
BACHELOR THESIS

David Nepožitek

Recommender systems for fashion
outfits

Department of Software Engineering

Supervisor of the bachelor thesis: Mgr. Ladislav Peška, Ph.D.
Study programme: Computer Science

Study branch: General Computer Science

Prague 2020

I declare that I carried out this bachelor thesis independently, and only with the
cited sources, literature and other professional sources. It has not been used to
obtain another or the same degree.
I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Sb., the Copyright Act, as amended, in particular the fact that the
Charles University has the right to conclude a license agreement on the use of this
work as a school work pursuant to Section 60 subsection 1 of the Copyright Act.

In date .
Author’s signature

i

I would like to thank my supervisor Mgr. Ladislav Peška, Ph.D. for his continuous
guidance, suggestions and advice that helped me to finish this thesis. I would
also want to thank my family and friends for their support during the studies.

ii

Title: Recommender systems for fashion outfits

Author: David Nepožitek

Department: Department of Software Engineering

Supervisor: Mgr. Ladislav Peška, Ph.D., Department of Software Engineering

Abstract: Outfit recommendation is a task of suggesting fashion products that
complement a given set of garments. Traditional recommender systems rely pri-
marily on similarities between items or users; however, that is not sufficient for
a recommendation of complementary products. Thus, outfit recommendation
systems use machine learning techniques to learn more subtle relations between
items. In this thesis, we explore the possibility of employing recent natural lan-
guage processing approaches in outfit recommendation. We propose a novel ar-
chitecture based on the Transformer, and we evaluate the model on standard
datasets. We show that our approach is capable of learning some relations be-
tween items. However, its performance does not exceed the state-of-the-art mod-
els.

Keywords: recommender systems, fashion, natural language processing

iii

Contents

Introduction 3

1 Recommender systems 5
1.1 Main Concepts . 5

1.1.1 Problem Definition . 5
1.1.2 Goals and Challenges . 6
1.1.3 Feedback . 7

1.2 Basic Recommendation Methods 7
1.2.1 Collaborative . 7
1.2.2 Content-Based . 9
1.2.3 Knowledge-Based . 10
1.2.4 Hybridization . 12

2 Natural Language Processing 14
2.1 Attention and Transformer-based Models 14

2.1.1 Encoder-Decoder Models 14
2.1.2 Attention . 15
2.1.3 Transformer . 16
2.1.4 Bert . 19

3 Related Work 21
3.1 Visual Attributes . 21
3.2 Recommendation of Complementary Items 21

3.2.1 Classification of Outfit Recommenders 24
3.3 Datasets . 25

3.3.1 Maryland Polyvore . 26
3.3.2 Polyvore Outfits . 27

4 Our approach 29
4.1 Model . 29

4.1.1 Architecture . 29
4.2 Training . 31
4.3 Discussion . 32

4.3.1 Why Self-Attention . 32
4.3.2 Overall Design . 33
4.3.3 Encoder-only Architecture 33
4.3.4 Comparison with Other Approaches 33

5 Implementation 35
5.1 Used Technologies . 35
5.2 Module Structure . 35
5.3 Input Pipeline . 35
5.4 Model . 36

5.4.1 Preprocessor . 36
5.4.2 Encoder . 37

5.5 Training . 37

1

6 Evaluation 39
6.1 Maryland Polyvore . 39

6.1.1 Implementation Details . 40
6.1.2 Results . 40

6.2 Polyvore Outfits . 41
6.2.1 Implementation Details . 41
6.2.2 Results . 41

6.3 Hyperparameters and Modifications 42
6.3.1 Model Size . 43
6.3.2 Category Embedding . 43
6.3.3 Category Attention . 44
6.3.4 Number of Heads . 44

7 Discussion 46
7.1 Unsuccessful Modifications . 46
7.2 Future Work . 47

Conclusion 49

Bibliography 50

List of Figures 57

List of Tables 58

List of Abbreviations 59

A Attachments 60
A.1 Electronic Attachment . 60

2

Introduction
Outfit recommendation is a task that can be defined as follows: find such fash-
ion products that they match a given set of garments, and together they form
a matching outfit. That can be useful for online retailers or as a tool that sug-
gests items from personal wardrobes. Consider a user that is looking for shoes
at an online shop. If they have already some products in the shopping cart,
we can improve their experience by recommending shoes that complement these
products.

Traditional recommendation approaches rely primarily on similarities between
users or items; however, that is not sufficient for a recommendation of compatible
items. Therefore, recent fashion recommender systems explore the capabilities of
machine learning techniques to recognise more delicate relations between items.
As fashion products are typically described only by their size and colour, the
models focus mainly on visual traits in product images. The visual features can
be extracted to a vector representation (embeddings) using a convolutional neural
network (CNN); the particular recommendation techniques differ in the way of
utilising these embeddings.

Some of the initial methods utilise explicit visual attributes (such as colours
or patterns) extracted from the images [Yamaguchi et al., 2015]. However, most
methods employ the vector representations directly in combination with various
neural networks such as long short-term memory (LSTM) networks [Han et al.,
2017] or graph neural networks [Cui et al., 2019, Cucurull et al., 2019, Singhal
et al., 2020]. The state-of-the-art approaches compute compatibilities between
two items in several embedding subspaces that correspond to some conditions of
the input (e.g. categories of the items) [Vasileva et al., 2018, Veit et al., 2017,
Tan et al., 2019, Lin et al., 2019].

In this thesis, we explore the possibility of adapting recent natural language
processing (NLP) models for outfit recommendation. Specifically, we explore the
capabilities of a mechanism called self-attention that is used in the Transformer
proposed by Vaswani et al. [2017]. This goal is based on the intuitive similarities
between a word in a sentence and a fashion product in an outfit (e.g. both a word
and a fashion product may have a different meaning in different contexts). On
the other hand, we have to overcome the differences such as order-independence
of outfits or finite and discrete nature of vocabularies used in NLP.

The goals of this thesis are:
• to analyse the current state of outfit recommendation,

• to elaborate on the possibilities of modifying the Transformer for outfit
recommendation, and

• to design and evaluate an outfit recommendation model based on the Trans-
former.

Organization
First, we describe the main concepts and basic methods of recommender systems
in Chapter 1. In Chapter 2, we describe the state-of-the-art NLP models that

3

are based on the self-attention mechanism. We discuss the prior work in out-
fit recommendation in Chapter 3. We propose our approach in Chapter 4 and
describe its implementation in Chapter 5. In Chapter 6, we evaluate the model
and discuss its performance. Finally, in Chapter 7, we describe our unsuccessful
attempts to improve the model and share our thoughts on the future research.

4

1. Recommender systems
People are often forced to choose from a wide range of products without sufficient
knowledge about them. Recommender systems should guide users through this
process and suggest the most useful items. [Resnick and Varian, 1997] Those
suggestions can help users buy a notebook best suited to their needs, find songs
they are in a mood for, suggest a movie they are going to enjoy and so on.

1.1 Main Concepts

1.1.1 Problem Definition
It is commonly referred to an object that is being recommended as an item and
a user denotes an individual to whom is the recommendation presented. The
main principle of recommender systems is gathering feedback from users and
then leveraging it in the prediction of their preferences.

The original way of defining the recommendation problem was the following.
Let U be the set of all users and let I be the set of all items. Then we define
function r : U × I → R, where R is a totally ordered set. For a user u ∈ U and
an item i ∈ I, r(u, i) represents the utility (sometimes referred to as rating) of
the item i for the user u. The goal of the recommender system is then to find
such item iu that it has the maximum utility for a user u. The difficulty is that
the system usually knows only part of the function r. That is why we define the
recommendation problem as a prediction of the utility of a particular item for a
particular user. In practice, when the prediction of the utility function is made,
the best k items are presented to the user as the recommendation. [Adomavicius
and Tuzhilin, 2005]

As the actual goal is to suggest top-k items for a particular user, sometimes
the recommendation problem is considered a ranking problem. The main reason
is that focusing on utility prediction may lead to suboptimal ranking performance.
Consider we have an item i and an item j. Assume the real values of the utility of
those two items are 3 and 5 respectively. Then let a model A predict the utilities
in respective order as (6, 4) and let (1, 7) be the prediction of a model B. The
accuracy of utility prediction of the model A is better judging by the absolute
deviation from the real values. However, the model B preservers the order of the
values which may be beneficial in practice. [Liu and Yang, 2008]

Recommender systems can process other data than feedback, as well. The
inputs may include information about the items such as price, colour, size and
other attributes. We refer to this input as to content. We may also utilize
knowledge of the domain and constraints defined by the user. This approach
is called knowledge-based. Other relevant information that can help us provide
more accurate suggestions is called context. That can include time, location of
the user, current season, users’ profiles, etc.

5

1.1.2 Goals and Challenges
From the perspective of users, the main role of the recommender system is quite
clear - to help them find the most useful items. In the context of the service
provider, the intention behind recommender systems is usually to increase the
profit of the application where the system is deployed. Respecting that, there are
many secondary goals that a recommender system should try to fulfil. Some of
them aim to improve the overall user experience, and others address rather the
implementation side. It is important to note that every application has different
needs and therefore, must focus on different properties of the system as many of
them come with some trade-offs. The importance of particular goals should be
figured experimentally. Some of the common pursued properties are the following:

• Relevance prediction accuracy is one of the keys to a well-designed recom-
mender system. Despite that, it might be advantageous to favour some
properties listed bellow at the expense of recommending slightly less rele-
vant items.

• Novelty: A recommended item is novel when the user did not know about
it before the recommendation. For example, a recommender system on
a news server should primarily recommend articles that bring some new
information to the users. On the other hand, for a song streaming service,
it may not be that important as users probably want to listen to their
favourite songs more than one time.

• Trust indicates how much confidence people place in the quality of rec-
ommendations. One of the ways how to build trust is to provide recom-
mendations together with an explanation of why those particular items were
chosen. How to leverage trust is further described by O’Donovan and Smyth
[2005].

• Diversity of recommended items helps users to explore a wider range of
items and categories. It might be undesirable to show only the top-10 pre-
dicted items as they may be very similar. Low diversity of the recommended
items could cause unnecessary narrowing of choice.

• Coverage reflects the proportion of items known to the system that the
system can recommend. Some recommender systems might be able to rec-
ommend only a small part of the available items, for example, only the
rated ones.

• Scalability expresses the ability to grow with an increasing number of items,
users and ratings. Many models try to optimize their training time, pre-
diction time and memory requirements in order to be usable in large scales
[Sarwar et al., 2002, Takács et al., 2009].

• Serendipity of recommendations means including items that are novel and
surprisingly relevant for the user. In contrast to novelty, a serendipitous
recommender suggests items that might not have been discovered by the
user on their own. [Herlocker et al., 2004]

6

1.1.3 Feedback
Most of the recommendation systems are highly dependent on users’ feedback as
it is the main input of the preference prediction. By feedback, we usually mean
some kind of rating of an item. Schafer et al. [2007, p. 293] divide ratings into
these categories:

• Scalar ratings may be either numerical for example in the form of a five-star
rating or ordinal such as a choice from good, bad and neutral ratings.

• Binary ratings signify either positive or negative preference.

• Unary ratings could, for example, signalize that the user visited a page with
a particular item, but no other information is available.

The feedback may be explicit, meaning that users are directly asked for rat-
ings. However, this kind of feedback requires significant efforts from users. There-
fore, some recommender systems also utilize implicit feedback which is much eas-
ier to obtain [Nichols, 1998, Hu et al., 2008]. Implicit feedback is mostly gathered
by the application where the recommender system is utilized. For example, on
a website, it is possible to measure the time spent on a particular page, track
clicks, record history of visited pages, etc. This data then acts as a proxy to
users’ real preferences. The difficulty that comes with implicit ratings is the need
for accurate interpretation.

1.2 Basic Recommendation Methods

1.2.1 Collaborative
The idea of collaborative methods (collaborative filtering) is to predict the rating
of a particular user for a particular item based on ratings of other users and
items that are somehow similar to the ones being predicted. The methods are
based on the assumption that users that had similar preferences in the past
will have similar preferences in the future. The basic approaches also assume
that users have stable preferences. In practice, this might be a problem as we
observe that user preferences change in time [Koren, 2009]. The only input of
pure collaborative models is a matrix of user-item ratings recorded by the system.

The advantage of collaborative approaches is that they do not need any ad-
ditional information about items such as descriptions or attributes. In order to
make accurate recommendations for a particular user, collaborative methods need
some initial ratings from this user. In other words, they are unable to recom-
mend items for a new user. This issue is usually called a user cold start problem.
Collaborative methods also struggle to recommend new items. As the only input
is user-item interactions, these methods require a sufficient amount of ratings of
an item to recommend this item reliably.

Collaborative methods are often divided into neighbourhood-based (memory-
based or heuristic-based) and model-based. Neighbourhood-based models exploit
ratings of similar items or users and use the rating matrix directly in the predic-
tion of unknown ratings. On the contrary, model-based approaches utilize user
feedback to build and maintain some kind of learned model. And then only this

7

model is used for the prediction itself. Methods from machine learning and data
mining such as neural networks [He et al., 2017], autoencoders [Sedhain et al.,
2015] or decision trees can be used in model-based approaches.

Neighbourhood-based collaborative filtering

We distinguish two categories of neighbourhood-based methods - user-based and
item-based. The idea of user-based neighbourhood methods is to infer the rating
of a user u for an item i from ratings of users that rated the item i and rated
other items similarly as user u. We refer to those users with similar ratings as to
neighbours. Item-based collaborative approaches predict the rating of user u for
the item i from ratings from user u given to items similar to i. By similarity in the
context of collaborative methods, we mean similarity between rows or columns
of the input matrix.

Neighbourhood-based methods are convenient because of their simple imple-
mentation. As the approach is intuitive, the recommendations are usually easily
interpretable. The problem of pure neighbourhood-based models is that they
do not scale well. One of the reasons is that they require the rating matrix to
make predictions (thus sometimes called memory-based models). Also, they have
quadratic time complexity either in the number of items or in the number of
users.

