
BACHELOR THESIS

Arkadiusz Martin Antoniewicz

Tokenization-aware Diff and Patch

Department of Software Engineering

Supervisor of the bachelor thesis: RNDr. Miroslav Kratochvíl

Study programme: Computer Science

Study branch: Programming and Software

Development

Prague 2020

I declare that I carried out this bachelor thesis independently, and only with the

cited sources, literature and other professional sources. It has not been used to

obtain another or the same degree.

I understand that my work relates to the rights and obligations under the Act

No. 121/2000 Sb., the Copyright Act, as amended, in particular the fact that the

Charles University has the right to conclude a license agreement on the use of this

work as a school work pursuant to Section 60 subsection 1 of the Copyright Act.

In date .

Author’s signature

i

ii

First and foremost, I would like to thank my supervisor Miroslav Kratochvíl for

his patient guidance and professional advice. Next, I would like to express grat-

itude to Simona Zálešáková and my family for boundless support and faith in

me. Last but not least, I am very grateful to Martina Matuláková and Jaromír

Šimonek for their help with scientific English.

iii

iv

Title: Tokenization-aware Diff and Patch

Author: Arkadiusz Martin Antoniewicz

Department: Department of Software Engineering

Supervisor: RNDr. Miroslav Kratochvíl, Department of Software Engineering

Abstract: File comparison algorithms and utilities ’diff’, ’patch’ and ’diff3’ are

widely used in programming for the purpose of code comparison, and in many

version control systems. Despite the usefulness, the differences and patches pro-

duced by the tools are strictly line-oriented, which complicates processing of

differently formatted data, such as free flowing text, markup, and various other

formats where line breaks are not crucial. This thesis describes and implements

a customizable version of these tools, which allows the user to specify an arbi-

trary tokenization of the input, thus allowing easy diffing, patching and change-

merging of content not supported by the traditional diff. Additionally, the the-

sis describes a newly appearing challenge of managing the whitespace in the

patches, and demonstrates the functionality on a practical use-case that can not

be performed with the current diff utilities.

Keywords: editing distance, three-way merge, text algorithms, version control

v

vi

Contents

Introduction 3

1 Algorithms for comparing text 7
1.1 Diff implementation . 8

1.1.1 Tokenization . 8

1.1.2 Edit distance . 9

1.1.3 Wagner and Fischer algorithm 10

1.1.4 Backtrack algorithm to find edit operations in matrix . . 10

1.2 Merging and applying changes 12

1.2.1 Patch . 12

1.2.2 Merging patches . 14

1.2.3 Three-way merge . 14

2 Custom tokenization support 17
2.1 Lexing specification . 17

2.1.1 Specifying REDFA using strings 21

2.2 Whitespace handling . 22

2.2.1 Resolving whitespace conflicts 23

3 Implementation and results 27
3.1 Program structure . 27

3.1.1 Shared library . 27

3.1.2 TDiff . 28

3.1.3 TPatch . 29

3.1.4 TDiff3 . 29

3.2 Data formats . 30

3.2.1 Tokenizer specification 30

3.2.2 Patch file format . 30

3.3 Performance and use cases . 31

3.3.1 Tokenization performance 31

3.3.2 Use case . 32

1

Conclusion 37

Bibliography 39

A Using tdiff 41

2

Introduction

Text comparison is an essential part of working with computers. Not only pro-

grammers but also many other professions use text comparison tools on a daily

basis. There exist many different file and text comparison tools [2]. The text

comparison tools include finding and showing differences, as well as revisiting,

modifying and applying changes, comparing and showing differences in three

files, merging three files together and many other cases of usage.

There is a problem with all common existing solutions. They do not allow a

user to choose the unit of comparison, whether it may be a section, sentence,

word, cells in a table or anything else. By considering a text with multiple

changes in a long section we can present why common existing solutions fail

to provide a convenient way of working with them. GNU Diff [9] (shown in Fig-

ure 1) simply shows that the lines are different but does not point to a place in

the section where the difference is. Longer sections would make diff inapplica-

ble. GNU Wdiff [5] (shown in Figure 2) demonstrates the difference in a more

profound matter then the diff, however it lacks tools to patch and merge. Other

solutions such as Beyond Compare [1] or the git diff [4] with word-diff=color op-

tion (shown in Figure 3) are capable of patching and showing the difference well.

However, there is still a problem with merging. Neither of those tools would be

able to three way merge if one file had changes at the beginning of a section and

the other file had changes at the end of the same section.

The aim of this thesis is to design and implement tools that can work with

various file formats, print readable differences and apply them. To be capable of

working with many different formats, the user needs to be able to divide the text

into sections of their own accord, which then they compare to each other. The

process of text division is called tokenization and the results are called tokens.

The implemented utilities should be able to tokenize texts using rules defined

by the user, work with the tokenized text effectively and show readable differ-

ences between them. This results in a multipurpose tool of comparing any text

file format.

Notably, the custom tokenization creates a problem not present in other diff

implementations. When a part of the text is left untokenized, it is considered

3

*** t1 2020-07-12 11:26:02.268930863 +0200
--- t2 2020-07-12 11:26:01.728660862 +0200

*** 1,2 ****
! In mathematical theory, linguistics and computer science, the Levenshtein
distance is a string metric for measuring the difference between two sequences.
Informally, the Levenshtein distance between two words is the minimum number of
single-character edits (insertions, deletions or substitutions) required to
change one word into the other. It is named after the Russian mathematician
Vladimir Levenshtein, who considered this distance in 1965.
! Levenshtein distance may also be referred as edit distance, although that
term may also denote a larger family of distance metrics known collectively as
edit distance. It is not closely related to pairwise string alignments.
--- 1,2 ----
! In information theory, linguistics and computer science, the Levenshtein
distance is a string metric for measuring the difference between two sequences.
Informally, the Levenshtein distance between two words is the minimum number of
single-character edits (insertions, deletions or substitutions) required to
change one word into the other. It is named after the Soviet mathematician
Vladimir Levenshtein, who considered this distance in 1965.
! Levenshtein distance may also be referred to as edit distance, although that
term may also denote a larger family of distance metrics known collectively as
edit distance. It is closely related to pairwise string alignments.

Figure 1 GNU diff used on a text with multiple changes in the same section.

as a whitespace which is not significant for comparing. However, a whitespace

around the tokens may sometimes carry information that is relevant for the re-

sult, and thus needs to be handled separately.

