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Video analysis: an automatic time
measurement in the robotic car

competition

Department of Theoretical Computer Science and Mathematical Logic

Supervisor of the bachelor thesis: Mgr. Marta Vomlelová Ph.D.
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1. Introduction
Robotic races belong to traditional disciplines of many robotic competitions held
all around the world. In the Czech Republic, one of the most significant robotic
events is Robotický den, which has its version of robotic races called RoboCarts.
These races took place on a circular racetrack where the robots’ goal is to com-
plete the stated number of laps in the shortest time possible. Up until now,
RoboCarts have been measured manually on a stopwatch by a referee standing
next to the track. Because such an approach can be first inaccurate and sec-
ond complicated for the referees, it was suggested to develop an application that
would be able to count and measure times of each driven lap to every car in the
race from a recording of the track’s finish section.

Therefore, this thesis aims to develop a practical algorithm that would ana-
lyze such video recordings and be able to evaluate the races in real-time. The
target machine parameters were not specified. So our goal was also to create an
algorithm that would execute in real-time without the excessive CPU power and
the necessity of the GPU presence. For the implementation itself, it was recom-
mended to use the standard image processing methods and the computer vision
library OpenCV.

In the following sections, we will first introduce the rules and course of Robo-
Carts races (Section 2). Next, we will describe several image processing methods
with a focus on moving object tracking, which would constitute an important
part of our solution (Section 3). And finally, we will present our two algorithms
for automatic race evaluation (see Figure 1.1) and their accuracy on our training
data in sections 4 and 5. The last section 6 will then, in particular, discuss our
choice of the programming language and the structure and performance of both
our algorithms.

Figure 1.1: Visualization of our algorithm applied on a recorded race from
Robotický den 2019.
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2. Robotic races
Robotický den [1] is the biggest event of amateur robots in the Czech Republic to
promote and present robotics to the public. Within this event, participants can
compete with their prepared robots in various disciplines challenging robots’ abil-
ity to orient and interact with the environment. One of its traditional contests
is a competition called RoboCarts [2], in which autonomous robots compete in
a simulated race.

2.1 RoboCarts rules and specifications
In each RoboCarts race, there can participate up to five cars that aim to complete
several rounds as fast as possible (referees announce the precise number of target
laps before the races). After the race ends, robots obtain points based on the
number of completed rounds and the order in the finish. Robots with the most
points qualify for the final race, where the absolute winner is determined.

As for robot construction, participants are restricted by the maximum size of
20 × 10 × 10 cm. Every car should also have a 5 × 5 cm space for the sticker
marking on the top. Other aspects of construction, such as the number of wheels,
car color, and shape, are not specified.

Races take place on a white square racetrack (280×280 cm) bounded by green
outer barriers. The circuit is formed by three red inner walls in the shape of the
letter ’H’ in the central part and two green inner walls perpendicularly connected
to the middle of the bottom and upper outer barriers. All barriers are firmly
fixed and at least 10 cm high. The finish line is black, approx. 1.5 – 2 cm wide
and located in the right part of the track (see Figure 2.1).

Figure 2.1: The official format of the RoboCarts’ track and the starting box.
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2.2 Course of the race
At the beginning of each race, the referee places a starting box on the track with
its front side facing the finish line. Participants then put their cars one after
another into separated pits of the starting box.

When all cars are ready to go, a referee manually opens the front side of the
box and starts the race. The time for each car is being measured after its first
finish line crossing. When all cars leave the pits, the starting box is manually
removed. To complete a lap, cars need to drive through the whole circuit and
cross the finish line, not just touch it. During the race, it is not allowed to remove
non-moving cars or otherwise help to non-working robots.

The race ends after all cars finish the specified number of rounds or when the
time limit of the race is reached. In the end, the referee announces the results
and writes down the times.
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3. Image processing methods
To make the later description of our algorithms more understandable, we will
first describe some standard image processing terms and methods and introduce
the problem of moving object tracking in a video.

3.1 Color spaces
In computer graphics, images can be displayed using various color representations.
For humans, the most natural one is the RGB representation as it copies the way
how the colors are processed in our eyes – like a mixture of red, green, and blue
color. However, for some applications, specifying a color as a mixture of three
other colors may be inconvenient.

HSV (hue, saturation, value) and HSL (hue, saturation, lightness) are on the
other hand color formats in which the color is described only by the first channel
while the other ones determine the tones and shades. Therefore, expressing a par-
ticular color and its similar variants is much more intuitive and better described
compared to the RGB format. For that reason, HSV and HSL color schemes are
preferred for specifying colors in various image segmentation tasks.

Regardless of the application, the vast majority of image processing algorithms
at some stage converts images to the grayscale representation, where the pixels
have only one dimension of 256 values. Thus, it is favored in situations when
the computations with multiple channels would be expensive. A special type of
grayscale color scheme is the binary representation, where all pixels are either
white or black.

3.2 Image noise filtering
An image never captures the objects’ original appearance because the image noise
always corrupts it. The image noise is a term for random variations of pixel
values in an image mostly caused by the heat, electricity, and illumination in
the camera sensors. Because these random pixels may represent a problem for
the image processing algorithms, it is common to reduce the image noise with
blurring techniques during the preprocessing stage.

Generally, the blurring techniques [3] are based on the linear convolution of
an image with an n × n convolutional kernel1. The kernel is then consecutively
slid over every image pixel to transform the pixel value according to a convolution
function applied on the adjacent pixels underneath the kernel.

Probably the most often used technique for blurring is the Gaussian blur,
named after the Gaussian function

g(x, y) = 1√
2πσ

e− d2
2σ2 (3.1)

where d =
√︂

(x − xc)2 + (y − yc)2 is the distance from the center pixel (xc, yc).

1n is usually odd and significantly smaller than the dimensions of an image that is blurred.
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Gaussian blur reduces the image noise by smoothing the image but in a way that
most of the original edges are still preserved [4].

3.3 Thresholding
Thresholding [5] is a basic image segmentation technique based on comparing
values of image pixels to a threshold value T . Pixels with an intensity surpassing
T are converted to white pixels (value one), and the rest of the image is turned to
black (value zero). Traditionally, the thresholding is applied to grayscale images,
but it is possible to use images in RGB or HSV formats as well. The threshold
value just needs to be specified for every dimension separately. For specific image
segmentation tasks, it is also very common to threshold images with two threshold
values – the lower and the upper value, and masking out all the pixels that do
not fit into the range.

3.4 Morphological image processing
Morphological image processing [6] is a set of non-linear image operations that
are used to alter the shape of objects in images. They have proven to be particu-
larly useful for noise removal and image enhancement during image segmentation
stages. As an input, morphological operations require a binary image2, and a bi-
nary template called the structuring element. The structuring element is then
consecutively positioned over the input image, at every possible location it fits,
to transform the underlying central pixel according to its neighborhood.

Depending on the type of operation, the central pixel is transformed based on
whether the structuring element fits into the objects or whether it at least hits
them. In other words, the central pixel turns white if all, or at least some of its
adjacent pixels under the template, are also white. As such, we recognize two
fundamental morphological operations: erosion and dilation.

3.4.1 Erosion
When eroding a binary image B with a structuring element s, the operation is
denoted as B′ = B ⊖ s. The pixel B′(x, y) = 1 only if the structuring element
centered on the pixel B(x, y) completely fits the white pixels in the input image.
Thus, erosion removes random noise and strips away objects’ boundary pixels
that do not fit the structuring element (see the middle picture in Figure 3.1).

3.4.2 Dilation
Similarly to the previous case, we denote the dilation of a binary image B with
a structuring element s as B′ = B ⊕ s. In the new binary image B′, the pixel
B′(x, y) equals to one, only if there is at least one white pixel under the structuring
element s positioned over the pixel B(x, y). All the foreground objects of B′ are
therefore expanded and their inner holes filled (see the right picture in Figure 3.1).

2With some modifications even grayscale images can be used.
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Figure 3.1: The effect of morphological erosion and dilation on a binary image [7].

3.4.3 Compound morphological operations
Opening and closing are compound morphological operations created by applying
dilation after erosion and erosion after dilation with the identical structuring
element. Compared to the fundamental operations, opening and closing are less
destructive to the original objects’ appearance.

The opening operation is similar to erosion because it removes smaller fore-
ground objects from the image. But while the erosion also shrinks the objects,
the opening only alters objects’ boundaries in a way that the structuring element
can be fitted inside them.