As this approach stayed at the begging of recommender systems and still is
one of the most successful [Su and Khoshgoftaar, 2009, Resnick et al., 1994], let
us present an example of the user-based version. Let U = {u1, . . . , um} be the set
of users and let I = {u1, . . . , un} denote the set of items. For the ratings matrix
R ∈ {1, . . . , 5}m×n, ri,j is the rating of the user i for the item j. The set of k
nearest neighbours of the user i will be denoted by Nk(i). The predicted rating
r̂a,b is computed as an aggregation of ratings from the users most similar to a
that have rated the item b. Some examples of the aggregation functions are the
following [Adomavicius and Tuzhilin, 2005]:

r̂a,b = 1
|Nk(a)|

∑︂
n∈Nk(i)

rn,b (1.1)

r̂a,b = 1
|Nk(a)|

∑︂
n∈Nk(i)

sim(a, n) · rn,b (1.2)

r̂a,b = ra + 1
|Nk(a)|

∑︂
n∈Nk(i)

sim(a, n) · (rn,b − rn) (1.3)

where ri denotes the average rating of the user i for all items rated by this
user. And sim stands for a similarity function of two vectors of ratings. Com-
mon similarity function are the Pearson correlation and cosine similarity [Su and
Khoshgoftaar, 2009]. The most simple case (1.1) is computed just as the average
of ratings from the neighbours. A weighted sum as in (1.2) can be introduced
to reflect the degree of similarity of particular users. These two functions do not
take into consideration that different users might have different rating behaviour
(e. g. some of them may rate all items with higher values than other users). For
that reason the example (1.3) uses deviations from users’ average ratings instead
of the ratings themselves.

8

Model-based collaborative filtering

Model-based collaborative filtering takes advantage of a training phase when it
builds the model used for prediction. During the prediction, the original rating
matrix is not needed. Instead, only the learned model is used. That solves some
problems with the basic neighbourhood models. Namely, the learned model is
usually much smaller than the rating matrix. Therefore, model-based systems
are usually faster.

Originally, the methods included approaches such as Bayesian networks or
cluster models [Breese et al., 1998, Ungar and Foster, 1998]. One of the most
popular approaches is matrix factorization. The results of the Netflix Price
competition showed that matrix factorization performs better than standard
neighbourhood-based models [Koren et al., 2009]. The main principle of ma-
trix factorization is to characterize both user and items in shared latent space.
Those latent factors are derived from the rating matrix. The model then recom-
mends those items whose latent factors are the most similar to those of the user.
More on matrix factorization can be learned from Koren et al. [2009]. Recently,
neural networks and deep learning are used to improve the performance of ma-
trix factorization [Dziugaite and Roy, 2015, Xue et al., 2017]. Some model-based
approaches use classification models such as support vector machines [Zhang and
Iyengar, 2002] or neural networks. The incompleteness of the rating matrix cause
problems to some classifiers, because it is difficult to adjust the models to handle
missing values. Fortunately, it is not a problem for unary ratings as the missing
value can be determined. Other modern approaches include autoencoder-based
methods [Sedhain et al., 2015, Liang et al., 2018] or graph neural networks [Sun
et al., 2019].

1.2.2 Content-Based
Content-based recommender systems try to find items similar to those that the
target user liked in the past. Particularly, the goal is to match a user profile with
attributes of items. The profile is constructed from the attributes of items rated
by the user in the past. The important aspect of content-based systems is that
they typically focus only on ratings of one particular user and do not consider
any kind of community data.

Content-based systems share the same high-level architecture. We distinguish
three components of the recommendation process:

• Content feature extraction: The items may have arbitrary types of at-
tributes based on the domain. The attributes can consist of textual data,
images, numerical values, audio and so on. The raw data is typically not
suitable for further manipulation. That is why it is needed to be trans-
formed into a simpler representation. During this stage, the system can, for
example, extract visual features from images or convert text into vectors.

• Profile learning: In order to recommend relevant items to a particular user,
the user profile must be built. This stage utilizes recorded explicit and
implicit feedback of this particular user together with the attributes of the
items. For example, Liu et al. [2010] predicts users’ news interest from their
clicks using a Bayesian network.

9

• Filtering and recommendation: This component takes item representations
and a user profile as its input. It suggests items that match the user profile
of the target user. The match can be computed, for example, using a
similarity metric. This component is the only one that has to act at the
time of the recommendation; for that reason, it must be effective.

Content-based methods are able to recommend items that are not rated by
any user. That is a significant advantage over collaborative approaches as those
have a problem to handle both new users and new items. Content-based systems
only need users to rate some items or initialize their profile in some other way.
Also, it is possible to explain the recommendations based on item attributes.
That can increase trust in the system and its transparency.

Nonetheless, content-based models have also some disadvantages. One of
the main problems is called overspecialization. It means that the recommender
system suggests items that are highly similar to those already rated. This can
reduce the overall usefulness of the recommendations, and it greatly reduces the
serendipity of the system. Another problem is the already mentioned inability to
recommend items for new users. A sufficient number of ratings must be collected
in order to understand user preferences and to make reliable suggestions.

1.2.3 Knowledge-Based
In some situations, knowledge-based methods help us to overcome problems of
other approaches. The main characteristic of knowledge-based methods is that
they allow users to specify their needs. So no historical data is needed. On
the other hand, knowledge-based approaches heavily rely on item attributes.
Especially in domains where items are not bought on a regular basis, neither
collaborative-based nor content-based approaches might be applicable. As dis-
cussed earlier, both of these approaches require a significant amount of ratings
in order to work correctly. In addition, these methods may have problems with
items that are complex such as cars, real estates, computers and so on. All of
these items are represented by a great number of various attributes, so it can be
challenging to infer user preferences solely from ratings. One of the reasons is that
it may be challenging to find similar items due to their complexity. Also, users
might want to specify some attributes explicitly. In addition, in some domains
such as computers, the role of time spans of ratings is significant. Ratings of an
old computer can be completely irrelevant for current recommendations.

We distinguish knowledge-based recommender systems by the form of user
input to the system. Constraint-based recommender systems let users explicitly
define constraints on item attributes. On the other hand, in case-based recom-
mender systems, users specify their preferences relatively to some anchor items.

Constraint-based recommender systems

The formalism of constraint satisfaction problem [Tsang, 1993] is usually used
when describing and designing a constraint-based recommender system [Felfernig
and Burke, 2008]. The problem can be defined by a set of variables V , a set of
domains D of these variables and a set of constraints C which declares possible
combinations of values assigned to the variables. The solution to this problem

10

is all possible instantiations of the variables such that all the constraints are
satisfied. We define:

• Customer properties VC is a set of variables that serves for all possible cus-
tomer requirements. For example, one of the properties can be a “maximum
price", and its instantiation is the actual upper bound of price defined by
the customer.

• Product properties VP ROD denotes the properties of products such as price,
colour, or weight.

• Compatibility constraints CR represent some shared, immutable restrictions
on possible instantiations of customer properties. For example, it is not pos-
sible to require a laptop that is both intended for gaming and is lightweight.

• Filter constraints CF define relationships between customer requirements
and product properties. An example might be that if a user requires a
gaming laptop, only laptops with dedicated graphics card are shown.

• Product constraints CP ROD represents all available products. One product
can be described by a conjunction of all its properties. A disjunction of
these conjunctions can define the whole available product assortment.

• Customer constraints CC is a set of unary constraints that assign actual
values to the customer properties.

With these definitions we set V = (VC ∪VP ROD) and C = (CR∪CF ∪CP ROD ∪CC).
A standard constraint solver can then solve this task, and the result contains all
possible instantiations of the variables. With those instantiations, the model can
recommend appropriate items.

Case-based recommender systems

In case-based systems, users describe their preferences with a help of some anchor
items (cases). Firstly, users specify some initial requirements on the attributes
or select an initial anchor item to start. In both cases, items most similar to the
initial query are retrieved. Then, a repeated process of critiquing begins. Users
select one or more items from the previous step and describe which attributes
should change and how should they change. Based on these adjustments, a new
set of items is suggested by the system. This interactive process continues until
an item with the desired properties is found.

Domain-specific similarity metrics must be defined for the attributes; other-
wise, this method will not work. The advantage of this method is the guidance
of users through the process. This approach can help users to express their re-
quirements even in a domain with complex item attributes. On the other hand,
the prerequisites are that users know what they want, and they are capable of
expressing it using item attributes. Also, this approach struggles in situations
where more items with mutually exclusive qualities match a user’s preference.
For example, a user might want a laptop with a powerful graphics card. How-
ever, a laptop with worse graphics card but fast storage and powerful processing
unit may also satisfy their needs.

11

1.2.4 Hybridization
All three basic classes of recommender systems utilize a different kind of input
data and approach the recommendation problem differently. Consequently, they
have diverse strengths and flaws. For example, collaborative filtering suffers from
cold start problems, and content-based approaches require well-defined item at-
tributes. The goal of hybrid recommender systems is to combine these approaches
in order to exploit more types of data, overcome some problems and combine the
advantages of these fundamental approaches.

There exist various strategies on how to build a hybrid recommender. Burke
[2007] characterizes seven types of hybridization strategies. Let us describe three
general categories of hybridization design: monolithic, parallel and pipeline.

Monolithic design contains only one main recommendation component which
utilizes more than one recommendation paradigms, as shown in Figure 1.1. The
component can process several types of input data. It may group items based on
an item attribute and gain additional information from ratings given to this group
by a particular user. The system can, for instance, distinguish a user that likes
fantasy films and recommend some new films that other fantasy fans liked. Burke
[2007] refers to this strategy as to feature combination. Work from Zanker and
Jessenitschnig [2009] may serve as an example of this approach. The second type
of monolithic designs is called feature augmentation. In feature augmentations
models, output features of secondary recommender components are used as the
input of the main recommender. This approach can improve both the quality and
quantity of input data for the primary recommender. Feature augmentation is
used by Melville et al. [2002], who shows how to incorporate content-based data
into collaborative filtering.

Hybrid RecommenderInput Output

Recommendation
strategy 1

Recommendation
strategy n...

Figure 1.1: Monolithic hybrid recommender system (adapted from [Jannach,
2011, p. 128])

Parallel design uses several recommender systems side by side. Each system
rates the items or produces a list of recommendations. The outputs of all those
components are then aggregated. This hybridization strategy is the least invasive
as it uses the recommendation components as black-boxes. All the hybridization
is done in a separate component of the system as depicted in Figure 1.2. Burke
[2007] further divides this class into categories distinguished by the type of the
aggregation into weighted, switching and mixed.

Pipeline design consists of more than one successive components. The output
of each component serves as an input to its successor, as shown in Figure 1.3.
Optionally, each stage can also use the original input of the system. The compo-

12

Recommender 1

Input Output

Recommender n

⋮ Hybridization step

Figure 1.2: Parallelized hybrid recommender system (adapted from [Jannach,
2011, p. 129])

nents may simply refine a recommendation list provided by its predecessor. Burke
[2007] calls this variation a cascade hybrid. The other variation is named meta-
level hybrid. In a meta-level hybrid system, one recommender builds a model
that is later used by the next component. In contrast to data augmentation, the
input model of the recommender component is solely the output of the previous
stage.

Recommender 1Input OutputRecommender n...

Figure 1.3: Pipelined hybrid recommender system (adapted from [Jannach, 2011,
p. 129])

13

2. Natural Language Processing
Natural language processing (NLP) is a field concerned with computational tech-
niques for analysis and representation of human language [Hirschberg and Man-
ning, 2015]. NLP employs knowledge primarily from computer science and lin-
guistics to solve a broad range of tasks, for example, related to syntax, semantics
or speech. Let us name some of them: transforming words to their root form, pars-
ing a sentence according to a grammar, automatic translation of a text, natural
language generation, question answering or sentiment analysis. In this chapter,
we are going to focus primarily on encoder-decoder models that are the base of
our outfit recommendation approach.

2.1 Attention and Transformer-based Models
When training a model to solve NLP tasks, it is often required to generate some
sort of general representations that can be later used for the particular task.
This problem was historically approached by word embedding methods such as
Word2Vec [Mikolov et al., 2013] or Glove [Pennington et al., 2014]. These methods
learn a mapping from words to vectors that is global, meaning that the represen-
tation of one particular word is the same regardless of its context. However, some
words have more than one meaning, and this approach is not able to capture the
difference. That is why contextualized word embeddings were introduced.

Originally, the methods typically employed recurrent neural networks (RNNs)
or convolutional neural networks (CNNs) to incorporate the context into the
embeddings [McCann et al., 2017, Peters et al., 2017, 2018]. Vaswani et al. [2017]
proposed the Transformer, which is an encoder-decoder model relying solely on
the mechanism called attention. Many models based on the Transformer proved
that this approach is suitable for various NLP tasks [Radford, 2018, Devlin et al.,
2019, Raffel et al., 2019].

In this section, we elaborate on the theory behind the Transformer model.
Then we describe one particular modification of the Transformer, BERT [Devlin
et al., 2019], which was one of the main inspirations of our approach.

2.1.1 Encoder-Decoder Models
Encoder-decoder is an architecture that is used to solve various NLP tasks, such
as machine translation, summarization or question answering. It was introduced
to the NLP field by Sutskever et al. [2014], Cho et al. [2014] and Kalchbrenner and
Blunsom [2013] who employed this architecture for machine translation. However,
the general architecture can be used to solve arbitrary sequence-to-sequence task.
That is a task where both input and output are sequences of variable lengths.

The architecture has two main components: encoder and decoder. The en-
coder processes the input and creates a fixed-length representation (context) of
the input sequence. Then, the decoder uses the context to generate the target
sequence. The decoder usually acts auto-regressively. That is, each output of
the decoder is the input to the next step of the decoder. RNNs or CNNs can

14

Context

Encoder Decoder

The butterflies fly

Las mariposas

Figure 2.1: An example of an encoder-decoder model used for translation from
English to Spanish. The figure depicts a moment of generating the word “mari-
posas”.

realize both components. Typically, each component consists of a stack of several
identical blocks.

