
MASTER THESIS

Bc. Zuzana Šimečková

Entity Relationship Extraction

Institute of Formal and Applied Linguistics

Supervisor of the master thesis: RNDr. Milan Straka, Ph.D.
Study programme: Computer Science

Study branch: Artificial Intelligence

Prague 2020

This is not a part of the electronic version of the thesis, do not scan!

I declare that I carried out this master thesis independently, and only with the
cited sources, literature and other professional sources. It has not been used to
obtain another or the same degree.
I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Sb., the Copyright Act, as amended, in particular the fact that the
Charles University has the right to conclude a license agreement on the use of this
work as a school work pursuant to Section 60 subsection 1 of the Copyright Act.

In date .
Author’s signature

i

I would like to thank Profinit EU s.r.o. that they allowed me to create this thesis
as part of their Big Data department, and Ing. Marek Sušický, the head of the
department, for supervision. I would also like to thank my supervisor RNDr.
Milan Straka, Ph.D. for his guidance and expertise.

ii

Title: Entity Relationship Extraction

Author: Bc. Zuzana Šimečková

Institute: Institute of Formal and Applied Linguistics

Supervisor: RNDr. Milan Straka, Ph.D., Institute of Formal and Applied Lin-
guistics

Abstract: Relationship extraction is the task of extracting semantic relationships
between entities from a text. We create a Czech Relationship Extraction Dataset
(CERED) using distant supervision on Wikidata and Czech Wikipedia. We detail
the methodology we used and the pitfalls we encountered. Then we use CERED
to fine-tune a neural network model for relationship extraction. We base our
model on BERT – a linguistic model pre-trained on extensive unlabeled data.
We demonstrate that our model performs well on existing English relationship
datasets (Semeval 2010 Task 8, TACRED) and report the results we achieved on
CERED.

Keywords: entities, named entities, entity relationship, entity relationship extrac-
tion, Czech, BERT

iii

Contents

Introduction 3

1 Background 4
1.1 Terminology . 4
1.2 Relationship Extraction . 5
1.3 Czech Language . 5

1.3.1 Inflexion . 5
1.3.2 Word Order . 7

I Datasets 8

2 Existing Datasets 9
2.1 SEMEVAL 2010 Task 8 Dataset 9
2.2 TACRED dataset . 11
2.3 Riedel NYT dataset . 12

3 CERED 14
3.1 Overview . 14
3.2 Data Sources . 14

3.2.1 Constraints and Requirements 14
3.2.2 Czech Wikipedia . 15
3.2.3 Wikidata . 15

3.3 Analysis . 16
3.3.1 Dataflow . 17
3.3.2 Entity Matching . 19
3.3.3 Wikilink Mentions . 24
3.3.4 Relation Matching . 24
3.3.5 Relation Inventory . 25
3.3.6 Result Evaluation . 26

3.4 Used Technologies . 27
3.4.1 Python . 27
3.4.2 Spark . 27
3.4.3 MorphoDiTa . 29
3.4.4 Streamlit . 29

3.5 Implementation . 29
3.5.1 Wikidata Preprocessing 29
3.5.2 Wikitext Parsing . 30
3.5.3 Entity Matching . 31
3.5.4 Relation Matching . 32
3.5.5 Characteristics of the Generated Dataset 32

3.6 CERED Versions . 33
3.6.1 CERED0 . 33
3.6.2 CERED1 . 34
3.6.3 CERED2 . 34

1

3.6.4 CERED3 . 34
3.6.5 CERED4 . 34
3.6.6 Other Considered Variations 35

II Training 38

4 Previous Work on Relationship Extraction 39
4.1 Deep NLP Models . 39

4.1.1 The Transformer Architecture 39
4.1.2 Pre-training . 40
4.1.3 BERT . 41

4.2 Metrics . 42
4.2.1 Binary Classification . 42
4.2.2 Multiclass Classification 44
4.2.3 Relationship Extraction Metrics 45

5 Relationship Extraction on CERED 47
5.1 Model . 47
5.2 Results . 47

5.2.1 S10T8 . 48
5.2.2 TACRED . 48
5.2.3 Riedel NYT . 48
5.2.4 CERED . 49

Conclusion 50
5.3 Future work . 50

5.3.1 Other Languages . 50
5.3.2 Wikidata Ontology . 50

Bibliography 51

A Attachments 54
A.1 Electronic Attachment . 54

2

Introduction
Relationship extraction is the task of extracting semantic relationships from a
text. It is closely connected to named entity recognition, the task of tagging
entities in text with their corresponding type, and entity linking, the task of
disambiguating named entities to a knowledge base. If all these task are used
together, we can, for example, construct a knowledge database automatically
from text.

For English, multiple attempts were made to solve or at least advance in
relationship extraction, varying both in the exact formulation of the task and in
used technologies.

In this thesis, we focus on relationship extraction in the Czech language.
Our goal is to construct a neural network model that extracts relationships from
sentences with labelled subject and object entities.

In modern machine learning, the quality of datasets plays a key role. In
the first part of this thesis, we address the absence of a Czech dataset for rela-
tionship extraction. We generate our dataset by aligning Wikidata1 with Czech
Wikipedia.2 This type of aligning is referred to as distant supervision.

Given the absence of a dataset, we also deal with an absence of a baseline
our model could be compared to. We evaluate the performance of the proposed
model architecture on some well known English datasets to show that performs
reasonably well.

Thesis Organization
This thesis is split into two parts. Before we dive into the first part, we provide
background information that is relevant to this thesis, such as more details on
relationship extraction, related terminology and further motivation. We also
briefly introduce the Czech language.

The first part focuses on datasets. First, we present some existing supervised
and unsupervised datasets. Second, we propose methodology for generating a
Czech relationship extraction dataset via distant supervision. Using the method-
ology we elaborate on the implementation process and on the generated dataset
– the Czech Relationship Extraction Dataset (CERED).

In the second part, we overview some concepts, which are used in modern
natural language processing models. Then we describe the architecture of our
model and compare its performance with reported results on popular English
relationship extraction datasets. We also report our results on CERED.

1https://www.wikidata.org/wiki/
2https://cs.wikipedia.org/wiki/

3

https://www.wikidata.org/wiki/
https://cs.wikipedia.org/wiki/

1. Background
This thesis is split into two parts that focus on different aspects of relationship
extraction in the Czech language. In this chapter, we provide a glossary of some
NLP and relation extraction terms, we elaborate on the task itself, and we include
an introduction to the Czech language for non-Czech readers.

1.1 Terminology
Terminology in NLP subtasks is often non-standardized or not exact. We attempt
to introduce the most important concepts for our work as exactly as possible while
respecting the terms that seem to be already established.

Relation in this context is an abstraction of a semantic relation, for example,
a father relation. A relation has a type (father), it is binary (between a son
and the father) and oriented (the father and the son are not interchangeable),
and describes the relationship between a subject (the son) and an object (the
father). We will use the term relation as an equivalent for its type and the term
relationship for an instance of the relation.

Subject and Object. The subject is the first argument of a relation, and
the object is the second. In the sentence “Albus Severus is Harry Potter’s son.”
a relation of type son is captured, the subject is Harry and the object is Albus
Severus. The reasoning for this choice of direction is as follows: suppose we
are gathering information about Harry, then we would probably have both the
information that his son is Albus Severus and that his father is James. So we
are gathering information about the subject (Harry Potter), even though in most
sentences Harry is likely to be the grammatical object: “James is Harry’s father.”
We will use the notation relation(subject, object): son(Harry Potter, Albus
Severus Potter).

Both the subject and the object can generally be any word or sequence of
words that represent concepts that can form relations. In some cases, subjects,
objects, or both are limited to entities or named entities.

Named entity is a real-world object, such as a person, location, organization,
and products, that can be denoted with a proper name. Named entities can be
viewed as instances (e.g., New York City is an instance of a city) of some concept
– class. Sometimes, numeric data is considered in this category as well (for
example, by Named Entity Recognition tools). An entity is a named entity
whose proper name is unknown or unimportant but still is an instance. (The
word book can represent an abstract concept - a class - as well as an entity.)

Relation inventory is the set of relations that are considered valid for a
given dataset or model.

Positive relation mention is a sentence that captures a relationship: a
relation together with a tagged subject and object. We will omit the word positive
unless we want to emphasize the fact.

Negative mention is close to a (positive) relation mention in the sense that
it is a sentence with tagged subject and object, but the relation type is one of
the following types:

4

• other - human annotator would classify a relation, that is not in the
inventory.

• no relation - in this case, human annotators should feel an absence of a
relationship between the subject and the object.

No relation comes with difficulties. Since there is no semantic relationship
between subject and object, it makes it harder to choose subject-object pairs.
It is probably desirable to have subject-object pairs that could be related in a
different sentence.

1.2 Relationship Extraction
The relationship extraction task concentrates on the prediction of relationships.
In the typical setup, the goal is to predict a relation type based on a sentence with
two tagged entities. Variations of this exist, for example, in real-life applications,
the goal might be to output a set of relationships based on a longer piece of text
(and therefore the extractor would have several sentences mentioning the same
entities).

Since the input for a relationship extraction model should contain tagged
entities, a pipeline of an entity tagging tool and relationship extraction model
would be necessary to perform relationship extraction on real data.

We are aware of two sources of motivation for relationship extraction. First, it
can be an alternative to a summarization tool. Therefore it could be used in situ-
ations when people are required to read long texts in a short amount of time. In
the second application, the extractor could convert texts into structured data and
therefore build a graph of entities and their relations. For both applications, an
entity linking tool would be beneficial (such a tool disambiguates named entities
to a knowledge base) to eliminate the confusion of similarly named entities.

Since many applications are likely to benefit from entity disambiguation, a
pipeline of a named entity recognizer, an entity linker and finally a relationship
extraction would potentially be useful.

1.3 Czech Language
One of the objectives of this thesis is to work with the Czech language. Therefore
we find it useful to make some notes on Czech (for non-Czech speaking readers).
Czech is a Slavic language with rich morphology and relatively free word order.
Most of the Czech morphology can be treated with a morphological analyzer.
Still, it might be useful to have a better understanding of the language we are
working with.

1.3.1 Inflexion
In Czech, nouns, adjectives, pronouns and numerals are declined. The declination
expresses (not necessarily unambiguously) one of seven cases and a number (sin-
gular or plural). Any inflected word in Czech has grammatical gender. For words
that have natural gender, those two genders nearly always align: “žena” (woman)

5

(a) Declension of “př́ıčný” (diagonal)

(b) Declension of “ulice” (street)

Figure 1.1: Examples of czech declension, taken from Wiktionary.

is feminine and “muž” (man) is masculine. The inflexion of each declinable word
follows a pattern. This all means that a single word can have relatively many
different forms.

Verbs are conjugated, the conjugation expresses person, number, tense, voice,
mode and others. Verbs follow one of 14 patterns. An average Czech either
finds the theory about Czech verbs and tenses confusing or is even unaware of
the existence of the verb patterns. That likely contributes to common use of
incorrect forms of verbs even in the official language.

An important aspect of declension for us is agreement. In English, subject
and verb agree (limited just to the third person). In Czech, subject and verb also
agree, but there also needs to be an agreement in noun phrases.

We include an example to help grasp these concepts to readers who do not
speak any inflexive language. In Figure 1.1 words “př́ıčný” (diagonal) and “ulice”

6

(street) are declined, the noun phrase “Př́ıčná ulice” is the Czech equivalent of
the Diagon Alley. The lexeme sizes are 11 and 7, so combinatorically, the noun
phrase could have 77 forms. As we explained, in Czech, there is an agreement in
noun phrases, and only 9 different forms of the noun phrase “Př́ıčná ulice” are
valid.

1.3.2 Word Order
Unlike in English, the sentence structure is relatively relaxed in Czech. The basic
sentence structure is of SVO (subject verb object) type, but even when the word
order is entirely different, the sentence might still be understandable thanks to
the inflected forms of words. At the same time, the word order is not arbitrary;
some orderings of words do not form a valid sentence. Those that are valid can
carry a considerably different message (with a different emotion or a different
emphasis).

The position of attributes tends to be mostly fixed. Some attributes are
prepositive, some postpositive, but most of them stay at the same position (within
the noun phrase) unless some enumeration is used. If we return to the “Př́ıčná
ulice” example, we are not able to recollect a sentence, where the reversed order
is used.

7

Part I

Datasets

8

2. Existing Datasets
In this chapter, we overview three well-known datasets related to Entity Rela-
tionship Extraction. We start with supervised datasets (SEMEVAL 2010 task 8
and TACRED), then we focus on distant supervision.

