
MASTER THESIS

Jan Bodnár

Morphological Segmentation in Czech
using Word-Formation Network

Institute of Formal and Applied Linguistics

Supervisor of the master thesis: doc. Ing. Zdeněk Žabokrtský,
Ph.D.

Study programme: Computer Science
Study branch: Artificial Intelligence

Prague 2020

I declare that I carried out this master thesis independently, and only with the
cited sources, literature and other professional sources. It has not been used to
obtain another or the same degree.
I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Sb., the Copyright Act, as amended, in particular the fact that the
Charles University has the right to conclude a license agreement on the use of this
work as a school work pursuant to Section 60 subsection 1 of the Copyright Act.

In date .
Author’s signature

i

I would like to thank my supervisor Zdeněk Žabokrtský for great support and
guidance, and to my family for making all this possible.

ii

Title: Morphological Segmentation in Czech using Word-Formation Network

Author: Jan Bodnár

Institute: Institute of Formal and Applied Linguistics

Supervisor: doc. Ing. Zdeněk Žabokrtský, Ph.D., Institute of Formal and Applied
Linguistics

Abstract: Morphological segmentation is segmentation of words into morphemes
- smallest units carrying meaning. It is a low level Natural Language Processing
task. Since morphological segmentation is sometimes used as method of prepro-
cessing, achieving better results on this task may help NLP algorithms to better
solve various problems, especially in scenarios involving small amount of data,
and it may also also help the linguistic research. We propose a novel ensemble
algorithm for morphological segmentation of Czech lemmas which makes use of
the DeriNet derivation tree dataset. As a sideproduct we also created suggestions
for improvements of the DeriNet dataset.

Keywords: morpheme morphology segmentation

iii

Contents

Introduction 3

1 Related Work 5
1.1 Approaches towards the problem 5

1.1.1 Multilingual approaches 5
1.1.2 Chinese sentence segmentation 5
1.1.3 Minimum Description Length and Maximum A Posteriori

probability . 6
1.1.4 Expectation Maximization 7
1.1.5 Bayesian Methods . 10
1.1.6 The Follower Surprisingness 10
1.1.7 Deep Learning . 10

1.2 KonText Tool . 11
1.3 Datasets . 11

1.3.1 Manually segmented dataset 11
1.3.2 Retrograde Morphemic Dictionary of Czech 12
1.3.3 DeriNet . 13
1.3.4 Morpho Challenge datasets 13

2 Theoretical Background 14
2.1 Linguistic background . 14

2.1.1 Czech Language . 14
2.1.2 Morphemes . 14
2.1.3 Allomorphs . 15
2.1.4 Word formation processes 16
2.1.5 Derivational graphs . 17

2.2 Neural Networks . 17
2.2.1 Basic Model . 17
2.2.2 Neural networks and language 18
2.2.3 Triplet loss . 19

3 The Proposed Solution 21
3.1 Origin of the solution . 21
3.2 The final solution . 22
3.3 Classifiers . 23

3.3.1 Architecture . 23
3.3.2 Usage . 24

3.4 Rules . 24
3.5 Tree Propagation (Segmenter) . 24

3.5.1 Description . 24
3.5.2 Problems . 26

3.6 Root detection . 26
3.6.1 Triplet Loss . 27

1

4 Experiments 28
4.1 Classifiers . 28
4.2 Triplet Loss . 30

4.2.1 Training problems . 30
4.2.2 Our Experiments . 32
4.2.3 Outcomes . 33
4.2.4 Error analysis . 33

4.3 Error analysis . 34
4.3.1 Error analysis of the Addition Phase 35
4.3.2 Error analysis of Tree Propagation 35
4.3.3 Error analysis of Cleanup Phase 36
4.3.4 Systematic errors of the whole architecture 38

4.4 The final results . 39

Conclusion 43

Bibliography 44

List of Figures 47

List of Tables 48

List of Abbreviations 50

A Attachments 51
A.1 Output Samples . 51
A.2 Triplet Loss suggestions . 52

2

Introduction
The morphological segmentation is a task of Natural Language Processing in-
volving designing algorithms for decomposition of words into morphemes - the
smallest units carrying meaning. For example, the word ”replacement” can be
segmented as ”re-place-ment”. ”Re-” is a prefix meaning again, ”place” is the root
of the word which carries the main meaning, and ”-ment” is a suffix which forms
an action noun out of a verb. From this example we can see how morphological
segmentation can help both people and computers to better understand words,
especially if they haven’t seen them before. This help is especially important in
languages with rich morphology, such as Czech.

In this thesis we propose a novel algorithm for morphological segmentation
of Czech lemmas (basic forms of words), which makes use of both manually seg-
mented dataset and derivational dataset DeriNet. (Vidra et al. [2019]). Our
algorithm is an ensemble model consisting of a simple rule-based system, neural
networks, and a tree propagation algorithm. We describe the ensemble, evalu-
ate it, and we also create suggestions for improvements of the DeriNet dataset
regarding which derivation trees should be merged together.

The main complication during the process was caused by the fact that the
Czech language contains a big amount of allomorphy, which means that during
the derivative and inflective processes Czech not only adds or removes morphemes,
but it often also changes the appearance of the remaining morphemes. This results
in one morpheme having multiple forms (morphs), which can sometimes be very
different from one another.

Motivation
There are two main reasons why to improve the morphological segmentation al-
gorithms. The first reason is that a good automatic morphological segmentation
opens space for linguists who work with corpora to examine certain morpho-
logical phenomena in larger scale, and thus allows to broaden our knowledge
of languages. Examples of such research can be exploration of the relation be-
tween morpheme boundaries and syllables, historical changes of morpheme use,
or examining situations in which language prefers one variant of morpheme over
another (allomorphy).

The second reason is that morphological segmentation may improve the be-
havior of other natural language processing algorithms, especially on morpho-
logically rich languages and in scenarios involving small amount of data. It is
known to help the statistical algorithms, and to improve the machine transla-
tion where we lack sufficient amount of parallel data. This is likely because the
morphologically segmented text offers the information in a more structured way,
which helps to tackle the sparsity problems in learning, and allows for inference
of meaning of unknown words or word forms. Morphological segmentation is also
closely related to lemmatization and stemming, which are traditional ways of text
pre-processing.

The morphological segmentation or morpheme-aware approaches may be ben-
eficial even for a modern deep learning methods, since even such methods with

3

huge amount of data suffer from out of vocabulary words, or may exploit the
knowledge of the word’s structure during the training. As an example we may
mention the successful subword-level word embedding (Bojanowski et al. [2016]),
which forms the word embedding on the basis of all the sub-strings of a word.
Such an approach may be considered rough in comparison with just operating
with word’s morphemes, but it seems likely that with sufficient amount of data
and computational power, the model selects just certain meaningful sub-strings,
and thus builds its own version of ”morphological segmentation” - not necessarily
based on non-overlapping strings, and not necessarily respecting our segmenta-
tion, since e.g. grouping frequently co-occurring suffixes into one group with a
clear meaning may do more good than bad in practice.

This type of argumentation may be also used as an argument to support the
application of unsupervised or minimally-supervised methods of morphological
segmentation to under-resourced languages even in cases when they quite differ
from the linguistic point of view, since even ”wrong” segmentation may still be
useful in practice.

Outline
In the thesis we first examine the related work, especially with regards to other
general approaches used to tackle our problem and to the datasets we use, then we
continue with discussion of the theoretical background of our approach both from
the linguistic and AI perspective. After this we derive and describe the proposed
solution, based on the ensemble model involving rules, derivation tree processing
algorithm, and neural networks partially trained on the artificial data. Later
we perform the experiments evaluating the model’s performance, and justifying
its structure. In the Appendix we show examples of the algorithm’s output and
examples of suggestions for improvements of the DeriNet dataset.

Prior publication disclaimer
Dislaimer:
Some of the original results developed while writing this thesis will also be pub-
lished in

Jan Bodnár, Zdeněk Žabokrtský, Magda Ševč́ıková, Semi-supervised Induc-
tion of Morpheme Boundaries in Czech using a Word-formation Network, In:
Proceedings of the 23rd International Conference on Text, Speech and Dialogue
- TSD 2020.

The results which appear both in the thesis and in the paper are my sole work
unless explicitly stated otherwise.

4

1. Related Work

1.1 Approaches towards the problem
We first examine the methods used by different authors.

1.1.1 Multilingual approaches
Computational linguists do not want to focus solely on the big common languages.
They also want the small under-resourced languages to benefit from the advances
advances of the field. Therefore there has been a big focus on techniques which
require only a very small amount of annotated data and preferably just small
corpora.

An example of this trend is a work Snyder and Barzilay [2008] where authors
experiment with simultaneous unsupervised learning of morphological segmen-
tation on multiple related languages in the same time. They create a Bayesian
model which learns both morphemes specific to each of the languages, and mor-
pheme correspondences to join two morphemes from different languages with
similar meaning but a different form. They have also modified the model to pre-
fer the correspondences among closely phonologically related morphemes. They
reported that the model trained on Arabic and Hebrew shows significant improve-
ments over the monolingual models.

1.1.2 Chinese sentence segmentation
The problem of segmentation of Chinese sentences into words is non-trivial since
Chinese does not make spaces between words. This problem may seem unrelated
with the morphological segmentation at first, but we should bear in mind that
both tasks consist of taking a groups of characters, be it sentences or words,
and segmenting each of them into subgroups which commonly co-occur in the
language.

This is the main analogy which motivates us to look at the Chinese segmenta-
tion as a source of inspiration. Although we cannot hope to directly transfer the
used algorithms, to morphological segmentation, since there are e.g. much more
Chinese characters than letters in our alphabet, which means that a common co-
occurrence of Chinese characters tells us much more. There are also much more
sentences than words, which means that we see a single word many times, while
we only see most of the sentences once.

An example of an algorithm used for this task is in Sproat et al. [1996] it is
an iterative algorithm which relies on a combination of a word dictionary with
statistical methods. The authors use an existing dictionary which they expanded
by the addition of certain character combinations on the basis of their Mutual
Information in the corpus. Then they run an iterative algorithm, which in one
step estimates the frequencies of words in the corpus, and sets cost of each word’s
occurrence in a sentence as

Cost = −log(wordfrequency

dictionarysize
) (1.1)

5

then they segment a sentence in such a way that its total cost is minimal, and
again re-estimate the frequencies.

1.1.3 Minimum Description Length and Maximum A Pos-
teriori probability

The minimum description length is closely related to the compression. Imagine
that you want to compress a dataset of words. Then it may be worth it, to
simply memorize the most common sub-strings of words and always reference
them, instead of repeatedly writing these sub-strings letter by letter.

More formally we can say that you first develop a class of encoding models,
and then you try to find the encoding model which encodes your dataset into
the smallest number of bits, while also counting the size of the encoding model’s
parameters. Then this trained model in a way represents the most natural rep-
resentation of words, and the way of encoding of a certain word is expected to
correspond with its morphological structure.
The optimized formula is

Θ = minθ : (L(data∥θ) + L(θ))
. We sometimes see a correspondence with the Maximum A Posteriori probability
method of training models, where we select parameters of the model in such a
way that the likelihood of the parameters given the data is the highest:

Θ = maxθ : P (θ∥data) = maxθ : P (data∥θ) ∗ P (θ) =
= minθ : −log2(P (data∥θ)) − log2(P (θ))

where P (θ) is the prior probability of our model having certain parameters. The
correspondence can be looked for as soon as we realize that −log2(PY (X)) is
equal to the lowest possible number of bits ”the best” compression method needs
to encode a random sample X from a known distribution Y . With ”the best” we
mean a compression method which, with knowledge of Y , has the lowest expected
value of bits necessary to encode a sample from Y . The ”best” is in quotes
because we speak about the theoretical lower-bound for compression established
by Shannon (Shannon [1948]), rather than about the actual encoding, which may
achieve worse results due to rounding.

We then know that two MDL and MAP models are equivalent if it holds that:

L(data∥θ) = −log2(P (data∥θ))
L(θ) = −log2(P (θ))

or rather we can use this relationship to attempt to derive the other form of
a model, and get some deeper insight into the model’s behavior, or even improve
certain aspects of the model.

Please note that our description of the correspondence has certain mathemat-
ical limits. For instance, we did not sort out the question of correspondence of
real valued parameters, because in such case P (θ = x) = 0. In such case we may
consider a limited precision representation, but then we may have the problems
with analysis of the MAP model, etc.

6

Morfessor Baseline

The recursive algorithm of the Morfessor Baseline (Creutz and Lagus [2002]) is
based on the minimum description length. The cost is the sum of dictionary
length and the length required for encoding the input sequence of morphs with
regards to a probabilistic model.

Cost =
∑︂

i

(−log2p(morphi)) +
∑︂

j∈dictionary

k ∗ L(morphj)

where k is the number of bits necessary for encoding a character (in this case
k = 5), and l(mj) is the length of j-th morpheme in the dictionary. This means
that the underlying model of morphology is a probabilistic uni-gram model, which
has likelihoods of each morpheme, but not e.g. likelihoods dependent on the
context.

The model is then trained with a custom algorithm, which iteratively re-
segments the words and updates the dictionary.

Linguistica

The algorithm Goldsmith [2006] also works on the minimum description length
principle, although it employs much more complex model than Morfessor Base-
line. It again describes the length of the representation of the model directly,
while using the ”best possible encoding” notion to describe the minimum length
required to describe the dataset on the basis of the learned probabilistic model.

its ”compression” model is based on a dictionary of ”stem-groups” and ”suffix-
groups” (stem is simply the first part of the currently segmented part of the word,
while suffix is the second part). It contains pairs consisting of a ”stem-group”
and a ”suffix-group”,such that each ”stem” from the group of ”stems” was seen
with each ”suffix” from the group of ”suffixes”. The algorithm first tries to fill this
dictionary in such a way that it helps to compress the data, and then it attempts
to clean the dictionary up, so that only linguistically plausible affixes remain.

1.1.4 Expectation Maximization
The Expectation Maximization (EM, formalized in Bishop [2013]) is an iterative
meta-algorithm used for training of probabilistic models in an unsupervised or
semi-supervised fashion. It has broad applications all around the field of arti-
ficial intelligence. In morphological segmentation EM has been applied to the
morphological segmentation of Czech (Vidra [2018]), as well as of several other
languages (Creutz and Lagus [2004]) and it has been recently proposed as a novel
training algorithm for the Morfessor Baseline (model: Creutz and Lagus [2002],
new algorithm EM+Prune: Grönroos et al. [2020]). Even the aforementioned
algorithm for segmentation of Chinese sentences to words may be considered a
simple model trained with EM.
The EM training has the Initialization phase and then the Expectation and Max-
imisation phases which repeat until convergence.
1) Initialization:
Before we can run the Expectation phase for the first time, we need to initialize
the parameters of the probabilistic model. This phase can be very tricky, since

7

the quality of the initialization can highly affect the quality of the outcome, as
has been well documented e.g. in the mixture model training. At the same time
it is not clear how to properly initialize the model, since the best possible initial-
ization is solving the whole problem in advance, and just setting the parameters
to the right values. The commonly used initialization strategies include use of
small amount of annotated data (known to help in morphological segmentation
even with a few hundred samples Ruokolainen et al. [2016]), using domain specific
heuristics (common substrings as candidates for morphemes or K-Means initial-
ization of GMM), setting certain distributions to uniform, and using randomly
generated values or random sampling.
2) Expectation: In the expectation phase we use the model to predict latent dis-
crete variables of the data samples. E.g. in the Gaussian Mixture Model (GMM)
clustering we want to predict the likelihood that each data sample belongs to
each cluster on the basis of the current parameters of the Gaussian components
and their priors. In the morphemological segmentation problem we would ideally
like to derive the likelihood of each morphological segmentation of each word on
the basis of the current segmentation model.
3) Maximization: During the maximization phase we use the segmentation or the
clustering of the dataset to re-estimate the numeric parameters of probabilistic
the model - we use the maximum likelihood principle and set parameters to values
which maximize the likelihood of the model generating the data (the clustering,
the segmentation) we observe. In the GMM model we need to recompute means,
(co)variances and priors of all the Gaussian mixtures to best fit the segmentation.
If we think about it, the Maximum Likelihood (ML) estimation of GMM param-
eters is surprisingly simple. The ML estimate of the cluster prior is basically
sum of likelihoods that each datapoint lies within that cluster, while mean and
covariances can be simply estimated by closed form formulae from all the data
points weighted by their likelihood of being generated by the given cluster.

