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1. Introduction
This work explores two domain adaptation tasks: automatic speech recognition
(ASR) and machine translation (MT). By domain adaptation we mean the pos-
sibilities of enhancing the performance in a narrow context of usage.

In this chapter, we briefly introduce both of the tasks, then describe our goal
of domain adaptation in a closer detail and present the structure of the thesis.

1.1 Automatic speech recognition
ASR (automatic speech recognition) is a process that aims to automatically tran-
scribe spoken language into text. The techniques employed to achieve this goal
originate mostly from the computational linguistics field. Examples of ASR usage
include generating subtitles for a video or in SLT (spoken language translation),
where it is used in conjunction with MT (machine translation). Virtually all ASR
systems use supervised learning methods, meaning they require an annotated cor-
pus containing audio files and their transcriptions.

ASR systems convert speech in the form of speech signal (a sound wave) into
words. To do so, this speech signal is split into a sequence of phonemes, which
are the smallest individual units of sound. To convert the sequence of phonemes
into individual words, a number of components is employed, one of them being
the acoustic model. This model, roughly speaking, contains a mapping between
sequences of phonemes and words. Based on this list, it tries to determine the
most likely word for a given sequence of phonemes. This list of words is also
the complete set of words the system can output. The acoustic model is usually
trained using a large annotated corpus, which contains of audio files and their
transcriptions.

Some ASR systems also contain a language model. Based on the sequence
of already recognized words, this model tries to predict words that are likely
to come next. This is especially useful when there is a sequence of phonemes,
corresponding to multiple similar-sounding words, each with different meaning.
This information from language model can help the ASR to pick the correct word.
However, when a word is misrecognized, it can have a negative effect on language
model’s performance, because it can no longer accurately predict what word will
come next. The language model is usually trained using a large mono-lingual
corpus.

1.2 Machine translation
Machine translation is a task of automatically converting a text from one language
to another. Generally speaking, machine translation (MT) models use either
supervised, semi-supervised or unsupervised training methods.

Supervised training requires a parallel corpus, which consists of pairs of sen-
tences. Each sentence pair has a source language half and target language half.
Essentially, both corpora are a translation of the other, where one side was typ-
ically created by translating the other one. By having the exact same sentence
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represented twice in both languages, a new information channel opens up. This
allows the system to infer additional information from the structures of corre-
sponding sentences, as well as the contexts in which words are used.

Unsupervised training drops the requirement of the corpus being parallel and
simply requires having two monolingual corpora, which consist of texts in only
one language. Unsupervised techniques usually use various methods to make up
for this loss of information channel. This type of training is a very recent one.

Semi-supervised training is a combination of supervised and unsupervised
training, as it utilizes both parallel and monolingual corpora, essentially having
the best of both words.

There are multiple training methods for MT models, but the modern ones in-
clude neural machine translation (NMT) and classical statistical machine trans-
lation (SMT)[1].

NMT models are currently one of the most popular ones. They utilize var-
ious forms of neural networks. One of the most popular NMT models is the
Transformer model, which exploits the self-attention mechanism to parallelize
the learning process, achieving state-of-the-art results [2, 1].

SMT models are usually phrase-based. One such example is Moses, which
utilizes a large amount of parallel data to learn a statistical model, which is then
used for phrase-by-phrase translation.

Note that the training methods and model types are orthogonal to each other
and can be mixed freely. Unsupervised NMT models generally perform better
than others, at the cost of increased computational requirements.

1.3 Talk-level domain adaptation
The slightly ambiguous phrase “talk-level domain adaptation” refers to situations
where the speaker and talk topics are known beforehand and the ASR and MT
models are tasked with transcribing and translating the talk, respectively. Ex-
amples include a lecture at the university or parliament sessions. A domain in
this context can be formalized simply as the set of words and phrases common
in some field –for example, a lecture about linear algebra is going to contain
domain-specific words, such as vector or determinant.

However, ASR and MT models are usually trained on a large amount of
general data, which might not contain the domain-specific words at all. This
usually leads into poor performance, as the systems are tasked with transcribing
or translating a word they have never seen before.

Thus, the principal idea is to gather domain-specific data for a given talk,
such as a textbook for a lecture, slides for a presentation or even an article about
the given topic. These texts, hopefully containing the domain specific words, are
then converted into a corpus the ASR and MT models use for their training.

1.4 Discussion topics
In Chapter 2, an existing approach for ASR domain adaptation is discussed, along
with the summary of the results. Then, a pipeline for MT domain adaptation
is proposed in Chapter 3. Evaluation of the pipeline and data used for this
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evaluation are discussed in Chapter 5 and Chapter 4, respectively. Finally, results
are shown in Chapter 6 and discussed in Chapter 7.
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2. ASR domain adaptation
As the title of this thesis suggests, the original main goal of the thesis was the
adaptation of ASR. After the official assignment, this topic was however reason-
ably satisfactorily handled in master thesis of Jonáš Kratochv́ıl, as we shortly
summarize in this chapter. To avoid duplicating work, we moved towards the
topic of MT model adaptation which was a planned extension of the work.

Following is a very short summary of the domain adaptation process explored
in the work of Kratochv́ıl [3] using Kaldi,1 an ASR framework. The adaptation
was performed in two steps: acoustic adaptation and language model adaptation.

2.1 Acoustic adaptation
For acoustic adaptation, the acoustic model was trained using additional in-
domain recordings and their transcripts. The recordings were usually of the
same speakers as those in the test set used in evaluation later on [3].

2.2 Language model adaptation
For practical reasons, the language model cannot contain each and every possible
word. Indeed, many languages, so called synthetic languages, have the ability
to derive multiple words from a single root by inflection or agglutination. The
former is a process of adding morphemes to a root word and the latter is a process
of combining multiple morphemes into a single word. Storing all possible word
forms can be infeasible, in many cases. Rather, only the most-frequent subset
of words is stored, often just the root forms. Additionally, the language model
needs to know the context in which a word can occur.