2.1 SEMEVAL 2010 Task 8 Dataset
The SemEval-2010 Task 8 dataset (S10T8) was introduced in SemEval-2010 Task
8: Multi-Way Classification of Semantic Relations Between Pairs of Nominals
[Hendrickx et al., 2010]. We summarize how S10T8 was created and present
additional information from the article, so that we can compare it later with
other datasets.

The authors started by choosing an inventory of semantic relations. They
aimed for such a set of relations that is exhaustive (enables the description of
relations between any pair of nominals) and mutually exclusive (given the context
and the pair of nominals, only one relation should be selectable). Chosen relations
with descriptions and examples are listed in Table 2.1.

They decided to accept as relation arguments any noun phrases with common-
noun heads, not just for example named entities mentioning: “Named entities are
a specific category of nominal expressions best dealt with using techniques which
do not apply to common nouns.” They restricted noun phrases to single words
with the exception to lexicalized terms (such as science fiction).

The annotation process consisted of three rounds. In the first round, authors
manually collected around 1 200 sentences for each relation through pattern-based
Web search (with at least a hundred patterns per relation). This way, they
obtained around 1 200 sentences for each relation. In the second round, each
sentence was annotated by two independent annotators. In the third round,
disagreements were resolved, and the dataset was finalized. Every sentence was
classified either as a true relation mention or was a near-miss. The near-miss
sentences were classified as other, or were removed.

The relations inventory constains nine positive relations and one positive.
The authors decided to include the directionality into the relation a therefore the
inventory size is 9 · 2 + 1 in total.

The dataset contains 10 717 relation mentions. For the original competition,
teams were given three training dataset of sizes 1 000 (TD1), 2 000 (TD2), 4 000
(TD3), and 8 000 (TD4). Since there was a notable gain TD3 →TD4, the authors
concluded that even larger dataset might be helpful to increase the performance
of models. On the topic, the creators have written:

.. that is so much easier said than done: it took the organizers
well in excess of 1 000 person-hours to pin down the problem, hone
the guidelines and relation definitions, construct sufficient amounts of
trustworthy training data, and run the task.

9

Table 2.1: S10T8 summary. List of relations, their official descriptions, a random
relation mention and both the relative and the absolute count of mentions when
the directionality is ignored.

Cause-Effect
An event or object leads to an effect.
Example: The burst has been caused by water hammer pressure.

12.4%
(1 331)

Instrument-Agency
An agent uses an instrument.
Example: The author of a keygen uses a disassembler to look at the raw as-
sembly code.

6.2%
(660)

Product-Producer
A producer causes a product to exist.
Example: The factory’s products have included flower pots, Finnish rooster-
whistles, pans, trays, tea pots, ash trays and air moisturisers.

8.8%
(948)

Content-Container
An object is physically stored in a delineated area of space.
Example: This cut blue and white striped cotton dress with red bands on the
bodice was in a trunk of vintage Barbie clothing.

6.8%
(732)

Entity-Origin
An entity is coming or is derived from an origin (e.g., position or material).
Example: The avalanches originated in an extensive mass of rock that had
previously been hydrothermally altered in large part to clay.

9.1%
(974)

Entity-Destination
An entity is moving towards a destination.
Example: This book has transported readers into ancient times.

10.6%
(1 137)

Component-Whole
An object is a component of a larger whole.
Example: The system as described above has its greatest application in an
arrayed configuration of antenna elements.

11.7%
(1 253)

Member-Collection
A member forms a nonfunctional part of a collection
Example: The student association is the voice of the undergraduate student
population of the State University of New York at Buffalo.

8.6%
(923)

Message-Topic
A message, written or spoken, is about a topic.
Example: Cieply’s story makes a compelling point about modern-day studio
economics.

8.4%
(895)

Other

Example: The child was carefully wrapped and bound into the cradle by
means of a cord.

17.4%
(1 864)

10

2.2 TACRED dataset
The TAC Relation Extraction Dataset was introduced in [Zhang et al., 2017b].
TACRED is a supervised dataset obtained via crowdsourcing. It contains about
100 000 examples, which makes it about ten times bigger than S10T8 dataset.

The authors are relatively brief about the data collection process:

We create TACRED based on query entities and annotated system
responses in the yearly TAC KBP evaluations. ... We make use of
Mechanical Turk to annotate each sentence in the source corpus that
contains one of these query entities. For each sentence, we ask crowd
workers to annotate both the subject and object entity spans and the
relation types.

TACRED relation inventory captures 41 relations with the subject being an
organization or a person; plus a negative relation. Objects are of the following
types: cause of death, city, country, criminal charge, date, duration, ideology, lo-
cation, misc (used for alternative name relation and no relation only), nation-
ality, number, organization, person, religion, state or province, title and URL.
The choice of subjects and objects it therefore very different from the S10T8
dataset.

TACRED was designed to be highly unbalanced. 79.5% of mentions represents
the no relation relation. This ratio of negative relation should be closer to real-
world text and supposedly should help avoid false-positive predictions. However,
even if we look only at positive relations, there are vast differences in frequency:
the top six relations make up half the dataset and the bottom six less than 2%.
In absolute numbers, the least common ord:dissolved relation has only 33
mentions, and the median is only 286 mentions.

Table 2.2: TACRED summary. List of relations, a random example, and both
the relative and the absolute count. The table is restricted to org:* relations.

no relation
Example: “ One step at a time , ” said Con Edison spokesman Chris Olert
in Sunday editions of The Daily News .

79.5%
(84 491)

org:alternate names
Example: The ARMM was established as a result of the peace agree-
ment between the government and the Moro National Liberation Front -LRB-
MNLF -RRB- in 1996 .

1.3%
(1 359)

org:city of headquarters
Example: Once completed , the cuts will leave the Irvine , California-based
Option One subsidiary with about 1,400 employees .

0.5%
(573)

org:country of headquarters
Example: The Review based its report on a new survey conducted by the
International Agency for Research on Cancer in Lyon , France .

0.7%
(753)

org:dissolved
Example: News Corp. sold its satellite television service DirecTV in 2008
to Liberty Media .

0.0%
(33)

org:founded
Example: New York-based Zirh was founded in 1995 and makes products
using natural oils and extracts .

0.2%
(166)

11

org:founded by
Example: The Jerusalem Foundation , a charity founded by Kollek 40
years ago , said he died of natural causes Tuesday morning .

0.3%
(268)

org:member of
Example: Lyons and the Red Sox say they are n’t aware of any other
Major League Baseball team with such an arrangement .

0.2%
(171)

org:members
Example: The NFL refused to abandon the city , and the Saints won the
NFC South in 2006 , their first season with Brees and Payton .

0.3%
(286)

org:number of employees/members
Example: Established in September 1969 , the organization now has 57
member states worldwide .

0.1%
(121)

org:parents
Example: The initial offering of AIA raised $ 178 billion for AIG , while the
sale of ALICO to MetLife reaped about $ 155 billion .

0.4%
(444)

org:political/religious affiliation
Example: Manila signed a peace treaty with the MNLF in 1996 , ending a
decades-old separatist campaign in return for limited Muslim self-rule .

0.1%
(125)

org:shareholders
Example: Stop the NAACP and Al Sharpton ’s National Action Network
from committing this disgrace in our community .

0.1%
(144)

org:stateorprovince of headquarters
Example: Romney ’s investments are in Novo Nordisk , a Danish company ,
and Millipore Corp. , based in Billerica , Mass. .

0.3%
(350)

org:subsidiaries
Example: Moody ’s said it has growing concerns about the control wielded
by Johnson at Fidelity ’s parent company , FMR LLC .

0.4%
(453)

org:top members/employees
Example: Frank Gut , the chief financial officer , previously oversaw the
Swiss brokerage operations at Bank Julius Baer in Zurich .

2.6%
(2 770)

org:website
Example: Swiss Bankers Association : http://www.swissbanking.org

0.2%
(223)

2.3 Riedel NYT dataset
The previous two datasets were obtained through a tedious human labour – hu-
man annotators went through texts and manually annotated the data. This
process is slow and expensive, which explains the relatively small data volume of
the datasets. In this section, we introduce a dataset presented in [Riedel et al.,
2010] that was created without the need for any additional manual annotation.

This dataset was generated with the distant supervision approach. This ap-
proach is based on aligning structured data (knowledge base) with text, i.e. auto-
matically tagging mentions of the structured data in text. In distant supervision,
we usually expect that if there are two entity mentions in a sentence that are
related, then the sentence expresses their relationship. The authors acknowledge
that this assumption is often violated and they propose a methodology that at-
tempts to predict whether the assumption is violated in a sentence. Using this
methodology, they generated a dataset from the The New York Times Annotated
Corpus [Consortium and Company, 2008] and Freebase [Bollacker et al., 2008].

12

Table 2.3: Random 10 relations from the Riedel NYT dataset. For each rela-
tion the name, the relative and the absolute number of mentions and a random
mention is shown.

/location/location/contains
Example: But John Traugott , 68 , a hospital chaplain in Rockaway Park ,
Queens hinted at some of Chinatown ’s problems .

8.6%
(58 625)

/people/person/nationality
Example: We were unable to reach agreement , ” Foreign Minister
Frank-Walter Steinmeier of Germany announced tersely to reporters .

1.5%
(10 464)

/people/person/place lived
Example: Camane -LRB- Emily Blunt -RRB- runs around Rome putting up
signs declaring that Octavius is Julius Caesar ’s rightful heir .

1.2%
(8 275)

/business/company/founders
Example: Nick Grouf , president and chief executive at Spot Runner in Los
Angeles , is scheduled to announce the investments today .

0.1%
(999)

/people/deceased person/place of death
Example: Marie Antoinette finally did arrive in Paris , at Christian Dior
, where the designer John Galliano proclaimed her his platinum muse .

0.3%
(2 190)

/business/person/company
Example: Christopher Bailey , with his light-handed take on Burberry ’s
heritage , could add some military backbone and useful outerwear .

0.9%
(6 455)

/location/us county/county seat
Example: Mr. Perhacs was taken to Jersey City Medical Center , where he
died , said Edward J. De Fazio , the Hudson County prosecutor .

0.0%
(125)

/business/company/place founded
Example: Next month in Paris , Ms. Tilbury will direct makeup at the spring
fashion shows of Lanvin , Chloé and Alexander McQueen .

0.1%
(537)

/people/person/place of birth
Example: Preston Robert Tisch was born in the Bensonhurst section of
Brooklyn on April 29 , 1926 , to parents who came from Russia .

0.5%
(3 603)

/film/film/featured film locations
Example: Half Nelson , ” a new independent film about an idealistic young
Brooklyn teacher , takes this claim at face value . ”

0.0%
(19)

We will refer to this dataset as Riedel NYT.
Relation inventory for the usual training part of the dataset contains 58 rela-

tions. The best represented is the NA relation with over 80%. The representation
of relations varies between the train and test set. For example, two relations are
present only in the test set.

13

3. CERED
In the previous chapter, we concluded that creating a relationship extraction
dataset manually is expensive. We introduced Riedel NYT showing that auto-
matic generation of relationship extraction datasets is possible. In this chapter
we describe our process of generating Czech Relationship Extraction Dataset
(CERED). We also discuss various decisions that we made during this process
and their impacts.

3.1 Overview
The objective is to use distant supervision to create a relationship extraction
dataset for the Czech language. This section is a brief summary for easier orien-
tation in this chapter. Each of these paragraphs is a teaser for one section of this
chapter.

First we research available knowledge bases and Czech text corpora to de-
termine which ones will best suit our purpose. We chose Wikimedia projects
Wikidata and Czech Wikipedia.

Next we analyze how we will find mentions of Wikidata relations in Czech
Wikipedia. We sketch out dataflow diagrams and we discuss all the different
complex aspects of this task.

We continue by choosing technologies that we use. Aware of the volume and
other characteristics of chosen data, we choose Python as the main programming
language, Spark as a way to speed up the computations and MorphoDita to deal
with the specifics of the Czech language.

The questions and options that rose from the analysis get at least partially
answered and decided during implementation. We tested different configurations
and went through the data to determine which works the best. As a result, we
generated CERED0.

The generated dataset has a huge relation inventory and other properties that
would be impractical for training. We describe variations of the generated dataset
CERED1-4, which were designed to be more practical.

3.2 Data Sources
To be able to perform distant supervision we need to find suitable data – Czech
text corpus and a knowledge base (Figure 3.1). In the first subsection, we will
explain the requirements and constraints we have on such data and present our
options. In the next two subsections, we will provide more information on the
selected ones.

3.2.1 Constraints and Requirements
The main constraint is quite straightforward, there has to be a nontrivial shared
set of entities and relations mentioned in the text and stored in the knowledge
base. We expect fact-based text to be more suitable then fiction literature. There-
fore we prefer encyclopedic or journalistic genre. One option is to focus on some

14

Text corpus Knowledge base

Relation mentions

Figure 3.1: Distant supervision diagram

subset of Czech National Corpus,1 for example SYN2013PUB, SYN2009PUB,
and SYN2009PUB are corpora of written journalism. The other option is to lean
in the direction of encyclopedic text with Czech Wikipedia.

