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Abstract  

Risk adjustment models are used to predict health care costs of insurees and represent 

an important part of mechanisms for redistribution of funds among insurance 

companies. In the Czech Republic, pharmacy-based cost groups (PCGs) were 

introduced into the risk adjustment model in 2018, reflecting the costs of chronic 

diseases in addition to age and gender. The thesis reviews the model for the most 

expensive chronic disease – renal failure. Using the sample of General Health 

Insurance fund (GHI) insurees reported with typical health care consumption for 

kidney disease in years 2015-2018, we tested the current model and subsequently 

modified the classification criteria for PCG “renal failure”. The classification based on 

the number of dialysis procedures proved to be much better indicator of costs than the 

currently used consumption of typical drugs. The incorporation of dialysis-based 

approach into the PCG model improved the explained variation from 26 % to 49 %, 

and the predictive power increased substantially. The study suggests improvements of 

the Czech risk adjustment model and proposes a fairer fund redistribution among 

insurance companies, while no additional data collection is needed. 
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Abstrakt  

Model pro rizikovou úpravu predikuje náklady na zdravotní péči pojištěnců a 

představuje jednu z nejdůležitějších součástí mechanismu přerozdělení financí mezi 

zdravotními pojišťovnami. V roce 2018 byl v České republice zaveden tzv. PCG 

model, který kromě věku a pohlaví bere v potaz také náklady na chronická 

onemocnění. Tato diplomová práce ověřuje uvedený model z pohledu nejdražší 

chronické nemoci – renálního selhání. Za použití vzorku pojištěnců VZP, kteří měli 

vykázanou spotřebu zdravotní péče typickou pro onemocnění ledvin v letech 2015-

2018, jsme testovali současnou verzi modelu a dodatečně stanovili další klasifikační 

kritéria pro zařazení pojištěnců do PCG „renální selhání“. Klasifikace, která používá 

pro zařazení výkony dialýzy, se ukázala jako lepší indikátor budoucích nákladů oproti 

doposud používané spotřebě typických léčiv. Použití přístupu založeného na výkonech 

dialýzy zlepšilo koeficient determinace z 26 % na 49 % a schopnost predikce nákladů 

se rovněž významně zlepšila. Předkládaná studie tak může napomoci ke zlepšení 

rizikové úpravy nákladů v ČR a přispět ke spravedlivějšímu přerozdělení financí mezi 

zdravotními pojišťovnami, přičemž veškerá potřebná data jsou k dispozici. 
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Motivation: 

All over the world, there has been a rising pressure on health care systems, where 

the resources are limited, and therefore efficient allocation is a necessity. In most 

countries, health care demand is rising, partly due to ageing of the population, 

which is usually associated with higher occurrence of chronic diseases. Most 

chronic diseases are not curable and therefore chronically ill people rise costs for 

health systems. Health care reforms are aimed to improve the efficiency of the fund 

redistribution that should reflect the individual health care needs as close as 

possible. For this purpose, prediction models are being used to estimate the 

expenditure of each health insurance company and thus to indicate how funds 

should be redistributed. Such models use available information about insurees to 

predict their costs. Its simpler version might be solely a demographic model which 

was used also in the Czech Republic until 2018, when new model of risk 

assessment was implemented.   

The pharmacy-based cost group (PCG) model, which is used in the Czech Republic 

since 1.1.2018, uses both demographic data and chronic diseases. As it was shown 

in many studies, incorporating such information in the model substantially 

improves its predictive power (Lamers & Vliet, 2003, Hájíčková, 2015). PCG 

model has been successfully implemented also in other countries, such as Slovakia 

or the Netherlands. In fact, the model currently used in the Czech Republic is based 

on the PCG model that was first implemented in the Netherlands. For the PCG 

model to work, information about individual drug consumption of patients is 
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model is based on a linear regression, I would like to conduct sensitivity analysis 

and demonstrate, how precisely the model predicts the real expenditures. The thesis 

will be focused on one specific group of chronically ill patients, namely patients 

with renal failure (this corresponds to group REN used in the PCG model).    



Chronic kidney disease or renal failure is a condition when the kidneys are not able 

to work properly (e.g. because of diabetes or high blood pressure) gradually 

leading to loss of its function. In later stages, the kidneys are not able to clean the 

blood from wastes anymore and the person is obliged to visit hospital several times 

a week for special treatment – dialysis, that basically replaces the kidney’s 

function. Unless a new functioning kidney is transplanted, the patient is dependent 

on dialysis for the rest of his life. In spite of the fact, that renal failure is less usual 

than most of the other chronic diseases, it characterized by very high costs. In 

terms of the average costs for patient, renal failure is the most expensive among all 

chronic diseases (Dungl, Jandová, Kubů, Macháček, & Svoboda, 2017).    
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treatment, not the treatment of renal failure itself. For the patient to be classified as 

chronically ill, one has to take minimum of 181 defined daily doses (DDD) of 
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1 Introduction  

The health care systems all over the world have gone through many reforms in last few 

decades as a reaction to the increasing demand for health care and rising health care 

costs. Most European countries introduced universal health coverage with mandatory 

contributions to establish solidarity and equal access to health care. In the 

reimbursement system, the fairness among health insurance funds is crucial for 

reaching the optimal efficiency and quality of provided services. For this purpose, the 

pooling of funds and risk adjusted redistribution have been introduced in many 

countries.  

The pooling of collected funds is based on the idea that the healthy subsidize the sick 

and the young subsidize the old, in accordance with the principles of solidarity. 

However, in the absence of fair redistribution of pooled funds, the insurance companies 

with sicker population are undercompensated and might even face financial problems. 

Consequently, insurance companies may risk-select healthier and younger individuals 

since they represent lower financial risk. Although risk selection is not allowed in the 

Czech Republic, insurance companies might offer benefits to attract particular groups 

of insurees or refuse to contract with some providers. This is where risk adjustment 

mechanisms step in to reduce the risk selection incentives and to improve fairness in 

the health insurance system. 

Risk adjustment mechanisms are utilized to predict the health care costs of specific 

groups of individuals as close as possible. First risk adjustment models implemented 

in European countries (including the Czech Republic) used demographic variables. As 

age and gender performed poorly in predicting the real costs and did not adequately 

reflect the health status, new risk adjusters have been discussed throughout the years. 

In the Netherlands, the pharmacy-based cost groups (PCGs) were first introduced in 

2002, taking into account one of the most important drivers of health care costs – 

chronic diseases. 

The incorporation of PCGs into the model largely increases its predictive power, as 

verified by multiple studies (Hájíčková, 2015; Huber et al., 2013; Lamers & Van Vliet, 

2003). Following the Dutch example, PCGs were implemented in the Czech Republic 

in 2018, improving the model’s performance considerably (Dungl et al., 2017). The 

Czech model specifies 25 PCGs and classifies individuals into the groups based on 

consumption of typical drugs for specific diseases (e.g. antidiabetics for diabetes). The 
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current classification threshold is set to 181 defined daily doses (DDDs), which 

corresponds roughly to half a year of recommended consumption. While for some 

diseases the pharmaceuticals specifically define given condition, for others they are 

less accurate and may omit some individuals who suffer from the disease. If the 

classification criteria omit expensive individuals, the insurance company will be 

undercompensated and will tend to avoid those patients.  

“Renal failure” is a PCG group where the typical pharmaceuticals are only 

complementary to the treatment and the prescribed amounts vary substantially. Thus, 

we suspect the classification criteria based on pharmaceutical consumption to be 

inaccurate. Besides, renal failure is the most expensive chronic disease on average due 

to regular dialysis procedures, which substitute the kidney function and are crucial for 

keeping the patient alive. As opposed to drug prescriptions, the dialysis procedures are 

regular and highly specific for renal failure, hence they are more suitable for disease 

identification from the data. 

The objective of this thesis is to revise and modify the existing classification criteria 

for the PCG renal failure and suggest improvements to the model currently used in the 

Czech Republic. The data are provided by the General Health Insurance fund (GHI) 

and consist of individuals reported with the drug consumption typical for renal failure 

or dialysis procedures in years 2015-2018. The thesis verifies the following 

hypotheses: 

1. Currently used PCG model does not identify all individuals suffering from renal 

failure and omits expensive cases. 

2. Identification of renal failure based on dialysis procedures captures more 

patients and reflects their costs better. 

3. If dialysis procedures were incorporated into the model instead of drug 

consumption (or as its complement), the model’s predictive power would 

increase substantially. 

For the first two hypotheses, we identify patients based on the drug consumption and 

alternatively based on dialysis procedures, since we believe the procedures are able to 

predict the costs more precisely. The number of classified patients under both 

approaches and their costs are analysed and compared. Regarding the last hypothesis, 

we suggest various regression models based on the current risk adjustment 

methodology and modify the definition of the PCG “renal failure”. The models are 

estimated using the Ordinary Least Squares (OLS) and their performance is compared 
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in terms of variation explained (R2). Finally, the predictive power of the model is 

verified on real data. The estimates are used to calculate the cost predictions for year 

2018, which are compared with the real costs. 

The thesis is structured as follows: Chapter 2 presents basic concepts related to the 

topic, provides background on Czech health care system, and elaborates on the history 

of risk adjustment in the Czech Republic, ending with the description of the current 

PCG model. Chapter 3 is dedicated to literature review, where the first part covers risk 

adjustment methodologies and models used in previous studies, while the second part 

presents the chronic kidney disease, its worldwide prevalence, and related costs. 

Chapter 4 describes the data and their preliminary analysis, and explains methodology 

used in the empirical part. Chapter 5 presents the results of the analyses and comparison 

of models’ performance. The discussion of possible issues and motivations for further 

research follows in Chapter 6. Chapter 7 summarizes the findings and contribution of 

the thesis. 
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2 Health insurance, pooling of funds, 
and risk adjustment  

Unlike other regular goods (e.g. food), the consumption of health care is largely 

unpredictable both in its magnitude and timing over lifetime. Consequently, 

individuals are unable to prepare for future health care costs. As individuals are 

generally risk averse, they prefer to sacrifice a part of the present consumption in order 

to protect themselves against adverse events in the future (Smith & Witter, 2004). This 

is where the health insurance steps in to satisfy the needs for financial protection, as 

well as to solve the issues of equity in access to health care and overall health system 

efficiency. 

Since 1990, many European countries introduced reforms to the structure of their 

healthcare systems. Regarding the health insurance, most policymakers worldwide 

have gradually moved towards compulsory universal health coverage (Kutzin et al., 

2010). The system of health financing generally consists of three components: revenue 

collection, accumulation and management of resources, and their allocation (Mathauer 

et al., 2019). The collection of revenues in most European countries has the form of 

contributions (through general taxation, employer contributions, user charges, social 

insurance, health insurance premiums etc.) that are unrelated to the health status. In 

other words, charging premiums based on expected expenses is not allowed for 

insurers. In return, the financial coverage of standard health care package is guaranteed 

by law (Smith & Witter, 2004).  

Revenues accumulation, referred to as pooling of funds is one of the most important 

characteristics of healthcare systems. Although the features of risk pooling differ 

among countries and their structure have gone through numerous reforms, the main 

goals are shared: pooling the risks together, redirecting the funds where needed, and 

improving the financial protection of the population (Kutzin et al., 2010). Risk pooling 

effectively balances the resources between rich and poor (especially when 

contributions are income-based), healthy and sick, young and old, and creates a level 

playing field in the access to health care (Mathauer et al., 2019). 

The competition among funds providing health insurance is limited in countries where 

the risk rated premiums are not allowed. On the other hand, the adverse incentives of 

health funds to select healthier and therefore less expensive part of the population are 
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often an issue. Such practice, referred to as risk selection (also cream-skimming or 

cherry-picking), undermines the benefits of healthy competition among health funds, 

because instead of competing in the quality of provided services, the competition relies 

on the ability to attract the most profitable groups of insurees (Barros, 2003; Pilny et 

al., 2017). Even in systems where the health funds are obliged to accept all applicants, 

cherry-picking might take form of marketing strategies or benefit provisions favouring 

younger and healthier population. 

When addressing the problem of risk selection, the fund allocation is crucial. An 

efficient redistribution should ensure that the funds are financially compensated for 

insuring sicker population, i.e. the fund allocation takes into account the risk profiles 

of subsequent fund members. Many countries have reacted to this challenge by 

employing risk adjustment (also called risk equalization) to calculate the expected 

expenses of pools and compensate them for the variation in the risk exposure. 

2.1 Basic concepts – risk pooling and risk adjustment 

The World Health Organisation describes the risk pooling as “the practice of bringing 

several risks together for insurance purposes in order to balance the consequences of 

the realization of each individual risk” (Smith & Witter, 2004). In the absence of risk 

pooling, all health costs would be born by the individual in relation with his/her clinical 

needs. Consequently, older and sicker population would have to bear the highest 

expenditure, which is inconsistent with the principles of solidarity. The risk pooling 

therefore ensures that the financial risk is shared among all pool members.  

Smith & Witter (2004) distinguish between four basic approaches to risk pooling. The 

first approach does not use any risk pooling. Under this system, citizens meet their own 

health care costs and pay directly to the provider or, in case the insurance funds are 

present, the individuals pay risk premiums according to their perceived risk. The 

authors claim that such arrangement leads to dissatisfaction with the health care 

system, since most of the public health issues are neglected. 

The other three mechanisms use risk pooling, differing in the number of pools and their 

interconnectedness. The unitary risk pool uses a single central pool where all the 

revenues from mandatory contributions are gathered and used later to cover the 

individual needs. While such arrangement effectively tackles the issue of cream-

skimming and maximizes the pooling potential, it might induce excessive use of health 

care (moral hazard as well as supplier-induced demand). Moreover, the central risk 

pool might be particularly difficult to administer in larger countries. 
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The fragmented risk pooling assigns an individual into one of several pools in the 

system, based on the geographical location, the employment, individual characteristics 

or individual choice. Although the compulsory coverage results in pools with more 

diversity in terms of health risk sharing, the insurance contributions might be as well 

voluntary. The fragmented pooling is less difficult to administer, however, it introduces 

problems with variation in expenditure among different pools. Generally, the pools 

with older and sicker population (particularly with chronically ill individuals) are 

disadvantaged, since they bear higher costs. Unless some adjustment is made, the pure 

fragmented pooling may lead to cream-skimming and inequality among health funds. 

Lastly, the integrated risk pools, usually accompanied with compulsory participation 

and free choice of health insurance fund, use transfers between the pools to ensure that 

the variation in risk exposures is reduced (Mathauer et al., 2019). Many countries 

implemented this system and developed various risk adjustment methods to predict the 

costs for health care and to compensate the insurance companies, accordingly 

(Schneider et al., 2008). 

Although the health care costs are largely unpredictable, there exists number of factors 

that can be used as indicators for health care expenditure. The simplest risk adjustment 

schemes employ demographic indicators such as age, gender, and place of residence. 

More sophisticated models use individual information on the health status employing 

diagnoses-based or pharmacy-based indicators (Van Kleef & Van Vliet, 2012). The 

data used for risk adjustment should meet certain criteria: It should be feasible, robust 

against manipulation and easily applicable without excessive costs (Lamers & Van 

Vliet, 2004). A proper risk adjustment should reflect the variation in the risk exposure 

as precisely as possible and result in fairness among health insurance companies.  

2.2 Risk adjustment in Czech healthcare 

This chapter aims to set the context of Czech environment. Firstly, it presents the 

overall health care system in the Czech Republic (CR), the understanding of which is 

necessary for the following redistribution model. Subsequently, the evolution of the 

risk adjustment schemes in the CR is described, pointing out the main flaws of 

particular methodologies and incentives for their improvement.  