Closing is used to fill the inner holes of objects without extending the original
size. It is because the later erosion removes all the new pixels added by the
first dilation. Since the last operation of closing is erosion, the background’s
boundaries are shaped according to the structuring element.

3.5 Edge detection
Edges are important image features because they provide us with information
about the outline and structure of captured objects. From our point of view,
edges represent significant local changes in the pixels’ intensity. But since an
image can be viewed as an array of a sampled continuous function, these changes
in pixel intensity can be more suitably defined as the image gradient. For an
image I, we can define the gradient as a vector of partial derivatives representing
gradients in the vertical and horizontal directions.

∇I =
[︄
Gx

Gy

]︄
=

[︄
∂I
∂x
∂I
∂y

]︄
(3.2)

Once the gradients in both directions are known, it is possible to compute the
gradients magnitude G as

G =
√︂

G2
x + G2

y (3.3)
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and the gradient’s direction Θ as

Θ = arctan
(︃

Gy

Gx

)︃
(3.4)

In practice, the gradients in both directions are approximated using various
operators. One of the most frequently used operators is the Sobel operator, which
computes the gradients of an image I with a 3 × 3 convolutions in the following
manner [3].

Gx =

⎡⎢⎣+1 0 −1
+2 0 −2
+1 0 −1

⎤⎥⎦ × I Gy =

⎡⎢⎣+1 +2 +1
0 0 0

−1 −2 −1

⎤⎥⎦ × I (3.5)

3.5.1 Canny edge detection algorithm
Despite being published in 1986, the Canny edge detection algorithm [8] is re-
garded as the optimal edge detector. It is built on three main principles: keep
a low error rate, precisely localize edge points and give only one response to a sin-
gle edge. The algorithm itself consists of four following stages.

Firstly, an input image is smoothed using Gaussian filters (Section 3.2) to
eliminate the image noise.

Secondly, gradients in horizontal (Gx) and vertical (Gy) directions are com-
puted using a convolution with the Sobel operator (3.5). The overall magnitude
of an edge and its direction is then computed, as it was shown in equations 3.3 and
3.4. This representation already gives us a good notion of image edges. However,
the edges can appear to be quite blurry.

Thirdly, to thin the blurry edges, a non-maximum suppression is used. In this
step, every pixel is scanned and checked whether it is the local maximum in the
gradient direction – the direction perpendicular to the edge. Pixels in an edge
that are local maximums are then transformed into white pixels, and the rest of
the pixels are turned to black pixels.

And lastly, the Canny edge detection algorithm ends with a process of hystere-
sis thresholding. While in the previous stage, the edges were made sharper and
thinner, there is still a possibility that some of them originated from the image
noise. To remove those edges, two threshold values – minimal and maximal, are
used. Then, all pixels with gradient magnitude larger than the maximal threshold
are kept as confirmed edges, and all the pixels with gradient magnitude smaller
than the minimum threshold are discarded. Those pixels with gradient intensity
lying in between the two thresholds are preserved only if they are connected to
a confirmed edge. The output of this stage and the whole algorithm is displayed
in Figure 3.2.
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Figure 3.2: Edges detected by Canny Edge algorithm [9].

3.5.2 Hough line transform
Hough line transform [10] is a technique for detecting straight lines in images.
Generally, all lines in a plane can be represented in the form

y = mx + c (3.6)

where m corresponds to the line slope and c to the y-intercept. Nonetheless, this
representation is not convenient for vertical lines as the value of the slope would
reach infinity.

Thus, for the line detection in images, it is preferable to express the lines in
the polar coordinate system as

y = (−cos θ

sin θ
)x + ( r

sin θ
) (3.7)

with r denoting the arc length and θ denoting the angle of a line with the x-axis.
By arranging the previous formula into the form

rθ = x0 cos θ + y0 sin θ (3.8)

it is possible to define the family of all lines3 (rθ, θ) going through a point (x0, y0).
Let us consider only those lines where r > 0 and 0 < θ < 2π. If we then plot all
the lines passing through a point (x0, y0) in the Hough space, the corresponding
graph of (rθ, θ) pairs will be a sinusoid. Furthermore, by plotting the sinusoids of
more points into the Hough space, we can search for their common intersection
and find out which line goes through all of them (see Figure 3.3).

The Hough Line Transform algorithm, in a similar manner, iterates through
all the edges in the image, plots all the lines passing through them into the Hough
space, and searches for the intersections. If a point (rθ, θ) is intersected by more
than some threshold number of minimal sinusoids, the corresponding straight line
is declared to be present in the image [12].

3The two dimensional space of (rθ, θ) pairs is called the Hough space.
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Figure 3.3: Sinusoids of four different (x, y) pairs intersecting in a single point
[11].

3.6 Tracking of moving objects
Tracking of moving objects [13] is a standard computer vision discipline typically
used for video surveillance [14] or vehicle counting systems [15]. Traditionally,
it comprises two main stages: detecting moving objects in individual frames and
tracking those detections across the consecutive video frames. For our purposes,
it will be convenient to include here also a third stage – the identification of
detected objects.

To not confuse the whole process of tracking with its second stage, we will
refer to the tracking stage as an assignment stage4. It should also be mentioned
that for all the following techniques, we will assume that the analyzed video was
captured by a static camera.

3.6.1 Detecting objects by movement
When detecting a movement, we aim to find the coherent regions of pixels that
correspond to the moving objects and separate them from the background of each
frame.

In this section, we will focus on detection techniques based on the principle
of image subtraction. These techniques are based on a simple observation that
the movement in video frames corresponds to changes in pixel color and inten-
sity. Despite the simplicity, these techniques have universal usage and work very
efficiently.

Image subtraction

As the name suggests, the image subtraction is carried out by subtracting the
values of corresponding pixels in the two input images. It is possible to subtract
images in arbitrary color formats, but the most convenient format to work with

4Because its purpose is to assign detections from the current frame to the ones in the previous
frame.
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is the grayscale representation. Because many color schemes do not support
negative values, the absolute value of the difference usually needs to be taken.

Once a proper image difference is obtained, it is then thresholded (Section 3.3)
with a threshold value usually set to 40 % of the intensity range [16]. In the
resulting binary image, white pixel regions are regarded as moving objects and
the black pixels as the static background [13].

Background subtraction

To apply background subtraction (BGS), it is first necessary to capture the scene
without any objects. This reference image will then represent the background
that will be consecutively subtracted from all the frames in the video. With this
approach, any deviation from the original background is recorded, and so both
static and moving objects are detected.

Frame differencing

Compared to the BGS technique, frame differencing (FD) uses the previous frame
as the reference background. Because FD regularly updates the reference image,
it does not suffer from sudden background changes and camera movements, which
can negatively influence the BGS method.

On the other hand, FD can detect only those objects whose positions did
change in successive frames. Moreover, it may have a problem detecting objects
with smooth and monochromatic surfaces as their movement is locally not well
observable.

3.6.2 Detecting object by color
Apart from the movement, particular objects can also be recognized for other
properties, such as shape, texture, or color. Nevertheless, for fast-moving objects
that can even easily overlap, the most promising feature to detect is the color.

In relatively constant light conditions, color is a very reliable identification
feature. For color detection, we will use a technique called color filtering. To filter
a particular color, we need first to specify its lower and upper boundary. The
most convenient color formats to work with are HSV or HSL formats (Section 3.1)
since only their first component determines the color. After the color boundaries
are set, we need to ensure that the source image has the same color format. And
lastly, we threshold (Section 3.3) the source image with the two color boundaries
and obtain a binary mask, where all pixels outside the color range are masked
out.

3.6.3 Assignment of detections
This stage aims to find the correspondence between the detections found in the
previous frame and the detections from the current frame. For that purpose, we
will utilize the Hungarian algorithm.

12



Hungarian algorithm

The Hungarian algorithm [17] is a combinatorial optimization algorithm used
for solving assignment problems. Let us define two sets F and D of the same
cardinality5 n, and an assignment function X : i −→ j, i ∈ F, j ∈ D. Let
also cij ∈ R be a cost for assigning an element j ∈ D to i ∈ F . The goal
of an assignment problem is to find an assignment function that minimizes the
following cost function

n∑︂
i=1

n∑︂
j=1

cijxij (3.9)

subject to constraints that each element must be paired with exactly one another
element

n∑︂
i=1

xij = 1 ∀j = 1, 2, ..., n (3.10)

n∑︂
j=1

xij = 1 ∀i = 1, 2, ..., n (3.11)

where

xij =

⎧⎨⎩1, if j ∈ D is assigned to i ∈ F

0, otherwise
(3.12)

The Hungarian algorithm takes as an input the cost matrix C and returns the
assignment of the minimal total cost in the polynomial time. For the maximal
assignment, it is sufficient to negate all values in C. The precise descriptions of
all Hungarian algorithm’s stages can be found in [17].

