
BACHELOR THESIS

Michal Počatko

AI for the Board Game Azul

Department of Software and Computer Science Education (KSVI)

Supervisor of the bachelor thesis: Adam Thomas Dingle, M.Sc.
Study programme: Programming and software systems

Study branch: Computer scienece

Prague 2020

I declare that I carried out this bachelor thesis independently, and only with the
cited sources, literature and other professional sources. It has not been used to
obtain another or the same degree.
I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Sb., the Copyright Act, as amended, in particular the fact that the
Charles University has the right to conclude a license agreement on the use of this
work as a school work pursuant to Section 60 subsection 1 of the Copyright Act.

In date .
Author’s signature

i

Dedication.

ii

Title: AI for the Board Game Azul

Author: Michal Počatko

Department: Department of Software and Computer Science Education (KSVI)

Supervisor: Adam Thomas Dingle, M.Sc., KSVI

Abstract: A comparison between three different approaches to developing an AI
agent for the board game Azul and their implementation, testing and consequent
results of said tests. A part of the thesis is also a simulator created in a game
engine for playing against a local player or an artificial intelligence agent.

Keywords: artificial intelligence board game Azul

iii

Contents

Introduction 3
0.1 About Azul . 3
0.2 Motivation . 3
0.3 Goals . 3
0.4 Acknowledgment . 3
0.5 Intended audience . 3
0.6 Thesis structure . 4

1 Game rules 5
1.1 Terminology . 5
1.2 Beginning of the game . 5
1.3 Round . 5

1.3.1 Round setup . 6
1.3.2 Factory offer . 6
1.3.3 Wall tiling . 7

1.4 End of the game . 8

2 Analysis 10
2.1 Classification . 10
2.2 Complexity . 10

3 Implementation 12
3.1 Front end . 12

3.1.1 Graphics . 12
3.1.2 GUI functionality . 12

3.2 Back end . 12
3.2.1 Structure . 12
3.2.2 Model . 13
3.2.3 Controller . 13
3.2.4 View . 14

4 Artificial Intelligence 16
4.1 Minimax . 16

4.1.1 Algorithm description . 16
4.1.2 Static evaluation function 16
4.1.3 Alpha-beta pruning . 17
4.1.4 Move ordering . 17
4.1.5 Iterative deepening . 17
4.1.6 Results . 18

4.2 Monte Carlo tree search . 18
4.2.1 Algorithm description . 18
4.2.2 Selection . 19
4.2.3 Expansion . 19
4.2.4 Simulation . 20
4.2.5 Backpropagation . 20

1

4.2.6 Final Move Selection . 21
4.2.7 Results . 21

4.3 Strategy . 21
4.3.1 Strategy description . 21
4.3.2 Reasoning behind algorithm 22
4.3.3 Pseudocode . 23

4.4 Results . 23
4.4.1 Further development . 24

4.5 Other . 24
4.5.1 RandomAI . 24
4.5.2 GreedyAI . 24

Conclusion 25

Bibliography 26

List of Figures 27

List of Tables 28

List of Abbreviations 29

A Attachments 30
A.1 Contents of the zip file: . 30

2

Introduction

0.1 About Azul
Azul is an award-winning board game for two to four players created by the
German game designer Michael Kiesling and published by Plan B Games Inc. in
2018. The game has a simple set of rules that allow for the implementation of
various interesting strategies. The goal of game is to acquire the highest possible
score by placing a different colored tiles on a wall. The game involves an element
of randomness, as at the beginning of each round, tiles are randomly placed on
the factories.

0.2 Motivation
Since Azul is a fairly new board game (created in 2018), as far as I found, there
are no papers that research AI for it and the few user interfaces that do exist are
rather unintuitive and stiff. This creates a great opportunity to make something
new and exciting.

0.3 Goals
The main goal for the thesis is to implement three different artificial intelligence
agents for the board game Azul. A secondary goal is to also implement a graphical
user interface to be able to play against an AI agent or locally against another
human, and also a console user interface to be able to test different AI agents
against each other.
Although according to the rules of the game it is possible for up to four players
to play, in our AI research we will be focusing mainly on a game between two
players. Although the GUI will support more players, the AI research will not be
conducted beyond the game of two players.