Domain adaptation of the language model was then performed by collecting
domain-specific texts into a corpus used for training the language model. First,
available domain texts were collected and using sentence embeddings, other cor-
pora were searched for similar sentences. Using these sentences, domain-specific
words were identified and again used to search other corpora for sentences contain-
ing those words. These sentences formed a corpus used for training the language
model. [3]

2.3 Results
The results of the domain adaptation can be seen in Figure 2.1 and Figure 2.2.
The relevant parts is the “Level 2” model, in which the language model adaptation
was used and “Level 3” model, which extends the “Level 2” model by additionally
using acoustic adaptation. The baseline used was trained on a general corpus
without any adaptation.

Figure 2.1 shows the DWA scores of the models. DWA score is a ratio of the
recognized domain words to the total amount of domain words. The “Level 2”

1https://kaldi-asr.org/
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model showed an improvement over the baseline. The “Level 3” model, however,
showed an regression over the baseline, as the model “overfitted to the target
data extensively” [3].

Figure 2.2 shows the count of out-of-vocabulary words for each domain. The
language model adaptation managed to recognize almost half of the overall out-of-
domain word count, compared to the baseline. This indicates the chosen method
of collecting an in-domain corpus for the language model adaptation can yield
good results.

Figure 2.1: DWA results for the five test sets. The numbers indicate the percent-
age of recognized words from the total of domain words for each test set denoted
in the first row. Reproduced from [3].

Figure 2.2: Counts of out-of-vocabulary words in model lexicon. Reproduced
from [3].

7



3. Machine translation domain
adaptation
The original assignment of this thesis planned two targets: the primary one was
ASR adaptation which was however reasonably well tackled by [3] as described
in Chapter 2, and the foreseen extension was MT adaptation. The latter thus
became the main focus of the thesis and we outline it in this chapter.

3.1 Introduction and goals
To train a MT system that is aware of a certain domain, the source and target
corpora it is trained on have to be related to that domain. The availability of
domain-related texts can be quite limited, if the domain is a very specific one, or
the language does not have many users. Furthermore, a language’s widespread-
ness does not imply the existence of domain-related texts in the language. For
example, English is the de-facto standard language when it comes to academia
and research, so obtaining domain-related texts in relatively widespread languages
such as German can still prove to be untrivial. Obtaining parallel texts is even
more difficult, so this is why we do not assume their existence and use an unsu-
pervised MT system in the pipeline instead.

However, some attempts to sidestep this issue by generating a pseudo-parallel
in-domain corpus have been already performed, such as the work of Hu et al. [4],
explained in Section 3.4.

Our unsupervised MT system used, Monoses, is trained on corpora generated
from texts scraped from the Internet. One of the main weaknesses of unsupervised
MT systems can be “a large number of randomly mistranslated named entities
which leave a significant impact on the perceived translation quality” [5]. One of
the goals of this work is then to check whether or not the proposed approach has
the same issue.

3.2 Corpus collection
As mentioned above, in-domain source and target texts can be very scarce. How-
ever, for the training of the Monoses model to successfully finish, each of the
source and target in-domain corpora have to be sufficiently large. From empirical
observations, the minimum required size of a training corpus for this purpose
is about 25 to 50 thousand sentences for both source and target sides. In Sec-
tion 3.2.1 we propose a method for obtaining an in-domain corpus and in Sec-
tion 3.2.2 we discuss a method to extend this in-domain corpus with sentences
from a parallel out-of-domain corpus, if the in-domain corpus is too small.

3.2.1 Mono in-domain corpus
The process of collecting an in-domain corpus is split into multiple phases, as can
be seen in Figure 3.1.
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Figure 3.1: Process of collecting the in-domain corpus

Collecting files

As one of the means to collect in-domain files in source language, we modified an
already existing application called files-collector.1 It is a simple Python applica-
tion based on Flask2 framework that allows file uploading and retrieval. When
a need for domain adaptation arises, such as a conference, the app can be easily
deployed using Docker’s docker-compose3 utility to allow individual speakers to
upload their slides or presentation notes.

We then implemented a pipeline for automatic processing of the uploaded files
to plaintext using appropriate utilities, such as pdftotext4 for PDF files or Tikal5

for files produced by the Microsoft Office family of programs.

Figure 3.2: Screenshot from the files-collector app

1https://github.com/ELITR/files-collector/tree/dockerized
2https://palletsprojects.com/p/flask/
3https://docs.docker.com/compose/
4https://www.xpdfreader.com/index.html
5https://okapiframework.org/wiki/index.php/Tikal
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Keyword retrieval

To gather in-domain texts in the target language, a list of keywords characterizing
the domain is required. Obtaining these keywords can be done in multiple ways,
but one of the simpler methods is to compute the most relevant words using tf-
idf.6 For each unique token occurring in the text files, tf-idf score is computed
for each text file. A list of keywords is then obtained by averaging the tf-idf
scores. This list of is then manually translated to the target language. This
could be automated, for example by checking a dictionary made from a large
parallel corpus. Note that we do not expect to be able to find translations for all
the source keywords. If no translation is found, the keyword is ignored, with the
hope that the relevant target-language texts will be found using other keywords
and that they will offer translations also for the now unknown words.

Web scraping

The list of domain keywords in target language is then used to scrape the Internet
for in-domain texts in target language. We propose to utilize Semantic Scholar7,
a search engine for academic papers. There are alternative search engines, such
as Google Scholar.8 Unlike Semantic Scholar, it does not allow for easy search
result scraping. However, Semantic Scholar might be a good source of target
in-domain texts only for certain domains, because not all domains have academic
papers written about them.