3.6.4 Identification of detections
Generally, two images can be compared in many different ways and using var-
ious similarity metrics. The choice of the technique should, therefore, mainly
depend on the type of images and expected quality of the comparison – some of
the techniques may work better in exchange for longer execution time. For our
application, the two following techniques achieved great results while still being
able to run in real-time.

Histogram similarity

An image histogram is a type of histogram that expresses the tonal distribu-
tion of colors in an image. For a grayscale image, the histogram will be defined
as a bar chart with 256 bins representing every possible intensity value. Simi-
larly, a histogram for a color image (e.g., in RGB format) will be depicted by the
combination of histograms from each channel.

5If one of the set has bigger cardinality, it would be necessary to adjust the conditions to
allow some elements from the larger set to be unassigned.
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There are several formulas for computing the histogram’s similarity [18]. One
of the simple methods to calculate the similarity of two histograms H1, H2 is to
compute their intersection as

d(H1, H2) =
∑︂

b

min(H1(b), H2(b)) (3.13)

where the summation goes over all bins/intensities b of the particular repre-
sentation. The intersection methods is very fast to compute but because of the
mechanics it does not tell much about concrete distributional differences. A more
complex methods, such as the histograms’ correlation (3.14), attempt to improve
that by increasing the computational complexity of the comparison [19].

d(H1, H2) =
∑︁

I(H1(b) − H1¯ )(H2(b) − H2¯ )√︂∑︁
I(H1(b) − H1¯ )2 ∑︁

I(H2(b) − H2¯ )2
(3.14)

Hk
¯ = 1

b

∑︂
J

Hk(b) (3.15)

Template matching

Template matching [20] is a technique for finding the best matching location of a
template T in a larger source image I. It consecutively slides the template over
the source image and compares the similarity with the source image according to
a particular metric. The comparison score is then saved in the result matrix R
in a way that value at R(x, y) corresponds to the similarity score of a template
placed with its top-left corner on the pixel I(x, y). The overall best matching area
is finally found by locating the minimum (or for some metrics the maximum) value
in R.

Now, we will list four commonly used comparison metrics. The most basic
one is the Sum of absolute differences (SAD) (3.16). It only takes the absolute
difference of pixels of the template and the underlying source image area and
finds the region with the smallest sum of differences. From the vector point of
view, it can be regarded as the L1 norm.

R(x, y) =
∑︂

x′,y′∈T

|T (x′, y′) − I(x + x′, y + y′)| (3.16)

It is well known that in some applications the L1 norm suffers from its inability
to penalize bigger differences of individual components. The same applies for
template matching and it can be fixed by using a method analogical to L2 norm
– the Sum of square differences (SSD) (3.17).

R(x, y) =
∑︂

x′,y′∈T

(T (x′, y′) − I(x + x′, y + y′))2 (3.17)

While the previous two methods search for the position with the minimal
score, the best matching found by the Cross-correlation (CC) (3.18) has the
biggest score. In CC, the score equals to the sum of the corresponding pixel
values product. This has, however, an important disadvantage because, for an
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arbitrary template, the highest score will correspond to the brightest area in the
source image.

R(x, y) =
∑︂

x′,y′∈T

(T (x′, y′) · I(x + x′, y + y′)) (3.18)

For that reason, instead of vanilla CC, it is common to use Mean shifted
cross-correlation (MSCC) (3.19). Compared to CC, it solves the problem of
bright patches by subtracting an average pixel value from pixels in the template
and the source image

R(x, y) =
∑︂

x′,y′∈T

(T ′(x′, y′) · I ′(x + x′, y + y′)) (3.19)

T ′(x′, y′) = T (x′, y′) − 1
w·h ·

∑︂
x′′,y′′∈T

T (x′′, y′′) (3.20)

I ′(x + x′, y + y′) = I(x + x′, y + y′) − 1
w·h ·

∑︂
x′′,y′′∈T

I(x + x′′, y + y′′)] (3.21)

where w and h correspond to template’s (3.20) and source image’s (3.21)
width and height.

Normalization of template matching metrics

All discussed metrics can be further improved by the normalization which is
especially useful when we compare the match scores from several different tem-
plates. The problem is that the scores can be skewed because of the difference
in templates’ sizes and intensity variances. Therefore, it is a common practice to
normalize scores in the following way

Rnorm(x, y) = R(x, y)√︂∑︁
x′,y′ T (x′, y′)2 · ∑︁

x′,y′ I(x + x′, y + y′)2
(3.22)

Or in case of MSCC

Rnorm(x, y) = R(x, y)√︂∑︁
x′,y′ T ′(x′, y′)2 · ∑︁

x′,y′ I ′(x + x′, y + y′)2
(3.23)

When it comes to choosing the metric, there is not a definitive guideline to
follow. The most frequently used are normed or standard versions of SSD and
MSCC. Trucco and Verri [21], in their book, argue that the SSD metric should
generally work better. However, other people say that SSD works better only if
the templates match precisely and for the general real-world setting recommend
MSCC [22].
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4. Algorithms for race evaluation
In this section, we will describe our solution for automatic evaluation of robotic
races which can be divided into three separate parts – Finish line location (Sec-
tion 4.1), Tracking algorithms (Sections 4.2 and 4.3) and Finish logic (Section 4.4).

Initially, we planned to present only one tracking algorithm, referred to as
the General tracking algorithm (GTA). However, after we collected more train-
ing recordings and carried out several experiments, it turned out that there are
few situations in which the GTA does not tend to behave entirely predictably
(Section 5.3). To get around this drawback, we developed another tracking al-
gorithm, the Color tracking algorithm (CTA), that works precisely even in those
problematic situations at the cost of demanding cars to have unique color labels.

4.1 Finish line location
Because the camera is fixed, we can assume that the finish line’s position does not
change during the race. Therefore, it is sufficient to locate the finish line only in
the first frame of the video and then use the same location for all the consecutive
frames.

We know that the finish line is always black, but to find a particular line
based only on its color would be reasonably challenging. Nevertheless, we have
an advantage that we know precisely the environment we are going to be searching
in. Since the camera is placed next to the track, the finish line is the rightmost
vertical line in each frame. The finish line is vertical because it is perpendicular
to the track border under the camera. And it is rightmost because next to the
finish line there is only the plain white track without any structure. If the camera
were placed high enough, it would probably be possible to cover the outer wall
right to the finish line as well. This setting would be, however, firstly hard to
achieve and secondly would make the cars smaller, hence less recognizable.

With this observation in mind, the location of the finish line is straightforward.
First, the frame needs to be converted to the grayscale format. In the grayscale
image, the Canny edge algorithm (Section 3.5.1) detects all edges, in which the
Hough Line Transform algorithm (Section 3.5.2) finds all lines. Found lines are
automatically prolonged across the whole frame.

To determine whether a line is vertical, we use a simple heuristic. Because we
have all lines represented by their endpoints, we can consider a line to be vertical if
its endpoints differ more in their y coordinates than in their x coordinates. More
precisely, a line l represented by two points (x1, y1) and (x2, y2) is considered
vertical if |x2 − x1| < |y2 − y1|. This approach is not an optimal one, but for our
application, it serves sufficiently.

Finally, to identify the rightmost line, we iterate through the endpoints of all
vertical lines and find the one with the largest x-coordinate. A line corresponding
to this endpoint is proclaimed as the finish line, and its endpoints are saved. The
step-by-step process of finish line detection is depicted in Figure 4.1.
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Figure 4.1: Steps of the finish line location: edge detection (top-left), straight
line detection (top-right), vertical line detection (bottom-left) and the rightmost
line detection (bottom-right).

4.2 General tracking algorithm
We gave this algorithm attribute ’general’ because it does not require cars to have
any specific appearance. It is because this algorithm identifies cars based on the
reference photos that we need to provide beforehand. Further usage specifications
are included in the User documentation (Section A.1.3).

4.2.1 Detection of moving objects
The very first step in the tracking algorithm’s pipeline is to detect moving objects.
Because both background subtraction (BGS) (Section 3.6.1) and frame differenc-
ing (FD) (Section 3.6.1) have their advantages and disadvantages, we decided to
keep both approaches available and let the user choose what algorithm should
be used. But, no matter the method, we always need a reference frame for ev-
ery current frame – the background image for BGS and the previous frame for
FD. We then transfer both frames to their grayscale format and subtract them
(Section 3.6.1).