This surprising simplicity of the GMM training is a common property of many
algorithms trained via EM, because they were designed so that both estimations
highly simplify.

Now we would like to demonstrate what a real-world EM-based solution looks
like on a linguistic problem. We want to show its behavior on something similar
to the morphological segmentation problem, but we do not want to get into all
the details and peculiarities of the more complex models. Therefore we will once
again look at the aforementioned Chinese segmentation algorithm and describe
it in the terms of EM (Sproat et al. [1996]).

First we create our generative story: likelihood of our dataset being generated
is equal to the product of likelihoods of individual sentences. Each sentence is
composed of words contained in our fixed lexicon. Each word has its own, context
independent, probability of appearance in a sentence. We further assume that
the likelihood of a sentence having k words is equal to

P [sentencelength = k] = constx
1

dictionary sizek

This is a an example of a uni-gram model. Such models are not very gram-
matically plausible, because they do not incorporate context, but they are simple
to deal with, and sometimes can yield good results. The exponentially decay-

8

ing probability of sentences being longer may seem arbitrary but it is here to
prevent divergence towards segmenting everything what could be possibly seg-
mented. The concrete value of coefficient forms a threshold - words w1 and w2
will be merged together into word w3 if

freq(w1) ∗ freq(w2) < freq(w3) ∗ average word frequency

, which seems reasonable.
In the expectation phase we segment the dataset with our uni-gram model.

We look at each sentence, and find its Most Likely segmentation, which means
finding the words w1, w2, ..., wk such that concatenation of these words is the
whole sentence, and that the product of likelihoods

P [sentence] = P [sentence length = k] ∗ Πk
i=1model likelihood(wi)

P [sentence] = const ∗ Πk
i=1(unigram likelihood(wi) ∗ 1

dictionary size
)

is maximal. Since the positive constants do not matter in maximization, we
can just ommit const, and after setting

cost = −log(unigram likelihood(wi) ∗ 1
dictionary size

)

,
this problem may be transfered to the problem of finding shortest path within

directed acyclic graph of characters forming the sentence. Please note, that in this
phase the algorithm differs from the true EM, where we compute the probabilis-
tic distribution over all the possible segmentation, and not just the most likely
segmentation. This variant of EM may be called ”winner-take-all EM (Neal and
Hinton [1998]), and is used also in other algoritms, such as Morfessor CatML
(Creutz and Lagus [2004])

The maximization phase then attempts to find the best model, namely the
model, from the selected class of models, which has the maximum likelihood of
generating the current segmentation (or, in the standard EM, the distribution of
segmentations). Finding of such a model is surprisingly simple. The best unigram
model is the model which assigns all the word likelihoods equal to number of their
occurrences within all the sequences (unigram likelihood = word frequency in the
current segmentation of dataset). This means that the cost above changes to

cost = −log(word frequency

dictionary size
)

which is exactly the formula from the paper.
The initialization is then done by setting number of occurrences of each word

to the total number of occurrences its string form has inside the corpus.
Of course, this is an idealized version omitting some details, such as the ques-

tion of out-of-vocabulary words, and it we described a very simple model, but it
still can give us a better idea of how a linguistic model can be structured in order
to work with EM.

9

1.1.5 Bayesian Methods
The Bayesian methods have been broadly used in natural language processing,
and they have been applied to related morphological segmentation (e.g. Snyder
and Barzilay [2008]) and a somewhat related task of segmentation of English
sentences to words (Goldwater et al. [2009]).

They may be considered overlapping with other statistical approaches, such
as methods centered around Expectation-Maximization or the Maximum A Pos-
teriori Probability approach, since all tree methods use statistical models, and
therefore both previously mentioned methods are equivalent in terms of the ex-
pression power (given we are able to compute the models, which may not always
be the case with EM). But we still think that Bayesian methods should have a
group of their own due to slightly different approach and methods involved.

The general Bayesian approach is defining a complex generative story, centered
around the Bayes theorem, conditional probability and prior distributions, for
instance we may set prior distribution to number of morphemes, so that we
prefer simpler models, or prior distribution to morpheme frequencies (a few are
frequent, many are infrequent), which will result in the model trying to develop
in a naturally looking direction and possibly in a further reduction of overfitting.
Knight [2009].

The generative stories should ideally as linguistically plausible as possible, but
on the other hand we still need to think about the computability, and possibly
look for places where our model may be simplified without doing too much harm.

Bayesian approach is usually connected with its own set of computational
methods, such as Gibbs sampling, but it can also use Monte-Carlo methods.

1.1.6 The Follower Surprisingness
Another approach to morphological segmentation is creation of a model, which
tries to predict the following part of the word. The assumption is that the model
will be the most unsure on the boundaries between morphemes. The approaches
in this paradigm range from early experiments with n-gram models Harris [1955]
to somewhat similar experiments done while testing early recurrent neural net-
works - in Elman [1990] the author trains a network to predict the following
character in a sentence and measures its sureness in any given step.

1.1.7 Deep Learning
In the field of deep learning, there have been previous experiments with learning
of morphological segmentation in the supervised fashion (e.g. Vidra [2018], Wang
et al. [2016]), as well as with creation of the so called sub-word embeddings: in
Bojanowski et al. [2016] authors create a word embedding on the basis of all
the word’s sub-strings without caring which of them are correct morphemes, and
which are not, expecting that the model will learn to handle the situation. This
embedding is successful since it leads to performance improvements and a better
handling of out-of-dictionary words, and therefore we can conclude that the sub-
word approach remains to be useful, eventhough there may be a paradigm shift
in it.

10

1.2 KonText Tool
KonText is an advanced search tool developed by the Institute of the Czech
National Corpus. It allows to run complex search queries in the Czech National
Corpus. Each query may combine matching words with regular expressions with
filtering on the basis of information contained within the word’s tags (e.g. case,
number, ...) and it can even search on the basis of the context in which the word
appears in the corpus.

Thanks to Mgr. Michal Křen, PhD. who kindly integrated our experimental
outputs of segmentation into the KonText tool we were able to use it for debug-
ging of our segmentation. It allowed us to look for certain patterns which our
segmentation algorithm may be doing wrong, and thanks to the corpora frequen-
cies integrated into the tool it gave us a different perspective about the mistakes
we make because we could also focus on the behavior on the most common words.

1.3 Datasets

1.3.1 Manually segmented dataset
In the thesis we also used a dataset containing 2100 manually segmented Czech
lemmas sampled from the DeriNet (Vidra et al. [2019]) and manually segmented
by Zdeněk Žabokrtský and Šárka Dohnalová.

While manually creating a segmentation dataset authors run into an issue
involving the question which words to actually choose. Should they select each
word with the same probability, or should they sample on the basis of the corpora
frequencies? In the end the dataset consists of 1000 words sampled in the first
way and 1100 sampled in the second way, on the basis of word frequencies in the
SYN2015 corpus (Křen et al. [2015]).
As a demonstration, we show 20 samples from each group:
The first method of sampling:

ulehlina, vyb́ırač̊uv, Vokurovský, Piller̊uv, synovskost, zdaj́ıćı, učenlivost,
dymńık, achronisticky, zigar, vláhonosnost, usoustruhovávatelnost, vydrobenost,
Obodrit, asymptoticky, odpřeložitelnost, Vosejpk̊uv, Blažeková, troštovávaj́ıćı,
debutovatelnost

The second method of sampling:
aspoň, germanistika, povinný, vyspělý, parkovǐstě, milostivý, povolaný, vkus,
zapuštěný, ministerstvo, vzděláńı, akcie, formát, vztek, d̊uraz, kožešinový, schod,
post, chuť, pouze
We may conclude that the first method of sampling results in sampling of less
frequent words, often containing a high number of morphemes, while the second
method resulted in sampling of much more common, and much shorter words.

We think that it is likely better to sample the words in the second way, since
the first approach sometimes selects foreign, or strange words. On the other
hand, the first method also selects many regular, long words consisting of many
morphemes, which is exactly what we need for the morphemic segmentation.

Our general approach to sampling also resulted in the imbalance of part of

11

speech groups (nouns, adjectives, verbs, adverbs), with nouns being more than
half of the dataset, and adjectives being big portion of the rest. Up to an ex-
tent this imbalance is a positive thing, since it corresponds with the number of
each part of speech in the target texts and thus allows us to focus on the most
important groups, but it would have been better to keep more control about
the part-of-speech ratio, since the current imbalance complicates certain types of
analysis.

1.3.2 Retrograde Morphemic Dictionary of Czech
We have also used the verbs from Retrograde Morphemic Dictionary of Czech
(Slav́ıčková [1975]). We used the data digitized via OCR with manual cleanup.
Since the verbs in this dataset end with the old Czech infinitive form ending ”-ti”
(e.g. dělati, přij́ıti), we have replaced it with the standard ending ”-t” (dělat,
přij́ıt).

The Retrograde Dictionary is a dictionary of Czech where the words are or-
dered in alphabetic order, but on the basis of the last letter, then second but last
letter, etc. This dictionary was created by its author to serve the morphological
research, since the words with similar endings, and similar suffix morphs, are
grouped together. The dictionary also contains the list of Czech word roots with
all the allomorph variants, list of the most frequent Czech morphemes, list of the
most common triplets of prefixes, etc.
We show a sample of data as an example (first read the first column, then the
second, then the third):

o-lup-ova-ti po-stup-ova-ti roz-čar-ova-ti
s-lup-ova-ti pro-stup-ova-ti dar-ova-ti
vy-lup-ova-ti u-stup-ova-ti ob-dar-ova-ti
vy-lup-ova-ti v-stup-ova-ti po-dar-ova-ti
roz-lup-ova-ti vy-stup-ova-ti de-klar-ova-ti
od-̌sup-ova-ti roz-stup-ova-ti na-par-ova-ti
se-̌sup-ova-ti štup-ova-ti od-par-ova-ti
po-po-̌sup-ova-ti za-̌stup-ova-ti /re/par-ova-ti
o-tup-ova-ti pře-kyp-ova-ti /pre/par-ova-ti
na-stup-ova-ti od-ryp-ova-ti /se/par-ova-ti
za-stup-ova-ti pře-syp-ova-ti roz-par-ova-ti
před-stup-ova-ti čar-ova-ti var-ova-ti
pod-stup-ova-ti za-čar-ova-ti havar-ova-ti
pře-stup-ova-ti od-čar-ova-ti tvar-ova-ti
se-stup-ova-ti při-čar-ova-ti vy-tvar-ova-ti
roze-stup-ova-ti o-čar-ova-ti u-var-ova-ti
při-stup-ova-ti u-čar-ova-ti vy-var-ova-ti
do-stup-ova-ti vy-čar-ova-ti pár-ova-ti

Table 1.1: Data sample from the Retrograde dictionary Slav́ıčková [1975].

12

1.3.3 DeriNet
The whole method highly relies on the DeriNet dataset (Vidra et al. [2019])
(namely on versions 2.0 and 2.1beta). DeriNet is a derivational network of Czech
lemmas. It consists of groups such that each word in a group originated by a
derivative process from a different word in the same group (with exception of one
main word, from which all the other words originated). Such a group may for
example contain words délka, dlouhý, prodloužit (length, long, to make longer
in Czech). Each group is structured as a rooted tree where each child node
originated via a derivative process from its parent. The dataset also contains
information about part of speech for each word.

Since Czech is quite a productive language in terms of morphology, the Der-
iNet contains one million lemmas in around 200 thousand trees. The number of
words in each derivation tree is highly variable, ranging from just a single word
to thousands of words, such as in case of word ”č́ıst” (to read), ”čtenář” (reader),
”přeč́ıst” (to read through), ”předč́ıtat” (to read to others)

1.3.4 Morpho Challenge datasets
Morpho Challenge was a semi-regularly held shared task organized with the
goal to support the development of morphological analysis of words. It contains
datasets for several languages, including English, Finnish, German, Turkish, and
Arabic. It contains lists of words with numbers of occurrences within a corpora,
as well as a small amount of manually annotated data to enable researcher’s own
evaluation. Unfortunately, the golden data are not precisely suitable for a mor-
phological segmentation task, since they do not contain the precise morphological
segmentation, but rather an analysis of the word - morphemes are in their basic
forms, and instead of some morphemes there are tags such as +PL, meaning that
a word is in the plural form. For example ”indoctrinated” is described as ”in p
doctrine N ate s +PAST”.

13

2. Theoretical Background

2.1 Linguistic background

2.1.1 Czech Language
From the systematic perspective, the Czech language belongs to a group of the
so-called inflected languages. This means that the Czech language forms words
by combining morphemes, but that certain morphemes carry multiple meanings,
such as the inflective ending ”̊uv” in ”David̊uv” (David’s thing of male gender in
the first case of singular). This means that changing the number may result in
a complete change of a morpheme or into one morpheme’s transformation into
two different morphemes, instead of simple addition of the plural morpheme (as
is usually the case in English).

Czech morphology is very rich, and the affixes are used to express many
different meanings: number, gender, negation, aspect, they can be used for ad-
verbisation, to produce agent nouns, or names of places (”čekat”-”čekárna” -
”to wait”→”waiting room”, ”lék”→”lékárna” - ”drug”→”drug store”), there are
prefixes commonly used for the formation of language names (Finsko-Finština,
Česko-Čeština, Č́ına-Č́ınština - Finland, Czech Republic, and China with the
names of corresponding languages). Czech also has a big variety of prefixes that
just shift the meaning of the word (such as prefixes re- or de- in English).

2.1.2 Morphemes
The single most important linguistic notion for this thesis is morpheme. Ac-
cording to the definition in Čermák [2011], morphemes are the smallest, further
indivisible, semantic parts of a word. Morphemes can be either auto-semantic,
carrying meaning on their own (e.g. root of the word), or syn-semantic, having
meaning only in context (inflective endings). This distinction also shows two ways
how the morphological segmentation can help the Natural Language Processing
algorithms - it can help them to better understand a meaning of the word itself,
or possibly even derive a meaning of an unknown word, and it can help them to
better understand the meaning of a word within a sentence, especially in very
inflective languages.

Yet the concept of morpheme by itself is not that simple. If we start to
examine morphemes in Czech, we will soon realize that a single morpheme can
take several more or less related forms. This leads to the distinction between
morpheme and morph. While morpheme is an abstract concept usually described
by a prototypical example, morph is its concrete realization in text. Dokulil [1962]
For instance, the root morpheme ”roz” may take form ”roz” in word ”rozb́ıt” (to
break) and form ”roze” in word ”rozebrat” (to disassemble). All the morphs
derived from the same morpheme are called allomorphs.