To the best of our knowledge, our options for knowledge base are limited to
Wikidata or Google Knowledge graph.2

We decided to use Czech Wikipedia and Wikidata, mostly because the in-
tersection of information expressed in text data and in structured data seems
promising because they are build on each other. Another advantage is the multi-
lingualism of Wikimedia projects, and therefore the transferability of this work is
higher. Moreover, the Wikimedia projects are downloadable, which makes them
easier to work with.

3.2.2 Czech Wikipedia
Wikipedia is a multilingual online encyclopedia created and maintained as an
open collaboration project by a community of volunteers as defined in Wikipedia
contributors [2020]. From our point of view, Wikipedia is a corpus of text with
tagged topics of articles and some entity mentions. Czech Wikipedia contains
approximately 440 000 articles and ranks top 30 across all the different language
editions of Wikipedia.3

A dump of Czech Wikipedia is about 1,6GB and 770MB when compressed.

3.2.3 Wikidata
Wikidata is a knowledge base which acts as a central storage of the structured
data of Wikimedia projects. Just like Wikipedia, this project is freely available
and edited by users (and bots). It provides the option to query the database
online (for small enough queries), but it is also possible to download the database
in standard formats.

The database focuses on items, which represent objects, entities, concepts,
etc. The first data collected in Wikidata were links to the multilingual versions
of Wikipedia articles on the same topic – on the same Wikidata item. Each item
is assigned an identifier, prefix Q and a unique number, referred to as QID. A
label together with a description of an item should serve as a human readable
identifier. Labels, descriptions and optional aliases are language dependent.

1https://www.korpus.cz/
2https://developers.google.com/knowledge-graph
3As of March 2020 according to https://en.wikipedia.org/wiki/List_of_Wikipedias

15

https://www.korpus.cz/
https://developers.google.com/knowledge-graph
https://en.wikipedia.org/wiki/List_of_Wikipedias

Properties, another big concept of Wikidata, can be thought of as categories
of items (mother P25 implies a category of all mothers) or as relations between
items (Ron Weasley Q173998 has a mother P25 Molly Weasley Q3255012). Each
property has its PID, an identifier consisting of a prefix P and a unique number,
and a data type for a value it can be paired with (such as an item, string, url,
number or media file).

Information about any item is recorded in statements. Statement is a key-
value pair of a property and a value of prescribed data type. For example, for
Ron Weasley Q173998 there are six statements about his siblings:

• sibling P3373 : Ginny Weasley Q187923,

• sibling P3373 : Fred Weasley Q13359612,

• sibling P3373 : George Weasley Q13359613 and so on.

Wikidata project contains over 80 000 000 items, which raises requirements on
technological resources required to work efficiently with such data. JSON dump
of Wikidata takes 110GB of disk space or 37GB if bzip2 compressed.

3.3 Analysis
The process of CERED creation is mostly an attempt to execute the first two
parts of the pipeline we mention in Section 1.2. To the best of our knowledge,
there is no suitable entity linking tool for Czech. There are tools for named
entity recognition that we could theoretically use to our advantage, if we decided
to focus on named entities only.

Therefore, we need to find a way to get to similar results as the first stages of
the pipeline. We do not expect that our CERED generator will be as powerful
as the respective dedicated tools would be. We do not try to create general
entity recognition and linking tools – on the contrary, we exploit all suitable
extra information that chosen Wikimedia projects provide.

There are several aspects that we need to think through. We introduce them
in the following list for better orientation, and then elaborate every one in more
detail in dedicated subsection.

• Dataflow – we chose Wikidata and Czech Wikipedia, but we did not discuss
how to connect them and what exactly should be the outcome so that we
can proceed to locating mentions.

• Entity Matching – suppose we collected a piece of text together with a
set of entities that could be mentioned in the text. The process of entity
matching attempts to mark words in the text that mention an entity.

• Wikilink Mentions – Wikilinks are (mostly) human labeled entity men-
tions. Utilizing them is the closest we can get to a supervised dataset
without actually supervising the dataset.

• Relation Matching – after entities are matched in the Wikipedia texts,
relationships are extracted from the Wikidata dump and we use distant
supervision assumption to locate relation mentions in the texts.

16

• Relation Inventory – we generated CERED, but the relation inventory is
overly diverse. Moreover, the dataset is extremely unbalanced – the number
of mentions per relation varies – and we lack negative relation.

• Result Evaluation – every time we generate CERED during development,
we need to evaluate its quality. We propose methods for this evaluation.

3.3.1 Dataflow
We start the whole process of creating our dataset with two files. The first file is
a Czech Wikipedia dump. It is a collection of articles where each article has its
title, id, and text. And the other file is a Wikidata dump.

The simplest way of processing those files would be to process them separately
and thus obtaining sentences on one side and relationships (a relation type with
two items) on the other. This approach comes with a clear disadvantage. We
would lose any additional information about the sentences that could be poten-
tially useful (for example article title might be helpful to determine which items
are mentioned in the sentence).

To prevent the loss of information, we could precompute additional data for
each article and attach it to each sentence (article title, all Wikilinks in the article,
etc.), risking a massive increase in required capacity to work with such data. On
a similar note, we could process Wikidata to store item names (labels and aliases)
for each relationship, worsening the situation even further.

We decided to update the dataflow to address those issues. We preprocess
the Wikidata dump to contain only the data we use. We refer to this processed
version of Wikidata as custom Wikidata. An item is kept only if it has a Czech
name and we significantly reduce its statements: we keep the title of its Czech
Wikipedia article and create a list of (QID,PID,QID) triples, QPQ, representing
statements that contain information about relations between this item and other
items. This way, we have all the necessary information – article title to be able
to connect an article to an item, names for each item to be able to find mentions
of items, and finally QPQ triples to connect relations and sentences. Moreover,
custom Wikidata size is closer to traditional RAM size. Therefore we could
for example load item names into memory, which comes in handy during the
implementation.

One approach to finding item mentions in text could be called uninformed
(Figure 3.2a). We could assume that any item can be mentioned in any sentence.
This approach has two issues: the computation would likely take quite some time,
but mainly we expect a huge amount of ambiguous mentions. An example of this
ambiguity, which we see as problematic, might be children named after their
parents. In this case, not only that the entities might get confused, but also if we
then assign the relation, we might easily confuse a sentence mentioning a spouse
relation for a parent relation, which, unfortunately, is extremely challenging to
solve.

On the other side, we can use the extra information that Wikimedia projects
provide and opt for a more informed approach. A diagram of this approach
is captured in Figure 3.2b. The topic of most Czech Wikipedia articles is a
Wikidata item, therefore this item is nearly certainly mentioned in the article.
Some Wikidata statements were based on relevant articles and thus it seems

17

Czech Wikipedia Wikidata

Relation mentions

Relations
(QPQ & names)Sentences

(a) Uninformed approach

Czech Wikipedia Wikidata

Relation mentions

Relations
(QPQ & names)Articles Candidate items

Sentences with
item mentions

wbc entity usage

wbc candidates

(b) Informed approach

Figure 3.2: Diagrams contrasting the informed and uninformed approach of lo-
cating relation mentions in text.

plausible to expect that items related to the main item of an article are mentioned
in it. We, therefore, decided to look only for a tiny subset of all Wikidata items
in each article, the so called candidate items, which consist of the article item
and all times connected to it by a statement.

Czech Wikipedia maintains a wbc_entity_usage table, which contains infor-
mation about which article uses which item. If we use this table, we are able to
obtain a list of items, that should be mentioned in an article, let us call this list
a wbc candidates. A wbc candidate is at the same time a candidate item.

We might consider adding even a second level of relatives (items related to
items that are related to the main item), but the branching factor might be
relatively high and cause unwanted ambiguity. Consider an instance item like a
specific country, all countries would be second level relatives and thus candidate
items. Since countries tend to be of a certain type (kingdom, republic, state
etc.), there might be simply the type or some other more general name amongst

18

their names (United States of America Q30 are also known as America or United
States) and more countries might share this name.

So far we mostly discussed the advantages of the proposed informed approach,
mainly a hope for higher precision, specifically higher precision for item mentions.
We should elaborate on some disadvantages as well. We are not trying perform
fully do entity linking. In the end we will only use item mentions, if the following
condition holds: there are two entity mentions in one sentence and there exists
a QPQ that connects them. It is questionable whether we need an informed
approach to increase relation mention precision. The improbability that this
condition is fulfilled for false-positive item mentions might in fact be sufficient.

One more way to locate item mentions is through Wikilinks. A Wikilink links
a page to another page within the same-language Wikipedia. First additional
information this brings is simply the item mention (if the linked page or article
has its main item). We can also consider the textual part of the link to be
another name for the linked item. The quality and suitability of this name are
to be examined and if we find these names useful, they can be added to the item
names we use.

3.3.2 Entity Matching
We have text on one side, gathered candidate items on the other side and our
goal is to find occurrences of these items in the text. We call this process entity
matching and each found occurrence is an entity mention.

No matter how the matching is done, it seems always beneficial to start the
process with some text preprocessing. Quite a lot of changes need to happen
even if some seem like little details. We separate this preprocessing into a wiki
specific part, lexical analysis, and the last part is devoted to lexical analysis on
standalone noun phrases.

When we eventually proceed to entity matching, there is a wide spectrum of
complexity we might aim for. Bearing in mind that we are no trying to create a
strong sophisticated tool for entity recognition and linking., we describe some of
those levels of complexity and choose the right method for our use case.

Wikipedia parsing

Wikipedia parsing starts with an article in Wikitext and produces human-readable
plain text – a clean text. Note that we should keep track of positions of Wik-
ilinks from the Wikitext in the clean text.

Wikipedia is written in Wikitext (Wiki markup, Wikicode). This markup
provides all usual functionalities such as determining the layout or fonts, and
enables commonly-used concepts like lists, links, media file insertion, or tables,
and some more wiki specific concepts like infoboxes.

We plan on using one or even a combination of existing Wikitext parsers, since
each of them provides different functions.4 Therefore the parsing itself is not too
troublesome.

One problem that needs to be addressed is what should we consider a valid
text. For example, it is not clear how to work with tables. From one point of view,

4https://www.mediawiki.org/wiki/Alternative_parsers

19

https://www.mediawiki.org/wiki/Alternative_parsers

if we convert a table into an unstructured text, it will not be a regular text in
terms of sentence structure. From a different point of view, an unstructured text
obtained by converting a table still contains information that human readers will
likely decode. Moreover, tables and other structured data tend to contain a lot of
information. This will likely cause problems, because we want to concentrate on
sentence-like data. For example, pairs of persons and countries might be matched
from sport results tables. This kind of data might significantly damage the quality
of CERED.

The elimination of all Wikipedia content that is too structured or generally not
enough sentence-like, but at the same keeping as much as possible, is addressed
later in Subsection 3.5.2. That way we can see the consequences of the eliminated
and kept content.

Lexical Analysis

Keeping text (such as an article) in long sequences of characters is not the best
format for our purpose. Instead we need to parse those sequences into smaller
units, such as words and sentences. A tool that addresses such tasks is usually
called a tokenizer and a token is a term generalizing the term word. Often
words in text are the same as tokens, but “aren’t” in English and “mohu-li”
in Czech are likely considered one word but multiple tokens. On the contrary,
“M*A*S*H” or “email@email.com” might not be considered a word, but should
be considered exactly one token each. Naive tokenizer might just simply split on
non-alphanumeric characters,but for better performance, a more sophisticated
tool is needed.

Since we work with Czech, which is a language with rich morphology, we might
want to know non-inflexed form of a token, moreover we might want to assign
some unique idintifier to such form in case it has some homographs (words that
are spelled the same way). Such am identifier is called a lemma and a collection
of tokens that share the same lemma is called a lexeme. We outsource handling
text to a Czech tokenizer and tagger called MorphoDiTa [Straková et al., 2014],
that achieves state-of-the-art results for the Czech language. Using such a tool,
we can convert clean text into sentences made up of tokens and we even obtain
the lemma and lexeme of each token.

Lexical Analysis on Names

Tokenizers (and lemmatizers) are usually trained to perform well on sentences and
might be inaccurate on noun phrases when they stand alone, as entity names do.
If we were determined to tokenize them, a simple trick like constructing a sentence
with the name in it and tokenizing this sentence can partially solve this problem.
Such a sentence that would be grammatically correct and not semantically terrible
could be something like “This is /name/”, but realistically, this sentence was quite
likely not at all common in the training process of MorphoDiTa. Some foreign
words can be erroneous as well and keeping their original form might be the only
easy way around it.