2.2.1 Czech healthcare system and insurance policy 

The Czech health care system is a statutory health insurance (SHI) system, based on 

compulsory contributions to health insurance funds. Also referred to as of Bismarckian 

type, the system is characterized by universality and a strong sense of social solidarity 
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(Alexa et al., 2015). The universality of access to healthcare is guaranteed by law. [Law 

on public health insurance (Zákon o veřejném zdravotním pojištění 48/1997 sb)]. 

In the Czech Republic, all citizens are obliged to pay contributions to the health 

insurance fund of their choice on monthly basis. The contributions are collected from 

the employers, employees, self-employed individuals, and people without taxable 

income, who are not paid for by the state. The part of the population which is 

economically inactive (e.g. students, retired, unemployed), is covered by the state 

contributions (Alexa et al., 2015).  

Consequently, insurees are provided with a basic package of health care, that is covered 

by insurance. This package includes services such as inpatient and outpatient care, 

basic stomatologic procedures, rehabilitation and spa procedures, nursing and 

maternity care, screenings, vaccinations, and basic medical equipment 

(Zákon o veřejném zdravotním pojištění 48/1997 sb).  Some procedures (e.g. in 

stomatology) and pharmaceuticals require cost sharing, i.e. out-of-pocket payments 

(OOP) by insurees. The mechanism of reimbursement and its regulation are subject to 

the Reimbursement Decree issued annually by the Ministry of Health.  

The health insurance funds act as purchasers of health care and function as a quasi-

public, self-governing, not-for-profit entities (Alexa et al., 2015). Originally, the 

General Health Insurance fund (GHI, Všeobecná zdravotní pojišťovna) was a single 

insurance fund operating in the Czech Republic since 1992, until other insurance 

companies joined the market. Currently, there are 7 health insurance funds in the Czech 

Republic, nevertheless, the GHI retained its dominant position by insuring 

approximately 57 % of population (as of 2018) (Cikrt, 2018). The main objective of 

insurance funds is to guarantee the provision of covered health care services, ensuring 

its local and time accessibility. For this purpose, the individual health funds contract 

with health care providers and negotiate the extent and the costs of covered services 

(Pelikánová, 2017). The competition between health insurance funds is limited, since 

the extent of benefit packages is determined by law and is considerably broad by its 

definition (Bryndová et al., 2019). As a result, individual funds differ only marginally 

in terms of contracted services, for example by offering bonuses to their members (e.g. 

contributions on sporting activities). Insurers are obliged to accept all applicants, hence 

any risk selection is prohibited (Alexa et al., 2015).  

The health care providers can be distinguished according to their legal status and 

organization. Some of the medical units are organized as state entities (usually 

managed by the Ministry of Health), yet most of the units are of non-state character. 

These can be managed by regional or municipal authorities or by individuals, legal 
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entities and organizations (e.g. church). Regardless of ownership and legal form, 

medical entities negotiate contracts with health insurance funds and obtain 

reimbursement according to those agreements. The mechanism of reimbursement 

differs depending on the type of health care provider and health care provided (e.g. 

inpatient vs. outpatient care). The providers operating without contracts are paid 

directly by the patients without any claims for reimbursement (the only exception is 

necessary health care provided in case of emergency) (Pelikánová, 2017). 

A crucial role is delegated to the Ministry of Health (MoH), which supervises the 

system, issues licences to health professionals, prepares legislation and policy agenda, 

and cooperates internationally. Moreover, the MoH manages several medical facilities 

and administers the State Institute for Drug Control (SÚKL). The regional authorities, 

which are by nature subordinate to the MoH, are in charge of registering local health 

care providers and managing own health care facilities (OECD/European Observatory 

on Health Systems and Policies, 2017). 

SHI contributions are the main source of funding in the Czech healthcare system. 

According to the OECD (Health at Glance 2019), these accounted for 69 % of total 

sources in 2017. The rest of the sources consist of governmental schemes and OOP 

payments, which represent 13 % and 15 %, respectively. In comparison with other 

OECD countries, the Czech share of public sources on the total health expenditure is 

among the highest – 82 % vs. 73 % OECD average (see Figure 1). When related to the 

economy, the Czech Republic’s overall health expenditure accounted for 7.5 % of GDP 

in 2018, which was slightly below OECD average of 8.8 % (Organization of Economic 

Cooperation and Development, 2019). 

Figure 1: Health expenditure by the type of financing, 2017 (or nearest year) 

 

Source: Organization of Economic Cooperation and Development, 2019 



Health insurance, pooling of funds, and risk adjustment │9 

 

2.2.2 History of risk adjustment in the Czech Republic 

The system based on compulsory SHI contributions does not automatically lead to a 

fair allocation of funds among health insurance companies. In the system of multiple 

health insurance funds, the structure of insurees among funds varies by their 

demographic characteristics and health status. If contributions were directly allocated 

to the insurance companies without any risk adjustment, the funds insuring less healthy 

patients would be disadvantaged and could face financial problems. Although the 

Czech insurance companies are not allowed to reject applicants, the risk selection 

might take form of marketing strategies aimed for selected groups (e.g. reimbursement 

of contraceptives, vitamins etc.) or the insurance companies might refuse to contract 

with some providers (Kutzin et al., 2010). Risk pooling and redistribution of collected 

funds according to risk adjustment models come as an adequate solution. 

All premia collected from the insurees and the state contributions are pooled in one 

central fund administered by the GHI. Subsequently, the funds are redistributed to 

individual insurance companies with respect to the risk profile of their insurees and 

based on the predicted expenses. The predicted expenses are estimated using risk 

adjustment scheme which assigns risk indexes based on individuals’ characteristics. 

This mechanism ensures relative fairness of the fund allocation and reduces attempts 

to attract only some groups of insurees (Chalupka, 2010). 

The risk adjustment in the Czech Republic evolved dramatically in last decades. From 

the beginning of 90’s when other health funds apart from the GHI entered the market, 

it was clear, that the revenues and expenses of individual funds would be unequal. 

Between 1993-1997 the insurance companies were still permitted to attract the insurees 

by offering additional benefits above the scope of the basic insurance package, such as 

travel insurance or wellness activities (Alexa et al., 2015). As a result, younger and 

more economically active part of the population frequently switched to new insurance 

companies who offered such services, which left the GHI in a disadvantaged position 

by insuring individuals with more complex health issues. In 1994, the first simple risk 

adjustment mechanism was implemented, taking into consideration the risk 

discrepancies of insurees (Chalupka, 2010). At that time, only 60 % of the collected 

funds and all state premia covering economically inactive population were subject to 

redistribution. The mechanism distinguished only two groups of insurees – those with 

age above 60, who were assigned the triple weight, and the rest of the population 

(Kutzin et al., 2010). The aim to improve the fund allocation was only partially 

fulfilled. Firstly, given that only two age groups were distinguished, the risk adjustment 

did little to reflect the variation in expenses between age groups. Secondly, the health 
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status within the age groups was not considered, although the insurees (e.g. above 60) 

could differ significantly as for their health condition (Bryndová et al., 2019). 

Between 2004 and 2006, a demographic model was implemented with 100 % 

redistribution of collected premia, taking into account both age and gender of the 

insurees. The final version of the model accounted for 36 age/sex groups, where each 

group was assigned a specific risk index (Kutzin et al., 2010). Furthermore, the formula 

implemented in 2006 retrospectively compensated for extremely high costs. 

Approximately 10 % of collected funds was set aside for these purposes (Kutzin et al., 

2010).  

Despite the advantages of the demographic model, the employed risk adjusters still 

insufficiently captured the real health status of individuals. While indexes based on age 

and gender can explain some part of the variation in health care costs, they are unable 

to capture the variation within the same age/sex groups. Consequently, insurance funds 

with higher proportion of ill insurees (especially chronically ill) are always worse off 

even after accounting for the age/gender structure of the population (Chalupka, 2010).  

To address these issues the new risk adjustment scheme has been discussed by the 

Government since 2010. Particularly the GHI supported the development of new risk 

adjustment, which would account for the health status, since they believed that their 

insurees were proportionally less healthy. Inspired by the models used in the 

Netherlands and later in Slovakia, the pharmacy-based cost groups (PCG) model was 

suggested, accounting for the most important drivers of the health care costs – chronic 

diseases. Moreover, given that the methodology uses drug consumption for 

classification to PCGs, the necessary data is already routinely collected by health 

insurance companies and does not require new data collection (Bryndová et al., 2019). 

The final legislative proposal was submitted in 2016 and the PCG risk adjustment 

scheme came into force on 1.1.2018. This reform is expected to enhance the 

competition between the insurance funds, while additional compensation for 

chronically ill insurees should incentivize health insurance funds to offer more benefits 

to chronically ill individuals (Bryndová et al., 2019).  

2.3 PCG model in the Czech Republic 

The definition of the PCG model currently used in the Czech Republic is based on the 

Dutch model adopted in 2012. Redistribution of funds according to PCG methodology 

consists of two separate mechanisms with their own methods of calculation. The 

precise structure of the model, including all the coefficients set by the MoH is defined 
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in law on General health insurance premiums (Zákon České národní rady o pojistném 

na všeobecné zdravotní pojištění 592/1992 Sb.). 

The first mechanism estimates risk indexes of individuals based on their age, gender, 

and occurrence of chronic diseases. As health care costs related to chronically ill 

patients account for approximately 80 % of total expenses on public health, the 

inclusion of PCGs substantially improves the predictive power of the model (Dungl et 

al., 2017). The second mechanism is intended to retrospectively compensate for 

extremely high costs and serves as a reinsurance tool. The funds for extreme cases are 

allocated ex post when real expenditures for given period are revealed. Retrospective 

risk sharing among funds reduces unexpected fluctuations in balances of health funds 

(Bryndová et al., 2019). The GHI is in charge of administration and supervision of 

central account which was established for these purposes.  

Next subsections are presenting the detailed methodology of the model as specified by 

the law (Zákon České národní rady o pojistném na všeobecné zdravotní pojištění 

592/1992 Sb.).  

2.3.1 Demographic classification 

Demographic classification is based on age and gender of insurees as of the first day 

of the month for which the funds are being redistributed. Currently, there exist 19 age 

groups for each gender, that is 38 groups in total. The list of age/gender groups with 

corresponding risk indexes computed for year 2018 is provided in  

Table 1. The indexes carry information about the riskiness and expected costs of 

particular group. Intuitively, the higher the age, the higher the corresponding risk 

index1, since the number of health complications and the probability of mortality are 

increasing. As indicated in many studies (Duncan et al., 2019; French et al., 2017) the 

highest expenses are usually incurred at the very end of the patient’s life. 

Table 1: Risk indexes for age/sex groups, 2018 

Age Risk index - 
men 

Risk index - 
women 

less than 1 year 0.7926 0.642 

1-4 years -0.5097 -0.5659 

5-9 years -0.5999 -0.6503 

10-14 years -0.616 -0.5818 

15-19 years -0.6427 -0.5095 

 

1 With the exception of newborns and babies younger than 1 year, who represent substantial health risk. 
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20-24 years -0.7183 -0.5422 

25-29 years -0.7001 -0.4135 

30-34 years -0.6735 -0.359 

35-39 years -0.6448 -0.4212 

40-44 years -0.6051 -0.4667 

45-49 years -0.5357 -0.409 

50-54 years -0.4182 -0.3401 

55-59 years -0.2469 -0.2886 

60-64 years -0.0483 -0.2348 

65-69 years 0.1832 -0.0784 

70-74 years 0.4343 0.1191 

75-79 years 0.5752 0.2726 

80-84 years 0.6427 0.4432 

85 years and more 0.7943 0.7461 

Source: Zákon České národní rady o pojistném na všeobecné zdravotní pojištění 592/1992 Sb. 

2.3.2 PCG classification 

Patients are assigned into one of the PCGs based on their drug consumption. A patient 

suffering from a chronic disease uses specific medication for his or her illness. As 

chronic diseases are usually treated in the long-term or even for the rest of the patient’s 

life, chronically ill individual is expected to consume a relatively stable amount of 

health care. In other words, if a patient consumes certain amount of pharmaceuticals 

that uniquely define the disease they suffer from, one can expect certain amount of 

health care that the patient will consume throughout the year (Dungl et al., 2017). The 

PCGs are constructed in a way that each group congregates patients with relatively 

homogenous health care needs and costs.  

The specification of the right type of pharmaceuticals for each PCG and the threshold 

of their consumption to be reached are of utmost importance. Drugs are specified using 

Anatomical Therapeutic Chemical (ATC) coding. The threshold of consumption is 

defined in units of defined daily doses (DDDs), where 365 DDDs correspond to one 

year of daily usage of recommended doses. The threshold for PCG classification is 

specified by the MoH in the range of 121 and 365 DDD with regard to the number of 

expected individuals in each group and stability of the redistribution system. For year 

2018 the threshold was set to 181 DDD for all PCG groups. Insurees may belong to 

more than one group, given that the exclusion conditions are met (e.g. DM2 cannot be 

combined with DM1 or diabetes with hypertension). The reclassification of patients is 

carried out on monthly basis.  

Currently, the Czech model specifies 25 PCGs for which the corresponding indexes 

are estimated. As in the case of demographic factors, the indexes reflect the expected 
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effect of belonging to a group on health care costs. The index calculation relies on the 

methods of weighted least squares (WLS) (Bryndová et al., 2019). The list of PCGs 

and indexes calculated by the MoH for year 2018 is provided in Table 2. 

Table 2: Risk indexes for PCGs, 2018 

PCG code PCG group name Risk index 

GLA Glaucoma 0.2246 

THY Thyroid disorders 0.2533 

PSY Antipsychotics, Alzheimer's disease, treatment of 
addiction 

1.9603 

DEP Treatment with antidepressants 0.8659 
CHO Hypercholesterolemia 0.2838 

DMH Diabetes with hypertension 1.0344 
COP Serious asthma, Chronic obstructive pulmonary 

disease 
1.8142 

AST Asthma 0.8682 

DM2 Diabetes mellitus type 2 0.4561 

EPI Epilepsy 1.3813 

CRO Crohn's disease, ulcerative colitis 0.9823 

KVS Heart disease 1.5601 

TNF Rheumatic diseases treated with TNF inhibitors 14.4966 
REU Rheumatic diseases treated otherwise than with TNF 

inhibitors 
0.9963 

PAR Parkinson's disease 1.4167 

DM1 Diabetes mellitus type 1 2.1692 

TRA Transplants 4.1426 

CFP Cystic fibrosis or disorder of pancreatic exocrine 
function 

20.7391 

CNS Brain and spine disorders 10.1492 
ONK Malignancy 17.2183 

HIV HIV, AIDS 10.7017 

REN Renal failure 41.6000 

RAS Therapy with growth hormone 10.3981 

HOR Hormonal oncology 2.2946 

NPP Neuropathic pain 2.2671 

Source: Zákon České národní rady o pojistném na všeobecné zdravotní pojištění 592/1992 Sb. 
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2.3.3 Risk index 

Combining the demographic and PCG indexes as described above, each insuree is 

assigned with the final risk index, which is recalculated each month. The index 

quantifies the overall anticipated risk of the individual as for his health care costs 

covered by the health insurance. The final risk index is calculated as follows: 

𝑹𝒊𝒔𝒌 𝒊𝒏𝒅𝒆𝒙 = 𝟏 + 𝑟𝑖𝑠𝑘 𝑖𝑛𝑑𝑒𝑥 𝑜𝑓 𝑑𝑒𝑚𝑜𝑔𝑟𝑎𝑝ℎ𝑖𝑐 𝑔𝑟𝑜𝑢𝑝 𝑡ℎ𝑒 𝑖𝑛𝑠𝑢𝑟𝑒𝑒 𝑏𝑒𝑙𝑜𝑛𝑔𝑠 𝑡𝑜

+ 𝑠𝑢𝑚 𝑜𝑓 𝑟𝑖𝑠𝑘 𝑖𝑛𝑑𝑒𝑥𝑒𝑠 𝑜𝑓 𝑃𝐶𝐺 𝑔𝑟𝑜𝑢𝑝𝑠 𝑡ℎ𝑒 𝑖𝑛𝑠𝑢𝑟𝑒𝑒 𝑏𝑒𝑙𝑜𝑛𝑔𝑠 𝑡𝑜

+ 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛 𝑓𝑜𝑟 𝑐𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑔𝑟𝑜𝑢𝑝𝑠2  

Given that the average costs are known, multiplying them with the risk index gives the 

predicted expenses for the insuree in a given month (Dungl et al., 2017). 

