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1. Introduction
In various branches of research, most notably in study of PDEs and theory of
function spaces, we come up with the question of embeddings between different
function spaces. As a pivotal examples we can mention Sobolev embeddings of
both Euclidean and Gaussian types, higher-order embeddings (as in [1]), embed-
dings on bad domains (as in [2]) etc.

Our interest in the topic is driven by the development of theory behind the
first two embeddings. Extensive research of Gaussian-Sobolev embeddings came
after they proved to be a successful attempt at generalizing (Euclidean-)Sobolev
embeddings to infinite dimension bypassing several problems including the fact
that Lebesgue measure is meaningless in this case on the way.

Since then, it was shown that using reduction principles (cf. [3]), the question
of many embeddings can be reformulated as whether certain 1-dimensional oper-
ator, usually of Hardy type (as defined in [4]), is bounded. This operator often
attains form

f ↦→ Tf, where Tf(t) = Twf(t) =
∫︂ 1

t
f ∗w,

where w is a given decreasing non-negative function and f ∗ is the decreasing
rearrangement of a function f (precise definitions will be given below). Mentioned
examples correspond to functions w(t) equal to t 1

n
−1 in case of Euclidean-Sobolev

embeddings,
1

t
√︂

1 + log 1
t

for Gaussian-Sobolev embeddings, I(t)
t

for bad domains, where I(t) is its isoperi-
metric profile (cf. [5]) and lastly tm

n
−1 for the higher-order embeddings. With such

a broad topic and so many possible applications (cf. [6, 7, 8, 9, 10]), development
of general theory is in order.

Phenomena we are mainly interested in are the following, in certain cases
(e.g. Euclidean-Sobolev embeddings) we observe a certain “gain” in integrability
for any given domain, where “gain” means that the range of the operator Tw and
this given domain is a proper subset of this domain. Similarly, a “loss” for a given
domain and operator occurs when the range is a proper superset of the domain.

What is more interesting, in case of Gaussian-Sobolev embeddings and

w(t) = 1

t

√︃
1 + log

(︂
1
t

)︂
both the “gain” and “loss” occur – the former happens near L1 and the latter
near L∞ (cf. [3]). If both occur simultaneously, the question arises, where on
the scale of L1 to L∞ is the edge – the optimal space? Which space satisfies the
condition that it is optimal range for itself as a domain and simultaneously the
optimal domain for itself as a range? This is the fundamental question we are
trying to answer and in this thesis we lay groundwork to do it.

First, we need to characterize when there is “gain” and “loss” simultaneously.
It will be shown that the Lebesgue space L∞ is an optimal range for some domain
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and operator Tw if and only if w ∈ L1. As a result, there is a “loss” near L∞ for
Tw if and only if w ̸∈ L1. Conversely, it will be shown that the optimal domain
for the Lebesgue space L1 is the Lorentz space Λ1

(︃(︂
1
w

)︂′
)︃

and that implies that
there is a „gain” near L1 if and only if tw(t) ∈ L∞.

Under these assumptions, a characterization of the optimal range for a given
domain and the operator Tw is given as well as a characterization of the optimal
domain for a given range. Moreover, we give some particular examples for stan-
dard spaces as domains and in the last chapter we present results related to the
question of the optimal space.

The text is organized as follows. In Chapter 2, we collect background ma-
terial and fix notation. In Chapter 3, we characterize optimal range space for
a given operator and domain space and, conversely, the optimal domain space
for a given operator and range space. In Chapter 4, we illustrate the general
results on several non-trivial examples involving mostly Lorentz-type spaces and
their modifications. Finally, we give some results connected to the question of
the optimal space in Chapter 5.
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2. Preliminaries
In the next three sections, we would like to introduce readers who were not
exposed to the sufficiently advanced theory of (primarily) function spaces to the
tools and knowledge needed to understand the workframe and results of this
thesis.

2.1 General settings of the thesis
There are certain (un)written rules, which will be in effect throughout this thesis.
First of all, there’s a fair bit of integrating throughout the thesis and if it is not
specified otherwise it is done with respect to the Lebesgue measure on the interval
(0, 1). If there is no threat of misinterpretation the integrating variable will be
omitted. The Lebesgue measure is denoted µ.

Unless stated otherwise, |U | denotes the Lebesgue measure of a given mea-
surable set U . If we speak of a property being satisfied a.e. it means µ-almost
everywhere in the appropriate set.

Due to this being a meager diploma thesis, we will be only working with
measurable functions, which are a.e. finite. The set of all such functions will
be denoted M(S), where S is the domain of the functions. We will also use
the set of all measurable positive a.e. finite functions, which will be denoted
M+(S). In cases when we need to establish existence of a constant, but we are
not particularly interested in it’s value, we shall use a generic constant C.

Definition 2.1. (Equivalence of functions) We say that functions f and g are
equivalent on the interval (a, b) if there exist constants C1, C2 > 0 independent
of the appropriate quantities such that

C1f(t) ≤ g(t) ≤ C2f(t), t ∈ (a, b).

We denote the fact by writing f ≈ g on (a, b). Unless the interval over which
functions are equivalent is specified, assume (a, b) = (0, 1).

2.2 Rearrangements and maximal operator
The first thing we need to do is somehow simplify the objects we are working with.
To this end, we will introduce their decreasing rearrangements, which will allow
us to work with a big family of functions while retaining some useful properties
which we will use in our endeavor.

Definition 2.2. (Decreasing rearrangement) For any function f ∈ M(0, 1) define
its decreasing rearrangement

f ∗ : (0, 1) → [0,∞)

by
f ∗(t) = sup{s ≥ 0 : |{x ∈ (0, 1) : |f(x)| > s}| > t}.

Moreover, we say that functions f and g are equimeasurable if their respective
decreasing rearrangements coincide. It is denoted by f ∼ g.
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A very important result regarding the relationship between decreasing rear-
rangements and the original functions is presented in the following theorem.

Theorem 2.3. (Hardy-Littlewood inequality) [11, Chapter 2, Theorem 2.2]

1) If functions f and g belong to M(R, λ), then∫︂
R

|fg|dλ ≤
∫︂ 1

0
f ∗(s)g∗(s)ds.

2) For (R, λ) = ((0, 1), µ) and a measurable non-negative function g, we have
that ∫︂ t

0
gdµ ≤

∫︂ t

0
g∗dµ, t ∈ (0, 1).

Proposition 2.4. [11, Chapter 2, Proposition 1.7] Functions f and f ∗ are
equimeasurable.

Definition 2.5. (Operator f ∗∗) For any function f ∈ M(0, 1) define the maximal
function or maximal operator of f by the formula

f ∗∗(t) = 1
t

∫︂ t

0
f ∗(s)ds, t ∈ (0, 1).

Proposition 2.6. (Properties of f ∗∗) [11, Chapter 2, Proposition 3.2, Property
(3.10)] Suppose that f , g and fn, n ∈ N, are measurable functions and let a ∈ R.
Then f ∗∗ is a non-negative, non-increasing and continuous function on (0, 1).
Moreover,

1) f ∗∗ = 0 if and only if f = 0 a.e.,

2) f ∗ ≤ f ∗∗,

3) |g| ≤ |f | a.e. implies g∗∗ ≤ f ∗∗,

4) (af)∗∗ = |a|f ∗∗,

5) |fn| ↗ |f | a.e. implies f ∗∗
n ↗ f ∗∗,

6) (f + g)∗∗ ≤ f ∗∗ + g∗∗.

While the decreasing rearrangement does not posses some of the properties we
would like (e.g. it is not subadditive), the maximal operator f ∗∗ fares far better
in being subadditive and having some nice convergence implications.

2.3 Rearrangement invariant spaces
Armed with the knowledge of a decreasing rearrangement, we want to define func-
tion spaces we will be working with, formulate some operator related definitions
and then finish off with some fundamental results we will use later on.

Definition 2.7. (Rearrangement invariant space) A Banach space X(0, 1) of
measurable functions equipped with the norm ∥·∥X(0,1) is called a rearrangement
invariant (r.i.) space if
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(P1) 0 ≤ f ≤ g a.e. implies ∥f∥X(0,1) ≤ ∥g∥X(0,1),

(P2) 0 ≤ fk ↗ f implies ∥fk∥X(0,1) ↗ ∥f∥X(0,1),

(P3) ∥1∥X(0,1) < ∞,

(P4) there exists a constant C s.t.
∫︁ 1

0 |f |dλ ≤ C ∥f∥X(0,1) for any f ∈ X(0, 1),

(P5) ∥f∥X(0,1) = ∥g∥X(0,1) whenever f ∗ = g∗.

A norm satisfying the above properties is called an r.i. norm.

Let us now define another important space tied to an r.i. space which is an
analogy of a dual space.

Definition 2.8. (Associate space) For a given r.i. space X(0, 1), define its asso-
ciate space (X ′(0, 1), ∥·∥X′(0,1)) as follows,

X ′(0, 1) = {f ∈ M(0, 1) :
∫︂ 1

0
|fg| < ∞, ∀g ∈ X(0, 1)}

and
∥f∥X′(0,1) = sup

∥g∥X(0,1)≤1

∫︂ 1

0
|fg|.

With an associate space in hand we can formulate a generalization of Hölder
inequality, which will later turn out very useful.

Proposition 2.9. (Hölder inequality for r.i. spaces) [11, Chapter 1, Theorem
2.4]
Let X(0, 1) be an r.i. space, then the space X ′(0, 1) with the norm defined above
is an r.i. space and furthermore the inequality∫︂ 1

0
|fg| ≤ ∥f∥X(0,1) ∥g∥X′(0,1)

holds for any f ∈ X(0, 1) and g ∈ X ′(0, 1).

We shall mention one last object, which to some degree characterizes an r.i.
space and that is its fundamental function.

Definition 2.10. (Fundamental function) Let X(0, 1) be an r.i. space. We define
the fundamental function of X in the following manner,

φX(t) =
⃦⃦⃦
χ(0,t)

⃦⃦⃦
X(0,1)

, t ∈ [0, 1).

It can be shown (and seen in [12, Theorem 7.9.6]) that the fundamental func-
tion of any r.i. space is quasiconcave1 and the following equality holds for any
t ∈ [0, 1),

φX(t)φX′(t) = t.

With all of this in mind, it is now a good time to include some operator related
definitions and examples of r.i. spaces.

1A function f on [0, 1) is quasiconcave if it is non-decreasing, vanishes at 0 and f

t
is non-

increasing.
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Definition 2.11. Assume that there exists a constant C > 0 such that for any
f ∈ X the operator T satisfies

∥Tf∥Y (0,1) ≤ C ∥f∥X(0,1)

for some r.i. spaces X and Y . We say that the operator T : X → Y is bounded.
The fact will be denoted simply by

T : X → Y.

An r.i. space Y is continuously embedded into an r.i. space X if the identity
operator I : X → Y is bounded. We denote the fact that X is continuously
embedded into Y by

X ↪→ Y.

Moreover, for T : X → Y we say that Y is the optimal range (of the operator
T and the domain X), if Y is continuously embedded into any r.i. space Z for
which

T : X → Z.

is bounded.
Similarly, X is the optimal domain (of the operator T and the range Y ), if

any r.i. space Z such that the operator

T : Z → Y

is bounded is continuously embedded into X.
If the pair (X,X) is an optimal domain and range for an operator T , then

the r.i. space X is called a self-optimal space (with respect to the operator T ).

As stated in [3, page 3592],

X ↪→ Y ⇐⇒ Y ′ ↪→ X ′

and
X ↪→ Y ⇐⇒ X ⊂ Y.

The family of r.i. spaces is quite large. To give some examples, it contains
Lebesgue spaces, Orlicz spaces and under some conditions also Lorentz or Lorentz-
Zygmund spaces and, more importantly, classical Lorentz spaces Γp(w)(0, 1) and
Λp(w)(0, 1).

Proposition 2.12. [11, Chapter 2, Proposition 1.8] For any p ∈ [1,∞] the
Lebesgue space Lp(0, 1) is an r.i. space.

Definition 2.13. (Two-parameter Lorentz spaces) Let p, q ∈ [1,∞]. Define the
two parameter Lorentz spaces Lp,q = Lp,q(0, 1) and L(p,q) = L(p,q)(0, 1) as the sets
of functions for which the corresponding norm (defined below) is finite,

∥f∥p,q = ∥f∥Lp,q =

⎧⎪⎨⎪⎩
⃦⃦⃦
t

1
p

− 1
q f ∗(t)

⃦⃦⃦
Lq

0 < q < ∞,

ess sup 0<s<1 t
1
pf ∗(t) q = ∞,

∥f∥(p,q) = ∥f∥L(p,q) =

⎧⎪⎨⎪⎩
⃦⃦⃦
t

1
p

− 1
q f ∗∗(t)

⃦⃦⃦
Lq

0 < q < ∞,

ess sup 0<s<1 t
1
pf ∗∗(t) q = ∞.
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In the definitions, we use the convention that 1
∞ = 0. If we add logarithmic

weights into the norm, we get Lorentz-Zygmund spaces as defined in either [12]
or [3].

Definition 2.14. (Lorentz-Zygmund spaces) Let p, q ∈ (0,∞] and let α ∈ R.
Define the Lorentz-Zygmund spaces Lp,q,α = Lp,q,α(0, 1) and L(p,q,α) = L(p,q,α)(0, 1)
as the set of functions for which the corresponding norm (defined below) is finite,

∥f∥p,q,α = ∥f∥Lp,q,α =

⎧⎪⎨⎪⎩
⃦⃦⃦
t

1
p

− 1
q logα

(︂
e
t

)︂
f ∗(t)

⃦⃦⃦
Lq

0 < q < ∞,

ess sup 0<s<1 t
1
p logα

(︂
e
t

)︂
f ∗(t) q = ∞,

∥f∥(p,q,α) = ∥f∥L(p,q,α) =

⎧⎪⎨⎪⎩
⃦⃦⃦
t

1
p

− 1
q logα

(︂
e
t

)︂
f ∗∗(t)

⃦⃦⃦
Lq

0 < q < ∞,

ess sup 0<s<1 t
1
p logα

(︂
e
t

)︂
f ∗∗(t) q = ∞.