The pixel intensities in the grayscale difference image now correspond to how
much the two original photos differed – white pixels mean an absolute difference,
and black pixels mean no difference at all. Based on that, we perform binary
thresholding (Section 3.3) and proclaim all pixels with intensity less or equal to
the threshold value (40% of the range) as static and set their value to zero. The
rest of the pixels with intensity surpassing the threshold value are set to one and
are considered as regions where a movement could occur (Section 3.6.1).
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4.2.2 Morphological operations and convex hulls
With the binary masks obtained from the previous stage, we could already pro-
ceed to the assignment stage. But because up to this point, we have been ap-
proximating the movement as a change in pixels’ color and intensity, some of the
detections may be visibly distorted – they can have irregular contours, contain
holes or, in some cases, be even discontinuous.

To solve this problem, we use morphological opening and closing operations
(Section 3.4), which smoothen the found objects and remove the present noise.
Because cars tend to have an oval shape, all morphological operations use an
ellipsoidal kernel. The size of kernels should always be set according to the camera
and video settings. In our experiments, the (27, 27) kernels achieved good results
while not slowing down the algorithm. To smooth out the objects more, we
transform the contours into convex hulls. The final effect of both operations can
be seen in the following Figure 4.2.

Figure 4.2: Effect of morphological operations and convex hulls on detected ob-
jects. Original figure (left), frame difference of two consecutive frames (middle),
morphological opening and closing applied on the frame difference (right).

4.2.3 Further filtering
At this moment, we ought to have accurate detections of actual moving objects.
However, we still can not be sure that all the detections correspond to actual
cars. Many other things could appear on the video – an arm reaching for a car
(see Figure 4.3), a shadow, or objects put in the proximity to the track. Another
source of unwanted detections is also the random camera movement that may
make certain regions of the scene seemingly move.

To speed up the algorithm, we want to filter out these false detections, so
they are not further processed. But by the same logic, we also do not want to
spend much time filtering them. Therefore, we decided to filter the detections
based on their width and height proportion – keeping only those detections with
the aspect ratio1 in the range from 1

3 to 3. We can perform this kind of filtering
only because the race rules restrict the car proportions (Section 2.1). With this
filtering, we are certainly not able to filter out all false detections, but we should
be able to eliminate most of them. The exact value of the aspect ratio range was
found by experimenting.

1Aspect ratio of an image is a ratio of its width to its height.
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Figure 4.3: A hand reaching to the track identified as one of the cars. The other
hand at the bottom of the frame successfully filtered out and not registered.

4.2.4 Detection assignment
Now, we are in a situation when we have two sets of detections – the ones from the
current frame and the ones from the previous frame, and we intend to pair them
up. Because we can safely assume that the corresponding detections will have
a similar location in both frames (see Figure 4.4), it is possible to measure the
detections correspondence using the Intersection over Union (IoU) metric – the
ratio of overlap and union area of two objects.

So for each detection from the current frame, we compute the IoU with every
detection from the previous frame. Then we create a cost matrix C in a way that
a C(i, j) element will represent a negative value2 of IoU of the i-the detection
from the current frame with the j-th detection from the previous frame. In this
form, we pass the matrix to the Hungarian algorithm (Section 3.6.3) to get an
optimal assignment – an assignment with the maximal sum of IoUs. To ensure
we do not pair up not corresponding detections, only pairs with IoU greater than
0.01 are allowed.

However, we still need to remember that some of the current detections repre-
sent objects that were not present in the previous frame and similarly that some
of the moving objects from the previous frame could disappear from the scene.
If there are more detections in the current frame than in the previous one, the
not paired up detections are regarded as new moving objects in the scene. On
the other hand, if some previous detections were not paired up, they are not
discarded immediately, but only after they are not paired up in five consecutive
frames. This measure helps especially when detecting moving objects with the
frame differencing technique (Section 3.6.1) where the cars can get lost on some
frames more quickly.

2We need to enter the negative values because the Hungarian algorithm searches for the
minimal sum assignment and we want the maximal assignment.
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Figure 4.4: Example of contours detected in several consecutive frames.

4.2.5 Identification of detections
Before the race started, we took a photo of every participating car. At this
time, we will use these photos to identify the detections. This task can also be
described as a classification problem because we classify each detection d with
the most similar car c. We will measure the similarity score S as a manually
optimized weighted sum of two normalized scores obtained from the histogram
comparison (HC) (Section 3.6.4) and template matching (TM) (Section 3.6.4)
techniques in the following way.

S(d, c) = 0.85 × TMnorm(d, c) + 0.15 × HCnorm(d, c) (4.1)

Since various scores of similarity metrics can be also negative, we used for the
normalization the softmax function transforming a vector z = (z1, ..., zK) ∈ RK

to a vector y = (y1, ..., yK) where

yi = ezi∑︁K
j=1 ezj

(4.2)

The only thing we need for HG is to cut out the bounding rectangle of de-
tection from the scene, compute its histogram, and compare it to histograms of
all reference images (Section 3.6.4). More specifically, we chose the intersection
comparison method because the more complex comparing methods did not bring
significant improvements. Since histograms of reference cars are used repeatedly
during the race, it is also convenient to precompute and save them beforehand.

In TM, our goal is to find an area in the source image that accurately matches
the template (see Figure 4.5). After cutting out a detection’s bounding box, we
first compare its size to the size of the reference photo and use the smaller one as
a template and the bigger one as a source image. If each of the images is larger
in one dimension, we add a corresponding number of black pixel rows or columns
to the cut-out region and use it as a source image. It is only now possible to
carry out the TM and let the algorithm output the best matching source image
area and its similarity score for all reference photos. The similarity metric of our
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choice was the normed mean shifted cross-correlation since it gave us the best
results.

Figure 4.5: An example of the template matching algorithm matching a car to
a cluster.

Identification frequency

Having everything set up, there are now basically two options for how often to
perform the identification. A simpler and faster approach would be to identify
each detection only once – for example, when it first appears on the frame or
when it crosses the finish line. This method was, however, shown to be not
very reliable. The problem was that the cars could be differently oriented at the
moment of identification or detected with an excessive amount of neighborhood,
which distorts the accuracy of the identification.

The second and more reliable approach is to take advantage of cars being
tracked and perform the identification every n-th frame. More specifically, on
every n-th frame, we obtain the similarity scores for a detection and find the car
corresponding to the highest similarity score. If this score is strictly higher than
the detection’s current highest similarity score, we replace it with the new one
and update the car associated with the detection accordingly. Using these regular
updates, we should be able to identify all detections when they are captured in
the cleanest form and when they have the same orientation as cars in the reference
images. Such noiseless detections should ideally result in the highest similarity
scores and be preserved until the car leaves the scene.

Identification in car clusters

Up until now, we have been assuming that one detection corresponds to only one
car. Nevertheless, if several moving cars drive near next to each other in a cluster,
they are detected as one detection (see Figure 4.6). And such detections need to
be treated differently.

We will use the same TM technique as we have already used in the previous
case, but we will make it more robust. Instead of trying to match only one car, we
will try to match the detection with all possible combinations of cars and choose
the most probable one.

So for a particular combination, we iterate through all the cars it contains.
For each car, we find the most corresponding area in the cluster and save its
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Figure 4.6: Two cars driving next to each other detected as a single detection.

matching score. To choose the most probable combination of cars, we consider
the similarity score (computed as an average of individual matching scores) and
the extent to which predicted car positions in the cluster intersect. We need to
consider the intersection factor because the template matching algorithm process
one car at a time, and so it can match all cars from a combination to one place.
Therefore, we need to choose such a combination in which car positions do not
intersect and have the highest similarity. If all combinations intersect, we choose
the one with the smallest overlap. After that, we can finally discard the cluster’s
detection and replace it with detections of the individual cars that were found
inside it.

To avoid matching all possible combinations on every detection, it is necessary
to provide the algorithm with an area of the biggest car in the race3. By hav-
ing this threshold value, we can easily recognize detections that can potentially
contain more cars and detections with one car only.

4.3 Color tracking algorithm
As we outlined at the beginning of this section, the Color tracking algorithm
(CTA) demands that the cars are distinguished by unique colors. Similarly, as
we needed to supply the GTA (Section 4.2) with reference photos of participating
cars, now we have to specify the unique colors of individual cars. Because the
color detection is quite sensitive, and because the room’s lighting conditions can
change, we define those colors as ranges rather than single values. More details
about the process of color picking can be found in the Attachment (Section A.1.4).