0.4 Acknowledgment
I would like to give a special thanks to the leader of this project, Adam Thomas
Dingle , M.Sc for his part of work on this project.

0.5 Intended audience
of this thesis is anybody interested in game theory and board game strategies.
I also believe it would serve as an excellent GDNative and c++ usage example,
for people struggling to use this relatively new and little documented library of
Godot.

3

0.6 Thesis structure
Aside from the introduction and the epilog, the thesis will consist of four main
chapters

1. Game rules Detailed explanation of the rules of the game
Azul

2. Analysis An analysis of the game from a game-theoretic
perspective

3. Implementation Implementation details for the game framework
and its user interface

4. Artificial intelligence An in-depth look on the types of AI used, their
success rates and testing results

4

1. Game rules
In this chapter we will go over the rules of Azul in detail. Note that this is not a
comprehensive description of the rules, as we only describe the two-player game,
though in the official rules it is possible for more than two players to play. Also,
we purposely omitted some rules that can be added to the base rules for variation
purposes. For a comprehensive manual, please refer to the Azul rulebook [Pla,
2018]

1.1 Terminology
Here we explain several basic terms we will be using later in the thesis. The
terms used here come directly from the game manual for the English version of
the game.

1. Tile The most fundamental piece in the game. There are
five different colors of tiles and one special starter tile.

2. Pattern line A buffer area for tiles, where they are put before being
placed on the wall at the end of a round.

3. Wall An area on the board to which tiles are added at the
end of each round.

4. Floor
The area where tiles are put when they overflow a
pattern line or don’t have any other place to go. For
every tile on the floor, penalty points are given.

5. Factory A drawing area for tiles.

6. Center Another drawing area for tiles.
All terms described here can be seen in 1.1

1.2 Beginning of the game
At the beginning of the game, there are 100 tiles in the bag, 20 of each color.
Both players receive a board and 5 factories are placed in the center. The starting
player is chosen and he receives a starter tile, which is a special sort of tile, that
has a few functions throughout the game, but at the beginning of the round, it
signifies that the player that holds it is the one that will be the first to move in
the upcoming round.

1.3 Round
The game consists of a series of rounds. Each round consists of 3 stages:

1. Round setup

5

Figure 1.1: Game board with legend

2. Factory offer

3. Wall tiling

1.3.1 Round setup
At the beginning of the round, for each factory, we draw 4 random tiles from the
bag and place them on the factory. See 1.2. If the bag is empty at any point, it
is refilled with all tiles from the lid and then the filling of pattern lines resumes.

1.3.2 Factory offer
After the round is set up, players take turns taking tiles either from factories or
from the center, starting with the player that holds the starter tile, and placing
them on pattern lines of their choice.

6

On each turn, a player draws all tiles of one color from any factory he chooses or
from the center. He may then choose a pattern line where he will place the tiles.
However, he can only choose a pattern line that is not full and is either empty
or contains tiles of the same color as the ones the player just drew. A pattern
line may never contain tiles of a color that is already present on the wall in the
corresponding line. If the number of tiles drawn is greater than the number of
empty spaces in the pattern line, the tiles that won’t fit on the pattern line must
be placed on the floor. However, the floor can only hold seven tiles. When over-
flowing tiles no longer fit on the floor, they will be placed into the lid. A player
can also choose to place tiles directly on the floor rather than on any pattern line.

When a player draws tiles from a factory, the tiles remaining in the factory are
then placed in the center. If the player is the first in the round to move, he also
places the starter tile into the center as well. If a player draws from the center
while the center contains the starter tile, the player also takes the starter tile and
places it on the floor. Since he now holds the starter tile, in the next round he
will be the first to move.

Let’s illustrate an example of a move a player could make in the situation at
1.2. Suppose that he decides to draw yellow tiles from the topmost factory and
place them on the first pattern line. This is a legal move, as the first pattern line
is empty and the first line of the wall doesn’t contain a yellow tile yet. Since the
number of tiles drawn is greater than the number of empty spaces in the pattern
line, one tile overflows and must therefore be placed on the floor. The player also
holds a starter tile, so he puts it in the center. The remaining tiles in the factory
(red and black) are also placed in the center.