There are further ways of classification of morphemes:
1) There is a distinction to inflectional and derivational morphemes, which is
directly related to the distinction between inflection vs derivation as well as with
all the problems connected with it.

14

2) We can distinguish between free and bound morphemes - free morphemes can
stand alone as a single word, while bound morphemes only exist jointly with
other morphemes. Please note that this distinction does not completely corre-
spond with the distinction between prefixes/suffixes and roots since there are
roots which can only exist with other morphemes.
3) classification on the basis of position in the word:
The morphemes in front of the root are called prefixes, the morphemes behind it
are called suffixes. In the case of word compounds, there can also be an interfix,
which connects the two words. A special type of morpheme is circumfix, which
has its parts on two positions, e.g. the first prefix, and last derivational suffix.
Examples of circumfixes are e.g. po-...-́ı in pobřež́ı (seaside) and poř́ıč́ı (river-
side), ná-...-́ık in nárameńık (shoulder board), and pa-...-ek in pahorek (hillock).
(Dokulil [1962], Čermák [2008]). In some cases, it may not be perfectly clear
whether a word was formed by circumfixation or just as by independent ad-
dition of two morphemes - word namodralý (blueish) could have been formed
either via circumfixation as na-modra-lý or via consequent addition of prefixes as
modrat→namodrat→namodralý. In this case, Čermák (Čermák [2008]) argues
that we should not speak about the pure possibility of the grammatical derivation
but that we should also consider the actual usage in language: since the word
namodrat is almost never used, the derivation via namodrat is not a plausible
explanation and therefore the word namodralý should be considered a case of
circumfixation.

There are also certain special types of morphemes, such as the so-called cran-
berry morphemes, which are bound morphemes without any meaning or gram-
matical function, but which still affect the meaning of the word. This type of
morphemes was named after the word cranberry where -berry is yclearly a mor-
pheme since there exist words such as strawberry or blackberry with related
meaning, and therefore the cran- also has to be a morpheme. But cran- has no
meaning of its own, because it only appears in the word cranberry. Czech example
of this phenomenon is e.g. ”-kňub-” in ”nekňuba”. Ševč́ıková et al. [2019]

2.1.3 Allomorphs
In Czech, as well as in other inflected languages, allomorphy is frequent. Some-
times, the changes of the morphs may be regular. For example vowels in pre-
fixes na-, vy-, při- often take short form in verbs but take long form in nouns:
”nahradit”-”náhrada (to replace-replacement), vystoupit-výstup (to disembark-
disembarking), připravit-př́ıprava (to prepare - preparation), although, as always
in the linguistics, this rule has its exceptions, as e.g. in nastavit-nastaveńı (to
set up - setting up). Another common change is alternation of length of vowel in
roots, as in hlas-hlásek, žába-žabka (voice and frog with their diminutive forms),
or řidič-̌ŕıdit (driver-to drive). Dokulil [1962] But there are also words which do
not alternate, such as pes-pejsek (dog-doggie) or učit-učitel (to teach-teacher).
The changes are not limited to the diacritics but can be much more variable
and broader, such as in d̊um-domek (house-small house), kouřit-kuřák (to smoke-
smoker), or den-dny (day-days). Dokulil [1962]

Allomorphy of roots of words may sometimes take extreme forms which even
brings a question whether it still is a single word. An example could be e.g. j́ıt-̌sel

15

(to go - he went, which shows the same behavior in English) (Čermák [2011]),
dobrý-lepš́ı (good-better), je-byl (he is - he was) or psát, dopsat, ṕı̌se, pǐs, ṕısař,
nápis (words derived from psát - to write).

After mentioning that a single morpheme may take many, often very varying,
forms we should also mention that a single string of letters may be morph of
several morphemes, which sometimes worsens the interpretability of word even
after the segmentation. An example is a Czech flective ending of pronouns -́ı
which is used with many different combinations of number, case and gender and
hence gives us almost no information about the word form.

2.1.4 Word formation processes
There are multiple definitions of the word formation processes, often differing
in the number of considered linguistic phenomena. According to Štekauer et al.
[2012] we may distinguish between the following groups of word formation:

1. Affixation
Addition, removal or change of affixes
e.g. skok→skokan (jump→jumper)

2. Combination of word roots

(a) Compounding
Joining two words (roots) together
e.g. poločas (Half-life)

(b) Reduplication
Duplication of the word e.g. černočerný (literally ”blackly-black”)

(c) Blending
Similar to compounding, but we only join part of the first word with
part of the second word.

3. Without addition of derivational material

(a) Conversion
Change of part of speech without addition of morphemes

(b) Stress, Tone
Not common in Czech. Possibly proudit vs. proudit (to flow vs. to
smoke meat thoroughly)

The affixation could be further separated into derivation and inflection. Deriva-
tion is a word forming process during which we modify the meaning of a word
itself, while with derivation we only change the grammatic meaning of the word.
For example, the following transformations are cases of derivation: ”běh”→”běžec”
(a run → a runner), ”hladký” → ”hladce” (smooth → smoothly), while the fol-
lowing are examples of inflection: ”pes” → ”psi” (dog-dogs), ”hraje” → ”hrál”
(he is playing → he played), v autě → do auta,z auta,k autu (inside a car -¿ into
a car, from a car, to a car). To problematize this distinction a little, we have
to point out that even though the difference between derivation and inflection

16

is clear most of the time, it may sometimes be blurry, such as in case of nega-
tion. The set of all inflectional forms of a word is called lexeme, and it is usually
represented by a word called lemma, which belongs to the lexeme and is in a
standardized form chosen by convention. E.g. lemma of a verb is its infinite form
both in Czech and English.

2.1.5 Derivational graphs
By opening the topic of derivation, we shifted from discussion of internal struc-
ture of a single word to the discussion of relationship between two words. This
opens a natural question which word was derived from which. For doing this
decision Ševč́ıková et al. [2019] suggests the following criteria: - the original word
should have simpler morphological structure
- the original word should have broader meaning

Although in certain cases the direction of derivation still may not be clear, such
as while comparing a noun and a verb which differ just by the part-of-speech
change. This becomes an issue when we try to organize the derivations into a
derivational graph. Either we need to accept that the graphs may contain cycles,
or we have to create a rule about how to sort such cases out. If we want to build
derivational trees, as is the case in DeriNet (Vidra et al. [2019]), the problem
increases, because we have to look for a single word from which was our word
derived. This may be problematic for words with multiple derivation parents,
such as word povyskočit (to jump), which can be derived both from vyskočit
and poskočit which were both derived from skočit (to jump).

2.2 Neural Networks

2.2.1 Basic Model
Neural networks are a class of machine learning methods, nowadays mostly based
on the models consisting of the Perceptron (Rosenblatt [1958]) neurons.

Perceptron is one of the simplest neuron architectures. For inputs
x1, x2, ..xn−1, xn

the output of neuron is
f(w1 ∗ x1 + w2 ∗ x2 + .. + wn ∗ xn + b),
where w1, ..., wn and b are trainable parameters of each neuron and f is a so called
”activation function”. Examples of such functions are e.g. sigmoid f(x) = 1

1−e−x ,
Hyperbolic tangent f(x) = e2x−1

e2x+1 , or ReLU f(x) = max(0, x). (Goodfellow et al.
[2016]) Since the training algorithm requires the activation functions to have the
first derivatives in all points, which ReLU does not fulfill, we artificially define
its derivative in zero as either 0 or 1, depending on implementation.

The most common way how to organize perceptrons in a neural network is the
form of a multilayer perceptron (Rosenblatt [1963]) - a layered model with fully
connected layers: each layer l[i] consists of one or more neurons. Each neuron of
layer l[i] takes all the outputs of the layer l[i − 1] as its inputs. The neurons from
the layer l[1] take the input data as its inputs. The output of the model is then
the output of the last layer.

17

The following model is then trained via gradient descent - we define a differ-
entiable loss function, such as the Mean Square Error loss function defined as
loss(data, labels) = 1

n

∑︁n
i=1(net(datai) − labelsi)2

where net(d) is the operation performed by the neural network on the data sam-
ple d - it is basically output of the last layer of the network, after processing the
input d.

The training is then performed in such a way that we compute a gradient (with
regards to all the weights and biases of individual neurons) of the loss function
in point (weights, biases, data, labels). We then shift all the weights and biases
by a little step in the direction of the minus gradient. This process is repeated as
long as the loss of the neural network keeps decreasing on a separate data sample,
which is not used for direct training. The size of the step is called learning rate
and is usually decreased during the training.

The gradient descent optimization can be further improved by adding certain
amount of inertia to the gradient to stabilize it among iterations, or by allowing it
to adapt its step size separately in each dimension. Such modified algorithms (e.g.
Adam Kingma and Ba [2014] or RMSprop) usually achieve faster convergence
towards an optimum than the standard Stochastic Gradient Descent.

Here we write ”an optimum” and mean a local optimum, since the surface of
the neural network contains many local optima and we therefore cannot guarantee
that we reach the global one.

Fortunately, we do not need to reach the global optimum. Contrarily, if we
reached it it could cause our network to over-fit - to adapt and focus too much
on the specifics of the training dataset instead of extracting the general relation
we care about. The model could, for instance, learn to identify all the images on
the basis of the pixels in the top left corner instead of attempting to recognize
the objects depicted.

2.2.2 Neural networks and language
Unfortunately, the standard architecture has a disadvantage which limits its use
in Natural Language Processing - it accepts only constantly long input data,
we are unable to transform words to constantly long vectors in any meaningful
way. Padding is a bad idea in this case. The whole word would shift by a few
characters when we e.g. add another prefix and the network would not be able
to handle it. Therefore we have to use different architectures for learning of the
word segmentation. The two architectures commonly used for this purpose are
Recurrent Neural Networks (RNN), and Convolutional Neural Networks (CNN).

As the first approximation, the recurrent neural network could be seen as
a box consisting of fully connected networks, input of which are two vectors -
the previous state, and the current input (e.g. the current word, or the current
letter), and its output is the next state and the current output (e.g. information,
whether there should be a boundary behind the current letter).

Yet in reality it is not this simple. In past there have been experiments with
recurrent neural networks that only had one part - a big feed forward network
which got concatenation of input and the previous state and outputted the current
input and the next state. Unfortunately these networks had problems with the
size of the gradient - either it vanished (its size went to zero obscuring the way

18

where the weight should be moved), or it exploded (went to high, and thus caused
too large updates of the network). In order to tackle the gradient size problems a
novel architecture appeared - LSTM (Hochreiter and Schmidhuber [1997]). Later,
GRU (Cho et al. [2014]) appeared as its simplified variant.Goodfellow et al. [2016]

Convolutional neural networks work on a different principle. They consist
of several filters. Each filter is applied to all positions in a sequence, always
taking several neighbor members of a sequence as its inputs. E.g. on sequence
x1, x2, ..., xn with filter of length 4 we first process x1..x4 and produce an output,
then x2..x5, then x3..x6, etc. The output of k filters on sequence of length N has
dimension N ∗k, or also (N −const)∗k, depending on how we handle the shifting
of filters to the ends of sequence. If we process a sequence x1..xn we may either
start with processing x1...x4 and finish with xn−3...xn or start with x−2, x−1, x0, x1
and end with xn..xn+3, with additional elements of the sequence being padding,
often zeros. Both approaches may be useful depending on the application. In
segmentation we need the second one since it allows to segment even the first
letter alone.

On more dimensional data, filters basically slide along one or more dimen-
sions, and handle the remaining dimensions as constantly long. Otherwise the
convolutional filter works as a standard perceptron - for inputs x1..x4 it produces
output f(w1 ∗ x1 + .. + w4 ∗ x4 + b).

We need to further elaborate on the way how to feed a character into the
network. The first idea - to translate characters into numbers (a=1, d=4....) and
feed them into network like this does not work. The main problem is that the
network would have to learn that number 6 (f) is not ”something between” 5(e)
and 7(g). That would highly extend the training if the network would ever be
able to learn it. Because we cannot feed the letters into the network as numbers,
we either need to use the one-hot encoding (the letters are encoded as constantly
long vectors consisting of all zeros and one one - e.g. the fifth letter is encoded
as a vector with one on the fifth position and zeros everywhere else), or we may
use the more efficient Character Level Embeddings (each letter is assigned a
trainable vector) which requires network to have much less input parameters on
the first layer and allows the network to train letter level features used among
the letters. Unfortunately, this encoding has one big disadvantage - the network
cannot handle unknown letters (e.g. ö). This is not generally considered a big
issue, since the letter can either be replaced with a closely related letter (o) or a
pair of letters (oe), or, if the letter cannot be easily replaced, it is so different from
anything else, that the network would not be able to work with it anyway. But
if it is really necessary, we could also use a trainable vector meaning ”unknown
letter”. It may also be useful to add two special characters - beginning of word
and end of word to help the algorithm learn that something only happens in the
beginning.

2.2.3 Triplet loss
Until now we spoke about using neural networks in the context of classification
- they receive input and compute a single number or numbers, which are then
interpreted as classification verdict(s). Yet there are also more advanced ways how
a neural network can be used. There is a notion of the representation training,

19

where our goal is to train a neural network to output a vector of numbers with a
specific meaning.

We may for instance create an embedding network, which maps input samples
into a special n-dimensional space where two input samples lie close to one another
if and only if they are in some sense similar in the original space. The meaning of
the word ”similar” is decided while training. It may be e.g. mapping faces of the
same person close together, and faces of different persons far apart, which can
be later used for the face recognition; or it may be mapping of the words with
the same root together; or mapping of similar songs together; or anything else,
depending on our interest. The only requirement for the training is that we have
enough of these similar and dissimilar examples.

The triplet loss model (Schroff et al. [2015]) used for face recognition is trained
on batches of triplets, each of which consists of two positive samples a, b (two
samples which we want to be close together) and one negative sample c, which
should be far apart.

The triplet loss then optimizes function
loss = max(||a − b||22 − ||b − c||22, α)
Please notice the maximum within the loss function, it means that if the posi-

tive samples are sufficiently close and the negative sample is sufficiently far apart,
the network will no longer use the triplet for training. This is there to improve
generalization and prevent model from just increasing the distances further and
further apart.

For good training of the triplet loss model it seems important to use a good
sampling of the negative samples. It is better to incorporate some sort of an
adversarial training, rather than just relying on random sampling. We can pick
our positive samples and then look for a negative sample which should be in a
different group but is too close to our positive sample.

Yet, while doing this we need to be careful because we may run into trouble
with noise in the data. Therefore we should not select the single worst data-point
from all the data, but rather k-th worst sample from a mini-batch sampled from
the dataset.

20

3. The Proposed Solution
The goal of the thesis was to create a system for morphological segmentation
of Czech lemmas. For this purpose we used two datasets: the DeriNet dataset
(Vidra et al. [2019]) consisting of derivation trees of lemmas and a dataset of
manually segmented lemmas as described in the Datasets chapter. The main
question was how to combine these diverse resources in a meaningful way. The
use of the manually segmented dataset was quite straightforward - we used it to
train a standard classifier. To make use of the DeriNet data was a little bit more
challenging, but the most difficult challenge was to actually design a complete
solution making use of both of these approaches simultaneously.

In the following sections we will briefly discuss the path that led us to the
development of our current solution, then we will look at the complete description
of the solution, and later we will examine the details of the used parts.