Notice that Lp,q = Lp,q,0 and L(p,q) = L(p,q,0). Moreover, Lp,q,α = L(p,q,α) if and
only if p > 1.

The next theorem, cited from [3, page 3595], describes the conditions under
which Lp,q,α is a rearrangement invariant space and the one after it defines the
associate space of Lp,q,α.

Theorem 2.15. The Lorentz-Zygmund space Lp,q,α is an r.i. space, up to equiv-
alent norms, if and only if one of the following conditions is satisfied:

• p = q = 1, α ≥ 0,

• 1 < p < ∞, 1 ≤ q ≤ ∞, α ∈ R,

• p = ∞, 1 ≤ q < ∞, α + 1
q
< 0,

• p = q = ∞, α ≤ 0.

Theorem 2.16. Let Lp,q,α be a given r.i. space. Then, up to equivalent norms,

(Lp,q,α)′ =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
L∞,∞,−α if p = q = 1, α ≥ 0,
Lp′,q′,−α if 1 < p < ∞, 1 ≤ q ≤ ∞, α ∈ R,
L(1,q′,−α−1) if p = ∞, 1 ≤ q < ∞, α+ 1

q
< 0,

L1,1,−α if p = q = ∞, α ≤ 0,
where

p′ =

⎧⎪⎨⎪⎩
1 for p = ∞,
∞ for p = 1,

p
p−1 for 1 < p < ∞.

With Lebesgue, Lorentz and Lorentz-Zygmund spaces covered, let us turn our
attention to the last Lorentz spaces left – classical Lorentz spaces, which are a
natural generalization of all of the mentioned spaces.
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Definition 2.17. (Classical Lorentz spaces) Let w ∈ M+(0, 1). The classical
Lorentz spaces Λp(w) = Λp(w)(0, 1) and Γp(w) = Γp(w)(0, 1) are defined as the
set of functions for which the corresponding norm (defined below) is finite,

∥f∥Λp(w)(0,1) =
{︄

(
∫︁ 1

0 (f ∗(s))pw(s)ds)
1
p 0 < p < ∞,

ess sup 0<s<1 f
∗(s)w(s) p = ∞,

∥f∥Γp(w)(0,1) =
{︄

(
∫︁ 1

0 (f ∗∗(s))pw(s)ds)
1
p 0 < p < ∞,

ess sup 0<s<1 f
∗∗(s)w(s) p = ∞.

The spaces Λp(w) above are not necessarily r.i. spaces. In fact as stated in [3],
Λp(w) is an r.i. space if and only if either p = 1 and

1
s

∫︂ s

0
w ≤ C

t

∫︂ t

0
w, 0 < t ≤ s ≤ 1, (2.1)

or 1 < p < ∞ and

sp
∫︂ 1

s
r−pw(r)dr ≤ C

∫︂ s

0
w, s ∈ (0, 1),

or p = ∞ and
1
s

∫︂ s

0

1
w

≤ C

w(s) , s ∈ (0, 1),

for some constant C > 0, where

w(s) = ess sup
0<r<s

w(r).

On the other hand, the spaces Γp(w) satisfy most of the properties of r.i.
spaces. The maximal operator is subadditive and positively homogeneous, as
stated in Proposition 2.6. Moreover w is positive a.e., so

∥f∥Γp(w) = 0

if and only if
f ∗∗ = 0

and this in turn is true if and only if f = 0 a.e. These properties then translate
to the functional ∥f∥Γp(w) and so it is always a norm. Similarly, properties (P1),
(P2) and (P5) follow from the corresponding properties of the maximal operator.

Lastly, we want to show that ∥·∥Γp(w) satisfies the property (P4). Observe
that

w(t)
1
p

t

∫︂ t

0
f ∗ ≥ χ[ 1

2 ,1]
w(t)

1
p

t

∫︂ t

0
f ∗ ≥ χ[ 1

2 ,1]
w(t)

1
p

t

∫︂ 1
2

0
f ∗.

Using (P1), we can formally write

∥f∥Γp(w) =

⃦⃦⃦⃦
⃦⃦w(t)

1
p

t

∫︂ t

0
f ∗

⃦⃦⃦⃦
⃦⃦

Lp

≥

⃦⃦⃦⃦
⃦⃦χ[ 1

2 ,1]
w(t)

1
p

t

∫︂ t

0
f ∗

⃦⃦⃦⃦
⃦⃦

Lp

≥ 1
2

⃦⃦⃦⃦
⃦⃦χ[ 1

2 ,1]
w(t)

1
p

t

⃦⃦⃦⃦
⃦⃦

Lp

∥f∥L1 ,
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where the last inequality owes its existence to the monotonicity of the function
f ∗. Now, the quantity ⃦⃦⃦⃦

⃦w(t)
t

⃦⃦⃦⃦
⃦

Lp

can be infinity, but then no characteristic function χ[0,T ] belongs to the space,
because its norm is infinity thanks to the string of inequalities above. This in
turn means that the space does not contain any non-increasing function other
than 0 and in particular it does not contain 1.

For p = ∞, the expression
w(x)
x

must be finite for some point x ∈ (0, 1), otherwise

∥f∥Γ∞(w) = ess sup
t∈(0,1)

w(t)
t

∫︂ t

0
f ∗

is finite if and only if f = 0. Consider such point x, then

ess sup
t∈(0,1)

w(t)
t

∫︂ t

0
f ∗ ≥ w(x)

x

∫︂ x

0
f ∗ ≥ w(x) ∥f∥L1 ,

where the last inequality is again due to the monotonicity of f ∗. As a result, we
only need to verify non-triviality of the space Γp(w).

For the special cases of L(p,q,α), which are equal to Γq(w) for a suitable choice
of w, it is easy to verify that 1 ∈ L(p,q,α) for all p, q > 0 and α ∈ R except the
case when p = q = ∞ (then we need α ≤ 0).

In addition, according to [3, page 3596], any quasiconcave weakly differentiable
function

φ : [0, 1) → [0,∞)

and a function φ′, which is its derivative, give rise to r.i. spaces Λ1(φ′) and
Γ∞(φ). Moreover these spaces are the smallest and the largest r.i. spaces with
the fundamental function equivalent to the function φ, i.e.

Λ1(φ′) ↪→ X(0, 1) ↪→ Γ∞(φ)

for any r.i. space X(0, 1) such that φX ≈ φ. Another important property is that
if

φ(t) = t

φ(t) , t ∈ (0, 1)

satisfies
lim

t→0+
φ(t) = 0,

then

(Λ1(φ′))′ = Γ∞(φ) and (Γ∞(φ))′ = Λ1(φ′). (2.2)

Even though the next two theorems look somehow disconnected from the rest
of this chapter, they will be substantial to prove some results in the chapters to
come. The following theorem is a special case of [5, Corollary 9.8].
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Theorem 2.18. Let X and Y be r.i. spaces on (0, 1) and let I : [0,∞) → [0,∞)
be a non-decreasing function. Then⃦⃦⃦⃦

⃦
∫︂ 1

t

f(s)
I(s)ds

⃦⃦⃦⃦
⃦

Y (0,1)
≤ C1 ∥f∥X(0,1) for every f ∈ M+(0,∞)

holds true if and only if⃦⃦⃦⃦
⃦
∫︂ 1

t

g(s)
I(s)ds

⃦⃦⃦⃦
⃦

Y (0,1)
≤ C2 ∥g∥X(0,1) for every non-increasing g ∈ M+(0,∞).

Next result will be used in Chapter 3. It is rather complicated so to make
reader’s life easier it is included in the thesis instead of merely cited. It is a
modification of Theorem 3.5 from [13].
Theorem 2.19. Let 0 < p, q < ∞. Let b be a weight function2 such that

0 < B(t) < ∞, t ∈ (0, 1),

where
B(t) =

∫︂ t

0
b.

Let u be a continuous weight and let v, w be weights such that

0 <
∫︂ x

0
v < ∞ and 0 <

∫︂ x

0
w < ∞, x ∈ (0, 1)

and assume that
sup

0<t<1

u(t)
B(t)

∫︂ t

0

b(s)
u(s) < ∞,

where
u(t) = B(t) sup

t≤τ≤1

u(τ)
B(τ) .

Finally, let 1 < p ≤ q < ∞. Then there exists a constant C > 0 such that the
following holds for any non-increasing non-negative measurable function φ:(︃∫︂ 1

0
[(Tu,bφ)(t)]qw(t)dt

)︃ 1
q

≤ C
(︃∫︂ 1

0
[φ(t)]pv(t)dt

)︃ 1
p

,

where
(Tu,bφ) = supt≤τ<1

u(τ)
B(τ)

∫︂ τ

0
φ(t)b(t)dt,

if and only if there exists a constant C > 0 such that(︄∫︂ x

0
[ sup
t≤τ≤x

u(τ)]qw(t)dt
)︄ 1

q

≤ C
(︃∫︂ x

0
v(t)dt

)︃ 1
p

for all x ∈ (0, 1) (2.3)

and

sup
x∈(0,1)

(︄∫︂ 1

x

(︄
u(t)
B(t)

)︄q

w(t)dt
)︄ 1

q

⎛⎝∫︂ x

0

(︄
B(t)
V (t)

)︄p′

v(t)dt
⎞⎠ 1

p′

< ∞, (2.4)

where
V (t) =

∫︂ t

0
v.

2In the context of this theorem, weight function is measurable non-negative a.e. finite func-
tion. Later on in the thesis we shall use a different definition, which is more strict than this
one.
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3. Optimal range and optimal
domain for the integral operator
After introducing the background we shall get to work. To outline our endeavour,
we will define an integral operator T dependent on a weight function w. Then we
shall prove that a norm of the optimal range of this operator and a given domain
is linked to the function w and the norm of the space associated with X. After
that we will prove similar assertion with respect to the given range and optimal
domain. Note that in [3] similar results are proven, but only for

w(t) = 1
t
√︂

1 + log 1
t

.

We shall obtain these results as a particular consequence of the theory we develop.

Definition 3.1. (Weight function) If a non-increasing function w belongs to
M+(0, 1), we shall call it a weight function.

Definition 3.2. (Operator T ) For a given weight function w, define

T : M(0, 1) → M(0, 1)

such that for any f ∈ M(0, 1)

Tf(t) = Twf(t) =
∫︂ 1

t
wf ∗.

With the operator defined we also define a norm on the associate space Y ′

of a soon-to-be-proven optimal range. The range itself is then defined somewhat
implicitly as an associate space to Y ′.

Definition 3.3. (Norm on Y ′) Given a rearrangement invariant space X(0, 1)
and a weight w, define a functional ∥·∥Y ′(0,1) as follows,

∥g∥Y ′(0,1) =
⃦⃦⃦⃦
w(t)

∫︂ t

0
g∗
⃦⃦⃦⃦

X′(0,1)

for any g ∈ M. Moreover, define Y ′(0, 1) = {f ∈ M, ∥f∥Y ′(0,1) < ∞}.

Please note that when no confusion can arise, we will be omitting sets over
which the function spaces are defined (it is almost always (0, 1)). After this
definition, one might not be surprised by the following theorem.

Theorem 3.4. Let X be an r.i. space and let w be a weight function. Then the
space Y ′, as defined in Definition 3.3, equipped with the norm ∥·∥Y ′(0,1) is an r.i.
space if and only if

tw(t) ∈ X ′.
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Proof. First we shall prove that ∥·∥Y ′(0,1) is a norm and then the remaining five
properties from Definition 2.7. Non-negativity and positive homogeneity follow
directly from the same properties of ∥·∥X′(0,1) and in the latter case of a decreasing
rearrangement. From the fact that ∥·∥X′(0,1) is a norm,

∥g∥Y ′(0,1) = 0

if and only if
w(t)

∫︂ t

0
g∗ = 0 a.e.

The integral
∫︁ t

0 g
∗ is non-zero for any t > 0 if and only if g is non-zero a.e. and

since the function w ∈ M+(0, 1) is non-increasing,

w(t)
∫︂ t

0
g∗ = 0

if and only if g = 0 a.e.
To prove the triangle inequality, take measurable functions f and g, then

∥f + g∥Y ′(0,1) =
⃦⃦⃦⃦
w(t)

∫︂ t

0
(f + g)∗

⃦⃦⃦⃦
X′(0,1)

= ∥tw(t)(f + g)∗∗(t)∥X′(0,1)

≤ ∥tw(t)(f ∗∗ + g∗∗)(t)∥X′(0,1)

≤
⃦⃦⃦⃦
w(t)

∫︂ t

0
f ∗
⃦⃦⃦⃦

X′(0,1)
+
⃦⃦⃦⃦
w(t)

∫︂ t

0
g∗
⃦⃦⃦⃦

X′(0,1)

= ∥f∥Y ′(0,1) + ∥g∥Y ′(0,1) .

The first inequality follows from the subadditivity of the maximal operator
and the property (P5) of the norm ∥·∥X′(0,1), the second one then from the triangle
inequality for the norm ∥·∥X′(0,1). We have proven that ∥·∥Y ′(0,1) is indeed a norm.

The property (P5) follows directly from the fact that f and f ∗ are equimea-
surable. To prove the property (P1), assume

0 ≤ f ≤ g a.e.