Let us elaborate on machine translation as an example of an encoder-decoder
application. The task is to translate a sentence from a source language into a
target language. The input sentence is first transformed into a sequence of word
embeddings. This sequence is given to the encoder. The encoder computes the
context and passes it to the decoder. Finally, the decoder generates the target
sequence one word per step, as shown in Figure 2.1.

2.1.2 Attention
Attention is a mechanism that aims to eliminate the bottleneck of the encoder-
decoder architecture caused by the context vector. Traditionally, encoder and
decoder consisted of specialized RNNs such as LSTM networks [Hochreiter and
Schmidhuber, 1997] or gated recurrent unit (GRU) networks [Cho et al., 2014].
RNNs take two inputs: a hidden state from the previous step and the actual input
vector. The last hidden state of the encoder recurrent network was originally used
as a context vector. It turned out that this part is a bottleneck of the architecture
because the model was not able to capture the contextual information properly.
That is, some relevant information for a particular decoding step was not encoded
in the context. Bahdanau et al. [2015] address this problem with a mechanism
called attention that helps to prioritize the relevant contextual information.

With the attention mechanism, instead of only one vector representing a whole
sequence, a vector for every item of the input sequence is passed to the decoder.
At each step of the decoder, a weighted average of the encoded vectors is used as
a contextual representation of the input sequence. Formally, let i be the position
of a word currently generated by the decoder. Let n be the length of the input
sequence and hj be the j-th output of the encoder (representation of the j-th

15

item of the input sequence). Then the context vector used in the step i is ci:

ci =
n∑︂

j=1
αijhj (2.1)

where αij is a weight assigned to hj for i-th decoding step. Bahdanau et al. [2015]
compute αij as follows:

αij = exp(a(si−1, hj))∑︁n
k=1 exp(a(si−1, hk)) (2.2)

where a is a scoring model realized by a feed-forward neural network. The score
is computed from si−1, which is the previous hidden state of the decoder, and
the corresponding encoder representation hk. In other words, the weights αi∗ are
computed as a softmax function over scores obtained from the previous hidden
state of the decoder and outputs from the encoder.

Attention was defined by Vaswani et al. [2017] in a more general manner
as a function from a query and a set of key-value pairs to an output. Where
query, keys, values and output are all vectors. The output is computed as a
weighted average of the values. A weight of a particular value is obtained from
a compatibility function of the query and the key corresponding to that value.
Following the definition from Bahdanau et al. [2015], both the values and keys
correspond to encoder representations hj, j ∈ {1, . . . , n} and the query of the
i-th step is represented by the vector si−1. Finally, the value of the compatibility
function of the i-th query and the j-th key corresponds to αij.

2.1.3 Transformer
Vaswani et al. [2017] proposed a model called Transformer as an alternative to
RNN models which were widely used in the field of machine learning NLP at that
time. The Transformer is based primarily on the attention mechanism and does
not contain recurrent neural network nor convolution. The original model was
designated for machine translation, but many models based on the Transformer
architecture demonstrated its capabilities to perform well in other NLP tasks as
well [Raffel et al., 2019, Devlin et al., 2019, Radford, 2018].

Transformer’s Attention

A particular attention mechanism called scaled dot-product attention is a vital
part of the Transformer. Both the queries and keys are vectors of dimension dk,
and the values have dimension dv. To calculate the compatibility of a query and
keys, we first calculate a dot product between the query and all the keys. Then
we divide the results by

√
dk. And finally, to get the weights, we apply a softmax

function to the results. As the attention can be computed for all the queries in
parallel, we can compute the outputs as follows:

Attention(Q,K, V) = softmax
(︄
QKT

√
dk

)︄
V (2.3)

where Q, K and V are matrices of queries, keys and values respectively.

16

Multi-Head Attention

Queries Keys Values

Concat

Linear

Multi-Head AttentionScaled Dot-Product Attention

Figure 2.2: A diagram of the multi-head attention mechanism

Vaswani et al. [2017] decided to use dot-product attention as it can be opti-
mized better than additive attention which is the alternative standard attention
function. The problem of dot product attention is that it has worse performance
than the additive version when the dimensions of key and query vectors get big-
ger [Britz et al., 2017]. Vaswani et al. [2017] assume that large values of the
dot product cause the underperformance. The scaling by 1√

dk
was introduced to

address this issue.
Instead of using the attention mechanism as is, Vaswani et al. [2017] linearly

project queries, keys and values into several subspaces and perform the attention
function in these subspaces. They call this technique multi-head attention where a
head refers to one layer of the attention mechanism. The motivation of multi-head
attention is to allow the model to attend information from different representation
subspaces. Let h be the number of learned projections. The attention mechanism
is applied h times simultaneously, and the resulting values are concatenated.
Finally, the concatenated values are also projected. The result of this projection
yields the final values. Multi-head attention is depicted in Figure 2.2.

The Transformer employs the attention mechanism in a form of self-attention
in particular parts of the model. That is, all the queries, keys and values of the
particular layer are computed from one input sequence. This technique allows
creating contextualized word embeddings. That was typically done with RNNs in
other models. Self-attention was chosen instead primarily because of its compu-
tational performance and ability to capture long-range dependencies as described
in more detail by Vaswani et al. [2017].

Model

The Transformer follows the standard encoder-decoder architecture, as shown in
Figure 2.3. The encoder consists of N identical encoder blocks. Each block con-
tains two sublayers: a multi-head self-attention layer and a feed-forward network.
Layer normalization [Ba et al., 2016] is applied on each sublayer, and a residual

17

Multi-Head Attention

Add & Norm

Feed Forward

Add & Norm

En
co

de
r B

lo
ck

 #
1

Positional
Embedding

Inputs

Multi-Head Attention

Add & Norm

Feed Forward

Add & Norm

D
ec

od
er

 B
lo

ck
 #

1

Multi-Head Attention

Add & Norm

⋮

Encoder Block #N

⋮

Decoder Block #N

Linear

Softmax

Outputs

Positional
Embedding

Already decoded
outputs

Figure 2.3: A high-level view of the Transformer

18

connection [He et al., 2016] adds the input of a sublayer to its output.
The decoder consists of N identical blocks as well. Encoder and decoder

blocks are very similar. The only difference of a decoder block is that after the
self-attention layer, there is one more attention layer which uses keys and values
from the encoder. The output of the decoder is linearly projected to a vector
whose elements correspond to words in the vocabulary. This vector represents
non-normalized predictions of the model and it is usually called logits. Finally,
a softmax function is applied on the logits, and one output word is chosen. The
decoder is autoregressive, as usual. That is, the output words from previous steps
are embedded again and passed to the decoder to generate the next word.

Since the attention mechanism is order-independent, it is necessary to provide
some additional positional information. The positional encodings may be fixed
or learned and relative or absolute [Raffel et al., 2019, Shaw et al., 2018, Gehring
et al., 2017]. The original model adds absolute sinusoidal positional encodings
to the input embeddings before given to the encoder or decoder. For the exact
formula and its reasoning, we refer to Vaswani et al. [2017].

2.1.4 Bert
Many recent NLP models take advantage of pretraining to understand a text
in some kind of general manner [Howard and Ruder, 2018, Radford, 2018, Yang
et al., 2019, Radford et al., 2019, Raffel et al., 2019]. The knowledge learned
during pretraining is meant to be transferred to particular downstream tasks.
The transfer can be done by fine-tuning the model [Devlin et al., 2019, Radford,
2018] or using its pretrained features in a task-specific architectures [Peters et al.,
2018]. Bidirectional Encoder Representations from Transformers (BERT) [Devlin
et al., 2019] is one of the models that employ primarily the fine-tuning strategy.
BERT consists of the encoder stack from the Transformer. From the architectural
point of view, it does not differ from the original design. The main contribution
is its approach to pretraining and fine-tuning. Both phases operate similarly and
on the same architecture.

The input sequence always starts with a special classification token. The
output from this token is used as a representation of the whole sequence. This
representation is useful for classification tasks such as sentiment analysis. The
actual textual input is embedded using sub-word embeddings [Wu et al., 2016].
Some tasks require processing two sentences with a different purpose. In this
context, we use the word sentence to describe an arbitrary span of contiguous
text. An example of this task may be question answering where it is needed to
process a question and answer. In BERT, this is achieved by processing the pair
of sentences together. The sentences are separated by a special separation token.
Furthermore, a learned sentence embeddings are added to the subword input
embeddings to distinguish the sentences. Because BERT employs self-attention,
it is order-independent. That is why positional encodings are added to the input,
as shown in Figure 2.4.

BERT uses two unsupervised tasks for pretraining: masked language mod-
elling and next sentence prediction (NSP). In masked language modelling, a cer-
tain percentage of input tokens is replaced with a special mask token. The goal
is to predict the original tokens. The output from the masked token is projected

19

EA

E[CLS]

E1

EA

Emy

E2

EA

Ecat

E3

EA

Eis

E4

[CLS] my cat is cute

EA

Ecute

E5

she

EB

Eshe

E7

likes

EB

Elikes

E8

play

EB

Eplay

E9

[SEP]

EA

E[SEP]

E6

##ing

EB

E##ing

E10

[SEP]

EB

E[SEP]

Input

Token
Embeddings

Sentence
Embeddings

Positional
Embeddings E0

Figure 2.4: BERT input sequence embedding. Each input item is created from
three components: the token embedding, the sentence embedding and the posi-
tional embedding. (Adapted from Devlin et al. [2019].)

into the logits vector of the vocabulary. A softmax function is applied on the vec-
tor, and a token is predicted. This way, the model uses the whole context of the
masked word for prediction jointly. NSP focuses on learning to capture relations
between sentences. This can be useful for such tasks as question answering. For
NSP, pairs of sentences are generated from a corpus. 50% of the pairs are actual
consecutive sentences, and other pairs are sentences randomly sampled from the
corpus. The goal is to recognize the consecutive sentences. The output from the
classification token is used to solve this task.

When fine-tuning BERT, the same architecture as in pretraining is used and
all the parameters of the model are trained. According to the particular down-
stream task, single sentences or a sentence pairs are fed into the model. For
classification tasks such as sentiment analysis, the encoded classification token is
passed to an output layer for classification.

BERT outperformed all the prior models and became a baseline in many NLP
tasks [Wang et al., 2019a]. Various modifications of BERT were designed after
its revelation, and they performed even better than the original model [Liu et al.,
2019, Wang et al., 2019b]. Some variations also aimed to make BERT more
effective in terms of parameters count and inference time [Sanh et al., 2019, Jiao
et al., 2019].

20

3. Related Work
Outfit recommendation is a task that can be defined as follows: find such fashion
products that they match a given set of garments, and together they form a
matching outfit. This problem was approached in many various ways, but the
key is exploiting visual features from images using computer vision techniques.
Particular approaches differ in the way of extraction of these features and the
process after the extraction. Some models are based on the extraction of visual
attributes such as colours or patterns [Chen et al., 2012, 2015, Yamaguchi et al.,
2015, Di et al., 2013, Kim et al., 2016]. Veit et al. [2015] and McAuley et al. [2015]
learn compatibility of fashion product pairs based on co-purchases or co-views of
the products. It is also possible to predict the compatibility of a set of items.
Among other techniques, embedding into several embedding subspaces [Vasileva
et al., 2018, Veit et al., 2017, Tan et al., 2019, Lin et al., 2019], graph neural
networks [Cucurull et al., 2019, Cui et al., 2019, Singhal et al., 2020] and recurrent
neural networks [Han et al., 2017] are used for fashion outfit recommendation.

3.1 Visual Attributes
It is possible to extract some visual attributes (e.g. colours, patterns or category)
from the images of fashion items [Chen et al., 2012, 2015, Yamaguchi et al., 2015,
Di et al., 2013, Kim et al., 2016]. A common approach is to use a convolutional
neural network for this purpose. Yamaguchi et al. [2015] employ these attributes
for learning compatibility of garments. Kim et al. [2016] and Di et al. [2013] show
how the attributes can be used for retrieval. Kim et al. [2016] use the extracted
visual features to build an indexing scheme. Di et al. [2013] propose a fashion
retrieval framework that allows users to search for fashion products based on a
provided image and selected attributes.

3.2 Recommendation of Complementary Items
Many models aim to learn compatibility and relationships between fashion items
[Han et al., 2017, Vasileva et al., 2018, Veit et al., 2017, Lin et al., 2019]. The
motivation is to recommend items that fit into a partly created outfit. This
approach is based on the assumption that users want to buy compatible products
or products that form a matching outfit. This approach differs from the standard
recommendation techniques as those are based primarily on similarities between
items or users.

Some methods put restrictions on the size or composition of the set whose
compatibility is predicted [Veit et al., 2015, McAuley et al., 2015, He et al., 2016].
However, more recent models can recommend items that are complementary to
an arbitrary set of fashion products [Lin et al., 2019, Veit et al., 2017].

The common approach is to use features extracted from images and sometimes
additional data such as textual descriptions. The models then learn compatibility
by exploiting datasets that capture some relations between items. It is possible
to use implicitly collected data from e-commerce website [McAuley et al., 2015,

21

Veit et al., 2015], but the majority of the methods employs a dataset consisting
of user-created outfits.

Product Pairs

The most straightforward approach is to predict the compatibility of fashion
product pairs [Veit et al., 2015, McAuley et al., 2015]. Both Veit et al. [2015]
and McAuley et al. [2015] use the dataset captured by McAuley et al. [2015]
from Amazon.com. The dataset contains relationships between items based on
co-purchases and co-views on the website. Veit et al. [2015] sample compatible
and incompatible pairs of fashion items from different categories. Then they train
a Siamese CNN to capture the compatibility of products based on visual features.