Layout of this Thesis
This thesis is structured as follows: the first chapter provides a detailed overview

on handling text differences. There is described how to compare text, how to

apply patches and how to compare and merge three files. The second chapter

outlines the proposed solution for user-specified tokenization, how to implement

it and what the lexers are in general. Whitespace handling is also addressed in

the second chapter. The attention of the third chapter is focused on the program

structure, tokenizer itself, patch format specification and the performance of the

implemented tools.

4

In [-mathematical-] +information+ theory, linguistics and computer science, the
Levenshtein distance is a string metric for measuring the difference between
two sequences. Informally, the Levenshtein distance between two words is the
minimum number of single-character edits (insertions, deletions or
substitutions) required to change one word into the other. It is named after
the [-Russian-] +Soviet+ mathematician Vladimir Levenshtein, who considered
this distance in 1965.
Levenshtein distance may also be referred +to+ as edit distance, although that
term may also denote a larger family of distance metrics known collectively as
edit distance. It is [-not-] closely related to pairwise string alignments.

Figure 2 GNU wdiff used on a text with multiple changes in the same section.

@@ -1,2 +1,2 @@
In mathematicalinformation theory, linguistics and computer science, the
Levenshtein distance is a string metric for measuring the difference between
two sequences. Informally, the Levenshtein distance between two words is the
minimum number of single-character edits (insertions, deletions or
substitutions) required to change one word into the other. It is named after
the RussianSoviet mathematician Vladimir Levenshtein, who considered this
distance in 1965.
Levenshtein distance may also be referred to as edit distance, although that
term may also denote a larger family of distance metrics known collectively as
edit distance. It isnot closely related to pairwise string alignments.

Figure 3 GIT diff with enabled word diff color option used on a text with multiple

changes in the same section.

5

6

Chapter 1

Algorithms for comparing text

Utilities for comparing texts are used by programmers on a daily basis. Prob-

ably the biggest application of these utilities are version control systems. For

the proper development of large projects, it is important to store all versions of

previous projects as a form of communication among the programmers. Every

additional version of a project is called a revision. Every revision, except for the

first one, originates in the previous one. When the revision needs to be checked

— what has changed — the differences between current revision and the one it

originated from need to be shown.

The three main tools used in comparing text are diff, patch and merge. The

diff serves as a data comparison tool that calculates and displays the differences

between two files. The changes made in a standard format, so that both humans

and machines can understand them, are displayed by the diff. An example of how

colored side-by-side comparison of two files looks like can be seen in Figure 1.1.

The patch utility takes a comparison output produced by the diff and applies the

differences to a copy of the original file, producing a patched version. Diff3 is

used when two people make changes to copies of the same file. It can produce a

merged output that contains both sets of changes and warnings about conflicts.

Figure 1.1 The colored diff in a side-by-side format.

7

Figure 1.2 The colored diff in a context format.

1.1 Diff implementation

The diff produces differences between two files. One way to achieve this is by

computing the edit distance (as seen in Section 1.1.2) using the Wagner–Fischer

algorithm (as seen in Section 1.1.3) and using the output of the Wagner-Fischer

to find a sequence of insertions, substitutions and deletions to get from one text

to another (as seen in Section 1.1.4).

1.1.1 Tokenization

Before we describe algorithms, we need to explain what tokenization and tokens

are. Tokenization is a process of demarcating sections of a string of input char-

acters. Tokenizers are usually designed to use a regular grammar (although it

usually can not be achieved). An output is a list of tokens. Unlike parsing, which

is usually a context-free grammar, the output is an abstract syntax tree. The

parsing results in obtaining more information about the input and it is, certainly,

more complex. We are going to analyze the tokenization more thoroughly in the

Chapter 2.

Parts which are compared in the text are tokens. In edit distance, each char-

acter is a single token. In diff, tokenization is done by splitting text with delim-

iters being newlines. Each line is a single token. Tokens are comparable — it is

possible to determine whether they are equal or not.

8

1.1.2 Edit distance
Let us consider these three editing operations:

• Changing one character to another single character

• Deleting one character from a given string

• Inserting a single character into the given string

Using only these three editing operations we get the most common metric for

edit distance. It is called Levenshtein distance [8]. The term Levenshtein distance

is often used interchangeably with the term edit distance.

Definition 1 (Notation). Let A be a finite string (or sequence) of characters (or
symbols). A⟨i⟩ is the i-th character of string A. A⟨i : j⟩ is the i-th through j-th
characters (inclusive) of A. If i > j, A⟨i : j⟩ = Λ, the null string. |A| denotes the
length (number of characters) of string A. [12]

So A⟨i : j⟩ = A⟨i⟩, A⟨i + 1⟩ . . . A⟨j⟩)

Definition 2 (String edit). An edit operation is a pair (a, b) ̸= (Λ, Λ) of strings of
length less than or equal to 1 and is usually written as a→ b [12]

Definition 3 (Editing operations). String B results from the application of the
operation a→ b to string A, written A⇒ B via a→ b, if A = σaτ and B = σbτ
for some strings σ and τ . We call a→ b a change or substitution operation if a ̸= Λ
and b ̸= Λ; a delete operation if b = Λ; and an insert operation if a = Λ [12].

Let S be a sequence sl, s2, . . . , sm of edit operations (or edit sequence for

short). An S-derivation from A to B is a sequence of strings A0, A1, . . . , Am

where A = A0, B = Am, and Ai−1 ⇒ Ai via si for 1 ≤ i ≤ m. We say S takes

A to B if there is some S-derivation from A to B [12].

Now let γ be an arbitrary cost function which is assigned to each edit opera-

tion a→ b a nonnegative real number γ(a→ b). Extend γ to a sequence of edit

operations S = sl, s2, . . . , sm by letting γ(S) = ∑m
i=1 γ(si). (If m = 0, we define

γ(S) = 0) [12].

Definition 4 (Edit distance). Let γ(A, B) from the string A to the string B be
the minimum cost of all sequences of edit operations which transform A into B.
Formally, γ(A, B) = min{γ(S)|S is an edit sequence taking A to B} [12].

9

1.1.3 Wagner and Fischer algorithm

The Wagner–Fischer algorithm [12] is an algorithm used for finding edit dis-

tance. There are two strings as an input (can be applied to any two lists of items

that can be compared). The computing is based on the following observation.

If we reserve a matrix to hold edit distances between all the prefixes of the first

string and all the prefixes of the second one, then the values in the matrix can

be computed by flood filling the matrix, and thus the distance between the two

full strings can be determined as the last value computed. An example of such

implementation can be observed in Algorithm 1.

Definition 5 (Notation). Let A and B be arrays of tokens and a and b be the tokens.
Define A(i) = A⟨1 : i⟩, B(j) = B⟨1 : j⟩, and D(i, j) = γ(A(i), B(j)), 0 ≤ i ≤
|A|, 0 ≤ j ≤ |B|.