Consequently, for any t > 0,

|{x ∈ (0, 1), |f(x)| > t}| ≤ |{x ∈ (0, 1), |g(x)| > t}|.

This translates to
f ∗(s) ≤ g∗(s) for any s ∈ (0, 1)

and so
w(t)

∫︂ t

0
f ∗(s)ds ≤ w(t)

∫︂ t

0
g∗(s)ds, t > 0.

Using the property (P1) of ∥·∥X′(0,1), we get

∥f∥Y ′(0,1) =
⃦⃦⃦⃦
w(t)

∫︂ t

0
f ∗(s)ds

⃦⃦⃦⃦
X′(0,1)

≤
⃦⃦⃦⃦
w(t)

∫︂ t

0
g∗(s)ds

⃦⃦⃦⃦
X′(0,1)

= ∥g∥Y ′(0,1) .
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To show that the norm ∥·∥Y ′(0,1) possesses the property (P2), take

0 ≤ fk ↗ f.

Using the property 5) from Proposition 2.6,∫︂ t

0
f ∗

n = tf ∗∗
n ↗ tf ∗∗ =

∫︂ t

0
f ∗

and so, owing to the fact that w is non-negative,

0 ≤ w(·)
∫︂ .

0
fn ↗ w(·)

∫︂ .

0
f.

Next, using the property (P2) of the norm ∥·∥X′(0,1),

∥fn∥Y ′(0,1) =
⃦⃦⃦⃦
w(t)

∫︂ t

0
f ∗

n

⃦⃦⃦⃦
X′(0,1)

↗
⃦⃦⃦⃦
w(t)

∫︂ t

0
f ∗
⃦⃦⃦⃦

X′(0,1)
= ∥f∥Y ′(0,1) .

With (P1), (P2) and (P5) proven, we want to show that

tw(t) ̸∈ X ′

implies that
χ[0,T ] ̸∈ Y ′ for any T ∈ (0, 1),

which means that the space is empty and so in particular

1 = χ[0,1] ̸∈ Y ′

that is Y ′ is not rearrangement invariant. Using monotonicity of the maximal
operator and positive homogeneity, we obtain

∥f∥Y ′(0,1) =
⃦⃦⃦⃦
w(t)

∫︂ t

0
f ∗
⃦⃦⃦⃦

X′(0,1)

≥ ∥w(t)tf ∗∗(1)∥X′(0,1)

= f ∗∗(1) ∥tw(t)∥X′(0,1)

= ∥tw(t)∥X′(0,1) ∥f∥L1 (3.1)

for any f ∈ L1, because

∥f∥L1 = ∥f ∗∥L1 = f ∗∗(1). (3.2)

To complete the argument it suffices to notice that

χ[0,T ] ∈ L1, T ∈ [0, 1].

As a result, we know that
tw(t) ∈ X ′

is a necessary condition for Y ′ to be an r.i. space. For sufficiency, we need to
prove the remaining two properties. The property (P3) follows easily from the
following

∥1∥Y ′(0,1) =
⃦⃦⃦⃦
w(t)

∫︂ t

0
1
⃦⃦⃦⃦

X′(0,1)
= ∥tw(t)∥X′(0,1) < ∞.
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Finally we have to deal with (P4). Consider again (3.1), now assume that f ∈ Y ′

instead of f ∈ L1 and note that

∥tw(t)∥X′(0,1) ̸= 0,

because w is non-zero a.e. It follows that

∥f∥L1
≤ 1

∥tw(t)∥X′(0,1)
∥f∥Y ′(0,1) .

This last step completes the proof.

With this theorem in hand, we can define the space Y as follows

Y = {f ∈ M(0, 1),
∫︂ 1

0
|fg| < ∞ ∀g ∈ Y ′}, (3.3)

where Y ′ is as in Theorem 3.4, and equip it with the dual norm

∥f∥Y (0,1) = sup
∥g∥Y ′(0,1)≤1

∫︂ 1

0
|fg|.

As mentioned in Proposition 2.9, (Y, ∥·∥Y (0,1)) is an r.i. space.

Theorem 3.5. (Optimal range) Let a function w and a space X be as in Theo-
rem 3.4 and a space Y as in (3.3). Then the operator

T = Tw : X → Y

is bounded and the space Y is the optimal range for the space X and the opera-
tor T .

Proof. Using the definition of norm on Y in the second equality, the definition of
T and Fubini’s theorem in the third and the fourth one respectively, we get

∥T∥X→Y = sup
∥f∥X(0,1)≤1

∥Tf∥Y

= sup
∥f∥X(0,1)≤1

sup
∥g∥Y ′(0,1)≤1

∫︂ 1

0
|g(Tf)|

= sup
∥f∥X(0,1)≤1

sup
∥g∥Y ′(0,1)≤1

∫︂ 1

0
|g(t)|

∫︂ 1

t
w(s)f ∗(s)dsdt

= sup
∥f∥X(0,1)≤1

sup
∥g∥Y ′(0,1)≤1

∫︂ 1

0
f ∗(s)w(s)

∫︂ s

0
|g(t)|dtds.

Next, we utilize Hardy-Littlewood inequality (Theorem 2.3, part 2)), fact that
f ∗(t)w(t) is a non-negative function and then Hölder inequality (Proposition 2.9)

∥T∥X→Y ≤ sup
∥f∥X(0,1)≤1

sup
∥g∥Y ′(0,1)≤1

∫︂ 1

0
f ∗(s)w(s)

∫︂ s

0
g∗(t)dtds

≤ sup
∥f∥X(0,1)≤1

sup
∥g∥Y ′(0,1)≤1

∥f ∗∥X(0,1)

⃦⃦⃦⃦
w(s)

∫︂ s

0
g∗
⃦⃦⃦⃦

X′(0,1)

≤ 1.
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The last inequality holds true, because X is an r.i. space and because of the
identity ⃦⃦⃦⃦

w(s)
∫︂ s

0
g∗
⃦⃦⃦⃦

X′(0,1)
= ∥g∥Y ′(0,1) .

For the second part, we will show that whenever

T : X → Z

for an r.i. space Z then
Y ↪→ Z ⇐⇒ Z ′ ↪→ Y ′.

For the second embedding, assume that

T : X → Z

and we get, using definitions of norms on Y ′, X ′, Fubini’s theorem and Hölder
inequality (in this order), that

sup
∥g∥Z′ ≤1

∥g∥Y ′(0,1) = sup
∥g∥Z′ ≤1

⃦⃦⃦⃦
w(t)

∫︂ t

0
g∗
⃦⃦⃦⃦

X′(0,1)

= sup
∥g∥Z′ ≤1

sup
∥f∥X(0,1)≤1

∫︂ 1

0
|f(t)|w(t)

∫︂ t

0
g∗(s)dsdt

= sup
∥g∥Z′ ≤1

sup
∥f∥X(0,1)≤1

∫︂ 1

0
g∗(t)

∫︂ 1

t
w(s)|f(s)|dsdt

≤ sup
∥g∥Z′ ≤1

sup
∥f∥X(0,1)≤1

∥g∗∥Z′

⃦⃦⃦⃦∫︂ 1

t
w|f |

⃦⃦⃦⃦
Z
,

where
sup

∥g∥Z′ ≤1
∥g∗∥Z′ = sup

∥g∥Z′ ≤1
∥g∥Z′ ≤ 1,

because Z ′ is an r.i. space. The second expression is a bit more complicated.
Using Theorem 2.18, on spaces X and Z and I = 1

w
, there exists a constant

C > 0 such that ⃦⃦⃦⃦∫︂ 1

t
w|f |

⃦⃦⃦⃦
Z

≤ C ∥|f |∥X(0,1) , f ∈ M(0, 1)

if and only if this inequality holds for non-increasing non-negative functions. For
a non-increasing function f ∈ M+(0, 1), we have⃦⃦⃦⃦∫︂ 1

t
wf
⃦⃦⃦⃦

Z
=
⃦⃦⃦⃦∫︂ 1

t
wf ∗

⃦⃦⃦⃦
Z

= ∥Tf∥Z ≤ C ∥f∥X(0,1)

thanks to the boundedness of
T : X → Z.

Note that
∥|f |∥X(0,1) = ∥f∥X(0,1) ,

because f and |f | are equimeasurable. Put together, one has that

sup
∥g∥Z′ ≤1

∥g∥Y ′(0,1) ≤ C

that is
Z ′ ↪→ Y ′.
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Now, we proceed to the question of the optimal domain, which turns out to be
more challenging than that of the optimal range. We start by finding (borderline)
optimal ranges for the smallest and the biggest r.i. spaces, so that we restrict
ourselves only to spaces which can be reasonably assumed to be optimal range of
the operator T and some domain space.

Proposition 3.6. (Optimal ranges for L1 and L∞ and w ̸∈ L1) Let w ̸∈ L1 be a
differentiable weight function, such that tw(t) is a non-decreasing function. Then

• for tw(t) ∈ L∞, the operator Tw : L1 → Y1 = Λ1
(︃(︂

1
w

)︂′
)︃

is bounded and the
range Y1 is optimal,

• for tw(t) ∈ L1, the operator T : L∞ → Y∞ = Γ∞(ψ), where

ψ(t) = t∫︁ t
0
∫︁ 1

s w(y)dyds
,

is bounded and the range Y∞ is optimal.

Spaces Y1 and Y∞ are rearrangement invariant.

Note that the assumptions for tw(t) to belong to L∞ and L1 are necessary
conditions for the norm on Y ′

1 and Y ′
∞ to be rearrangement invariant (recall

Theorem 3.4).

Proof. Utilizing Theorem 3.5, we know that the norm on the associate space
satisfies

∥f∥Y ′(0,1) =
⃦⃦⃦⃦
w(t)

∫︂ t

0
f ∗
⃦⃦⃦⃦

X′(0,1)

=
⃦⃦⃦⃦
w(t)

∫︂ t

0
f ∗
⃦⃦⃦⃦

∞

= sup
t∈(0,1)

w(t)
∫︂ t

0
f ∗

= ∥f∥Γ∞(tw(t)) .

Space Γ∞(tw(t)) must be an r.i. space, because

tw(t) ∈ L∞

implies ∥·∥Y ′
1

is an r.i. space via Theorem 3.4. Moreover, the function tw(t) is
non-decreasing, w(t) is non-increasing and due to the function w ̸∈ L1 being
non-increasing, we have

lim
t→0+

w(t) = ∞,

which in turn implies

lim
t→0+

t

tw(t) = 0. (3.4)
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Consequently (via (2.2))

Y1 = (Y ′
1)′ = (Γ∞(tw(t)))′ = Λ1

(︄(︃ 1
w

)︃′)︄
. (3.5)

Note that to verify that tw(t) is quasiconcave, we need to show that the function
vanishes at 0. However if it does not hold, then

lim
t→0+

tw(t) = C > 0

due to monotonicity of tw(t) and so

Γ∞(tw(t)) = Γ∞(1) = L∞.

The first equality holds, because

tw(t) ≈ C

thanks to the assumption of the theorem. Moreover, space Γ∞(1) is an r.i. space,
because it contains constant functions, and it is continuously embedded into L∞

due to the property 2) of Proposition 2.6, whereas L∞ is the smallest r.i. space.
As a result, the conclusion (3.5) holds without tw(t) vanishing at 0.

Regarding properties of Λ1
(︃(︂

1
w

)︂′
)︃

, due to tw(t) being a non-decreasing func-
tion, there exists a C > 0 such that

sw(s) ≤ Ctw(t), 0 < s ≤ t ≤ 1.

Put together with (3.4), we obtain

1
tw(t) ≤ C

sw(s) ,

1
t

[︄
1

w(x)

]︄t

0
≤ C

s

[︄
1

w(x)

]︄s

0
,

1
t

∫︂ t

0

(︃ 1
w

)︃′
≤ C

s

∫︂ s

0

(︃ 1
w

)︃′
,

for any 0 < s ≤ t ≤ 1. As mentioned in (2.1), this condition is necessary and
sufficient for the space Λ1

(︃(︂
1
w

)︂′
)︃

to be rearrangement invariant.
Similarly, for the case of L∞, we have that

∥f∥Y ′(0,1) =
⃦⃦⃦⃦
w(t)

∫︂ t

0
f ∗
⃦⃦⃦⃦

X′(0,1)

=
⃦⃦⃦⃦
w(t)

∫︂ t

0
f ∗(s)ds

⃦⃦⃦⃦
L1

=
∫︂ 1

0
w(t)

∫︂ t

0
f ∗(s)dsdt

= ∥f∥Γ1(tw(t)) .

In the string of equalities above, we only used definitions of various norms. More-
over, due to the equality of norms, aforementioned Γ1(tw(t)) must be an r.i. space,
because for

tw(t) ∈ L1
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the space Y ′
∞ is rearrangement invariant. We want to use modified character-

ization of associate spaces from [12, Theorem 10.4.1]. First we need to show
that the function tw(t) satisfies non-degenerate conditions, which in our case are
equivalent to ∫︂ 1

0
tw(t)dt < ∞ and

∫︂ 1

0
w(t)dt = ∞.