The advantage of using pairs (instead of more complex structures such as a
whole outfit) is that it is significantly easier to gather training data. That is
because these relations can be captured implicitly on a website. On the other
hand, it is difficult to interpret implicit feedback correctly. Moreover, we might
not be able to infer relations in a set of more items from this source of data.

Fixed Outfit Composition

He and Hu [2018] propose models that learn compatibility of outfits with a fixed
composition. The models employ VGGNet [Simonyan and Zisserman, 2014] pre-
trained on ImageNet [Deng et al., 2009] for visual features extraction. The fea-
tures are then passed to a fully connected neural network for compatibility pre-
diction. He and Hu [2018] use their own dataset crawled from polyvore.com, a
website where users can create fashion outfits.

Outfit as a Sequence

Han et al. [2017] predict the compatibility of arbitrarily long outfits. They
achieved this relaxation of requirements by treating the outfit as a sequence.
The input sequence is processed with bidirectional LSTM network. Because of
that, they had to define an order of the items in the outfit based on the cate-
gories. The model makes predictions by combining the predictions inferred from
left and right context of the target category. More specifically the model follows
this equation:

x = arg max
xc∈C

(Pr(xc|x1, . . . , xm−1) + Pr(xc|xm+1, . . . , xn)) (3.1)

where x is the prediction made for the m-th item of the outfit, C is the set of all
items and (x1, . . . , xm−1, xm+1, . . . , xn) is the input partial outfit.

Subspace Embedding

Several models use more embedding spaces instead of only one in order to capture
more kinds of similarities and visual relations [Vasileva et al., 2018, Veit et al.,
2017, Lin et al., 2019, Tan et al., 2019]. All the mentioned models are adaptations
of a conditional similarity network (CSN) [Veit et al., 2017]. A learned mask is
applied to the general embedding based on a property (condition) of the input

22

Figure 3.1: Overview of the model proposed by Lin et al. [2019]. When comparing
the item pairs, the items are projected into multiple subspaces. To obtain the
final embedding, a weighted sum of the subspace embeddings is computed. The
weights are based only on the categories of the items of the pair.

items (such as their categories). Thanks to that, items can be compared in several
representation subspaces that can capture different notions of similarity.

Vasileva et al. [2018] introduce subspaces assigned to category pairs, such as
top-bottom. So when the compatibility of a top and a bottom item is computed,
both embeddings are projected into this top-bottom subspace. The compatibility
is then retrieved from the distance of the vectors in the corresponding subspace. In
total, their model learns 66 similarity subspaces. Tan et al. [2019] do not define
the conditions and the purpose of subspaces in advance. Instead, a weighted
average of the embeddings from all subspaces is used. The weights are computed
from the pair of input images. This approach overcomes the need for increasing
the number of subspaces. Lin et al. [2019] further improve this approach and
compute the weights based only on the categories of the items, as shown in
Figure 3.1. This method allows simple indexing for complementary item retrieval
as the embedding can be computed just from the product image and a pair of
categories.

Graph-based Models

There were also attempts to represent an outfit as a graph [Cui et al., 2019, Cucu-
rull et al., 2019, Singhal et al., 2020]. Cui et al. [2019] construct a category-level
directed graph where nodes represent categories and edges represent relations be-
tween categories in outfits. An outfit is thus represented as a sub-graph with item
features in corresponding nodes. Their proposed node-wise graph neural network
reflects the context of each node and employs attention mechanism to calculate
the outfit compatibility.

Cucurull et al. [2019] propose an item-level undirected graph. Nodes represent
items, and an edge between two items exists if and only if there is an outfit
containing those items. Representation of a node contains information about the
item in the node and also about near items reachable from the target node. Graph
convolutional network [Kipf and Welling, 2017] realizes this embedding. The
compatibility of an outfit is treated as an edge prediction problem. Probability
of edges between all items in the outfit is predicted. The average of the results

23

corresponds to the predicted compatibility. Singhal et al. [2020] employ item-level
graph based on the model from Cucurull et al. [2019] and extends their method.

The approaches designed by Cucurull et al. [2019] and Singhal et al. [2020]
differ from all the methods we mention because they require edges between items
during the prediction time. That means the models leverages more data than
others. Moreover, it is not clear how they intend to handle new items in the
dataset.

Transformer

At the time of writing this thesis, Prato et al. [2020] presented an approach that
shares some similarities with our method. They claim to use the Transformer
for compatibility prediction and outfit completion. However, the authors do not
share details about the implementation nor training of the model, so it is not
possible to compare the model reliably.

3.2.1 Classification of Outfit Recommenders
We can see some similarities of the aforementioned models across the particular
architectures. Thus, we propose the following classes that group the models based
on their general concept rather than architecture:

• Generating approaches predict the representation of a complementary item,
as illustrated in Figure 3.2. The target item is then found as the closest
one in a particular representation space. This approach is, for example,
employed by Han et al. [2017] that generate the product’s vector represen-
tation using bidirectional LSTM and uses dot-product to find the target
item.

• Compatibility Predicting models find complementary items by predicting
the compatibility of an outfit created from the initial set of items and a
potential target item. The product that forms an outfit with the highest
compatibility, is the target item. The above-mentioned models that belong
into this category use the following ways to predict the compatibility:

– Pair-wise approaches predict the compatibility of an outfit by aggre-
gating pair-wise compatibilities of its items, as depicted in Figure 3.3.
The compatibilities can be computed using a distance metric in an
embedding space of the products. Using this strategy, it is usually
possible to build database indexes from the product embeddings and
find the target items using a nearest neighbour algorithm that is rea-
sonably fast. A disadvantage might be that the input items cannot be
embedded with contextual information. A Siamese network from Veit
et al. [2015] or subspace embedding methods [Vasileva et al., 2018, Tan
et al., 2019, Lin et al., 2019] may serve as examples of this approach.

– Monolithic models process the whole input at once and use all the
input items together to predict the compatibility, as shown in Figure
3.4. An advantage of these models is that they can utilize contextual
information of the input. However, to find the target item, the model

24

has to process all the items in the database in order to compute their
compatibility. An example of this approach is a model from He and
Hu [2018] or graph-based models such as the one form Cui et al. [2019].

Product 1

Product n

⋮ Recommender Predicted
representation

Input
products

Figure 3.2: A diagram of generating outfit recommendation approach. The rec-
ommender predicts the target item’s representation.

Product 1

Product n

⋮ Candidate i

0.3

⋮

0.6

Pairwise
compatibilities

Input
products

0.5 Overall
compatibility

Figure 3.3: A diagram of pair-wise outfit recommendation approach that aggre-
gates pair-wise compatibilities to compute the overall compatibility.

Product 1

Product n

⋮ Recommender Predicted
compatibility0.9

Candidate i

Input
products

Figure 3.4: A diagram of monolithic outfit recommendation approach that pre-
dicts outfit compatibility.

3.3 Datasets
For outfit recommendation, the models have to learn not only compatibility of
product pairs, but they need to take into consideration the outfit composition as
well. Because of that, the models need data that captures these complex relations.
The most popular datasets consist of manually created outfits. However, that is

25

Dataset # outfits # items # categories # high-level
categories

Maryland Polyvore 21 889 164 379 380 N/A
Polyvore Outfits 68 306 251 008 153 19
Polyvore Outfits-D 35 140 152 785 153 19

Table 3.1: Comparison of datasets

Figure 3.5: Example of an outfit from polyvore.com

quite costly and cannot be captured implicitly. Therefore, there exist only a few
of these datasets, and the majority of them were crawled from the same website.
A comparison of the datasets is shown in Table 3.1.

3.3.1 Maryland Polyvore
Han et al. [2017] created the first widely used public dataset for outfit recommen-
dation. It is a dataset obtained from polyvore.com, a former website allowing
users to create outfits out of various fashion products. An example of such out-
fit is shown in Figure 3.5. The dataset contains 21 889 outfits consisting of on
average 6.5 fashion items. The histogram of outfit sizes in this dataset is shown
in Figure 3.6. The outfits are divided into training, validation and test sets each
containing 17 316, 1 497 and 3 076 outfits respectively. Overall, the whole dataset
contains 164 379 items that do not overlap between two splits.

Each item contains an image on a white background, title, category and some
additional information such as a number of likes. There are 380 fine-grained
categories that are not grouped into any high-level product types (e.g. short
skirts and long skirts are two different categories that are not linked together).
Although the authors state that they deleted non-fashion items from the dataset,
there are still items such as lamps or furniture.

The dataset comes with two evaluation tasks: fill-in-the-blank (FITB) and
outfit compatibility prediction. The tasks became a popular way of evaluating
outfit recommendation models [Veit et al., 2017, Vasileva et al., 2018, Cucurull
et al., 2019].

26

In FITB, a question is formed from each outfit of the test set by removing
one item from the outfit. The goal is to select the missing item from four options
that consist of the correct choice and three random products. The incorrect
candidates do not always match the category of the correct choice. Furthermore,
the incorrect choices may even have the same category as an item from the input
outfit.

The outfit compatibility prediction task consists of outfits from the test set
and 4 000 randomly created outfits. The goal is to distinguish these two types of
outfits.

3.3.2 Polyvore Outfits
Vasileva et al. [2018] proposed a new dataset crawled from polyvore.com as well.
Their goal was to create a bigger dataset with better annotations and more con-
sistent evaluation tasks than the one made by Han et al. [2017]. Hence, the
authors collected a dataset containing 68 306 outfits and 251 008 items. In addi-
tion to the annotations from Maryland Polyvore, the categories are grouped into
19 semantic categories such as tops, outerwear or bags. The representation of
these categories in outfits is shown in Figure 3.8.

The authors provide two different versions of their dataset. In the first version
called Polyvore Outfits, items from test set may appear in the training part of
the dataset. However, a whole outfit never appears in two splits of the dataset.
Thanks to that, the dataset is bigger and contains all 68 306 outfits. The outfits
are split into 53 306 for training, 10 000 for testing, and 5 000 for validation. The
outfits contain 5 items on average, and you can see the distribution of outfit sizes
in Figure 3.7. The more restricted version is called Polyvore Outfits Disjoint
(Polyvore Outfits-D). Vasileva et al. [2018] state that this version was created
using graph segmentation algorithm that ensured that one item always appears
only in one split. However, we discovered that out of 14 657 products in the
validation set 3 781 items appear in the training set as well. Because of the
restrictions, some items are discarded, which leads to a dataset containing 35 140
outfits and 175 485 items. The training split contains 16 995 outfits; the validation
split contains 3 000 outfits and 15 145 outfits from the test set. Notice that the
counts differ from the original paper as we discovered that the dataset has different
properties than presented. The outfits are formed of 5 items on average and a
histogram of outfit sizes in this version is shown in Figure 3.7.

The compatibility prediction task is defined the same way as in Maryland
Polyvore. The FITB task is also the same with the exception that all the candi-
dates for one question have the same high-level category.

27

86 7540

2,000

4,000

6,000

8,000

Outfit size

Fr
eq

ue
nc

y

Figure 3.6: Distribution of outfit sizes in Maryland Polyvore

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 190

0.5

1

1.5

2 ·104

Outfit size

Fr
eq

ue
nc

y

Polyvore Outfits
Polyvore Outfits-D

Figure 3.7: Distribution of outfit sizes in Polyvore Outfits

sho
es

jew
elle

ry
ba

gstop
s

bo
tto

ms

all
-bo

dy

ou
ter

wear

sun
gla

sse
s

ha
ts

acc
ess

ori
es

sca
rve

s0
0.2
0.4
0.6
0.8

1

Semantic categories

Av
er

ag
e

co
un

t

Polyvore Outfits
Polyvore Outfits-D

Figure 3.8: Average number of items of particular category in outfits of both
Polyvore Outfits splits (disjoint and non-disjoint)

28

4. Our approach
Our approach to fashion recommendation is highly inspired by recent NLP mod-
els. We intended to transfer the semantics of a word in a sequence to a fashion
product in an outfit. Thanks to that, we can employ NLP techniques for fash-
ion recommendation. In particular, we use the encoder component from the
Transformer [Vaswani et al., 2017], and our training process is similar to the one
employed by Devlin et al. [2019].

4.1 Model

4.1.1 Architecture
The input of our model is a set of items that form a partial outfit. As the whole
model operates over a set of items, the input can have an arbitrary size and its
composition is not restricted in any way. Each input item must be composed
of an image and a category. Let I = {I1, . . . , In} is the set of input images,
C = {C1, . . . , Cn} is the set of input categories and optionally let ct denotes the
target category. We approach the outfit recommendation as learning of func-
tion ψ(I, C) or ϕ(I, C, ct) depending on whether the target category is known
or not. The output of the function is the predicted representation of the item
that complements the partial input outfit. The overall architecture is depicted in
Figure 4.1.

The input images are first processed by a CNN. Then, the embeddings are
passed to a fully-connected layer. The fully connected layer serves mainly for
reducing the dimension. That is needed because the dimension of the CNN may
be high, and the number of parameters of transformer blocks scales quickly with
the dimension.

After the dimension reduction, a mask token is added to the set of embeddings.
The value of this token is learned during the training phase. We propose two
strategies of masking: single-token and category-wise masking. With single-token
masking, only one masking token M is used for all prediction. On the contrary,
with category-wise masking, we use a category-specific token M = m(ct). The
output of this stage is a set D = {D1, . . . , Dn,M} of item embeddings and a
mask token.

We apply category embeddings on the outputs from the previous component.
This stage is similar to the positional embedding in the Transformer. However,
we learn the embedding vectors during the training. We merge the category
embeddings with the vectors D1, . . . , Dn using addition, concatenation or multi-
plication. When a category of the searched item is known, a category embedding
can be applied to the mask token as well. We call the components up to this point
a preprocessor as they prepare the embeddings for the encoder. The output of
the preprocessor is a set of embedded items and mask E = {E1, . . . , En, EM}.