2.3.4 Reinsurance and reinsurance constant 

If the real costs substantially exceed the risk adjusted predicted costs for that period, 

the reinsurance mechanism guarantees that the health insurance company will be 

compensated ex post. For this purpose, the reinsurance constant is calculated for each 

period. Reinsurance constant represents a threshold, that must be exceeded by 

additional costs in order to be subject to an ex post compensation. The reinsurance 

rules for retrospective compensation are as follows:  

• If the real costs for a patient are higher than the sum of the reinsurance constant 

and the amount that was obtained based on the predictions, the health insurance 

fund has the right to be compensated for 80 % of the amount that exceeded this 

sum. The compensation must not exceed four-fold of the reinsurance constant.  

• In case, that the real costs for a patient exceeded the sum of six-fold of the 

reinsurance constant and the amount that was obtained based on the predictions 

for that period, the health insurance fund has the right to be compensated for 

95 % of the amount that exceeded this sum. 

The calculation of risk indexes described in the previous chapters is also affected by 

the existence of the reinsurance. In fact, the reinsurance constant directly enters the 

WLS estimation. 

 

2 This component captures the correction for specific combinations of demographic and PCG risk groups 

given that these are specified (not specified for 2018). 
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3 Literature review 

This chapter is dedicated to a brief literature review related to the main research 

questions of the thesis. The first subchapter provides an overview of research papers 

on risk adjustment methodologies and the performance of models considering different 

explanatory variables. The second subchapter introduces a chronic kidney disease and 

discusses its worldwide prevalence, health care costs and role in the risk adjustment. 

3.1 Risk adjustment in the literature 

During 1990s, risk adjustment schemes have been introduced in 11 European countries 

(Prinsze & Van Vliet, 2007). In last few decades, the risk equalization became a subject 

of the generous amount of research papers and the methods have evolved dramatically 

over years. The introduction of diagnostic cost groups (DCGs) in the US in 2000, and 

the development of pharmacy-based cost groups (PCGs) in the Netherlands in 2002, 

represented the core milestones in the modern risk adjustment methodology. Table 3 

briefly summarizes the evolution of mechanisms in Israel, Germany, Switzerland, the 

Netherlands, and Slovakia. Although the currently employed methods are not perfect, 

many reforms have been done in these countries to address the issues of fair allocation 

and thus can be used as an illustration of different risk adjustment methods. 

Table 3: Evolution of risk adjustment in chosen countries 

Country History of risk adjustment Sources 

Israel 1995 – prospective payments based on age + 

retrospective payments for 5 severe diseases 

(including renal failure) 

2010 – adding sex + peripheral status 

(Shmueli, 2015) 

(Van de Ven et al., 2007) 

Switzerland 1993 – retrospective payments based on age and sex 

2011 – switching to prospective payments + adding 

hospital and nursing home stays 

2020 – implementing PCGs in addition to age and 

sex 

(Von Wyl & Beck, 2016) 

(Van de Ven et al., 2007) 

(Federal Office of Public 

Health, 2020) 

 

Germany 1994 – age, gender, disability status as risk adjusters 

2002 – adding Disease Management Program 

enrolments 

2009 – introducing Hierarchical Morbidity Groups 

based on reported dialyses 

(Pilny et al., 2017) 

(Wasem et al., 2018) 

(Ash et al., 2000) 

(Juhnke et al., 2016) 
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Netherlands 1990 – age, gender as risk adjusters 

1995 – adding urbanization and source of income 

2002 – introducing PCGs 

2004 – introducing DCGs as a complement to PCGs 

and later adding retrospective compensation 

2006-2017 – adding multiple risk adjusters, 

separating model types to somatic care, mental care, 

and OOP payments (see Appendix A 1 for the full 

list of risk adjusters used in somatic care in 2017) 

(Schneider et al., 2008) 

(Prinsze & Van Vliet, 2007) 

(Van Kleef et al., 2018) 

Slovakia 1995 – two age groups (below and above 60) 

1999 – switching to multiple sex/age groups 

2010 – adding economic activity/inactivity 

2013 – implementing PCGs (24 groups) 

(Glova & Gavurová, 2013) 

(Kutzin et al., 2010) 

(Health Policy Institute, 

2014) 

3.1.1 Development of risk adjusters 

The efficiency of demographic models has been criticized from the beginning by many 

authors, who claimed that age and gender were insufficient predictors of the expected 

costs. Consequently, it was suggested to utilize risk adjusters related to the health status 

in addition to demographic factors. One of the first studies in this field was carried out 

by Newhouse et al. (1989), who tested model’s efficiency after inclusion of multiple 

risk adjusters. The results of the study indicate that even after all relevant health-based 

indicators were incorporated in the model, the predictable variance explained reached 

a maximum of 30 %. 

Inclusion of chronic diseases in the risk adjustment was firstly accomplished in the US 

in early 1990s, where so called Chronic Disease Score (CDS) was developed, using 

pharmaceutical information for disease classification (Von Korff et al., 1992). Later, 

Clark et al. (1995) revised the original CDS methodology and extended the range of 

drugs used for disease identification (29 groups in total). The revised CDS was 

compared with the simple demographic model, and additionally with a model using 34 

ambulatory diagnostic groups (ADGs) based on outpatient diagnoses claims. 

Performing the regression analysis on the Group Health Cooperative of Puget Sound 

data from 1992, the explained variances (measured by means of R-squared) were equal 

to 3 %, 10 % and 8 % for the demographic model, the revised CDS model and the 

ADGs model, respectively. The combination of both CDS and ADGs improved the 

explanatory power of the model to 12 %. 

Fishman et al. (2003) further developed the CDS by creating so called Rxmodel, which 

addressed the weaknesses and barriers of the original methodology. One of the main 

improvements was the expansion for children to reflect the special challenges of the 

drug prescription among pediatric population. Using the 1995-1996 data from large US 
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health maintenance organizations, the authors showed that Rxmodel is able to capture 

8.7 % of cost variation, while demographic model only 3.5 %. For comparison, the 

models based on the diagnosis claims, using Ambulatory Clinical Groups and 

Hierarchical Coexisting Conditions managed to explain 10.2 % and 15.4 %, 

respectively. Employing the quintile analysis, the authors pointed out that all tested 

models performed similarly for the middle 60 % of the cost distribution. 

The revised version of CDS was employed by Kuo et al. (2011), who used Taiwanese 

data of National Health Insurance from years 2006-2007. The authors identified 32 

classes of chronic conditions based on the pharmaceutical consumption using WHO 

ATC classification. The resulting R-squared of the model using pharmacy-based 

metrics was among the highest with 30 % of variation explained compared to 

diagnoses-based morbidity measures (authors used Deyo’s Charlson Comorbidity 

Index and Elixhauser’s Index), none of which have exceeded 25 %.  

In Europe, Huber et al. (2013) modified the CDS model to fit the Switzerland health 

care system. The authors defined 22 chronic conditions based on WHO ATC coding 

and estimated 3 different models using medical claims data from 2009-2010. The most 

expended model accounting for CDS, age, gender, language area and the type of health 

insurance plan, managed to explain 17.9 % of variance in health care costs. As opposed, 

the model without CDS explained 4.7 % (both estimated for individuals up to age 65). 

The most important stream of literature originates in the Netherlands, where PCG 

model has been widely revised since its introduction in 2002. Lamers & Vliet (2003) 

firstly implemented 22 chronic conditions in addition to risk adjusters used before PCG 

implementation (i.e. age, sex, urbanization, type of insurance) and suggested 

improvements to reduce the gaming possibilities. The authors used different thresholds 

of prescriptions for PCG classification and different numbers of comorbidities allowed 

per person. The number of prescribed daily doses (PDDs) was set to at least 4 PDDs, 

91 PDDs and 181 PDDs, where the model with at least 91 prescriptions had the best 

predictive power equal to 9.8 %. The model with unlimited number of conditions per 

person explained 9.9 % of the cost variation, which was better than models with one 

or two conditions per person. Demographic risk adjusters explained only 5 % of the 

variation. The authors also suggested using defined daily doses (DDDs) instead of 

number of prescriptions due to its better robustness to manipulation. Furthermore, the 

reduction of the number of PCGs by removing the diseases with low future costs was 

proposed as another strategy to prevent perverse incentives of sickness funds. Indeed, 

the number of groups in the Dutch risk equalization decreased to 13 in 2002 and later 

to 12 in 2004 (Prinsze & Van Vliet, 2007). 
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In 2004, DCGs were introduced in the Dutch risk adjustment. The combination of 

DCGs, PCGs, and demographic indicators reached the R-squared of 16.6 % (van de 

Ven et al., 2004). Van Veen et al. (2015) additionally included the diagnostic 

information from three prior years, which altogether managed to explain 24.8 % of the 

variation. The explanatory power of the current risk adjustment model utilized in the 

Netherlands (as of 2017) accounts for about 31 % (Van Kleef et al., 2018). 

Available literature on PCG methodology in the Czech Republic is limited due to its 

recent implementation. One of the first researches has been accomplished by the Health 

Policy Institute (2014), that used the existing PCG model in Slovakia and tested its 

potential benefits in the Czech environment. The model included 23 chronic conditions 

following the Dutch example. Individuals were allowed to be classified into one PCG 

(the most expensive one) and the threshold of drug consumption was set to 181 DDDs. 

Using the data of Czech GHI from years 2009-2011, the PCG model was estimated to 

explain approximately 10.8 % of cost variance. This was a substantial improvement 

from the demographic model explaining only about 2.7 %. 

The most detailed PCG analysis has been performed by the KlientPRO group, which 

significantly contributed to its implementation in the Czech Republic. As opposed to 

the model used in Slovakia, the authors proposed several modifications: Use of 25 

PCGs, classification into more than one PCG, and lowered threshold of drug 

consumption. Moreover, the authors included an ex post compensation for extreme 

costs as described in the chapter on PCG model in the Czech Republic. Table 4 

summarizes the performance of tested models. As can be seen, the model with the best 

predictive power allows for more PCGs, uses the threshold of 121 DDDs, adjusts for 

the combination of PCGs as well as for the combination of PCGs with demographic 

factors, and uses an ex post compensation (Dungl et al., 2017).  

Table 4: Overview of PCG models and their performance, Czech data 2010-2011 

Model 1 2 3 4 5 

Prescription threshold (DDDs) 121 121 121 121 181 

More PCGs per person yes yes no no no 

Correction for combination of 
two PCGs 

yes yes no no no 

Correction for combination of 
PCG with demographic group 

yes no no no no 

Ex post compensation yes yes yes no no 

R-squared 45,42% 45,09% 30,12% 19,81% 18,90% 

Source: Dungl et al. (2017), edited 
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Lastly, it is worth to mention two diploma theses that contributed to the available 

literature on PCG models in Czechia and Slovakia. The thesis by Hájíčková (2015) 

showed the benefits of the PCG model over the demographic model used in the CR at 

that time. The author used the sample of 10 % of the Czech population in years 2011-

2012. The predictive power largely improved from 2.03 % to 13.87 %, by which the 

appropriateness of PCG model was confirmed even before it was actually implemented 

in the CR. 

The latter thesis by Chochláčová (2018) tested similar PCG model, however, with the 

use of Slovakian health insurance data. The author made several modifications to the 

current version, particularly focusing on the PCG group Hypercholesterolemia (CHO). 

Both lowering the prescription threshold (from 181 to 121 DDDs) and dividing the 

PCG group CHO into three subgroups according to the drug consumption, improved 

the model in terms of R-squared and profit/loss for the insurer. 

3.1.2 Regression methodology 

The majority of studies on risk adjustment (Clark et al., 1995; Dungl et al., 2017; 

Fishman et al., 2003; Prinsze & Van Vliet, 2007; Van Kleef & Van Vliet, 2012) 

employed ordinary least squares (OLS) or weighted least squares (WLS) in the 

regression analysis. Nevertheless, it is often argued that linear models do not fit the 

distribution of health care costs very well, since the distribution of expenditure is not 

normal, but rather skewed to the right with a heavy tail. 

The main problem of skewness is that it typically produces heteroskedastic errors. To 

address this problem, various transformations of the model were suggested to better 

reflect the distributional properties. For example, Veazie et al. (2003) used the square 

root of the dependent variable, which resulted in the improvement of the model’s 

precision. Other common practice is to use a log-transformation (Farley et al., 1996; 

Kuo et al., 2011), which is however problematic when zero-cost observations are 

included in the dataset. A common solution is to perform a two-part estimation, where 

the first equation is logit or probit used for all cases, and the second is least squares 

with log-transformation of all positive costs (Veazie et al., 2003). One of the main 

drawbacks of log-models is their interpretation which is not straightforward unless log-

values are retransformed, which might induce a retransformation bias (Kuo et al., 

2011). OLS or WLS are therefore the most frequently used methods.  

Van Veen et al. (2015) suggest three main reasons in favour of OLS utilization on 

untransformed data. Firstly, the OLS provides unbiased and the most easily 

interpretable metrics compared to other models, which is a very important feature for 
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regulators and policy makers. Secondly, if the official methodology of risk adjustment 

used for redistribution purposes applies OLS (which is the case for the CR), it should 

be used as well when the model is being revised. Lastly, the authors point out that 

several studies have shown that with a large sample, the OLS perform similarly as other 

more complex models, such as general least squares or two-part estimation.  

3.2 Chronic kidney disease 

Chronic kidney disease (CKD) is a serious illness that can take on multiple forms 

according to its severity. The identification of the number of CKD patients in countries 

can be challenging, since the definition of the disease itself is ambiguous and the 

classification of its stages has changed over time. Generally, the prevalence of CKD 

tends to be lower in comparison with other chronic diseases, however, the disease is 

associated with very high costs, particularly in the case of end-stage renal failure. The 

number of patients suffering from kidney malfunction is recently increasing in most 

countries, including the Czech Republic. This creates a pressure on limited budgets of 

health care systems, particularly on insurance companies, that are responsible for the 

health care reimbursement. 

In the Czech Republic, renal failure currently forms one of the groups in the PCG 

model used for fund redistribution. The risk adjustment should ensure that health 

insurance companies are well compensated for patients diagnosed with renal failure, 

that present substantial costs. Whether these costs are well predicted under the current 

system is a question to be investigated in the empirical part.  

This chapter aims to provide the reader with the basic knowledge of the disease. Firstly, 

it introduces the main characteristics and forms of CKD. Subsequently, it presents the 

prevalence of the disease in the CR and worldwide, followed by a brief overview of its 

economic effects and role in the risk adjustment. 