Both of them hold, because tw(t) ∈ L∞ and w(t) ̸∈ L∞. Consequently, Theorem
10.4.1 states that

∥f∥Y = ∥f∥(Y ′)′

≈ sup
t∈(0,1)

t∫︁ t
0 sw(s)ds+ t

∫︁ 1
t w(s)ds

f ∗∗(t) (3.6)

= sup
t∈(0,1)

f ∗∗(t)
1
t

∫︁ t
0
∫︁ 1

s w(y)dyds
= ∥f∥

Γ∞

(︄
t∫︁ t

0
∫︁ 1

s w(y)dyds

)︄ . (3.7)

The second equality makes use of Fubini’s theorem. What remains to show is
non-triviality (cf. the discussion under Definition 2.17). Denote

φ(t) = 1
1
t

∫︁ t
0
∫︁ 1

s w(y)dyds

and notice that it has an integral mean of non-increasing function∫︂ 1

s
w(y)dy

in the denominator. This mean attains infimum at t = 1 and so the supremum
of φ is also attained at 1. Using monotonicity of w and non-negativity of w and
tw(t), it can be estimated in the following manner

φ(1) =
(︃∫︂ 1

0
sw(s)ds

)︃−1
≤
(︄∫︂ 3

4

1
4

sw(s)ds
)︄−1

≤
(︃1

8w
(︃3

4

)︃)︃−1
< ∞.

Consequently,
∥1∥Γ∞(φ) = sup

t∈(0,1)
φ(t) = φ(1) < ∞

and we have verified the only condition needed to show that Γ∞(φ) is rearrange-
ment invariant (cf. the discussion under Definition 2.17).

As we have just shown, it is natural for the (optimal) range Y to satisfy

Γ∞
(︄

t∫︁ t
0
∫︁ 1

s w(y)dyds

)︄
↪→ Y ↪→ Λ1

(︄(︃ 1
w

)︃′)︄
. (3.8)

Armed with this knowledge we can answer the question of the optimal domain.
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Theorem 3.7. (Optimal domain) Let w ̸∈ L1 be a differentiable weight function,
such that tw(t) is a non-decreasing function and tw(t) ∈ L∞. Moreover, assume
that Y (0, 1) is an r.i. space satisfying (3.8). Then

∥f∥X(0,1) = sup
0≤g∼f

⃦⃦⃦⃦∫︂ 1

t
gw

⃦⃦⃦⃦
Y (0,1)

, f ∈ M(0, 1),

defines an r.i. norm on the space

X = {f ∈ M(0, 1), ∥f∥X(0,1) < ∞}.

Moreover, (X, ∥·∥X(0,1)) is the optimal domain with respect to the operator T and
range Y .

Proof. There are three parts to prove – first that ∥·∥X(0,1) is a norm and that it
satisfies properties (P1) to (P5) from Definition 2.7 and then that the domain is
optimal.

For the first part, it is obvious that the functional ∥·∥X(0,1) is non-negative.
Next, we want to show that

∥f∥X(0,1) = 0 ⇐⇒ f = 0.

Assume that
∥f∥X(0,1) = 0.

The fact that ∥·∥Y (0,1) is a norm implies
∫︂ 1

t
gw = 0 ∀g s.t. 0 ≤ g ∼ f.

This, paired with fact that w ∈ M+(0, 1), in turn means that

f ∼ g = 0

and

f ∗ = 0 ⇐⇒ f = 0. (3.9)

Conversely it is easy to see via (3.9) that if f = 0, then

g ∼ f = 0

and so
∥0∥X(0,1) = 0.

Positive homogeneity follows from the following string of equalities, for a ̸= 0

(ag)∗(s) = sup{t ≥ 0, |{x ∈ (0, 1), |ag(x)| > t}| > s}

= sup
{︄
t ≥ 0,

⃓⃓⃓⃓
⃓
{︄
x ∈ (0, 1), |g(x)| > t

|a|

}︄⃓⃓⃓⃓
⃓ > s

}︄
= sup{|a|t ≥ 0, |{x ∈ (0, 1), |g(x)| > t}| > s}
= |a| sup{t ≥ 0, |{x ∈ (0, 1), |g(x)| > t}| > s}
= |a|g∗(s).
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Equality also trivially holds for a = 0. As a result,

f ∼ g ⇐⇒ af ∼ ag

and

∥af∥X(0,1) = sup
0≤g∼af

⃦⃦⃦⃦∫︂ 1

t
gw
⃦⃦⃦⃦

X(0,1)

= sup
0≤ g

a
∼f

⃦⃦⃦⃦∫︂ 1

t
a
(︃
g

a

)︃
w
⃦⃦⃦⃦

X(0,1)

= |a| sup
0≤g∼f

⃦⃦⃦⃦∫︂ 1

t
gw

⃦⃦⃦⃦
= |a| ∥f∥X(0,1) for any a ∈ R and f ∈ X.

Let us now prove the property (P1) and use it when proving triangle inequality.
We want to show that for f , g ∈ M+(0, 1)

f ≤ g a.e. =⇒ ∥f∥X(0,1) ≤ ∥g∥X(0,1) .

Using [11, Chapter 2, Corollary 7.5], for any non-negative function h ∼ f there
is a measure preserving map

σh : (0, 1) → (0, 1)

satisfying
h = h∗ ◦ σh = f ∗ ◦ σh.

Assume that f ∗ ≤ g∗, then
h ≤ g∗ ◦ σh ∼ g,

where the equimeasurability holds due to [11, Chapter 2, Proposition 7.2]. As a
result, for f ≤ g a.e., we have

∥f∥X(0,1) = sup
0≤h∼f

⃦⃦⃦⃦∫︂ 1

t
hw
⃦⃦⃦⃦

Y (0,1)

≤ sup
0≤h∼f

⃦⃦⃦⃦∫︂ 1

t
(g∗ ◦ σh)w

⃦⃦⃦⃦
Y (0,1)

≤ sup
0≤u∼g

⃦⃦⃦⃦∫︂ 1

t
uw
⃦⃦⃦⃦

Y (0,1)

= ∥g∥X(0,1) .

Returning to the triangle inequality, it is quite straightforward that for any pair
of simple functions f , g and a (simple) function h such that

h ∼ f + g,

there exists a pair of simple functions hf and hg such that

hf ∼ f, hg ∼ g, h = hf + hg. (3.10)

With this property in hand, assume f , g ∈ M(0, 1). Then there exist two se-
quences of non-negative simple functions {fn}, {gn} ⊂ M+(0, 1) satisfying

fn ↗ |f |, n → ∞ (3.11)
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and
gn ↗ |g|, n → ∞.

Consequently,

lim
n→∞

(fn + gn)∗ = (|f | + |g|)∗. (3.12)

Assume h ∈ M+(0, 1) such that

h ∼ |f | + |g|,

then again there exists a measure preserving map σ such that

h = h∗ ◦ σ = (|f | + |g|)∗ ◦ σ.

Now, define
hn = (fn + gn)∗ ◦ σ, n ∈ N.

The aim is to show that for any h ∼ |f | + |g|⃦⃦⃦⃦∫︂ 1

t
hw
⃦⃦⃦⃦

Y (0,1)
≤ lim inf

n→∞

⃦⃦⃦⃦∫︂ 1

t
hnw

⃦⃦⃦⃦
Y (0,1)

≤ ∥f∥X(0,1) + ∥g∥X(0,1) . (3.13)

Certainly,
hn ∼ fn + gn, n ∈ N

and
lim

n→∞
hn = h.

Moreover,

h∗∗
n (t) = (fn + gn)∗∗(t) ≤ f ∗∗

n (t) + g∗∗
n (t) ≤ f ∗∗(t) + g∗∗(t), (3.14)

for any n ∈ N and t ∈ (0, 1), where the last two inequalities follow from properties
6) and 5) of Proposition 2.6. It shows that the functions hn are equiintegrable.
This paired with the fact that w is bounded on any interval

(t, 1), t ∈ (0, 1)

implies that the expression hnw is bounded as well on any such interval (t, 1).
Moreover,

lim
n→∞

∫︂ 1

t
hnw =

∫︂ 1

t
hw, t ∈ (0, 1).

Using Fatou’s lemma ([11, Chapter 1, Theorem 1.7]) for the r.i. norm ∥·∥Y (0,1),
one gets ⃦⃦⃦⃦∫︂ 1

t
hw
⃦⃦⃦⃦

Y (0,1)
≤ lim inf

n→∞

⃦⃦⃦⃦∫︂ 1

t
hnw

⃦⃦⃦⃦
Y (0,1)

. (3.15)

First inequality of (3.13) is proven. For the second inequality, due to (3.10), for
any fn and gn, there exist simple functions hfn and hgn such that

hfn ∼ fn, hgn ∼ gn and hn = hfn + hgn .
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As shown earlier in the proof, for every Fn ∈ {fn, gn}, there exists a measure
preserving map σFn such that

hFn = (hFn)∗ ◦ σFn = f ∗
n ◦ σFn ≤ f ∗ ◦ σFn ∼ f ∗,

where the inequality is due to (3.11) and properties of decreasing rearrangement.
Finally, ⃦⃦⃦⃦∫︂ 1

t
hnw

⃦⃦⃦⃦
Y (0,1)

≤ lim inf
n→∞

⃦⃦⃦⃦∫︂ 1

t
hnw

⃦⃦⃦⃦
Y (0,1)

≤
⃦⃦⃦⃦∫︂ 1

t
hfnw

⃦⃦⃦⃦
Y (0,1)

+
⃦⃦⃦⃦∫︂ 1

t
hgnw

⃦⃦⃦⃦
Y (0,1)

≤
⃦⃦⃦⃦∫︂ 1

t
(f ∗ ◦ σfn)w

⃦⃦⃦⃦
Y (0,1)

+
⃦⃦⃦⃦∫︂ 1

t
(g∗ ◦ σgn)w

⃦⃦⃦⃦
Y (0,1)

≤ sup
0≤u∼f

⃦⃦⃦⃦∫︂ 1

t
uw

⃦⃦⃦⃦
Y (0,1)

+ sup
0≤u∼g

⃦⃦⃦⃦∫︂ 1

t
uw
⃦⃦⃦⃦

Y (0,1)

= ∥f∥X(0,1) + ∥g∥X(0,1) .

We have proven (3.13). To obtain triangle inequality, it suffices to notice that

f + g ≤ |f | + |g|

and so, using the already-proven property (P1), we get

∥f + g∥X(0,1) ≤ ∥f∥X(0,1) + ∥g∥X(0,1) .

The property (P5) obviously holds so it remains to show that (P3) and (P4)
hold as well. Here is where the embedding chain (3.8) comes into play. Next
string of inequalities follows from choosing

h = |f | ∼ f,

the definition of the r.i. norm on X and finally using the first embedding in (3.8)

∥f∥X(0,1) ≥
⃦⃦⃦⃦∫︂ 1

t
|f |w

⃦⃦⃦⃦
Y (0,1)

≥ C

⃦⃦⃦⃦∫︂ 1

t
|f |w

⃦⃦⃦⃦
Λ1
(︂
( 1

w )′
)︂ .

Using Fubini’s theorem, we obtain that the last term is equal to ∥f∥1. For the last
property of an r.i. norm, note that the only non-negative functions equimeasurable
with 1 are those which are 1 a.e., so

∥1∥X(0,1) =
⃦⃦⃦⃦∫︂ 1

x
w
⃦⃦⃦⃦

Y (0,1)

≤ C

⃦⃦⃦⃦∫︂ 1

x
w
⃦⃦⃦⃦

Γ∞

(︄
t∫︁ t

0
∫︁ 1

s w(y)dyds

)︄

= sup
t∈(0,1)

t∫︁ t
0
∫︁ 1

s w(y)dyds

∫︂ 1

t
w(t)dt

≤ 1,
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because
t∫︁ t

0
∫︁ 1

s w(y)dyds
≤ 1∫︁ 1

t w
,

which we get by using Fubini’s theorem, (3.7) and then simply estimating from
above.

Let us now turn our attention to the optimality of the space X. Assume that
operator T is bounded from an r.i. space Z to Y . Then there exists a constant
C > 0 such that for any non-increasing non-negative function f ∈ Z, one has⃦⃦⃦⃦∫︂ 1

t
wf
⃦⃦⃦⃦

Y (0,1)
=
⃦⃦⃦⃦∫︂ 1

t
wf ∗

⃦⃦⃦⃦
Y (0,1)

= ∥Tf∥Y (0,1) ≤ C ∥f∥Z(0,1) .

Consequently, Theorem 2.18 implies that⃦⃦⃦⃦∫︂ 1

t
wf

⃦⃦⃦⃦
Y (0,1)

≤ C ∥f∥Z(0,1) (3.16)

for any non-negative f ∈ Z.
Assume f ∈ Z is given and take

0 ≤ g ∼ f,

then firstly g ∈ Z due to the property (P5) of r.i. spaces and secondly, utiliz-
ing (3.16),

∥f∥X(0,1) = sup
0≤g∼f

⃦⃦⃦⃦∫︂ 1

t
wg
⃦⃦⃦⃦

Y (0,1)
≤ C sup

0≤g∼f
∥g∥Z(0,1) = C ∥f∥Z(0,1) , (3.17)

where the last equality holds again because of the property (P5). Finally, (3.17)
is equivalent to

Z ↪→ X,

which is what we wanted to prove.

So far, we have imposed rather natural conditions onto function w. Firstly, we
assumed tw(t) ∈ L∞, which is actually a necessary condition for Y ′

1 to be an r.i.
space, where Y1 is as in Proposition 3.6, and differentiability and monotonicity
of w together with w ̸∈ L1, to make sure that the optimal ranges of L1 and L∞

are (defined and) rearrangement invariant.
Under these assumptions we obtained a reasonable characterization of the

optimal range and a bit inconvenient and impractical characterization of a norm
on the optimal domain. We shall try to improve the latter one under some
stronger assumptions so that it is easier to use. We will utilize the following
operator

Uf(s) = 1
sw(s) sup

s≤r≤1
rw(r)f ∗(r), f ∈ M(0, 1), s ∈ (0, 1).

