation.

Eling and Jung (2018) calculate risk measures with unit of measurement in
number of breached records. They do not go the extra step to convert the risk
measures to monetary units. We go even further than calculating risk measures
in US dollars. We provide statistically significant comparison of the 99% CVaR
with the GDP, i.e. a quantity that is easily comprehensible to a wide audience.

Di Clemente and Romano (2004) use generated data. Their study is focused
more on methodology than on application therefore it is acceptable. Abbate,
Gourier, and Farkas (2009) and Yao, Wen, and Luan (2013) disclose the source
of their data, however the data are not public. On one hand, a concern about
privacy is an understandable reason. On the other hand, using proprietary
data makes reproducibility impossible. Nonetheless, as our data were public at
some point in time, we can disclose all information about the data that we have
available. The trustworthiness of our research is therefore larger than theirs.

Eling and Wirfs (2019) do not use copula to model dependence between
losses which according to our results exaggerates the risk measures. Moreover
they use a small dataset to calibrate their model. We extend their research by
applying copulas to aggregate loss distributions and by using a larger dataset.

Biener, Eling, and Wirfs (2014) calculate risk measures which are even more
sophisticated than CVaR, but they practically do not disclose their methodology.
One of the goals that this work tries to achieve is to fully explain methodology

in order to facilitate more research of cyber risk.
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Di Clemente and Romano (2004) and Valle, Fantazzini, and Giudici (2008)
are among those rare studies which explain their methodology meticulously.
We go even further. We extend their research by explaining into a great detail
the algorithm for calculation of aggregate loss distribution under extreme value
theory and copula.

This work tries to continue in a line of research started by Chalupka and
Teply (2008), Rippel (2009), Rippel and Teply (2011) and Lebovi¢ (2012).
In particular, we improve an algorithm used by Rippel (2009) for estimating
aggregate loss distribution under the peaks over threshold method with Monte
Carlo simulation. Their version sums losses generated from the body distribution
of the loss severity distribution and from the generalized Pareto distribution.
Such algorithm does not produce the desired outcome. It is not possible to create
a random sample from the loss severity distribution by separately generating
some observations from the body distribution and some from the tail distribution
because the choice whether a particular observation should come from the tail
or from the body is itself random and the value of the observation depends on
the result of this random event. In other words, different quantiles are generated
from the body distribution than from the tail distribution. We use a piecewise
quantile function to generate random numbers from the loss severity distribution
under the peaks over threshold method. In order to obtain a random number we
first generate a random number from an interval [0, 1]. Depending on the size
of this number we pass it to either the body or the tail distribution function.

We fill the gaps in the literature by combining improvements which are used
in other studies individually, but which to our best knowledge do not appear
together in one single study. Eling and Jung (2018) is the most advanced study,
yet it lacks some improvements from older studies related to operational risk.
As far as we know, there is no single study that implements all improvements
presented in older studies. We implement many of these remaining missing
features in order to fill some gaps in the literature. Moreover, we believe that
we are the first to compare the cyber risk with other quantities using statistical
tests, and to report the cyber risk measured with 99% CVaR as a percentage of
the global GDP. This fills even more gaps in the literature.

6.3 Policy recommendation

By now we have hopefully provided enough evidence to say that the global

cyber risk is often underestimated. The world does not seem to be ready for
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this amount of risk. Therefore we would like to provide policy recommendation.
On the other hand, we understand that the digital revolution is still ongoing.
And it is challenging to design an efficient policy when the subject is constantly
changing.

In general, our recommendation is similar to that of Verizon (2020). First,
we suggest to apply “better safe than sorry.” Prevention is crucial in the fight
against cyber crime. And it usually does not require more than applying
common sense. Second, we recommend to get prepared for data breaches.
The question is not any more whether a data breach happens. The question
is when. An emergency plan is a cornerstone of data breach preparedness.
Protection against data breaches starts with individuals and ends with critical
infrastructure. Finally, in the context of the Czech Republic we suggest to
increase the budget of the National Cyber and Information Security Authority.!
This institution can help to increase the awareness of the public about cyber
risk.

Data breaches are an integral part of our society. They cannot be fully
eliminated. The best we can aim for is to reduce the losses due to data breaches.
This however does not mean that compensations to the victims of data breaches
should be reduced. The opposite is true. Organizations processing personal
data create large databases which serve as a target for attackers. It is therefore
reasonable to assume that these organizations are punished when this risk
materialises into losses.