1.3.3 Wall tiling
When all the factories and the center are empty, the factory offer phase of the
round is over and the wall tiling phase begins. In this phase, tiles are moved over
from pattern lines to the wall and points are awarded.

Each player goes through his pattern lines from top to bottom and for each
one that is full, he takes the first tile on the pattern line and places it on the
same line on the wall on the space with the corresponding color. He is awarded
points and the remaining tiles from the pattern line are moved to the lid.

Scoring
A player is awarded points whenever he places a tile on the wall. If the tile that
is placed has no adjacent tiles, it is worth only one point. If the tile has either
vertically or horizontally adjacent tiles on the wall, it is worth the number of tiles
that are in line with it. If, however, it has both vertical and horizontal adjacent
tiles, the tile is worth the size of the line it forms with the horizontally adjacent
tiles plus the size of the row it forms with the vertically adjacent tiles.

Let’s explain the scoring with an example. In 1.3 the player on the left will
be placing a red tile on the second line of the wall. As the tile will form both a

7

Figure 1.2: Beginning of a round

line of two and a row of two with the adjacent black tiles, it will receive 2 + 2 =
4 points for this one tile placed on the wall.

After resolving all the pattern lines, the player tallies all the penalty points he
receives from the tiles he placed on the floor in that round. Each tile placed on
the floor is worth a certain number of negative points. From left to right these
numbers are -1, -1, -2, -2, -2, -3, -3. After adding penalty points from tiles on the
floor, these tiles are all placed in the lid and the next round begins.

1.4 End of the game
The game ends when any of the players has all five tiles placed on any line of
their wall. After the final wall tiling phase, bonus points for finished lines, rows
and colors are awarded. For each line that the player was able to finish, they
receive 2 points, for each finished row, they receive 7 points and for each color

8

Figure 1.3: Wall tiling phase

of which the player was able to place all five tiles on the wall they receive 10 points.

The winner is the player that has the higher number of points. If both play-
ers have the same number of points, the winner is the player with the highest
number of complete horizontal lines.

9

2. Analysis
In this chapter we will focus on analysis of Azul from a game-theoretic perspective.

2.1 Classification
Combinatorial games can be classified according to several criteria.

• Zero-sum: Whether the reward to all players sums to zero (in the two-player
case, whether players are in strict competition with each other).

• Information: Whether the state of the game is fully or partially observable
to the players.

• Determinism: Whether chance factors play a part (also known as complete-
ness, i.e. uncertainty over rewards).

• Sequential: Whether actions are applied sequentially or simultaneously.

• Discrete: Whether actions are discrete or applied in real-time.

Using these categories, we can classify Azul as a zero sum, perfect information,
non-deterministic disrete game.

Zero sum is because there are no benefits to cooperation with other players and
all players are in strict competition with each other.

We categorize it as perfect information, because there is no information that
would be hidden from players and from the beginning to an end, all the boards
of all players are available for observation.

The game is non-deterministic, as it involves a stochastic element in randomly
setting up each round.

We categorize the game as sequential, since player are taking turns on all the
moves they take.
Board games usually tend to be discrete. Azul is no exception to this rule and is
discrete, unless an element of timer is introduced.

2.2 Complexity
Let’s analyze how wide and deep can we expect Azul’s search tree to be. At
the beginning of the game There are 5 factories, each containing minimum 1 and
maximum 4 different colors to choose from. Assuming it’s a beginning of a game,
each possible draw can be placed on any of the 5 pattern lines or to floor.
The largest number of possible moves will therefore be 5 × 4 × 6 = 120 possible
moves. The possible range for moves is between 1 and 120.

10

Through Testing the width of a tree throughout a game, we can draw some
interesting observations. Here I will include an example of a game and how the
width of a search tree changes throughout it

Table 2.1: Width of a search tree throughout a sample game
n tw sum(tw) n tw sum(tw)
1 90 90 27 36 818
2 84 174 28 18 836
3 60 234 29 17 853
4 50 284 30 9 862
5 36 320 31 9 871
6 32 352 32 4 875
7 23 375 33 4 879
8 19 394 34 1 880
9 12 406 35 40 920
10 6 412 36 47 967
11 4 416 37 29 996
12 1 417 38 34 1030
13 46 463 39 19 1049
14 43 506 40 24 1073
15 29 535 41 8 1081
16 34 569 42 5 1086
17 22 591 43 3 1089
18 17 608 44 1 1090
19 10 618 45 32 1122
20 8 626 46 33 1155
21 5 631 47 22 1177
22 3 634 48 21 1198
23 1 635 49 16 1214
24 53 688 50 11 1225
25 56 744 51 11 1236
26 38 782 52 6 1242

54 2 1249
55 1 1250

From these data we can observe that the highest number of possible moves
can be expected at the beginning of the first round. Then it decreases linearly
until reaching 1. The average number of moves of this example game is 22.72.