3Such and area can be computed using one of the pits from the starting box.
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4.3.1 Object detection, tracking and identification
Once the color spans are defined, we can advance to the algorithm itself. Com-
pared to the GTA, the most significant difference is that now we can identify all
cars on the racetrack interchangeably. Meaning, all three stages of tracking can
be solved with only one technique – the color filtering (Section 3.6.2).

More specifically, we will consequently filter each frame with all defined color
ranges and obtain for each range a binary mask, where the white pixels depict
regions fitting into a particular color range. Because of the lighting conditions,
even the colors might not always be detected correctly. And as a result, the de-
tected regions may be distorted. To fix that, we use the morphological operations
(Section 3.4) again and replace contours with their convex hulls in every binary
mask obtained from the color filtering (see Figure 4.7).

Figure 4.7: Detection of two colors with the color filtering technique – color
contours (left), union of color filter masks (right).

From the color uniqueness, each binary mask should now contain maximally
one coherent color region. But if for some reason – image noise or poorly chosen
color spans, there are more detected regions, we preserve only the one with the
largest area.

Because we have already detected and unambiguously identified all moving
objects in each frame, we no longer need to search for corresponding detections
in consecutive frames. And therefore, with noticeably less effort, we achieved the
same or even better results than the General tracking algorithm.

4.4 Finish logic
Finally, now is everything prepared for the measuring part. We can locate the
finish line, detect and identify moving objects in each frame, and track them
across the video. What is left is to determine when a car completes a lap and
correctly save the lap time.
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4.4.1 Finish crossing
The most natural way to detect whether a detection crosses the finish line is to
identify both the finish line and detections with some points and check whether
the detections’ x coordinates pass the finish line.

In section 4.1, we saved the finish line as two endpoints of a line going through
the finish. But due to the camera angle, the finish line may appear to be skewed,
and as a result, the x coordinates of its endpoints may slightly differ. So rather
than identifying the position of the whole finish line with one of its endpoints, we
represent the finish line’s x coordinate with the x coordinate of the finish line’s
midpoint.

As for a detection, we identified its position with its rightmost point. There
are also other points that could be chosen – the leftmost point or the centroid.
However, none of them achieve as good stability as the rightmost point. The
problem was that the detection may deform itself while crossing the black finish
line and also change its shape when leaving the scene.

4.4.2 Completing a lap
Now, we can determine when a detection crosses the finish line in every single
frame. However, to determine whether the car associated with the detection truly
completed a full lap, we need to check two things additionally.

Firstly, we have to ensure that each detection during a single pass finishes
only once. So after a detection finishes for the first time, we ignore all its next
potential finishes.

And secondly, it can easily happen that an autonomous car gets lost on the
track and start driving in the opposite direction. To make sure that we register
only cars finishing in the right direction, we allow a car to finish only if its current
centroid has a larger x coordinate than its centroid on the previous frame. A more
in-depth analysis of this topic for GTA and CTA is discussed in Section 5.3.3.

When everything is checked, and a car is found to be completing a lap, the
algorithm updates the car’s statistics by increasing the number of completed laps
and saving the time it took to finish it. More specifically, we measure the time as
a product of the reciprocal video’s FPS and the number of the frame when a car
finished: time = 1

F P S
× frame number.
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5. Evaluation
At the beginning of the project, we managed to record only one race from
Robotický den 2019. Since the event is held only once a year in June, it was
not possible to get another real race recordings or test the algorithm in the ac-
tual competition. To gather more data, we simulated the race of autonomous cars
with cars on remote controllers. Compared to autonomous robots, our RC cars
were slightly bigger and heavier but, more importantly, noticeably faster, making
the car tracking more difficult. The training races took place on the same track
that is being used in the official event. As for the camera, we used a mobile phone
camera fixed on a tripod. Altogether we organized two tournaments from which
eleven races were recorded.

Both of our algorithms showed great performance on our videos and proved to
be ready for the official usage. The General tracking algorithm (GTA) correctly
evaluated the race from the official event and all eleven training races. When
testing the Color tracking algorithm (CTA), we were not able to use all of the
training data because the cars during our experimental races were generally not
equipped with unique color labels. As a result, we could test the CTA on four of
our training races, where the cars had unique colors naturally or were provided
with unique color labels. All four videos were evaluated correctly1. By the correct
evaluation, we mean that all completed laps were counted and measured for the
right car.

In this section, we will, therefore, discuss situations which we noticed were
for the algorithms more problematic, propose the ways how to prevent them, and
describe the algorithms’ output, which enables us to correctly evaluate even the
races, where the algorithms were mistaken. But first of all, we would like to
mention what other methods we also tried to implement into our solution but
turned out to be inconvenient for our application.

5.1 Other tested approaches
Apart from the presented algorithms, we tried several other approaches that could
potentially solve some of the stages in the problem of race evaluation but failed for
various reasons. We especially experimented with alternatives for car detection
and identification.

We tried to recognize cars based on the shape of objects on their labels (square,
rectangle, circle, triangle) [13] or utilize existing optical character recognition
(OCR) algorithms [23] for reading the numbers on the labels. However, because
the cars drove relatively fast and the videos were recorded only on a mobile phone,
it was not possible to clearly recognize nor the shapes nor the numbers. Addi-
tionally, for OCR detectors, there were also troubles with identifying numbers
that are not always orientated the same way in real-time.

When we asked Doc. Ing. Filip Šroubek, Ph.D. DSc. (Institute of Information
Theory and Automation AV ČR) for advice, he recommended us to try labeling

1Those four videos were among the nine training videos that were also correctly assessed by
the GTA.
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the cars with ArUco markers [24], the traditional marking system used for the
pose estimation in computer vision. But this approach was unsuccessful as well
because, for the available ArUco markers’ detectors, the car labels were too small
to detect.

In the GTA itself, we attempted to incorporate to the identification stage also
different feature matching techniques such as ORB, SIFT, or SURF [25]. Still, this
approach did not bring any improvement for our data and even resulted in worse
accuracy than the presented combination of template matching and histogram
comparison.

5.2 Program output
The program terminates when there is no video frame left or when a user stops
the program deliberately. In both cases, the race is regarded as completed, and
the results are prepared. The output with results is printed out in a text file,
which has two main sections: Race evaluation and Final order. For the GTA, we
also incorporated a third section called General times containing times of each
finish with similarity scores associated with the finishing vehicle (see Figure 5.1).

Figure 5.1: Race report of the General tracking algorithm.

In the Final order section, cars are primarily ordered by the number of com-
pleted rounds and secondary by the total sum of times they needed to complete
them. Times of individual laps are then broken down in the Race Evaluation
part.

As we will discuss in the following sections, for both algorithms, there are
situations where they can make a mistake. To ensure that the right order and
lap times can still be obtained even when the algorithms make some unexpected
mistakes, all finish photos are being saved, and the time of every finish passing
is being kept. These times are then written on the finish photos with additional
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information – finish number, frame number, name, and similarity score of the
associated car in case of GTA (see Figure 5.2).

Figure 5.2: One of the finish photos from the official race measured by the General
tracking algorithm.

5.3 Problematic situations
Our algorithms can potentially make different kinds of mistakes. They can iden-
tify an unfamiliar object as one of the cars, temporarily lose track of a car,
misidentify a car for a short time, or detect a single car as multiple moving
regions. However, all these mistakes are not serious as long as they do not oc-
cur nearby the finish line since otherwise, they do not affect the output of the
program.

Very generally, we can divide those serious mistakes into two categories:
misidentification and misdetection. The misidentification occurs when a car is
correctly detected but wrongly identified when finishing. It means that the time
is measured for the wrong car. Under the misdetection category, we count mis-
takes that occur when a car is not detected in the finish or detected multiple
times.

Even though most of the causes were briefly mentioned in the previous sec-
tion 4, we would like to recapitulate them now and also include their further
description with possible ways how to avoid them.

5.3.1 Similar cars
It is not surprising that the GTA can have a problem with the identification of
similar cars (see Figure 5.3) because neither the histogram comparison (Section
3.6.4) nor the template matching (Section 3.6.4) was designed to be entirely
accurate. But for our application, they present an ideal solution for the real-time
execution requirement.
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As for the histogram comparison, the only thing it takes into account is the
image color aspect. That means it completely ignores the structural information,
and thus if two or more cars have the same dominant colors, they appear not
much different from the histogram perspective. So, when a detection is compared
to two reference photos with similar color distribution, the difference between the
two similarity scores will be very small. The comparison can be further negatively
affected by inaccurate detections that capture only part of the car or excessive
nearby surroundings.