Obtained academic papers and texts were then checked whether or not they
are in the target language and converted to plaintexts in the same manner as
described in Section 3.2.1.

3.2.2 Mixed in-domain corpus

Mixed in-domain 
corpus

In-domain 
source corpus

Parallel 
out-of-domain 

corpus

In-domain target 
corpus

Mixed 
in-domain source 

corpus

Mixed 
in-domain target 

corpus

Figure 3.3: Process of generating the mixed in-domain corpus
6https://en.wikipedia.org/wiki/Tf-idf
7https://www.semanticscholar.org/
8https://scholar.google.com/
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In some cases, collecting an in-domain corpus of the required minimum size
of 25 to 50 thousand sentences can be impractical, if not outright infeasible.
For these cases, we propose method of extending the in-domain corpus by out-
of-domain sentences from a parallel corpus so it has the required size, as seen
in Figure 3.3. More specifically, we take a fixed number of source and target
sentences from the parallel out-of-domain corpus and add them to the source
and target in-domain corpora. The resulting corpus is called a mixed in-domain
corpus.

Since Monoses assumes that the input source and target side of the corpus
are not parallel, it cannot exploit the fact that the out-of-domain part actually is
parallel. To benefit from this parallelism at least to some extent, the cross-lingual
word embeddings mapper, VecMap[6], is used during training in a semi-supervised
mode and supplied with a seed dictionary, which is a dictionary of source to target
words. This helps VecMap to generate more accurate cross-lingual mappings.

Seed dictionary

The seed dictionary can be obtained by, for example, utilizing Moses to generate
a lexical translation table9 (Figure 3.4). Internally, MGIZA,10 a multi-threaded
implementation of GIZA++ [7], a tool for word alignment is used. Given two
source and target sentences, word alignment is a mapping between words from
those sequences. Generally speaking, this mapping is sequence-to-sequence, be-
cause a source word can correspond to multiple target words and vice versa. This
table can be then converted into a dictionary by simply picking the most probable
translation for each source word.
europe europa 0.8874152
european europa 0.0542998
union europa 0.0047325
it europa 0.0039230

Figure 3.4: Example of a lexical translation table used for creating the seed dic-
tionary.11

3.3 MT model training
Figure 3.5 shows a top-level overview of the training process. The resulting MT
model is eventually not used as such. We only extract word translations from it,
as discussed in the following chapters.

3.3.1 Monoses
The unsupervised statistical MT system (SMT) used in the training pipeline is
Monoses12 [8]. It uses Moses [9], which is a supervised statistical MT system

9http://www.statmt.org/moses/?n=FactoredTraining.GetLexicalTranslationTable
10http://www.statmt.org/moses/?n=Moses.ExternalToolsntoc3
11http://www.statmt.org/moses/?n=FactoredTraining.GetLexicalTranslationTable
12https://github.com/artetxem/monoses
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Figure 3.5: Process of MT model training

operating on parallel data. To avoid this need for parallel data, Monoses learns
n-gram word embeddings, mappings of n-grams to vectors of real numbers, a
process popularized by Mikolov et al. [10], using Phrase2Vec.13 Then, these n-
gram embeddings are mapped to a shared cross-lingual space using VecMap.14

With this cross-lingual space mapping, a phrase table is then induced and used
to train a Moses MT model, with the phrase table essentially serving as a phrase-
to-phrase source-to-target dictionary.

In a process called iterative backtranslation, “a synthetic parallel corpus is
created by translating the monolingual corpus in one of the languages with the
initial system, and train and tune a standard SMT system over it in the opposite
direction” [8]. This process is then usually repeated until the internal weights of
the MT model converge.

3.3.2 Phrase tables
As mentioned, one of the main components used in the pipeline is a phrase table
(Figure 3.6). Each line of the table contains a phrase in the source and target
languages, as well as probabilities of the translation and alignment information.

ZABRÁNIT REGISTRACE K DPH ZAVÁDÍ | WIRD MIT EINEM KLEINEREN | 1 | 0-0 1-1 2-2 3-2 4-3
(’prevent registration for VAT introduces’) | (’will with a smaller’)
ZABRÁNIT REGISTRACE K DPH | WIRD MIT EINEM | 0.333 | 0-0 1-1 2-2 3-2
(’prevent registration for VAT’) | (’will with a’)
ZABRÁNIT REGISTRACE | WIRD MIT | 0.5 | 0-0 1-1
(’prevent registration’) | (’will with’)

Figure 3.6: Excerpt from the initial phrase table induced by Monoses from non-
parallel data, so the accuracy is very low. English gloss is in quotes.

The final phrase table generated by the iterative backtranslation process will
later on be used to evaluate the accuracy of the MT model, as described in
Chapter 5.

13https://github.com/artetxem/phrase2vec
14https://github.com/artetxem/vecmap
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3.4 Related work
The mixed in-domain corpus method Section 3.2.2 was inspired by the DALI [4]
(Domain adaptation by lexicon induction) method for unsupervised MT. (Fig-
ure 3.7). It also uses GIZA++ to extract a supervised seed dictionary from a
large parallel general corpus. Then, an unsupervised seed dictionary is generated
using a generative adversarial network (GAN), a method based on neural net-
works. Then, a mapping between these two seed dictionaries is learned and used
to create a pseudo-parallel in-domain corpus which is then used for supervised
training of neural-based MT systems.

The main difference between our proposed method and the DALI method
is that we do not generate the mapping W ∗. The supervised seed lexicon is
generated by MGIZA in the form of the seed dictionary (Section 3.2.2). We
hope Phrase2Vec and VecMap used by Monoses will produce a sufficient mapping
instead by inducing the initial phrase table and using the backtranslation process,
to eventually create a pseudo in-domain parallel corpus.