11

3. Implementation
Technologies used:

• Front end: Godot engine

• Back end: C++

3.1 Front end
The front end was created in the Godot game engine. This technology was chosen
as a simple multi-platform solution for creating simple games. It has a modern,
simple to use GUI and using the new technology GDnative, the connection be-
tween the front end in Godot and the back end in C++ was relatively simple.

3.1.1 Graphics
The graphics for the GUI are a simple set of colored shapes created in Gimp. For
game pieces combined with a preexisting library of functional blocks like buttons,
drop down menus etc.

3.1.2 GUI functionality
The implementation of the GUI functionality such as board interactions for hu-
man players, game controlling and animations are achieved using GDnative, which
is a module for the Godot engine which allows for execution of third-party code in
the Godot environment. In our case, we used GDnative combined with a library
cpp bindings pulled from Godot’s public Github site.
Use of this technology was decided for two reasons:

1. It allows for an easy connection to the back end, which is also implemented
in C++

2. C++ is a language with which the author of this thesis is best acquainted
with

3.2 Back end
For the back end the language of choice is C++ for its speed and portability.

3.2.1 Structure
The entire back end is loosely based on the model-view-controller design pattern,
from here referred to as MVC. The basic idea of MVC is to split the program
logic into three main parts:

1. Model Represents the current state of a game and provides functions to
manipulate the state

12

2. Controller Takes care of the game logic and interaction with the client

3. View Here we implemented two different views, one for a graphic user
interface (GUI) and one for a console user interface (CUI)

3.2.2 Model

Figure 3.1:

The model is created with object-oriented programming in mind and it de-
scribes a current state of the game. Every class in the tree represents an actual
object in a game, all of which are described in more detail in the chapter on
Game Rules. Furthermore, classes in the model contain functions to manipulate
the game state.

3.2.3 Controller
The controller keeps a reference to the model and performs operations on it. It
also keeps track on these operations and if necessary can reverse them. To achieve
this, it uses the Command design pattern. Every command represents an opera-
tion in the game.There are altogether eleven different commands. Four represent
a player interaction with the game and are usually given to the controller by a
view to perform. The remaining seven represents events that occur in a game
without player interaction and are assigned by the controller itself when the game
reaches an appropriate state (the end of a round or the end of a game).

Here is the name and a brief description of every one of these commands:

13

Player commands

factory offer Take tiles of a certain color from a factory and put them
on a chosen pattern line

center offer Take tiles of a certain color from the center and put
them on a chosen pattern line

drop factory Take tiles of a certain color from a factory and put them
on the floor

drop center Take tiles of a certain color from the center and put
them on the floor

Non-player commands

init round Initializes a new round (sets up factories from the bag)

score wall tile Assigns score based on a tile position

tile wall
Removes tiles from a pattern line, puts the first one on
the appropriate position on the wall and the rest to the
lid

tally floor Scores the tiles on the floor and moves them over to the
lid

score row At the end of a game, assigns score for a row if it is fully
filled up

score column At the end of a game, assigns score for a column if it’s
fully filled up

score color At the end of a game, assigns score for a color, if all tiles
of that color are present on the board

3.2.4 View
There are two different viewing possibilities. The first one is a GUI created in
Godot for either human players to play against each other, a human player to
play against a computer, or to observe a game between two different AI players.
The second one is a console user interface (CUI) used to test different artificial
intelligence agents against each other and collect statistics of the game. It only
provides the results and statistics of the games played.

In this section I’ll briefly outline some basic implementation details for both
of those. For a more detailed information about their information, see the source
code.