On the contrary, the template matching should tolerate such imperfect detec-
tions because it can find the matching part everywhere in the source image. Ad-
ditionally, it incorporates the objects’ structure to the computation, so it should
compare images more reliably. But it also has a significant drawback. During
template matching, the template is positioned only in one direction, but cars on
the track can be rotated differently. And because of that, the template matching
can be forced to make incorrect decisions.

To ensure that the cars are correctly classified most of the time, we need to
provide the GTA with such reference photos that are as distinct as possible. For
our experiments, picking only the unique part of cars as the reference photos
yielded better results than picking the whole cars. This practice manifests itself
during the identification of cars in clusters where the algorithm understandably
regards the matched part as an entire car. However, this should affect the time
measuring only minimally.

Figure 5.3: Two photos of cars that could be in some situations misplaced by the
GTA.

5.3.2 Clusters of cars
Especially at the beginning of the race, cars are very likely to cross the finish line
in a cluster (see Figure 4.6). And so in case of the GTA, the cars will be registered
as a single detection. As was previously described, the problem of clusters is
solved by iterating through all possible combinations of cars (Section 4.2.5). In
our experiments, the identification of cars in clusters was always correct. But
we are aware that in some situations, cars in a cluster can appear to be visually
connected and make the identification for the algorithm more difficult.
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5.3.3 Finishing in the opposite direction
Because autonomous cars can sometimes behave unexpectedly, they can acci-
dentally start driving in the opposite direction. Again, as long as this does not
happen near the finish line, we do not have to be concerned. But if a car drives
through the finish line in the opposite direction, it must be noticed. Because not
only, that we can not count that drive-through as a completed lap, but we also
have to remember that the following finish pass in the correct direction should
be for the same detection invalid as well.

Our algorithms solve this situation by not allowing the same detection to finish
more than once and ignoring the finish passes of all detections that emerged on
the right to the finish line. The only problem is when such a detection crosses the
finish line in the opposite direction, and we lose track of it (the detection drives off
from the frame or stops moving). Because when the same detection/car appears
again and finishes in the right direction, it will be counted as a completed lap.
We experienced it in one of our recordings when the GTA was able to correctly
evaluate it only after we increased the number of frames on which the abandoned
detections are preserved. However, having this number increased by default could
potentially make some evaluation less accurate as the abandoned detections could
be associated with other cars driving nearby them.

In the CTA, we prevent this by saving the information about the finish back
driving not only to the detection but also to an associated car. In this way, we
can count the car’s finish back drives and check it every time the car crosses the
finish line in the correct direction. If the number of back drives is zero, then it
completed a lap. If the back drive number is positive, we decrease it by one and
ignore the finish passing. We did not implement this logic into the GTA because
the identification at the time of finish crossing does not have to be correct, and
the number of back drives could be potentially increased for the wrong car.

5.3.4 Multiple detections of a single car
As we discussed in section 3.6.1, cars with large smooth monochromatic surfaces
are more difficult to detect. But as it turned out, such cars are in the GTA
also more prone to be detected as several moving regions. Thus, when such
a detection finishes, the time is measured to all cars associated with the moving
regions. When this happened in our experimental races, we managed to solve
it by increasing the size of the structuring element of morphological operations
(Section 3.4). However, we are aware that in the next races, this may not be an
option as using a larger structuring element is more computationally demanding.

5.3.5 Track displacement and camera movement
Initially, in the GTA, we intended to detect movement by the background sub-
traction (BGS) (Section 3.6.1). Nevertheless, after experimenting with the videos,
we added the option to detect movement with frame differencing technique (FD)
(Section 3.6.1). That is, because the RC cars were bigger and heavier, it was much
easier for them to move with the walls of the track. As a result, the displaced
track appeared to be different from the background reference and, therefore, in
the following frames detected as a movement. But because the reference image
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is updated regularly in FD, it can quickly adapt at any track adjustments. The
very same applies to the random camera movement, which is very hard to prevent
entirely.

Although BGS appears in this aspect as a less practical solution, it also has
its advantage. Because compared to FD, it can also detect non-moving cars. And
that is very convenient because the cars can stop, and the algorithm does not lose
track of it, and so the history of identification is not lost.

Figure 5.4: Comparison of frame differencing (left) and background subtraction
(right). While frame differencing detects only the moving car, background sub-
traction detects also the non-moving car and other frame regions that differ from
the reference image.

5.3.6 Right color choice
The most important thing for the CTA is the right choice of colors and the
adjustment of the span of accepted shades. When using the natural colors of
cars instead of the labels, it should not matter if the color regions are coherent.
Because the CTA by default allows cars to finish another lap only after five
seconds, a car with disjoint color regions should be registered during a finish pass
only once2. This applies as long as the regions have the same color, otherwise it
is a problem of poorly chosen colors.

We also strongly advise against choosing black or white as one of the unique
colors since those are colors of the track and the finish line.

5.4 Final recommendation
Our experiments proved that both of our algorithms could be used in the official
races. However, from our experience, the more reliable and convenient usage is
offered by the CTA. Because compared to the GTA, with carefully picked color
labels, there is far less chance that the detected cars will be misidentified or
otherwise missed during the finishing. Furthermore, since there can start up to

2When the first region crosses the finish and disappears from the scene, the other region can
be still in front of the finish line.
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five robotic cars in every race, it is sufficient to prepare five different color labels
and use them repeatedly for every race. And so, it is unnecessary to take a photo
of each car and reconfigure the initial algorithm setting before every race but only
once at the beginning of the race day. An example of a unique color palette is
shown in Figure 5.5 below.

Figure 5.5: Recommended choice of 5 unique colors (HSV codes: (10, 70, 70),
(80, 70, 70), (150, 70, 70), (210, 70, 70), (260, 70, 70)).
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6. Implementation
In this section, we will first specify what programming language and computer
vision library we used and describe the basic structure of both our algorithms.
Then, we will discuss the options for the computer-camera connection and the
algorithms’ execution time.

6.1 Programming language and library
At the beginning of the work, we stood before the decision of what programming
language and what libraries we would use. After reading several reviews and
several implementations of computer vision algorithms, we decided to choose the
recommended OpenCV library [26] as it seemed to be the most used and referred
library. OpenCV is an open-source computer vision library written in C and
C++ with a strong focus on real-time application. Apart from C and C++,
it also provides interfaces to several other languages such as Python, Java, or
Matlab, making it easy to use both for industry and research applications.

From the programming languages supported by OpenCV, we eventually picked
Python. We chose this programming language because Python enables developers
to experiment and change the code very efficiently. Our only concern with Python
was the speed of execution since, as an interpreted language, it is known to be
slow. But it turned out that with the direct bindings to C++ API of OpenCV,
the execution of image processing techniques in Python is quick enough even for
our real-time requirements.

6.2 Program structure
Because of the differences in the General and Color tracking algorithms, we imple-
mented each version in a separate program. We will refer to them as the General
algorithm (GA) and the Color algorithm (CA).

Processing the video, our algorithms’ backbone is a loop iterating through the
frames coming from the video stream. The only frame that is treated differently
is the first frame in which the finish line is detected. All the following frames
are processed in the same pipeline of subroutines called as static functions from
individual modules of our framework.

Once the contours of moving objects are extracted, they are immediately
turned into instances of appropriate classes – Blob in the GA and ColorContour
in the CA. These classes serve as containers for additional information associ-
ated with contours (centroid location, bounding rectangle, etc.) and for methods
needed for finish crossing detection and, in case of Blob class, for object identifi-
cation as well.

Because in the CA, it is possible to identify every detection unambiguously,
we can define one ColorContour instance for each unique color before the race
starts. And then, every time a particular color appears in the frame, we associate
it with the correct ColorContour instance.
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With the GA, the situation is more complicated. Because the detections
are firstly detected based on the movement, we can not be sure whether the
identification is correct during the whole course of the algorithm. Therefore, we
introduced another class called Car whose instances correspond to the reference
photos. The identification itself is then based on assigning a particular instance
of Car to a Blob instance. Thus if the algorithm evaluates that more detections
in a frame correspond to a single car, it is possible to do so.

The summarized structure of both algorithms can be found in the following
pseudo-codes.