3.1 Origin of the solution
Our process of development of the solution began with making use of the DeriNet
derivation trees dataset. We developed a part called Segmenter (see Section 3.5),
which processes a derivation tree and uses direct comparison of the neighbor
words to discover new morpheme boundaries or to spread the boundaries, we
already know about, from one word to another.

Later, we trained a classifier on the manually segmented dataset and used
it to add the detected boundaries into a tree before processing it with the Seg-
menter part. We are now effectively using the DeriNet to also spread the learned
boundaries trough the tree.

While looking at the output of Segmenter we discovered that it makes many
mistakes which could be easy to detect, since they look wrong on the very first
sight. Therefore we decided to also use the classifier in the opposite way - we
also run it after the Segmenter, but this time we remove boundaries which were
created by the Segmenter and are too unlikely. Therefore the classifier now has
2 thresholds, separating 3 options: ”Is not a boundary” (remove it) / ”I do not
know” (preserve if present) / ”Is a boundary” (add it).

We tried to improve the classification algorithms by neighbor voting about
boundaries - when we decide, whether on one place should be a morpheme bound-
ary, we could make use of not just the word itself, but also of its parent and chil-
dren in the derivation tree if they contain a sub-word containing this potential
boundary. Unfortunately this approach did not lead to any noticeable improve-
ments. It seems like the larger context inside the neighbor words does not help,
and that the immediate surroundings of the place with the boundary is always
the same. The classifiers likely just decide the same, because they get input,
which is, in some sense, almost the same.

We also discovered that it may be useful to add a certain sort of smoothing
of the outputs of Segmenter. In larger trees Segmenter easily detects boundaries
which the classifier does not see. We would like to extract this knowledge and
transfer it also to the smaller trees. We also know, that the Segmenter sometimes
makes mistakes, but that those mistakes always look different.

21

Therefore our hope is that if we use the whole ensemble to generate us artificial
data for training of the second classifier, then the second classifier will learn what
Segmenter is doing right and use it also in the smaller trees, but that it will not
learn what Segmenter does wrong.

The thinking about classifiers helped us to actually separate the ensemble into
3 parts:
1. addition phase
2. propagation phase
3. clean-up phase
later also: 4. post-processing phase, when we realized that we need to fix certain
regular wrong behavior of the ensemble.

This perspective guided our future design. We looked for all the datasets
which could add some information and we also created a set of rules to add
some regularly formed boundaries. Each rule could also add the information that
certain part surely does not contain a boundary, which was then used in the
cleanup phase.

3.2 The final solution
Now we will proceed to describe the final structure of the ensemble.

The ensemble receives a DeriNet tree containing the word to be segmented
as its input. Then it applies all the following methods one by one separately to
each word. The only exceptions are Segmenter and propagation of roots, which
are done on the whole tree at once.

1. Dataset Addition - The boundaries marked in DeriNet (Vidra et al. [2019])
and the Retrograde dictionary (Slav́ıčková [1975]) are added.

2. Rules - The manually created rules are used to add boundaries, and to
create a blacklist of non-boundaries.

3. Dataset Cleanup - If DeriNet marks a root inside the word, then we remove
all the boundaries which would split it further.

4. Neural classifier 1 - Addition of boundaries

5. Neural classifier 2 (trained on artificial data) - Addition of boundaries

6. Segmenter - Propagation of the known boundaries trough the tree and de-
tection of the new ones

7. Rules - Removal of the boundaries from the blacklist created during 2)

8. Dataset Cleanup - If DeriNet marks a root inside the word, then remove all
the boundaries which would split it

9. Classifier 1 - Prunning. If classifier considers a boundary too unlikely, we
remove it

10. Classifier 2 - Prunning

22

11. Post-processing rules - Rules designed to fix the systematic errors done by
the ensemble.

12. Dataset Addition - Addition of boundaries which are marked in DeriNet or
Retrograde dictionary

13. Root Detection - We detect the root in the root word of the tree and propa-
gate it trough the tree, while also removing boundaries which would further
segment it.

Now we will proceed to describe the internal working of the main parts of the
algorithm.

3.3 Classifiers

3.3.1 Architecture
We wanted to use the manually segmented data to train a neural network classi-
fier. For this we had to decide about the general architecture of the classifier.

We decided to use the network to predict boundaries between morphemes,
and not to e.g. predict whether certain group of letters forms a morpheme. We
then tested both standard ways of feeding a word into a network - Recurrent
Neural Networks (RNN) and Convolutional Neural Networks (CNN).

After making this decision we found out that it is somewhat unclear whether
the existence of morpheme boundary between letters i and i+1 should be pre-
dicted by network after e.g. after i-th letter, after i+1-th letter, or after i+2-th
letter.

In convolutional networks this shift affects the scope of vision of the CNN.
For example, if we want to use a convolutional network to predict morphological
boundaries within a word nastoupit (to get in), then the question is, when the
boundary between na-stoupit should be predicted. Should it be predicted when
the convolutional window covers [ˆnas]toutpit$ or when it covers ˆ[nast]outpit$
or should it be ˆn[asto]utpit$? For a two letter suffix this question is quite clear,
but bear in mind that we also want to segment roots or affixes with three or more
letters.

In case of RNN’s the situation is a little bit more complex, since the shift
can give the network more information about the context of the boundary, but it
could make the network forget the previously seen parts of word.

We also wanted to incorporate the information about the part of speech of
the processed word, because it was expected to improve the performance of the
network by allowing it to create specific rules for each word category. While
it is straightforward to feed this information into the recurrent network, it was
not very clear how to make use of this information in convolutional networks.
Just adding it to the information about every letter was not considered the best
approach, and due to the limited data we wanted the network to be able to use
the same filters for multiple parts of speech instead of having to relearn them.
For this reason we created a special variant of a CNN layer. It is a standard CNN
layer, but instead of having just one bias, as it normally does, it has four biases
- one for nouns, one for verbs, etc. and we select the right one depending on the

23

processed word. This approach allows the network to separate learning of general
morphemes from learning in which parts of speech they can be used.

To feed the letters into the networks we used standard trainable character
embeddings trained altogether with the model, so that the model can learn sim-
ilarities among the letters on its own. While feeding the letters into the network
we found out that there are certain rare foreign letters in the dataset (e.g. Ger-
man ö). We decided not to feed such letters into the network, since for one, the
German words lie behind the boundaries of the system, and for two, we do not
have sufficient data to actually learn how such letters work in words. Another
option was to simply replace ö with the standard o, which still can be done by
just replacing the letters before feeding them into the ensemble, if we want to.

3.3.2 Usage
In the end we trained two different classifiers - one on the manually annotated data
and the other on artificial data generated by the whole ensemble, as described
earlier. We then use each of them them in two ways - for adding boundaries
which have sufficiently high likelihood, and for filtering out the boundaries which
have too little a likelihood.

3.4 Rules
The ensemble also contains rules. We did not want to run into the common
issues of the rule based systems, such as handling the conflicts of multiple rules,
or designing rules to fix bugs of other rules, and therefore we decided to keep
the rules simple, and only use them to pick the low-hanging fruit. The rules are
directly based on the Czech morphology and they look for concrete patters.

The rules look e.g. for prefixes which rarely occur inside the stem, and also
for combinations of suffixes with post-fixes specific to a given part of speech.
The rules decide both where the boundaries are, and where they aren’t. This
should prevent the following layers of the algorithm from making certain obvious
mistakes.

We later added another group of rules to the very end of the ensemble to fix
the common systematic mistakes discovered during the error analysis.

3.5 Tree Propagation (Segmenter)

3.5.1 Description
The Segmenter is the central part of the algorithm. It receives the DeriNet
derivation tree containing a word which we want to segment, and uses the tree
to find the boundaries. The derivation trees are rooted trees of words. The edges
in them represent that a given word was derived from its parent.

How could we use such a tree for prediction of the morpheme boundaries? We
will look at pairs of words connected with an edge. Each such pair represents a
concrete instantiation of a certain linguistic derivational phenomenon. In Czech,
there are many such phenomena of very distinct semantic meaning (diminutive,

24

adjectivisation, agent nouns, ...), yet it usually holds that the derivational changes
take place along the morphematic boundaries.

Therefore if we look at a pair j́ıt-přej́ıt (to go - to cross), we can conclude,
that it is most likely that the word ”přej́ıt” originated by addition of prefix ”pře-”
to the word ”j́ıt” (further we will represent this as [”+pře”,”j́ıt”]). Therefore, on
the basis of this pair we can conclude that there is likely a morphemic boundary:
”pře/j́ıt”.

In the algorithm we do this alignment via a standard edit distance base algo-
rithm, which tries to find how to transform one word into another while using the
lowest possible number of additions and deletions of letters. The edit distance
algorithms usually work on the basis of dynamic programming with a matrix
from which it can be extracted not only what is the distance, but also the precise
way of transformation of one word to another. It e.g. finds that the edit distance
between the words ”j́ıt” and ”přej́ıt” is 3, and that the best way how to transform
one word to another is to simply add the tree initial letters.

This method of using the alignment to predict the morpheme boundaries is the
key principle on which the whole Segmenter relies, yet it takes further refinement.
So far we have only spoken about pairs of words, yet we can extend this approach
to the whole trees. If we have a simple tree:

učit (to teach)
- učitel (male teacher)
- - učitelka (female teacher)

We first use the pair učit-učitel to discover the boundary ”učit/el”. Then
we discover, that ”učitelka” was derived as [”učitel”,”+ka”]. From this we can
conclude, that there is a boundary ”učitel/ka”, but we are not done yet. We also
know about one boundary in the word učitel, and since we know how the word
učitelka was derived from it and that the boundary remained in place during this
derivation, we may also transfer this boundary: ”učit/el” -¿ učitelka = [”učit/el”,
”+ka”]. And we so achieve the segmentation ”učit/el/ka”. In practice, this
transfer is responsible for most of the boundaries the algorithm discovers. (See
3.1 for another demonstration.)

Figure 3.1: An example of segmenter’s operation on words. First we compare
poskočeńı with poskočit, and derive a boundary poskoč/it (here we also de-
rive boundary poskoč/eńı, but we do not show it for clarity). Then we com-
pare poskočit with povyskočit, by which we derive boundaries po/vy/skočit (and
po/skočit, which is again not shown), and transfer the boundary poskoč/it.

25

We can also use this method to transfer the boundaries received from third
parties (e.g. from the classifiers run before Segmenter) and to spread them trough
the tree.

Now we know how to spread boundaries from one word to any of its neighbors
(parrent, children) but we still have to find an efficient way how to discover all the
possible boundaries and spread them to all the possible places within the whole
tree. Here we have to bear in mind that even though most of the DeriNet trees
are small, a few of them contain more than a thousand of nodes.

At first we used to run this method in an iterative manner: whenever we
discovered a new boundary in a word, we added it into a queue and when it was
its turn we spread the boundary to all its neighbors, repeating the process.

Yet, later we discovered that it is sufficient to have two passes of word compar-
isons - first we go in the inverse Depth First Search order (the order in which the
Depth First Search closes vertices - first children, and then the parrent), compar-
ing the words when we step from one vertex another, and then we go in the stan-
dard DFS order. In the first pass, this algorithm discovers all the possible bound-
aries, and spreads them up to the lowest possible node (root=low,leaves=high),
where the part of the word containing the boundary still exists: e.g. boundary
in učitel/ka remains in the node učitelka, since we cannot transfer it to the word
učitel. Then in the second pass, all the boundaries are spread upwards to all
the possible sub-trees and leaves. This gives us a nice, linear, complexity which
ensures that even the biggest trees will be processed quickly.

3.5.2 Problems
Even though this algorithm can discover many boundaries correctly it also makes
many mistakes. The main problem is that the derivations in Czech are not always
regular. We can frequently observe changes of the root. It may be just a change
of diacritics such as in dar-dárek (gift), or omitting letters as in pes-pśık (dog -
doggie) -¿ compare with les-leśık (forest - little forest) - once the e disappears,
once it remains, or even more complex changes, as in ch̊uze-chodit (a walk - to
walk). So far, Segmenter can only handle the changes of the first type, which was
achieved by simply ignoring the diacritical signs. We expect that the remaining
mistakes will be handled by the following cleanup classifiers.

For further discussion of the errors please refer to the Experiments chapter.

3.6 Root detection
We also wanted to mark the root inside each word and consequently do a simple
morpheme classification to prefix/root/suffix. (We are aware that this approach
to morphological segmentation is oversimplified, but it should mainly serve as the
first proof of concept)

For this we came up with two algorithms: the first one is relatively simple -
we morphologically segment a derivation tree, look at its root word (which likely
contains the lowest amount of morphemes), detect the root morpheme of the root-
word on the basis of morpheme frequencies, and then propagate the information
about the root via the Segmenter algorithm. The second algorithm is described
in the following section.

26

3.6.1 Triplet Loss
We also experimented with a little bit more advanced algorithm which unfor-
tunately did not work well enough, but we at least used it to generate some
improvements suggestions for the DeriNet dataset, by identifying pairs of deriva-
tional trees which should likely be joined.

The principle of the algorithm relies on creating a neural network f(), which
gets a word as its input and produces an embedding vector such, that two words
have a similar embedding if and only if they have a similar root. We then planed
to use a trick, e.g. to run this network on all the sub-strings of a word, while
comparing the embeddings with the embedding of the complete word. Then the
root would be a sub-string of the word which is:

• close to the original word,

• all of its sub-strings are far from the original string.

We also thought that the distance of a sub-string from the original word might
correspond with the correctness of segmentation, e.g. that sub-strings ”vyskočit”*
and ”skočit”* would be much closer to ”povyskočit” than e.g. strings ”ovyskočit”**
or ”yskočit”**, which could be also exploited. But this property does not seem
to hold. 1

Such a network could be trained via the Triplet loss Schroff et al. [2015]
(see the Theoretical Background Chapter), by sampling words a,b from a single
derivation tree, and sampling word c from another tree. We would then train the
network to minimize:
loss = max(||a − b||22 − ||b − c||22, α),
putting words from the same tree together, while putting the words from different
trees apart. During the training we run into big trouble involving the sampling
of the samples, especially of the negative ones, because further improvements
required combining many sampling strategies in different parts of the training,
including adversarial negative sample selection.

Unfortunately, even after we finished the training, the network still relied too
much on the overall word similarity, which disallowed us to actually use it to
extract the roots from the words.

Yet, comparison of the representations of root-words of various DeriNet trees
at least suggested trees of words which may have been derived from the same
parent word, and therefore should be joined together, such as trees beginning
with brambor and biobrambora (potato, biopotato). On the other hand, its
output definitely needs manual cleanup, since it produces many mistakes, such
as Litva-litec (Lithuania, caster), král-Kráĺık (king, surname meaning Rabbit),
ṕıt-pět (to drink, five/to sing).

1”Povyskočit” is the original word meaning something like ”to jump”. The strings marked
with * are correctly formed words with stripped prefixes, while the strings marked with ** are
non-words which originated by removal of the first letter of a prefix, instead of removing it
completely.

27

4. Experiments
In the previous chapter we have explained the whole architecture and the general
process leading to it being created the way it is. We will first discuss the process
of training or developing the individual parts, then we will show how we created
and debugged the whole ensemble and what are its results.