γ(a→ b) is 0 if a equals b otherwise is 1

D(i, j) = min{D(i− 1, j − 1) + γ(A⟨i⟩ → B⟨j⟩),
D(i− 1, j) + γ(A⟨i⟩ → Λ),
D(i, j − 1) + γ(Λ→ B⟨j⟩)}

for all i, j, 1 ≤ i ≤ |A|, 1 ≤ j ≤ |B|.

D(0, 0) = 0; D(i, 0) =
i∑

r=1
γ(A⟨r⟩ → Λ); D(0, j) =

j∑
r=1

γ(Λ→ B⟨r⟩)

1.1.4 Backtrack algorithm to find edit operations in matrix

We can apply edit distance matrix of substrings filled by the Wagner Fischer

algorithm to find edit operations. An example of such implementation can be

seen in Algorithm 1 as a backtrack function. The algorithm starts at the right

bottom cell of the matrix (edit distance between the two full strings). It finds a

path in which the last cell was taken to fill. The path is always nondecreasing

and ambiguous. As an example solution for strings ’ac’ and ’b’ are deletion ’a’

and substitution ’b’ for ’c’. The second possible solution is substitution ’b’ for ’a’

and deletion ’c’. Both solutions are of length 2 and are correct.

10

Algorithm 1 Wagner Fischer algorithm to fill a matrix with edit distances of

substrings. The backtrack algorithm to determine edit operations.

1: procedure Wagner and Fischer(D)

2: D[0, 0]← 0
3: for i← 1, |A| do
4: D[i, 0]← D[i− 1, 0] + γ(A⟨i⟩ → Λ)
5: end for
6: for j ← 1, |B| do
7: D[0, j]← D[0, j − 1] + γ(Λ→ B⟨j⟩)
8: end for
9: for i← 1, |A| do

10: for j ← 1, |B| do
11: m1 ← D[i− 1, j − 1] + γ(A⟨i⟩ → B⟨j⟩)
12: m2 ← D[i− 1, j] + γ(A⟨i⟩ → Λ)
13: m3 ← D[i, j − 1] + γ(Λ→ B⟨j⟩)
14: D[i, j]← min(m1, m2, m3)
15: end for
16: end for
17: end procedure
18: procedure Backtrack(D)

19: i← |A|
20: j ← |B|
21: while i ̸= 0 and j ̸= 0 do
22: if D[i, j] = D[i− 1, j] + γ(A⟨i⟩ → Λ) then
23: i← i− 1
24: print(”Addition : ”, A⟨i⟩)
25: else if D[i, j] = D[i, j − 1] + γ(Λ→ B⟨j⟩) then
26: j ← j − 1
27: print(”Deletion : ”, B⟨j⟩)
28: else
29: i← i− 1
30: j ← j − 1
31: if A⟨i⟩ ≠ B⟨j⟩ then
32: print(”Substitution : ”, A⟨i⟩, B⟨j⟩)
33: end if
34: end if
35: end while
36: end procedure

11

1.2 Merging and applying changes

1.2.1 Patch

The output of the diff is not only for people but also for other programs as well.

A patch is a program that takes an output of a diff and applies it. The utility that

updates text files according to instructions is called a patch. The instructions are

produced by the diff. This may seem to have no use. Comparing files and then

applying changes to the first file, results in forming of the second file. The use

of the patch is to be able to review the output of the diff, adjust or remove some

of the changes and apply them afterwards.

The GNU Patch manual [9] describes the patch algorithm as follows:

"The patch reads instructions and applies them to the file (as seen

in Figure 1.3). As for context diffs, patch can detect when the line

numbers mentioned in the patch are incorrect, and it attempts to

find the correct place to apply each hunk of the patch. A hunk is a

sequence of lines common to both files, interspersed with groups of

differing lines. As a first guess, it takes the line number mentioned

in the hunk, plus or minus any offset used in applying the previous

hunk. If that is not the correct place, the patch makes a forward and

a backward scan for a set of lines to match the context given in the

hunk.

At first, the patch looks for a place where all lines of the context

match. If it cannot find such place, and it reads a context or a unified

diff and the maximum fuzz factor is set to 1 or more, then the patch

makes another scan, ignoring the first and the last line of the context.

If that fails, and the maximum fuzz factor is set to 2 or more, it makes

a scan again, ignoring the first two and the last two lines of context.

It behaves similarly if the maximum fuzz factor is larger.

If the patch cannot find a place to install a hunk of the patch, it

writes the hunk out to a reject file. The line numbers on the hunks in

the reject file may be different from those in the patch file: they show

the approximate location where the patch thinks the failed hunks

belong in the new file rather than in the old one.

The patch usually produces correct results, even when it makes

many guesses. However, the results are guaranteed only when the

patch is applied to an exact copy of the file that the patch was gen-

erated from."

12

Algorithm 2 Patch pseudocode.

1: hunks← parseContext()
2: file← readF ile()
3: for all h← hunks do
4: p← position(h)
5: if h.match(file.atPosition(p)) then
6: applyContext(h, file)
7: else if h.match(neighborhood(file, p)) then
8: applyContext(h, file)
9: else

10: saveRejectedHunk(h)
11: end if
12: end for

Line1
Line2
Line3

File A

Delete Line1

Insert Line4 at the end

Patch file for file A

Line2
Line3
Line4

Result

Figure 1.3 Simplified patching.

13

1.2.2 Merging patches
A more interesting phenomenon than patching is merging, which is a funda-

mental operation that reconciles multiple changes made to a version-controlled

collection of files. Most often, it is necessary when a file is modified to two

independent branches and is subsequently merged. The result is a single collec-

tion of files containing both sets of changes. In some cases, the merge can be

performed automatically. Multiple changes made on the same place are called

a conflict. Merging conflicts cannot be performed automatically, as a program

does not know what the result should look like.

1.2.3 Three-way merge
One possible way of merging is using a three-way merge algorithm. Two files

that merge and their common ancestor (base) are considered. All three files are

compared and the result consists of:

Definition 6 (Notation). We assume given some set of atoms A. (In practice, these
might be lines of text, as in GNU diff3, or they could be words, characters, tokens
etc.). We write A* for the set of lists with elements drawn from A and use variables
J, K, L, O, A, B and C to stand for elements of A*. If L is a list and k ∈ 1, . . . , |L|,
then L[k] denotes the k-th element of L. A span in a list L is a pair of indices [i..j]
with 1 ≤ i, j ≤ |L| [7].