Algorithm 1: General algorithm
Input: video stream, reference images
Parameters: n, min cluster area

1 tracked detections = [ ]
2 cars = Car(reference images)
3 first frame = video stream.next()
4 finish endpoints = detect finish(first frame)
5 frame num = 1
6 while video stream.has next() do
7 frame num += 1
8 frame = video stream.next()
9 frame detections = [ ]

10 frame contours = detect contours(frame)
11 for contour in frame contours do
12 detection = Blob(contour)
13 if detection.area > min cluster area then
14 cluster detections = process cluster(detection)
15 frame detection.append(cluster detections)
16 else
17 frame detection.append(detection)

18 iou m = compute ious(tracked detections, frame detections)
19 optimal assignment = hungarian alg(iou m)
20 tracked detections = update positions(optimal assignment)
21 if frame num % n == 0 then
22 update identifiactions(tracked detections)
23 check finish crossing(tracked detections)
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Algorithm 2: Color algorithm
Input: video stream, unique colors

1 colors = ColorContour(unique colors)
2 first frame = video stream.next()
3 finish endpoints = detect finish(first frame)
4 frame num = 1
5 while video stream.has next() do
6 frame num += 1
7 frame = video stream.next();
8 for color in colors do
9 binary mask = threshold(frame, color)

10 biggest contour = max(detect contours(binary mask))
11 update position(color, biggest contour)
12 check finish crossing(color)

6.3 Camera connection
Since the objective of this thesis was to develop a working algorithm for the race
evaluation, we did not focus on optimizing the computer-camera connection.

The algorithms were tested on prerecorded videos saved on the local storage.
Other than that, we tested the connection to a laptop’s web camera and a phone’s
camera. The web camera can be connected directly through the OpenCV library.
Connecting to the phone’s camera is possible through a USB cable or wirelessly
via WiFi. But for both approaches, it is necessary to install a particular mobile
application (we tested the Android version of IP Webcam [27]).

However, regardless of the connection, it should always be checked that the
video quality is appropriate and that the frame orientation is correct. Since
the low quality may negatively influence the algorithms’ performance, especially
the identification process (Section 4.2.5) in the GA, and the wrong orientation
prevents the algorithm from finding the finish line (Section 4.1).

6.4 Performance
To measure the execution time of both algorithms, we used the 480p video
(640 × 480 px) from the official race with three participating cars and ran it
in a single thread on 2.40GHz i5-6300U CPU and 8 GB of RAM. With the GA,
the processing of a single video frame without any visualization took on average
0.013 s (min 0.010 s, max 0.055 s), which was fast enough to process it in the
original 30 FPS. The CA also executed fast enough but needed for a single frame
of the same video on average 0.033 s (min 0.031 s, max 0.049 s). As we can see,
the CA was on average more than two times slower, which was caused by the
need to convert each frame into an HSV format before applying the color filters.
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7. Conclusion
Our main goal was to design and implement an algorithm that would help referees
at robotic contests to automatically evaluate robotic races from a video recording.
This particular initiative came from organizers of a Czech event called Robotický
den, which has its race discipline called RoboCarts.

In this thesis, we first described the rules of robotic races and inspected the
racetrack’s appearance in section 2. Before presenting our algorithms, we covered
in section 3 several image processing methods that we had used to process and
analyze the video. Special attention was given to the problem of moving object
tracking as it constitutes an essential part of our solution.

In section 4, we presented two different algorithms for automatic robotic race
evaluation – the General and Color algorithm. We came up with two algorithms
because we found out that if we provided cars with labels of unique colors, the
whole process of car tracking would get noticeably smoother and more reliable.
So while in the first algorithm, we do not expect cars to have any particular
appearance, for the second algorithm, it is necessary to stick on each car a unique
color label. After the race ends, both algorithms output the final order and times
of every completed lap. To retrospectively check the correctness, all finish photos
are saved and annotated with information about the time and identified car.

Initially, we had only one recording of an official race. So for testing and
evaluation purposes, we organized and recorded two training tournaments for
remotely controlled cars. As we discussed in section 5, the General algorithm
successfully measured the official race and all eleven training races. With the
Color algorithm, we correctly evaluated all four training races in which the cars
have unique colors.

And finally, in section 6, we discussed our choice of programming language,
the camera settings, and the processing times of both our algorithms. An extra
focus was also given to the algorithms’ structure and their classes.

In the beginning, we did not have any particular resources for this specific
task. Therefore, the main contribution of this work is experimenting with several
different approaches and finding such methods that could be used in standard
conditions. Since Robotický den was canceled this year, we did not manage
to try our algorithms in official races. However, even without this testing, we
recommend using the Color algorithm since it should generally provide us with
more reliable results and with reusable color labels also more convenient usage.

If our algorithms proved to be useful, the next possible step would be imple-
menting a mobile application, which could make the usage even more convenient.
As for further algorithm improvements, it would be very interesting to gather
more robotic car images and train a deep learning model for the detection stage.
Another practical improvement would also be a tool for the automatic extraction
of car reference images during the race, which would improve the potential usage
of the General tracking algorithm.

Because of the solution’s generality, there is also a possibility to try using
an adjusted version of our algorithms for tracking completely different objects or
even slightly different purposes, such as finding out the most frequent color of
cars or peoples’ clothes from street-view cameras.
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Poč́ıtačové videnie. Detekcia a rozpoznávanie objektov, pages 38–49. Wikina,
Praha, 2013.

[4] L. G. Shapiro and G. C. Stockman. Computer vision, pages 153–154. Prentice
Hall, New Jersey, 2001.

[5] OpenCV. Image thresholding. https://docs.opencv.org/master/d7/
d4d/tutorial_py_thresholding.html. Accessed: 2020-04-26.

[6] N. Efford. Digital image processing: a practical introduction using Java (with
CD-ROM), pages 271–297. Addison-Wesley Longman Publishing Co., Inc.,
Boston, 2000.

[7] A. Cereser. Time-of-flight 3D Neutron Diffraction for Multigrain Crystallog-
raphy. PhD thesis, 2016.

[8] J. Canny. A computational approach to edge detection. IEEE Transactions
on pattern analysis and machine intelligence, (6):679–698, 1986.

[9] SimsContPics. The canny edge detector applied to a color photograph of
a steam engine. https://en.wikipedia.org/wiki/Canny_edge_detector.
Accessed: 2020-04-26.

[10] P. V. C. Hough. Method and means for recognizing complex patterns, De-
cember 18 1962. US Patent 3,069,654.

[11] T. Kacmajor. Hough lines transform explained. https://tomaszkacmajor.
pl/index.php/2017/06/05/hough-lines-transform-explained/. Ac-
cessed: 2020-07-11.

[12] OpenCV. Hough line transform. https://docs.opencv.org/3.4/d9/db0/
tutorial_hough_lines.html. Accessed: 2020-04-26.

[13] P. H. L. Shilpa and M. R. Sunitha. A survey on moving object detection and
tracking techniques. International Journal Of Engineering And Computer
Science, 5(5), 2016.

[14] K. A. Joshi and D. G. Thakore. A survey on moving object detection and
tracking in video surveillance system. International Journal of Soft Comput-
ing and Engineering, 2(3):44–48, 2012.

[15] A. P. Shukla and M. Saini. Moving object tracking of vehicle detection:
A concise review. International Journal of Signal Processing, Image Pro-
cessing and Pattern Recognition, 8(3):169–176, 2015.

36

http://robotickyden.cz
http://robotickyden.cz/2020/rules/2020-RoboCarts-ENv1.pdf
http://robotickyden.cz/2020/rules/2020-RoboCarts-ENv1.pdf
https://docs.opencv.org/master/d7/d4d/tutorial_py_thresholding.html
https://docs.opencv.org/master/d7/d4d/tutorial_py_thresholding.html
https://en.wikipedia.org/wiki/Canny_edge_detector
https://tomaszkacmajor.pl/index.php/2017/06/05/hough-lines-transform-explained/
https://tomaszkacmajor.pl/index.php/2017/06/05/hough-lines-transform-explained/
https://docs.opencv.org/3.4/d9/db0/tutorial_hough_lines.html
https://docs.opencv.org/3.4/d9/db0/tutorial_hough_lines.html
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A. Attachments

A.1 User documentation
In this section, we will describe how the attached zip file’s structure looks like
and how to run and test our applications properly.

A.1.1 Folder structure
After downloading the attached zip file, you can unzip it to an arbitrary folder
in your PC or laptop1. The unzipped robocarts folder should have the following
structure.

robocarts/

data/

imgs/

saved control/

video/

doxygen documentation/

html/

latex/

scripts/

algorithms/

classes/

methods/

README.txt

requirements.txt

run color alg.py

run general alg.py

There are three main directories: data contains testing data, finish reports
and photos from two recordings, doxygen documentation contains a Doxygen
auto-generated documentation and scripts contains the Python scripts of our
algorithms.