4.1 Classifiers
First we will discuss the development of the separate components.

Classifier 1
The classifier architecture was designed on the basis of grid search among many
possible architectures with various hyper-parameters, namely we tested GRU +
dense layer, convolution+GRU+dense layer, pure convolutional networks, and
networks which combine convolution with deconvolution. We have also experi-
mented with version of convolutional network which has filters of multiple kernel
sizes in each layer. The words were fed into the network character by character,
with each character being encoded with a trainable embedding with 10 digits
(increase of its length did not seem to improve the results). We have also added
markings of beginning and end of each word to allow the network to easier detect
prefixes and suffixes at the word boundaries. Because of the need to preserve
the word length we use the convolutional filters with the same size padding and
stride 1. The only exception was the evaluation of the deconvolution networks
where we tried to first ”compress” the words and then to ”decompress” them.
We have also experimented with the mutual position of the input word and the
labels (”shift”).

As an example we show results of two architectures. The method we used
for the comparison of models was computing precision for several values of recall
(10%,25%,50%,75%,95%). Different methods such as Area Under Curve (integral
of the space bellow the PR curve) could have also been used, and would have
allowed us to represent the results a single number, but we rather opted for the
precision-at-N%-recall measure, since it is in closer relation with what we need
and tells us more directly what shall we expect.

The architectures based on GRU (GRU×dense layer, CNN×GRU×dense layer)
seemed to diverge, no matter the shifts and hyper-parameters.

-1 0 1 2
110 88,3% 87,3% 80,2% 63,9%
220 90,8% 90,3% 83,5% 66,1%
330 91,6% 91,5% 85,9% 66,9%
440 91,9% 91,8% 85,3% 67,0%

Table 4.1: Precision for 75% recall for architecture CNN × CNN × dense which
uses simultaneously multiple kernel sizes. Dependence of precision on number of
filters and shift. Filters have sizes 1 to 4. 5x cross-validated.

28

-1 0 1 2
ReLu 91,1% 89,8% 84,3% 66,3%
Sigmoid 69,5% 68,8% 59,3% 45,9%
Tanh 77,7% 77,6% 71,6% 59,5%

Table 4.2: Precision for 75% recall for architecture CNN × CNN × dense with
200 filters and size 4 in dependence on shift and the activation function.

While thinking about the possible ways to improve the classifier, we thought
that the limit may be that the information insufficiently spreads across the word,
and therefore we may be deciding about a boundary only on the basis of its most
direct surroundings. Therefore we tried using the deconvolutional layers to fix
this issue, but they did not seem to help.

We have also experimented with addition of part of speech tags to the net-
work’s input, but they did not lead to noticeable improvements. This may be
caused by the large imbalance of our dataset, which mostly consists of nouns and
adjectives.

In Figure 4.1 we also present the Precission-Recall plots for classifiers trained
on various amounts of the training data. This plot inspired us to acquire more
data by further annotation. The results were 10 times cross-validated and com-
puted on the total of 2100 samples.

Figure 4.1: Precision-Recall plots for the Classifier 1 trained with various numbers
of samples.

29

Classifier 2
Classifier 2 was trained on the training set with 5000 samples segmented by the
final architecture (just without the classifier 2 and final post-processing rules,
which were added later). The purpose of this classifier is connected with the rel-
atively small amount of the training data we have, since there are many regularly
formed morpheme boundaries which the first classifier is not able to discover, but
the tree segmentation notices them. Consequently, the second classifier may learn
what from the tree segmentation algorithm, and transfer the patterns it discovers
also to the other trees.

The selection of architecture was partially based on the general experience
from experiments with classifier 1, thus we did not further experiment with RNNs
and deconvolutions, and we also had to select a model which does not tend to
learn also the systematic mistakes done by the tree sementation algorithm.

The comparison of Figures 4.2, 4.3 (which show results after each layer) shows
that the addition of the Classifier 2 has improved the overall results, and they
also show that the Classifier 2 learned to predict part of the borders usually pre-
dicted only by the Segmenter, which was the original reason for our experiment’s
with it. On the other hand, we have to conclude, that the added value of the
second classifier slightly decreased with the doubling of the training dataset for
the classifier 1.

Thresholds
Since both classifiers are used in the ensemble and since they are used both
for the addition and cleanup, the question arises regarding how did we set the
thresholds - we have set the addition thresholds independently for each classifier,
purely on the basis of the network’s performance on the particular development
set. We wanted it to add as many boundaries as it could, while preserving a fixed
precision.

On the other hand we were setting both pruning coefficients at the same time
and on the complete ensemble, on the basis of grid search over pairs of thresholds.
Our goal was to find the best combination with regards to the precision and recall.

4.2 Triplet Loss
Initially we wanted to use the triplet loss for the root detection, but we found out
that it relies too much on the overall structure of the word and therefore we are
unable to use it as intended. We expect, that these issues were partially caused
by the hardness of training. The main issues with training was the sampling of
triplets and the distance issue.

4.2.1 Training problems
The positive sampling strategy

Each training step requires triplets consisting of two morphologically related
words (positive samples), and one unrelated word (negative sample), and it is
not clear how to sample them. We always want to select the positive samples

30

from one tree, and the negative sample from another, but there are more factors
to consider.

We may sample the positive pairs either as neighbors from the tree (words
will be quite similar), or as words selected uniformly from the whole tree (words
may be quite different, especially in large trees). We also have to decide whether
to sample from all the trees with the same probability, or whether to prefer the
big trees with many lemmas, or rather the small trees.

The bigger trees usually tend to contain many regularly formed words with
various combinations of affixes. Their words tend to be quite distinct from one
another, but most of the differences seen in big trees are regularly formed. This
may help the algorithm to learn the regularities in the language, but may be as
well too much for it, especially in the initial phases.

On the other hand, the smaller trees contain words which are generally closer
to one another, but they may contain much higher percentage of irregularly
formed or foreign words, and it is not clear whether such irregularities improve
the output or worsen it. Yet, we need to sample at least part of such words, since
we do not want to over-fit to just a few word roots seen in the large trees.

From the aforementioned arguments we can conclude, that sampling positive
samples uniformly is not as neutral an option as it may seem in the beginning.
If we uniformly sample a tree, we will almost always select a small tree, because
there are many of them, and if we uniformly sample a positive pair from a big
tree, we will most likely end up with very different words, within distinct branches
of the tree, and almost never with quite similar words which are close apart. The
consequence of this fact is, that we cannot just sample uniformly, we always have
to identify the important factors, and then sample on the basis of them. In our
case, such important factors are the distance between words within a tree and the
tree size, and our decision is to make use of all the groups of data in a meaningful
way - e.g. first training on easier samples and then on the harder ones.

Negative sampling strategy

Each triplet also needs to contain a negative sample. Here the sampling is even
more important, since it is much harder to learn without good negative samples.
In the beginning we use both uniform sampling from all the trees and uniform
sampling from the large trees. Later we shift to adversarial sample selection - for
each batch we compute the representations of its central positive samples, then we
compute representations of much higher amount of negative sample candidates,
and then we select k-th worst negative sample for each central positive sample.
We do not select the worst sample, because we want to avoid the impact of noise,
such as similar word in a different tree, words from another tree, which actually
should be part of the tree with positive samples, etc.

The distance limit

The loss for Triplet loss is defined as:
loss = max(distance(a,b)-distance(b,c),alpha)
for a,b being positive and c being negative sample, and alpha being the threshold.

This design of loss is crucial. Without the alpha, the model would completely
diverge, pushing the negative samples further and further apart, even if they are

31

already are sufficiently far from one another. Yet, this design of loss causes also
certain issues, namely vanishing samples. We may realize, that the percentage of
samples from batch that are bellow the threshold quickly declines, even when the
network is not trained yet. This means, that even if we put hundreds of samples
into the network, the network may just use 20 of them for training in the given
step. This creates both instability in gradient (which can be partially fixed by
the momentum of the Adam optimizer we used), but also causes big issues with
regards to the efficiency of the algorithm - the neural network processes many
samples, just to drop most of them afterwards.

This issue is especially big in the case of the adversarially sampled negative
samples, because their generation is even more demanding.

4.2.2 Our Experiments
Due to extreme computational demands (days on a gaming notebook with CUDA),
we have decided to train the network in a manually supervised fashion in Pyzo
(MATLAB-like IDE for Python).

We have decided to use multiple sampling strategies, and to change them as
soon as the percentage of used samples in each batch drops too low. Usually we
have observed that the percentage of used samples quickly dropped to relatively
small values and continued to slowly decrease further. When the percentage fell
below 5-10%, we continued to train the network with different sampling.

The used sampling strategies were:
1) Positive samples selected as two random samples from a randomly selected

tree. Negative sample chosen at random from a different tree.
This method of sampling is expected to be the easiest for the network, because
the uniformity of sampling of trees means that most of the positive samples are
from the small trees and therefore there should not be a big difference between
the positive samples.

2) Positive samples selected as two random samples from a randomly selected
big tree. Negative sample chosen at random from a different tree.
This method of sampling is more challenging, since in the big trees the words
tend to differ more.

3) Adversarial sampling: While the positive samples were selected randomly
from the big trees, the selection of the negative samples was more complex. We
randomly sampled N words (N = thousands, N was gradually increased, as
necessary), computed their representations, measured distance from the central
positive sample, and selected the k-th (initially 5-th) closest sample as the nega-
tive

This method of sampling consumed the most of the computational power. At
the moment when we decided to stop training, our network was training only
on 2.7% of samples from an adversarial batch consisting of 4096 samples, while
ignoring the rest due to the sufficient distance, and the hard samples were selected
as 10-th hardest sample from 20 000 candidates, because we had to increase the
number from 5 to 10, due to observation of too many correct words on the first
positions. This unfortunately led to the selection of poorer negative samples
and therefore it was a factor which forced us to further increase the number

32

of candidates to preserve the percentage of useful (sufficiently similar) negative
samples.

The aforementioned numbers mean that in order to make a single training
step and update the network on the basis of 110 triplets, we had to evaluate the
network on tens of thousands samples. We believe that further experiments may
lead to the improvements of the network, but they pose challenges regarding the
computational power and regarding the manual supervision of higher number of
models in the same time.

4.2.3 Outcomes
We have attempted to use the network to extract the word roots, by measuring
the distance of word substrings from their parent words, but as we have mentioned
earlier, these experiments were not successful, and so we at least tested whether
the network could be used to create improvements suggestion for the DeriNet
dataset. We measured the distances between roots of different DeriNet trees to
see whether there are related words within different trees. With this we were
able to create 2300 suggestions (or 3000 depending on the threshold) regarding
which DeriNet trees should be merged. Sample of suggestions can be observed
in appendix. After finishing the thesis we will further work to integrate the
suggestions into the DeriNet.

We expect that our method can be used to generate even more improvement
suggestions for DeriNet, because after a careful examination of the current sug-
gestions we may decide to further increase the threshold. Furthermore, we were
not able to use our method to compare all the possible pairs of trees.

DeriNet contains around 200 hundred thousands trees, and so checking dis-
tances between all pairs of trees becomes computationally demanding. Therefore
we decided to split the DeriNet to the big trees (at least 5 nodes) and the small
trees (less than 5 nodes). We only computed distances between big trees, and
between big trees and small trees. Therefore we expect further suggestions re-
garding tree merges when we focus on the comparison of small trees with one
another, and make the computation tractable. We also expect further sugges-
tions when we integrate the already discovered tree merge suggestions, and e.g.
start comparing the words which have trees of their own with all words inside the
big trees (and not just with the roots of the big trees as we are doing now).

4.2.4 Error analysis
In the suggestions for the DeriNet improvements (for examples see appendix), we
have observed the following systematic errors:

1) Many suggested pairs seem to show certain similarity, which resembles
derivations normally seen in language:

Gent-agent, kladný-Kladno, konat-konec, brunet-Brunej, fikce-f́ık, kára-kárat,
konstanta-Konstantin.

Such mistakes are hard to avoid, since they are not entirely wrong, they just
are not right this time.

2) For certain pairs it seems as if they were caused by learning certain regular
changes of letters inside words, seen in the dataset, such as: j́ıt-jet, krk-Krč,

33

Kon-k̊uň.
3) Triplet loss often correctly discovers that certain surname or other proper

noun originated from a different word and suggests merging their trees: e.g.
Dlabač-dlabat, Chalupńık-chalupa. Addition of such derivation edges is the mat-
ter of a linguistic decision, and so far DeriNet prefers to handle each of those
names separately from the original word.

We have also examined pairs of words which are connected with derivation
edges, but seem to be too far appart. Among those words there do not seem to
be many useful suggestions, which is likely due to the DeriNet’s preference of pre-
cision over recall. On the other hand, they are an interesting source of linguistic
phenomena which the algorithms working with derivations need to handle.

It also does not seem to be the case that Triplet Loss behaves just as a pure
edit distance-like metric. The following words seem to be just too far to be
matched by an linguistically uninformed algorithm, unless such algorithm makes
too many mistakes:

ṕıárko-ṕıár (public relations), duše-Duša, žďářený-žďářit, biobrambora-brambor,
bipolarizovat-bipolárńı.

On the other hand, we have also observed a systematic error in DeriNet, be-
cause it did not recognize that word pairs such as zpikantnit-zpikantnět, zpovrchnět-
zpovrchnit,.. should belong to the same tree. Although, having those words sep-
arated could as well be a linguistic decision of the authors, as it was with the
surnames. If we want, in future we may look for pairs of this type automatically,
since the word-alignment / word-difference method we used for tree segmenter
may be also used for a convenient comparison of word pairs, and so we may e.g.
attempt to look for all pairs which show the change pattern [SAME, ”-i”, ”+ě”,
SAME] (replacement of ”i” with ”ě”).

4.3 Error analysis
We knew about certain limits of our algorithm (allomorphy, word compounds,
but we wanted to look also for other systematic errors. For this we used mainly
manual examination of segmented morphemes, the KonText search tool, and also
logs which allowed us to see which component is responsible for a boundary not
being present, so that we know, that e.g. the boundary was removed by both
classifiers in the cleanup phase.

Another useful tool for debugging and understanding of the complete segmen-
tation system were the plots showing how precision and recall change as the data
passes through the architecture, such as 4.2. Such plots were our main guide
regarding which components should be added or modified. With them we for
instance debugged the rule sets or found out, that it does not make sense to add
again the boundaries formerly created by the rules, if they have been removed by
the classifiers.

Before proceeding further, we will have a look at the architecture, and try to
analyze it a little on the basis of 4.2.

As we look at the graph we can notice that the algorithm can be grouped into
four main phases:
1] The Addition Phase (steps 1-3, 5-6): We add all the information about the

34

morpheme boundaries we have on the word level. In this phase recall highly in-
creases and precision drops to the level which is limited by the performance of
our classifiers and therefore can hardly be exceeded in later phases.
2] The Propagation Phase (step 7): We propagate all the information about
the boundaries through the derivation trees and while doing so we also discover
new boundaries stemming from the derivative relations between pairs of words.
In this phase we discover boundaries which would not be discovered otherwise,
which causes another huge increase in recall, but we also make a lot of mistakes,
nature of which will be subject to further analysis in 3.5.
3] The Cleanup Phase (steps 8-11): In this phase we are using all the available
methods to remove as many mistakes created by the segmentation phase as possi-
ble, while not removing too many correctly found boundaries. We see that during
this phase the recall drops from 87.1% to 80.7% and even after the final additions
it only goes to 81.6%. This shows another space for possible improvements.
4] The Final Addition Phase (steps 12-15): We again add the boundaries we are
sure about, and use the fix-up rules developed while analysing the false negatives
of the phase 3].
This separation helps us with the error analysis.