The final and the essential part of our model is the encoder stack from the
Transformer. We use the same architecture of the encoder blocks as the original
Transformer model described in subsection 2.1.3. The input of the encoder is
a set of embeddings produced by a preprocessor, as shown in Figure 4.1. The

29

Multi-Head Attention

Add & Norm

Feed Forward

Add & Norm

En
co

de
r B

lo
ck

 #
1

⋮

Encoder Block #N

CNN

Category Embedding

Partial Outfit

Complementary Item Prediciton

Fully Connected

Mask Token

En
co
de
r

Pr
ep
ro
ce
ss
or

Figure 4.1: Architecture of our Fashion Encoder model. The input consists of
fashion product images with product categories. A CNN first processes the im-
ages, the CNN embeddings are then enriched with category embeddings. Finally,
the set of embedded fashion products is passed to the encoder.

30

Figure 4.2: Fashion Encoder training process. The goal is to select the correct
missing item from all items in the batch.

output of the encoder is a set of encoded products and the encoded mask token
O = {O1, ..., On, OM}.

The output of our model is a vector OM that represents the target item. The
last step is to find the target item from the dataset. Unlike NLP models that
work with a vocabulary of fixed size, we can not connect the output of the encoder
directly to the logits vector of the vocabulary. However, we can find the target
item by finding the most similar item according to a similarity function. We use
a dot-product for this purpose. Formally, let Y is the set of all available items,
let Ey denotes the preprocessor’s embedding of an item y ∈ Y , and finally, let yt

is the true target item. The predicted complementary item ŷ is the one with the
highest dot-product value:

ŷ = arg max
y∈Y

(Om · Ey) (4.1)

4.2 Training
To train the model, we use a masked outfit completion task that is similar to the
FITB from Polyvore datasets and the masked language modelling employed in
BERT [Devlin et al., 2019]. The input is formed from an outfit with one randomly
selected item taken away. The goal is to choose the missing item from all items
available in the batch, as depicted in Figure 4.2.

Following the notation from the previous section, we compute the model’s loss
as follows. We apply softmax function on the set of dot-products between Em

and all y ∈ Y of the current batch in order to create a probability distribution.

31

With this distribution we compute a cross entropy loss function l for one outfit:

l = − log
(︄

exp(Em · Eyt)∑︁
y∈Y exp(Em · Ey)

)︄
(4.2)

Unlike the models using conditional similarity networks [Veit et al., 2017, Tan
et al., 2019, Vasileva et al., 2018], that are trained using triplets, our training task
allows the model to exploit the whole outfit at the same time. The triplet training
does not provide any information about the outfit composition. However, masked
outfit completion allows the model to learn relations between the items of the
outfit. That might be beneficial in some cases when pairwise compatibilities are
not sufficient. Consider trousers that match a particular shirt, and let they also
match some shoes, the three items together do not necessarily make a compatible
outfit, for example, if they share the same vivid colour.

Han et al. [2017] use a similar approach to train their bi-directional model.
However, the bi-directionality of their model is limited by merging the left and
right context; thus, the model can not process the context as a whole.

4.3 Discussion
In this section, we would like to explain the motivation and reasoning behind
our design decisions. Moreover, we want to elaborate on some properties of the
model.

4.3.1 Why Self-Attention
The Transformer and the self-attention mechanism was introduced in NLP as
an alternative to recurrent neural networks. The goal was primarily to reduce
sequential computations and allow capturing long-range dependencies [Vaswani
et al., 2017]. However, fashion outfits are typically not nearly as long as tex-
tual data that is processed in NLP. Nonetheless, the Transformer with the self-
attention is also a new approach to contextual embedding; and that is the reason
why we explore its capabilities in outfit recommendation.

Our expectations from the multi-head self-attention used in the encoder are
the following:

• Each fashion product of the encoded outfit can be encoded differently de-
pending on its context. That allows one item to have different “role" in
different outfits.

• The self-attention mechanism can regulate the impact of the items on the
searched product. That should allow the main categories (e. g. tops or
bottoms) to have a stronger influence than, for example, jewellery.

• When encoding the mask token, we expect it to gather all the neces-
sary information from the input items. Moreover, when the category of
the searched item is known, the key in the attention mechanism may be
category-dependent. Consider we are searching for shoes compatible with
our shirt and belt, the category-specific key should have the capability to
pay more attention to the belt than the shirt.

32

• Because the weighted averages are computed for each head separately, this
approach is more flexible than using only one head. Thus, we think that
the multi-head attention might allow the model to encode different aspects
of the products within each head.

4.3.2 Overall Design
We decided to approach the recommendation problem as a prediction of item’s
vector representation. We do that by encoding a mask token. However, it is also
possible to modify the Transformer to predict outfit compatibility (with mono-
lithic architecture). This can be done by imitating the classification approach of
BERT [Devlin et al., 2019]. We can add a classification token to the input to-
gether with a partial outfit and a candidate complementary item. The output of
the model that corresponds to the classification token is passed to a classification
layer. The output of this layer should be a probability that the input outfit is
compatible. That way, the output corresponding to the classification token is a
representation of the whole outfit.

The variant that predicts compatibility may achieve higher accuracy as the
model processes the partial outfit as well as the candidates. However, this ap-
proach is not suitable for retrieval because the model must be executed with
every product in the database during the prediction in order to find the most
compatible one. On the contrary, when using our architecture for retrieval, it is
only needed to embed all the items into the one shared space to create indexes;
and at the time of prediction, the model has to run only once. The output of the
model is a vector representation; hence we can search through the indexes of the
database to find the nearest item.

4.3.3 Encoder-only Architecture
We decided to use only the encoder, which is an approach used by BERT as well
[Devlin et al., 2019]. The reason is that unlike the textual data, the products
that form an outfit are not implicitly ordered. Because of that, it is not clear how
should the items be ordered in the decoder. Moreover, encoding the mask token is
sufficient for our case as we do not need to generate continuous sequences. Thus,
we decided to use only the encoder part, which is order-independent and proven
to work on its own in NLP.

The encoder-decoder or decoder-only architectures might be better for gen-
erating more than one fashion product thanks to the decoder’s autoregressive
nature. However, in the encoder-only architecture, this can be addressed by
using the model iteratively (generating one product per run).

4.3.4 Comparison with Other Approaches
Our model is an example of generating outfit recommendation system (as defined
in Subsection 3.2.1). Hence, our approach is similar to the bi-directional LSTM
model by Han et al. [2017]. These methods predict the missing item using the
whole outfit at once. Intuitively, our approach can utilize contextual information
about the input products that can not be captured by the pairwise approach.

33

Nonetheless, the subspace embedding approaches have the state-of-the-art per-
formance, as shown in Chapter 6.

In contrast to the models that put some restriction on the input, such as fixed
composition [He and Hu, 2018] or order [Han et al., 2017], our model can process
outfits of arbitrary sizes and compositions.

In context of recommender systems, we classify the approach as a monolithic
hybrid system with aspects of content-based and collaborative methods. We
use content attributes (product images and categories); however, we learn the
relations between the items from community data. The recommendations are
not personalized, but produced from the contextual information such as products
in the shopping cart or a currently viewed item.

34

5. Implementation
In this chapter, we discuss the implementation of our approach.

5.1 Used Technologies
The project was written primarily in Python 3.7. We built the model using Ten-
sorflow 1, a popular library for developing and training machine learning models.
We tuned the hyperparameters using Keras Tuner 2, a hyperparameter tuning
framework for Tensorflow. To streamline experimenting and data exploration,
we used Jupyter Notebooks3 that allow interactive prototyping. To enhance the
portability of the project, we took advantage of a package and environment man-
ager Conda4. We ran the training code inside a Docker5 container.

5.2 Module Structure
The codebase is located inside src module that is further dived into the following
submodules:

• data - A module containing the functionality that deals with the input data
for the model. Specifically, it contains a code that builds the datasets files.
It also contains methods that build the actual input pipeline for training
and evaluation.

• models - The code related to training and the model itself is located in this
module.

• notebooks - Data exploration and minor experiments that were done in
Jupyter notebooks are in the notebooks module.

5.3 Input Pipeline
Our model consumes two types of datasets: a training dataset and a dataset for
FITB the task. One sample of the training dataset corresponds to one outfit. The
sample consists of a sequence of product images, a sequence of categories and a
position that should be masked. A sample from the FITB dataset represents
one FITB question. The sample contains a sequence of images of the partial
outfit with one extra placeholder image, a sequence of corresponding categories
(optionally with the target category at the position of the placeholder), a sequence
of candidate (target) images with categories, an index of the correct target item
and an index of the placeholder. A possible composition of the FITB sample
is shown in Figure 5.1. Both dataset types may contain CNN representations
instead of the raw images for optimization purposes.

1https://www.tensorflow.org/
2https://github.com/keras-team/keras-tuner
3https://jupyter.org/
4https://docs.conda.io/
5https://www.docker.com/

35

Figure 5.1: Example of one sample from the FITB dataset

We build the input pipelines using tf.data, which is a Tensorflow module
that allows us to create complex and efficient data pipelines. First, we preprocess
the datasets, so they almost comply with the above descriptions. Optionally, we
extract the visual features from the images using a CNN. After this stage, we
save the datasets to TFRecord files. TFRecord is a file format that allows storing
sequential messages that are serialized using Protocol Buffers6, a mechanism for
efficient serializing of structured data.

The training loop consumes an instance of tf.data.Dataset, which we create
from the TFRecord files. tf.data.Dataset is an abstraction of a sequence of
samples that may be created from various data sources such as TFRecord files,
CSV data or Python generator. Thanks to that, the input pipeline can be easily
replaced with other sources of data. At this point, we add a random mask position
to the training samples, and we also finalize the form of the FITB samples. To
make sure that the input pipeline is not a bottleneck of the training, we take
advantage of caching and prefetching the samples.

5.4 Model
The Fashion Encoder model is an instance of tf.keras.Model that is created
using Keras functional API. We build the model from two separated parts: the
preprocessor and the encoder. Thanks to that, the preprocessor can be easily
interchanged, and the encoder can be used on its own. That allows us to design
different methods of feature extraction that can, for example, exploit not only the
product images. In the following subsections, we describe the implementation of
these two components.

5.4.1 Preprocessor
We realize the preprocessor by a class FashionPreprocessor that is a subclass
of tf.keras.Model. The preprocessor is a neural network that projects fashion

6https://developers.google.com/protocol-buffers/

36

products into vector representations. This network consists of four layers con-
nected sequentially: a CNN extractor, a fully-connected network, a masking layer
and a category embedding layer. However, the CNN and the category embed-
ding layer are optional. We can modify the final shape and composition of the
preprocessor via its constructor parameters.

The CNNExtractor is a thin wrapper around a CNN that deals with padding
of the outfits when training in batches. We use a Keras implementation of In-
ceptionV3 [Szegedy et al., 2016] pretrained on the ImageNet classification task
[Deng et al., 2009] as the actual CNN. However, we also experiment with train-
ing the model without training the CNN (using the initial ImageNet weights).
In that case, we use the dataset that consists of CNN embeddings; hence, the
CNNExtractor may be omitted.

The fully-connected neural network reduces the dimension of vectors from
the CNN (2048 in case of InceptionV3). It is a standard dense layer with leaky
rectified linear unit (leaky ReLU) activation and dropout to reduce overfitting of
the model.

The other mandatory part of the preprocessor is a masking layer. A masking
layer replaces one of its inputs with a special masking token. We implement
two types of masking: SingleMasking and CategoryMasking. SingleMasking
replaces all the vectors at mask positions with the same vector which is learned
during the training phase. CategoryMasking learns one masking token for each
category and replaces the vectors with corresponding masks.

We implemented three ways of merging the category embeddings with the out-
puts from the CNN. Again, for straightforward interchangeability we implement
the category embedding with three layers: CategoryAdder, CategoryMultiplier
and CategoryConcater. Based on the preprocessor parameters, one or none of
these layers is used.

5.4.2 Encoder
The encoder is based on the Tensorflow official implementation of the Trans-
former7 that follows the original architecture from Vaswani et al. [2017]. We
extracted the code of the encoder component and removed all the NLP-specific
parts such as word embedding. Moreover, we implemented a functionality that
allows computing key and query vectors from one-hot encoded categories instead
of the full preprocessor representation.

5.5 Training
The training is implemented in a class EncoderTask that sets up the training
process based on the constructor parameters. We train the model using a cus-
tom training loop that records all the operations performed by the model on a
GradientTape. The gradient computed from the tape is then used to optimize
the model with Adam optimizer [Kingma and Ba, 2015]. Our training loop pro-
vides a standard functionality such as loading and saving checkpoints, tracking
the progress and custom callbacks. To avoid overfitting, we also implement an

7https://github.com/tensorflow/models

37

early stopping mechanism that can stop the training when the validation metric
is not improving.

We utilize Keras Tuner to search for the best set of hyperparameters. It
allows us to conveniently search the hyperparameter space using random search,
Bayesian optimization or HyperBand algorithm [Li et al., 2018].

38

6. Evaluation
We evaluate our model on Maryland Polyvore and Polyvore Outfits datasets that
are described in Section 3.3. Both datasets contain FITB and compatibility pre-
diction tasks. However, there is no straightforward modification of our approach
that would allow us to predict outfit compatibility. Thus, we evaluate the model
only on the FITB tasks.

We compare our approach with the models mentioned in Section 3.2. All
the results we present are the results reported by the authors of the models
(if not stated otherwise). To distinguish the models, we are using this naming
convention:

• Type-aware: a model that employs category pairs subspaces proposed by
Vasileva et al. [2018].