Definition 7 (Configuration). A configuration is a triple (A, O, B) ∈ A*×A*×
A*. We usually write configurations in the more suggestive notation (A ← O →
B) to emphasize that O is the archive from which A and B have been derived [7].

The first step of diff3 is to call a two-way comparison subroutine on (O, A)
and (O, B) to compute a non-crossing matching MA between the indices of O
and A–that is, a boolean function on pairs of indices from O and A such that if

MA[i, j] = true then (a) O[i] = A[j], (b) MA[i′, j] = false and MA[i, j′] = false
whenever i′ ̸= i and j′ ̸= j, and (c) MA[i′, j′] = false whenever either i′ < i
and j′ > j or i′ > i and j′ < j–and a non-crossing matching MB between the

indices of O and B. We treat this algorithm as a black box, simply assuming (a)

that it is deterministic, and (b) that it always yields maximum matchings [7].

Definition 8 (Chunk). A chunk (from A, O, and B) is a triple H = ([ai..aj],
[oi..oj], [bi..bj]) of a span in A, a span in O, and a span in B so that at least one
of the three is non-empty. The size of a chunk is the sum of the lengths of all three
spans. Write A[H] for A[ai..aj] ∈ A*, and similarly O[H] = O[oi..oj] and B[H] =
B[bi..bj] [7].

14

Definition 9 (Stable chunk). A stable chunk is a chunk in which all three spans
have the same length and corresponding indices are matched in all three — i.e., a
hunk ([a..a + k − 1], [o..o + k − 1], [b..b + k − 1]) for some k > 0, with MA[o +
i, a + i] = MB[o + i, b + i] = true for each 0 ≤ i < k. That is, a table chunk
corresponds to a span in O that is matched in both MA and MB [7].

Definition 10 (Unstable chunk). An unstable chunk is one that is not stable. An
unstable chunk H is classified as follows: [7]

H is changed in A if O[H] = B[H] ̸= A[H]
H is changed in B if O[H] = A[H] ̸= B[H]
H is falsely conflicting if O[H] ̸= A[H] = B[H]
H is conflicting if O[H] ̸= A[H] ̸= B[H]

An example with all types of chunks can be seen in Figure 1.4

Algorithm 3 Three-way merge algorithm [7].

1. Initialize lO = lA = lB = 0. Find matching MA and MB .

2. Find the least positive integer i so that either MA[lO + i, lA + i] = false or

MB[lO + i, lB + i] = false. If i does not exist, then skip to step 3 to output

a final stable chunk.

(a) If i = 1, then find the least integer o > lO such that there exist indices

a, b with MA[o, a] = MB[o, b] = true. If o does not exist, then skip

to step 3 to output a final unstable chunk. Otherwise, output the

(unstable) chunk. C = ([lA + 1..a− 1], [lO + 1..o− 1], [lB + 1..b− 1])
(b) If i > 1, output the (stable) chunk C = ([lA+1..lA+i−1], [lO+1..lO+

i− 1], [lB + 1..lB + i− 1]), Set lO = lO + i− 1, lA = lA + i− 1, lB =
lB + i− 1, and repeat step 2.

3. If (lO < |O|orlA < |A|orlB < |B|), output a final chunk C = ([lA +
1..|A|], [lO + 1..|O|], [lB + 1..|B|]).

15

A4

B5

C3

D2

E6

Base file O

A4

B6

C3

D3

E7

Merging file A

A4

B5

C4

D4

E7

Merging file B

A4

B6
C4
?
E7

Result

Figure 1.4 The three-way merge with the base file O and two files A and B. The

result is composed of: A4, a stable chunk. B6 changed in A. C4 changed in B.

Next, there is a truly conflicting chunk. E7 is a falsely conflicting chunk.

16

Chapter 2

Custom tokenization support

There are many different versions of diffs. They differ in the application and the

way of displaying changes. Some of them are designed for finding differences

in specific file formats. HTML diff tries to compare not only the source codes

but also the appearance of the final webpage. XML diffs compare the hierarchi-

cal structure of XML documents. There is a word comparing option in the Gits

implementation of the diff (as seen in Figure 2.1) but it lacks the patch. None of

the tools mentioned above allow the user to specify the tokenization. The user

specifiable tokenization has an advantage in its wide variety of applications. It

can result in a universal diff that could then handle any programming language

and text format.

There are many possible existing solutions for the user-specifiable imple-

mentation of the tokenization process: regular expressions with capture groups,

lexical analyzer generators such as the Lex and the Flex. In this thesis we are

going to design and implement our own solution.

Terms such as automaton, regular grammar, (non)deterministic finite state

machine etc. are used in this section. Their definitions can be found in a book

by Hopcroft, Motwani, and Ullman [6].

2.1 Lexing specification
Most tokenizers are designed to use a regular grammar. Tokenizers are some-

times referred to as lexers. Although they share very similar properties, the dif-

ference between them is that a lexer usually attaches an extra context to the

tokens. We are going to consider regular expression [6] and try to simplify the

defining of a more complex tokenization using a deterministic finite state ma-

chine with regular expression as edges. Let us call it Regex Edge Deterministic

Finite Automaton (REDFA). The definition of REDFA is similar to the definition

17

Figure 2.1 The git diff with enabled word option.

of the deterministic finite automaton but with an elaborate transition function.

An example of REDFA can be seen in Figure 2.2.

Definition 11. Definition of Regex Edge Deterministic Finite Automaton (REDFA)
M is a 5-tuple, (Q, Σ, R, γ, q0, F), consisting of:

• a finite set of states Q

• a finite set of input symbols called the alphabet Σ

• a finite set of regular expressions, search patterns over alphabet R

• a finite set of tuples (q1, r, 12) γ, where q1, q2 ∈ Q and r ∈ R

• an initial state q0 ∈ Q

• a set of accept states F ⊆ Q

Let w, a1, a2, . . . , an be strings over the alphabet Σ. w = a1a2 . . . an. The automa-
ton M accepts the string w if a sequence of states, s0, s1, . . . , sn, exists in Q with
the following conditions:

1. r0 = q0

2. r ∈ R : r accepts (is matching) ai ∧ (ai, r, ai+1) ∈ γ

3. rn ∈ F

Theorem 1. Any language accepted by REDFA is a regular language.

18

state1

state2

state3

state4

a(b|c)

a*b

(c
|a

){
2}

abc

a
*
c
*
b

Figure 2.2 The automaton where edges are regular expressions.

Proof. At first, let us prove that a finite state machine with the edges as regular

expression still fulfills the criteria for being a finite state machine.