4.3.1 Error analysis of the Addition Phase
This error analysis overlaps with the analysis and development of the classifiers
and rules. Since committing a mistake in this phase may, in the worst case, lead
to its spreading around the whole tree, we simply had to add only the boundaries
we were really sure about. That forced us to change the rules several times, and
to set the classifier thresholds high even though it costs us a lot of recall

4.3.2 Error analysis of Tree Propagation
In this phase we propagate the boundaries received from preceding components
and look for the new ones, via the tree propagation algorithm Segmenter.

This part has one big disadvantage with regards to the errors - one wrong
boundary in a single word, even added by the previous modules, can be potentially
spread to all the words within the whole tree. That’s why we are so cautious about
adding boundaries in the preceding parts.

Otherwise, mistakes done by this part directly stem from tree main causes:
1) errors in word alignment
2) changes inside morphemes
3) not discovering a boundary due to lack of information

The first type of error can be observed e.g. in pair nož́ı̌rský-¿nož́ı̌rstv́ı, where
the words are automatically aligned as:
nož́ı̌rský-¿nož́ı̌rstv́ı = [”nož́ı̌rs”,”-ký”, ”+tv́ı”]
since this alignment requires less editations than the correct alignment:
nož́ı̌rský-¿nož́ı̌rstv́ı = [”nož́ı̌r”,”-ský”, ”+stv́ı”]
this leads to a discovery of a wrong morpheme boundary nož́ı̌rs/ký, which splits
morpheme sk in half. Even more serious instance of this problem is in match-
ing of words zaj́ıc-zajoch (rabbit), where we get zaj́ıc-¿zajoch=[”zaj”,”-́ı”, ”+o”,
”c”,”+h”], instead of [”zaj”,”-́ıc”, ”+och”]. This misalignment leads to segmen-

35

tation zaj/o/c/h [zaj(o)c(h)], instead of zaj/och [zaj(och)] and zaj/́ı/c [zaj(́ı)c
instead of zaj(́ıc)].

The second type of error is directly connected with various linguistic phe-
nomena. While certain phenomena, such as shortening or lengthening of vowels
(e.g. dar-¿dárek = gift) are easily tackled simply via ignoring the diacritics while
comparing the words, different phenomena can be much more problematic. For
instance bigger changes inside the root are both quite common and hard to han-
dle, such as in délka -¿ dlouhý (in English lenght-¿long) or n̊už -¿ nož́ık (knife-
¿little knife). Even though there are certain groups of commonly occurring root
changes, handling them would require us to build large rule based system, and
to later incorporate it into the tree segmentation. This may be a useful approach
in future, but for now we rather decided to try a different approach. We rely on
fixing these errors via the cleanup classifiers - classifier does not need to know
that the root ”n̊už” can transform to ”nož”. It just needs to know that morpheme
boundaries ”n/o/ž” are suspicious (= unlikely).

The filtering with classifiers may not be 100% accurate, but it is still much
better than the original output of the pure Tree Segmentation, as we can se below.

The third group of errors - inability to discover certain boundaries - is caused
by two main factors: either the information about the presence of a boundary
is not in the tree, because we simply do not have any word pair which would
induce a change along the given morpheme boundary, or such a change occurs
somewhere in the tree, but we are not able to propagate it further. The example
of such behavior is the boundary nožov/itý. We discover it in word nožov/ý, but
since there is no way how to transfer it trough the common parent of both words
(n̊už), we cannot propagate it to the second branch. This could be partially fixed
by also allowing the transfer from brother to brother, and not just between parent
and son, but it would have large negative consequences, since brother words can
be quite different from one another. E.g. if we compared words přejet (to run
somebody over) and předjet (to overtake), which share a common parent jet (to
drive), we would discover boundaries pře/d/jet. But this is just another case of
misalignment - the real structure of words is pře/jet and před/jet, with pře- and
před- being completely different morphemes. Therefore, we once again decide to
rely on classifiers, this time for addition.

In table 4.3 we show the comparison of outputs of the whole ensemble with
output of the Segmenter on the tree belonging to the word ”n̊už” (knife). We can
see that the classifiers manage to fix many instances of the n/o/ž error described
above, although they leave a few of them. The classifiers also make several false
negative errors when removing true boundaries detected by the Segmenter.

Removing of detected true boundaries is actually a common occurrence, and
therefore a space for potential future improvements. If we compare the statistics
of Tree Propagation and the Final Cleanup in figure 4.2 we can notice that after
passing trough the tree propagation, we discover 87.1% of the true boundaries,
which is much more than the final output of the algorithm - 81.6%.

4.3.3 Error analysis of Cleanup Phase
In analysis of Phase 3 we try to spot systematic False Negative errors, which
we can fix by addition of special fix-up rules to the Phase 4. Part of the false

36

Segmenter Ensemble Correct
n/̊u/ž n̊u/ž n̊už
n/o/ž/ovit/ý nožovit/ý nož/ov/it/ý
n/o/ž/ovit/ě nožovit/ě nož/ov/it/ě
n/o/ž/ovit/ost nožovit/ost nož/ov/it/ost
n/o/ž/ov/ý nož/ov/ý nož/ov/ý
n/o/ž/ov/ě nož/ov/ě nož/ov/ě
n/o/ž/ov/ost nož/ov/ost nož/ov/ost
n/o/ž/́ı/k nož/́ı/k nož/́ık
n/o/ž/́ı/če/k nož/́ıč/e/k nož/́ı/če/k
n/o/ž/́ı̌r nož/́ı̌r nož/́ı̌r
n/o/ž/́ı̌r/ka no/ž́ı̌r/k/a nož/́ı̌r/ka
n/o/ž/́ı̌r/čin no/ž́ı̌r/č/in nož/́ı̌r/čin
n/o/ž/́ı̌r/s/k/ý no/ž́ı̌r/sk/ý nož/́ı̌r/sk/ý
n/o/ž/́ı̌r/s/k/ost no/ž́ı̌r/sk/ost nož/́ı̌r/sk/ost
n/o/ž/́ı̌r/s/k/y no/ž́ı̌r/sk/y no/ž́ı̌r/sk/y
n/o/ž/́ı̌r/s/t/v́ı no/ž́ı̌r/stv/́ı no/ž́ı̌r/stv/́ı
n/o/ž/́ı̌r/̊uv nož́ı̌r/̊uv nož/́ı̌r/̊uv
n/̊u/ž/k/y n̊už/k/y n̊už/k/y
n/̊u/ž/k/ov/ý n̊už/k/ov/ý n̊už/k/ov/ý
n/̊u/ž/k/ov/ě n̊už/k/ov/ě n̊už/k/ov/ě
n/̊u/ž/k/ov/ost n̊už/k/ov/ost n̊už/k/ov/ost
n/̊u/ž/tič/k/y n̊užtič/k/y n̊už/tič/k/y

Table 4.3: The comparison of segmentation done by the tree segmentation with
the segmentation produced by the whole ensemble and with the correct answers.

37

negative errors present in this phase was caused by the classifier 2 being too sure
that certain boundary should not be present. It stems from it being trained on
the synthetic data, and thus accidentally overfitting to certain mistakes of the
whole ensemble. An example of such behavior its systematic omitting of border
between suffixes in tel/k, which was fixed by addition of a specialized rule to the
set of final rules.

As a test, we have processed the development dataset1 with the Classifier 1 in
the cleanup mode, and observed, which boundaries will be removed even if some
part discovers them. This approach may be in some sense redundant, since it is
duplication of analysis we can do on the final output, but on the other hand it
helps us to see, that if we improve one part, it may still not be enough.

This is the case for instance with word compounds, which often tend to be in
different trees than the original words in DeriNet, and therefore the Segmenter
cannot detect the boundaries, and even if it could detect them, the classifier
would remove them anyway. In general, most of the errors seem to be in long
words and on the root boundaries, both in prefix and suffix. Analysis also showed
problems with the detection of single letter morphemes - s,z,v,... - the classifier
suggests removal of 18 out of 58 single letter prefixes in the dataset.

4.3.4 Systematic errors of the whole architecture
During the analysis we discovered several systematic errors done by the whole
architecture. We decided to integrate fixes for all of them into the very last
module - FinalRulesPostprocessor, which just looks for them and fixes them.
Such an approach may be considered dirty, yet there are no better approaches
available. We are also aware of the fact that such rules also make mistakes, but
we use them because they fix more things than they break.

The systematic mistakes we discovered:
1) We found out that the ensemble systematically does not split pair of mor-

phemes tel/k, and leaves them together. Such a morpheme combination appears
e.g. in word učitelka (female teacher). This lead to addition of a rule t-e-l/k,
meaning ”remove boundaries between t,e,l if there are any, and add a boundary
in front of k. This mistake originates from both classifiers which remove this
boundary when they see it because they consider it suspicious. This was likely
caused by the fact that the training dataset did not contain any word with this
morpheme, while containing many morphemes ”teln”, where we do not split after
”tel”. This mistake was learned by classifier 1, which later transferred it to the
artificial dataset, and thus to the classifier 2.

2) We also discovered that the algorithm has trouble handling doubled pre-
fixes. Therefore we added the list of 12 common combinations, and later inspired
by this we also added 4 common pairs of suffixes. Yet here we had to be careful
because unlike with prefixes we cannot tell our rule to only match on the begin-
ning of the word, and therefore we had to pick only suffixes letters of which are
unlikely to appear anywhere else in the words (such as suffix pair tel/čin).

3) We also see that because of misalignment algorithm sometimes splits letter
combination ”ch”, while ”ch” always acts as a single letter, and therefore should

1We want to use the test dataset also in future, therefore we do not want to just go through
it word by word.

38

never separated. We consequently added a rule to fix this behavior. In future it
may be worth considering, whether we should not consider ”ch” a single letter
since the very beginning, and have it as one letter even while processing it with
neural networks.

4) There are also some broader groups of words with which this architecture
has systematic problems, namely:

- Word compounds (e.g. čtyřstěn - tetrahedron): Their handling will be
examined in future since it requires a completely separate approach. An example
of such approach could be e.g. looking for words which seem to have long roots
after the segmentation, and trying to decompose these ”roots” into two or more
real roots possibly connected via interfixes.

- Foreign words and names: They are currently considered out of scope, al-
though in future we may try to detect foreign words and either avoid their seg-
mentation completely, or just detect the foreign part within them, and only seg-
ment the rest, as if it was a Czech word. The second approach may become
handy on words such as ”vygooglit” (to Google), since the foreign root ”googl”
is surrounded by the Czech affixes ”vy-” and ”-it”, which have their own fixed
meanings.

- Segmentation of word forms: in this thesis we focused only on segmentation
of word lemmas, but since the Czech is a very flective language and each word
can have many different endings, it is very useful to be able to also segment the
forms. Therefore We carried out an experiment to explore the behavior of the
algorithm on word forms. We have run the segmentation algorithm on part of
the MorfFlex datasetStraka and Straková [2016] and than manually examined
the results.

Unfortunately we observed that the cleanup classifiers are systematically re-
moving boundaries in word endings because they do not know them lemmas.
Therefore the ensemble does not output the boundaries even if the Tree Segmen-
tation detects them while processing the MorfFlex trees. To fix this behavior we
would need a special annotated dataset of segmented word forms to retrain the
Classifier 1, and afterwards generate another artificial dataset to retrain also the
Classifier 2.

Therefore the segmentation of word forms also remains future work, although
we believe that it will not require too many modifications for our algorithm to
work on them.

4.4 The final results
In this section, we evaluate the algorithm on two datasets, namely verbs from the
retrograde dictionary Slav́ıčková [1975], in the form discussed in the Related Work
Chapter, and our segmented dataset, and we show that our algorithm achieves
the state of the art performance on the problem of morphological segmentation
of Czech words.

In 4.4 we can notice that the results in prediction of morphemes are much
worse than the results in prediction of the boundaries. On the first sight it may
look confusing, but it is a direct mathematical consequence of the fact that a
single mistake in prediction of a boundary often causes two morphemes to be
wrong.

39

Method Morphemes Boundaries Words
Precision Recall F1 Precision Recall F1 Accuracy

Our method 64.50% 58.60% 61.41% 93.30% 81.50% 87.00% 8.90%
Vidra [2018] 34.03% 24.08% 28.20% 70.33% 42.12% 52.69% 19.46%
Flatcat sup. 36.40% 21.20% 26.79% 83.70% 35.70% 50.05% 26.70%
Everywhere 10.17% 24.39% 14.35% 34.20% 100.00% 50.97% 0.00%
Nowhere 21.79% 5.90% 9.29% X 0.00% X 10.89%

Table 4.4: The results of evaluation of our algorithm, and two others on our
manually segmented dataset. Everywhere and Nowhere are simple baselines pre-
dicting boundaries everywhere or nowhere, Flatcat is abreviation of Morfessor
Flatcat Grönroos et al. [2014].

Method Morphemes Boundaries Words
Precision Recall F1 Precision Recall F1 Accuracy

Our method 58.94% 62.62% 63.74% 96.11% 91.63% 93.81% 72.15%
Vidra [2018] 64.82% 66.54% 65.67% 91.38% 87.42% 89.36% 35.45%
FlatCat unsup. 37.19% 21.57% 27.31% 97.98% 64.92% 78.10% 1.17%
FlatCat sup. 66.20% 57.72% 61.67% 92.59% 81.15% 86.49% 31.10%

Table 4.5: For fairness we also evaluate our method on the same dataset as was
used in Vidra [2018] (namely Slav́ıčková [1975]) and compare our results with
results presented there. Therefore the whole table except for our results is taken
from Vidra [2018].

We have observed that our algorithm performs better on words uniformly
randomly sampled from the list of all words (95% Precision, 81% Recall) than
on the words sampled with regards to the number of occurrences in the corpus
(90% P, 82% R). It is likely caused by a higher average number of morphemes in
the words from the first dataset. It means that the first dataset contains longer,
and thus likely more regularly formed words. That means that it contains many
boundaries which are easy to guess, which improves the algorithm’s score.

This result is not too surprising. Most of the word lemmas n Czech are the long
ones, and therefore our method of sampling tended to prefer the long words. Also
the long words should, more often than not, be formed more regularly because of
the principle of language economy. This principle tells us that effectivity is one of
the principles guiding the development of language. Therefore we should rather
expect that long words are formed regularly, in some language specific way, since
it would be too complicated for speakers to remember meaning of each long word
independently or to remember too many specific irregularities.

We have also observed that the behavior of the algorithm differs on the ret-
rograde dictionary verb dataset, and on the standard data. The segmentation
of the verbs seems to be much more centered around the rules - after the rule
processing phase algorithm achieves 77.2% recall and 84.6% precision (compare
with 43.5% recall and 96.1% precision on the standard dataset). It seems like the
verbs were much more regularly formed, but also have much higher likelihood of
the false positive matches, which were then fortunately removed by the classifiers
in the cleanup phase.

40

Figure 4.2: Plot of Precision and Recall of boundaries after each layer of the
ensemble.

41

Figure 4.3: Plot of Precision and Recall of boundaries after each layer of the
ensemble. This time without Classifier 2.

42

Conclusion
In this thesis we have presented a novel algorithm for morphological segmentation
of Czech lemmas, which surpasses the previous state of the algorithm (Vidra
[2018]) and which was accepted for publication in Bodnár et al. [2020]. The
developed segmentation will also be added to the next release of the DeriNet
dataset. We have also created many suggestions for improvements of the DeriNet
dataset, namely suggestions of trees which should be joined because they are
derived from the same word.