3.2.1 Renal failure as a chronic disease 

Regarding the decreased function of kidneys, one can come across several different 

definitions. The most widely used term is the “chronic kidney disease” (CKD), which 

is defined as “abnormalities of kidney structure or function, present for more than 3 

months, with implications for health” (National Kidney Foundation, 2013). Another 

term frequently used in Czech terminology is chronic renal insufficiency (CRI), which 

generally denotes that the kidney function has decreased (Ryšavá & Brejník, 2018). In 

the CR, the same condition might be also referred to as chronic kidney/renal failure, 

while in foreign literature “renal failure” usually represents the most serious kidney 
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malfunction, thus the last stage of the disease (National Kidney Foundation, 2013). In 

American literature, the term “end-stage renal (kidney) failure” also means that the 

patient is in the most serious condition, when renal replacement therapy (RRT) is a 

necessity (e.g. dialysis or transplantation) (Kramer et al., 2019). The chronic kidney 

disease should not be confused with acute kidney disease/injury or other non-

progressive kidney insufficiency. While the symptoms might be similar, in acute 

condition the decrease in kidney function is always sudden and/or result of some injury 

(Ryšavá & Brejník, 2018). 

Following widely spread definition from Clinical Practice Guideline for the Evaluation 

and Management of Chronic Kidney Disease3 (National Kidney Foundation, 2013), the 

patient is considered to have the CKD if one of the markers depicted in Table 5 is 

present for more than 3 months. The glomerular filtration rate (GFR) is one of the basic 

classification markers for measuring the severity of kidney damage (Zima et al., 2014). 

Simply put, the GFR measures the amount of blood that is filtrated per unit of time 

(e.g. minute). The direct measure of GFR is rather complicated, therefore the estimated 

glomerular filtration rate (eGFR) is frequently employed instead (Viklický, 2013). 

Table 5: Criteria of CKD (either of the following present for >3 months) 

Markers of kidney damage Albuminuria (AER ≥30mg/24 hours; ACR ≥30mg/g [≥3mg/mmol])  

  Urine sediment abnormalities 

  Electrolyte and other abnormalities due to tubular disorders  

  Abnormalities detected by histology 

  Structural abnormalities detected by imaging 

  History of kidney transplantation  

Decreased GFR GFR <60ml/min/1.73 m2 (GFR categories G3a–G5) 

Source: National Kidney Foundation (2013) 

Currently used classification employs 3 different markers according to which the 

severity of CKD is evaluated: cause, GFR category and albuminuria category. The 

cause identification is based on other present diseases (e.g. diabetes), the location of 

damage within the kidney or presumed pathologic-anatomic findings. GFRs are 

classified into 5 categories (see Table 6), where GFR <60ml/min/1.73 m2 is already 

considered to mark decreased function of kidneys. Value of GFR less than 

15ml/min/1.73 m2 signifies renal failure, in which case kidneys are not able to clean 

the blood from wastes and their function must be replaced by dialysis or transplant. 

Lastly, albuminuria is also classified into 3 categories according to albumin excretion 

 
3 Published by not-for-profit organization Kidney Disease Improving Global Outcomes (KDIGO) that 

was established by National Kidney Foundation (USA) 
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rate (AER) or alternatively using albumin-to-creatinine ratio (ACR) of the patient (see 

Table 7) (National Kidney Foundation, 2013). 

Table 6: GFR categories 

GFR category  GFR (ml/min/1.73 m2) Terms 

G1 ≥90 Normal or high 

G2 60-89 Mildly decreased 

G3a 45-59 Mildly to moderate decreased 

G3b 30-44 Moderately to severely decreased 

G4 15-29 Severely decreased 

G5 <15 Kidney failure 

Source: National Kidney Foundation (2013) 

Table 7: Albuminuria categories 

Category AER (mg/24 hours) ACR (mg/mmol) Terms 

A1 <30 <3 Normal to mildly increased  

A2 30-300 3-30 Moderately increased 

A3 >300 >30 Severely increased 

Source: National Kidney Foundation (2013) 

In 75 % of cases the cause of the CKD is diabetes mellitus, arterial hypertension, or 

glomerular diseases. Less frequently, the CKD might be caused by genetical 

predispositions, return to dialysis after transplantation or other rare diseases (Ryšavá 

& Brejník, 2018). The risk of CKD and the pace of its progression also depend on 

factors such as age, gender, ethnicity, or family anamnesis. While these cannot be 

affected, others, such as hypertension, glycaemia, dietary or smoking habits are in 

hands of patients and their physicians. Appropriate conservative treatment can 

postpone the necessity of dialysis or kidney transplantation for several years. Besides, 

kidney diseases substantially increase the risk of infections and cardiovascular 

complications, that qualify as a major cause of mortality (Neild, 2017). Therefore, 

every patient should be sent to nephrological specialist in stage G3a at the latest 

(Zakiyanov et al., 2014). 

The most serious cases (i.e. CKD stage G5) are subjects to renal replacement therapy 

(RRT), which can take a form of hemodialysis4 (HD), peritoneal dialysis5 (PD), or 

 
4 Hemodialysis - a treatment replacing function of kidneys by filtering wastes and water from the 

blood through needles placed into arm, helping to control blood pressure and balancing important 

minerals. (National Institute of Diabetes and Digestive and Kidney Diseases - NIDDK) 

5 Peritoneal dialysis - a treatment replacing function of kidneys by filtering the blood inside the body 

through catheter placed in patients’ abdomen, or belly. (NIDDK) 
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transplantation. The choice of RRT has to take into account individual needs and 

patients have to be provided with all treatment possibilities (Ryšavá & Brejník, 2018). 

The most optimal treatment is kidney transplantation, ideally from a living donor. 

Unfortunately, this is not possible for all patients, mainly due to the lack of suitable 

donors. Therefore, dialysis is the best accessible option substituting kidney functions.  

3.2.2 Epidemiology  

Prevalence and incidence of CKD have been increasing globally, partly as a result of 

population ageing and related expansion of diseases of civilization (hypertension, 

diabetes, cardiovascular diseases etc.). Decrease in kidney function presents the risk of  

progression into renal failure and increases the probability of death (Zakiyanov et al., 

2014). Some of the health complications might be prevented or delayed, however, it 

requires proper management of the target population. Getting to know the prevalence 

of CKD population is thus highly important in the planning of disease management 

strategies. 

Worldwide, the prevalence of CKD of all stages (G1-G5) is estimated to amount to 

13.4 % of population. The most frequent stage G3 accounts approximately for 7.6 % 

of population while the most serious stage G5 is minor – around 0.1 % (Ryšavá & 

Brejník, 2018). According to Brück et al. (2016), who investigated the occurrence of 

the CKD in 13 European countries based on 19 general population-based studies, the 

prevalence differs substantially across European populations. The study estimated the 

adjusted prevalence of the CKD of all stages to vary between 3.31 % (for Norway) and 

17.3 % (for northeast Germany). When considering only more serious cases from G3 

to G5, the prevalence in central Italy accounted for 1 % of population while in northeast 

Germany, it reached almost 6 %. The authors point out that the difference might be 

affected not only by true differences in population health but also as a matter of 

different methodologies used to collect the data in individual countries. The substantial 

part of the variation can be also ascribed to dissimilarities in lifestyle, environment, 

and regional health policies (Brück et al., 2016). 

The most reliable data can be observed for cases where the CKD has already progressed 

to renal failure. These patients receive renal replacement therapy - either dialysis or 

kidney transplantation, both of which can be well monitored and documented. The 

epidemiology of RRT within Europe is described in the Annual Reports of European 

Renal Association – European Dialysis and Transplant Association (ERA-EDTA). The 

reports gather the data of individual national and regional renal registries in Europe 

and Mediterranean Sea bordering countries. The data from 52 renal registries from 37 

countries were gathered in 2017 Annual Report (ERA-EDTA Registry, 2019). 
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According to this report the overall incidence of patients accepted for RRT in 2017 in 

selected countries was equal to 127 per million population (pmp). In the international 

comparison, as depicted on the left panel of Figure 2, the Czech Republic is among the 

highest with the incidence of 232 pmp. The right panel of Figure 2 illustrates the 

prevalence of patients with RRT in observed countries. The average prevalence is equal 

to 854 patients pmp (note that the CR is above the average). The detailed analysis 

showed that there is 60 % of men among patients on the RRT, 43 % of whom are older 

than 64 years (ERA-EDTA Registry, 2019). 

Figure 2: Incidence and prevalence per mil. population by country/region, 2017 

 

Note: Light bars – aggregated data; Dark bars – individual patient data 

Source: ERA-EDTA Registry’s Annual Report 2017 (ERA-EDTA Registry, 2019) 
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Currently, there is no population data capturing the prevalence of the CKD in the Czech 

Republic and there is a lack of studies researching this field. On the other hand, the 

data about RRT patients are well documented by the Czech Society of Nephrology 

(CSN) and published annually in statistical reports. Moreover, CSN administers the 

registry of dialysis patients providing another source of statistical information. In 

December 2018, there were 102 centres for dialysis where 6,990 patients (or 659 pmp) 

were treated. Most of those patients obtained hemodialysis, peritoneal dialysis 

accounted only for 5.1 %. Kidney transplant was performed in 508 cases (Czech 

Society of Nephrology, 2018). The information about the total amount of patients 

living with kidney transplant was missing in the 2018 report, however, in 2016, it 

amounted to 4,692 patients (Czech Society of Nephrology, 2016). 

The number of patients on dialysis in Czechia has been increasing since 2008 (see 

Figure 3). Diabetes mellitus and hypertension represent the most common diagnoses 

in association with renal failure – in 2018, 46 % of patients on HD suffered from 

diabetes and 59 % from hypertension. Regarding the age structure of the patients, 

approximately 73 % and 58 % of patients on HD and PD, respectively, were older than 

60 years (Czech Society of Nephrology, 2018). In 2018, 1,576 dialysis patients died, 

45 % of whom in association with cardiovascular complications. 

Figure 3: Number of patients on dialysis in the Czech Republic, 2008-2018 

 

Notes: Patients who died during given year excluded; PD – peritoneal dialysis, HD – hemodialysis  

Source: Annual Reports of Czech Society of Nephrology, retrieved from: www.nefrol.cz, edited 
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3.2.3 Costs 

CKD patients represent high costs for health care systems, especially in the case of 

end-stage renal failure when dialysis or kidney transplant are necessary. In addition to 

costly procedures, CKD patients are often hospitalized for extensive periods of time 

and take numerous expensive medications (Da Silva et al., 2018). With the increasing 

number of dialysis patients and progression of the CKD in recent years, the financial 

impact is expected to become even more serious.  

In their research, Da Silva et al. (2018) reviewed the studies investigating the cost 

burden related to the CKD in different countries all over the world, especially in the 

developing ones. The study indicates that CKD costs are increasing with the severity 

of the disease and with the need to initiate dialysis, while representing the highest 

burden for low and middle-income countries. The study discusses 37 articles, all of 

them focusing on the cost estimation of CKD, however using different methodology. 

For example, in Sweden, in comparison with general population the costs related to 

HD and PD are 45 and 29-times higher, respectively. In Italy, the costs for a CKD 

patient before dialysis equal EUR 11,123, while the costs of a patient on dialysis 

amount to EUR 53,764. This demonstrates that if the progression of CKD to the end-

stage renal failure could be prevented, the total expenditure would decrease 

substantially (Da Silva et al., 2018). 

In the case of kidney transplantation, multiple studies (Axelrod et al., 2018; Helanterä 

et al., 2019; Jarl et al., 2018) showed that such surgery induces high costs in the year 

of operation, however, substantially reduces expenditure in the following years. 

Sijpkens et al. (2008) estimated the annual expenditure of the patient on dialysis to 

EUR 60,000, while the care for the patient one year after the kidney transplantation 

decreased to EUR 14,000. 

The results are confirmed in the CR by Tichý (2015) who analysed the data of the GHI. 

Tichý (2015) shows that while in the year of surgery the kidney transplant presents 

higher costs compared to dialysis, the patient with transplant reduces the costs by 

474,263 CZK in the following year. The investment thus returns approximately after 

1.3 years. The positive effects are not solely financial; kidney transplant significantly 

improves patient’s health, survival expectations and comfort (Ferrari, 2016). Tichý 

(2018) also revealed that while the number of patients on dialysis has been relatively 

stable in last years, their average costs have been increasing. 
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3.2.4 Renal failure in risk adjustment 

The treatment options for the CKD vary substantially in their costs (e.g. conservative 

treatment vs. dialysis). In risk equalization models employing PCG methodology, the 

renal failure is usually represented by one PCG group, where the severity of the disease 

and the type of the treatment are not distinguished (since it is based solely on drug 

consumption). This might lead to undercompensation of severe cases requiring the 

most intensive health care or conversely, to overcompensation of less expensive cases. 

Consequently, the health funds could have incentives to avoid sicker patients or to 

reduce the expensive treatments, such as kidney transplantations. 

In the models where DCGs are included, the insuree might be classified into both PCG 

and DCG representing renal failure. In the study by Prinsze & van Vliet (2007) the 

renal failure was reflected by one PCG and two DCGs, one of them being specifically 

for hemodialysis treatment. By including all of them, the estimated index decreased for 

each (compared to separate PCG and DCG model), as they were largely overlapping 

and therefore explaining the same variation. As the authors point out, the assignment 

into both PCG and DCG did not lead to substantial overcompensation, since such 

patients were sicker and costlier on average. 

The research paper by Farley et al. (1996) addressed specifically the risk adjusted 

payments for Medicare end stage renal disease (ESRD) program. The authors 

developed a modified version of capitation payments which distinguished between the 

patients on dialysis and the patients with functioning graft. Additionally, the lump sum 

payments were designed to compensate for incremental costs incurred by the 

transplantation, the graft failure, or extremely high-cost individuals. The risk 

adjustment model included multiple variables, such as age, gender, years of renal 

failure, or presence of diabetes. The model managed to explain up to 25 % of the cost 

variation. The improvement of the capitation payment was believed to positively 

influence the treatment choices, address the specific needs of ESRD population, and 

protect the health funds against substantial financial risk.  

Similarly, Levy et al. (2006) focused on the risk equalization among ESRD 

beneficiaries in the US Medicare. Since the authors believed that the treatment status 

is important for the cost prediction, they estimated three separate models for dialysis, 

transplant, and functioning graft. The models accounted for demographic variables, 

program eligibility, and diagnosis groups, following the risk equalization models 

employed in the US. The suggested model resulted in more accurate payments for 

ESRD patients compared to the demographic model, while enhancing incentives for 

the health care provision.  
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4 Methodology and data 

This chapter provides a detailed overview of the provided datasets, performs 

preliminary analysis of costs, and describes the methodology used in the empirical part.  

4.1 Data description 

The dataset was provided by the General Health Insurance (GHI) company, which is 

responsible for the reimbursement of reported drugs and procedures on behalf of their 

insurees. The dataset captures years 2015-2018 and consists of patients who were 

treated with specific drugs and/or procedures related to chronic kidney disease (CKD). 

All individuals have been continuously insurees of the GHI throughout the observed 

period. In total, the dataset consists of 16,400 insurees with their medical records. 

In 2018, the GHI was insuring approximately 5.9 million of individuals, which 

corresponds to the market share of 56.5 % (VZP ČR, 2018b). Although the GHI has a 

slightly different age profile compared to other insurance companies, Dungl et al. 

(2017) point out that the proportion of patients classified into PCGs is roughly the same 

for all insurance companies. Hence, we consider the sample to be representative of the 

whole population of the Czech Republic.  

4.1.1 Insurees 

Each insuree in the dataset is assigned a unique anonymized ID which merges all the 

medical records of the particular patient throughout the dataset. The demographic data 

about insurees contain gender, year of birth, and year of death, if any. Due to the 

sensitivity of the data, the place of residence was not provided. Although some studies 

use the place of residence in the PCG model to enhance its effectivity, the current 

model in the CR does not use this information and therefore we will not apply it, either. 