• CSA-Net: Category Subspace Attention Network designed by Lin et al.
[2019]

• SCE-Net: Similarity Condition Embedding Network proposed by Tan
et al. [2019]

• Trans-Net: Transformer based model from Prato et al. [2020]

• SiameseNet: Siamese network implemented by Vasileva et al. [2018]

• Bi-LSTM: bidirectional LSTM model designed by Han et al. [2017]

• FE: our Fashion Encoder approach with the following hyperparameters:

– dD: dimension d of preprocessor embeddings (hidden size)
– (ADD|MUL|CONCAT[c]): type of category embedding, c is a di-

mension of category embedding (c must be lower than d)
– CA: the keys and queries of the self-attention mechanism are com-

puted from one-hot encoded categories (we call it category attention)
– fF: filter size f (number of units of the first dense layer of the encoder’s

feed forwards networks)
– hH: number h of self-attention heads
– lL: number l of encoder blocks (number of hidden layers)

6.1 Maryland Polyvore
FITB task from the Maryland Polyvore dataset [Han et al., 2017] contains ques-
tions that are formed by taking away one item from an outfit. The goal is to select
the correct candidate from four options. The incorrect candidates are selected
randomly, and their category does not have to match the correct item’s category.

39

6.1.1 Implementation Details
This dataset contains the FITB task only for the test set. Hence, we generated a
validation FITB task the same way that the test task was created, but from the
outfits of the validation set.

We employ early stopping in all the trainings done on this dataset. Particu-
larly, the training is stopped when 25 epochs are surpassed, and the validation
accuracy does not improve by 0.2% for 10 epochs. We run the test task with the
model that reached the highest validation accuracy.

We used Bayesian optimization implemented in Keras Tuner to find the best
set of hyperparameters. The model is trained with 96 outfits in each batch with
Adam optimizer [Kingma and Ba, 2015] with learning rate 0.002.

As the candidates of this FITB task might have different categories, we employ
single token masking in all the experiments. Also, we do not apply the category
embedding to the mask token. Thus, all the predictions are made solely based
on the partial input outfit.

We always train all the parameters of the model except for the CNN (we use
the ImageNet weights). We found out that this approach has the best perfor-
mance.

6.1.2 Results
Our best model reached the accuracy of 72.6 % in the Maryland Polyvore FITB
task. We achieved this accuracy with a model with the hidden size of 64, filter
size 128, two hidden layers and concatenated category embedding that takes up
half of the hidden size. We evaluated this model 5 times; the final result is the
average of these executions. The training of this model took 25 minutes using
NVIDIA Tesla V100. A comparison with baseline and state-of-the-art methods
is shown in Figure 6.1.

Maryland Polyvore FITB task tests not only the compatibility of styles but
also the compatibility of categories because the candidates may have different
categories. It is questionable whether this task is designed properly as some can-
didates can be dismissed based only on their category as discussed by Vasileva
et al. [2018]. The Siamese network has the worst performance presumably because
its input does not contain category information, and by design, it is not able to
distinguish categories properly. The input of the bidirectional LSTM [Han et al.,
2017] model includes images, descriptions and positions in the outfit. The Bi-
LSTM outperforms the Siamese network by a significant margin. However, their
model is still not able to dismiss items of incorrect categories reliably. Vasileva
et al. [2018] report the best performance in this task with their Type-aware Em-
bedding network. Their model learns projections to subspaces that corresponds
to category pairs (e. g. top-bottom). Thus, when the model computes compati-
bility between items of categories that were not present during training (such as
bottom-bottom, if no training outfit contains two bottom parts), then the com-
patibility is computed in their general embedding space. That way, the easily
recognizable incompatible categories are filtered. Thanks to that, the accuracy
of their model is that high.

Our best model without category embedding significantly exceeds the perfor-
mance of the Siamese network. That is probably caused by the fact that our

40

Method FITB Accuracy
SiameseNet 54.2
Bi-LSTM 68.6
Type-aware 86.1
FE-128D-256F-32H-2L (ours) 65.2
FE-64D-128F-2L-32H-CONCAT[32] (ours) 72.6

Table 6.1: Comparison of different approaches on the Maryland Polyvore FITB
task [Han et al., 2017].

model processes the whole input at the same time, and thus can utilize contex-
tual information (such as all the categories included in the outfit). However,
we achieved the highest accuracy with a model that employs category embed-
ding concatenation. Thanks to that, the model can use both visual and explicit
category information that seems to be beneficial in this task.

6.2 Polyvore Outfits
Polyvore Outfits dataset was designed by Vasileva et al. [2018] and contains sim-
ilar evaluation tasks as Maryland Polyvore. The only difference is that all the
candidates of the FITB task have the same high-level category. Hence, the task
evaluates rather the ability to recommend visually compatible items than recom-
mending compatible categories. The dataset contains two splits (further described
in Section 3.3): Polyvore Outfits (PO) and Polyvore Outfits Disjoint (PO-D).

6.2.1 Implementation Details
We employ the same early stopping mechanism as in the experiments with Mary-
land Polyvore. That is, the training is stopped when at least 25 epochs have
passed, and the validation accuracy does not improve by 0.2% for 10 epochs. We
use the model with the highest validation accuracy to run the test tasks.

We also use similar training hyperparameters as in the Maryland Poylvore.
Each training batch contains 96 outfits and the model is trained with Adam
optimizer [Kingma and Ba, 2015] with learning rate 0.002. We train all the
model’s parameters except for the CNN.

We use the high-level categories for both the category embedding and cate-
gory attention as we discovered that the fine-grained categories do not improve
the model’s performance. Also, during the training, we dismiss the items that
do not have the same high-level category as the target item in order to better
approximate the FITB task.

6.2.2 Results
We achieved the FITB accuracy of 42.6 % for Polyvore Outfits Disjoint and
48.6 % for Polyvore Outfits. These results were reached with a model with a
hidden size of 256, filter size of 128 and 32 attention heads. The model does
not use category embedding; however, the keys and queries of self-attention are
computed from one-hot encoded categories. We trained the model using NVIDIA

41

Method FITB Accuracy
PO-D PO

Bi-LSTM 39.4 39.7
SiameseNet 51.8 52.9
Type-aware 55.2 56.2
SCE-Net – 61.6
Trans-Net – 62.5
CSA-Net 59.3 63.7
FE-256D-512F-32H-2L-CA (ours) 42.6 48.6

Table 6.2: Comparison of different approaches on the Polyvore Outfits FITB
tasks [Vasileva et al., 2018]. Note that the results for Bi-LSTM were reported by
Vasileva et al. [2018] as the model is older than the task.

Tesla V100, the trainings last 30 and 50 minutes for Polyvore Outfits Disjoint and
Polyvore Outfits, respectively. The final results are the averages of 5 trainings.
We compare our results with other methods in Table 6.2.

The best results for this task were reported by Lin et al. [2019] that use
a subspace embedding model with an attention mechanism. Their results are
followed by the Transformer based model [Prato et al., 2020] and the Similarity
Condition Network Tan et al. [2019]. The Similarity Condition Network employ
product images as the embedding condition; thus, the model must compute the
compatibility for every item of the dataset during the evaluation. Moreover, it
is not clear whether the Transformer based model is suitable for retrieval as the
authors may use the classification model for compatibility prediction (hence, may
have the same issue as the SCE-Net). The Type-aware model [Vasileva et al.,
2018] has about 5 % lower accuracy than the SCE-Net. The Siamese Network as
a baseline method implemented by Vasileva et al. [2018] reaches the accuracies of
51.8 % and 56.2 % for Polyvore Outfits Disjoint and Polyvore Outfits in respective
order. Our model does not exceed the accuracy of the Siamese Network, and the
difference in the accuracies is significant. The reason may be that the generating
approach to outfit recommendation is not very effective considering that the Bi-
LSTM model [Han et al., 2017] achieves even lower accuracies.

All the methods achieve higher accuracy for Polyvore Outfits than for Polyvore
Outfits Disjoint. That is expected as the Polyvore Outfits split contains more
training data, and the products from training set may appear in the test set.

6.3 Hyperparameters and Modifications
In this section, we elaborate on the impact of individual hyperparameters and
modifications of the model. Note that the following experiments were usually
executed only twice (due to their computational complexity); thus, the results
might be little inconsistent. However, we typically performed more experiments
(with various configurations) than shown in the tables in order to gather as much
information about the hyperparameters as possible.

42

Method FITB Accuracy # parametersMP PO-D
FE-32D-64F-32H-1L 63.4 39.8 74 080
FE-64D-128F-32H-1L 65.0 41.1 164 544
FE-128D-256F-32H-1L 64.3 41.8 394 624
FE-256D-512F-32H-1L 65.2 41.4 1 051 392
FE-32D-64F-32H-2L 62.8 41.0 82 496
FE-64D-128F-32H-2L 65.0 41.7 197 760
FE-128D-256F-32H-2L 65.2 41.9 526 592
FE-256D-512F-32H-2L 65.1 41.3 1 577 472
FE-64D-128F-32H-1L-CA – 41.1 197 760
FE-256D-512F-32H-1L-CA – 41.9 1 577 472
FE-64D-128F-32H-2L-CA – 42.3 197 760
FE-256D-512F-32H-2L-CA – 42.6 1 577 472

Table 6.3: Different sizes of our model evaluated on the Maryland Polyvore FITB
task [Han et al., 2017].

6.3.1 Model Size
First, we experimented with a model without category embedding (using only the
CNN embeddings). We explored the impact of hidden size and number of encoder
blocks. A summary of these experiments is shown in Table 6.3. We found out
that models with the hidden size higher than 64 have comparable performance.

We also observed that, for some configurations (e. g. a model with category
attention), the model with two hidden layers has higher accuracy than the model
with only one hidden layer. However, for other configurations, the number of
hidden layers has no notable effect. This observation suggests that the contextual
embeddings sometimes have a positive impact on the performance. Let us remind
that the products are not contextually embedded in a model with only one encoder
block, because in this case, only the encoder inputs are used when encoding the
mask token via the self-attention mechanism.

6.3.2 Category Embedding
We observed a substantial performance improvement caused by the category em-
bedding for Maryland Polyvore dataset. However, for Polyvore Outfits we were
not able to improve the performance with this component. Tables 6.4, 6.5 and
6.6 show the results for addition, multiplication and concatenation category em-
bedding in respective order.

All three variants increase the accuracy of Maryland Polyvore FITB; however,
concatenation proved to be the best approach. We associate the high impact of
category embedding with the fact that FITB candidates may have different cate-
gories. Thus, the model has to predict not only visually compatible item but also
an item with a compatible category. To prove this hypothesis, we executed an
experiment with a model with concatenation category embedding with a hidden
size of 256 and 255 category dimension (i. e. only one dimension of the represen-
tation vector corresponds to the CNN features). With this model, we were able

43

Method FITB Accuracy
MP PO-D

FE-32D-64F-2L-32H-ADD 70.9 41.5
FE-64D-128F-2L-32H-ADD 71.1 41.4
FE-128D-256F-2L-32H-ADD 71.5 41.8
FE-256D-512F-2L-32H-ADD 70.7 41.6

Table 6.4: Evaluation of our model with different hidden sizes and added category
embedding on the Maryland Polyvore FITB task [Han et al., 2017].

Method FITB Accuracy
MP PO-D

FE-32D-64F-2L-32H-MUL 70.2 40
FE-64D-128F-2L-32H-MUL 71.7 41.9
FE-128D-256F-2L-32H-MUL 71.8 41
FE-256D-512F-2L-32H-MUL 71.3 41.2

Table 6.5: Evaluation of our model with different hidden sizes and multiplication
category embedding on the Maryland Polyvore FITB task [Han et al., 2017].

to reach 69% accuracy in the FITB task of the Maryland Polyvore dataset.
Note that the results for Polyvore Outfits with category embedding were ob-

tained with a model that applies category embedding to the mask token as well.
We did not notice any significant difference between a model with mask token
category embedding and the one that applies category embedding only to the
input items.

6.3.3 Category Attention
We experimented with a model that computes the key and query attention vectors
just from the categories of particular products (one-hot encoded categories). Only
the value vectors are computed from the preprocessor’s embeddings. The goal
of this modification was to reduce the complexity of the model by restricting
the querying of the self-attention only to the explicit category information. This
model achieves around 0.5 % higher accuracy (on Polyvore Outfits Disjoint) than
an equivalent model without category embedding, as shown in Table 6.3.

We employ this technique only on Polyvore Outfits datasets because we find
using category embedding more effective on Maryland Polyvore.

6.3.4 Number of Heads
We also examined the number of self-attention heads. For most configurations
of our model, the number of attention heads does not have a notable impact
on the performance. For a few configurations, there is a difference in accuracy
between using one attention head and more than one head. Specifically, using
more than one attention head lead to higher FITB accuracy (usually up to 1%
improvement on the Maryland Polyvore FITB). For most experiments, we use
32 attention heads as we did not notice a decrease of the accuracy caused by a

44

Method FITB Accuracy
MP PO-D

FE-16D-32F-2L-16H-CONCAT[8] 66.5 37.4
FE-32D-64F-2L-32H-CONCAT[16] 72.1 40.8
FE-64D-128F-2L-32H-CONCAT[32] 72.6 40.5
FE-128D-256F-2L-32H-CONCAT[64] 72.5 40.7
FE-256D-512F-2L-32H-CONCAT[128] 72.4 41.3

Table 6.6: Evaluation of our model with different hidden sizes and concatenation
category embedding on the Maryland Polyvore FITB task [Han et al., 2017].

higher number of heads. Also, note that the number of attention heads does not
affect the model’s size.

45

7. Discussion
7.1 Unsuccessful Modifications
Let us describe some modifications that we tried but did not use in the final
model because of their inferior performance.

Maryland Polyvore Categories

Because the categories of Maryland Polyvore dataset are not grouped into high-
level categories, we created our own category groups. We divided the fine-grained
categories into nine semantic categories such as tops, bottoms or outerwear. Then,
we used category embedding with these high-level groups. Our motivation was
to make sure that the model is able to learn proper category embedding even
for categories with a few items. However, the performance of this approach was
worse than using the fine-grained categories.