Lemma 3.8. Let Y (0, 1) and Z(0, 1) be r.i. spaces. Assume that w is a continuous
weight function, which satisfies

1
w(t) ≈

∫︂ t

0

1
sw(s) , t ∈ (0, 1), (3.18)
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and, finally, let
U : Y ′(0, 1) → Z ′(0, 1).

Then, there exists a constant C > 0 such that⃦⃦⃦⃦∫︂ 1

t
fw
⃦⃦⃦⃦

Y (0,1)
≤ C

⃦⃦⃦⃦∫︂ 1

t
f ∗w

⃦⃦⃦⃦
Z(0,1)

, f ∈ M+(0, 1).

Before proving the lemma, let us discuss few functions for which the prop-
erty (3.18) holds or does not hold. It is clearly not satisfied for w(t) = 1, because

1 ̸≈ t on (0, 1).

The condition also does not hold for logα 1
t

for any α ∈ R. The situation is more
interesting for w(t) = tα, because

t−α ≈
∫︂ t

0
s−α−1 on (0, 1)

if and only if α < 0.

Proof. The proof consists of a string of inequalities. First observe the following

w(t)
∫︂ t

0
Ug(s)ds ≈

∫︁ t
0 Ug(s)ds∫︁ t

0(sw(s))−1ds

≈
∫︁ t

0(sups≤u≤1 uw(u))(sw(s))−1ds∫︁ t
0(sw(s))−1ds

.

And the latter function is an integral mean of a non-increasing function

sup
s≤u≤1

uw(u)

with respect to the measure

(sw(s))−1ds on (0, t)

and so it is itself non-increasing in t. Now, assume f ∈ M+(0, 1), then⃦⃦⃦⃦∫︂ 1

s
fw

⃦⃦⃦⃦
Y (0,1)

= sup
∥g∥Y ′(0,1)≤1

∫︂ 1

0
|g(s)|

∫︂ 1

s
f(r)w(r)drds

= sup
∥g∥Y ′(0,1)≤1

∫︂ 1

0
f(r)w(r)

∫︂ r

0
|g(s)|dsdr

≤ sup
∥g∥Y ′(0,1)≤1

∫︂ 1

0
f(r)w(r)

∫︂ r

0
g∗(s)dsdr

≤ sup
∥g∥Y ′(0,1)≤1

∫︂ 1

0
f(r)w(r)

∫︂ r

0
Ug(s)dsdr.

Equalities owe their existence either to the definitions of norm or Fubini’s theo-
rem. The first inequality is a consequence of Hardy-Littlewood inequality (Theo-
rem 2.3, part 2) and non-negativity of the function f(t)w(t). The next one follows
easily from the fact that

g∗(s) = sw(s)
sw(s)g

∗(s) ≤ 1
sw(s) sup

s≤r≤1
rw(r)g∗(r) = Ug(s).
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Utilizing the observation we made in the beginning of the proof, we see that

w(r)
∫︂ r

0
Ug(s)ds

is equivalent to a non-increasing function and so the Hardy-Littlewood inequality
yields ⃦⃦⃦⃦∫︂ 1

s
fw
⃦⃦⃦⃦

Y (0,1)
≤ C sup

∥g∥Y ′(0,1)≤1

∫︂ 1

0
f ∗(t)w(t)

∫︂ t

0
Ug(s)dsdt.

Using Fubini’s theorem again, passing from suprema over functions g to suprema
over Ug and thanks to boundedness of U : Y ′ → Z ′, we get

⃦⃦⃦⃦∫︂ 1

s
fw

⃦⃦⃦⃦
Y (0,1)

≤ C sup
∥g∥Y ′(0,1)≤1

∫︂ 1

0
f ∗(t)w(t)

∫︂ t

0
Ug(s)dsdt

≤ C sup
∥Ug∥Z′(0,1)≤1

∫︂ 1

0
f ∗(t)w(t)

∫︂ t

0
Ug(s)dsdt

≤ C sup
∥h∥Z′(0,1)≤1

∫︂ 1

0
f ∗(t)w(t)

∫︂ t

0
h(s)dsdt

≤ C sup
∥h∥Z′(0,1)≤1

∫︂ 1

0
|h(t)|

∫︂ 1

t
f ∗(s)w(s)dsdt

= C
⃦⃦⃦⃦∫︂ 1

t
f ∗w

⃦⃦⃦⃦
Z(0,1)

.

Note that Property (3.18) implicitly requires the function 1
tw(t) to be integrable

on any interval
[0, t), t ∈ (0, 1).

With this lemma in hand we shall prove that the norm on the associate space
can be expressed in a nicer form – one might call this a star-form.

Proposition 3.9. Let w ̸∈ L1 be a differentiable weight function such that it
satisfies Property (3.18) from Lemma 3.8, tw(t) is a non-decreasing function and
tw(t) ∈ L∞. Moreover, assume that Y (0, 1) is an r.i. space such that

Γ∞
(︄

t∫︁ t
0
∫︁ 1

s w(y)dyds

)︄
↪→ Y (0, 1)

and the operator U is bounded on Y ′(0, 1). Then (3.8) holds and the optimal
domain X(0, 1) of the operator T and range Y fulfils

∥f∥X(0,1) ≈
⃦⃦⃦⃦∫︂ 1

s
f ∗w

⃦⃦⃦⃦
Y (0,1)

, f ∈ M(0, 1).
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Proof. Firstly, we show that boundedness of U on Y ′ implies the embeddings (3.8).
Due to Y ′ being an r.i. space, 1 ∈ Y ′ and so

U(1)(s) = K

sw(s)

as an image of 1 as well, because the operator U is bounded on Y ′. So, if any
function satisfies that

∥f∥Γ∞(tw(t)) = sup
t∈(0,1)

tw(t)f ∗∗(t) < ∞,

then f ∈ Y ′ due to 2) of Proposition 2.6 and properties (P1) and (P5) of ∥·∥Y ′(0,1).
Consequently,

Γ∞(tw(t)) ↪→ Y ′

and
Y ↪→ (Γ∞ (tw(t)))′ = Λ1

(︄(︃ 1
w

)︃′)︄
.

As shown in the proof of Proposition 3.6, the assumptions on w are sufficient for
the last equality to hold.

For the equivalence part, using Theorem 3.7, one easily gets⃦⃦⃦⃦∫︂ 1

s
f ∗w

⃦⃦⃦⃦
Y (0,1)

≤ sup
0≤g∼f

⃦⃦⃦⃦∫︂ 1

s
gw
⃦⃦⃦⃦

Y (0,1)
= ∥f∥X(0,1)

for any f ∈ M(0, 1). Conversely, utilizing Lemma 3.8, where roles of Y and Z in
the lemma are fulfilled by Y, we obtain a constant C > 0 such that

∥f∥X(0,1) ≤ C
⃦⃦⃦⃦∫︂ 1

s
f ∗w

⃦⃦⃦⃦
Y (0,1)

.
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4. Examples
In this section, we will discuss optimal domains and ranges for typical spaces
mentioned in Chapter 2. We start off by considering a simple weight

w(t) = wα,β(t) = tα logβ
(︃
e

t

)︃
for a chosen set of parameters α and β, then we shall pass under some restricting
conditions to a general weight function w.
Example 4.1. Let

w(t) = wα,β(t) = tα logβ
(︃
e

t

)︃
such that the parameters α, β ∈ R satisfy

−1 ≥ α and β ≥ α + 1

and let T : X → Y , where Y is the optimal range for X.

(a) If X = L1,1,ξ, ξ ≥ 0, then Y ′ is an r.i. space if and only if

α = −1 and β ≤ ξ.

Moreover, if the condition holds, then

Y ′ = L(∞,∞,β−ξ),

(b) if X = L∞,∞,ξ, ξ ≤ 0, then Y ′ is an r.i. space if and only if

α ∈ (−2,−1].

Moreover, if the condition holds, then

Y ′ = L( 1
α+2 ,1,β−ξ),

(c) if X = Lp,1,ξ, p ∈ (1,∞), ξ ∈ R, then Y ′ is an r.i. space if and only if either
of the following conditions holds

(I) −2 + 1
p
< α.1 If the condition holds, then

Y ′ = L

(︂
p′

1+p′(1+α) ,∞,β−ξ

)︂
,

(II) −2 + 1
p

= α and β ≤ ξ. If the condition holds, then

Y ′ = L(∞,∞,β−ξ),

(d) if X = Lp,q,ξ, p ∈ (1,∞) and q > 1, then Y ′ is an r.i. space if and only if
either of the following conditions holds

1where p′ is the standard notation for the number which satisfies 1
p + 1

p′ = 1. Same notation
is used for q′.
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(I) −2 + 1
p
< α. If the condition holds, then

Y ′ = L

(︂
p′

p′(α+1)+1 ,q′,β−ξ

)︂
,

(II) −2 + 1
p

= α and β − ξ < −1 + 1
q
. If the condition holds, then

Y ′ = L(∞,q′,β−ξ).

Proof. It is obvious that

w(t)
∫︂ t

0
f ∗ = tw(t)f ∗∗(t),

where f ∗∗ is non-increasing. Moreover,

(tw(t))′ =
(︃
tα+1 logβ

(︃
e

t

)︃)︃′

= (α + 1)tα logβ
(︃
e

t

)︃
− βtα logβ−1

(︃
e

t

)︃
= tα logβ−1

(︃
e

t

)︃
((α + 1) log

(︃
e

t

)︃
− β). (4.1)

Note that for any value of parameters α and β

tα logβ−1
(︃
e

t

)︃
≥ 0, t ∈ (0, 1).

On the other hand, log
(︂

e
t

)︂
is monotone and so is

(α + 1) log
(︃
e

t

)︃
− β.

Finally, observe that for the assumed range of parameters

sup
t∈(0,1)

(α + 1) log
(︃
e

t

)︃
− β = α + 1 − β ≤ 0.

Consequently,
(tw(t))′ ≤ 0

and w(t)
∫︁ t

0 f
∗ is a non-increasing non-negative function. As a result,(︃

w(t)
∫︂ t

0
f ∗
)︃∗

= w(t)
∫︂ t

0
f ∗.

By very similar reasoning, we can check whether or not wα,β is a weight function.
Taking the derivative and the follow-up discussion give us the condition that wα,β

is a weight if and only if
α ≤ 0 and β ≥ α.

These conditions are trivially satisfied under our assumptions.
Ad (a), as proven in Theorem 3.4, the space Y ′ is an r.i. space if and only if

tw(t) belongs to X ′ = L∞,∞,−ξ. So, it must be true that⃦⃦⃦⃦
tα+1 logβ

(︃
e

t

)︃⃦⃦⃦⃦
∞,∞,−ξ

= sup
t∈(0,1)

tα+1 logβ−ξ
(︃
e

t

)︃
< ∞.
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Taking into consideration the assumptions on α and β, the norm is finite if and
only if

α = −1 and β ≤ ξ.

Using definitions of various norms, we obtain

∥f∥Y ′(0,1) =
⃦⃦⃦⃦
w(t)

∫︂ t

0
f ∗
⃦⃦⃦⃦

X′(0,1)

=
⃦⃦⃦⃦
w(t)

∫︂ t

0
f ∗
⃦⃦⃦⃦

∞,∞,−ξ

= sup
t∈(0,1)

logβ−ξ
(︃
e

t

)︃
f ∗∗(t)

= ∥f∥(∞,∞,β−ξ) .

As noted in the discussion under Definition 2.17, spaces L(a,b,η) are special cases
of spaces Γp(w) and as such are rearrangement invariant for any a, b > 0, η ∈ R,
except the case when a = b = ∞ in which we need to assume η ≤ 0.

Ad (b), similarly as in part (a), we need

tw(t) ∈ X ′ = L1,1,−ξ,

which is true when⃦⃦⃦⃦
tα+1 logβ

(︃
e

t

)︃⃦⃦⃦⃦
1,1,−ξ

=
∫︂ 1

0
tα+1 logβ−ξ

(︃
e

t

)︃
dt < ∞

and this holds true if either

α = −2 and β − ξ < −1

or
α > −2.

The first case cannot occur, because

β ≥ α + 1 = −1 and − ξ ≥ 0.

In the second case,

∥f∥Y ′(0,1) =
⃦⃦⃦⃦
w(t)

∫︂ t

0
f ∗
⃦⃦⃦⃦

X′(0,1)

=
⃦⃦⃦⃦
w(t)

∫︂ t

0
f ∗
⃦⃦⃦⃦

1,1,−ξ

=
∫︂ 1

0
tα+1 logβ−ξ

(︃
e

t

)︃
f ∗∗(t)dt

= ∥f∥( 1
α+2 ,1,β−ξ) .

Ad (c), firstly,
tα+1 logβ

(︃
e

t

)︃
∈ X ′

if and only if ⃦⃦⃦⃦
tα+1 logβ

(︃
e

t

)︃⃦⃦⃦⃦
p′,∞,−ξ

= sup
t∈(0,1)

t
1
p′ +α+1 logβ−ξ

(︃
e

t

)︃
< ∞
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and the conditions on α and β coincide with the conditions I) and II) from part
c) of this theorem (it is necessary and sufficient for either of them to hold). Using
the definition of the norm of Y ′,

∥f∥Y ′(0,1) =
⃦⃦⃦⃦
w(t)

∫︂ t

0
f ∗
⃦⃦⃦⃦

p′,∞,−ξ

= sup
t∈(0,1)

t
1
p′ +α+1 logβ−ξ

(︃
e

t

)︃
f ∗∗(t)

=
⃦⃦⃦⃦
t

1+p′(α+1)
p′ logβ−ξ

(︃
e

t

)︃
f ∗∗

⃦⃦⃦⃦
∞

= ∥f∥(︂
p′

1+p′(α+1) ,∞,β−ξ

)︂ .
Note that for α = −1 − 1

p′ ,

p′

1 + p′(α + 1) = ∞.