14

GUI
A wrapper class for a model overrides all the functions that somehow change the
visible state of a game and creates appropriate animations when these functions
are called. This wrapper class is instantiated and passed to the controller, which
the GUI view then uses to provide the client with interactions with the game.

CUI
The CUI can be given different options from the command line which it then
parses and simulates an given number of games using a reference to a controller.

15

4. Artificial Intelligence
To develop an artificial intelligence agent that plays the game, I chose three
different approaches for comparison:

1. Minimax

2. Monte Carlo Tree Search

3. Self-created strategy

In this chapter we will take a closer look at every one of these, their implemen-
tation, optimizations used and analysis of their success rate in the game.

4.1 Minimax

4.1.1 Algorithm description
A computer plays a turn-based game by looking at the actions available to it
on this move and selecting one of them. In order to select one of the moves, it
needs to know which moves are better than others. This knowledge is provided
to the computer by the programmer using a heuristic called the static evaluation
function.

4.1.2 Static evaluation function
A static evaluation function is arguably the most important part of the minimax
algorithm.
Pseudocode for the evaluation function we used:

input: state
output: score
score = player.score()
foreach pl in state.pattern_lines

if pl.is_empty() then continue
frac = pl.count/pl.size
if last_round() then frac = floor(frac)
else score += player.has_starter_tile()
score += frac * wall_tile_score(pl.index, pl.color)

foreach line in wall
if line.is_full() score += 2

foreach row in wall
if row.is_full() score += 7

foreach color in colors
if wall.color_finished(color) score += 10

score += floor_penalty()

Here we calculate the score as a value of the current position. The parameters
involved are the player’s current score, score, the filled pattern lines will yield, a
fraction of a score partially filled lines will yield and the score from finished lines,

16

rows and colors that will be awarded at the end of the game. An ownership of a
starter tile is also accounted for as a half of a point.

In the last round, the partially filled pattern lines aren’t worth any points, so
the floor() function is used, result of which is that all non-fully filled pattern lines
will be worth 0 points. Here the round is considered as ”last” when in any line
there are

4.1.3 Alpha-beta pruning
Alpha-beta pruning is an optimization of minimax that allows us to find branches
that don’t need to be examined anymore and prune them. This can happen when
it is not profitable for a player to choose a move that leads into this branch.

4.1.4 Move ordering
Alpha-beta pruning can be made much more effective by examining the moves
that are likely to yield higher score first. We can achieve this by a method called
move ordering. Using a simple heuristic we can give every move a score and then
examine these moves in descending order. The heuristic we used is basically a
less time consuming portion of the evaluation function.
Here is its pseudocode:

input: move, state
output: score
if move is to floor

score = 0
else

pl = move.pattern_line()
pl_count = state.pattern_line_count(pl)
tile_count = move.tile_count
overflow = pl_count + tile_count - pl - 1
fraction = (pl_count + tile_count - overflow) / (pl + 1)
penalty = state.floor_score(overflow)
score = state.wall_tile_score(move.line(), move.color())
score = score * fraction + penalty
if score < 0 score = 0

4.1.5 Iterative deepening
To search move tree not only in depth in breadth, a method called iterative
deepening is used.
Pseudocode:
depth = 1
while(time left)

minimax to depth
depth = depth + 1

Using this method we can be sure all moves were considered in as much depth as
is possible the time we appointed for the algorithm to calculate a move.

17

4.1.6 Results
We can run different variations of MinimaxAI to see how they do against op-
ponents with different parameters. We will use several different benchmark op-
ponents for testing. First we will look at how minimax does against various
opponents with an iterative deepening and a time limit of 500 ms per move

Table 4.1: Minimax with time 500 ms results against various opponents, sample
size (games played) n = 50

Opponent MinimaxAI time : 500 ms win rate

RandomAI 100%

GreedyAI 96%

MinimaxAI,depth : 3 67%

StrategyAI 92%

MonteCarloAI, iterations : 200 72%

MonteCarloAI, iterations : 500 19%

4.2 Monte Carlo tree search

4.2.1 Algorithm description
Monte-Carlo Tree Search (MCTS) is a best-first search method guided by the
results of Monte-Carlo simulations. It is based on randomized exploration of the
search space. Using the results of previous explorations, the method gradually
builds up a game tree in memory and successively becomes better at accurately
estimating the values of the most promising moves. MCTS has substantially
advanced the state of the art in board games such as Go, Amazons, Hex, Chinese
Checkers, Kriegspiel, and Lines of Action. MCTS pseudo code