Article 34 of the General Data Protection Regulation (GDPR) of European
Parliament and Council of the European Union (2016) gives individuals a right
to be informed about data breaches. However the GDPR does not entitle
individuals to any kind of compensation when they are affected by a data
breach. The only option for individuals in order to receive a compensation is
to file a case in court against the organization which suffers a data breach. In
many cases the loss for the individual does not manifest instantly after the data
breach. It might take several months or years before the individual realizes that
they were a victim of an identity theft and that they incurred an actual loss due
to the data breach. Some organizations realize that it is often inefficient and
impractical for individuals to take legal action in order to claim compensation.
This constitutes a moral hazard because these organizations create risk for
which they cannot be made responsible.

While the loss incurred by one person might be relatively small, the total loss

!For more information, see https://nukib.cz/en/.
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of thousands of victims of one data breach can be substantial. We believe that
organizations should be responsible for data breaches even when the victims
are unable to prove direct losses. Therefore in order to compensate for the
burden of moral hazard to the society we recommend taxing data breaches. In
our opinion the GDPR provides a reasonable starting point for the protection
of personal data. Furthermore, we understand that agreeing on the GDPR
was accompanied with obvious difficulties and strong opposition of many data
processing organizations. Nonetheless, the moral hazard of not being financially
responsible for data breaches will not be eliminated unless a policy similar to
the one that we introduce is implemented.

Machuletz and Bohme (2020) give another example that GDPR does not
always follow its purpose and in some cases it makes individuals worse off despite
trying to help them. Under GDPR websites must inform its visitors that they
are using cookies. Machuletz and Bohme (2020) discover that if the consent
dialog has a highlighted default button with all purposes selected then users are
tempted to agree with more purposes than they would without such a button.

GDPR is criticised by advocates of laissez-faire data market as well. For
instance Zarsky (2017) argues that “Article 22 is perhaps the most salient
example of the GDPR’s rejection of the Big Data revolution.” They maintain
that GDPR has a prejudice against automated systems without a reason. Allen
et al. (2019) on the other hand suggest that GDPR creates additional risk for
organisations while completely ignoring that GDPR aims to offset the risk for
individuals. They predict that a new insurance product will appear which will

provide protect for organizations against losses due to GDPR.

6.4 Further research opportunities

Further research opportunities are at least threefold. First, a larger dataset
would allow us to model cyber risk separately for each country. On one hand,
as data collection gradually becomes cheaper and cyber risk awareness rises,
we expect a higher availability of data in the future. On the other hand, cyber
risk research is becoming commercialized and even datasets which were public
in the past are now becoming private. This situation clearly suits consulting
companies which earn money this way. Therefore, it is also possible that data
will be less available in the future.

Second, both Erhardt and Czado (2012) and Brechmann, Czado, and Pa-

terlini (2014) propose a method which utilizes copulas to handle zero losses
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in empirical loss distribution. We could apply this method to the aggregate
loss distribution and reduce aggregation from one week to one day this way. It
might also be useful if we decide to model cyber risk in a particular geographic
region for which there might be less data.

Third, the idea of taxing data breaches should be developed further. In this
thesis we discuss legal and ethical aspects of such policy. Our arguments are
justified by the large scale of global cyber risk that we estimate. Nonetheless,
the full economic implications should be further investigated in order to properly

set rules under which such tax is charged.



Chapter 7
Conclusion

In this thesis we deal with cyber risk modelling using copulas. First, we define
operational risk, cyber risk and data breach risk. Second, we analyse current
cyber threads. Third, we propose an operational risk model for data breach risk.
It uses fitted loss frequency and severity distributions which are combined into
an aggregate loss distribution defined by an actuarial model. The aggregate loss
distribution is computed using Monte Carlo simulation. We apply peaks over
threshold method to the loss severity distribution. We calculate risk measures
from the distribution of aggregate losses. As risk measures we use value at risk
and conditional value at risk which is a coherent risk measure.

We model distributions of aggregate losses both separately for each of the
three industries and together for all industries combined. The three industries
are technology, services and government. We estimate two elliptical and four
Archimedean copulas on aggregate loss data for these three industries. We use
a copula goodness of fit test and a copula information criterion to select the
most suitable copula family. Using graphical tools and goodness of fit tests
we conclude that negative binomial distribution provides the best fit to the
loss frequency data and log-normal distribution provides the best fit to the loss
severity data. Clayton copula has the highest copula information criterion out
of all considered copulas. We define a distribution of conditional value at risk
obtained from an empirical distribution function of aggregate losses. We use a
t-test on the random sample of conditional value at risk. Finally, we summarize
results which we obtained from applying the model on the loss data. We discuss
contribution of this thesis mainly in Section 6.2.