We start with converting the regular expression to a NFA (nondeterministic

finite automaton). This is called the Thompson algorithm [10]. The algorithm

works recursively by splitting an expression into its constituent subexpressions,

from which the NFA will be constructed using a set of rules. The constants and

operations, which define a basis for the construction of the regular expression,

are going to be used. The elementary constants are an empty expression ϵ and

an expression with one symbol of alphabet. Operations are a union expression

|, a concatenation expression and The Kleene star expression *. Firstly we con-

vert elementary constants (as seen in Figure 2.3) and expand the constants with

regular expression operations (as seen in Figure 2.4). Now we have an NFA in-

stead of a regular expression. We can replace all regular expression edges in our

REDFA with the NFA. Then we create an epsilon edge (empty expression ϵ) from

the starting node of REDFA edge to the starting node of NFA created from the

regular expression and also create epsilon edges starting in all the ending nodes

of the created NFA to the ending node of the REDFA edge.

As for the next step, ordered edges are transformed to be a part of a nonde-

terministic finite-state machine, starting from the highest priority to the lowest

priority edge for each node, unioning the complement with all edges with lower

priority. The complement of automaton is done by reversing accepting and non

accepting states. The complement of a regular expression a(b|c) is shown in Fig-

ure 2.6.

A regular finite state machine with ordered edges and edges as regular ex-

pressions (REDFA) is proven to accept regular language.

19

1 2

The NFA representing an empty string

ϵ

1 2

The NFA representing a

a

Figure 2.3 Elementary constants — empty and one character long.

1 2

The union operator a|b

a

b 1 2 3

Concatenation ab
a b

1 2 3 4

The Kleene closure a*
ϵ a ϵ

ϵ

ϵ

Figure 2.4 Converting a basic regular expression operator into NFA.

state 1 state 3

starting

state

state 2

ending

state

ending

state

ϵ a

b

c

ϵ

ϵ

Figure 2.5 Inserting a regular expression a(b|c) into an automaton.

20

s1 s2

s3

s4

a

b

c

Figure 2.6 The complement of a regular expression a(b|c) converted into an NFA.

2.1.1 Specifying REDFA using strings
Let us show how REDFA can be used to make user-specifiable tokenization easier.

The usage is similar to using a simple regular expression. Capture groups are

used to define tokens and anything that is not in any capture group is considered

a whitespace.

Before showing the differences of a simple regular expression and REDFA we

need to decide how to define REDFA. We can easily define REDFA by specifying a

set of 3-tuples γ, 3-tuples consisting of (starting node, regular expression, ending

node). This is sufficient to define REDFA:

• Q — All nodes in rules

• Alphabet Σ — same as the alphabet regular expression use

• R — All regular expressions in rules

• γ — It is the same as rules

• q0 — Starting node of the first rule

• F — All nodes (F = Q)

The example of inputs used as a simple regular expression and REDFA can be

seen in Table 2.1. Simple regular expression is shorter but it becomes unreadable

in more complicated rules. On the other hand, REDFA definitions are easily read-

able and extendable. It is possible to use REDFA as a simple regular expression

— an automaton with only one node and an edge going into itself.

21

Automaton with regular expression as edges Regular expression

Each word as token

word,(\s*),whitespace (\s*)\S*

whitespace,\S*,word

Every other word in every other line

tword,(\s*),word (?:(\s*)\S*\s*\S*)*\n.*\n

word,\S*\n,emptyline

word,\S*,tword

emptyline,.*\n,tword

Table 2.1 Comparison of the definitions of Regular expression and Regex Edge

Deterministic Finite Automaton (REDFA).

a

b

c

a

b

d

t 1

w \n

t 2

w \n

t- 3

t+ 4

a b c

a b d

Figure 2.7 A simple example that the patching file with modified whitespaces is

successful.

2.2 Whitespace handling

Whitespaces in this context are everything that is not compared in the text. The

whitespaces in line-oriented diff are new lines, in word diff the whitespaces are

the actual whitespaces (spaces, tabs, newlines etc.). In the user-defined tokeniza-

tion the whitespaces are parts of the text that are between the tokens. In the

line-oriented diff, whitespaces do not need to be handled because all the whites-

paces are always the same. In the user-specified tokenization whitespaces can

be anything, thus they need to be handled. A simple example why whitespaces

needs to be handled can be seen in Figure 2.7.

Whitespace changes between tokens which are not changed nor shown

within the context are not found by the diff and the patch. The whitespace from

the source file is going to be used as shown in Figure 2.8 and the change is not

22

t1

ws1

t2

Source file

t1

ws2

t2

Target file

empty

diff

t1

ws1

t2

After patch

Figure 2.8 The change of a whitespace between non changing tokens. The diff

is not able to find such change and the patch cannot patch it.

detected. Only whitespace changes that are around the token (in the context)

changes are found. When inserting a token, the whitespaces around the token

being inserted, are inserted as well (as seen in Figure 2.9). When deleting a to-

ken, the whitespaces around the token, that is being deleted are deleted too and

the whitespace from the target file is inserted as shown in Figure 2.10. During

tokenizing, this needs to be considered. It is advised not to leave crucial parts

of the text as whitespace because the program is not able to determine which

whitespaces are to be used or deleted.

When the whitespace change is shown in a context but it is not directly lo-

cated next to a token change, it is considered the same way as whitespace changes

on a different place where they are not a part of the patch file. Therefore, the

change is not applied. An example is shown in Figure 2.12.

2.2.1 Resolving whitespace conflicts

A conflict occurs when a whitespace in a patch file does not match the whitespace

of the file that patch is applied to. When tokens in context match but whitespaces

do not, the hunk can not be rejected as whitespaces are not significant. The

whitespaces in patch files are used in the result. This example can be seen in

Figure 2.11 — for deletion case when the diff is running, the source file has ws3

between t1 and t2 and ws4 between t2 and t3. So that the information about the

change from ws1 to ws2 in not lost, the whitespaces are saved into a separate

whitespace file, for insertion case when the diff is running, the source file has

ws4 between t1 and t3, ws4 was changed to ws1 before the patch was running,

so ws1 is saved into a whitespace file not to lose the information about having it.

If the whitespaces do not change, the information about their deletion is saved

23

t1

t3

Source file

t1

ws2

t2

t3

Target file

t1

+ws2

+t2

t3

diff

t1

ws2

t2

t3

After patch

t1

ws1

t3

Source file

t1

ws2

t2

ws1

t3

Target file

t1

+ws2

+t2

ws1

t3

diff

t1

ws2

t2

ws1

t3

After patch

Figure 2.9 Insertion of token t2.

t1

ws1

t2

ws2

t3

Source file

t1

ws3

t3

Target file
t1

-ws1

-t2

-ws2

+ws3

t3

diff

t1

ws3

t3

After patch

Figure 2.10 Deletion of token t2.