From the global perspective we may conclude that the achieved results (Pre-
cission 93.30%, Recall 81.50% on boundaries) are promising, which shows that the
combination of a manually segmented dataset with the derivational tree dataset
DeriNet (Vidra et al. [2019]) was very fruitful, yet there is still space for future
improvements.

In future, we would like to achieve further quantitative improvements but
most importantly we would like to (and we plan to) focus on the segmentation
of word forms instead of segmenting just lemmas. We believe that this could
be achieved relatively easily by retraining the classifiers, but it will require a
development of a novel dataset, this time also containing the word forms.

There is also space for improvements in the core of the algorithm, namely we
may focus on the false removals of the discovered boundaries between the tree
segmentation part and the clean-up classifiers, as well as on the problematics of
word compounds and foreign words.

43

Bibliography
Christopher M. Bishop. Pattern recognition and machine learning. Springer,

2013.

Jan Bodnár, Zdeněk Žabokrtský, and Magda Ševč́ıková. Semi-supervised induc-
tion of morpheme boundaries in Czech using a word-formation network. In
Proceedings of the 23st International Conference on Text, Speech and Dialogue
- TSD 2020., Brno, Czech Republic, sep 2020. Springer [to be published].

Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas Mikolov. En-
riching word vectors with subword information. CoRR, abs/1607.04606, 2016.
URL http://arxiv.org/abs/1607.04606.

F. Čermák. Jazyk a jazykověda. Charles University, 2011. ISBN 9788024619460.

KyungHyun Cho, Bart van Merrienboer, Dzmitry Bahdanau, and Yoshua Bengio.
On the properties of neural machine translation: Encoder-decoder approaches.
CoRR, abs/1409.1259, 2014. URL http://arxiv.org/abs/1409.1259.

Mathias Creutz and Krista Lagus. Unsupervised Discovery of Morphemes, volume
cs.CL/0205057. 2002. URL https://arxiv.org/abs/cs/0205057.

Mathias Creutz and Krista Lagus. Induction of a simple morphology for highly-
inflecting languages. In Proceedings of the 7th Meeting of the ACL Special
Interest Group in Computational Phonology: Current Themes in Computa-
tional Phonology and Morphology, pages 43–51, Barcelona, Spain, July 2004.
Association for Computational Linguistics. URL https://www.aclweb.org/
anthology/W04-0106.

M. Dokulil. Tvořeńı slov v češtině: Teorie odvozováńı slov. Nakl. Československé
akademie věd, 1962.

Jeffrey L. Elman. Finding structure in time. Cognitive Science, 14(2):179–211,
1990. doi: 10.1207/s15516709cog1402\ 1.

John Goldsmith. An algorithm for the unsupervised learning of morphology. Nat.
Lang. Eng., 12(4):353–371, December 2006. ISSN 1351-3249. doi: 10.1017/
S1351324905004055. URL https://doi.org/10.1017/S1351324905004055.

Sharon Goldwater, Thomas Griffiths, and Mark Johnson. A bayesian framework
for word segmentation: Exploring the effects of context. Cognition, 112:21–54,
04 2009. doi: 10.1016/j.cognition.2009.03.008.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press,
2016. http://www.deeplearningbook.org.

Stig-Arne Grönroos, Sami Virpioja, Peter Smit, and Mikko Kurimo. Morfes-
sor FlatCat: An HMM-based method for unsupervised and semi-supervised
learning of morphology. In Proceedings of COLING 2014, the 25th Interna-
tional Conference on Computational Linguistics: Technical Papers, pages 1177–
1185, Dublin, Ireland, August 2014. Dublin City University and Association

44

http://arxiv.org/abs/1607.04606
http://arxiv.org/abs/1409.1259
https://arxiv.org/abs/cs/0205057
https://www.aclweb.org/anthology/W04-0106
https://www.aclweb.org/anthology/W04-0106
https://doi.org/10.1017/S1351324905004055
http://www.deeplearningbook.org

for Computational Linguistics. URL https://www.aclweb.org/anthology/
C14-1111.

Stig-Arne Grönroos, Sami Virpioja, and Mikko Kurimo. Morfessor em+prune:
Improved subword segmentation with expectation maximization and pruning,
2020.

Zellig S. Harris. From phoneme to morpheme. Language, 31(2):190–222, 1955.
ISSN 00978507, 15350665.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural
computation, 9:1735–80, 12 1997. doi: 10.1162/neco.1997.9.8.1735.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization,
2014. URL http://arxiv.org/abs/1412.6980.

Kevin Knight. Bayesian inference with tears. 2009.

Michal Křen, Václav Cvrček, Tomáš Čapka, Anna Čermáková, Milena
Hnátková, Lucie Chlumská, Dominika Kovář́ıková, Tomáš Jeĺınek, Vladimı́r
Petkevič, Pavel Procházka, Hana Skoumalová, Michal Škrabal, Petr Truneček,
Pavel Vondřička, and Adrian Zasina. SYN2015: representative corpus
of written czech, 2015. URL http://hdl.handle.net/11234/1-1593.
LINDAT/CLARIAH-CZ digital library at the Institute of Formal and Applied
Linguistics (ÚFAL), Faculty of Mathematics and Physics, Charles University.

Radford M. Neal and Geoffrey E. Hinton. A View of the Em Algo-
rithm that Justifies Incremental, Sparse, and other Variants, pages 355–
368. Springer Netherlands, Dordrecht, 1998. ISBN 978-94-011-5014-
9. doi: 10.1007/978-94-011-5014-9 12. URL https://doi.org/10.1007/
978-94-011-5014-9_12.

F. Rosenblatt. The perceptron: A probabilistic model for information storage
and organization in the brain. Psychological Review, pages 65–386, 1958.

Frank F. Rosenblatt. Principles of neurodynamics. perceptrons and the theory of
brain mechanisms. American Journal of Psychology, 76:705, 1963.

Teemu Ruokolainen, Oskar Kohonen, Kairit Sirts, Stig-Arne Grönroos, Mikko
Kurimo, and Sami Virpioja. A comparative study of minimally supervised
morphological segmentation. Computational Linguistics, 42(1):91–120, 2016.
doi: 10.1162/COLI\ a\ 00243.

Florian Schroff, Dmitry Kalenichenko, and James Philbin. Facenet: A unified
embedding for face recognition and clustering. CoRR, abs/1503.03832, 2015.
URL http://arxiv.org/abs/1503.03832.

Magda Ševč́ıková, Anja Nedoluzhko, and Šárka Zikánová. Lecture notes - vari-
ability of languages in time and space (npfl100), charles university, 2019.

C. E. Shannon. A mathematical theory of communication. Bell System Tech-
nical Journal, 27(3):379–423, 1948. doi: 10.1002/j.1538-7305.1948.tb01338.x.
URL https://onlinelibrary.wiley.com/doi/abs/10.1002/j.1538-7305.
1948.tb01338.x.

45

https://www.aclweb.org/anthology/C14-1111
https://www.aclweb.org/anthology/C14-1111
http://arxiv.org/abs/1412.6980
http://hdl.handle.net/11234/1-1593
https://doi.org/10.1007/978-94-011-5014-9_12
https://doi.org/10.1007/978-94-011-5014-9_12
http://arxiv.org/abs/1503.03832
https://onlinelibrary.wiley.com/doi/abs/10.1002/j.1538-7305.1948.tb01338.x
https://onlinelibrary.wiley.com/doi/abs/10.1002/j.1538-7305.1948.tb01338.x

Eleonora Slav́ıčková. Retrogárdńı morfematický slovńık češtiny. Academia, 1975.

Benjamin Snyder and Regina Barzilay. Unsupervised multilingual learning for
morphological segmentation. In Proceedings of ACL-08: HLT, pages 737–745,
Columbus, Ohio, June 2008. Association for Computational Linguistics. URL
https://www.aclweb.org/anthology/P08-1084.

Richard W. Sproat, Chilin Shih, William Gale, and Nancy Chang. A stochas-
tic finite-state word-segmentation algorithm for Chinese. Computational Lin-
guistics, 22(3):377–404, 1996. URL https://www.aclweb.org/anthology/
J96-3004.

P. Štekauer, S. Valera, and L. Kőrtvélyessy. Word-Formation in the World’s
Languages: A Typological Survey. Word-formation in the World’s Languages:
A Typological Survey. Cambridge University Press, 2012. ISBN 9780521765343.

Milan Straka and Jana Straková. Czech models (MorfFlex CZ 161115 + PDT 3.0)
for MorphoDiTa 161115, 2016. URL http://hdl.handle.net/11234/1-1836.
LINDAT/CLARIAH-CZ digital library at the Institute of Formal and Applied
Linguistics (ÚFAL), Faculty of Mathematics and Physics, Charles University.

Jonáš Vidra, Zdeněk Žabokrtský, Lukáš Kyjánek, Magda Ševč́ıková, and Šárka
Dohnalová. DeriNet 2.0, 2019. URL http://hdl.handle.net/11234/1-2995.
LINDAT/CLARIAH-CZ digital library at the Institute of Formal and Applied
Linguistics (ÚFAL), Faculty of Mathematics and Physics, Charles University.

Jonáš Vidra. Morphological segmentation of Czech Words, Diploma thesis, Insti-
tute of Formal and Applied Linguistics, Charles University, Prague. Supervisor:
Žabokrtský, Zdeněk. Charles University, 2018.

Linlin Wang, Zhu Cao, Yu Xia, and Gerard de Melo. Morphological segmenta-
tion with window lstm neural networks. In Proceedings of the Thirtieth AAAI
Conference on Artificial Intelligence, AAAI’16, page 2842–2848. AAAI Press,
2016.

Frantǐsek Čermák. Discrete language units: The case of circumfixes. Jazykovedny
Casopis, 69:78–98, 01 2008. doi: 10.1515/jazcas-2017-0012.

46

https://www.aclweb.org/anthology/P08-1084
https://www.aclweb.org/anthology/J96-3004
https://www.aclweb.org/anthology/J96-3004
http://hdl.handle.net/11234/1-1836
http://hdl.handle.net/11234/1-2995

List of Figures

3.1 An example of segmenter’s operation on words. First we compare
poskočeńı with poskočit, and derive a boundary poskoč/it (here
we also derive boundary poskoč/eńı, but we do not show it for
clarity). Then we compare poskočit with povyskočit, by which we
derive boundaries po/vy/skočit (and po/skočit, which is again not
shown), and transfer the boundary poskoč/it. 25

4.1 Precision-Recall plots for the Classifier 1 trained with various num-
bers of samples. 29

4.2 Plot of Precision and Recall of boundaries after each layer of the
ensemble. 41

4.3 Plot of Precision and Recall of boundaries after each layer of the
ensemble. This time without Classifier 2. 42

47

List of Tables

1.1 Data sample from the Retrograde dictionary Slav́ıčková [1975]. . . 12

4.1 Precision for 75% recall for architecture CNN × CNN × dense
which uses simultaneously multiple kernel sizes. Dependence of
precision on number of filters and shift. Filters have sizes 1 to 4.
5x cross-validated. 28

4.2 Precision for 75% recall for architecture CNN × CNN × dense
with 200 filters and size 4 in dependence on shift and the activation
function. 29

4.3 The comparison of segmentation done by the tree segmentation
with the segmentation produced by the whole ensemble and with
the correct answers. 37

4.4 The results of evaluation of our algorithm, and two others on our
manually segmented dataset. Everywhere and Nowhere are simple
baselines predicting boundaries everywhere or nowhere, Flatcat is
abreviation of Morfessor Flatcat Grönroos et al. [2014]. 40

4.5 For fairness we also evaluate our method on the same dataset as
was used in Vidra [2018] (namely Slav́ıčková [1975]) and compare
our results with results presented there. Therefore the whole table
except for our results is taken from Vidra [2018]. 40

A.1 Sample of output of our algorithm 1/2 51
A.2 Sample of output of our algorithm 2/2 52
A.3 Triplet Loss Suggestions - Edges to remove - Samples which are

connected with an edge but are too far apart, and therefore may
belong to a different tree. Threshold 150. 22 samples out of 23
suggestions. (1 sample were censored, 1 of which was a correct
suggestion.) . 53

A.4 Triplet Loss Suggestions - Edges to remove - Samples which are
connected with an edge but are too far apart, and therefore may
belong to a different tree. Threshold 100. 54 samples out of 358
suggestions. (6 samples were censored, none of them was a correct
suggestion.) Here we see mosly false positives, which shows us
which things are unintuitive for the network. 54

A.5 Triplet Loss Suggestions - Roots to merge (small trees with big
trees) - suggestions regarding which trees should be merged be-
cause their roots contain very similar words. Threshold 10. 56
samples out of 2113 suggestions (4 censored, 3 of them being cor-
rect suggestions . 55

A.6 Triplet Loss Suggestions - Roots to merge (big trees with big trees)
- Pairs of roots of big trees, which are too close to one another, and
therefore likely contain related words and should be merged into
one tree. Threshold 10, 59 samples out of 277 (1 censored, out of
which 1 was correct) . 56

48

A.7 Triplet Loss Suggestions - Roots to merge (big trees with big trees)
- Pairs of roots of big trees, which are too close to one another, and
therefore likely contain related words and should be merged into
one tree. Threshold 10, 59 samples out of 839 (5 censored, out of
which 4 were correct) . 57

A.8 Triplet Loss Suggestions - Roots to merge (small trees with big
trees) - suggestions regarding which trees should be merged be-
cause their roots contain very similar words. Threshold 15. 58
samples out of 6650 suggestions (1 censored, 1 of them being a
correct suggestions . 58

49

List of Abbreviations

50

A. Attachments

A.1 Output Samples
Here we show samples of output on our dataset.