Ad (d), assume p ∈ (1,∞), q > 1, then

tα+1 logβ
(︃
e

t

)︃
∈ X ′

if and only if either(︄
α > −2 + 1

p

)︄
or

(︄
α = −2 + 1

p
∧ β − ξ < −1 + 1

q

)︄
.

Moreover,

∥f∥q′

Y ′(0,1) =
⃦⃦⃦⃦
w(t)

∫︂ t

0
f ∗
⃦⃦⃦⃦q′

p′,q′,−ξ

=
⃦⃦⃦⃦
t

1
p′ − 1

q′ +α+1 logβ−ξ
(︃
e

t

)︃
f ∗∗

⃦⃦⃦⃦q′

q′

=
⃦⃦⃦⃦
t

p′(α+1)+1
p′ − 1

q′ logβ−ξ
(︃
e

t

)︃
f ∗∗

⃦⃦⃦⃦q′

q′

= ∥f∥q′(︂
p′

p′(α+1)+1 ,q′,β−ξ

)︂ .
In the second case, p′

p′(α+1)+1 = ∞

Corollary 4.2. Let
w(t) = wα,β(t) = tα logβ

(︃
e

t

)︃
such that the parameters α, β ∈ R satisfy

−1 ≥ α and β ≥ α + 1

and let T : X → Y , where Y is the optimal range for X.
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(a) If X = L1,1,ξ, ξ ≥ 0, then for

α = −1 and β ≤ ξ ≤ β + 1

the space Y is rearrangement invariant and

Y = Λ1
(︃

logξ−β−1
(︃
e

t

)︃(︃
log

(︃
e

t

)︃
+ β − ξ

)︃)︃
.

(b) if X = L∞,∞,ξ, ξ ≤ 0, then Y is an r.i. space if and only if either

(α ∈ (−2,−1)) or (α = −1 ∧ β − ξ ≥ −1).

If one of the conditions is satisfied, then

Y = Γ∞

⎛⎝ t∫︁ t
0
∫︁ 1

s x
α logβ−ξ

(︂
e
x

)︂
dxds

⎞⎠ ,
(c) if X = Lp,1,ξ, p ∈ (1,∞), ξ ∈ R, then Y ′ is an r.i. space if and only if either

of the following conditions holds

(I) −2+ 1
p
< α and 1

p′ +α ≤ β−ξ ≤ 1
p′ +α+1.2 Moreover, if the condition

holds, then

Y = Λ1
(︄
t
− 1

p′ −α−1 logξ−β
(︃
e

t

)︃(︄(︄
− 1
p′ − α

)︄
+ β − ξ

log e
t

)︄)︄
,

(II) −2 + 1
p

= α and β ≤ ξ ≤ β+ 1. Moreover, if the condition holds, then

Y = Λ1
(︃

logξ−β−1
(︃
e

t

)︃(︃
log

(︃
e

t

)︃
+ β − ξ

)︃)︃
,

(d) if X = Lp,q,ξ, p ∈ (1,∞), q > 1 and α > −2 + 1
p

and

(I) q = ∞ and the following condition holds(︄
−1 < 1

p′ + α < 0
)︄

or
(︄

1
p′ + α = −1 ∧ β − ξ < −1

)︄
,

then

Y = Γ∞

⎛⎜⎝ t∫︁ t
0
∫︁ 1

s y
1
p′ +α−1 logβ−ξ

(︂
e
y

)︂
dyds

⎞⎟⎠ ,
(II) q ∈ (1,∞), then

Y = Γq

(︄
tq+q′−1 ∫︁ t

0 φd2(s)ds
∫︁ 1

t s
−q′
φd2(s)ds

(
∫︁ t

0 φd2(s)ds+ tq′ ∫︁ 1
t s

−q′φd2(s)ds)q+1

)︄
,

where
φd2(t) = t

q′
p′ −1+q′(α+1) logq′(β−ξ)

(︃
e

t

)︃
.

2where p′ is the standard notation for the number which satisfies 1
p + 1

p′ = 1. Same notation
is used for q′.

32



All of the spaces above are rearrangement invariant except the last one, for which
it will not be shown whether or not it is non-trivial.

Proof. Ad a), we have shown that

Y ′ = L(∞,∞,β−ξ) = Γ∞
(︃

logβ−ξ
(︃
e

t

)︃)︃
.

Denote
φa(t) = logβ−ξ

(︃
e

t

)︃
.

Obviously for β ≤ ξ, the function φa is non-decreasing and vanishes at 0. As
discussed in the beginning of Example 4.1, the function

ta logb
(︃
e

t

)︃
is non-increasing if and only if

a ≤ 0 and b ≥ a, (4.2)

which in our case means that the function
1
t

logβ−ξ
(︃
e

t

)︃
is non-increasing if and only if

β − ξ ≥ −1,

which is one of the assumptions of the theorem. Finally,

lim
t→0+

φa(t) = lim
t→0+

t logξ−β
(︃
e

t

)︃
= 0.

Using (2.2), one gets

Y = (Y ′)′ = (Γ∞(φa))′ = Λ1(φ′) = Λ1
(︄

logξ−β
(︃
e

t

)︃(︄
1 + β − ξ

log e
t

)︄)︄
.

As mentioned in (2.1), Y is an r.i. space if and only if

1
t

∫︂ t

0
logξ−β

(︃
e

x

)︃(︄
1 + β − ξ

log e
x

)︄
dx ≤ C

s

∫︂ s

0
logξ−β

(︃
e

x

)︃(︄
1 + β − ξ

log e
x

)︄
dx

for any 0 < s ≤ t ≤ 1. It trivially holds true with C = 1 if

logξ−β
(︃
e

x

)︃(︄
1 + β − ξ

log e
x

)︄

is a non-increasing function, because then both the left-hand and right-hand sides
of the inequality are integral means of the same non-increasing function and s ≤ t.
From the assumption of the theorem, we know that

0 ≤ ξ − β
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and this implies logξ−β
(︂

e
x

)︂
is non-increasing and so is

1 + β − ξ

log e
t

,

because the nominator of the fraction is at most 0 and the denominator is positive
and non-increasing. Adding a constant does not change monotonicity. As a
result the function is indeed non-increasing and so the assertion holds. It is not
mentioned explicitly, but the result, rather trivially, holds even in case when
ξ = β.

Ad (b), notice that the associate space found in Example 4.1 can be rewritten
as follows

L( 1
α+2 ,1,β−ξ) = Γ1

(︃
tα+1 logβ−ξ

(︃
e

t

)︃)︃
.

We want to use [12, Theorem 10.4.1]. Denote

v(t) = tα+1 logβ−ξ
(︃
e

t

)︃
.

We need to verify that the function satisfies two conditions,∫︂ 1

0

v(s)
s+ 1ds < ∞ and

∫︂ 1

0

v(s)
s
ds = ∞.

The first condition is due to boundedness of s+ 1 on (0, 1) equivalent to∫︂ 1

0
tα+1 logβ−ξ

(︃
e

t

)︃
dt < ∞

and it is true, in the scope of admissible parameters, if and only if α > −2. The
second one reads ∫︂ 1

0
tα logβ−ξ

(︃
e

t

)︃
= ∞.

It is satisfied if and only if

(α ∈ (−2,−1)) or (α = −1 ∧ β − ξ ≥ −1).

Theorem 10.4.1 then gives us that

∥f∥(Γ1(tα+1 logβ−ξ( e
t )))

′ ≈ sup
t∈(0,1)

t∫︁ t
0 s

α+1 logβ−ξ
(︂

e
s

)︂
ds+ t

∫︁ 1
0 s

α logβ−ξ
(︂

e
s

)︂
ds
f ∗∗(t)

= sup
t∈(0,1)

t∫︁ t
0
∫︁ 1

s x
α logβ−ξ

(︂
e
x

)︂
dxds

f ∗∗(t)

= ∥f∥
Γ∞

⎛⎝ t∫︁ t
0
∫︁ 1

s x
α logβ−ξ

(︂
e
x

)︂
dxds

⎞⎠ .

Up to equivalent norm, we have

Y = (Y ′)′ =
(︃

Γ1
(︃
tα+1 logβ−ξ

(︃
e

t

)︃)︃)︃′
= Γ∞

⎛⎝ t∫︁ t
0
∫︁ 1

s x
α logβ−ξ

(︂
e
x

)︂
dxds

⎞⎠ .
34



Based on the discussion in Preliminaries, under Definition 2.17, we need to show
that the space satisfies the property (P3) from the definition of an r.i. space.
Denote

F (t) =
∫︂ 1

s
xα logβ−ξ

(︃
e

x

)︃
dx

and
MF (t) = 1

t

∫︂ t

0
F (s)ds.

Then certainly

∥1∥
Γ∞

(︄
t∫︁ t

0

∫︁ 1
s

xα logβ−ξ( e
x )dxds

)︄ = sup
t∈(0,1)

t∫︁ t
0
∫︁ 1

s x
α logβ−ξ

(︂
e
x

)︂
dxds

= sup
t∈(0,1)

1
MF (t) ,

where MF (t) is the integral mean of a non-increasing function, because

tα logβ−ξ
(︃
e

t

)︃
≥ 0, t ∈ (0, 1),

and it is itself non-increasing. This means that 1
MF (t) attains maximum at 1,

where, using Fubini’s theorem and non-negativity of

tα+1 logβ−ξ
(︃
e

t

)︃
,

one gets
1

MF (1) = 1∫︁ 1
0 t

α+1 logβ−ξ
(︂

e
t

)︂
dt

≤ 1∫︁ 3
4

1
4
tα+1 logβ−ξ

(︂
e
t

)︂
dt

≤
(︄

min
{︄(︃1

4

)︃α+1
,
(︃3

4

)︃α+1}︄∫︂ 3
4

1
4

logβ−ξ
(︃
e

t

)︃
dt

)︄−1

< ∞.

The last inequality obviously holds, because the function logβ−ξ
(︂

e
t

)︂
is bounded

on
(︂

1
4 ,

3
4

)︂
.

Ad (c), the associate space Y ′ in the second case is the same as the one in
part (a) and the assumptions on parameters are identical as well, so

Y = Λ1
(︃

logξ−β−1
(︃
e

t

)︃(︃
log

(︃
e

t

)︃
+ β − ξ

)︃)︃
.

Now, assume that
−2 + 1

p
< α

and denote
φc(t) = t

1
p′ +α+1 logβ−ξ

(︃
e

t

)︃
.

The assumption implies
1
p′ + α + 1 > 0
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and so φc vanishes at 0. Next, we need to show that

φc(t)
t

= t
1
p′ +α logβ−ξ

(︃
e

t

)︃
is non-increasing. In our case, using properties (4.2) the function is non-increasing
if and only if

α ≤ − 1
p′ and β − ξ ≥ 1

p′ + α.

The first condition is satisfied trivially because

α ≤ −1 ≤ − 1
p′ .

Lastly, the function φc needs to be non-decreasing. A discussion similar to the
one in the first part of Example 4.1 yields that the function

ta logb
(︃
e

t

)︃
is non-decreasing if and only if

a ≥ −1 and a ≥ b. (4.3)

Applied to our case, it implies

1
p′ + α + 1 ≥ −1 and β − ξ ≤ 1

p′ + α + 1.

Put together, we need the following

−1 − 1
p′ < α ≤ −1 and 1

p′ + α ≤ β − ξ ≤ 1
p′ + α + 1. (4.4)

Note that the first condition implies

φc(t) = t
− 1

p′ −α logβ−ξ
(︃
e

t

)︃
t→0+
−−−→ 0, (4.5)

and the second one

ξ − β ≥ − 1
p′ − α− 1 and β − ξ − 1

p′ − α > 0. (4.6)

Under the assumptions above and thanks to Property (4.5), the function φc is
quasiconcave and

Y = (Y ′)′ = (Γ∞(φc))′ = Λ1(φc
′).

Moreover,

φc
′(t) = t

− 1
p′ −α−1 logξ−β

(︃
e

t

)︃(︄(︄
− 1
p′ − α

)︄
+ β − ξ

log e
t

)︄
.

Note that thanks to the inequalities (4.6), the function φc
′(t) is non-negative.

Paired with assumptions (4.4) it follows that the function is also non-increasing
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(cf. (4.2)). Finally, for a non-increasing function the space Λ1(φc) is an r.i. space.
The ideas are identical to the ones used in part (a) of this proof.

To deal with part (d), it was shown in Example 4.1 that

Y ′ = L

(︂
p′

1+p′(α+1) ,q′,β−ξ

)︂
= Γq′

(︃
t

q′
p′ −1+q′(α+1) logq′(β−ξ)

(︃
e

t

)︃)︃
.

First, assume that q′ = 1, in which case denote

φd1(t) = t
1
p′ +α logβ−ξ

(︃
e

t

)︃
.

We want to use [12, Theorem 10.4.1] and so we need to verify the non-triviality
conditions, which are equivalent to the following ones∫︂ 1

0
t

1
p′ +α logβ−ξ

(︃
e

t

)︃
dt < ∞ and

∫︂ 1

0
t

1
p′ +α−1 logβ−ξ

(︃
e

t

)︃
= ∞.

The first condition is satisfied if and only if(︄
1
p′ + α > −1

)︄
or

(︄
1
p′ + α = −1 ∧ β − ξ < −1

)︄

and the second one if and only if(︄
1
p′ + α < 0

)︄
or

(︄
α = − 1

p′ ∧ β − ξ ≥ −1
)︄
.