20

Figure 3.3: First paragraph from Czech Wikipedia page about Lord Voldemort
Q176132, also known as “Tom Rojvol Raddle” (Tom Marvolo Riddle), “Volde-
mort” and “Pán zla” (Dark Lord). Highlighted words are not in their base forms.

Matching methods

Entity matching can be performed with various degrees of sophistication. We
provide a short overview of four such degrees. The degrees 1 and 2 do not
require any knowledge of the language they work with, while 3 and 4 are language
dependent. For simplicity, we assume that we are only looking for mentions in
one sentence at a time, unless written otherwise. We also include an example of
such matchings to demonstrate how successful we expect them to be.

1 String equality. This method is the easiest method of entity matching.
It is based on a simple substring check, which is later extended with additional
functionality. In more detail, for each entity, we have multiple name variants
and for each of those names, we check whether the name is a subsequence of the
sentence tokens.

We also need to consider the letter cases. Named entities should have fixed
letter cases and no additional processing is needed in most cases. In other cases,
an established name for a named entity might be written with the lowercased first
letter – Weasley family Q716534 has Czech names “Weasleyovi” (the Weasleys)
and also “rodina Weasleyových” (Weasley family). If we consider entities that are
commonly written with lower case, the sentence now needs to be preprocessed so
that for example the first letter is not capital. Moreover, there is no guarantee that
common names will be lowercased in Wikidata. To conclude, nearly nothing can
be assumed about the case of letters, and therefore one of the following solutions
needs to be implemented: we can convert everything to one chosen letter case or
we need to perform some more sophisticated attempts at predicting, which words
can have more versions in terms of letter cases.

Another problem that we encounter is how to properly handle spaces. We list
some troublesome examples and accept the fact that not everything can be done
perfectly. J. K. Rowling has J.K.Rownling as one of Wikidata names, confirming
that both versions might appear in written text, but not all entities with similar
name type have all space-variants listed in names. We, therefore, assume that
spacing around the “-” character might vary.

It is also not clear if word order in entity names is fixed (or at least almost
always fixed). Even a simple reversion in name will affect the performance of this
method (J. K. Rowling and Rowling, J. K.).

The greatest weakness of this method is its inability to recognize entities if
their name is inflected. To emphasize how many words are not equal to their
lemma in Czech text, we colored them in a sample text presented in Figure 3.3.
We elaborated on Czech language in Section 1.3, but just for simplicity – in
English the verb “to be” has many different forms (am, are, were, was, would and

21

so on), and in Czech all nouns and verbs behave like this, quite often with many
more forms.

To illustrate the effect of the described method, Figure 3.4 displays the re-
sulting entity mentions on a sample text.

(a) Uninformed – any entity can be matched

(b) Informed – only candidate entities are matched

Figure 3.4: Results of entity matching using string equality (uncased) on the first
paragraph from Czech Wikipedia page about Lord Voldemort Q176132. Dots
and numbers represent found mentions on a single word, lines represent found
mentions of noun phrases (e.g. one candidate entity matches “Tom”, 5 entities
match “Tom” in total, and one entity matches the whole “Tom Rojvol Raddle”).

2 String similarity (approximate string matching). String similarity
is still based on simple string manipulation, no vocabulary or other language
knowledge is necessary. The goal is to find entity mention, even if its name is a
little altered in the sentence. This alternation can include all of the issues listed
for the previous method – cases of letters, spacing, word order, and word forms,
but even better, it might help in cases that we did not anticipate.

There are many metrics describing string similarity. Some can cope better
with word order issues, some with word forms, some with spacing. We do not
test all of them for our usecase, but still find it useful to mention them, since in
other than the Czech language, some might work well.

First category of string similarity metric is based on edit distance. Leven-
shtein distance is the minimum number of edits (additions, deletions, and sub-
stitutions of a character) to get from one string to the other. As a metric the
ratio of Levenshtein distance and of the sum of the lengths of the strings can be
used. This metric, unsurprisingly, handles well the mentions that are close in the
amount of edits needed, so mentions with different inflection, spacing, or letter
casing will likely be considered a match.

Damerau–Levenshtein distance is very similar to the previous, but a trans-
position of two adjacent characters is also considered an edit. We might argue
that some Czech words tend to transpose the last characters in different word
forms and thus this metric could work better for those forms, but there might be
a higher risk of false positives.

Another category of metrics is based on tokens. The tokenization converts
both the sentence string and the name string into a sequence of tokens. If we
consider those sequences to be sets (S, N respectively), metrics that work with

22

sets can be utilized. For example, Jaccard index (intersection over union) is
computed as |S ∩ N |/|S ∪ N |. Any other set similarity measure can be used.

Set based metrics ignore the order of tokens and therefore could solve issues
with mentions in which the word order is not the same as in the name. On the
other side, an increase in false positives is to be expected, and some additional
post-processing is needed to determine which token in the sentence should be
considered a mention, if the token was used in the sentence multiple times.

3 Morphological analysis. Moving on from methods that are mostly un-
aware of the language they work with, we will finally use the morphological
analysis we mentioned earlier.

With lemmas of both the sentence and the name, we can use any metric from
the previous subsection on string similarity (joining the lemmas using a space if
the metric expects only two input strings).

Czech Wikipedia

Wikipedia
parsing

MorphoDiTa

Candidate items

Articles

id

title

clean text

wikilinks

candidate items

Sentences

id

clean text

lemmas & lexemes

wikilinks

candidate items

Matcher

Entity mentions

sentence id

sentence text

entity id

position

Figure 3.5: Matching with morphological analysis

If we decide to keep the entity names in their original form (lemmatization on
them can be error prone, as we already explained), we can try to use the correct
form of the tokens in the sentence. For each word in the sentence, we use its
lexeme to determine if (part of) a entity name matches the word.

Detailed diagram of matching entities using morphological analysis is shown in
Figure 3.5 and the obtained results on the sample text are captured in Figure 3.6.

4 Advanced concepts. Proper entity matching (either in named entity
recognition or entity linking) might be expected to recognize entity mention even
if the entity is not mentioned explicitly by its name. Pronouns should be assigned
an entity they represent (if they do) and other nouns as well. In languages like
Czech, where the subject of a sentence is often omitted, the entity mention is
even less obvious, but still present. Since the topic of this thesis is not entity
matching, we will not debate techniques to achieve this level of matching neither
will we implement them.

23

(a) Uninformed – any entity can be matched

(b) Informed – only candidate entities are matched

Figure 3.6: Results of entity matching using morphological analysis on the first
paragraph from Czech Wikipedia page about Lord Voldemort Q176132. Dots
and numbers represent found mentions on a single word, lines represent found
mentions of noun phrases (e.g. one candidate entity matches “Tom”, 15 entities
match “Tom” in total, and one entity matches the whole “Tom Rojvol Raddle”).

Conclusion

After looking at the results, we decided to use a simple metric based on mor-
phological analysis – a detailed description of the matching method CERED was
generated with is described in Subsection 3.5.3. We still find it useful to keep
this summarization of different string metrics as part of this thesis.

3.3.3 Wikilink Mentions
As we already mentioned, from our point of view, Wikilinks are entity mentions
created by Wikipedia editors. The text part of the link can in theory be any-
thing, providing us with some more advanced examples of entity linking that our
matching methods cannot perform.

Since this data is not fully supervised and the word supervised is overused
(semi-supervised, distant-supervised, etc.) we decided to call it silver, because
they are not of the optimal quality that is usually called gold, but they are the
best we can get.

3.3.4 Relation Matching
If a sentence contains two entity mentions that are related, chances are that the
sentence in fact does express their relationship and thus is a relation mention.
This concept is called distant supervision assumption and can be also formu-
lated in the following way: If two entities participate in a relation, all sentences
that mention these two entities express that relation. This assumption is com-
monly used, even though it is clearly not correct, because it is easy to use.

To evaluate, how often this assumption is violated, is labour-intensive, but
luckily is has already been performed. In Riedel et al. [2010], the distant su-
pervision assumption is compared to the express-at-least-once assumption,
which states that if two entities participate in a relation, at least one sentence
that mentions these two entities might express that relation.

24

The authors sampled 600 relation mentions from two corpora, both created by
distant supervision on Freebase (knowledge base commonly used before Wikidata
took over) and two text corpora - Wikipedia articles and the New York Times cor-
pus. These 600 samples represented three different relation types (nationality,
place of birth, and contains) and were sampled so that there were 100
samples of each type in each corpus. We include their results in Table 3.1. They
concluded that the distant supervision assumption holds more often in Wikipedia
because Wikipedia is a very specific type of text corpora, where articles are cen-
tered around entities. We believe that the reasoning can be extended with the
fact, that Freebase contained information from Wikipedia infoboxes, and those
infoboxes were created based on the textual information.

NYT Wikipedia
nationality 38% 20%
place of birth 35% 20%
contains 20% 10%

Table 3.1: Percentage of times a related pair of entities is mentioned in the same
sentence, but where the sentence does not express the corresponding relation.
Taken from Riedel et al. [2010].

For the authors the results signalized that a more sophisticated tool is needed,
instead of relying on the distant supervision assumption. We acknowledge that
such a tool is needed, but at the same time, we believe that in our case, where we
create CERED based on Wikipedia and Wikidata, the precision they estimated
is sufficient. We also assume, that Wikidata project is more suitable for this task
than was Freebase.

We want to mention, that we build CERED to easily fit into the modern deep
learning models and to be as simple as possible. Therefore, the main unit of text
we use is a sentence, which is intuitive, but it has one downfall – the resulting
relationship extractor cannot detect relations expressed over sentence boundaries.

3.3.5 Relation Inventory
In Chapter 2 three examples of relationship extraction datasets were introduced.
The creators of those datasets claim, that in the creation process, they first
decided on the relation inventory (relation types). Creating the relation inventory
seems to be the straightforward and rational approach, and we wanted to create
such inventory before actually implementing the CERED generator. However,
we stumbled upon the following issues.

Huge Wikidata Relation Inventory

Wikidata relation inventory (properties in Wikidata terminology) is an order
of magnitude larger compared to the traditional relationship extraction datasets
and handpicking our inventory is overwhelming. We even considered reducing the
size of this inventory by creating our own relations that would combine Wikidata
relations (parent would be a combination of mother and father relations).

25

Given the excessive number of Wikidata relation types, we decided to con-
siderably reduce them. However, to not omit the best-represented relations, we
constructed the relation inventory only after the creation of CERED.

Absence of a Negative Relation

Knowledge bases, in general, do not contain negative relations (relations that
could be easily mapped to the no relation or other relation), but for re-
lationship extraction, negative mentions are essential. If we generate mentions
using all properties, we can later decide which relationships will be in the inven-
tory and the rest of them relabel to other relation. If we were to assign all
tuples of entity mentions that share a sentence and are not related as no rela-
tion, we could increase the noise in CERED, because not all relationships are
in Wikidata and therefore some of the no relation mentions could in fact be
positive mentions. The ratio of negative and positive mentions in the two bigger
datasets we introduced in Chapter 2 were approximately 80%.

While curating the inventory, we should keep in mind, that we are not just
choosing the relations, but also their representations, and we need to attempt to
fulfil the three following requirements to the best of our abilities:

• Each relation needs to be represented enough.

• The more balanced relation representation the better.

• There should be enough negative mentions and their negativity should be
assured.

3.3.6 Result Evaluation
The most challenging aspect of working with Czech Wikipedia and Wikidata
is their size and diversity. To the best of our knowledge there is no strictly
followed guideline, when it comes to editing either the articles or item information.
Just converting Wikipedia dump to clean text is challenging, due to user defined
templates and other constructs we might be unaware of. On the other side, names
in Wikidata can be too general (like someone’s first name) and create false entity
mentions.

Any change we make in the generator affects the generated dataset and
analysing the consequences is difficult. We used several methods to measure
the quality of the implemented generator.

The simplest characteristic of the dataset is its size. Even though we want to
maximize the size of dataset, we want to keep the precision high (eliminate false
positives).

We can find false positives by finding anomalies in the dataset. We can look
at different graphs characterizing the dataset, identify unexpected peeks and
investigate the mentions causing them. Two such graphs – the distribution of the
number of words in a sentence and of the number of mentions per article – are
shown in Figure 3.7. Other useful characteristics include the length of a sentence
in characters, relation distribution, article distribution, the number of sentence
within its article, and so on.

26

Such graphs are better at capturing false positives than false negatives. To
evaluate false negatives, it is necessary to compare the articles with the corre-
sponding mentions in the dataset. To that account, we created a tool, which can
visualize the whole article and both the entity and relation mentions.