Figure 3.7: Work flow of the DALI method. [4]
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4. Training data
Languages chosen to evaluate the performance of the pipeline were Czech and
German, with Czech being the source and German being the target.

4.1 Czech domain-specific corpora
In order to extend Kratochv́ıl’s work [3] and possibly compare the domain adap-
tation impact on ASR and MT, the five domains evaluated in [3] are also used
for evaluation of our proposed pipeline:

The Český Rozhlas (ČRO) corpus consists of transcriptions of shows and pro-
grammes broadcasted on the Czech radio station Český Rozhlas. The Czech
Parliament (PS) corpus consists of transcriptions of plenary hearings. Compu-
tational linguistics corpus (CL) contains transcriptions of two talks by Martin
Popel, both focused on machine translation. European Parliament corpus (EP)
consists of transcriptions of plenary hearings that took place in the European
Parliament. Finally, the Supreme Audit Office corpus (SAO) consists of tran-
scriptions of talks given at a SAO conference.

Each corpus presents a challenge. Their size varies wildly, as well as the range
of topics discussed – some corpora focus on only one topic (CL, SAO) while others
contain multiple subtopics (PS, ČRO, EP). Their size is in Table 4.1.

Corpus # of words
PS 5510121
ČRO 2710811
CL 65783
EP 131151358
SAO 1268476

Table 4.1: Overview of Czech domain-specific corpora sizes

4.2 German domain-specific corpora
Because of the small count of domains, the keywords (introduced in Section 3.2.1)
used for scraping were picked and translated manually. Texts were scraped from
the Semantic Scholar site. The size number of keywords used for scraping and
the size of resulting corpora is in Table 4.2.

4.3 Parallel corpus
The Czech-German parallel general corpus (PG) used for training the baseline
model and for generating the seed lexicon is a combination of multiple corpora
from OPUS1 [11]. The corpora used are DGT, EMEA, EUbookshop, Europarl,

1http://opus.nlpl.eu/
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Corpus # of keywords # of words
PS 5 425430
ČRO 3 684813
CL 2 319093
EP 5 367438
SAO 2 302664

Table 4.2: Overview of German domain-specific corpora sizes

JRC-Acquis, MultiParaCrawl, News-Commentary, ECB and OpenSubtitles. The
size of the parallel corpus is in Table 4.3.

Corpus # of sentences
PG 21373550

Table 4.3: Overview of parallel corpus size
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5. Evaluation
The goal of this thesis is specifically the adaptation of MT to new domains.
Unlike in unsupervised MT where the goal is to learn to translate everything,
complete sentences, from monolingual texts, we assume that the common words
and expressions will be covered by the baseline system, and that only the domain-
specific terms will cause an issue. For this reason, we do not use any standard
MT evaluation measures such as BLEU1 score, because they assess the complete
sentences and they would be influenced by the few domain-specific words too
little. Instead, our evaluation score checks the extent to which domain-specific
terms are automatically found by our approach.

The proposed evaluation metric is based on matching a manually created ref-
erence dictionary of domain-specific words with a dictionary that is automatically
constructed from the final phrase table generated by the unsupervised MT model.

5.1 Domain-specific words
For the purpose of evaluation, the lists of source domain-specific words used by
Kratochv́ıl [3] were reused. For example, the domain-specific words for the SAO
domain include reverse charge,2 plátce daně, registr, DPH, EET, OSS, audit,
transakce. Notably, these lists can contain multiple forms of the same lemma, a
base form of a word, such as registrovańı, registrovaná in the SAO domain. While
listing multiple word forms is a sensible decision for speech recognition where the
goal is to find exactly the form which was uttered, in MT we need to see if
the lexical counterpart was identified acceptably, regardless its exact form. To
avoid evaluating the same word twice, the domain-specific words were lemmatized
using MorphoDiTa [12], “an open-source tool for morphological analysis”.3 An
overview of the number of domain-specific words before and after lemmatization
is in Table 5.1

Corpus # of words # after lemmatization
PS 106 87
ČRO 48 40
CL 129 88
EP 111 76
SAO 63 49

Table 5.1: Overview of domain-specific word list sizes

5.1.1 Reference domain translation dictionary
With the list of source domain-specific words, we need to obtain their transla-
tions. To obtain a reference Czech to German dictionary of the domain-specific

1https://en.wikipedia.org/wiki/BLEU
2this English word is actually a jargon term used in Czech spoken text
3http://lindat.mff.cuni.cz/services/morphodita/
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words, services of a translation agency were utilized. Given the linguistic differ-
ences between Czech and German, asking to create a word-for-word dictionary is
not very sensible. For example, in Czech, declensions are identified by different
word endings, to a large part. However, in German, declensions are identified by
a combination of articles, nouns and sometimes even the context of the sentence.
Furthermore, values of morphological categories often do not correspond to each
other across languages. Gender and case can easily differ because they depend
on the noun or on the governing verb and its valency frame. The lexical cor-
respondence is also not straightforward, multi-word expressions in one language
can correspond to a single word on the other one. This is particularly common
for German compounds where some of their components are translated, for ex-
ample, into adjectives or other parts of speech in more complicated cases. Thus,
the translators were asked to supply all possible translations of a given domain-
specific word with respect to form and domain context, including articles and
nouns, if possible.
ZPRAVODAJI ’to/via the reporter/s’ : (DER) REPORTER, (DER) BERICHTERSTATTER, (DURCH DIE) REPORTER
ZPRAVODAJ ’reporter’ : (DER) REPORTER, (DER) BERICHTERSTATTER
GARANČNÍMU ’guarantee’ : (DEM) GARANTIE-

Figure 5.1: Example from the Czech-German hand-crafted reference dictionary
of domain-specific words. English gloss is in quotes and does not appear in the
dictionary.