Note that second option of the latter condition does not hold for any choice of
parameters, because

α ≤ −1 and p′ ∈ (1,∞).
Now, both of the conditions must be met so(︄

−1 < 1
p′ + α < 0

)︄
or

(︄
1
p′ + α = −1 ∧ β − ξ < −1

)︄
.

Then Theorem 10.4.1 yields with some help of Fubini’s theorem (part (b) of this
proof uses similar techniques)

Y =
(︃

Γq′
(︃
t

q′
p′ −1+q′(α+1) logq′(β−ξ)

(︃
e

t

)︃)︃)︃′
= Γ∞

⎛⎜⎝ t∫︁ t
0
∫︁ 1

s y
1
p′ +α−1 logβ−ξ

(︂
e
y

)︂
dyds

⎞⎟⎠ .
It is also true that

1 ∈ Γ∞

⎛⎜⎝ t∫︁ t
0
∫︁ 1

s y
1
p′ +α−1 logβ−ξ

(︂
e
y

)︂
dyds

⎞⎟⎠ .
The argument follows the reasoning of non-triviality in part (b) of this proof,
only the powers of t and log e

t
are different, yet the conclusion is the same.

Assume that q′ ∈ (1,∞) and denote

φd2(t) = t
q′
p′ −1+q′(α+1) logq′(β−ξ)

(︃
e

t

)︃
.
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From Example 4.1, we have that

Y ′ = L

(︂
p′

p′(α+1)+1 ,q′,β−ξ

)︂
= Γq′ (φd2) .

This time, using [14, Theorem 6.2], we get

Y = Γq

(︄
tq+q′−1 ∫︁ t

0 φd2(s)ds
∫︁ 1

t s
−q′
φd2(s)ds

(
∫︁ t

0 φd2(s)ds+ tq′ ∫︁ 1
t s

−q′φd2(s)ds)q+1

)︄
.

Let us present a different example. We will drop a particular form of function
w and use different methods this time. In particular, we will make a clever use
of the property (P1) of r.i. spaces together with an operator which assigns any
function a non-increasing one. Yet, this generalization does not come up without
a price. We will to assume that

tw(t) ∈ L∞.

Before we start, define the operator mentioned above in the following way,

S(f ∗)(t) = Sw(f ∗)(t) = sup
t≤s≤1

w(s)
∫︂ s

0
f ∗(τ)dτ, f ∈ M(0, 1).

Notice that due to properties of the suprema S(f ∗) is a non-increasing function
and trivially, for any t ∈ (0, 1) and f ∈ M(0, 1),

w(t)
∫︂ t

0
f ∗ ≤ sup

t≤s≤1
w(s)

∫︂ s

0
f ∗(τ)dτ. (4.7)

Theorem 4.3. Let w be a continuous weight function, such that it satisfies Prop-
erty (3.18) and

tw(t) ∈ L∞.

Moreover, let
1 < p ≤ q < ∞,

let the operator T be as in Definition 3.2 and X = Lp,q, then the norm of the
space associated to the optimal range of X and T satisfies

∥f∥Y ′(0,1) ≈
(︃∫︂ 1

0
t

q′
p′ −1+q′

wq′(t) (f ∗∗(t))q′
dt
)︃ 1

q′

.

Regarding the parameters p and q, we need q > 1 for our argument to work
and for such q the space Lp,q is rearrangement invariant only for p > 1. Let us
also mention the fact that Example 4.1 and this theorem intersect, but besides
that, each of them cover a different family of functions.

In the example, we take

wα,β(t) = tα logβ
(︃
e

t

)︃
for a given range of parameters. It is obvious that for α < −1,

twα,β(t) ̸∈ L∞.

38



Conversely, a function
w(t) = 1

t

√︃
1 + log

(︂
1
t

)︂
does not satisfy the assumptions of Example 4.1, but it satisfies the assumptions
of Theorem 4.3. However, the proof that this function satisfies Property (3.18)
is omitted.

Proof. First, observe that

1 < p ≤ q < ∞ =⇒ q′

p′ − 1 ≤ 0.

Then, by means of Hardy-Littlewood inequality (Theorem 2.3) and the charac-
terization of the norm on the space associated to the optimal range, one gets

∫︂ 1

0
t

q′
p′ −1

(︃
w(t)

∫︂ t

0
f ∗(s)ds

)︃q′

dt ≤
∫︂ 1

0

(︃
t

q′
p′ −1

)︃∗ [︄(︃
w(t)

∫︂ t

0
f ∗(s)ds

)︃∗]︄q′

dt

=
∫︂ 1

0
t

q′
p′ −1

[︄(︃
w(t)

∫︂ t

0
f ∗(s)ds

)︃∗]︄q′

dt

=
⃦⃦⃦⃦
w(t)

∫︂ t

0
f ∗
⃦⃦⃦⃦q′

p′,q′

=
⃦⃦⃦⃦
w(t)

∫︂ t

0
f ∗
⃦⃦⃦⃦q′

X′(0,1)

= ∥f∥q′

Y ′(0,1) .

Conversely, by the property (P1) of the r.i. space Lp′,q′ and (4.7),

∥f∥Y ′(0,1) =
⃦⃦⃦⃦
w(t)

∫︂ t

0
f ∗
⃦⃦⃦⃦

p′,q′

≤ ∥S(f ∗)∥p′,q′

=
⎛⎝∫︂ 1

0
t

q′
p′ −1

[︄(︄
sup

t≤s≤1
w(s)

∫︂ s

0
f ∗(τ)dτ

)︄∗]︄q′

dt

⎞⎠
1
q′

=
⎛⎝∫︂ 1

0
t

q′
p′ −1

[︄
sup

t≤s≤1
(w(s)

∫︂ s

0
f ∗(τ)dτ)

]︄q′

dt

⎞⎠ 1
q′

.

The last equality holds due to the fact that S(f ∗) is a non-increasing function.
As the last step, certainly the hardest one, we need to prove that under the
assumptions above, there is a constant C > 0 such that

⎛⎝∫︂ 1

0
t

q′
p′ −1

[︄
sup

t≤s≤1
(w(s)

∫︂ s

0
f ∗(τ)dτ)

]︄q′

dt

⎞⎠ 1
q′

≤ C

(︄∫︂ 1

0
t

q′
p′ −1

[︃
w(t)

∫︂ t

0
f ∗(τ)dτ

]︃q′

dt

)︄ 1
q′

.
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We shall use Theorem 2.19. First, we need

Tu,b(f ∗)(t) = sup
t≤τ≤1

u(τ)
B(τ)

∫︂ τ

0
f ∗(ξ)b(ξ)dξ = sup

t≤s≤1
(w(s)

∫︂ s

0
f ∗(τ)dτ) = S(f ∗)(t).

Consequently b = 1,3 and so

B(t) =
∫︂ t

0
1dτ = t

and
u(τ) = τw(τ).

Finally, functions w(t) and v(t) from Theorem 2.19 are equal to t
q′
p′ −1 and param-

eters p and q from the theorem are equal to q′.
Now, we need to verify the assumptions of Theorem 2.19. Certainly,

0 < B(t) = t < ∞, t ∈ (0, 1)

and
u(t) = tw(t)

is a continuous (and so measurable and a.e. finite) non-negative function by the
assumption of this theorem. Moreover,

0 <
∫︂ t

0
x

q′
p′ −1

dx =
[︃
x

q′
p′

]︃t

0
= t

q′
p′ < ∞, t ∈ (0, 1),

due to
q′

p′ > 0

which holds true simply because

0 < p′, q′ < ∞.

We know that ∫︂ t

0
v =

∫︂ t

0
w =

∫︂ t

0
s

q′
p′ −1

ds

and so the assumptions on w and v hold as well. Next, observe that

u(t) = B(t) sup
t≤τ≤1

u(τ)
B(τ)

= t sup
t≤τ≤1

w(τ)

= tw(t), (4.8)

where the last equality uses the fact that w is non-increasing. By utilizing Prop-
erty (3.18), one has

sup
t∈(0,1)

u(t)
B(t)

∫︂ t

0

b(τ)
u(τ)dτ = sup

t∈(0,1)
w(t)

∫︂ t

0

1
τw(τ)dτ ≈ 1 < ∞.

3This holds up to a multiplicative constant, which cancels out in the equality above with
the same multiplicative constant coming from B(t).
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Now, for the first actual condition of Theorem 2.19, using (4.8) again paired with
the fact that

tw(t) ∈ L∞(0, 1),

one gets
⎛⎝∫︂ x

0

[︄
sup

t≤τ≤x
u(τ)

]︄q′

t
q′
p′ −1

dt

⎞⎠ 1
q′

=
⎛⎝∫︂ x

0

[︄
sup

t≤τ≤x
τw(τ)

]︄q′

t
q′
p′ −1

dt

⎞⎠ 1
q′

≤ C
(︃∫︂ x

0
t

q′
p′ −1

dt
)︃ 1

q′

.

Consequently, Condition (2.3) holds. For Condition (2.4), observe that
⎛⎝∫︂ 1

x

(︄
u(t)
B(t)

)︄q′

t
q′
p′ −1

dt

⎞⎠ 1
q′

=
(︃∫︂ 1

x
w(t)q′

t
q′
p′ −1

dt
)︃ 1

q′

=: I1(x) (4.9)

and
(︄∫︂ x

0

(︄
B(t)
V (t)

)︄q

t
q′
p′ −1

dt

)︄ 1
q

=
⎛⎝∫︂ x

0

⎛⎝ t∫︁ t
0 s

q′
p′ −1

ds

⎞⎠q

t
q′
p′ −1

dt

⎞⎠
1
q

=
(︃∫︂ x

0

(︃
t
1− q′

p′

)︃q

t
q′
p′ −1

dt
)︃ 1

q

=
(︃∫︂ x

0
t

p′−q′
p′(q′−1)dt

)︃ 1
q

= K
(︃
x

p′−q′
p′(q′−1) +1

)︃ 1
q

= Kx
1
q

· q′(p′−1)
p′(q′−1)

= Kx
p′−1

p′

= Kx
1
p =: I2(x),

where

K =
(︄

p′ − q′

p′(q′ − 1) + 1
)︄− 1

q

=
(︄
q′(p′ − 1)
p′(q′ − 1)

)︄− 1
q

< ∞.

The fourth equality in the chain above holds, because

p′ − q′

p′(q′ − 1) > −1,

which, in turn, is true thanks to

q′ > 0 and p′ > 1.
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Finally,

S(I1, I2) := sup
x∈(0,1)

I1(x)I2(x)

= K sup
x∈(0,1)

(︃∫︂ 1

x
w(t)q′

t
q′
p′ −1

dt
)︃ 1

q′

x
1
p

≤ C sup
x∈(0,1)

(︃∫︂ 1

x
t

q′
p′ −1−q′

)︃ 1
q′

x
1
p .

= C sup
x∈(0,1)

(︃
x

q′
p′ −q′

− 1
)︃ 1

q′

x
1
p .

The first inequality holds by virtue of tw(t) ∈ L∞ and the constant from the
integration got included in the generic constant C. Notice that

q′

p′ − q′ = q′
(︄

1
p′ − 1

)︄
< 0

for any admissible choice of p and q and it means that the expression in the
brackets under the supremum tends to infinity for x → 0+.

It is obvious that the expression under the supremum is bounded everywhere
outside the neighbourhood of 0, due to continuity of functions involved. So it
suffices to focus our attention only on this neighbourhood. There, it is true that

(︃
x

q′
p′ −q′

− 1
)︃ 1

q′

≈ x
1
p′ −1

.

Consequently, on the neighbourhood of 0,
(︃
x

q′
p′ −q′

− 1
)︃ 1

q′

x
1
p ≈ x

1
p′ + 1

p
−1 = 1

and after heroic effort we have shown that Condition (2.4) holds. Using Theo-
rem 2.19 together with the already proven inequality, one gets

∥f∥Y ′(0,1) ≈
(︄∫︂ 1

0
t

q′
p′ −1

(︃
w(t)

∫︂ t

0
f ∗(s)ds

)︃q′

dt

)︄ 1
q′

=
(︃∫︂ 1

0
t

q′
p′ +q′−1

wq′(t)(f ∗∗(t))q′
)︃ 1

q′

.
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5. Threshold results
There are two distinct directions we want to explore. First, we shall prove the
result mentioned in Chapter 1. That is, there exists an r.i. space X for which L∞

is the optimal domain (with respect to the operator Tw) if and only if

w ∈ L1.

Secondly, we explore the question which is tied to finding an optimal space –
under which conditions are the fundamental functions of the spaces X and Y ,
where Y is the optimal range of X, equivalent?

Obviously, if X is an optimal space with respect to Tw, then it is the optimal
range for itself and so the fundamental functions of the domain and range must
be equivalent. Basically, we are looking for necessary conditions for the space X
to be optimal.

Proposition 5.1. Given an r.i. space X and a weight function w such that

tw(t) ∈ X ′,

then
T : X → L∞,

where the operator T is as in Definition 3.2, if and only if

w(t) ∈ X ′.

Proof. For sufficiency, assume that w ∈ X ′, then for any function f ∈ X,

∥Tf∥∞ = sup
t∈[0,1]

∫︂ 1

t
wf ∗

=
∫︂ 1

0
wf ∗

≤ ∥f ∗∥X(0,1) ∥w∥X′(0,1)

= ∥f∥X(0,1) ∥w∥X′(0,1)

< ∞.

The second equality holds because wf ∗ is a non-negative function, the following
inequality is of course by virtue of Hölder inequality and the equality after that
is due to the properties of an r.i. space.