Alarik/̊uv Rón frajkumšt
Alžbět/in/č/in Salvet hlad/́ı/v/a/n/ý
Andrl/e Skořep/̊uv impaktit
Barret/o Somorovsk/ý indikátorčin
Blaufeld Třečk/̊uv intrakraniál/n/ě
Bo/ogerd Uerdingen iris/ová/v/a/teln/ý
Buyss/e Uusikaupunk/i jednoduš/e
Carreras/̊uv Voběr/e/k jednofotonov/ost
Chondroste/i Vrecion/ov/á jehlař/̊uv
Cipras/̊uv Vričan judaiz/uj́ıc/́ı
Dehk/án/́ı Waters/ov/á jár/ek
Dobř́ıň Weill/̊uv klikv/ov/ý
Durrán/́ı bezfaset/ov/ost krep/ovat/ě/n/́ı
Duš/́ık/̊uv bezkalibrač/n/ě krup/ař/stv/́ı
Fenn/ov/á bezo/hled/n/ost kufr/ová/v/a/n/ost
Filin/ov/á b́ıd/nic/k/y mantinel
Gautsch/̊uv b́ılich/ovsk/ý megawatt/ov/ost
Gavin de/kriminal/iz/ová/v/aj/́ıc/́ı minilož/nice
Harcińık/̊uv debet/ova/teln/ě motoball
Jablunk/ovsk/o div/ost na/elox/ova/n/ost
Kadrák do/dých/a/t na/šplh/ac/́ı
Kernen/̊uv do/parazit/ová/v/a/c/́ı na/ťuk/á/v/aj/́ıc/́ı
Litět/in/y dreźır/ová/v/a/n/ý nach/ovočerv/en/ost
Mladc/ov/á dvojnehod/a ne/ofenomenologick/ost
Nazdice dvou/vaječn/ě ne/plát/c/̊uv
Petrus/ov/á dvouletoun ny/ktalop/i/e
Poš́ıval dějepis/ář/k/a o/kol/k/ová/v/a/c/́ı
Raisin fanariot/sk/ost o/kou/t
Ramund fetǐsiz/ová/v/a/n/ý o/rádl/ová/v/a/teln/ost
Reneš flaš/k/ov/ý o/slav/ová/v/a/teln/ě

Table A.1: Sample of output of our algorithm 1/2

51

o/žlut/i/vš/́ı roz/kon/stru/ova/n/ě z/melodičt/ěn/ý
obe/zd/ěn/ý roz/masakr/ová/v/a/c/́ı z/mrhank/a
od/flusn/ou/t rural/izmu/s z/pod/ṕır/a/n/ost
od/hrk/á/v/a/n/ě s/mrsk/nut/ý z/ruš/ova/n/ost
od/skĺıp/k/ová/v/á/n/́ı sebedrsněji z/teolog/izova/teln/ý
pasáž/ov/ý sed/ě/t z/važ/ova/c/́ı
po/ná/lep/k/ová/v/a/n/ě souk/en/́ı/k z/vlášt/n/̊ustk/ář/č/in
po/smrk/á/v/a/t spoluz/a/váz/á/v/a/t z/výz/namň/ova/n/ost
pod/kluz/ova/t starokoš́ı̌r/sk/ý za/hán/́ı/v/a/teln/ost
poet/iz/ová/v/a/n/ý starousedlic/e za/isol/ova/c/́ı
polohlasit/ě sub/trop/y za/plomb/ova/teln/ě
prask subjekt/iv/ova/vš/́ı za/syp/ac/́ı
pro/faktur/ová/v/a/n/ý super/zem/ě za/řad/ěn/ě
pro/pis/ová/v/a/teln/ě tematiz/ová/v/a/teln/ý za/škĺıb/nu/teln/ý
pro/šlechť/ova/c/́ı tygrobijčin zcukern/ě/vš/́ı
pror̊ust/ov/ý tř́ıhřbet/ost ze/stručn/i/teln/ě
proven/cal/sk/ý tř́ıkrál/ovsk/y ze/śı̌t/ova/c/́ı
psańıčk/ovit/ě u/hrab/á/v/aj/́ıc/́ı zebr/ov/ě
pře/dob/chod/n/ě u/vř́ısk/á/v/a/c/́ı zelenohnědočern/ost
pře/klimatis/ova/teln/ě u/za/v́ır/á/v/á/n/́ı zgramatis/ová/v/a/n/ý
pře/komun/ik/ova/teln/ý večeř/́ı/v/a/teln/ost zješit/n/ěn/́ı
pře/kouzl/i/vš/́ı vojvod/́ıc/́ı zponenáhl/i/vš/́ı
pře/t́ıž/en/ost vy/bruš/ová/v/a/teln/ě záplat/ová/v/a/teln/ě
pře/škrt/á/v/á/n/́ı vy/b́ıd/nu/teln/ě Čubrič/̊uv
před/registr/ová/v/a/teln/ý vy/kyd/nu/vš/́ı Čumpeĺık/̊uv
při/clán/́ı/v/a/teln/ý vy/specifik/ová/v/a/n/ě ďob/nou/t
při/cvak/á/v/a/t vy/vyš/ova/t Šebelk/̊uv
při/kvap/en/́ı vy/štěk/a/teln/ě šašlik/ov/ý
př́ı/je/zd vy/žen/i/teln/ý šroub/ová/v/a/n/ě
roz/brnk/á/v/a/teln/ý z/d̊uraz/ň/ová/v/a/c/́ı ženšt́ı/v/a/n/ě

Table A.2: Sample of output of our algorithm 2/2

A.2 Triplet Loss suggestions
As a side product, the triplet loss offered us some suggestions regarding possible
improvements of the DeriNet dataset (Vidra et al. [2019]).

We did two comparisons, namely detecting, which words connected with a
derivation edge are too far apart, and comparing which roots of distinct trees are
too close to one another.

Due to the computational complexity, we did not compare all the 200 thousand
trees to one another in the second comparison. Instead we separated the trees
into two groups, namely big trees with 5 or more nodes, and small trees, and we
compared the distances between the big trees and between the big trees and the
small trees.

We show 60 randomly selected samples of output for each experiment ant
various thresholds. Due to vulgarisms and similar cases we had to decide to

52

censor a few words.
We have also examined edges in trees and looked for possible wrong con-

nections by detecting that two connected words are too different. With lower
threshold the algorithm discovered a few mistakes, but in general this approach
does not seem to be very successful. But this could be partially caused by Der-
iNet’s preference of precision over recall. At least these samples tell us something
about the behavior of our triplet loss model and point out problematic linguistic
phenomena.

Alexandr Saša plán raketoplán
Pankrác Bonifác poj́ıt pošedš́ı
Václava Vendula povyj́ıt povyšedš́ı
biograf biják raketa rachomejtle
chtivý burčákochtivý rex methylaminorex
doj́ıt došedš́ı ský házenářskost
dárce službodárce ský házenářsky
gen fibrinogen stanice trafostanice
gen kalyptrogen tombak tumpachový
lyzin fibrinolyzin téka filmotéka
metr bilirubinometr vyj́ıt vyšedš́ı

Table A.3: Triplet Loss Suggestions - Edges to remove - Samples which are con-
nected with an edge but are too far apart, and therefore may belong to a different
tree. Threshold 150. 22 samples out of 23 suggestions. (1 sample were censored,
1 of which was a correct suggestion.)

53

Alexandr Alex přij́ıt přicházet
Kyrgyz Kirgiz̊uv relykrosový rallyecrossovost
Mikuláš Mikeš rozepsat rozpis
Mikuláš Miky sejmout sňatek
Shakespeare šejksṕırovský sejmout sňatý
absolvovat absolutorium sej́ıt scházet
analýza kryptoanalýza sej́ıt sešedš́ı
business byznys sežnout sžatý
být budoućı ský házenářsky
cement azbestocement sńıh sněhulák
dvěstětunový dvousettunovost typ genotyp
gram daktylogram tónický sylabotónický
hibernace hibernakulum těsný palivotěsný
kazit kažený tř́ıt trdlice
kĺıt klatba uhnout uhýbat
kruh okrouhlý ventilace filtroventilace
kvazimonopolńı quasimonopolně vepsat vpisek
ležet ložnice vyjmout vynět́ı
metr bilirubinometr vyjmout vyňavš́ı
metrie granulometrie vysoký navýšit
mánie agentománie vysoký povýšit
mést zmı́tat vzej́ıt vzcházet
nitril naftonitril vźıt vezmoućı
obej́ıt obešedš́ı vápenný struskovápenný
obežnout obžavš́ı vát věječka
odvézt odvážet žnout žatva
přemoci přemohš́ı žravý semenožravý

Table A.4: Triplet Loss Suggestions - Edges to remove - Samples which are con-
nected with an edge but are too far apart, and therefore may belong to a different
tree. Threshold 100. 54 samples out of 358 suggestions. (6 samples were cen-
sored, none of them was a correct suggestion.) Here we see mosly false positives,
which shows us which things are unintuitive for the network.

54

Andrejevský Andrejev Skalický Skalice
Ban bán,báň Skalička Skalice
Banovec Bánovec Valente Valentina
Blanke Blanka Virginia Virginie
Bořice bořit Wait Waits
Bořita bořit batman Batmanov
Bud́ınka Bud́ın fantaz fantazie
Bulgakovová Bulgakov galeje galejńı
Chalupný chalupa generálka generál
Chan chán granátit granát
Chv́ıla chv́ıle kompenzovna kompenzovat
Chánov chán manažér manažer
Dolinek doliňák minižáček minižák
Dominick Dominic nirvana nirvána
Drozda drozd plantace plantat
Horne horna přešt́ıhlý št́ıhlý
Ignace Ignác remonstrace remonstrant
Kaván Kavan trávař tráva
Kikujo Kikuj trávńıkářstv́ı trávńıkář
Kmenský kmen verbovńı verbovat
Konstantinky Konstantin vincentka Vincent
Kožušnik Kožušńık vroucno vroucný
Lednice lednit záhvozd́ı záhvozd
Liana liána Červenkov Červenka
Lusitánie Lusitán Štětice štětina
Montána Montana Švihovsko Švihov
Platini platina Š́ı̌sa Šǐsa
Ramus rámus žemla žemle

Table A.5: Triplet Loss Suggestions - Roots to merge (small trees with big trees)
- suggestions regarding which trees should be merged because their roots contain
very similar words. Threshold 10. 56 samples out of 2113 suggestions (4 censored,
3 of them being correct suggestions

55

Davidov David týl Tyl
Haná Hana vraštit vráštit
Koperńık Kopernik vzdušnit vzdušnice
Koč koč́ı zakatalogisovat katalogisovat
Lombardie lombard zdrobnět zdrobnit
Martinov Martin zesličnit zesličnět
Soliman Solimán zhorečnit zhorečnět
Valentina Valentin zjednostranět zjednostranit
Vańık Vaněk zjednotvárnit zjednotvárnět
Vaněk Vańık zklasičtět zklasičtit
doinicialisovat inicialisovat zkonvenčnit zkonvenčnět
dolinář Dolina zkonvenčnět zkonvenčnit
dosystemisovat systemisovat zlacinět zlacinit
flitrovat oflitrovat zlogičtit zlogičtět
hendikepový hendikepovat zmalichernit zmalichernět
horolezec horolezeńı zneklidnět zneklidnit
kosmopolita kosmopolitický zněžnit zněžnět
ĺıto ĺıtý zoptimalisovat optimalisovat
mandl mandle zpikantnit zpikantnět
odṕınat podṕınat zpovrchnět zpovrchnit
oflitrovat flitrovat zpovšechnět zpovšechnit
plakat plakát zpr̊uchodnit zpr̊uchodnět
poleno Polena zrabiátnit zrabiátnět
produchovnit produchovnět zteatrálnit zteatrálnět
prýmkář prýmka ztechničtit ztechničtět
punk punč zvýznamnět zvýznamnit
román Roman zásvět́ı zásvětný
rozmobilisovat zmobilisovat Řihák Ř́ıhák
stonek Stone Štětkař štětkář
stř́ıhnout ustř́ıhnout,nastř́ıhnout

Table A.6: Triplet Loss Suggestions - Roots to merge (big trees with big trees)
- Pairs of roots of big trees, which are too close to one another, and therefore
likely contain related words and should be merged into one tree. Threshold 10,
59 samples out of 277 (1 censored, out of which 1 was correct)

56

B́ıl b́ılý,běl oškĺıbat poškĺıbat
Gal Gál pasivńı pasivovat
Jan Ján patron patrona
Jánoš Janoš pozápadnit pozápadnět
Král Kráĺık,Královák prýmka prýmkář
Loučka loučit přespecialisovat zespecialisovat
Marija Maria rolničit rolnička
Mikulič Mikuĺık rozcensurovat zcensurovat
Poledńık poledne rozgeneralisovat zgeneralisovat
Vinklár vinklář sardinkář sardinka
amalgam amalgám stážovat stáž
amortisovat zamortisovat ustabilisovat stabilisovat,dostabilisovat
assimilovat asimilovat ustabilisovat nastabilisovat
chroptit chroptět zabstraktnět zabstraktnit
cvočkář cvočkař zavulkanisovat vulkanisovat
doinicialisovat inicialisovat zdredovatět dredovatět
doinicialisovat zinicialisovat zklasičtět zklasičtit
doinicialisovat rozinicialisovat zmnohonásobit zmnohonásobnit
horký Horka změlčet změlčit
jelenář Jelena zobyčejnit zobyčejnět
kampan kampaň zobčanštit zobčanštět
kat kát zpestřet zpestřit
krejč́ı Krejč́ık ztiśıceronásobnit ztiśıceronásobit
krčit Krč čmuchat dočmuchat
kát kat Špet́ık špetka
nastehnout zastehnout štětkář Štětkař,̌stětina
neutralisovat zneutralisovat žaludek žalud
nový Novák,nit žvástat žvastat
oploštět zploštět

Table A.7: Triplet Loss Suggestions - Roots to merge (big trees with big trees)
- Pairs of roots of big trees, which are too close to one another, and therefore
likely contain related words and should be merged into one tree. Threshold 10,
59 samples out of 839 (5 censored, out of which 4 were correct)

57

Aachenová Aachen Verlaine Verlain
Absolut absolutńı Vostrov ostrov
Alan Alán argentinsko Argentina
Ban bán,báň,banka balonkový balon
Berl berle bělka běl,Běla
Bimbác bimbat chatt chata
Boba bob,Bob ergometrin ergometrie
Brdec Brdečka fašančář fašankář
Buchář Buchár fenomen fenomén
Chud chudý,chudý glazé glazovat
Dačický Dačice guvernérováńı guvernér
Dráža dráha jednotvárný zjednotvárnit,zjednotvárnět
Gene gen koučka kouč
Gháńı Ghana nirvana nirvána
Hodice hodit,hodina pětinásobný pětinásobit
Honda Honza ráno rána,raný
Hořec hořet sebeĺıtostný sebeĺıtostivý
Hroňová Hron sociál sociálńı
Juste justice,Just stotiśıc stotiśıćı
Kopřiv́ık kopřiva stěž́ı stěžovat
Kub́ıče kub́ık sumatrae Sumatra
Mása masa tatranka Tatran
Panev pánev teigovec Teigov
Pavlánský pavlán vedro Vedra
Prasek prase Čáslavský Čáslav
Rychtář rychta Ř́ımský Ř́ım
Staněk Stańık Šilhan Šilhán
Stodo Stoy Šušák Šuša
Tyne týn špic špice

Table A.8: Triplet Loss Suggestions - Roots to merge (small trees with big trees)
- suggestions regarding which trees should be merged because their roots contain
very similar words. Threshold 15. 58 samples out of 6650 suggestions (1 censored,
1 of them being a correct suggestions

58

	Introduction
	Related Work
	Approaches towards the problem
	Multilingual approaches
	Chinese sentence segmentation
	Minimum Description Length and Maximum A Posteriori probability
	Expectation Maximization
	Bayesian Methods
	The Follower Surprisingness
	Deep Learning

	KonText Tool
	Datasets
	Manually segmented dataset
	Retrograde Morphemic Dictionary of Czech
	DeriNet
	Morpho Challenge datasets

	Theoretical Background
	Linguistic background
	Czech Language
	Morphemes
	Allomorphs
	Word formation processes
	Derivational graphs

	Neural Networks
	Basic Model
	Neural networks and language
	Triplet loss

	The Proposed Solution
	Origin of the solution
	The final solution
	Classifiers
	Architecture
	Usage

	Rules
	Tree Propagation (Segmenter)
	Description
	Problems

	Root detection
	Triplet Loss

	Experiments
	Classifiers
	Triplet Loss
	Training problems
	Our Experiments
	Outcomes
	Error analysis

	Error analysis
	Error analysis of the Addition Phase
	Error analysis of Tree Propagation
	Error analysis of Cleanup Phase
	Systematic errors of the whole architecture

	The final results

	Conclusion
	Bibliography
	List of Figures
	List of Tables
	List of Abbreviations
	Attachments
	Output Samples
	Triplet Loss suggestions