CNN Training

We tried training the CNN together with the rest of the model. We also tried
to split the training into two stages, all the parameters except for the CNN were
trained in the first stage, and the whole model was fine-tuned in the second stage.
None of these approaches improved the performance of the model. The reason
might be that we were forced to lower the batch size down to 10 due to the GPU
memory requirements of the CNN. We observed that the model is able to encode
the contextual information so the input items (the partial outfit) have lower dot-
product with the prediction. This behaviour reduces the training loss; however,
is surely not desirable. Nonetheless, this effect is negligible with bigger batches.

Loss and Similarity Functions

We also unsuccessfully experimented with a distance similarity metric and dis-
tance loss function. With distance metric d and the notation from Section 4.1,
the predicted item ŷ can be found as follows:

ŷ = arg min
y∈Y

d(em, ey) (7.1)

where d can be an arbitrary metric; however, we only experimented with Eu-
clidean distance.

We want to make such predictions that eyt is close to em and all other item
embeddings are far from em. Thus, we define the loss function accordingly, and
we inspire from the approach of Lin et al. [2019]. Let {y1, . . . , yn} is a set of
the wrong items’ embeddings. We first aggregate the distances to the incorrect
candidates using an aggregation function φ (e. g. min or average):

dn = φ({y1, . . . , yn}) (7.2)

46

We experimented with a loss function that encourages a distance margin m
between eyt and the embeddings of incorrect candidates:

l = max(d(Em, Eyt) − dn +m, 0) (7.3)

The Architecture

We also tried to alter the overall architecture. For example, we experimented
with putting the category embedding and the masking layer in front of the input
dense layer. Then, we added a dense layer after the encoder component, so the
dimension of the output was the same as the CNN embeddings. None of the
variations that we tried achieved better performance than the one we propose.
We chose the model that has the best performance and the most straightforward
architecture. Figure 7.1 depicts the above-mentioned modifications in comparison
with the final design.

Outputs

Pr
ep
ro
ce
ss
or

Encoder

Category Embedding

Masking

Fully Connected

CNN

Inputs

Outputs

Pr
ep
ro
ce
ss
or

Encoder

Category Embedding

Masking

Fully Connected

CNN

Inputs

Fully Connected

En
co
de
r

Outputs

Pr
ep
ro
ce
ss
or

Encoder

Category Embedding

Masking

Fully Connected

CNN

Inputs

Final Architecture Variant A Variant B

Figure 7.1: Comparison of possible Fashion Encoder architectures that we eval-
uated.

7.2 Future Work
Although the evaluation of our model suggests using another method, there are
still some options of modifying our approach that may be interesting for future
research.

Training the CNN

We were not able to improve the accuracy by training the CNN as discussed in
the previous section. However, the InceptionV3 [Szegedy et al., 2016] may be
replaced with a smaller network such as EfficientNet [Tan and Le, 2019] that

47

should be implemented in Tensorflow 2.3. With a smaller network, the model
can be trained with bigger batches and the accuracy may improve.

Alternatively, we can modify the training process, so it is not affected by the
batch size that much. That may be done, for example, by dismissing the items
of the input outfit from the possible candidates.

Enriched Features

The outfit recommendation models typically employ visual data, some of them
also use category or textual information [Han et al., 2017, Lin et al., 2019, Prato
et al., 2020, Vasileva et al., 2018]. The preprocessor of our model can be modified
to exploit the textual data as well. With the textual data, the model may also use
visual semantic embedding (VSE) that is described by Vasileva et al. [2018] and
Han et al. [2017]. Both models report better performance with the introduction
of VSE to their models.

Loss Functions and Similarity Metric

We restricted our experimenting mostly to the model trained with cross entropy
loss function and a dot-product as a similarity function. We also tried using
distance loss function with Euclidean distance; however we were not able to train
the model with this configuration. Nonetheless, we neither proceeded in the
analysis of this approach nor tried to alter the loss function. Hence, there is an
opportunity for further improvement.

48

Conclusion
The goal of this thesis was to explore the possibility of employing recent NLP
approaches in outfit recommendation. We showed that it is possible to create a
model for outfit recommendation based on the Transformer [Vaswani et al., 2017].

To achieve this goal, we researched the essential concepts of recommender
systems. Then, we examined the methods of complementary item recommen-
dation. We explored the recent state-of-the-art approaches of natural language
processing and thoroughly analysed the models that seemed to be adaptable for
outfit recommendation. Based on this research, we designed a novel architec-
ture based on the Transformer’s encoder component [Vaswani et al., 2017] with
a training process inspired by BERT [Devlin et al., 2019]. We examined several
architectures, and we implemented various modifications to the model, such as
category embedding, to improve the performance of the model. To find the best
configuration, we employed Bayesian optimisation for hyperparameter tuning.

We evaluated the model on the fill-in-the-blank tasks of the standard datasets:
Maryland Polyvore and Polyvore Outfits. On Maryland Polyvore we achieved the
accuracy of 72.6 %. That is better than the baseline methods but worse than
the current state-of-the-art approach, which has around 14 % higher accuracy.
On Polyvore Outfits FITB where candidates have the same high-level category,
our model reached 42.6 % and 48.6 % accuracy for Polyvore Outfits Disjoint and
Polyvore Outfits, respectively. Thus, our model does not exceed the Siamese
Network’s baseline that is 51.8 % and 52.9 %. Moreover, the state-of-the-art
method from Lin et al. [2019] has significantly higher accuracy of 59.3 % and
63.7 %.

Although the models that we examined do not achieve the necessary per-
formance, there is still a space for experimenting with some modifications, for
example, relating to the loss function or similarity metric. We believe that our
work sets directions and boundaries for further research of self-attention based
models in outfit recommendation.

49

Bibliography
Gediminas Adomavicius and Alexander Tuzhilin. Toward the next generation of

recommender systems: A survey of the state-of-the-art and possible extensions.
IEEE Trans. on Knowl. and Data Eng., 17(6):734–749, June 2005. ISSN 1041-
4347. doi: 10.1109/TKDE.2005.99. URL https://doi.org/10.1109/TKDE.
2005.99.

Jimmy Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. Layer normalization.
ArXiv, abs/1607.06450, 2016.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine trans-
lation by jointly learning to align and translate. CoRR, abs/1409.0473, 2015.

John S. Breese, David Heckerman, and Carl Myers Kadie. Empirical analysis of
predictive algorithms for collaborative filtering. In UAI, 1998.

Denny Britz, Anna Goldie, Minh-Thang Luong, and Quoc V. Le. Massive ex-
ploration of neural machine translation architectures. ArXiv, abs/1703.03906,
2017.

Robin Burke. Hybrid Web Recommender Systems, pages 377–408. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2007. ISBN 978-3-540-72079-9.
doi: 10.1007/978-3-540-72079-9_12. URL https://doi.org/10.1007/
978-3-540-72079-9_12.

Huizhong Chen, Andrew C. Gallagher, and Bernd Girod. Describing clothing by
semantic attributes. In ECCV, 2012.

Qiang Chen, Junshi Huang, Rogério Schmidt Feris, Lisa M. Brown, Jian Dong,
and Shuicheng Yan. Deep domain adaptation for describing people based on
fine-grained clothing attributes. 2015 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pages 5315–5324, 2015.

Kyunghyun Cho, Bart van Merrienboer, Çaglar Gülçehre, Dzmitry Bahdanau,
Fethi Bougares, Holger Schwenk, and Yoshua Bengio. Learning phrase repre-
sentations using rnn encoder-decoder for statistical machine translation. ArXiv,
abs/1406.1078, 2014.

Guillem Cucurull, Perouz Taslakian, and David Vázquez. Context-aware visual
compatibility prediction. 2019 IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), pages 12609–12618, 2019.

Zeyu Cui, Zekun Li, Shu Wu, Xiaoyu Zhang, and Liang Wang. Dressing as a
whole: Outfit compatibility learning based on node-wise graph neural networks.
In WWW ’19, 2019.

Jia Deng, Wenjun Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Ima-
genet: A large-scale hierarchical image database. In CVPR 2009, 2009.

50

https://doi.org/10.1109/TKDE.2005.99
https://doi.org/10.1109/TKDE.2005.99
https://doi.org/10.1007/978-3-540-72079-9_12
https://doi.org/10.1007/978-3-540-72079-9_12

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-
training of deep bidirectional transformers for language understanding. ArXiv,
abs/1810.04805, 2019.

Wei Di, Catherine Wah, Anurag Bhardwaj, Robinson Piramuthu, and Neel Sun-
daresan. Style finder: Fine-grained clothing style detection and retrieval. 2013
IEEE Conference on Computer Vision and Pattern Recognition Workshops,
pages 8–13, 2013.

Gintare Karolina Dziugaite and Daniel M. Roy. Neural network matrix factor-
ization. ArXiv, abs/1511.06443, 2015.

A. Felfernig and R. Burke. Constraint-based recommender systems: Technologies
and research issues. In Proceedings of the 10th International Conference on
Electronic Commerce, ICEC ’08, New York, NY, USA, 2008. Association for
Computing Machinery. ISBN 9781605580753. doi: 10.1145/1409540.1409544.
URL https://doi.org/10.1145/1409540.1409544.

Jonas Gehring, Michael Auli, David Grangier, Denis Yarats, and Yann N.
Dauphin. Convolutional sequence to sequence learning. ArXiv, abs/1705.03122,
2017.

Xintong Han, Zuxuan Wu, Yu-Gang Jiang, and Larry S. Davis. Learning fashion
compatibility with bidirectional lstms. Proceedings of the 25th ACM interna-
tional conference on Multimedia, 2017.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning
for image recognition. 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 770–778, 2016.

Tong He and Yang Hu. Fashionnet: Personalized outfit recommendation with
deep neural network. ArXiv, abs/1810.02443, 2018.

Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu, and Tat-Seng
Chua. Neural collaborative filtering. Proceedings of the 26th International
Conference on World Wide Web, 2017.

Jonathan L. Herlocker, Joseph A. Konstan, Loren G. Terveen, and John Thomas
Riedl. Evaluating collaborative filtering recommender systems. ACM Trans.
Inf. Syst., 22:5–53, 2004.

Julia Hirschberg and Christopher D. Manning. Advances in natural language
processing. Science, 349:261–266, 2015.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural
Computation, 9:1735–1780, 1997.

Jeremy Howard and Sebastian Ruder. Universal language model fine-tuning for
text classification. ArXiv, abs/1801.06146, 2018.

Y. Hu, Y. Koren, and C. Volinsky. Collaborative filtering for implicit feedback
datasets. In 2008 Eighth IEEE International Conference on Data Mining, pages
263–272, 2008.

51

https://doi.org/10.1145/1409540.1409544

Dietmar Jannach. Recommender systems : an introduction. Cambridge Univer-
sity Press, 2011. ISBN 978-0-521-49336-9.

Xiaoqi Jiao, Y. Yin, Lifeng Shang, Xin Jiang, Xusong Chen, Linlin Li, Fang
Wang, and Qun Liu. Tinybert: Distilling bert for natural language under-
standing. ArXiv, abs/1909.10351, 2019.

Nal Kalchbrenner and Phil Blunsom. Recurrent continuous translation models.
In EMNLP, 2013.

Taewan Kim, Seyeong Kim, Sangil Na, Hayoon Kim, Moonki Kim, and Beyeongki
Jeon. Visual fashion-product search at sk planet. ArXiv, abs/1609.07859, 2016.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization.
CoRR, abs/1412.6980, 2015.

Thomas Kipf and Max Welling. Semi-supervised classification with graph convo-
lutional networks. ArXiv, abs/1609.02907, 2017.

Yehuda Koren. Collaborative filtering with temporal dynamics. In KDD, 2009.

Yehuda Koren, Robert M. Bell, and Chris Volinsky. Matrix factorization tech-
niques for recommender systems. Computer, 42, 2009.

Lisha Li, Kevin Jamieson, Giulia DeSalvo, Afshin Rostamizadeh, and Ameet
Talwalkar. Hyperband: A novel bandit-based approach to hyperparameter
optimization. Journal of Machine Learning Research, 18(185):1–52, 2018. URL
http://jmlr.org/papers/v18/16-558.html.

Dawen Liang, Rahul G. Krishnan, Matthew D. Hoffman, and Tony Jebara. Varia-
tional autoencoders for collaborative filtering. In Proceedings of the 2018 World
Wide Web Conference, pages 689–698, 2018.

Yen-Liang Lin, Son N. Tran, and Larry S. Davis. Fashion outfit complementary
item retrieval. ArXiv, abs/1912.08967, 2019.

Jiahui Liu, Peter Dolan, and Elin Rønby Pedersen. Personalized news recommen-
dation based on click behavior. In Proceedings of the 15th International Confer-
ence on Intelligent User Interfaces, IUI ’10, page 31–40, New York, NY, USA,
2010. Association for Computing Machinery. ISBN 9781605585154. doi: 10.
1145/1719970.1719976. URL https://doi.org/10.1145/1719970.1719976.

Nathan N. Liu and Qiang Yang. Eigenrank: A ranking-oriented approach to
collaborative filtering. In Proceedings of the 31st Annual International ACM
SIGIR Conference on Research and Development in Information Retrieval, SI-
GIR ’08, page 83–90, New York, NY, USA, 2008. Association for Comput-
ing Machinery. ISBN 9781605581644. doi: 10.1145/1390334.1390351. URL
https://doi.org/10.1145/1390334.1390351.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen,
Omer Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A
robustly optimized bert pretraining approach. ArXiv, abs/1907.11692, 2019.

52

http://jmlr.org/papers/v18/16-558.html
https://doi.org/10.1145/1719970.1719976
https://doi.org/10.1145/1390334.1390351

Julian J. McAuley, Christopher Targett, Qinfeng Shi, and Anton van den Hengel.
Image-based recommendations on styles and substitutes. Proceedings of the
38th International ACM SIGIR Conference on Research and Development in
Information Retrieval, 2015.

Bryan McCann, James Bradbury, Caiming Xiong, and Richard Socher. Learned
in translation: Contextualized word vectors. ArXiv, abs/1708.00107, 2017.