24

t1

ws1

t2

ws2

t3

Source file

t1

-ws3

-t2

-ws4

+ws5

t3

Patch file

t1

ws1

t2

ws2

t3

Whitespaces

t1

ws5

t3

After patch

t1

ws1

t3

Source file

t1

-ws4

+ws2

+t2

+ws3

t3

Patch file

t1

ws1

t3

Whitespaces

t1

ws2

t2

ws3

t3

After patch

Figure 2.11 Deletion and insertion with different whitespaces in the patch file.

in the patch file, and thus there is no need for them to be stored again.

25

t1

ws1

t2

ws2

t3

Source file

t1

-ws1

+ws3

t2

-ws2

-t3

+ws4

+t4

Patch file

t1

ws1

t2

ws4

t4

After patch

Figure 2.12 Different whitespaces in the context but not directly next to the

token change. ws1 is not changed into ws3 despite the fact that the patch knows

about the change.

26

Chapter 3

Implementation and results

Three utilities, TDiff, TPatch and TDiff3, have been implemented. They were

programmed using the C++ programming language and the C++17 standard. In

this chapter, the structure of the program and its implementation details are go-

ing to be introduced. After that we are going to show the results of a benchmark

to see if it can handle larger files in reasonable time. At the end, we are going to

show many different aplications where having a user specifiable tokenization in

the diff is superior to almost all the other diff utilities.

3.1 Program structure
The program is divided into 3 standalone executables and one library which is

used by all the projects. In every project there is a Main file and an InputOutput

file. The Main is used for parsing arguments and calling appropriate methods

from the InputOutput file. In the InputOutput file there is a logic of the program

and it is calling the shared library methods. The program structure can be seen

in Figure 3.1.

3.1.1 Shared library
The shared library contains 3 header files and their implementation.

• Tokenizer

The Tokenizer is used for parsing the text into tokens. There are classes

used for the definition of automaton and its edges. It also contains the

definition of the parsed text which consists of the tokens and the text that

was tokenized. Methods for building the automaton from the rules and for

tokenizing the text with the automaton are implemented as well.

27

Tokenize text

Compute levensthein matrix

Find edits operation in matrix

Shared library

TDiff

Parse arguments

Main

Find diff

Print diff

InputOutput

TPatch

Parse arguments

Main

Parse patch file

Apply patch file

InputOutput

TDiff3

Parse arguments

Main

Find diff in 3 files

Merge

InputOutput

Figure 3.1 The program structure.

• Differentiate

The Differentiate is used for finding the differences in two tokenized texts.

It contains the definition of edit distance matrix, file differences and the

difference. The file difference contains information about differentiating

two files, paths to those files, their contents, the tokenized content and

differences between them. One difference contains its type and indexes of

tokens that are compared. There are methods for the Wagner and Fischer

algorithm to create a matrix from the tokens and to backtrack the matrix

to find the differences.

• Utils

The Utils contains other methods and classes — a method that takes two

paths to files and an automaton definition, creating an automaton, reading

files, comparing files and returning them filled into the file difference class,

a method for replacing whitespaces (tab, newline) for printable characters

and vice versa, a method for splitting one argument which contains all the

rules of automaton into separate rules and a method to group the diffs that

are near each other within the context.

3.1.2 TDiff
TDiff is a program which compares two files or directories according to the given

rules and prints the differences to a standard output. The Main parses arguments

28

and calls the methods from InputOutput file. The InputOutput contains a method

for comparing folders and files and for printing differences.

The format for executing the diff is tdiff from to [options]. From and

to must be paths to either files or directories.

Below, there is a summary of all the options that the Token-aware diff accepts.

Standard long and short arguments can be passed to the diff. The Getopt [3] is

used to parse the input arguments.

–automaton,-a AT

Use AT to build an automaton to tokenize the

input. The rules are in a format starting state,

regular expression, ending state. The rules

are separated by a semicolon. The semicolon

in the rules needs to be escaped with a back-

slash.

–context,-C NUM Output NUM (default 3) lines of context.

–debug, -d Tokenize file and print the tokens.

–help, -h Display help.

–file-automaton, -f PATH

Read the rules from PATH. The rules are de-

limited by newlines.

3.1.3 TPatch
TPatch is a program which applies patches on a file. The input is a patch file

which contains information about which file is going to be patched and what

changes are going to be applied. It applies the changes, rejected changes and

whitespaces that were deleted are then saved to separate files. The Main parses

arguments and calls methods from the InputOutput file. The InputOutput con-

tains a method to parse the patch file and apply the changes.

The format for running the patch is tpatch patch-file [options]. The

patch file must be in the format described further below.

–ignorews,-i

Ignore whitespaces during patching. Only

the tokens are inserted and deleted.

–output, -o PATH

Write output to PATH instead of the path

specified in the patch.

–help, -h Display help.

3.1.4 TDiff3
TDiff3 is a program that reads 3 files and merges them together. The Main parses

arguments and calls the method from the InputOutput file. The InputOutput

contains a method of comparing three files, merging them and to printing the

result.

29

The format for running the diff3 is tdiff3 mine base yours [options].

Mine, base and yours are the paths to three files.

–automaton,-a AT

Use AT to build an automaton to tokenize the

input. The rules are in a format starting state,

regular expression, ending state. The rules

are separated by a semicolon. The emicolon

in the rules needs to be escaped with a back-

slash.

–file-automaton, -f PATH

Read the rules from PATH. The rules are de-

limited by newlines.

–help, -h Display help.

3.2 Data formats

3.2.1 Tokenizer specification
To define the REDFA automaton we use something that has already been men-

tioned in Section 2.1.1. The automaton is going to be defined as an ordered set

of rules (edges). Each rule has a starting state, regular expression and an ending

state. To tokenize the input, capture groups are used. It is possible for a capture

group not to end in one edge. The token starts in one edge and ends in another

one. This is achieved by allowing the regular expression to have an incomplete

group structure. As an example we consider rules 1,a(bc,2;2,d)aa,1 and in-

put abcdaa. The tokenization is going to be successful with the application of

these rules and the input will result in one token bcd.

3.2.2 Patch file format
The output of the diff can be seen in Figure 3.2. On the first two lines there is

a path to the source and the target files. On the third line there is a definition

of the automaton delimited by newlines. After that there are hunks. All hunks

start with a line consiting of asterisks. It is followed by two lines with indexes

of tokens of a source and a target used in the hunk. The hunk is similar to the

hunk in GNU patch.