The data is divided into separate years (2015-2018) and analysed individually. Patients 

who died during observed year are omitted from the analysis, since they might distort 

the comparability of annual costs among patients in two ways. Firstly, in case of death 

early in the year, the insuree incurs lower than average annual costs. As the exact date 

of death is not indicated in the data, an extrapolation to annual costs as employed by 

Hájíčková (2015) is not feasible. Secondly, some insurees might have incurred 

extremely high end-of-life costs before death (Duncan et al., 2019) and thus it is safer 

to exclude them in order to avoid inflation of the average costs. 
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4.1.2 Medical procedures 

The dataset contains records of all dialysis procedures, the dates of their performance 

and quantities. There are six different codes for dialysis treatment as depicted in Table 

8, appended with the total number of procedures performed in year 2017. 

Table 8: Overview of dialysis codes and number of performed procedures, 2017 

Code Name Number of 
procedures 

18513 Continuous peritoneal dialysis (CPD) 46 591 
18515 Automated peritoneal dialysis (APD) 40 934 
18522 Chronic hemodialysis 115 716 
18523 Chronic hemodialysis outside the dialysis centre 1 602 
18530 Hemofiltration 276 
18550 Hemodiafiltration 444 727 

 

The last four codes correspond to hemodialysis (HD) with minor differences of the 

procedures (e.g. its duration and effectivity). Generally, hemodialysis cleans the blood 

through tubes inserted into veins. The blood is sent into a special machine that cleans 

it from waste and then sends it back to the blood circulation of patient. In most cases, 

hemodialysis is performed in hospital or specialized clinic with the frequency of 

2-3 times a week. Hemodiafiltration (code 18550) is the most frequent hemodialysis 

method and is claimed to be the most efficient one (Nistor et al., 2015). The 

reimbursement of this procedure is limited in the CR by conditions imposed by 

insurance companies and thus it cannot be provided to all patients. The chronic 

hemodialysis (code 18522) is therefore the second most frequent procedure. Based on 

the individual’s preference, the patient can be also educated to self-provide the dialysis 

at home (code 18523). According to dialysis specialists, the hemofiltration method 

(code 18530) is not used for chronic patients nowadays, since it is neither time 

effective, nor cost-efficient. Since hemofiltration claims are very rare in our dataset 

(only 276 procedures performed in 2017) and might have been reported by mistake, 

this code was omitted from the analysis. 

Peritoneal dialysis (PD), including CPD and APD, is performed daily through a 

catheter permanently inserted into the abdomen of the patient. Although this type is 

less frequent than HD and is not suitable for all patients, its advantages may affect the 

patient’s choice of treatment. First, it can be carried out at home by the patient, family 

or a trained nurse. It enables the patient to travel with all necessary equipment as 

opposed to HD, where a dialysis clinic must be searched in advance, making the 

travelling limited. Moreover, the dietary restrictions are lower for PD compared to HD. 

On the other hand, the patient can find the tube in the belly disturbing and there is a 
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certain possibility of infection development called peritonitis. Finally, not all patients 

feel comfortable to perform the procedure by themselves and thus they prefer to have 

it done by a professional instead. The difference between the two procedures (codes 

18513 and 18515) is, that an automated peritoneal dialysis is performed during the 

night making the days of the patient dialysis-free as opposed to continuous peritoneal 

dialysis which typically takes place during the day. Nevertheless, the frequency of the 

continuous PD in the dataset is higher than the automated one. 

The timing of the dialysis initiation and the choice of the method are not same for all. 

Instead of deciding solely on the rate of GFR, a subjective feeling of the patient, 

comorbidities, and symptoms such as nausea, fatigue, shortness of breath, or lack of 

appetite are also considered. According to the Canadian guideline (Nesrallah et al., 

2014), the patient should be closely monitored when the eGFR declines under 15 

mL/min per 1.73 m2, however, the clinical indicators such as symptoms of uremia, 

fluid overload, hyperkalemia, or acidemia should be present to decide about the dialysis 

initiation (unless the eGFR drops below 6 mL/min per 1.73 m2). The final decision also 

depends on the patient. 

The beginning of the dialysis must be planned well in advance and the patient in so 

called predialysis period must be provided with all possible treatment options, 

including kidney transplant. In most cases, the decision between HD and PD depends 

on the personal preference. Many studies compared the impact of HD and PD on the 

health outcomes and mortality, but there is no clear evidence for the preference of one 

over another (Wong et al., 2018; Yang et al., 2015). While PD tends to be a cheaper 

option and some studies indicate that the patient satisfaction and the quality of life is 

higher (Jung et al., 2019; Sinnakirouchenan & Holley, 2011), HD is currently still 

favoured. 

Looking at the frequency of the procedures, it can be indicated, that not all patients 

reached the amount corresponding to the whole year on dialysis. The reasons might be 

numerous: The patient could have started the dialysis for the first time during the 

observed year, or the treatment might have been intermitted after the health outcomes 

had substantially improved or worsened. It is also possible that the reported patient had 

acute kidney problems instead of chronic renal failure. Although acute kidney failure 

has its own reporting codes, it might have been wrongly reported as chronic kidney 

failure. We thus define a threshold of 40 HD or 90 PD a year, which both approximately 

correspond to the dialysis treatment for the period of 3 months (given that HD is 

received 3 times a week and PD daily). This will ensure that we end up with severe 

chronic patients, whose costs are high and comparable among each other. Moreover, 
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according to dialysis professionals, this should be the minimal observational period for 

determining how the patient reacts to the treatment. That is, during this period the 

patient might return to conservative treatment or die from serious complications. 

Histograms of annual frequencies of hemodialysis and peritoneal dialysis for year 2017 

are depicted in Figure 4 and Figure 5. 

Figure 4: Histogram of hemodialysis frequency, 2017 

 

Figure 5: Histogram of peritoneal dialysis frequency, 2017 

 

The standard frequency of hemodialysis is 3 times a week. Considering that a year has 

approximately 52 weeks, this corresponds to 150-160 procedures annually. As shown 

in Figure 4, the highest peak corresponds to this threshold. The second peak can be 

found at 100-110 procedures, which is consistent with receiving hemodialysis 2 times 

a week. Similarly, in Figure 5, the most frequent annual number of procedures falls 

into category 350-370, corresponding roughly to one dialysis a day. These could be the 

thresholds in case we wanted to limit the dataset solely to patients who received the 
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dialysis throughout the whole year. However, this would lead to the loss of 

considerable part of the dataset. Therefore, we decided to lower the threshold to include 

also the patients who received less than annual number of procedures, but still represent 

high cost burden for the insurance company. 

Figure 6 shows the age structure of patients on dialysis in 2018 following the set 

threshold. The patients on dialysis are mostly represented by older population, since 

the disease is usually associated with high age and comorbidities. The frequency peak 

for men is reached at the age of 65-70, whereas for women somewhat later at 70-75. 

Renal failure is more frequent among men in almost all age categories except for the 

eldest population, being the consequence of higher age expectations for women. 

Figure 6: The number of dialysis patients (PD ≥ 90 or HD ≥ 40) according to the 

age and gender, 2018 

 

4.1.3 Pharmaceuticals 

Chronic kidney disease is associated with many complications such as mineral and 

bone metabolism abnormalities, disbalance of blood pH, anaemia, neurological 

disorders, lowered immunity and more (Ryšavá & Brejník, 2018). Some of these can 

be regulated by proper dietary restrictions with limited intake of some minerals. Others 

are drug-compensated. In worse cases, renal replacement therapy is necessary, but even 

then, diet and pharmaceuticals remain important part of the treatment (Askar, 2015). 

The PCG methodology assigns the patient to a PCG based on the consumption of 

specific pharmaceuticals. In case of renal failure, the type and the number of drugs 

consumed varies substantially among patients. Therefore, the choice of the unique 

ATC group is rather complicated. Following the model from the Netherlands, the PCG 
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methodology in the CR uses two ATC groups for renal failure – B03X and V03AE. 

The threshold of drug consumption for the PCG classification is specified annually by 

the Ministry of Health and applies to the sum of the respective ATC groups (Vyhláška 

č. 114/2019 Sb.). 

The dataset provided by the GHI captures the individual consumption of drugs 

belonging to one of these two ATC groups. Each observation in the dataset contains a 

unique drug code, the anonymized ID of the insuree, the date of the prescription and 

the amount prescribed expressed in the units of daily defined doses (DDD). For each 

insuree, the prescribed DDDs were summed to obtain the total annual consumption. 

The ATC code B03X corresponds to antianemic preparations other than: iron, vitamin 

B12 and folic acid. All drugs in this group are based on erythropoietin and are used for 

treatment of anaemia. In some cases, patient’s condition improves with the dialysis 

treatment and thus leads to lower drug usage. The problem with the use of B03X for 

identification of CKD is that these pharmaceuticals are also used for other conditions, 

e.g. for oncological diseases. The second ATC group V03AE stands for drugs for 

treatment of hyperkalemia and hyperphosphatemia (also called binders). Their 

prescription depends on the dietary habits of the patient and on the levels of potassium 

and phosphate in blood. The main advantage of this ATC group is that it is highly 

specific for CKD patients6. 

Classification of the insuree into the right PCG might fail in case that the drug 

consumption is insufficient or none. Figure 7 obtained from our dataset shows that 

almost half of the patients on dialysis had combination of both drug types, while as 

much as 10 % did not consume any of these drugs in 2017.  

Figure 8 depicts the histogram of drug quantities (sum of B03X and V03AE) prescribed 

in 2017. A substantial part of the users did not reach the threshold of 181 DDDs 

(represented by the first two columns), nevertheless, 59 % of them already received 

dialysis. We believe that patients who are on chronic dialysis should be classified into 

the PCG, even in case they did not reach the pharmaceutical threshold. The reason is 

that these patients present high costs which are not going to be compensated to 

insurance companies under the current system. 

 

 
6 SÚKL, lists of prescriber and indication restrictions: http://www.sukl.cz/sukl/seznam-cen-a-uhrad-lp-

pzlu-k-1-1-2020 
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Figure 7: The drug consumption of patients on dialysis, 2017 

 

Figure 8: Histogram of drug consumption, ATC groups B03X + V03AE, 2017 

 

4.1.4 PCGs 

For years 2017 and 2018, the dataset provides information about all PCGs the insurees 

were assigned to, based on their pharmaceutical consumption throughout the respective 

year. There are 25 different PCGs in total (see Appendix A 2 for list of PCGs with the 

classification criteria) including the group for renal failure (REN). The combination of 

chronic kidney failure with other chronic diseases is not an exception and their 

presence can further increase the health care costs. This is also reflected by the PCG 

model which allows for classification into more than one PCG. 

The number of GHI insurees assigned to REN equals 3,255 and 3,231, for years 2017 

and 2018, respectively. The most frequent comorbidities related to CKD are 

cardiovascular diseases (KVS), representing almost 60 % of patients in REN (see 

Figure 9). This is not surprising, since the risk of cardiovascular event increases with 

the decline in kidney function. Hypercholesterolemia (CHO) is the second most 

frequent disease, even though the association with the renal failure is not direct 

(Kaysen, 2007). The third frequent PCG is diabetes with hypertension (DMH), the 
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presence of which is observed in 20 % of REN patients. This follows from the fact that 

both diabetes and hypertension are among the most important risk factors for CKD 

development (Ryšavá & Brejník, 2018).  

Figure 9: Frequency of PCGs for patients classified in REN, 2017 

 

4.1.5 Costs and preliminary analysis 

The dataset does not provide the real health care costs paid by the insurance company, 

but rather uses cost estimates. The estimates are based on the reported health care 

consumption of each insuree - inpatient and outpatient care, medical procedures, 

prescribed drugs, and other medical devices. The cost estimates are calculated as a 

multiplication of the number of points in different health care segments and their prices, 

as specified in the reimbursement decree published annually by the MoH. Although in 

some cases the real costs paid by the insurance company differ from the estimates, the 

Czech PCG model uses the same methodology for the cost valuation and thus it is 

suitable for our analyses of the model’s efficiency. 

Figure 10 depicts the histogram of costs for the sample in 2017. As argued in the 

Literature review, the costs are skewed to the right as most of individuals incur low to 

medium health care costs. The highest frequency occurs for the lowest cost group 

(below 100 thousand CZK), and it tends to decrease with higher costs. Table 9 provides 

the summary statistics for 2017 sample, which is later used in the regression analysis. 
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Figure 10: Histogram of annual costs, 2017 sample (skewness to the right) 

 

Table 9: Summary statistics of health care costs, 2017 sample 

 

The mean costs calculated for insurees who consumed drugs and/or procedures typical 

for renal failure in 2018 are more than 30 times higher compared to the general 

population of GHI insurees (VZP ČR, 2018a). Figure 11 compares average health care 

costs of all GHI insurees with the average costs of CKD patients from our dataset (age 

groups below 25 were dropped due to unrepresentative number of CKD cases). Given 

that the general population of insurees contains also healthy individuals, the differences 

in costs are extremely large for all age groups. The third column depicts the patients 

on dialysis only, indicating that the average expenses are even greater for this group. 

Figure 11: Comparison of mean costs for CKD and general GHI population, 2018 

 

Source: Ročenka za rok 2018, VZP ČR (2018), and own data 

Min. 1st qu. Median Mean 3rd qu. Max.

600              95 941         380 045       591 017       991 188       12 858 304 
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Figure 11 also shows the relationship between costs and the age of insurees. While the 

average health care costs of the Czech population are generally increasing with the age 

(Bělohorský, 2018), the average expenses for CKD patients are decreasing in older age 

groups (approximately above the age of 70). Such trend seems counterintuitive since 

older patients usually experience more health complications, which is reflected by 

higher health care costs. The decrease in costs could possibly be the result of different 

approach to renal failure patients, where younger and more perspective individuals may 

obtain more intensive and cost demanding treatment. Other explanation could be that 

the most complicated patients tend to decease earlier, and thus only healthier CKD 

patients remain in higher age groups. Lastly, younger people are often eligible for a 

kidney transplant, in which case both the preparation and the surgery induce very high 

expenses. 

Concerning the gender cost analysis, Figure 12 shows that for all age groups among 

dialysis patients, the average costs are more or less the same for both males and 

females. As suggested earlier, the costs are decreasing with the age for both genders. 

Figure 12: Average costs of dialysis patients according to gender and age, 2018 

 

Comparing the costs among PCGs, according to Dungl et al. (2017) who used data 

from insurance companies for 2012, renal failure is the most expensive PCG regarding 

the average costs. On the other hand, given that renal failure is not as frequent as other 

chronic diseases (such as diabetes, hypercholesterolemia, or cardiovascular diseases), 

the total incurred costs are not among the highest. 

When analysing the cost profile of REN PCG individually, Figure 13 shows that the 

expenses are mostly clustered around the mean, corresponding to 1.06 mil. CZK in 

2018. However, it can be argued that the expenses lower than 0.5 mil. are frequent as 
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well, creating less evident cluster at lower cost levels. This reveals the cost 

heterogeneity of the PCG REN, possibly as a result of classification based solely on 

drug consumption, which reflects the expenses insufficiently. Indeed, the average cost 

of patient in REN who did not receive any dialysis treatment in 2018 is slightly below 

0.5 mil. CZK. Based on this fact, the separation of REN group into two - patients with 

and without dialysis treatment – will be suggested in the methodological part.  

Figure 13: Cluster analysis of individual costs in the REN group (upper outliers 

not displayed), 2018 

 

The extremely high costs are not exceptional, either. As many as 2.7 % of dialysis 

patients exceeded the total costs of 2 mil. CZK in 2018. The upper outliers might 

potentially inflate the average costs and make the prediction of expenses difficult. The 

problematic of outliers will be addressed later (see chapter on Heteroskedasticity and 

outliers in Methodology description). 