Then there are two main application scripts (run general alg.py and
run color alg.py), the README.txt with instructions and the require-
ments.txt listing all Python packages necessary for the program execution.

1All the development and testing was conducted on the Ubuntu operating system.
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A.1.2 Requirements
Our applications need to be run with Python 3.5+ and several compulsory pack-
ages listed in the requirements.txt. The easiest way how to install them all
at once is to use the pip Python package manager with the following command

pip install -r requirements.txt

Since our scripts contain relative paths, both of our main applications must
be executed right from the robocarts directory.

A.1.3 General algorithm program description
We will first describe the usage of the General algorithm which is run with the
run general alg.py script.

Compulsory parameters

There are two compulsory parameters for this program. The source of a video
(-video) and the location of reference photos (-imgs). The video source can
be easily set up by either entering a path to a saved video file or ”webcam”
(connecting the web camera) in the program’s parameters. Other options, such
as wireless or wired phone connection, should work similarly – by specifying URL
or another source identifier in the video path parameter, but may potentially
require additional adjusting in the script.

Video size and orientation

Extra attention should be given to the orientation and size of the video frames.
If the video for some reasons came up flipped, differently rotated, or was too big
for real-time processing, it is necessary to specify it in the program’s parameters
as well (Section A.1.5).

Reference photo extraction

For extracting the reference photos, we do not provide any particular subroutine.
The reference photos used in our experiments were manually cut out from race
photos. As we discussed in section 5, the best results were achieved when we
cut out only the most distinct parts of individual cars. It also helps if those
rectangular parts were of different sizes. We suppose that those photos will
always be saved locally and so the specification of their path should not present
any problems. The picture files should have unique names because the filenames
are used as unique IDs.

Finish line detection

In a standard way, the finish line is automatically detected in the first frame of
a video, as we described in section 4.1. But to not limit ourselves only to one
type of a racetrack, we added an option to manually select the finish line by the
parameter --manual finish in the first frame of a video.
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To select the finish line manually, you need to choose two points in a frame
that will determine the finish line. After the selection, you can either confirm
your choice by left-clicking or deny it by right-clicking on a new window with the
highlighted finish line (see Figure A.1). After the confirmation, terminate the
subroutine by pressing ’q’, and the video starts being processed. The finish line
will be automatically prolonged across the whole frame.

Figure A.1: Manual selection of the finish line in the first frame of the official
race recording.

Control

When the application is run, and everything is set correctly, a window with
a particular video is invoked, and the tracking is visualized by highlighting the
contours of the moving objects (see Figure 1.1). Whenever a detection finishes,
it is announced in the terminal. We can pause/resume the video by pressing ”p”
or terminates it by pressing ”q”. After the video ends, the race results and finish
photos are prepared in the folder specified by the parameters -save folder
and -race name.

There is also a possibility to terminate the race but keep the video and the
algorithm going by pressing ”n”. This way, the program will print the current
results, delete the statistics from its working memory, and start from the begin-
ning. Nevertheless, this option is more useful for the Color algorithm where we
can reuse the same color labels for multiple times.

A.1.4 Color algorithm program description
In many aspects, Color algorithm program run color alg.py is similar to the
General algorithm program. Therefore, we will mainly focus on things that are
different.
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Compulsory parameters

Naturally, run color alg.py also requires us to specify the video source, for
which applies the same recommendations as we previously discussed for the Gen-
eral algorithm.

The second compulsory input is unique colors, which can be entered in two
different ways. Firstly, we can specify color ranges as a series of numbers with
the parameter -boundaries. Every HSV range must be represented by exactly
six integers – first three numbers specify the color lower boundary, the later
three numbers the upper boundary (e.g., we would specify two color ranges as
-boundaries 100 80 80 120 90 90 60 50 50 70 60 60). Or secondly, we can use a
special color subroutine in which we manually choose the colors from a particular
reference photo (-img pick).

Color picking subroutine

When the program is run with the reference photo, the color picking subroutine
is invoked, and the reference photo in the RGB and HSV format is displayed. By
left-clicking on a particular pixel of the HSV photo, the program automatically
generates a binary mask where we can see what regions of the photo will fit into
the pixel’s color range (the pixel’s HSV value ± the span). The color range is
then saved to the program by left-clicking on the displayed binary mask and can
be deleted from the program’s memory by right-clicking on the mask. Example
photos from the color picking subroutine can be seen in the following Figure A.2.

Figure A.2: The original photo in RGB and HSV format and the binary mask
produced by the color picking subroutine after clicking on the blue square.

After pressing the ’q’ key, the subroutine is terminated, and the video starts
being processed in the same way as we described in section A.1.3.

Control

While the video is being processed, the Color algorithm is controlled exactly the
same as the General algorithm. And there is the option for the manual finish line
selection as well.

A.1.5 Other parameters
In the previous sections, we described the compulsory parameters for each pro-
gram and a few others. In the following table, we summarize all possible param-
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eters for both programs in the format ’parameter name (default value)’.

Both algorithms

−video (None)
Path to the video source.

−start frame (1)
Starting frame number for saved recordings.

−testing (None)
Test of an algorithm on a particular video specified by a filename.

−m kernel (27)
Size of the n × n kernel used in morphological operations.

−fps (30)
FPS of the video.

−save folder (”./data/saved/”)
Path where the race report and finish photos will be saved in the

’race name’ subfolder.

−race name (None)
Name of the race, after which the save subfolder will be named. If not

specified, it will be resolved from the video filename.

−rotate (0)
Specifies how many times each frame should be rotated for 90◦ to right.

−resize (1)
Scale of how every frame should be resized.

−−flip (-)
Specifies if each frame should be flipped alongside the horizontal axes.

−−manual finish (-)
Switch flag for manual finish line selection.

General algorithm

−imgs (None)
Path to reference car images.

−n delete (5):
Number of consecutive frames in which a detection needs to be absent

to be deleted.
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−id freq (5)
Specifies how often the detections in a video are reidentified.

−n finish (5)
Minimal number of frames on which a detection needs to be present to

finish.

−min iou (0.01)
Minimal value of IoU for assigning two detections from the consecutive

frames.

−cluster area (7000)
Minimal area (in pixels) of a detection to be regarded as a cluster.

−bg img (None)
Path to a background image. If specified, the background subtraction

technique is used instead of the frame differencing.

Color algorithm

−img pick (None)
Path to an image for the color picking subroutine.

−boundaries (None)
Ranges of unique colors.

−span (10 20 40)
Span of shades for selected colors.

A.1.6 Program output
The program output (finish photos and the race report) from a single video is
by default saved into a data/saved/race name folder. Depending on the
algorithm, it is placed either to general or color subfolder which is further
divided into numbered subfolders corresponding to individual races (created by
pressing ”n” during the processing).

A.1.7 Testing
To test our programs, we included in the data/video folder two race recordings
(official race.mp4, train 02.mp4). All necessary reference images to
both of the videos are placed in the corresponding folders in data/imgs, named
after the video files. We also put all finish photos and race reports from our
evaluation in data/saved control.

For the testing purposes, please use the -testing parameter with the specific
filename. This way, all the compulsory parameters will be solved automatically.
These are examples, how to test both programs on two different videos.
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python3 run general alg.py -testing official race.mp4
python3 run color alg.py -testing train 02.mp4

If you want to test our algorithms on all available recordings, download them
from the link specified in the attached README file. To preserve the project’s
structure, please replace the original data folder with the downloaded one. In
the README file, there are also links to YouTube videos in which we demonstrate
our algorithms on all recordings.

The names of all training videos are list in the following table. Please note
that because the colors are selected manually, and the color labels are not perfect,
your testing of the CA may behave differently.

Filename General alg. Color alg. Used colors
official race.mp4 ✓ X
train 01.mp4 ✓ X
train 02.mp4 ✓ ✓ blue, yellow
train 03.mp4 ✓ ✓ red
train 04.mp4 ✓ X
train 05.mp4 ✓ X
train 06.mp4 ✓ X
train 07.mp4 ✓ ✓ red, yellow
train 08.mp4 ✓ X
train 09.mp4 ✓ X
train 10.mp4 ✓ ✓ red, yellow
train 11.mp4 ✓2 X
✓: correct evaluation.
X: evaluation was not possible.

2The misidentification at the end of the race can be corrected by increasing the number
of frames, after which a detection is deleted from the memory, in the program’s parameters
(-n delete 10).
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