Originally, we wanted to manually label entity mentions and relation mentions
on some articles and use them to automatically evaluate the generator. However,
we encountered many challenges when we tried to create such manual dataset,
the main three are:

• the selected articles should represent Wikipedia (for example, articles about
people are very different from articles about sport matches);

• to label entity relations, we need gold entity linking, which we must create
ourself – that is challenging both because of the vast number of Wikidata
items and because it is difficult to draw the line of what we expect to match
(in the Figure 3.3 example, the “prostřed́ı knih a filmů o Harrym Potterovi”
clearly mentions the Harry Potter universe Q5410773 and Voldemort is a
ommited subject of the second sentence);

• it is time consuming to look for relations in Wikidata, due to the large
number of relations.

3.4 Used Technologies
We chose Python to be our main programming language. To be able to work
faster with a bigger volume of data, we wanted to use a CPU cluster, which leads
to Spark. To top it, we use MorphoDiTa to work with the Czech language. We
implemented a simple Streamlit application, which we used to comfortably view
the results of our Spark queries.

In this section, we briefly introduce these technologies.

3.4.1 Python
Python is probably the most popular programming language in the ML com-
munity. It is a high-level language with a wide range of libraries. Libraries as
NumPy, Pandas, and Spark enable fast and accesible computation. Tensorflow,
scikit, and PyTorch allow users to focus mostly on data and ideas in machine
learning. Less known libraries help us with Wikipedia parsing (wikitextparser,
mwparserfromhell) or easy-to-create web applications (Streamlit).

3.4.2 Spark
Apache Spark framework provides a dataset manipulation API and allows exe-
cuting it in a distributed way on a cluster, without actually implementing any
parallelism. Therefore, Spark can boost the speed of computation as well as the
available memory for the computation.

27

(a) CEREDα – alpha version of the dataset before we removed Wikitext templates

(b) CERED0 – the final version of the generated dataset

Figure 3.7: Comparison of the histogram of the number of words (left column)
and number of mentions per article (right column) in two different versions of
the dataset. In the left column, we can see that the curve is smoother and also
less skewed to the right in CERED0. In the right column, we can see that in
CEREDα several articles contributed over 5 000 mentions, in contrast with the
maximum contribution of approximately 400 mentions in CERED0. Considering
that CEREDα is approximately two times bigger than CERED0, such smoothing
of the distribution is significant.

28

3.4.3 MorphoDiTa
Morphological Dictionary and Tagger (MorphoDiTa) [Straková et al., 2014] is
an open-source tool for morphological analysis of natural language texts. It is
designed to work well on inflective languages and achieves state-of-the-art results
for the Czech language. MorphoDiTa provides a Python package trough which
we can perform all standard operations such as tokenization and lemmatization.

3.4.4 Streamlit
Streamlit is a framework for creating simple web applications. It has minimal
and practical API designed for users from the machine learning community. We
use this library to create a pleasant way of viewing the generated dataset.

3.5 Implementation
In Section 3.3 we discussed different approaches we could choose to solve different
aspects of the generation of the dataset. Now we build on the performed analysis
and describe in detail the approaches we implemented.

3.5.1 Wikidata Preprocessing
The goal of Wikidata preprocessing is to load the Wikidata dump file and output
three lists. The first list contains the QPQ triples, which are triples of identifiers
representing a relationship (Q173998 P3373 Q187923, for example). The second
list provides us with the names for the identifiers mentioned in the first list
(Q187923 Ginny Weasley, P3373 sibling). The third list contains the mapping of
entity identifier to the title of the corresponding Wikipedia article, if such exists.
Those three lists serve as the source of structured data.

The first step of our preprocessing is to filter wikidata to remove entities that
we will not use. We require each entity to have at least one Czech name (alias
or label), otherwise, there would be no good way to find mentions of that entity
later in the entity matching step. CERED creation does not require the Czech
names of relations, so we will keep all of them.

Apart from the filtering, we should consider, whether we might benefit from
keeping more information about a relationship (meaning the instantiation of a
relation) than just the identifiers. Wikidata relationships often contain addi-
tional information specific for the relation type. For example, the position held
P39 relationship between Cornelius Fudge Q1250951 and the Ministry of Magic
Q6017614 has following additional information attached to it: start time 1990,
end time 1996, replaces Millicent Bagnold, replaced by Rufus Scrimgeour. In our
use case, given that we plan to limit the text analysis to the syntactic level, such
information is not beneficial.

The second step addresses removing duplicate relationships that differ only in
the additional information tied to the relationship (CBS received many Peabody
Awards, for example). Such duplicates, where the entire QPQ is the same, might
require special attention in the relation matching step. We remove even relation-
ships that differ only in the “P” part. If we kept them, in the relation matching we

29

would either create multiple relation mentions (sentence with two tagged entities
and the label of their relationship) that only differ in the relationship. However,
CERED is designed to be a dataset on which it is possible to train a model for
a single-label classification task. The dataset could be extended to allow multi-
label relation type classification. However, it would complicate the models and
evaluation, and the existing English datasets are also single-label, therefore, we
decided to aim for a single-label dataset in this thesis.

After these steps, the first list contains approximately 2 million QPQ triples.

3.5.2 Wikitext Parsing
In this step we aim to parse Wikitext (Wikipedia markup language) from the
Czech Wikipedia dump into a clean text with attached information about Wik-
ilinks in the original markup.

As we already explained in Section 3.3.2, Wikitext contains a lot more than
fully unstructured data. Different kinds of infoboxes, tables or lists are contained
within the sentence-like text. Some of these elements are implemented using the
so-called template syntax. Therefore, it would be tempting to simply remove all
the text that is contained in a template. The problem is that some templates
are useful. For example, we may use a template to divide the text into two
columns containing valid sentences. Therefore, discarding all such data seems
unnecessarily harsh.

When developing the methodology for Wikitext parsing, there was not a
“gold” output to compare with. The only means of evaluation we had at the
time was repeatedly going through a small set of articles and trying to discard
unnecessary data. We tailored the rules for Wikitext parsing to these articles in
such a way that only sentence-like parts remained.

Once we implemented the whole CERED generator and were able to see the
relation mentions, we realized that the previous method of evaluation was not
good enough. Therefore, we adopted a new one, as described in Subsection 3.3.6.
We looked at the different histograms and investigated the abnormalities. For
example, a lot of sports articles report results of a match (tournament, event)
and these are often stored in custom tables that were not filtered by the rules from
the previous paragraph. Moreover, these tables often contain information about
the nationality of the players, resulting in a huge amount of matched entities and
relations.

Based on the analysis of all the available data, we decided not to include the
following content in the clean text:

• HTML tags within wikitext;

• headings;

• tables;

• lists;

• templates matching the following patterns: obsazeńı*, sloupce*, seznam*,
př́ıbuzenstvo*, *předkové*, *box*, *locmap*, *tabulka* (the English equiv-
alents are cast*, columns*, lists*, relatives*, *ancestors*, *box*, *locmap*,
table);

30

• wikilinks to categories and files.

One more technical issue we encountered was correctly assigning spans to
Wikilinks, i.e. where the link starts and ends in the text. We can demonstrate
the problem on the following sentence:

“The main [[story arc]] concerns Harry’s struggle against [[Lord Volde-
mort]], a dark wizard who intends to become immortal, overthrow the
wizard governing body known as the [[Ministry of Magic]] and subju-
gate all wizards and [[Muggle]]s (non-magical people).”

The correct span for Muggles should contain the trailing s even though it is not
part of the Wikilink itself. In Czech such trailing characters are common. The
set of characters that seem to end Wikilinks written in such forms are ␣,.\n.

One more thing we mentioned in the analysis about Wikitext is the possible
boost of performance, if the text-part of a Wikilink was added to the set of
names for the given entity. We exported such names, kept only those that were
not already added to Wikidata, and read through many of them. This process
is time-consuming, because one often has to actually look up the entity to know
whether a given name is sensible. Even though we do not have any data about
the proportion of good and bad names, the overall impression was clearly leaning
towards not using such data. The two main reasons were that commonly the name
was actually a class name, not instance name (like school linking to Hogwarts),
and that pronouns were also linked to corresponding entities (such cases were less
frequent, but would likely cause much trouble later on).

3.5.3 Entity Matching
We discussed in great detail the pros and cons of different entity matching meth-
ods, implying that the more complex the matching method, the better. We work
with a single language and tools for lexical analysis are available and reliable.
Therefore, implementing language-independent matching methods (string simi-
larity, for example) is not beneficial.

We load the entity names in a slightly transformed form – we lower the case
and add spaces around every dot character. We then use a lexical analyzer to
split text to sentences and to obtain features from sentences (tokens, lemmas,
and lexemes). An entity name (sequence of k tokens separated by a space) is
matched in a sentence if (i) the entity is a candidate entity for the sentence, and
(ii) there is a sequence of k consecutive tokens in the sentence, such that each
token in the name is a member of the lexeme of the corresponding token in the
sentence.

We intended to allow a less strict word order, but we were unable to justify
such a choice. After reading several articles, we did not find any entity mentions
that would be newly matched. This might imply that even though word order is
relatively free in Czech, noun phrases tend to keep their word order. The other
explanation is based more on the fact, that a human reader is more likely to
recognize an entity mention, if it is in the standard word order. We, therefore,
believe that matching entities in any word order would decrease precision more
than increase recall, and do not allow it.

31

We considered allowing one special case. Most articles are based on one entity,
therefore we expect many sentences to mention this entity. Often the entity is
mentioned either by a pronoun (pronouns that express the subject are typically
omitted in Czech), or by part of its full name. We already stated that we ignore
pronouns but we tried to propose rules for choosing the correct substring of the
entity name. The diversity of Wikidata makes such a task extremely difficult.
Together with the risk that we could decrease the precision of entity matching,
we decided to stick with full names only.

In the Wikitext parsing section, we prepared spans and identifiers for Wik-
ilinks. We merge these with the ones matched by this module and post-process
them – we discard each mention, whose span is within a span of a different men-
tion of the same entity. This removes duplicates and keeps the one that is the
longest.

3.5.4 Relation Matching
So far we obtained sentences with tagged entity mentions. For each tuple of
entity mentions within the same sentence, we checked if a relationship of those
two entities was present in Wikidata (using the prepared QPQ list). Given the
filtering in Wikidata preprocessing, we are guaranteed that there is at most one
such relationship.

At this stage, we need to address incorrectly matched entities that cause the
dataset to bloat. One example of such bloating that we encountered was in an ar-
ticle about kindergarten,5 in the following sentence, where thousands of relation
mentions were found. “Jsou závazná pro předškolńı vzděláváńı v mateřských
školách, v mateřských školách zř́ızených podle § 16 odst. 9 školského zákona,
v lesńıch mateřských školách a v př́ıpravných tř́ıdách základńıch škol.” Many
kindergartens are named Mateřská škola (kindergarten), all of them are an in-
stance of the abstract kindergarten entity and therefore candidate entities. If a
sentence contains the term “mateřská škola” (or its form), all these entities will
be matched, therefore, the relationship “Mateřská škola is a mateřská škola” will
be assigned many times as well.

After investigating many other unusual cases, we decided to discard any sen-
tence with at least 10 entity mentions in it. We also tried to experiment with
different limits, but the results were unconvincing. For example, increasing the
constant to 50 keeps an additional 13% of relationship mentions, but extends the
set of sentences only by 1%.

3.5.5 Characteristics of the Generated Dataset
The full dataset, which was obtained by the process we described in the previous
sections, contains almost one and a half million relation mentions. In the next
few paragraphs, we present more detailed statistic of this dataset - CERED0.

We found at least one mention in 293 591 articles. In these articles, the average
number of found mentions is slightly less than 5 and the median is nearly 7.
The article with most mentions is Spojené královstv́ı6 (United Kingdom). The

5https://cs.wikipedia.org/w/index.php?oldid=18388144
6https://cs.wikipedia.org/w/index.php?oldid=18752891

32

https://cs.wikipedia.org/w/index.php?oldid=18388144
https://cs.wikipedia.org/w/index.php?oldid=18752891

distribution of mentions in articles is shown in Figure 3.10d.
There are 490 501 different sentences that contain a mentions. We set the

upper bound on the number of entity mentions per sentence to 10. On average
there were approximately 3 relation mentions in a sentence (that had at least
one mention) and the maximum of 72 mentions per sentence was reached 34
times. The full distribution is captured in Figure 3.9 (CERED0). The length of
sentences ranges from 2 to 401 tokens, where the very short ones usually come
from templates that were not removed. On the other hand, the very long ones are
often caused by incorrectly written articles.7 We tried to remove all templates to
see if the range (and distribution) of the number of words improves, but we did
not achieve a significant improvement.

Another possibility is to observe how the position of a sentence in an article
influences the number of relation mentions. We expected that the first sentences
in the articles would contain the highest number of relation mentions. The first
sentences tend to contain Wikilinks and the use of pronouns or shorter names is
limited, because each entity has to first be introduced by its full name. As we can
see in Figure 3.8 (CERED0), our hypothesis seems to be correct, and partially
applicable to several initial sentences, not just the first one. Surprisingly, 904 803
mentions come from sentences that are first in their respective articles – this
constitutes over 60% of all mentions.