Figure 14 provides comparison of two classification methods that will be used in the 

analysis: The consumption of pharmaceuticals ≥ 181 DDD and the dialysis procedures 

with HD ≥ 40 or PD ≥ 90. So far, we presented mainly the statistics for the most recent 

years 2017 and 2018. Figure 14 shows the evolution of the number of insurees and 

their average costs during the whole period 2015-2018. Clearly, the size of both 

identified groups remains relatively stable throughout the years, while the average 

costs tend to increase in both cases. Note that the classification based on dialysis 

captures more insurees, while also being more expensive on average. 
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Figure 14: The evolution of CKD population and of average costs under different 

classification methods (drugs vs. dialysis procedures), 2015-2018 

      

Additionally, Figure 15 inspects how the amount of drug consumption (typical for 

CKD) and the amount of dialysis procedures relate to the health care costs. Both graphs 

indicate a positive linear relationship, which implies that the use of either indicator 

have some justification in the cost prediction. Looking at the graphs, the dialysis 

procedures seem to follow the path more evidently. Both trends are significant at 1 % 

significance level as verified by a simple regression of costs on the respective health 

care consumption (drugs or dialysis). The regression using dialysis procedures, 

however, explains much more of the cost variation (41 % vs. 16 % measured by R2). 

Figure 15: The relationship of costs and health care consumption (upper outliers 

not displayed), 2017 
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4.2 Methodology description  

The use of the OLS and WLS for the regression analysis was suggested in the Literature 

review, due to its advantageous features and easy interpretation. In case of WLS, the 

weights in the regression account for an individual eligibility for a given period, usually 

expressed as the number of months of enrolment. As already mentioned in the chapter 

on Data description, our dataset contains only individuals who were continuously 

enrolled at the GHI throughout the observed period; at the same time, we decided to 

exclude individuals, who passed away in a given year. Consequently, we can employ 

the OLS, since all insurees included in the dataset were enrolled for the whole year.  

The analysis is carried out in 3 consecutive steps: 

1. The model is estimated using the data on costs and risk adjusters from year t. 

2. The coefficients and the R-squared are obtained for the model from year t. 

3. The costs for year t+1 are predicted and compared with the real ones. 

It is possible to use the coefficients calculated in the first step to compute the risk 

indexes as described in the chapter on PCG model in the Czech Republic. Nevertheless, 

we will not carry out the index computation, as we are interested in the models’ 

performance rather than in the actual fund redistribution. Moreover, since we have the 

data from one insurance company only, we are not able to investigate the allocation of 

funds among different insurance companies. 

The data from 2017 are utilized for the model’s estimation and the predictions are made 

for year 2018, as these datasets are most up-to-date and include all indications of PCGs. 

The following subchapters present the suggested models and describe the methods used 

for their evaluation. 

4.2.1 Model determination 

Model 1 

The first model is a simple demographic model using only age and gender for the cost 

prediction. The purpose is to show how the model performs without any health-based 

risk adjusters. The number of age/gender groups is markedly reduced compared to the 

official PCG methodology due to the low number of young insurees in the sample. For 

each gender, the age groups are formed in 5-year intervals, starting at the age of 35 (the 

first group captures age of 0-34) and ending at 85 (the last group captures age of 86 

and more). Thus, there are 24 age/gender groups in total. 
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The regression model for year t is given as 

Eq. 1: Model 1 

ℎ_𝑐𝑜𝑠𝑡𝑠𝑖,𝑡 = 𝛼 + 𝛽𝑗𝑎𝑔𝑒_𝑔𝑒𝑛𝑑𝑒𝑟𝑗,𝑖,𝑡            𝑗 = 1, . . . ,23 

The dependent variable reflects costs in year t and the explanatory variables are 23 

dummies representing the age/gender groups. For illustration, ith insuree being 

classified into group 𝑗 = 1 means that the variable 𝑎𝑔𝑒_𝑔𝑒𝑛𝑑𝑒𝑟1,𝑖,𝑡 equals 1, while all 

other dummy variables 𝑗 = 2, . . . ,23 equal 0. The number of included dummies 

accounts for 23 classes, since one class (the base group) must be omitted not to induce 

perfect collinearity. We decided to establish males at the age of 70-74 as the base group. 

The variable α represents the intercept. 

The cost prediction for year t+1 follows Eq. 1, using the coefficients estimated in year 

t and the age/gender groups for year t+1; that is, the individual is reclassified in case 

that the additional year resulted in the age value belonging to different age group (for 

example if an individual was 34 in year t and reached 35 in year t+1). 

Model 2 

The second model includes PCGs in addition to age/gender groups from the Model 1. 

The same groups are used as displayed in Appendix A 2, except for the diseases with 

poor representation in the sample, thus 22 PCGs are included. 

In this model, the definition of PCG REN is based solely on the consumption of typical 

drugs, following the official methodology. The threshold of consumption is firstly set 

to 181 DDDs, similarly to other PCGs (labelled as Model 2a). Additionally, we lower 

the drug consumption necessary for the classification into REN to 91 DDDs (labelled 

as Model 2b), which corresponds to the consumption of typical drugs for 

approximately 3 months, as proposed by Lamers & Vliet (2003), to test for the 

sensitivity of the model on modifications in classification criteria. 

The regression model for year t is given as 

Eq. 2: Model 2 

ℎ_𝑐𝑜𝑠𝑡𝑠𝑖,𝑡 = 𝛼 + 𝛽𝑗𝑎𝑔𝑒_𝑔𝑒𝑛𝑑𝑒𝑟𝑗,𝑖,𝑡 + 𝛾𝑘𝑃𝐶𝐺𝑘,𝑖,𝑡       

 𝑗 = 1, . . . ,23;  𝑘 = 1, . . . ,22 

Apart from the same variables included in Model 1, new 22 dummies reflecting the 

PCGs are incorporated. If an ith insuree belongs to the kth PCG, then 𝑃𝐶𝐺𝑘,𝑖,𝑡 = 1, and 
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0 otherwise. Note that belonging into more than one PCG is possible. In this case, all 

22 disease groups are included, since the base group is no PCG, i.e. when 𝑃𝐶𝐺𝑘,𝑖,𝑡 = 0 

for all k. 

The cost prediction for year t+1 uses the estimated coefficients from Eq. 2 and 

age/gender groups for year t+1. As opposed to the age, which is well known in advance 

for the upcoming year, the classification into PCGs for year t+1 is unknown. Therefore, 

we use the PCG classification from year t as a proxy for the next years’ cost prediction. 

Model 3 

The third model corresponds to the Model 2, as for the number of age/gender and 

disease groups. The difference lies in the specification of the REN group. Instead of 

drug consumption, the renal failure is identified based on the number of dialysis 

procedures in given year. As we justified in the Data description, the threshold for REN 

classification is set to HD ≥ 40 or PD ≥ 90. Therefore, instead of PCG REN, a new 

dialysis-based variable is introduced (called REN_dial), taking on value 1 in case the 

threshold is reached and 0 otherwise. All other PCGs are defined standardly using the 

drug consumption ≥ 181 DDDs. 

The regression model for year t is given as 

Eq. 3: Model 3 

ℎ_𝑐𝑜𝑠𝑡𝑠𝑖,𝑡 = 𝛼 + 𝛽𝑗𝑎𝑔𝑒_𝑔𝑒𝑛𝑑𝑒𝑟𝑗,𝑖,𝑡 + 𝛾𝑘𝑃𝐶𝐺𝑘,𝑖,𝑡  + 𝛿𝑅𝐸𝑁_𝑑𝑖𝑎𝑙𝑖,𝑡     

  𝑗 = 1, … ,23;  k = 1, . . . ,21 

The methodology of the cost prediction for year t+1 applies from the Model 2. 

Similarly as for the PCGs, the classification into REN for year t+1 is based on the data 

from year t (i.e. on the number of dialyses). 

Model 4 

Finally, both approaches to REN classification are combined in the last model. As 

discussed in the Data description, we believe that the CKD population consists of two 

types of patients with considerably different costs: The patients on dialysis and the 

patients on conservative treatment (using drugs only). The latter might be also referred 

to as predialysis treatment. Indeed, the data from 2018 suggest that the average costs 

of patients who exceeded the threshold of 181 DDDs, but did not obtain any dialysis 

procedures, equal less than half of the average costs for the whole REN group. This led 

us to define two different groups reflecting CKD patients: 



Methodology and data │43 

 

1. Predialysis group: Drug consumption ≥ 181 DDDs and HD < 40 and PD < 90 

2. Dialysis group: Drug consumption not considered; HD ≥ 40 or PD ≥ 90 

The first group is represented by the new variable REN_pre and the second by 

REN_dial (same as in Model 3). We believe that the two defined groups are more cost 

homogenous and would lead to the model’s improvement. 

The regression model for year t is given as 

Eq. 4: Model 4 

ℎ_𝑐𝑜𝑠𝑡𝑠𝑖,𝑡 = 𝛼 + 𝛽𝑗𝑎𝑔𝑒_𝑔𝑒𝑛𝑑𝑗,𝑖,𝑡 + 𝛾𝑘𝑃𝐶𝐺𝑘,𝑖,𝑡 + 𝛿1𝑅𝐸𝑁_𝑝𝑟𝑒𝑖,𝑡 +  𝛿2𝑅𝐸𝑁_𝑑𝑖𝑎𝑙𝑖,𝑡     

𝑗 = 1, … ,23;  𝑘 = 1, . . . ,21 

4.2.2 Measures of model’s performance 

R-squared 

R-squared (R2) is the most common measure in the risk adjustment model’s evaluation. 

The R2 of regression, also referred to as the coefficient of determination, is interpreted 

as the fraction of the variation in dependent variable, that is explain by independent 

variables (Wooldridge, 2009). In econometrics, it is defined as 

Eq. 5: R-squared 

𝑅2 =
𝑆𝑆𝐸

𝑆𝑆𝑇
=

∑ (𝑦̂𝑖 − 𝑦̅)2𝑛
𝑖=1

∑ (𝑦𝑖 − 𝑦̅)2𝑛
𝑖=1

 

SSE corresponds to the explained sum of squares and is computed as a sum of squared 

differences between the fitted values 𝑦̂𝑖 and the sample average 𝑦̅. Similarly, the total 

sum of squares (SST), uses the difference between the sample values 𝑦𝑖 and the sample 

average 𝑦̅. The value of R2 is always between 0 and 1, as the SSE can never exceed the 

SST. Generally, the higher the value of R2, the more variation in the dependent variable 

is explained and thus the better the choice of the explanatory variables. The R2 is often 

interpreted as a percentage after multiplied by 100.  

Nevertheless, we should be careful with the R2 interpretation when comparing the 

performance of different models. From the general properties of R2, it follows that the 

value tends to increase with every additional variable (or at least, it never decreases). 

This means that a small positive change in R2 after new variable is added, does not 

have to necessarily indicate the model’s improvement. To address this issue, the 

adjusted R-squared is sometimes used instead, although, it is not generally considered 
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a better measure than simple R2 (Wooldridge, 2009). Both estimates are routinely 

reported by the econometric software along with the estimated coefficients and 

standard errors. Additionally, we compute another R2 using the predicted costs and the 

actual costs for year t+1, to show how well the variance in the next year’s costs is 

explained by our predictions.  

Apart from the R2, the models’ accuracy is also verified by the means of the likelihood 

ratio (LR) test. The LR test compares the goodness of fit of two models – the restricted 

and the unrestricted, employing their log-likelihood functions. Under the null 

hypothesis, the dropped variables are not important in the model and thus the restricted 

model is more appropriate. Conversely, if H0 is rejected (the LR test gives a significant 

result), the unrestricted model is significantly more accurate (Wooldridge, 2009). 

MPE, MAPE, MARE 

The forecasting power of the model can be assessed by three similar measures. Define 

𝐶_𝑝𝑟𝑒𝑑𝑖 as the costs predicted in year t for year t+1 for the ith insuree, 𝐶_𝑎𝑐𝑡𝑖 as the 

actual costs in year t+1 for the ith insuree, and n the number of insurees in the sample. 

The Mean Prediction Error (MPE) is defined as 

Eq. 6: MPE 

𝑀𝑃𝐸 =
∑ (𝐶_𝑝𝑟𝑒𝑑𝑖 − 𝐶_𝑎𝑐𝑡𝑖)

𝑛
𝑖=1

𝑛
=

𝐶_𝑝𝑟𝑒𝑑_𝑡𝑜𝑡𝑎𝑙

𝑛
−

𝐶_𝑎𝑐𝑡_𝑡𝑜𝑡𝑎𝑙

𝑛
 

The MPE shows how well the model predicts the mean of the actual costs. The closer 

the MPE to zero (either in positive or negative values), the better the prediction. 

The Mean Absolute Prediction Error (MAPE) is defined as 

Eq. 7: MAPE 

𝑀𝐴𝑃𝐸 =
∑ |𝐶_𝑝𝑟𝑒𝑑𝑖 − 𝐶_𝑎𝑐𝑡𝑖|

𝑛
𝑖=1

𝑛
 

The MAPE measures the average absolute difference between the predicted and actual 

costs. As the difference is always captured as a positive value, the predictions higher 

or lower than the actual costs do not cancel out, as opposed to the MPE (Fishman et 

al., 2003). In other words, the MPE allows for the losses to be offset by the profits 

resulting from inaccurate predictions, while the MAPE evaluates the average error 

(both positive and negative). Lower values indicate better forecasting performance. 
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The Mean Absolute Relative Error (MARE) is defined as 

Eq. 8: MARE 

𝑀𝐴𝑅𝐸 =
∑

|𝐶_𝑝𝑟𝑒𝑑𝑖 − 𝐶_𝑎𝑐𝑡𝑖|
𝐶_𝑎𝑐𝑡𝑖

𝑛
𝑖=1

𝑛
 

The MARE can be interpreted as the average absolute difference between the predicted 

and actual costs relative to the actual costs. It can be used to assess the relative 

importance of errors, which makes the comparison of models more intuitive 

(Hájíčková, 2015). The model’s performance improves as the MARE approaches zero. 

4.2.3 Heteroskedasticity and outliers 

Heteroskedasticity is present whenever the variance of the explained variable is 

dependent on explanatory variables and is not constant. The heterogeneity in individual 

health care costs and the skewness of costs are expected to result in heteroskedasticity 

in our models. The presence of heteroskedasticity does not induce the bias of OLS 

estimators, nor has it an influence on R2. On the contrary, it does affect the estimates 

of standard errors and the statistics based on it (e.g. t-statistics), which are therefore 

biased. To address this issue, we compute the heteroskedasticity-robust standard errors, 

which are asymptotically valid for any form of heteroskedasticity, provided we have a 

large enough sample (Wooldridge, 2009). 

Extremely high costs occurring in few observations might negatively affect the 

estimation process and make the fit of the model less accurate. Since we want to see 

how well we can predict the future costs, we keep the outliers in the data for most of 

the analyses. Nevertheless, the outliers will be detected in the last section and the best 

performing model will be refitted without outliers to see whether it improves. For 

outlier’s detection, the boxplot method is utilized. The boxplot standardly depicts the 

lower quartile (Q1) at 25th percentile, upper quartile (Q3) at 75th percentile and the 

median of the data. The middle 50 % of scores (the range between Q1 and Q3) is 

referred to as an Interquartile range (IQR). For the detection of outliers, the upper limit 

will be set as Q3 + 1.5*IQR and the observations larger than the upper limit will be 

dropped. 
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5 Results 

5.1 Sensitivity of identification methods 

The comparison of identification methods suggests that drug consumption is not a good 

indicator of renal disease, nor a suitable cost predictor. Figure 16 illustrates the overlap 

of groups identified based on drug consumption (181 DDDs) and dialysis procedures 

(40 HD or 90 PD) in 2017. The dialysis criteria capture not only higher number of 

patients, but also higher average expenses. As presented in the diagram, the individuals 

not captured with the use of dialysis criteria have average costs lower than 0.5 mil. 