For necessity, assume T : X → Y , where Y is the optimal range as in The-
orem 3.5. In fact, as a consequence of the discussion in Preliminaries, under
Definition 2.11,

Y ↪→ L∞ ⇐⇒ L1 ↪→ Y ′.

The second embedding is then equivalent to existence of a constant C > 0 such
that for any integrable function f ,

∥f∥Y ′(0,1) =
⃦⃦⃦⃦
w(t)

∫︂ t

0
f ∗
⃦⃦⃦⃦

X′(0,1)
≤ C ∥f∥L1 .
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Certainly,
χ[0,T ] ∈ L1, T ∈ (0, 1).

This combined with the use of the property (P1) of the r.i. space X ′ implies⃦⃦⃦
w(t)Tχ(T,1](t)

⃦⃦⃦
X′(0,1)

≤
⃦⃦⃦
w(t)tχ[0,T ](t) + w(t)Tχ(T,1](t)

⃦⃦⃦
X′(0,1)

=
⃦⃦⃦⃦
w(t)

∫︂ t

0
χ[0,T ]

⃦⃦⃦⃦
X′(0,1)

=
⃦⃦⃦
χ[0,T ]

⃦⃦⃦
Y ′(0,1)

≤ CT

As a result, if
Y ↪→ L∞,

then necessarily ⃦⃦⃦
w(t)χ(T,1](t)

⃦⃦⃦
X′(0,1)

≤ C, T ∈ (0, 1)

and so
w ∈ X ′.

As an obvious consequence, we can characterize all the weight functions w for
which

T : X → L∞.

Corollary 5.2. Let w be a weight function. There exists an r.i. space such that

T = Tw : X → L∞,

where the operator T is as in Definition 3.2, if and only if

w(t) ∈ L1.

Proof. If w(t) ∈ L1, then we can take X = L∞. Moreover w ∈ X ′ and due to the
property (P1) of the r.i. space L1, we know that

tw(t) ∈ L1 = X ′.

Consequently we can use Proposition 5.1 and as a result

T : X → L∞.

On the other hand, in order for the optimal range of T and X to be sensibly
defined, one needs

tw(t) ∈ X ′.

Pair it with the assumption that

w(t) ̸∈ L1

and Proposition 5.1 yields that there is no r.i. space X such that

T : X → L∞.
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Turning back to the examples of functions w given in Introduction, namely

w1(t) = 1
t
√︂

1 + log 1
t

and w2(t) = t−1+ m
n ,

we conclude that w1 ̸∈ L1 and so there is no r.i. space X such that

Tw1 : X → L∞.

On the other hand, w2 ∈ L1 for any m < n and so there exists an r.i. space X
such that

Tw2 : X → L∞.

For the second part, we will first assume that

w ̸∈ L1.

We will show that if the fundamental function of the optimal range is majorizing
(up to an additive constant) the fundamental function of X and tw(t) does have
a one-sided limit at 0, then this limit must be finite, effectively implying

tw(t) ∈ L∞.

Lemma 5.3. Let X be an r.i. space, let w be a weight function such that

tw(t) ∈ X ′

and
T = Tw : X → Y,

where Y is the optimal range with respect to X and T . Assume there exists a
constant C > 0 such that

φX

φY

≤ C,

where φX and φY are the fundamental functions of the spaces X and Y , respec-
tively, and lastly assume that limt→0+ tw(t) exists. Then

lim
t→0+

tw(t) < ∞.

Proof. Let us first show an auxiliary observation. For any r.i. space X the fol-
lowing holds⃦⃦⃦

tw(t)χ[0,a](t)
⃦⃦⃦

X(0,1)
+ a

⃦⃦⃦
w(t)χ(a,1](t)

⃦⃦⃦
X(0,1)

≈
⃦⃦⃦
w(t)(tχ[0,a](t) + aχ(a,1](t))

⃦⃦⃦
X(0,1)

(5.1)

for t ∈ (0, 1). Obviously, thanks to the triangle inequality for ∥·∥X(0,1)⃦⃦⃦
tw(t)χ[0,a](t)

⃦⃦⃦
X(0,1)

+ a
⃦⃦⃦
w(t)χ(a,1](t)

⃦⃦⃦
X(0,1)

≥
⃦⃦⃦
w(t)(tχ[0,a](t) + aχ(a,1](t))

⃦⃦⃦
X(0,1)

.
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On the other hand, by properties of an r.i. space,

max
{︃⃦⃦⃦
tw(t)χ[0,a](t)

⃦⃦⃦
X′(0,1)

, a
⃦⃦⃦
w(t)χ(a,1](t)

⃦⃦⃦
X′(0,1)

}︃
≤
⃦⃦⃦
w(t)(tχ[0,a] + aχ(a,1])

⃦⃦⃦
X′(0,1)

,

because

max{tw(t)χ[0,a](t), aw(t)χ(a,1](t)} ≤ w(t)(tχ[0,a](t) + aχ(a,1](t)), t ∈ (0, 1)

and so
1
2

(︃⃦⃦⃦
tw(t)χ[0,a](t)

⃦⃦⃦
X′(0,1)

+ a
⃦⃦⃦
wχ(a,1](t)

⃦⃦⃦
X′(0,1)

)︃
≤
⃦⃦⃦
w(t)(tχ[0,a](t) + aχ(a,1](t))

⃦⃦⃦
X′(0,1)

.

Now, back to the proof. If the conclusion is not true, we can find a non-
increasing positive sequence {tn} such that

tw(t) ≥ n for t ∈ (0, tn).

Consequently, ⃦⃦⃦
tw(t)χ[0,tn](t)

⃦⃦⃦
X′(0,1)⃦⃦⃦

χ[0,tn](t)
⃦⃦⃦

X′(0,1)

≥ n.

Using the identity⃦⃦⃦
χ[0,tn]

⃦⃦⃦
X(0,1)

⃦⃦⃦
χ[0,tn]

⃦⃦⃦
X′(0,1)

= tn, for any tn ∈ (0, 1), (5.2)

we obtain ⃦⃦⃦
tw(t)χ[0,tn](t)

⃦⃦⃦
X′(0,1)

⃦⃦⃦
χ[0,tn](t)

⃦⃦⃦
X(0,1)

tn
≥ n.

Using the definition of the norm on the space associated to the optimal range
(cf. Theorem 3.4) paired with the identity (5.2) in the second equality and then
the equivalence (5.1), we get

φX

φY

(tn) =

⃦⃦⃦
χ[0,tn]

⃦⃦⃦
X(0,1)⃦⃦⃦

χ[0,tn]

⃦⃦⃦
Y (0,1)

=

⃦⃦⃦
χ[0,tn](t)

⃦⃦⃦
X(0,1)

⃦⃦⃦
w(t)

(︂
tχ[0,tn](t) + tnχ(tn,1](t)

)︂⃦⃦⃦
X′(0,1)

tn

≈

⃦⃦⃦
χ[0,tn](t)

⃦⃦⃦
X(0,1)

(︃⃦⃦⃦
tw(t)χ[0,tn](t)

⃦⃦⃦
X′(0,1)

+ tn
⃦⃦⃦
w(t)χ(tn,1](t)

⃦⃦⃦
X′(0,1)

)︃
tn

≥

⃦⃦⃦
χ[0,tn](t)

⃦⃦⃦
X(0,1)

⃦⃦⃦
tw(t)χ[0,tn](t)

⃦⃦⃦
X′(0,1)

tn
≥ n. (5.3)

This is clearly a contradiction and so

lim
t→0+

tw(t) < ∞.

46



Lastly, we want to give conditions which guarantee that

φX ≈ φY .

Before we do that, we shall state one more technical lemma. The point of this
lemma is simple. Whether or not the fundamental functions are equivalent de-
pends solely on their behaviour near 0. This lemma proves the part that φX ≈ φY

for t away from 0.

Lemma 5.4. Let X be an r.i. space, let w be a weight function such that

tw(t) ∈ X ′,

and
T : X → Y,

where Y is the optimal range with respect to X and T . For any T ∈ (0, 1) and
a ∈ (T, 1) the expression

φX

φY

(a)

is bounded from above and from below by a constant depending on T , X and the
function w.

Proof. Let T ∈ (0, 1) be given and a ∈ (T, 1). As shown in (5.3)

φX

φY

(a) ≈

⃦⃦⃦
χ[0,a]

⃦⃦⃦
X(0,1)

(︃⃦⃦⃦
twχ[0,a]

⃦⃦⃦
X′(0,1)

+ a
⃦⃦⃦
wχ(a,1]

⃦⃦⃦
X′(0,1)

)︃
a

.

Due to the non-decreasing nature (via the property (P1) of r.i. spaces) of the
norms involved in the expression, we can take a = 1 in the nominator, and
underestimate a in the denominator by T , then

φX

φY

(a) ≤ 1
T

∥1∥X(0,1)

(︃
∥tw∥X′(0,1) +

⃦⃦⃦
wχ(T,1]

⃦⃦⃦
X′(0,1)

)︃
.

The only thing, which is not obvious, is boundedness of
⃦⃦⃦
wχ(T,1]

⃦⃦⃦
X′(0,1)

. Well, for
t ≥ T , ⃦⃦⃦

wχ(T,1]

⃦⃦⃦
X′(0,1)

≤ 1
T

⃦⃦⃦
twχ(T,1]

⃦⃦⃦
X′(0,1)

< ∞.

Consequently,
φX

φY

(a) ≤ C(X,T,w) < ∞, a ∈ [T, 1].

For the estimate from below, notice that due to monotonicity and non-nega-
tivity of w and t, we have that for any a ≥ T

∫︂ a

0
tw(t)dt ≥

∫︂ T

T
2

tw(t)dt ≥ T 2

4 w(T ) > 0, a ∈ [T, 1].
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Utilizing this observation, one gets

φX

φY

(a) ≈

⃦⃦⃦
χ[0,a]

⃦⃦⃦
X(0,1)

(︃⃦⃦⃦
twχ[0,a]

⃦⃦⃦
X′(0,1)

+ a
⃦⃦⃦
wχ(a,1]

⃦⃦⃦
X′(0,1)

)︃
a

≥

⃦⃦⃦
χ[0,a]

⃦⃦⃦
X(0,1)

⃦⃦⃦
twχ[0,a]

⃦⃦⃦
X′(0,1)

a

≥ C

⃦⃦⃦
χ[0,a]

⃦⃦⃦
1

⃦⃦⃦
twχ[0,a]

⃦⃦⃦
1

a

≥ C
T 2

4 w(T ) = C(X,T,w)

> 0

Note that the constants of equivalence in (5.3) are 1
2 and 1 and they are not

dependent on any other quantity.

Analyzing the expression⃦⃦⃦
χ[0,a]

⃦⃦⃦
X(0,1)

(
⃦⃦⃦
twχ[0,a]

⃦⃦⃦
X′(0,1)

+ a
⃦⃦⃦
wχ(a,1]

⃦⃦⃦
X′(0,1)

)

a

further and using (5.2), we arrive at conditions which have to be met for φX and
φY to be equivalent. First, let us consider an upper bound. That is equivalent
to existence of a constant C > 0 such that on some neighbourhood of 0⃦⃦⃦

twχ[0,a]

⃦⃦⃦
X′(0,1)⃦⃦⃦

χ[0,a]

⃦⃦⃦
X′(0,1)

≤ C, (5.4)

⃦⃦⃦
wχ(a,1]

⃦⃦⃦
X′(0,1)⃦⃦⃦

χ[0,a]

⃦⃦⃦
X′(0,1)

≤ C

a
. (5.5)

To obtain the lower bound, one of the following two conditions must be sat-
isfied, again on some neighbourhood of 0,⃦⃦⃦

twχ[0,a]

⃦⃦⃦
X′(0,1)⃦⃦⃦

χ[0,a]

⃦⃦⃦
X′(0,1)

≥ C, (5.6)

⃦⃦⃦
wχ(a,1]

⃦⃦⃦
X′(0,1)⃦⃦⃦

χ[0,a]

⃦⃦⃦
X′(0,1)

≥ C

a
. (5.7)

Theorem 5.5. Let X be a given r.i. space, w a weight function such that

tw(t) ∈ X ′

and let Y be the corresponding optimal range. Then

φX ≈ φY

if and only if either one of the triplets of the conditions (5.4), (5.5) and (5.6)
or (5.4), (5.5) and (5.7) is satisfied.
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Proof. It is obvious via Lemma 5.4 that boundedness of φX

φY
depends only on

behaviour near 0 and there

φX

φY

(a) ≈

⃦⃦⃦
χ[0,a]

⃦⃦⃦
X(0,1)

(︃⃦⃦⃦
twχ[0,a]

⃦⃦⃦
X′(0,1)

+ a
⃦⃦⃦
wχ(a,1]

⃦⃦⃦
X′(0,1)

)︃
a

.

As discussed before, the conditions are equivalent to boundedness of expression
on the right-hand side from either above or below.

Corollary 5.6. Under the assumptions of Theorem 5.5:

(I) Assume that w(t) ≈ 1
t

near 0, then

φX ≈ φY

if and only if there is a constant C > 0 such that⃦⃦⃦⃦1
t
χ(a,1]

⃦⃦⃦⃦
X′(0,1)

≤ C

⃦⃦⃦⃦1
a
χ[0,a]

⃦⃦⃦⃦
X′(0,1)

for a close to 0.

(II) Assume that limt→0+ tw(t) = 0, then

φX ≈ φY

if and only if ⃦⃦⃦
wχ(a,1]

⃦⃦⃦
X′(0,1)

≈ 1⃦⃦⃦
χ[0,a]

⃦⃦⃦
X(0,1)

for a close to 0.

Proof. Apply Theorem 5.5 to the assumptions given.
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