3.6 CERED Versions
In this section we describe how and why we decided to postprocess the generated
datasets.

The full CERED is already a valid relationship classification dataset. It has
nearly one and a half million mentions, but as we discussed in the previous section,
some of them might be of poorer quality than others. In this section, we describe
different versions of CERED with CERED0 being the biggest (least filtered) and
CERED4 the smallest. Table 3.2 overviews basic characteristics of CERED0-4.

Each dataset version is split up into three disjoint sets: a train set, a dev set
and a test set. Ideally, the test set would operate on a different set of entities
(so that models learn to predict relationships based on sentences, not on the
knowledge of entities). We believe that such a restriction is unnecessarily strong.
Some entities are mentioned in many articles, which does, in fact, make them
part of common knowledge (connected to the language we train on). Instead, we
decided to relax the restriction to distinct articles. We sampled two sets of 10 000
articles, one for the test set and one for the dev set. In each version of CERED,
the same articles are used for dev, test and train.

3.6.1 CERED0
CERED0 is the raw dataset we described in the previous section. We do not
artificially change the relation type, so no negative relation is present. We do not
recommend this version for direct training, we mostly keep it to preserve the full
information obtainable from our generator.

7Example of an incorrectly written article https://cs.wikipedia.org/w/index.php?
oldid=18723498

33

https://cs.wikipedia.org/w/index.php?oldid=18723498
https://cs.wikipedia.org/w/index.php?oldid=18723498

Dataset # mentions Inventory size other % Test dataset
CERED0 1 462 559 692 0 25 066
CERED1 999 292 64 14.1 17 214
CERED2 374 915 64 18.8 6 530
CERED3 157 973 64 22.6 2 787
CERED4 10 790 59 22.1 184

Table 3.2: Basic statistics of CERED0-4 – number of mentions, number of rela-
tions, ratio of negative mentions and the size of the test dataset.

3.6.2 CERED1
CERED1 is close in size to CERED0. We removed long (over 100 words) and
short (under 5 words) sentences. We also removed overly represented relations
and changed labels of under-represented relations to other, which is the negative
relation in CERED1. We properly define under-represented and over-represented
relations in the next paragraph, where we describe the CERED2 dataset.

3.6.3 CERED2
CERED1 has 3 potential flaws that we have not addressed yet. First, one sentence
could be included multiple times in the dataset. Second, there are some relations
with only a few relation mentions. Third, we did not try to handicap overly
represented relations.

We try to address these issues in CERED2. We start with CERED1 and for
each sentence, if there are multiple relation mentions, we keep only the mention
that was the least represented in CERED1, and discard the others. Next, we
count the sizes of representations of all mentions and say that a relation is under-
represented if it has less than 1 000 mentions. We take all the mentions whose
relation is considered under-represented and relabel them to other. This change
is also applied to CERED1. After such relabeling, the other relation still was
not the most represented. Lastly, we decided to discard mentions of the two most
represented relations: instance of P31 and country P17.

3.6.4 CERED3
Even after the restriction on the uniqueness of sentences, half of the CERED2
sentences are the first sentences within the articles they originated from. Such sen-
tences have a rather unique structure that is not as common outside of Wikipedia.
This inspired CERED3, which is the remainder of CERED2 after removing all
mentions in the “first” sentences.

3.6.5 CERED4
There are two stages in the CERED generation process that might be relatively
unprecise. The entity matching stage and the relation matching stage. CERED4
keeps only the relation mentions from CERED3, in which both entities were
manually labelled directly in wikitext in the form of wikilinks. The CERED4
dataset is, unfortunately, small, but has the highest potential to be precise.

34

Figure 3.8: Distribution of the number of mentions for sentences with a given in-
dex in an article. In CERED0-2, first sentences dominate the datasets. CERED2
and CERED3 differ only in the first sentences, therefore CERED2 is mostly hid-
den by CERED3.

3.6.6 Other Considered Variations
When curating the CERED we considered many different criteria. For example,
we chose the constant 1 000 for underrepresented relations after several experi-
ments. The advantage of this value is that only two relations were more dominant
than the new other relation and at the same time, we would keep 63 positive
relations. We wanted our dataset to be at least somewhat comparable to other
datasets in the proportion of data and inventory size. S10T8 contains 10 717
mentions and 10 relations, TACRED contains around 100 000 mentions and 41
relations. The size of Riedel NYT depends, just like its inventory, on what data is
used (and whether duplicates are removed and so on), but commonly used version
contains nearly 700 000 mentions and 58 relations. Since the sizes of CERED1-
3 range from approximately a million to approximately 160 000 mentions, we
wanted the relation inventory size to be around 50 or 60. The distributions of re-
lations in different datasets is captured in Figure 3.10 and detailed for CERED1-4
in Figure 3.11.

Named entities. One more labour intensive variation we wanted to create
was supposed to be focused on named entities. We tried to curate a set of named
entity types (such as person, place, etc.) based on Wikidata, in order to later use
them as additional information during training.

We used the QPQ triples described in Subsection 3.5.1 to create an oriented
graph with two types of edges. The first edge type – instance edges – connects
Wikidata items Q1 and Q2 if there is a triple Q1P31Q2, where P31 is the Wikidata

35

Figure 3.9: Histogram of mention lengths in words in CERED0-4.

property instance of P31, and the second type – subclass edges – are added for
the subclass of P279 property. The goal of the graph is to capture the transitive
nature of the two properties, i.e. if Emma Watson Q39476 is an instance of a
human Q5 and human is a subclass of a person Q215627, we can assume that
Emma Watson is a person. We consider a Wikidata item to be a named entity if
it is an instance of some other item. If we are interested in all the named entities
belonging to some entity type (node in the graph), we can simply find all the
named entities for which there is a path between the type and the entity.

We hoped that with such representation, we would be able to curate reasonable
set of types. For example, we might want to have a “human” entity type and
we might intuitively expect Harry Potter Q3244512 (fictional human) to be a
human. However, as he is fictional, he is not considered to be human in the
wikidata ontology. Such an issue can be solved, for example, by adding another
type of edges for fictional analog of P1074. The problem is that there are just too
many similar problems and it is out of scope for this thesis to properly analyze
the whole wikidata ontology.

36

No relation

(a) TACRED

Other

(b) S10T8

Other

P150 P131

P279

P641

P19

(c) CERED2

P17

P31

P131

P106

P27

(d) CERED0

P17 country P31 instance of P150 contains (adm.)
P19 place of birth P106 occupation P279 subclass of
P27 country of citizenship P131 is in adm. unit P641 sport

Figure 3.10: Representation of relations in different relationship extraction
datasets. In CERED0, only top 250 relations are shown, the rest corresponds
to the empty sector above P17. We only kept the most relevant labels and we
shortened their names.

Figure 3.11: Number of mentions for different relation types in CERED datasets.
For each dataset we ordered the relations by their frequency.

37

Part II

Training

38

4. Previous Work on
Relationship Extraction
In this chapter, we first introduce the most popular pre-trained models that are
currently used in natural language processing (NLP). Then we discuss different
metrics that are used on Relationship Extraction.

4.1 Deep NLP Models
Lately, NLP tasks have been dominated by solutions using pre-trained deep neural
models with the Transformer architecture. This section aims to roughly describe
such a model to a reader familiar with the basics of neural networks. We introduce
the two big concepts used in such models: the Transformer architecture and pre-
training. Then we are able to explain how an actual modern NLP model looks
and is trained. We choose the BERT model for this purpose since it is likely the
best-known, and we also use it later in this thesis.

4.1.1 The Transformer Architecture
Suppose that we aim to perform some NLP task, like translation, using deep neu-
ral networks. We want the network to read a sentence in language A and output
a translation of the sentence in language B. If the model was just a sequence
of densely connected layers (so-called feedforward neural network), it would be
nearly naive to expect the model to function. There is no structure that would
help with gathering information about the entire sentence, and there is also no
intuitive place where we would expect the model to switch from one language to
another. There is nothing ensuring that the translated sentence is good. Those
arguments are vague but might provide some intuition.

The recurrent neural networks (RNN) were used in the past to help the net-
work capture the entire sentence. The RNNs introduce a cell that is more compli-
cated than a typical neuron (perceptron). This cell usually has internal memory
and the ability to both add and forget information. In the network, this cell is
then presented with a sequence of inputs. The cell then goes trough the sequence
one by one and edits its internal state. If we feed it with words of a sentence, we
might expect the internal memory to contain an abstract representation of the
sentence.

There are two main issues with RNNs. Working with RNNs is slow. We input
the sentence “word by word”, so instead of one step per layer, we need n steps for
a sentence of length n. Moreover, especially if the sentence is long, it is difficult
for the cells to remember the whole sentence and not just the later part. Both of
these issues arise from the fact that input is fed into RNN cells sequentially.

In Vaswani et al. [2017], the Transformer architecture is introduced. It builds
on a so-called encoder-decoder architecture. In the translation task, we can
roughly say, that the encoder would process the sentence in language A, the
decoder an already predicted part of the translated sentence, and the network
would predict the next word of the translated sentence.

39

The issue of the accumulation of the right information at the right place is
addressed with an attention mechanism. Attention was used first in the RNN
architecture. The traditional attention mechanism makes it possible to focus
only on the important parts of the input sentence. For example, if we want to
translate a specific word in a sentence, the network can learn that some parts
of the input sentence are more important than others. Later, it was discovered,
that a variant of the attention itself, called self-attention, is powerful enough to
make the sequentiality of the RNN cells unnecessary.

Self-attention was introduced in the Transformer architecture. Unlike the tra-
ditional attention, which is used to combine information from different layers (for
example, it can transfer information from encoder to decoder), the self-attention
usually works with inputs of the same layer as where it is applied. Self-attention
attempts to add context information to the current embedding from the current
embedding of the input sequence. For each input vector, we first compute three
vectors: key, query and value. When computing self-attention for the i-th input,
we start by computing scores which are the dot product of the i-th query vector
with each key vector. The j-th score represents the similarity of the i-the query
and the j-the key vector. We then convert the scores into a distribution using a
softmax function and we use the resulting probabilities to compute the weighted
average of the value vectors to create the i-th output. We described the opera-
tions on vectors, but they can be rewritten for whole matrices, which makes them
faster to compute. Precisely, let Q, K and V be matrices, where the i-th row is
the i-the query, key and value vector. Then the attention can be computed as

Attention (Q, K, V) = softmax
(︄

QKT

√
d

)︄
V

where d is the dimension of the key vectors.
In the Transformer architecture, both the decoder and the encoder contain

a sequence of blocks, where each block is a self-attention layer followed by a
feed-forward network. We include a diagram of the architecture from the original
paper (Figure 4.1)

So far, we ignored the fact that words cannot be directly fed to the network
as an input. Usually, words are mapped to a vector in an embedding space. Such
mapping is reusable in multiple tasks and brings us to the next section, where we
will explain them a bit more.

4.1.2 Pre-training
The training of deep neural networks can require a great deal of both compu-
tational resources and annotated data. The term pre-trained model indicates
a (part of) neural network, that can be reusable for multiple tasks or settings.
Moreover, the pre-training is often based on unsupervised data, which lowers the
requirements for annotated data later in the fine-tuning. Such reusability fas-
tens deployment of complicated models and makes them accessible for a broader
spectrum of people and companies. Pre-training is time-efficient, economical and
consequently ecological.

Word embeddings can be seen as an example of pre-training. Word embedding
is a vector that represents a word in a vector space (as, for models, vector spaces

40

Figure 4.1: Diagram of the Transformer architecture as proposed in [Vaswani
et al., 2017]. Taken from [Vaswani et al., 2017]

are easier to work with than words). The distance of embeddings of two words
should reflect their semantic relation. An embedding itself is usually inferred
from a pre-trained neural network and is used as an input for the task-specific
model. The model that generates embeddings is usually trained by some variation
of predicting a missing (masked) word from its context. The popularity of word
embeddings rose in the previous years, most popular embeddings were likely the
Word2vec [Mikolov et al., 2013].

Nowadays, a new type of embeddings is starting to get popular. In the classical
word embeddings, a word always has the same embedding. The word “book” has
the same embedding in “She wrote a book on car maintenance.” and “We were
advised to book early if we wanted to get a room.” which is intuitively wrong.
Contextualized embeddings take into account the entire (or at least preceding
part of) sentence. One such embedding can be created via the BERT model.