CZK, while the patients omitted when using only drug consumption account for almost 

1 mil. CZK in average costs.  

Assuming the patients on dialysis for more than 3 months are truly the ones suffering 

from renal failure, we can observe the ability of drug consumption method to identify 

these individuals. Using the threshold of 181 DDDs, the sensitivity, defined as the 

probability of correct classification into REN when a patient truly suffers from renal 

failure, corresponds to 62.5 %. Alternatively, the specificity, defined as the probability 

of correct non-classification into REN when patient does not suffer from renal failure, 

accounts for about 90 %. This implies that while the current PCG methodology 

primarily does not include wrong individuals (as indicated by high specificity), it fails 

to capture a substantial part of renal failure patients (as indicated by low sensitivity). 

Figure 16: The comparison of identification methods, 2017 
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5.2 Comparison of models 

Table 10 summarizes the estimation results for five models suggested in the 

methodological part. Starting with Model 1, the variation of costs explained solely by 

demographic variables reaches less than 2 %. As anticipated, the inclusion of health-

based indicators improves the explained variation substantially in remaining models, 

reaching as much as 49 % for the best fit. Clearly, the definition of the REN variable 

is crucial. In Model 2, where solely drug consumption is considered, the R2 reaches    

26 % for the threshold of 181 DDDs and increases to 30 % when threshold lowered to 

91 DDDs. The largest improvement in R2 is observed when the REN group becomes 

related to dialysis procedures instead of drug consumption; Model 3 manages to 

explain 48 % of the cost variation. The inclusion of additional variable capturing 

patients in predialysis (using drugs only) further improves the R2, although by less than 

one percentage point. Note that since the last Model 4 combines both approaches, it 

captures all patients represented by the union of the two sets depicted in Figure 16. 

Concerning the age/gender analysis, as the base group (excluded from variables) 

accounts for men at the age of 70-74, the other age/gender estimates are interpreted as 

additional costs compared to that group. For men, the interpretation of estimates is 

straightforward, since they represent only the age difference. For women, the 

coefficients reflect both age and gender difference when compared to the base group. 

The marginal costs for female gender can be viewed as the difference between the male 

and female coefficient estimated for the same age group. 

The positive values for lower age groups indicate that younger insurees are more 

expensive on average. Conversely, all age groups higher than 75 have negative 

estimates for both genders, suggesting that health care costs decrease with age. The 

lowest costs in all models are assigned to the oldest individuals (> 84) for both genders. 

On the contrary, the highest average expenses are estimated at 50-54 for men (except 

for last two models, where second highest), while for women, at the age of 45-49.  

In case we are interested in average costs for specific age/gender group, the intercept, 

which represents the average costs of the base group, and the corresponding estimated 

coefficient, are added up. For illustration, using Model 1 estimates, the average annual 

costs for men at the age of 80-84 are calculated as: (595,365 – 139,941) CZK = 455,424 

CZK. Since Model 1 takes into account only age and gender, in remaining models, the 

estimates representing the PCG(s) the individual belongs to need to be added as well. 

Only in case the individual does not belong to any PCG, solely the intercept and the 

age/gender estimate are summed. 
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Table 10: Summary of results for suggested models, 2017 

 

Standard errors are heteroskedasticity robust. Significance: *** p < 0.001; ** p < 0.01; * p < 0.05. 

Sloupec1 Model 1 Model 2a Model 2b Model 3 Model 4

Intercept  595 365.25 ***  334 346.51 ***  281 555.91 ***   193 516.01 ***  171 603.33 *** 

M < 35  18 808.97       93 087.76       99 033.44       135 333.76 *     138 632.31 *    

M 35-39  48 109.97        90 119.25 *      81 828.10 *      34 312.51        46 977.23      

M 40-44  67 746.18         99 754.65 **    114 863.94 **     51 660.91        56 758.35      

M 45-49  140 386.70 ***  147 132.78 ***  153 583.14 ***     77 829.74 **       86 560.15 **   

M 50-54  165 386.54 ***  160 380.72 ***  155 201.35 ***  101 378.62 *      103 571.97 **   

M 55-59  124 487.39 ***  125 160.50 ***  124 384.47 ***    56 306.83 *        62 924.54 **   

M 60-64   59 166.69 *      46 373.06 *      47 765.39 *      27 246.52        29 054.99      

M 65-69  39 685.63         62 799.90 **     50 850.70 *       36 678.42 *       41 168.62 *    

M 75-79   -9 583.03         -21 421.10       -34 538.61        -35 721.73 *       -37 795.29 **   

M 80-84   -104 865.31 ***   -93 313.21 ***  -104 319.78 ***    -83 747.50 ***    -83 769.58 *** 

M > 84  -163 004.62 ***  -150 670.93 ***  -154 343.38 ***    -95 022.90 ***    -96 313.59 *** 

F < 35  -17 617.46        80 567.63        68 920.55        110 006.35 *       112 944.51 **   

F 35-39   13 456.40        30 045.72        44 361.23         42 727.85         49 723.52      

F 40-44     9 753.52        12 233.60       -36 883.12         53 322.07         52 383.55      

F 45-49  151 020.11       164 052.18         151 509.71       149 020.47        156 536.26      

F 50-54    60 226.96         72 878.93        79 874.45       106 742.26        107 394.26      

F 55-59    48 610.54         70 204.11        80 248.64          81 580.21 *         87 913.71 *    

F 60-64      4 686.52         -1 302.77       -11 183.40         19 717.06         20 304.55      

F 65-69   -34 458.82        -20 746.69       -32 160.42           7 331.24         11 691.63      

F 70-74   -33 216.49        -26 487.46       -36 547.77           2 035.93              930.35      

F 75-79     -93 817.81 ***     -96 882.77 ***   -101 351.08 ***     -42 285.46 **       -45 079.33 **   

F 80-84   -139 940.54 ***   -140 501.56 ***   -154 474.42 ***     -69 677.12 ***     -72 708.59 *** 

F > 84   -195 802.00 ***   -184 883.78 ***   -207 572.91 ***   -116 610.99 ***   -117 150.93 *** 

AST              32 752.54        27 777.24          36 736.05 *       34 255.64 *    

COP               33 940.02        25 545.10         17 932.38        25 860.57      

CRO               62 464.42       -27 022.33        -15 296.51         -4 810.02      

DEP                78 562.52 ***     88 501.07 ***      68 629.58 ***     67 063.70 **   

DM1              203 127.38 ***   178 688.67 ***    37 042.73         41 399.90 *    

DM2              21 259.82        12 463.39         34 948.23        29 301.79      

DMH               -58 579.31 ***   -53 840.14 ***     -5 772.16            878.14      

EPI              38 433.95        31 567.46          -2 736.27          2 925.55      

GLA             -11 108.75       -18 339.38          -1 641.29         -3 182.12      

HIV              264 204.91 **     246 436.48 ***    172 228.49 *      173 961.91 *    

HOR              -60 962.65 *     -31 688.11          -4 744.40         -3 664.64      

CHO                  -947.66             162.49             -957.41          1 644.00      

KVS              150 001.63 ***   119 288.82 ***     21 277.82 *       17 309.67 *    

NPP             -13 946.42        13 531.24         32 025.51        25 026.57      

ONK              170 911.88 ***   133 473.23 ***    442 671.06 ***   408 898.29 *** 

PAR                  347.96          2 928.31         23 186.92        28 887.30      

PSY              -72 090.17 *      -75 616.27 *      -24 871.65       -24 056.29      

REU             -30 176.67       -19 328.44         48 230.32        69 387.75      

THY              33 535.03        35 737.41          32 026.37 *      30 388.10      

TNF              79 993.22        63 321.71         187 636.07 ***   140 467.53 **   

TRA               -64 232.54 **     -55 452.61 *         87 395.58 ***     90 340.83 *** 

REN_181              587 467.80 ***                               

REN_91                       600 776.35 ***                     

REN_DIAL                                  863 290.44 ***   884 232.18 *** 

REN_PRE                                           214 854.46 *** 

N  10 937          10 937          10 937          10 937          10 937         

R2   0.0197   0.2622   0.2958   0.4809   0.4874 

Adjusted R2   0.0176   0.2591   0.2839   0.4788   0.4852 
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Apparently, not many age/gender variables are statistically significant. The two (for 

men) and three (for women) highest age/gender groups are negative and significant at 

1 % level in all models, even though their magnitude changes. Additionally, the three 

age groups between 45 and 59 are significant for males in all models at 5 % level. The 

remaining groups are statistically insignificant (at 5 % level), or their significance 

fluctuates between the models. The loss of statistical significance in some cases can be 

ascribed to the fact that the additional health-based variables explain the cost variation 

better.  

The inclusion of PCGs improves the model significantly, as suggested by both R2 and 

adjusted R2, and additionally supported by the likelihood-ratio (LR) test. The LR test 

is significant at all statistical levels for all models including PCGs, which rejects the 

null hypothesis that the restricted model (being Model 1) is the “true” model. Similarly 

to the age/gender variables, not all PCGs are statistically significant. In fact, only 5 

PCGs apart from REN are significant in all models at 5 % level: Depression, 

Cardiovascular diseases, Oncological diseases, HIV and Transplantations. The 

importance of these conditions can be a result of their high representation in the 

population, as is the case of the former two diseases, or a consequence of very high 

average costs, as is the case of the latter three. All these PCGs have positive estimates 

(except for TRA which changes signs between models), oncological diseases being the 

most expensive. If all other insignificant PCGs were excluded, the model’s 

performance would not deteriorate, as indicated by negligible decrease in R2 

(estimation not displayed) and approved by the insignificant result of LR test. These 

results apply solely to our limited sample, where some of the PCGs are 

underrepresented. In general population, all PCGs tend to be positive and significant 

(Chochláčová, 2018; Hájíčková, 2015). 

The variables capturing CKD patients are the most important, as they account for 

majority of cost variation. This can be demonstrated by fitting the model with 

REN_DIAL as the only independent variable, which still manages to explain 45 % of 

the variation in costs (see Appendix A 3 for estimation results). All specified REN 

variables are statistically significant at 0.1 % level and the estimates are positive and 

high in magnitude. The REN coefficient increases substantially with the introduction 

of dialysis-based approach, as dialysis procedures are able to capture more individuals 

with high costs. At the same time, the intercept, which corresponds to the average costs 

of individuals at the age of 70-74 not belonging to any specified disease group, 

decreases. The decline of intercept and some age/gender coefficients is a result of more 

expensive cases being reflected by the REN group(s) that better explain the variation.  
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Presenting the dialysis-based approach into last two models results in extensive 

improvement of model’s performance – the variation explained by Model 3 is almost 

twice the variation explained by Model 2a. Additional variable REN_PRE in Model 4, 

accounting for the predialysis patients, seems to improve the model’s performance only 

marginally, however, significantly according to the LR test between Model 3 and 

Model 4. 

For illustration, consider a man at the age of 70-74 (base group) with the consumption 

of specific drugs for renal failure ≥ 181 DDDs. According to Model 2a, the expected 

average expenses are equal to 921,815 CZK. Now using the Model 4, if the man is on 

dialysis (classified into REN_DIAL), the expected costs are equal to 1,055,835 CZK. 

On the other hand, if the man is treated by drugs only (classified into REN_PRE), the 

expected costs amount to 386,457 CZK. This clearly demonstrates the difference 

between the two approaches and supports our hypothesis that solely drug consumption 

is not able to explain the cost heterogeneity in the CKD population. 

5.3 Evaluation of predictive power 

The predictive power of the model and the fit of the results on t+1 data are essential 

for model’s evaluation. Firstly, the R-squared computed for t+1 represents how much 

variation in 2018 costs is captured by the predictions from 2017 data. Table 11 shows 

that the R2 for predicted costs performs similarly as for the fitted models in 2017. For 

the first three models the variation explained is even higher, probably as a result of less 

outliers present in 2018 costs. The predicted R2 increases with more advanced model, 

hence Model 4 is the best option with 48 % variation explained. 

Table 11: R-squared: fitted model in t (2017) vs. prediction for t+1 (2018) 

 

The measures of forecasting power depicted in Table 12 provide additional insight on 

how well the predicted costs match the actual 2018 costs. The MPE, corresponding to 

the average difference between the predicted and actual costs, indicates that all models 

underestimate the true costs. This could result in loss of insurance companies in case 

there is no ex-post compensation. According to the MPE, Model 3 performs the best 

with the lowest average loss equal to 118,755 CZK, however, we should not put too 

much weight on this measure. Less negative MPE might be a result of overestimation 

of other expenses, which cancelled out part of the underestimation, and generally, we 

want to avoid both. 

Model 1 Model 2a Model 2b Model 3 Model 4

R-squared, t  0.0197  0.2622  0.2958  0.4809  0.4874 

R-squared, t+1  0.0526  0.2759  0.3065  0.4730  0.4800 
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The MAPE is considered a better measure since it captures the average size of the error, 

no matter if positive or negative. In this matter, the last two models appear to be the 

best predictors with the lowest MAPEs, Model 3 being slightly better.  

Lastly, the MARE is the best measure for the comparison of models since it reflects 

the mean absolute error relatively to the actual costs. The MARE implies that Model 4 

has the lowest relative error and thus the best forecasting potential. 

Table 12: Measures of predictive performance 

 

Apart from the overall performance, we carried out more detailed analysis of specific 

cost groups using quantile approach. We analysed the fit of the predictions in 20 % of 

the most expensive and 20 % of the least expensive cases in 2018. As depicted in Table 

13, the most expensive individuals are largely underestimated, in the worst case (Model 

1) by as much as 986 thousand CZK on average. MAPEs are very close to MPEs in 

absolute values since the errors are usually negative for this part of the population. 

MAREs are smaller compared to the whole sample, because the errors are weighted by 

very high actual costs. On the contrary, the costs of the cheapest 20 % of population 

are overestimated by all models, as follows from the positive MPEs. MAREs are 

relatively high, as we weight the errors by low actual costs. Model 4 performs the best 

according to all measures, that is, it predicts the costs closest to the actual ones for both 

subsamples. 

Table 13: MPE, MAPE and MARE for 80th and 20th percentile of 2018 costs 

 

5.4 Outliers’ analysis 

Lastly, we performed the boxplot analysis to identify the cost outliers and to evaluate 

their impact on the model’s performance. The upper limit was set to 2.33 mil. CZK 

Model 1 Model 2a Model 2b Model 3 Model 4

MPE -119 322.5 -123 546.7 -124 423.9 -118 755.1 -119 387.8

MAPE  494 602.9  400 640.1  387 041.3    321 495    321 583

MARE  5.1071  3.4351  3.0781   2.1772   2.0893

80th percentile  Model 1  Model 2a  Model 2b  Model 3  Model 4 

MPE -985 840.5 -791 771.6 -784 964.5 -663 555.7 -661 184.2

MAPE  985 840.5  792 485.1  785 114.3  664 839.7  662 305.8

MARE  0.5903  0.4599  0.4540  0.3698  0.3682

20th percentile  Model 1  Model 2a  Model 2b  Model 3  Model 4 

MPE 510 956.5 343 171.1 318 517.4 189 749 182 781.1

MAPE 510 956.5 343 172.4 318 870.8 190 061.7 184 055.1

MARE 22.2573 14.6387 12.9002 8.8840 8.4042
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corresponding to Q3 + 1.5*IQR (see Methodology description). Subsequently, 74 

outliers exceeding the upper limit were detected, as depicted in Figure 17. The outliers 

were dropped from the 2017 data and the best performing Model 4 was refitted using 

the restricted sample (estimates provided in Appendix A 4). As expected, the R2 for the 

fitted model increased extensively to 67.6 %, as the costs were much easier to fit in the 

absence of extreme values. Furthermore, the predictions explained 50 % of the cost 

variation in 2018, which is a better result compared to the complete sample (48 %).  