When a line should be deleted there is a minus at the beginning of the line.

The same is applied with a plus and addition of a line. Space means that ev-

erything is on a place where it is supposed to be and it remains as it is. In the

token-aware patch there are tokens and whitespaces instead of the lines but the

notions are the same in both patches. To differentiate between the whitespaces

and the tokens we use letters ’w’ and ’t’. After ’w’ or ’t’ we put ’+’, ’-’ or

30

Figure 3.2 Example of a token-aware diff tokenized into lines.

’ ’ as a second character to determine the type of the operation in the patch.

All these can be seen in Figure 3.2.

3.3 Performance and use cases

3.3.1 Tokenization performance
The benchmarks are done using Ubuntu 18.04.4 on the virtual machine with the

host running Windows 10 1903. The tool for measurements is linux time [11]

utility. Presented results are always mean time of ten runs with the slowest run

being discarded. We are going to redirect the output to /dev/null as writing out-

put can add overhead. The text will be generated lorem ipsum.

To measure the tokenization time we are going to use the diff debug option.

With this option only tokenization is going to run. The results can be seen in

Table 3.1. From the results we can conclude three things:

• For the same automaton, execution time depends linearly on the length of

the text.

• For almost the same automaton (only capture group changed), the execu-

tion time depends on the number of tokens.

• When an incorrect automaton is used, it can heavily affect the perfor-

mance.

To sum up, the tokenization runs reasonably quickly even on larger files, how-

ever, not optimal definition of REDFA (both regular expression itself as well as

DFA) can slow down a great deal of the execution time.

31

File size Automata definition Mean time

200000 words~1.4MB

1,(\S*\s*),1

0.125s

2000000 words~13.5MB 1.274s

200000 words~1.4MB 1,(\S*\s*),2;

2,\S*\s*,1

0.088s

2000000 words~13.5MB 0.864s

200000 words~1.4MB 1,(\S+),1;

1,\s*,1

0.190s

2000000 words~13.5MB 1.901s

Table 3.1 The tokenization benchmark.

In [-mathematical-]
+information+ theory,
linguistics and computer
science, the Levenshtein
distance is a string
metric for measuring the
difference between two
sequences. Informally,
the Levenshtein distance
between two words is the
minimum number of
single-character edits
(insertions, deletions or
substitutions) required
to change one word into
the other. It is named
after the [-Russian-]
+Soviet+ mathematician
Vladimir Levenshtein, who
considered this distance
in 1965.

*** 1,4 ****
--- 1,4 ----
t In
t- information
t+ mathematical
t theory,
t linguistics

*** 51,55 ****
--- 51,55 ----
t after
t the
t- Soviet
t+ Russian
t mathematician
t Vladimir

Figure 3.3 GNU wdiff and tdiff.

3.3.2 Use case
First, let us compare the long section we have already mentioned in the intro. As

we can see in Figure 3.3, both GNU diff and tdiff produce precise and readable

output, however only tdiff is capable of running tpatch in this format.

Next, let us show a simple case where patching using the GNU utilities fails,

but tdiff and tpatch are able to handle it. Firstly, let us consider two simple c files

with small changes (as can be seen in Figure 3.4). Then we run diff between this

two files to produce the patching file. The outputs of diffs can be seen in Fig-

ure 3.5. As we can observe, the tdiff output is more verbose. Let us see what

happens when we change the formatting of the source file (the file we are apply-

ing the patch to). The changed file and the tpatch result can be seen in Figure 3.6.

The GNU patch fails to apply anything to the changed file, on the other hand,

the tpatch handles it correctly.

Another example we can offer is a three-way merge. Considering two files

32

include <stdio.h>

int add(int a,int b)
{

return a + b;
}

int main ()
{

int a = 5;
int b = 4;

printf ("Hello , World!");
printf ("%d",add(a, b));
return 0;

}

include <stdio.h>

int add(int a,int b,int c)
{

return a + b + c;
}

int main ()
{

int a = 5;
int b = 4;
int c = 6;

printf ("Hello , World!");
printf ("%d",add(a,b,c));
return 0;

}

Figure 3.4 Two C codes with small changes.

already mentioned earlier in Figure 3.4, we add the third file to those 2 with

changed Hello world to Hi. The GNU Diff3 fails to produce merged output of

these 3 files. However, the tdiff3 is capable of doing a correct merge as can be

seen in Figure 3.7.

33

*** 9,10 ****
--- 9,13 ----
w
t b
t+ ,
w+
t+ int
w+
t+ c
t)

*** 15,16 ****
--- 18,21 ----
w
t b
w+
t+ +
w+
t+ c
t ;

*** 32,33 ****
--- 37,43 ----
t ;
w+ \n
t+ int
w+
t+ c
w+
t+ =
w+
t+ 6
t+ ;
w \n\n
t printf

*** 44,45 ****
--- 54,57 ----
w
t b
t+ ,
w+
t+ c
t)

@@ -2,5 +2,5 @@

-int add(int a, int b)
+int add(int a, int b, int c)
{

- return a + b;
+ return a + b + c;
}

@@ -11,5 +11,6 @@
int b = 4;

+ int c = 6;

printf("Hello, World!");
- printf("%d",add(5, 4));
+ printf("%d",add(5, 4, 6));

return 0;

Figure 3.5 The token aware diff and the GNU diff output.

34

i n c l u d e < s t d i o . h>

i n t add (i n t a , i n t b) {

r e t u r n a+b ;

}

i n t main () {

i n t a = 5 ;

i n t b = 4 ;

p r i n t f (" He l lo , World ! ") ;

p r i n t f ("%d " , add (a , b)) ;

r e t u r n 0 ;

}

i n c l u d e < s t d i o . h>

i n t add (i n t a , i n t b , i n t c) {

r e t u r n a+b + c ;

}

i n t main () {

i n t a = 5 ;

i n t b = 4 ;

i n t c = 6 ;

p r i n t f (" He l lo , World ! ") ;

p r i n t f ("%d " , add (a , b , c)) ;

r e t u r n 0 ;

}

Figure 3.6 tdiff is able to apply patches even to reformatted code. Left: Code

from Figure 3.4 with changed coding style. Right: Token-aware patching is able

to apply the patches from Figure 3.5 even in the reformatted code.

i n c l u d e < s t d i o . h>

i n t add (i n t a , i n t b)

{

r e t u r n a + b ;

}

i n t main ()

{

i n t a = 5 ;

i n t b = 4 ;

p r i n t f (" HI ! ") ;

p r i n t f ("%d \ n " , add (a , b)) ;

r e t u r n 0 ;

}

i n t add (i n t a , i n t b , i n t c)

{

r e t u r n a + b + c ;

}

i n t main ()

{

i n t a = 5 ;

i n t b = 4 ;

i n t c = 6 ;

p r i n t f (" HI ! ") ;

p r i n t f ("%d \ n " , add (a , b , c)) ;

r e t u r n 0 ;

}

Figure 3.7 Different changes in the original file from Figure 3.4 can be merged

with the other patches using tdiff3. Left: The new modification. Right: Merged

patches applied to the file.