As can be seen in Figure 5.1, different forms of a single lemma, in this case
’ZPRAVODAJ’, can have multiple appropriate translations, some of them with
one or more articles and prepositions. Some of the words, especially the adjec-
tives, such as ’GARANČNÍMU’ are translated as a prefix, denoted by the dash
at the end of the translation: ’GARANTIE-’.

This hand-crafted dictionary was then further manually processed. First off,
translations of all forms of a given lemma were consolidated together. Second,
some German translations consists of multiple words, but the focus is on com-
paring word-for-word translations. To accommodate for this, translations with
multiple words were included twice – once with all verbs and nouns, and once
with just the base word. More thorough reasoning for this second step is in
Section 5.4.

The resulting dictionary is called the golden dictionary and can be seen in Fig-
ure 5.1. Essentially, it represents a list of all possible translations in the target
language of a given lemma in the source language. Notably, this list of transla-
tions is by no means complete, as it will contain only hand-picked translations
of forms of lemmas present in the list of domain-specific words. Gathering a list
of all possible translations of all lemma forms would be too time consuming and
expensive. This deficit was compensated for by allowing an inexact match when
comparing the translations. This is discussed in Section 5.4.1.

5.2 Phrase table dictionary extraction
Each line in the phrase table contains the source and target phrase, probability
of translation and word alignments, as can be seen in Figure 3.6. Using the word
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ZPRAVODAJ ’reporter’ : DER REPORTER, REPORTER, DER BERICHTERSTATTER,
BERICHTERSTATTER, DURCH DIE REPORTER
GARANČNÍ ’guarantee’ : (DEM) GARANTIE-, GARANTIE-

Figure 5.2: Examples from Figure 5.1 after being manually processed into a golden
dictionary of golden translations. Gloss is in quotes.

alignment information, the source and phrase phrase pairs are converted into a
series of corresponding words, as shown in Figure 5.3. These translations are
called extracted translations and they form the extracted dictionary.

PRO DAŇOVÉ ÚČELY ’for tax purposes’ | DER UNTERNEHMENSSTEUER ’corporate tax’
| 0.58 | 0-0 1-1 2-1

=>
(PRO, DER, 0.58), (DAŇOVÉ, UNTERNEHMENSSTEUER, 0.58), (ÚČELY, UNTERNEHMENSSTEUER, 0.58)

Figure 5.3: Example of a line from a phrase table being converted into extracted
translations, forming the extracted dictionary. Line break added for readability.
Gloss is in quotes.

5.3 Precision and recall
The two traditional metrics used for word-for-word comparison are precision and
recall.

precision = # of true positives
# of true positives + # of false positives

recall = # of true positives
# of true positives + # of false negatives

Figure 5.4: Definition of precision and recall

In layman’s terms, precision is the ratio of the number of correct answers to
the number of total answers. Recall is the ratio of the number of correct answers
to the number of total correct answers. High precision indicates rarely answering
wrong, while high recall indicates few omitted answers. This subtle difference
can be understood by observing the edge cases: answering nothing at all yields
the precision of 1, while providing all possible answers to a query yields the recall
of 1. This also implies precision and ratio are complementary to each other in a
way, because increasing one will usually decrease the other.

However, because a single source word has multiple golden translations, thus
multiple correct answers, using these two methods in a straightforward manner
would not yield meaningful results. Thus, two metrics with semantic meanings
similar to precision and recall are proposed in the following Section 5.4.

5.4 Metrics
For each lemmatized domain-specific word ω on the left (source) side of the
golden dictionary shown in Figure 5.6, two metrics will be calculated. First,
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all forms ωi of the lemma ω were generated using MorphoDiTa. If MorphoDiTa
fails to provide forms of the lemma, typically when the domain-specific word
is an abbreviation or a name, the form itself is used instead. Then, a list of
proposed translations ρk of each form ωi was compiled by searching the extracted
dictionary shown in Figure 5.3. Each proposed translation consists of a target
phrase and the probability of the translation. A list of golden translations τj for
the domain-specific word ω is also collected using the golden dictionary mentioned
in Figure 5.6. Finally, proposed translation score Sk is calculated for each proposed
translation ρk. An overview of the relationship between these newly introduced
objects is in Figure 5.5.

Lemma 

?

Form 

? i

Golden 
translations

?j

Proposed 
translations

?k

Proposed 
translation score

Sk

Figure 5.5: Relationship of objects used in the evaluation process

INLÄNDISCHEN ’inland’: 1,
ERFASSUNG ’registration’: 1,
HIER ’here’: 1

Figure 5.6: Examples of automatically proposed translations for the lemma ”REG-
ISTRACE” (’registration’). Gloss is in quotes.

5.4.1 Fuzzy matching
The golden translations are only a subset of all possible translations, as they
were created by translating only a limited amount of the domain-specific word
forms. It is possible for a proposed translation to be correct4, but the target
phrase of the proposed to not be present in the list of golden translation. If we
used strict equality for checking if the translation is correct or not, the proposed
translation would be treated as not correct. To avoid this, the matching between
golden translations and proposed translations is performed in a fuzzy way, utilizing
FuzzyWuzzy, 5 a Python library, which uses Levenshtein distance to calculate the
similarity ratio of two strings.

4From an objective standpoint.
5https://github.com/seatgeek/fuzzywuzzy

19



5.5 Score definitions
Using the string similarity function sim(x, y) ↦→ [0, 100], representing the similar-
ness percentage, each proposed translation ρk = (target, probability) of a lemma
form ωi is then assigned a score Sk, iterating k over all golden translations τj:

Sj =

⎧⎨⎩100 ∗ probability if τj is a prefix of target6

sim(target, τj) ∗ probability otherwise

Figure 5.7: Translation score formula

Each in-domain lemma ω is then assigned two scores: ωmax and ωavg, iterating
i over all lemma forms ωi, j over all golden translations τj and k over all proposed
translation scores Sk of the lemma form ωi as described on Figure 5.8.