4.1.3 BERT
BERT (Bidirectional Encoder Representations from Transformers, [Devlin et al.,
2019]) is a family of models that achieves state-of-the-art results on various NLP
tasks. BERT model takes a sequence of words as an input and computes a
representation of each word while taking into account both the left and right-side
contexts of the word. BERT models are pre-trained on large corpora of unlabeled
text and then fine-tuned for a specific task.

41

The model was pretrained on two NLP tasks – Masked Language Modeling
(MLM) and Next Sentence Prediction (NSP).

MLM is an adaptation of the task of prediction of a word from its context.
The model takes a sentence, where some percentage of the words is replaced with
a special token. The goal is to predict the original words in the sentence. The
masking is essential – without it, the task would be trivial; at the same time,
some context has to stay unmasked, otherwise, the task would be impossible. If
we always mask the percentage of the words with the special token, a significant
mismatch between real sentences and the one used in training would be created.
The masking is, therefore, more sophisticated. We choose 15% of words to be
masked. If a word is to be masked, with 80% change, it is replaced with the
special token, with 10% it is replaced with a random word, and in the last 10%
the word is kept (which helps to bias the model towards the actual word).

In NSP, we try to guess whether two sentences were consequent in the original
text. The input is structured into two sentences via a separator token and segment
embeddings. This task helps the model to learn to work on the sentence level,
not just on a token level.

To fine-tune the model, we usually add a shallow feed-forward network on
top of the BERT, which classifies chosen features from the BERT into the result
space. Then we train the model on the task-specific dataset as we would train
any other model.

In the original paper [Devlin et al., 2019] two BERT models were published:
BERTBASE and BERTLARGE, they differ in size, but both trained on the same
English corpora (the BookCorpus and English Wikipedia). Later multilingual
BERT was released.1 It was trained on the top 102 languages with the largest
Wikipedias including Czech.

4.2 Metrics
This section focuses on metrics since the quality of a model in the relationship
extraction task is often hard to determine. We first define some standard metrics
and discuss the pros and cons of each of them. Then we overview metrics used
for the relationship extraction task on different datasets.

4.2.1 Binary Classification
We start with metrics for binary classification. In binary classification, we are
presented with an input vector, and the goal is to determine whether the vector is
of class A or class B. Each prediction then falls into one of the following categories:
correctly classified A input, correctly classified B input, wrongly classified A input
as B, and a B input wrongly classified as A (Figure 4.2).

Another way to look at the same situation is just to predict whether an input
is of class A or not. This way the prediction is a True/False value determining
whether the input is of class A. This way, we can define the previously mentioned
categories without using the specific classes as true positive (TP), true nega-
tive (TN), false negative (FN) and false positive (FP). Visualization of the

1https://github.com/google-research/bert

42

https://github.com/google-research/bert

True
Positive

False
Positive

True
Negative

False
Negative

NegativePositive

Po
si
tiv
e

N
eg
at
iv
e

Predicted class

Ac
tu

al
 c

la
ss True A

False A True B

False B

BA

A
B

Predicted class

Ac
tu

al
 c

la
ss

Figure 4.2: Confusion matrix for binary classification, normally count of occur-
rences would be written in each square.

result of classification on a dataset is called a confusion matrix, we include
such matrix in Figure 4.2. We use the abbreviations to represent the number of
predictions that belong to the given category.

Accuracy expresses the ratio between correct predictions and all predictions.

Acc = TP + TN

TP + TN + FP + FN
(4.1)

Precision expresses the ratio of correctly predicted positives within all pre-
dicted positives. Therefore, precision is a good metric if we want to avoid mis-
takenly classified negatives as positives.

Prec = TP

TP + FP
(4.2)

Recall is a complementary metric to precision. It expresses the ratio of all
positives that were correctly predicted. In other words, it should be used when
we need to find the maximum of positives in the data.

Rec = TP

TP + FN
(4.3)

Often we might want a trade-off between being as precise as possible and
recalling as much as possible. F1 score is a harmonic mean of precision and
recall (scaled to range from 0 to 1):

F1 = 2 · Prec · Rec

Prec + Rec
(4.4)

F1 is quite widely used in competition tasks.
To emphasize that the right choice of metric is significant suppose that we

have balanced data (both true and false classes are equally represented). If our
classifier just predicted that every input is positive, we would obtain the following:
0.5 accuracy, 0.5 precision, and 1 recall. If we were to predict all negatives,
accuracy and precision would remain 0.5 but recall suddenly drops to 0. If we were

43

to predict the result with even chances for both classes randomly, the expected
results would be 0.5 for all of those metrics. We just described three very different
classifiers, and the only thing we learned from accuracy and precision was that
they were equally bad, without any insight about them. Recall, in contrast, gave
us some insight about the predictions, but evaluated a bad classifier with the
highest possible score. We should also note, that the metrics will likely change if
we exchange which class corresponds to True and which to False.

This whole section is in this thesis mostly to remind us that if we want to score
well in a given metric, we will likely exploit the metric even if it might worsen our
classifier. The choice of a metric for a task determines what gets optimized. Later
in this section, we debate such issues in our scenario, the relationship extraction
task.

4.2.2 Multiclass Classification
We already run into issues with the asymmetry of precision and recall in binary
classification (it is dependent on which class is chosen to be the positive one). We
can address this by creating metrics per class. In the previous subsection, where
we had a classifier for classes A and B, we would get two sets of metrics, each
describing the ability of the classifier to recognize given class apart from the rest.

Now we can easily extend this per class approach to multiclass classification.
The formulas will remain the same with the TP, FP, TN, and FN values cor-
responding to TP, FP, TN, and FN of individual binary classifications. If we
compute those values out of confusion matrix (for class B), then TP is the value
on position [B, B], FP is the sum of all in column B without TP, FN the sum of
row B without TP and the sum of cells outside of the Bth row and column are
the TN (Figure 4.3).

True A

False A True B

False B

BA

A
B

Predicted class

Ac
tu

al
 c

la
ss

False N

False N

N

N False A False B True N

Figure 4.3: Confusion matrix for N-class classification

As a robust way of examining the quality of the classifier, one could simply
look at the confusion matrix and all the per-class metrics. Although this would

44

be insightful, it is not the most practical in terms of a clear comparison of two
classifiers. Ideally, we aim for a metric or metrics that are as descriptive and
comprehensive as possible and also define an ordering of the classifiers.

Ideally, we would compute one number that fully describes the quality of the
classifier. The common practice is to assign each metric a weight and combine
them. Before we do so, we should acknowledge that the dataset we evaluate the
classifier on needs to be taken into consideration.

An ideal dataset would be perfectly balanced. However, the class representa-
tion distribution (CRD) is often not uniform – classes are not equally represented.

Macro-averaged Metrics

An easy way to combine a metric over multiple classes into a single value is to
compute the arithmetic mean. In most libraries and papers, the macro- prefix
(macro-recall, macro-F1, etc.) is used. Macro-averaged metrics tend to be the
easy option that is used without much thought. Moreover, despite the existence
of two different definitions of macro-F1s, the exact formula is often not included
in papers. (The more common formula is the arithmetic mean of classes F1s, but
the less commonly used formula, where the F1 is computed from macro-recall
and macro-precision, is also used, as [Opitz and Burst, 2019] reports.)

Micro-averaged Metrics

The second most used approach of computing a single metric over multiple classes
is to compute a weighted average with the weights corresponding to the support
of the individual classes. In most libraries and papers, the micro- prefix (micro-
recall, micro-F1, etc.) is used.

The main difference between the micro metrics and the macro metrics is
that macro metrics treat all classes equally, i.e. if there is a massively under-
represented class, the metric influences the model to pay more attention to the
class. On the other hand, we should use a micro metric if we want to optimize
the overall accuracy of the model.

4.2.3 Relationship Extraction Metrics
In Chapter 2 we described three relationship extraction datasets. We now focus
on the metrics they use and propose the recommended metric for CERED.

S10T8 metric

For the S10T8 datasets, Hendrickx et al. [2010] define the official metric directly
in the paper: “Our official scoring metric is macro-averaged F1-Score for (9+1)-
way classification, taking directionality into account.” This means that the model
classifies into all 2 ·9+1 classes, but before the macro is computed, the directions
are merged (samples, which had wrong direction but correct relation are ignored,
otherwise the TP, NP, TN and TP are summed) and the negative relation is
ignored. Therefore the average is only from the 9 direction-less positive classes.

45

TACRED

On TACRED’s git page,2 we can find the official implementation of an evaluator
computing a slightly modified version of micro metrics. The authors modified
the metric such that the weight of the no relation class is zero. The micro-F1
is computed from the micro-precision and micro-recall and is the primary metric
for comparing results.

The decision to exclude the no relation class is understandable. The class
makes up 80% of the dataset, therefore the micro metrics would be mostly influ-
enced by the performance on this class. Such behaviour is unwanted considering
the fact, that in usual use cases we care more about the model to correctly clas-
sify positive relations rather than the negative one. We would like to note that
it is not possible to cheat the metric by forbidding the classifier to predict the
negative relation. If we do so, it would negatively influence the false positives of
all classes and, therefore, decrease the overall performance.

Riedel NYT

For the Riedel NYT dataset, there was no official metric determined by the
authors. Precision@N is commonly used since [Bollacker et al., 2008].

CERED

The Riedel NYT dataset shows that we should decide, what is the primary metric
for CERED. We decided to use micro-F1. The negative relation in our datasets
is not as dominant as in TACRED, so we do not think it is necessary to exclude
it. On the other side, the datasets is not as nicely balanced as S10T8 and any
macro-metric would be incline the models to overly focus on smaller classes.

2https://github.com/yuhaozhang/tacred-relation

46

https://github.com/yuhaozhang/tacred-relation

5. Relationship Extraction on
CERED
The goal of this part of the thesis is to train a relationship extraction model for
the Czech language. To the best of our knowledge, there is no baseline for such a
model, since there is no Czech relationship extraction datasets. In the first part
of the thesis, we generated CERED, a family of relationship extraction models
that we can use.

If we just trained the model on our dataset, we would be unable to determine,
whether the model is well designed. We therefore adapt the model to be trainable
both on Czech and on English. We assume that if the English version is com-
petitive on popular English relationship extraction dataset, the Czech version is
reasonably good.

In this chapter, we first describe the model, then we evaluate it on English
datasets and lastly we report the results on CERED.

5.1 Model
We based our model on the BERT model described in the Subsection 4.1.3. The
model architecture is quite straightforward. The goal of the whole model is to
predict a relation based on a given relation mention. We modify the input by
adding several special tokens as we show in Figure 5.1. Then we use the tokenizer,
which is attached to the specific BERT, and we feed the output of the tokenizer
to the model. The model computes abstract representations of all input tokens.
We concatenate the representations that correspond to some of the special tokens
([E1], [E2] and [CLS]). On top we apply a dropout layer and finally a dense layer
which predicts the class.

For Czech, we fine-tune the multilingual BERT, for English we fine-tune
BERTBASE. We use the transformers library (Wolf et al. [2019]) for BERT ma-
nipulation.

Figure 5.1: Special tokens added for each mention. The sentence is a mention of
father(Ron Weasley, Rose Weasley). We add tokens to mark where each entity
starts and ends. The [CLS] token is part of BERT input and was pre-trained to
capture the whole input sequence via the NSP loss.

5.2 Results
We trained the model described in the previous section on the three English
datasets introduced in Chapter 2 and on CERED. We hoped for our model to
be competitive with other models, that build on BERT. At the same time, we
did not use any additional data for the training and we only used BERT base,

47

because the multilingual BERT is not available in the large size. Therefore we
do not expect to score as well as state-of-the-art results. We referred to results
provided by nlpprogres1 when researching the scores achieved on each dataset.

We did not fine-tune the hyperparameters (such as the learning rate or dropout
rate).

5.2.1 S10T8
On S10T8 the model stopped training after 10 epochs (i.e. in less than 20 minutes
on a singe GPU) and achieved 86.54% in the official metric. The state-of-the-art
result was achieved by Baldini Soares et al. [2019] with 89.5%, we include more
results in Table 5.1.

Table 5.1: Results on S10T8.

Paper/Source F1
Our model 86.54
Baldini Soares et al. [2019] 89.5
Wu and He [2019] 89.25
Wang et al. [2016] 88.0
Lee et al. [2019] 85.2

5.2.2 TACRED
Training on TACRED did not take much longer (4 epochs and under two hours).
The state-of-the-art on this dataset was also achieved by Baldini Soares et al.
[2019] with 71.5% F1 (micro-averaged over instances with positive relationships).
We scored 65.65, we include more results in Table 5.2

Table 5.2: Results on TACRED.