35

36

Conclusion

In this thesis, we have designed the user-specifiable tokenization and imple-

mented tools for differentiating text files using the user-specifiable tokenization.

In the Chapter 1 we have discussed the text difference handling. We have

described the Wagner and Fischer algorithm for text comparing, algorithms for

patching and merging three files.

In the Chapter 2 we have designed a solution for generic tokenization. We

have created our own form of lexer. We also proposed a way of handling whites-

pace conflicts when working with generic tokenization.

In the Chapter 3 we have described the implementation of a program, the

specification of defining the tokenizer and the tdiff output format to be able to

consider whitespaces and be readable at the same time. We have also measured

the performance of tdiff, verifying its sufficient fastness, and the performance

scales as predicted by the asymptotic complexities of the used algorithms.

37

38

Bibliography

[1] Beyond Compare. Web page. 2020.url: https://www.scootersoftware.
com/.

[2] Comparison of file comparison tools. Web page. 2020. url: https://en.
wikipedia.org/wiki/Comparison_of_file_comparison_tools.

[3] Getopt manual page. Web page. 2017. url: https : / / www . gnu . org /
software/libc/manual/html_node/Getopt.html.

[4] Git Diff. Web page. 2020. url: https://git-scm.com/docs/git-diff/.

[5] GNU Wdiff. Web page. 2020. url: https://www.gnu.org/software/
wdiff/.

[6] John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman. Introduction
to Automata Theory, Languages, and Computation (3rd Edition). Boston,

MA, USA: Addison-Wesley Longman Publishing Co., Inc., 2006. isbn:

0321455363.

[7] Sanjeev Khanna, Keshav Kunal, and Benjamin Pierce. “A Formal Investi-

gation of Diff3”. In: Dec. 2007, pp. 485–496. doi: 10.1007/978-3-540-
77050-3_40.

[8] Vladimir I Levenshtein. “Binary codes capable of correcting deletions, in-

sertions, and reversals”. In: Soviet physics doklady. Vol. 10. 8. 1966, pp. 707–

710.

[9] D. MacKenzie, P. Eggert, and R. Stallman. Comparing and Merging Files
with Gnu Diff and Patch. Network Theory, 2003. isbn: 9780954161750. url:

https://books.google.cz/books?id=oIINAAAACAAJ.

[10] Ken Thompson. “Programming Techniques: Regular Expression Search

Algorithm”. In: Commun. ACM 11.6 (June 1968), 419–422. issn: 0001-0782.

doi: 10.1145/363347.363387. url: https://doi.org/10.1145/
363347.363387.

[11] time - Linux manual page. Web page. 2020. url: https://man7.org/
linux/man-pages/man1/time.1.html.

39

https://www.scootersoftware.com/
https://www.scootersoftware.com/
https://en.wikipedia.org/wiki/Comparison_of_file_comparison_tools
https://en.wikipedia.org/wiki/Comparison_of_file_comparison_tools
https://www.gnu.org/software/libc/manual/html_node/Getopt.html
https://www.gnu.org/software/libc/manual/html_node/Getopt.html
https://git-scm.com/docs/git-diff/
https://www.gnu.org/software/wdiff/
https://www.gnu.org/software/wdiff/
https://doi.org/10.1007/978-3-540-77050-3_40
https://doi.org/10.1007/978-3-540-77050-3_40
https://books.google.cz/books?id=oIINAAAACAAJ
https://doi.org/10.1145/363347.363387
https://doi.org/10.1145/363347.363387
https://doi.org/10.1145/363347.363387
https://man7.org/linux/man-pages/man1/time.1.html
https://man7.org/linux/man-pages/man1/time.1.html

[12] Robert A Wagner and Michael J Fischer. “The string-to-string correction

problem”. In: Journal of the ACM (JACM) 21.1 (1974), pp. 168–173.

40

Appendix A

Using tdiff

To compile and run the software, you need:

1. C++ compiler with version at least 8.1 (filesystem)

2. POSIX mmap #include <sys/mman.h>

3. POSIX getopt #include <getopt.h>

4. External library RE2 (contained in debian package libre2-dev). On

Debian-based Linux systems (such as Ubuntu), you may install this depen-

dency with:

git clone https://code.googlesource.com/re2
cd re2
make
make test
make install
make testinstall

To unpack and compile the software, proceed as follows:

unzip tdiff.zip
cd tdiff/tdiff
make

The following example shows the usage of tdiff and tpatch with tokens being

printable characters delimited by whitespace characters and automaton specified

in a command line:

tdiff file1 file2 -a '1,(\S*)\s*,1' > diffoutput
tpatch diffoutput

41

An example below presents the usage of tdiff3 with automaton specified in

the file automatondef is:

tdiff3 mine old your -f automatondef

With automatondef being the file with following content:

1,(\S*),2
2,(\s*),1

A different example displays automaton definition for simple c files (note that

comments are not supported and for diff3 it is necessary to put the first rule into

the capture group):

ws,[\r\n\t]*,wend
wend,(#include [^ \r\n\t]*),ws
wend,([^ \r\n\t,;(){}+*=&%\-!|^<>~\[\]\/\\"]+),ws
wend,([,;(){}+*=&%\-!|^<>~\[\]\/\\]),ws
wend,("(?:[^"\\\n]|\\.|\\\n)*"),ws

42

	Introduction
	Algorithms for comparing text
	Diff implementation
	Tokenization
	Edit distance
	Wagner and Fischer algorithm
	Backtrack algorithm to find edit operations in matrix

	Merging and applying changes
	Patch
	Merging patches
	Three-way merge

	Custom tokenization support
	Lexing specification
	Specifying REDFA using strings

	Whitespace handling
	Resolving whitespace conflicts

	Implementation and results
	Program structure
	Shared library
	TDiff
	TPatch
	TDiff3

	Data formats
	Tokenizer specification
	Patch file format

	Performance and use cases
	Tokenization performance
	Use case

	Conclusion
	Bibliography
	Using tdiff