When testing for goodness of fit of frequency and severity distributions we

use Anderson-Darling and Cramér-von Mises tests adjusted for distribution
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functions with estimated parameters. To achieve this we use a method presented
in Braun (1980). It turns out that not all previous studies on cyber risk use
some approach for correcting the loss of power of goodness of fit tests when
they are used with a distribution function with estimated parameters.

We discover that there is some positive dependence between aggregate losses
in technology and government industries. We use an average cost of one breached
record calculated by IBM Security and Ponemon Institute (2019) to convert
the unit of measurement of 99% CVaR from number of breached records to US
dollars. Risk measures are lower when all industries are modelled together than
if the dependence structure between aggregate losses is modelled in some way.
These results are consistent across different marginal loss severity distributions
and copulas. When dependence structure between aggregate losses in different
industries is modelled with Clayton copula then one-year 99% CVaR due to
global data breach risk is USD 2,213 billion. It is 38.7% less compared to a
situation with full dependence between aggregate losses.

We have enough evidence to say that one-year global data breach risk
measured with 99% CVaR is greater than the GDP of the Czech Republic
in 2019. Furthermore, one-year global cyber risk measured with 99% CVaR
amounts to 2.5% of the global GDP in 2019. This comparison of conditional
value at risk with the GDP allows even a reader with a very little experience
with operational risk modelling to understand the magnitude of the cyber risk.
Our main policy recommendation as a result of the substantial size of the cyber
risk is to consider taxation of data breaches.

We fill many gaps in the literature by combining improvements of operational
risk models which are used in other studies individually, but which as far as we
know do not appear together in one single study. We fill further gaps in the
literature by thoroughly explaining our methodology with particular attention
to the algorithm for calculation of aggregate loss distribution under extreme
value theory and copula.

The contribution of this thesis over the so far most advanced study of cyber
risk by Eling and Jung (2018) is fourfold:

1. We use a large unique dataset consisting of 5,713 loss events between 2013
and 2018. Our dataset covers the whole world. The dataset used by Eling
and Jung (2018) covers only the United States.

2. We use Anderson-Darling and Cramér-von Mises tests adjusted for dis-
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tribution functions with estimated parameters. The p-values might be

invalid without a similar adjustment.

3. We are backtesting our risk measures using Kupiec’s proportion of failures
test.

4. We report the 99% CVaR as a percentage of the global GDP and we
compare the 99% CVaR with the GDP of the Czech Republic.
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Appendix

Appendix

A

Table A.1: VaR and CVaR estimates with either full dependence or
copula dependence structure, exponential loss severity dis-
tribution is assumed in all cases, and unit of measurement
is number of breached records

copula 95% VaR 99% VaR  95% CVaR 99% CVaR
full dependence 124,914,789 1,446,497,299 996745644 3.410,781,688
independence 999,436,350 1,095.817,516 866,197,485 2,107,297,949
normal 306,177,024 1,097,565,628 893,637,571 2,206,545,655
t 200,040,078 1,049,499.954 868,536,482 2,173,006,372
Clayton 300,330,808 1,082,823,381 879,149,749 2,143,293,397
Frank 308,448,714 1,074,110,138 868,519,480 2,090,544,496
Gumbel-Hougaard 287,680,477 1,109,519,073 892,347,037 2,248,720,435
Joe 988,472,099 1,036,749,181 837,752,121 2,051,530,635
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Figure A.1: Density function of Weibull distribution with two different

choices of parameters
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Figure A.3: Wireframe plot of density function of Frank copula with a
Kendall’s tau 7 = 0.5 and a sample of size n = 1000 from
the same copula
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Figure A.4: Wireframe plot of density function of Gumbel-Hougaard

copula with a Kendall’s tau 7 = 0.5 and a sample of size

n = 1000 from the same copula
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Figure A.5: Wireframe plot of density function of Joe copula with a
Kendall’s tau 7 = 0.5 and a sample of size n = 1000 from
the same copula
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Figure A.6: Q-Q plots against normal distribution for loss severity
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Figure A.7: Q-Q plots against Weibull distribution for loss severity
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Figure A.8: Q-Q plots against Cauchy distribution for loss severity
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