Paper/Source F1
Our model 65.65
Baldini Soares et al. [2019] 71.5
Zhang et al. [2018] 68.2
Zhang et al. [2017a] 65.1

5.2.3 Riedel NYT
Our model was unable to properly train on this dataset. It learns to always
predict the negative relation (about 80% of the dataset is the negative relation).
The distribution of relations in the dataset itself is most likely not the main
issue (since TACRED has a similar distribution of relations). It is an interesting
open problem, why a straightforward BERT model does not work on this dataset,
Moreira et al. [2020] encounter similar (less severe) issues. However, our main

1http://nlpprogress.com/english/relationship_extraction.html

48

http://nlpprogress.com/english/relationship_extraction.html

goal was to provide a model for Czech, so we leave the investigation for future
work.

5.2.4 CERED
We trained our model on all CERED versions. The performance of respective
models was mostly as expected. We pinpoint few things we observed in the
results.

We assume that the highest macro-F1 was achieved on CERED2 because we
choose the relation inventory for CERED1-4 based on CERED2. CERED0 has
a huge relation inventory and therefore it is not surprising that when weighting
over classes, the metric is low.

The fact, that model trained on CERED4 preforms relatively well, shows,
how remarkable BERTs (and the concept of pre-trained models) are for tasks
with small datasets. The low macro-F1 on CERED4 can be explained quite
easily. When we put constraints on which mentions will be kept in CERED4, we
did not ensure, that the dataset will be balanced. In Figure 3.11 we see, how
imbalanced the dataset really is.

Dataset # micro-F1 macro-F1 CERED2 test
micro-F1

CERED0 84.49 44.33 –
CERED1 83.94 76.58 81.72
CERED2 84.78 79.79 84.78
CERED3 77.29 73.96 82.33
CERED4 77.66 58.84 79.79

Table 5.3: Results on CERED, we measured micro and macro F1 on the corre-
sponding test sets for each version. Moreover, we measured the performance of
models trained on CERED1-4 on CERED2 test set, to see the direct comparison.

49

Conclusion
In this thesis, we proposed a methodology for generating relationship extraction
datasets using Wikipedia and Wikidata. We analysed several pitfalls we faced,
and generated CERED (Czech Relationship Extraction Dataset).

We then designed a neural network architecture for the relationship extraction
task. In the network, we employ BERT contextual embeddings, which increase
the quality of the network. We demonstrated, that the proposed architecture
preforms reasonably well on two English relationship extraction datasets, and we
reported the performance of our model on CERED.

5.3 Future work

5.3.1 Other Languages
This thesis focused on relationship extraction in the Czech Language. We believe,
that our work could be easily extended into different languages. In the CERED
generation process, there are three language-dependent steps:

• Wikidata preprocessing – we only worked with items that had at least one
Czech name. The filtering can be easily changed to arbitrary language. For
languages with small Wikipedia, it might be reasonable to consider relaxing
the condition.

• Wikitext parsing – names of templates are in the language of the Wikipedia.
We could remove the content of all templates, but it would of course nega-
tively impact the size of the dataset.

• Entity matching – this step is heavily dependent on the language. We be-
lieve that for some languages it might be satisfactory to change the language
in MorphoDiTa (for example MorphoDiTa supports the Slovak language).
We might also consider exchanging MorphoDiTa with a more universal tool
supporting more languages (for example UDPipe [Straka and Straková,
2017] or mainstream spaCy [Honnibal and Montani, 2017]).

If we implemented the changes proposed above, we would be able to create
a dataset and a model for each language that the multilingual BERT supports
(coincidentally, BERT was trained on the 102 biggest Wikipedias).

5.3.2 Wikidata Ontology
In Subsection 3.6.6, we mentioned that additional information for training could
be obtained from Wikidata. Such information is often available in other rela-
tionship extraction datasets. In the future, we would like to use Wikidata for
extracting such information and add it to CERED.

50

Bibliography
Livio Baldini Soares, Nicholas FitzGerald, Jeffrey Ling, and Tom Kwiatkowski.

Matching the blanks: Distributional similarity for relation learning. In Pro-
ceedings of the 57th Annual Meeting of the Association for Computational Lin-
guistics, pages 2895–2905, Florence, Italy, July 2019. Association for Compu-
tational Linguistics. doi: 10.18653/v1/P19-1279. URL https://www.aclweb.
org/anthology/P19-1279.

Kurt Bollacker, Colin Evans, Praveen Paritosh, Tim Sturge, and Jamie Tay-
lor. Freebase: a collaboratively created graph database for structuring human
knowledge. In In SIGMOD Conference, pages 1247–1250, 2008.

Linguistic Data Consortium and New York Times Company. The New York
Times Annotated Corpus. LDC corpora. Linguistic Data Consortium, 2008.
URL https://books.google.cz/books?id=D4F2AQAACAAJ.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT:
Pre-training of deep bidirectional transformers for language understanding. In
Proceedings of the 2019 Conference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Language Technologies, Volume
1 (Long and Short Papers), pages 4171–4186, Minneapolis, Minnesota, June
2019. Association for Computational Linguistics. doi: 10.18653/v1/N19-1423.
URL https://www.aclweb.org/anthology/N19-1423.

Iris Hendrickx, Su Nam Kim, Zornitsa Kozareva, Preslav Nakov, Diarmuid
Ó Séaghdha, Sebastian Padó, Marco Pennacchiotti, Lorenza Romano, and
Stan Szpakowicz. SemEval-2010 task 8: Multi-way classification of seman-
tic relations between pairs of nominals. In Proceedings of the 5th International
Workshop on Semantic Evaluation, pages 33–38, Uppsala, Sweden, July 2010.
Association for Computational Linguistics. URL https://www.aclweb.org/
anthology/S10-1006.

Matthew Honnibal and Ines Montani. spaCy 2: Natural language understand-
ing with Bloom embeddings, convolutional neural networks and incremental
parsing. To appear, 2017.

Joohong Lee, Sangwoo Seo, and Yong Suk Choi. Semantic relation classification
via bidirectional LSTM networks with entity-aware attention using latent entity
typing. CoRR, abs/1901.08163, 2019. URL http://arxiv.org/abs/1901.
08163.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation
of word representations in vector space, 2013.

Johny Moreira, Chaina Oliveira, David Macedo, Cleber Zanchettin, and Luciano
Barbosa. Distantly-supervised neural relation extraction with side information
using bert, 04 2020.

Juri Opitz and Sebastian Burst. Macro f1 and macro f1. ArXiv, abs/1911.03347,
2019.

51

https://www.aclweb.org/anthology/P19-1279
https://www.aclweb.org/anthology/P19-1279
https://books.google.cz/books?id=D4F2AQAACAAJ
https://www.aclweb.org/anthology/N19-1423
https://www.aclweb.org/anthology/S10-1006
https://www.aclweb.org/anthology/S10-1006
http://arxiv.org/abs/1901.08163
http://arxiv.org/abs/1901.08163

Sebastian Riedel, Limin Yao, and Andrew Mccallum. Modeling relations and
their mentions without labeled text. pages 148–163, 09 2010. doi: 10.1007/
978-3-642-15939-8 10.

Milan Straka and Jana Straková. Tokenizing, pos tagging, lemmatizing and pars-
ing ud 2.0 with udpipe. In Proceedings of the CoNLL 2017 Shared Task: Mul-
tilingual Parsing from Raw Text to Universal Dependencies, pages 88–99, Van-
couver, Canada, August 2017. Association for Computational Linguistics. URL
http://www.aclweb.org/anthology/K/K17/K17-3009.pdf.

Jana Straková, Milan Straka, and Jan Hajič. Open-Source Tools for Morphology,
Lemmatization, POS Tagging and Named Entity Recognition. In Proceedings of
52nd Annual Meeting of the Association for Computational Linguistics: System
Demonstrations, pages 13–18, Baltimore, Maryland, June 2014. Association
for Computational Linguistics. URL http://www.aclweb.org/anthology/P/
P14/P14-5003.pdf.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you
need, 2017.

Linlin Wang, Zhu Cao, Gerard de Melo, and Zhiyuan Liu. Relation clas-
sification via multi-level attention CNNs. In Proceedings of the 54th An-
nual Meeting of the Association for Computational Linguistics (Volume 1:
Long Papers), pages 1298–1307, Berlin, Germany, August 2016. Association
for Computational Linguistics. doi: 10.18653/v1/P16-1123. URL https:
//www.aclweb.org/anthology/P16-1123.

Wikipedia contributors. Wikipedia — Wikipedia, the free encyclopedia,
2020. URL https://en.wikipedia.org/w/index.php?title=Wikipedia&
oldid=947302871. [Online; accessed 28-March-2020].

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement De-
langue, Anthony Moi, Pierric Cistac, Tim Rault, R’emi Louf, Morgan Fun-
towicz, and Jamie Brew. Huggingface’s transformers: State-of-the-art natural
language processing. ArXiv, abs/1910.03771, 2019.

Shanchan Wu and Yifan He. Enriching pre-trained language model with entity
information for relation classification. CoRR, abs/1905.08284, 2019. URL
http://arxiv.org/abs/1905.08284.

Yuhao Zhang, Victor Zhong, Danqi Chen, Gabor Angeli, and Christopher D.
Manning. Position-aware attention and supervised data improve slot filling. In
Proceedings of the 2017 Conference on Empirical Methods in Natural Language
Processing, pages 35–45, Copenhagen, Denmark, September 2017a. Association
for Computational Linguistics. doi: 10.18653/v1/D17-1004. URL https://
www.aclweb.org/anthology/D17-1004.

Yuhao Zhang, Victor Zhong, Danqi Chen, Gabor Angeli, and Christopher D.
Manning. Position-aware attention and supervised data improve slot fill-
ing. In Proceedings of the 2017 Conference on Empirical Methods in Natu-

52

http://www.aclweb.org/anthology/K/K17/K17-3009.pdf
http://www.aclweb.org/anthology/P/P14/P14-5003.pdf
http://www.aclweb.org/anthology/P/P14/P14-5003.pdf
https://www.aclweb.org/anthology/P16-1123
https://www.aclweb.org/anthology/P16-1123
https://en.wikipedia.org/w/index.php?title=Wikipedia&oldid=947302871
https://en.wikipedia.org/w/index.php?title=Wikipedia&oldid=947302871
http://arxiv.org/abs/1905.08284
https://www.aclweb.org/anthology/D17-1004
https://www.aclweb.org/anthology/D17-1004

ral Language Processing (EMNLP 2017), pages 35–45, 2017b. URL https:
//nlp.stanford.edu/pubs/zhang2017tacred.pdf.

Yuhao Zhang, Peng Qi, and Christopher D. Manning. Graph convolution
over pruned dependency trees improves relation extraction. In Proceedings
of the 2018 Conference on Empirical Methods in Natural Language Process-
ing, pages 2205–2215, Brussels, Belgium, October-November 2018. Associ-
ation for Computational Linguistics. doi: 10.18653/v1/D18-1244. URL
https://www.aclweb.org/anthology/D18-1244.

53

https://nlp.stanford.edu/pubs/zhang2017tacred.pdf
https://nlp.stanford.edu/pubs/zhang2017tacred.pdf
https://www.aclweb.org/anthology/D18-1244

A. Attachments

A.1 Electronic Attachment
Here we describe the top-level directory structure of the electronic attachment.

• CERED_DATASETS/

– CERED – datafiles with CERED0-4
– wiki_corpus_generator – scripts that generated CERED0-4

• TRAINING/ - scripts related to the second part of this thesis

Trained models exceed the size limit for electronic attachment. Therefore, we
stored them at http://hdl.handle.net/11234/1-3266.

54

http://hdl.handle.net/11234/1-3266

	Introduction
	Background
	Terminology
	Relationship Extraction
	Czech Language
	Inflexion
	Word Order

	I Datasets
	Existing Datasets
	SEMEVAL 2010 Task 8 Dataset
	TACRED dataset
	Riedel NYT dataset

	CERED
	Overview
	Data Sources
	Constraints and Requirements
	Czech Wikipedia
	Wikidata

	Analysis
	Dataflow
	Entity Matching
	Wikilink Mentions
	Relation Matching
	Relation Inventory
	Result Evaluation

	Used Technologies
	Python
	Spark
	MorphoDiTa
	Streamlit

	Implementation
	Wikidata Preprocessing
	Wikitext Parsing
	Entity Matching
	Relation Matching
	Characteristics of the Generated Dataset

	CERED Versions
	CERED0
	CERED1
	CERED2
	CERED3
	CERED4
	Other Considered Variations

	II Training
	Previous Work on Relationship Extraction
	Deep NLP Models
	The Transformer Architecture
	Pre-training
	BERT

	Metrics
	Binary Classification
	Multiclass Classification
	Relationship Extraction Metrics

	Relationship Extraction on CERED
	Model
	Results
	S10T8
	TACRED
	Riedel NYT
	CERED

	Conclusion
	Future work
	Other Languages
	Wikidata Ontology

	Bibliography
	Attachments
	Electronic Attachment