Regarding the measures of predictive power (see Table 14), the overall average loss 

represented by the MPE is worse compared to all previous models. This is a 

consequence of omitting the outliers from the fitted model but keeping them in the 

actual data; the extreme costs in 2018 incur high losses against the predicted costs, 

resulting in large negative MPE. On the other hand, the MAPE and the MARE are 

lower than for the original models, implying that we managed to reduce the average 

(relative) absolute error. In the Czech risk adjustment, the outliers are usually not an 

issue, since the extreme costs are addressed by the ex-post compensation. 

Figure 17: Boxplot with outliers, 2017 

 

Table 14: Predictive performance of Model 4 without outliers 

 

 

R-squared, t   0.6760

R-squared, t+1   0.5013

MPE  -141 209

MAPE   318 839

MARE   1.8225
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6 Discussion 

The results demonstrated a great potential of the PCG model for improvement from the 

view of the most expensive disease group – patients with renal failure. Firstly, lowering 

the drug consumption for classification of renal failure patient from 181 DDDs 

(currently used in the CR) to 91 DDDs improved the model’s explanatory power. On 

the other hand, lower prescription threshold might include incidental drug users or even 

create a potential for manipulation of prescriptions as pointed out by Lamers & Vliet 

(2003). Thus, higher threshold, such as 121 DDDs, would be advised (in fact, 121 

DDDs is currently a minimal threshold allowed in the Czech PCG model).  

Next, we showed that the costs were reflected much better by the procedures than by 

the drug consumption and we verified that the introduction of dialysis procedures as 

an indicator for renal failure significantly improved the accuracy of predictions. 

Consequently, the risk indexes computed from the improved model could be more 

accurate and lead to better financial compensation of insurance companies for these 

patients. This is the most important outcome of our study since none of the studies on 

risk adjustment in the Czech Republic (nor abroad to our knowledge) considered 

reported procedures as a potential cost predictor. One of the limitations of this approach 

is its suitability only for diseases requiring typical and regular procedures, because the 

risk adjustment and the fund redistribution are carried out on monthly basis. 

The data analysis showed that the average costs of patients on dialysis and patients 

treated solely by drugs differ substantially. We addressed this by establishing two 

separate REN groups reflecting the cost difference, by which we managed to further 

improve the model, particularly in terms of its forecasting performance. The main 

advantage of the methodology is that all necessary data are already being routinely 

collected by insurance companies and thus the model is easily applicable without 

additional data collection or extra costs.  

The analysis additionally revealed that the expenses decrease for older CKD patients, 

which does not correspond to the trend of general population. Intuitively, older patients 

experience more health complications, which should result in higher health care costs. 

The reason for an opposite trend in case of renal failure might be the intensity of 

treatment which tends to diminish with high age, in order not to burden the patients 

with excessive amounts of drugs (that might be also contraindicated in combination 

with other diseases) and procedures. With regard to the patient’s current prognosis, the 
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dialysis treatment can be reduced or even withdrawn, and instead, the patient obtains 

conservative treatment supported by palliative care (Fassett, 2014). On the contrary, 

younger patients are treated intensively, since the compensation of their condition and 

high life expectancy are of utmost importance. Another explanation of lower costs is 

the fact that older patients tend to adhere to dietary restrictions better (Kugler et al., 

2005), and therefore there is a lower pharmaceutical intake (as also backed by the data). 

To address this specific trend in the context of risk adjustment and as a motivation for 

further research, we would suggest including the interaction of REN group with age as 

additional variable in the general PCG model. 

Another suggestion for research extension would be to apply the presented models on 

the whole Czech population. The predictive power of the model for the general 

population would probably not improve so substantially as in our results, because the 

CKD population is minor. On the other hand, the condition presents very high expenses 

compared to other diseases and thus we believe the total profit/loss balance of 

insurance companies would be affected noticeably. Another step could be an 

introduction of the procedure approach into other currently used PCGs, which could 

improve their accuracy and overall model’s performance. 

The suggested methodology does not account for the ex-post compensation. The ex-

post risk sharing is known to improve the overall model’s performance and tackle the 

outliers’ problem as suggested by Dungl et al. (2017). On the other hand, if ex-ante 

prediction was designed precisely enough, it would not be necessary to carry out the 

ex-post compensation in the first place. This is the case in the Netherlands, where the 

introduction of the most refined ex-ante model led to the mitigation of ex-post 

compensation (Van Kleef et al., 2018). As we managed to improve the accuracy of the 

predictions, the need for ex-post compensation reduced. Nevertheless, the outcomes 

revealed that even the best fitted model still underestimates the real costs, hence there 

is certainly a space for improvement. 

The last issue worth mentioning is the use of OLS, which is not the most suitable option 

due to the substantial skewness of the data (as already discussed in the Literature 

review). While there has been suggested multiple modifications, such as log-

transformation or the use of GLM, majority of authors pointed out the practical 

advantages of OLS, particularly its simplicity and easy interpretation, which are 

preferred in this field (Fishman et al., 2003; Van Veen et al., 2015). Furthermore, since 

the official PCG methodology in the CR still uses the method of least squares and our 

aim was to test its potential for improvement, the OLS was preserved in our models. 
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The potential heteroskedasticity stemming from the skewness was addressed by 

heteroskedasticity robust standard errors, although its presence does not influence the 

bias of coefficient estimates. The coefficients might be biased in case we omitted an 

important variable, which is at the same time correlated with some of the independent 

variables. For example, if income or socioeconomic status were correlated with the 

health care costs and at the same time with the age groups or PCGs in our model, it 

could induce the omitted variable bias. Nevertheless, as it is almost never possible to 

include all relevant variables, we rely on our current estimates to be at least consistent. 
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7 Conclusion  

In 2018, new health-based risk adjusters were implemented in the Czech Republic 

following the Dutch example – the pharmacy-based cost groups (PCGs), which 

accounted for the costs of chronic diseases in addition to age and gender. The aim of 

this study was to revise the Czech PCG model, where we focused on one PCG only – 

renal failure (REN). The renal failure is the most expensive chronic disease and we 

believe that the classification criteria for the PCG are insufficient given the nature and 

the treatment of the disease. The PCG model for renal failure would thus benefit from 

methodology improvements resulting in fairer fund redistribution. The thesis suggests 

improvements which take advantage of current data availability, thus no additional 

costs are required. 

The thesis shows that the consumption of typical drugs is not an accurate indicator of 

renal failure, nor a suitable cost predictor. Instead, we suggested employing the dialysis 

procedures, as they are unique for renal failure and present substantial costs for 

insurance companies. The dialysis procedures correctly identified not only more 

patients suffering from renal failure, but also those being more expensive on average. 

Although dialysis procedures do not capture the patients treated solely by drugs, we 

showed that those have substantially lower average costs than dialysis patients. In 

comparison, the drug consumption method captured only 62.5 % of patients on 

dialysis. 

Five different models were tested using the sample of GHI insurees who were reported 

with any health care consumption typical for kidney disease throughout years 2015-

2018. The OLS was employed following the methodology used in the Czech Republic. 

Firstly, we tested simple demographic model using only age/gender groups, which 

explained less than 2 % of variation in costs. The second model added PCGs (including 

renal failure) based on current threshold of 181 defined daily doses (DDDs) for PCG 

classification. The model explained 26 % of the cost variation. 

In next three models, the definition of PCG for renal failure was modified. The 

threshold of drug consumption was lowered to 91 DDDs in the third model, in which 

the R2 improved to 30 %. In the fourth model, we finally defined the REN variable 

based on number of dialysis procedures instead of drug consumption and the explained 

variation reached 48 %. Lastly, both approaches were combined, and two different 

REN groups were specified – patients treated only by drugs and patients on dialysis, 
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as these groups had substantially different cost profile (approximately 0.5 mil. vs 1 mil. 

CZK in average costs, respectively). The predictive power increased to 49 %. 

Using the estimates from year 2017, the costs for year 2018 were predicted and 

compared with the real costs to evaluate the forecasting power of the models. As 

anticipated, the last two models explained best the variation in 2018 costs (47 – 48 %). 

Other measures of predictive power (MPE, MARE, MAPE) were also tested. Although 

all models’ predictions on average underestimated the true costs, the models based on 

dialysis procedures were closest to the real values. Moreover, the quantile analysis 

revealed that the last model, which combined both drug consumption and dialysis 

procedures, performed best among the models for 20 % of the most expensive and       

20 % of the least expensive cases in the sample. 

The thesis contributes to current discussions about the accuracy of the PCG models, 

renal failure in particular, leading to fairer redistribution of funds among insurance 

companies. Although the renal failure patients form a minority among chronic diseases, 

they present extreme costs and therefore we believe that the total balance of insurance 

companies is affected considerably, if renal failure patients are identified inaccurately. 

Better financial compensation should motivate the insurance funds to offer better 

services or even to create specialized disease management programs, which could 

improve the clinical outcomes and the efficiency of chronic kidney disease 

management. As an extension of our research, we would suggest testing the new 

methodology with the complete version of PCG model using general population. 

Apart from the renal failure, our results might enhance the discussion about the 

accuracy of other PCGs regarding their identification criteria, particularly in cases 

where the drug consumption does not match the costs very well. This may lead to future 

modifications in the Czech risk adjustment, either in terms of lowered drug 

consumption thresholds or including complementary indicators, such as procedures or 

diagnoses, as already used in other countries.  
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Appendix A: Additional figures   

Source: Van Kleef et al. (2018) 

Age and gender: 20 age groups for each gender with 5-year gaps. 

Pharmacy-based cost groups (PCGs): 33 groups corresponding to chronic diseases; classification 

based on the specific amount of drug consumption (usually 180 daily defined doses). 

Diagnoses-based cost groups (DCGs): 15 groups of specific diagnoses from the previous year. 

Multiple-year high-cost groups (MHCGs): 7 groups based on excessive spending on somatic care 

in last 3 years (or 2 years in case of extreme costs).  

Durable medical equipment cost groups (DMECGs): 10 groups reflecting the use of durable 

medical equipment for specific chronic conditions in the previous year. 

Physiotherapy-diagnoses cost groups (PDCGs): 4 groups including physiotherapeutic diagnoses 

from previous year.  

Home care spending: 7 groups reflecting the costs of home care in the previous year.  

Geriatric rehabilitation care spending: 2 groups reflecting the costs of geriatric rehabilitation care 

in the previous year.  

Yes/no morbidity interacted with age: 4 groups reflecting the interaction of age with specific 

PCGs or DCGs or other risk-adjusters. 

Urbanization: 10 clusters aggregating villages, towns, or their parts.  

Socioeconomic status interacted with age: 12 groups capturing total households’ income 

interacted with age.  

Source of income interacted with age: 23 groups based on income or education level interacted 

with age. 

Household size interacted with: 13 groups based on the number of household members interacted 

with age. 

 

Appendix A 1: The risk adjusters for somatic care in the Netherlands, 2017 
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Appendix A 2: List of PCGs and their classification criteria 

 

Source: Zákon České národní rady o pojistném na všeobecné zdravotní pojištění 592/1992 Sb.  

 

PCG code PCG group name List of ATC classification groups Exclusion criteria

GLA Glaucoma S01E

THY Thyroid disorders H03A, H03B

PSY Antipsychotics, Alzheimer's 

disease, treatment of addiction

N05A excluding (N05AL03, N05AN01), 

N06DA, N06DX01, N07BB, N07BC51

DEP Treatment with antidepressants N06A excluding (N06AA09, N06AX21) not if in PSY

CHO Hypercholesterolemia C10 excluding (C10AC01, C10BX03) not if in DM1, DM2, DMH

DMH Diabetes with hypertension A10 and simulatneously C02 excluding 

(C02KX, C02CA04), C03 excluding (C03CA01), 

C07, C08 excluding (C08CA06), C09

COP Serious asthma, Chronic 

obstructive pulmonary disease 

R03AC18, R03AK03, R03BB

AST Asthma R03 excluding (R03AC18, R03AK03, R03BB, 

R03CA02, R03BC01, R03CC02, R03CC13)

not if in COP

DM2 Diabetes mellitus type 2 A10 not if in DM1, DMH

EPI Epilepsy N03 excluding (N03AX12, N03AX16, 

N03AE01)CRO Crohn's disease, ulcerative colitis A07EA06, A07EC02

KVS Heart disease C01A, C01B, C01D, C01EB15, C01EB17, 

C03CA01TNF Rheumatic diseases treated with 

TNF inhibitors

L04AA11, L04AA24, L04AB, L04AC

REU Rheumatic diseases treated 

otherwise than with TNF 

inhibitors

A07EC01, L01BA01, L04AA13, L04AX03, 

M01CB01, M01CC01, P01BA02

not if in TNF

PAR Parkinson's disease N04B

DM1 Diabetes mellitus type 1 A10A not if in DMH

TRA Transplants L04AA06, L04AA10, L04AA18, L04AC02, 

L04AD01, L04AD02, L04AX01

CFP Cystic fibrosis or disorder of 

pancreatic exocrine function

J01GB01 , J01XB01, R05CB13

CNS Brain and spine disorders L03AB07, L03AB08, L03AX13, L04AA23, 

M03BX01, M03BX02

ONK Malignancy L01 excluding (L01BA01), L03AA, L03AC01, 

L04AX04HIV HIV, AIDS J05AE, J05AF excluding (J05AF08, J05AF10, 

J05AF11), J05AG, J05AR, J05AX excluding 

(J05AX05)

REN Renal failure B03X, V03AE

RAS Therapy with growth hormone H01AC01, H01AC03

HOR Hormonal oncology L02

NPP Neuropathic pain N01BX04, N03AX12, N03AX16
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Appendix A 3: Summary of results for model with REN_DIAL as the only 

explanatory variable 

 

Significance: *** p < 0.001; ** p < 0.01; * p < 0.05 

 

Appendix A 4: Summary of results for Model 4 without outliers, 2017 

 

Standard errors are heteroskedasticity robust. Significance: *** p < 0.001; ** p < 0.01; * p < 0.05 

Intercept    258 561 *** 

REN_DIAL    839 933 *** 

N  10 937         

R2   0.4472 

Adjusted R2   0.4471 

Intercept 155 308.49 *** REN_DIAL  896 706.23 ***

M < 35  58 217.97 *   REN_PRE  180 446.73 ***

M 35-39  58 335.86 *   AST   25 950.04 *   

M 40-44 48 305.61     COP  33 518.16     

M 45-49   63 061.73 **  CRO  18 011.35     

M 50-54 36 677.82     DEP    42 279.94 ***

M 55-59  40 916.31 *   DM1    50 190.76 **  

M 60-64 10 263.33     DM2  49 825.05     

M 65-69   36 324.10 **  DMH  10 671.22     

M 75-79 -32 442.91 *   EPI  26 696.98     

M 80-84  -73 229.06 *** GLA    6 765.27     

M > 84  -84 675.23 *** HIV  159 791.18 **  

F < 35  69 377.51 *   HOR  19 413.08     

F 35-39 64 223.74     CHO   -2 762.74     

F 40-44  67 605.53 *   KVS     21 128.88 ***

F 45-49 46 653.92     NPP    54 173.82 *   

F 50-54 37 078.25     ONK   404 776.71 ***

F 55-59 17 439.86     PAR   37 589.92     

F 60-64 30 840.32     PSY    -6 675.51     

F 65-69 12 827.19     REU   26 097.54     

F 70-74  -4 597.29     THY    22 950.07 *   

F 75-79   -35 429.49 **  TNF   190 283.95 ***

F 80-84   -58 557.83 *** TRA     85 510.73 ***

F > 84 -103 452.13 ***

N

R2

Model 4 /outliers

                         10 869

                         0.6760