Prem Melville, Raymond J. Mooney, and Ramadass Nagarajan. Content-boosted
collaborative filtering for improved recommendations. In AAAI/IAAI, 2002.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation
of word representations in vector space. ArXiv, abs/1301.3781, 2013.

David M. Nichols. Implicit rating and filtering. In Proceedings of the Fifth DELOS
Workshop on Filtering and Collaborative Filtering, pages 31–36. ERCIM, 1998.

John O’Donovan and Barry Smyth. Trust in recommender systems. In Pro-
ceedings of the 10th International Conference on Intelligent User Interfaces,
IUI ’05, page 167–174, New York, NY, USA, 2005. Association for Com-
puting Machinery. ISBN 1581138946. doi: 10.1145/1040830.1040870. URL
https://doi.org/10.1145/1040830.1040870.

Jeffrey Pennington, Richard Socher, and Christopher D. Manning. Glove: Global
vectors for word representation. In EMNLP, 2014.

Matthew E. Peters, Waleed Ammar, Chandra Bhagavatula, and Russell Power.
Semi-supervised sequence tagging with bidirectional language models. ArXiv,
abs/1705.00108, 2017.

Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher
Clark, Kenton Lee, and Luke Zettlemoyer. Deep contextualized word represen-
tations. ArXiv, abs/1802.05365, 2018.

Gabriele Prato, Federico Sallemi, Paolo Cremonesi, Mario Scriminaci, Ste-
fan Freyr Gudmundsson, and Silvio Palumbo. Outfit completion and clothes
recommendation. Extended Abstracts of the 2020 CHI Conference on Human
Factors in Computing Systems, 2020.

Alec Radford. Improving language understanding by generative pre-training.
OpenAI Blog, 2018. URL https://cdn.openai.com/research-covers/
language-unsupervised/language_understanding_paper.pdf.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya
Sutskever. Language models are unsupervised multitask learners. OpenAI Blog,
2019. URL https://cdn.openai.com/better-language-models/language_
models_are_unsupervised_multitask_learners.pdf.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang,
Michael Matena, Yanqi Zhou, Wei Li, and Peter J. Liu. Exploring the
limits of transfer learning with a unified text-to-text transformer. ArXiv,
abs/1910.10683, 2019.

53

https://doi.org/10.1145/1040830.1040870
https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf
https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf
https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf

Paul Resnick and Hal R. Varian. Recommender systems. Commun. ACM, 40:
56–58, 1997.

Paul Resnick, Neophytos Iacovou, Mitesh Suchak, Peter Bergstrom, and John
Riedl. Grouplens: an open architecture for collaborative filtering of netnews.
In CSCW ’94, 1994.

Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. Distil-
bert, a distilled version of bert: smaller, faster, cheaper and lighter. ArXiv,
abs/1910.01108, 2019.

Badrul Munir Sarwar, George Karypis, Joseph A. Konstan, and John Riedl. Rec-
ommender systems for large-scale e-commerce : Scalable neighborhood forma-
tion using clustering. In Proceedings of the fifth international conference on
computer and information technology, volume 1, pages 291–324, 2002.

J. Ben Schafer, Dan Frankowski, Jonathan L. Herlocker, and Shilad Sen. Collab-
orative filtering recommender systems. In The Adaptive Web, 2007.

Suvash Sedhain, Aditya Krishna Menon, Scott Sanner, and Lexing Xie. Autorec:
Autoencoders meet collaborative filtering. In WWW ’15 Companion, 2015.

Peter Shaw, Jakob Uszkoreit, and Ashish Vaswani. Self-attention with rela-
tive position representations. Proceedings of the 2018 Conference of the North
American Chapter of the Association for Computational Linguistics: Human
Language Technologies, Volume 2 (Short Papers), 2018. doi: 10.18653/v1/
n18-2074. URL http://dx.doi.org/10.18653/v1/N18-2074.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for
large-scale image recognition. ArXiv, abs/1409.1556, 2014.

Anirudh Singhal, Ayush Chopra, Kumar Ayush, Utkarsh R. Patel, and Balaji Kr-
ishnamurthy. Towards a unified framework for visual compatibility prediction.
2020 IEEE Winter Conference on Applications of Computer Vision (WACV),
pages 3596–3605, 2020.

Xiaoyuan Su and Taghi M. Khoshgoftaar. A survey of collaborative filtering
techniques. Adv. Artificial Intellegence, 2009:421425:1–421425:19, 2009.

Jianing Sun, Yiran Zhang, Chen Ma, Mark Coates, Huifeng Guo, Ruiming Tang,
and Xiuqiang He. Multi-graph convolution collaborative filtering. 2019 IEEE
International Conference on Data Mining (ICDM), pages 1306–1311, 2019.

Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. Sequence to sequence learning
with neural networks. In NIPS, 2014.

Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew
Wojna. Rethinking the inception architecture for computer vision. 2016 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), pages 2818–
2826, 2016.

54

http://dx.doi.org/10.18653/v1/N18-2074

Gábor Takács, István Pilászy, Bottyán Németh, and Domonkos Tikk. Scalable
collaborative filtering approaches for large recommender systems. J. Mach.
Learn. Res., 10:623–656, 2009.

Mingxing Tan and Quoc V. Le. Efficientnet: Rethinking model scaling for con-
volutional neural networks. ArXiv, abs/1905.11946, 2019.

Reuben Tan, Mariya I. Vasileva, Kate Saenko, and Bryan A. Plummer. Learning
similarity conditions without explicit supervision. 2019 IEEE/CVF Interna-
tional Conference on Computer Vision (ICCV), pages 10372–10381, 2019.

Edward P. K. Tsang. Foundations of constraint satisfaction. In Computation in
cognitive science, 1993.

Lyle H. Ungar and Dean P. Foster. Clustering methods for collaborative filtering.
In AAAI workshop on recommendation systems, pages 114–129, 1998.

Mariya I. Vasileva, Bryan A. Plummer, Krishna Dusad, Shreya Rajpal, Ranjitha
Kumar, and David A. Forsyth. Learning type-aware embeddings for fashion
compatibility. In ECCV, 2018.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you
need. ArXiv, abs/1706.03762, 2017.

Andreas Veit, Balazs Kovacs, Sean Bell, Julian McAuley, Kavita Bala, and
Serge Belongie. Learning visual clothing style with heterogeneous dyadic
co-occurrences. 2015 IEEE International Conference on Computer Vision
(ICCV), December 2015. doi: 10.1109/iccv.2015.527. URL http://dx.doi.
org/10.1109/ICCV.2015.527.

Andreas Veit, Serge J. Belongie, and Theofanis Karaletsos. Conditional similarity
networks. 2017 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pages 1781–1789, 2017.

Alex Wang, Yada Pruksachatkun, Nikita Nangia, Amanpreet Singh, Julian
Michael, Felix Hill, Omer Levy, and Samuel R. Bowman. Superglue: A stick-
ier benchmark for general-purpose language understanding systems. ArXiv,
abs/1905.00537, 2019a.

Wei Wang, Bin Bi, Ming Yan, Chen Wu, Zuyi Bao, Jiangnan Xia, Liwei Peng,
and Luo Si. Structbert: Incorporating language structures into pre-training for
deep language understanding. ArXiv, abs/1908.04577, 2019b.

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V. Le, Mohammad Norouzi,
Wolfgang Macherey, Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey, Jeff
Klingner, Apurva Shah, Melvin Johnson, Xiaobing Liu, Łukasz Kaiser, Stephan
Gouws, Yoshikiyo Kato, Taku Kudo, Hideto Kazawa, Keith Stevens, George
Kurian, Nishant Patil, Wei Wang, Cliff Young, Jason Smith, Jason Riesa, Alex
Rudnick, Oriol Vinyals, Greg Corrado, Macduff Hughes, and Jeffrey Dean.
Google’s neural machine translation system: Bridging the gap between human
and machine translation. ArXiv, abs/1609.08144, 2016.

55

http://dx.doi.org/10.1109/ICCV.2015.527
http://dx.doi.org/10.1109/ICCV.2015.527

Hong-Jian Xue, Xinyu Dai, Jianbing Zhang, Shujian Huang, and Jiajun Chen.
Deep matrix factorization models for recommender systems. In IJCAI, 2017.

Kota Yamaguchi, Takayuki Okatani, Kyoko Sudo, Kazuhiko Murasaki, and Yuki-
nobu Taniguchi. Mix and match: Joint model for clothing and attribute recog-
nition. In BMVC, 2015.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime G. Carbonell, Ruslan Salakhut-
dinov, and Quoc V. Le. Xlnet: Generalized autoregressive pretraining for
language understanding. In NeurIPS, 2019.

Markus Zanker and Markus Jessenitschnig. Collaborative feature-combination
recommender exploiting explicit and implicit user feedback. 2009 IEEE Con-
ference on Commerce and Enterprise Computing, pages 49–56, 2009.

Tong Zhang and Vijay S. Iyengar. Recommender systems using linear classifiers.
Journal of Machine Learning Research, 2:313–334, 2002.

56

List of Figures

1.1 Monolithic hybrid recommender system (adapted from [Jannach,
2011, p. 128]) . 12

1.2 Parallelized hybrid recommender system (adapted from [Jannach,
2011, p. 129]) . 13

1.3 Pipelined hybrid recommender system (adapted from [Jannach,
2011, p. 129]) . 13

2.1 An example of an encoder-decoder model used for translation from
English to Spanish. The figure depicts a moment of generating the
word “mariposas”. 15

2.2 A diagram of the multi-head attention mechanism 17
2.3 A high-level view of the Transformer 18
2.4 BERT input sequence embedding. Each input item is created from

three components: the token embedding, the sentence embedding
and the positional embedding. (Adapted from Devlin et al. [2019].) 20

3.1 Overview of the model proposed by Lin et al. [2019]. When com-
paring the item pairs, the items are projected into multiple sub-
spaces. To obtain the final embedding, a weighted sum of the
subspace embeddings is computed. The weights are based only on
the categories of the items of the pair. 23

3.2 A diagram of generating outfit recommendation approach. The
recommender predicts the target item’s representation. 25

3.3 A diagram of pair-wise outfit recommendation approach that ag-
gregates pair-wise compatibilities to compute the overall compati-
bility. 25

3.4 A diagram of monolithic outfit recommendation approach that pre-
dicts outfit compatibility. 25

3.5 Example of an outfit from polyvore.com 26
3.6 Distribution of outfit sizes in Maryland Polyvore 28
3.7 Distribution of outfit sizes in Polyvore Outfits 28
3.8 Average number of items of particular category in outfits of both

Polyvore Outfits splits (disjoint and non-disjoint) 28

4.1 Architecture of our Fashion Encoder model. The input consists
of fashion product images with product categories. A CNN first
processes the images, the CNN embeddings are then enriched with
category embeddings. Finally, the set of embedded fashion prod-
ucts is passed to the encoder. 30

4.2 Fashion Encoder training process. The goal is to select the correct
missing item from all items in the batch. 31

5.1 Example of one sample from the FITB dataset 36

7.1 Comparison of possible Fashion Encoder architectures that we
evaluated. 47

57

List of Tables

3.1 Comparison of datasets . 26

6.1 Comparison of different approaches on the Maryland Polyvore FITB
task [Han et al., 2017]. 41

6.2 Comparison of different approaches on the Polyvore Outfits FITB
tasks [Vasileva et al., 2018]. Note that the results for Bi-LSTM
were reported by Vasileva et al. [2018] as the model is older than
the task. 42

6.3 Different sizes of our model evaluated on the Maryland Polyvore
FITB task [Han et al., 2017]. 43

6.4 Evaluation of our model with different hidden sizes and added
category embedding on the Maryland Polyvore FITB task [Han
et al., 2017]. 44

6.5 Evaluation of our model with different hidden sizes and multipli-
cation category embedding on the Maryland Polyvore FITB task
[Han et al., 2017]. 44

6.6 Evaluation of our model with different hidden sizes and concate-
nation category embedding on the Maryland Polyvore FITB task
[Han et al., 2017]. 45

58

List of Abbreviations
CNN Convolutional Neural Network
LSTM Long Short-Term Memory
NLP Natural Language Processing
RNN Recurrent Neural Network
GRU Gated Recurrent Unit
BERT Bidirectional Encoder Representations from Transformers
NSP Next Sentence Prediction
CSN Conditional Similarity Network
FITB Fill-In-The-Blank
ReLU Rectified Linear Unit
VSE Visual Semantic Embedding

59

A. Attachments
A.1 Electronic Attachment
The contents of the electronic attachment are the following:

• Framework/ – Framework for training and evaluation of the Fashion En-
coder model

• Thesis.pdf – Text of this thesis

60

	Introduction
	Recommender systems
	Main Concepts
	Problem Definition
	Goals and Challenges
	Feedback

	Basic Recommendation Methods
	Collaborative
	Content-Based
	Knowledge-Based
	Hybridization

	Natural Language Processing
	Attention and Transformer-based Models
	Encoder-Decoder Models
	Attention
	Transformer
	Bert

	Related Work
	Visual Attributes
	Recommendation of Complementary Items
	Classification of Outfit Recommenders

	Datasets
	Maryland Polyvore
	Polyvore Outfits

	Our approach
	Model
	Architecture

	Training
	Discussion
	Why Self-Attention
	Overall Design
	Encoder-only Architecture
	Comparison with Other Approaches

	Implementation
	Used Technologies
	Module Structure
	Input Pipeline
	Model
	Preprocessor
	Encoder

	Training

	Evaluation
	Maryland Polyvore
	Implementation Details
	Results

	Polyvore Outfits
	Implementation Details
	Results

	Hyperparameters and Modifications
	Model Size
	Category Embedding
	Category Attention
	Number of Heads

	Discussion
	Unsuccessful Modifications
	Future Work

	Conclusion
	Bibliography
	List of Figures
	List of Tables
	List of Abbreviations
	Attachments
	Electronic Attachment