ωmax = maxi,j,k (Sk)
ωavg = avgi (maxj,k(Sk) if ωi has at least one proposed translation)

Figure 5.8: Word score formulas

Lemma ?

"VEKTOR"

Form ? 2

"VEKTOREM"

Golden translations ?j

"VEKTOR, DER VEKTOR"

Proposed translations ?1

("VEKTOREN", 1), ("SKALAR", 0.5)

Proposed translation score S1

MAX (

sim("VEKTOREN", "VEKTOR) * 1 = 86,

sim("VEKTOREN", "DER VEKTOR) * 1 = 67,

sim("SKALAR", "VEKTOR) * 0.5 = 16.5,

sim("SKALAR", " DER VEKTOR) * 0.5 = 12.5

) = 86

Form ? 1

"VEKTORU"

Form ? 3

"VEKTORY"

Proposed translations ?2

("DER VEKTOR", 0.8)

Proposed translations ?3

none

Proposed translation score S3

= 0

? max = max(86, 80, 0) = 86

? avg = avg(86, 80) = 83

(Score for ? 3 is not included, 

because there are no proposed 

translations.)

Proposed translation score S2

MAX (

sim("DER VEKTOR", "VEKTOR) * 0.8 = 60,

sim("DER VEKTOR", " DER VEKTOR) * 0.8 = 80

) = 80

Figure 5.9: Fictional example of computing ωmax and ωavg

An example of the computing process is displayed in Figure 5.9. ωmax has
the semantic meaning of recall – whether the phrase table contains the correct
translation at all. ωavg represents precision – how many forms in the phrase
table have an acceptable translation. Because the lemma can have many more
forms than those present in the phrase table, lemma variants without a proposed
translation are not included in the average, to avoid excessive penalization.

6Only if the golden translation is explicitly marked as a prefix.
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5.6 Recognized words
Because all forms of a domain-specific word ω are checked when extracting trans-
lations, the extracted translation’s source phrase is not necessarily in the same
form as the original word ω. This can result in a word score ωmax that is not 100,
because the target phrase is being compared to a list of golden translations of
source forms, that do not have to necessarily contain the extracted translation’s
source form. In this case, ωmax will be lightly smaller, even though the system has
recognized the word correctly and provided a translation that is accurate enough.

Naturally, a need for a score cutoff to consider a domain-specific word as
recognized arises. From manual inspection of the results, translations with the
ωmax score of 90 and above were very similar to the golden translations, with
only one or two differing characters. Obviously, this is only a poor estimate
and it could be improved by calculating the average string similarity between all
forms of the golden German translation. However, this would require a German
lemmatizer and word form generator. Unfortunately, especially the latter wasn’t
readily available. Because of this reason, only the domain-specific words with a
ωmax score of 90 or higher are reported as recognized.

5.7 Learnable words
Because the source and target corpora aren’t parallel, not all words from the
source corpus will occur in the target corpus. In this case, the MT system cannot
be reasonably expected to infer a translation of a domain-specific word that simply
does not appear in the target corpus. The domain-specific words that have at
least one form in the source corpus and at least one golden translation on the
target corpus are reported as learnable words.

5.8 Seed dictionary
The seed dictionary used for semi-supervised training of the cross-lingual word
embeddings used to train mixed in-domain models as described in Section 3.2.2
is synthesized from a large parallel corpus, so it can contain translations of the
domain-specific words occurring in the corpus. Thus, if a mixed in-domain model
recognizes a domain-specific word, it isn’t clear if the information needed to infer
the translation was contained in the in-domain corpus or in the seed dictionary.
To alleviate this, the seed dictionary was compared to the dictionary of golden
translations to see which domain-specific words are recognized by the seed dic-
tionary.

Because the seed dictionary is created by word alignment (Section 3.2.2), the
entries can contain extraneous characters, typically punctuation (Figure 5.10).
To account for this, FuzzyWuzzy (Section 5.4.1) was used for determining if a
domain-specific word has a translation in the seed dictionary. For a domain-
specific word to be reported as present in seed dictionary, the source form has to
match the source word in the seed dictionary and at least one golden translation
has to be at least 90% similar to the corresponding target word.
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’PŘEREGISTROVÁNÍ’: ’UMREGISTRIERUNG’
’PŘEDREGISTRACI,’: ’STORNIEREN,;
’REGISTRACE.’: ’REGISTRATION.’

Figure 5.10: Example of seed dictionary entries for the source word ’REGIS-
TRACE’ (’registration’). Note that the semantic swap in the second line where
the target ’STORNIEREN’ means ’to cancel’ is quite common in phrase-based
MT. The negation was somewhere in the sentence but it was not extracted with
the (negated or negative) word itself.
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6. Results

6.1 Mono in-domain corpora
The following are the results of scores trained solely on in-domain data. Each
model took up to 12 hours to train, depending on the corpus size, using 30 threads
on a Xeon E5-2630 CPU. Note that training of the CL model failed because of
small size of the Czech in-domain corpus, so results for this model are missing.
The recognized words and their count are presented in Table 6.1 and Table 6.2.

Model # recognized # learnable # learnable in PG
PS 2 41 63
ČRO 1 28 34
CL - 68 76
EP 0 58 67
SAO 3 35 43

Table 6.1: # of recognized words for mono in-domain models

6.1.1 Czech Parliament (PS)
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Figure 6.1: Frequency of ωmax scores for PS (mono)

The Czech Parliament domain was a very challenging one. The source corpus
consists of transcriptions of plenary hearings, so the domain-specific words include
names of the many speakers and their political parties. This resulted in many of
the words simply not being present in the target corpus, as seen on Figure 6.3.
Another consequence is the large number of ωmax scores of 0 in Figure 6.1.

The two recognized words are ’ROK’ (’year’) and ’MINISTR’ (’minister’).
Both have ωmax score of 100 and ωavg scores of 61 and 57 respectively, as seen on
Figure 6.2. Notably both of those words are one of the most frequent in source
and target, as seen on Figure 6.3.
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Figure 6.2: Distribution of ωmax and ωmin scores for PS (mono)
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Figure 6.3: Frequencies of PS (mono) domain-specific words in source and target
corpora. Size of markers is proportional to ωmax score, triangles denote recognized
words.

6.1.2 Euro Parliament (EP)
The Euro Parliament model performed the worst with zero recognized domain-
specific words, as seen in Figure 6.4. ωmax score of 0 implies no translations
were proposed for the given words, meaning none of the words of interest are
present in the phrase table. Figure 6.5 shows the most common count of proposed
translations for a given word was one, because the ωmax score is the same as ωavg.
These results are surprising, because Figure 6.6 shows a lot of words were present
both in the source and the target corpus. However, as those words are not present
in the final phrase table, indicated by the ωmax score of 0, it seems like the iterative
backtranslation process mentioned in Section 3.3.1, did not perform well, possibly
because the size of the source corpus is much larger than the target corpus.
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Figure 6.4: Frequency of ωmax scores for EP (mono)
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Figure 6.5: Distribution of ωmax and ωmin scores for EP (mono)
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Figure 6.6: Frequencies of EP (mono) domain-specific words in source and target
corpora. Size of markers is proportional to ωmax score, triangles denote recognized
words.
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6.1.3 Český Rozhlas (ČRO)
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Figure 6.7: Frequency of ωmax scores for ČRO (mono)
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Figure 6.8: Distribution of ωmax and ωmin scores for ČRO (mono)
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Figure 6.9: Frequencies of ČRO (mono) domain-specific words in source and
target corpora. Size of markers is proportional to ωmax score, triangles denote
recognized words.
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The ČRO model’s performance was average, with one domain-specific word
recognized. As Figure 6.7 shows, only comparatively few words had a ωmax score
of 0, indicating most of the words had at least one proposed translation. The
average score is around 50. However, the closest translation being only 50% sim-
ilar to some golden translation means it is not useful, because the two words are
completely different. This performance is a bit disappointing, because Figure 6.9
indicates a lot of words were present both in source and target corpora.

The only recognized word is ’EVROPSKÝ,’ (’European’), with ωmax score of
100 and ωavg score of 61 (Figure 6.8). This word is also one of the most frequent
in source and target corpora.

6.1.4 Supreme Audit Office (SAO)
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Figure 6.10: Frequency of ωmax scores for SAO (mono)
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Figure 6.11: Distribution of ωmax and ωmin scores for SAO (mono)

The SAO model was the best performing one, with Figure 6.10 showing 4 rec-
ognized domain-specific words, although with a relatively high number of words
with ωmax score of 0. This is partially because some of these zero-scoring words
are abbreviations or names. Figure 6.12 indicates a good distribution of the
domain-specific words in the source and target corpora, which was possibly one
of the reasons of the good performance. The recognized words are ’DAŇ’ (’tax’),
’DAŇOVÝ’ (’taxative’), ’REGISTRACE’ (’registration’). Their ωmax scores were
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Figure 6.12: Frequencies of SAO (mono) domain-specific words in source and
target corpora. Size of markers is proportional to ωmax score, triangles denote
recognized words.

100, 100, 91 and 100 respectively (Figure 6.11). However, their ωavg scores were
68, 60, 62 and 72 respectively, which are one of the highest compared to the
recognized words of other models. This indicates multiple forms of these words
had proposed translations of a good quality.

Model Recognized words
PS MINISTR, ROK

’minister’, ’year’
ČRO EVROPSKÝ

’european’
CL not evaluated
EP none
SAO DAŇ, DAŇOVÝ, REGISTRACE

’tax’, ’taxative’, ’registration’

Table 6.2: Recognized words in mono in-domain models.

6.2 Mixed in-domain corpora
Because the training of the CL model on mono in-domain data failed, the source
and target in-domain corpora were extended by 50 thousand sentences from the
parallel corpus (PG).

6.2.1 Seed dictionary
As discussed in Section 3.2.2, the seed dictionary can contain translations of
domain-specific words, which can be seen in Table 6.5.
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Model # recognized ∆ recognized # learnable ∆ learnable
PS 6 +4 43 +2
ČRO 1 0 30 +2
CL 1 +1 81 +13
EP 5 +5 65 +7
SAO 4 +1 39 +4

Table 6.3: # of recognized words for mixed in-domain model. Deltas are with
respect to the mono models.

Model Recognized words
PS VLÁDA, MINISTR, BOD, ROK, STRANA, VÝBOR

’government’, ’minister’, ’point’, ’year’, ’party’, ’commitee’
ČRO EVROPSKÝ

’european’
CL BASED

’based’
EP ČLENSKÝ, DE, TRANSPORT

’member’, ’DE’, ’transport’
SAO EVROPSKÝ, REGISTR, DAŇ, FINANČNÍ

’european’, ’register’, ’tax’, ’financial’

Table 6.4: Recognized words in mixed in-domain models.

Domain Present words
PS BAUER, BENDA

’Bauer’, ’Benda’
ČRO ANDREJ, TWITTER

’Andrej’, ’Twitter’
CL ATTENTION, AUTOMATICKY, GOOGLE, KONTEXT

LEARNING, ONLINE, REFERENCE, TRANSFORMER
’attention’, ’automatic’, ’Google’, ’context’

’learning’, ’online’, ’reference’, ’transformer’
EP EXPORT, INTER, SANKCE, STREAM, ŽADATEL

’export’, ’inter’, ’sanctions’, ’stream’, ’applicant’
SAO REGISTROVANÝ, REVERS, TEORETICKY

’registered’, ’reverse’, ’theoretical’

Table 6.5: Domain-specific words present in the seed dictionary.

6.3 Discussion

6.3.1 Mono in-domain models
The performance of mono in-domain models is relatively poor, with only three
models recognizing any domain-specific words at all. One of the major surprises
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is the performance of the EP model, which recognized 0 words, while having
the largest source corpus of all domains. The corpus size might have been it’s
downfall, as discussed in Section 6.1.2.

Another surprise is the performance of the SAO model, which recognized 4
domain-specific words. Three of those words are one of the most frequent in the
source and target corpora (Figure 6.12). This, along with the performances of
the remaining models, ČRO and PS, suggests that for a word to be recognized, it
has to appear in the source and target corpora with a relatively high frequency.

6.3.2 Mixed in-domain models
The sentences from the parallel corpus (PG) added to the in-domain corpora,
contain some of the domain-specific words, so an increase in learnable words, is
expected (Table 6.3), especially when the in-domain corpus was already small
(CL). The mixed in-domain models mostly recognize all words as the mono in-
domain models, as well as previously unrecognized words. The mixed in-domain
model for SAO no longer recognizes the words ’REGISTR’, ’DAŇOVÝ’, although
it recognizes the word ’REGISTRACE’. For example, the ωmax score of ’REG-
ISTR’ in the mixed model is only 60 and the best proposed translation is ’FRIS-
TEN’ (’to lead’). This suggests the impact of including parallel sentences into
the in-domain corpora can result in some regressions (words that are no longer
recognized). This can be caused by the domain-specific words that appear in the
parallel sentences in a different context than the domain one, so the MT model
does not translate them correctly, in regard to the domain.

6.3.3 Seed dictionary
The domain-specific words present in the seed dictionary are displayed in Ta-
ble 6.5. None of the words recognized by the mixed in-domain models are present
in this table. This suggests the domain-related words were recognized using the
information from the corpora and not by the information in the seed dictionary.

6.4 Type of recognized words
Almost all of the recognized domain-specific words from mono and mixed in-
domain models are verbs or nouns. No names such as ’Merkel’ or abbreviations
as ’DPH’ (’VAT’) were recognized.
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7. Conclusion

7.1 Summary
We discussed the basic principles of ASR and MT systems and explored an exist-
ing ASR domain adaptation method. We then proposed our MT domain adap-
tation pipeline, along with metrics to evaluate the success of the adaptation.

The proposed method of obtaining an in-domain source and target corpus
yielded a corpus that does contain a high number of source and target domain-
specific words. Adding the parallel sentences from a general parallel corpus in-
creased the number of learnable words only by a small amount (Section 5.6). The
obtained target in-domain corpus was, in some cases (EP), comparatively small
with respect to the source in-domain corpus.

However, as seen in Table 6.1, in the mono in-domain corpora there are on
average 75% of learnable in-domain words, compared to the count of learnable
words for each domain in the PG corpus. This might look as a poor result, until
we compare the target corpora size: the PG corpus has roughly 220 million words,
but the in-domain corpora word count ranges from roughly 300 thousand to 700
thousand. This result indicates our proposed method of collecting the in-domain
source and target corpora is efficient at obtaining in-domain texts containing
domain-specific words.

As discussed in Section 6.3, the models trained on purely in-domain data had
a relatively low performance, with only a few domain-specific words recognized
at best. Adding parallel out-of-domain data to the in-domain corpora can yield
improved results, with more domain-specific words recognized. However, it can
also result in regressions, where previously recognized domain-specific words are
not recognized anymore.

Improving the target in-domain corpus method to collect texts from multiple
sources could yield better results, as the singular source, Semantic Scholar, is not
a good fit for some of the domains. The small corpora size is one of the possibilities
the proposed pipeline performed poorly at recognizing the domain-specific words,
compared to other unsupervised MT systems, such as DALI, discussed in the
following section Section 3.4.

We hoped by gathering corpora with a large amount of learnable words, we
could achieve better results when recognizing the domain-specific word. This is
an area where traditional unsupervised SMT methods struggle, as described in
Kvapiĺıková et al. [5]. Unfortunately, our pipeline also struggled with recognizing
the domain-specific words.

Overall, our pipeline managed to efficiently collect in-domain corpora with
a comparatively large count of recognized in-domain words. Unfortunately, it
struggled with recognizing the in-domain words, but this might be simply caused
by the small size of source and target in-domain corpora.
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7.2 Future work

7.2.1 Larger in-domain corpora
A natural extension of this thesis would be to rerun the pipeline again, but
this time gathering much larger in-domain corpora, presumably by scraping from
multiple sources with more keywords. Hopefully, the amount of recognized words
would increase.

7.2.2 DALI
Unfortunately, we did not achieve the same results as the DALI method, discussed
in Section 3.4. Nonetheless, our work could still be expanded to mimic the DALI
method more, for example using a SMT system to train a SMT model on the
pseudo-parallel in-domain corpus, instead of the NMT system used in DALI.

7.2.3 Phrase-based evaluation with multiple phrase tables
Moses can utilize multiple phrase tables1 during the learning and translation
processes. A natural extension of the proposed pipeline would be to take the
phrase table generated from in-domain data and combine it with a phrase table
generated from a large parallel corpus, with the reasoning being the domain-
specific words not present in the latter phrase table would be included in the
former one. This would allow to evaluate the domain adaptation in a phrase
context, utilizing traditional metrics such as BLEU 2.

An implementation of this process was attempted, but unfortunately the tech-
nical issues caused by excessive memory requirements (more than 500 GB of RAM
was required) were not successfully resolved in time.

1http://www.statmt.org/moses/?n=Advanced.Modelsntoc7
2https://en.wikipedia.org/wiki/BLEU
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