Data: root
Result: bestMove
while(timeLeft()) do
currentNode <- root
/*the tree is traversed*/
while(currentNode in searchTree) do
lastNode <-currentNode
currentNode <- Select(currentNode)
end
/*a simulated game is played*/
r<-playOut(currentNode)
/*A node is added*/
lastNode<-Expand(lastNode, currentNode)

18

/*The result is backpropagated*/
currentNode <- lastNode
while(currentNode in searchTree) do
Backpropagation(currentNode, r)
currentNode <- currentNode.parent
return bestMove <-argmax of a in A(root)

[Winands, 2017]
As we can see in the pseudocode, MonteCarloAI consists of four main parts:

selection, expansion, simulation and backpropagation.

4.2.2 Selection

Figure 4.1: Selection [wik]

First, a node to expand is selected
from already built tree, see 4.1. The
selection is determined by a selec-
tion strategy UCT (upper confidence
bounds to trees). It controls the bal-
ance between exploitation and explo-
ration.

It applies following formula to calcu-
late value of a node for selection, which
is calculated as:

b ∈ argmax(i ∈ I)(vi + C ×
√︄

ln mp

mi

)

UCT selection strategy formula: [Winands, 2017]

where vi is the value of the node i, mi is the visit count of i, and mp is the visit
count of p. C is a parameter constant, which can be tuned experimentally (e.g., C
= 0.4). The value of vi should lie in the range [0, 1]. In case a child has not been
visited yet, the maximum value that a node can have by sampling (i.e., vmax =
1) is assumed. The formula is applied recursively until an unknown position is
reached.

4.2.3 Expansion

Figure 4.2: Expansion [wik]

Afterwards an unknown node is se-
lected randomly from all the possible
moves available and added to a tree,
see 4.2. Expansion is the procedure
that decides whether nodes are added
to the tree. The expansion strategy we

19

used was to add one node per simula-
tion.

4.2.4 Simulation

Figure 4.3: Simulation [wik]

To determine a value of the newly
added node and to improve the value
of its parents a random game is
played. The game is scored one
or zero points depending on whether
the random game was won by cur-
rent player, see 4.3.The simulation
step begins when a position is en-
tered that is not a part of the tree
yet.

Moves are selected in self-play until
the end of the game. This task might
consist of playing plain random moves
or – better – semi-random moves cho-
sen according to a simulation strategy.
Smart simulation strategies have the
potential to improve the level of play significantly Gelly and Silver [2007]. The
main idea is to play interesting moves based on heuristics. We achieve this by

4.2.5 Backpropagation

Figure 4.4: Backpropagation [wik]

Backpropagation is the procedure that
propagates the result r of a simu-
lated game t back from the leaf node
L, through the previously traversed
nodes, all the way up to the root. If
a game is won, the result of a player j
is scored as a rt,j 1, in the case of a loss
as rt,j 0, and a draw as rt,j 0.5. For a
two-player game, propagating the val-
ues back in the tree can be performed
similar to negamax [Knuth and Moore,
1975].

20

4.2.6 Final Move Selection
The four steps are repeated either a
fixed number of simulations or until
time runs out. After the search is fin-
ished, one of the children of the root is selected as the best move to be played in
the actual game. There are several final move selection strategies that determine
the best child [G.M.J.-B. Chaslot, 2008].

1. Max child. The max child is the child that has the highest value.

2. Robust child. The robust child is the child with the highest visit count.

3. Robust-max child. The robust-max child is the child with both the highest
visit count and the highest value. If there is no robust-max child at the
moment, more simulations are played until a robust-max child is obtained.

4. Secure child. The secure child is the child that maximizes a lower confidence
bound, i.e., which maximizes the quantity v + A√

m
, where A is a parameter

(e.g., 4), v is the node’s value, and m is the node’s visit count.

In practice, the difference in performance between these strategies is limited when
a sufficient number of simulations for each root move have been played. In case
there is a certain amount of time for the whole game and the player manages its
own time for each move, the robust-max child is the most promising.

The version we used in our implementation was a robust child, where the child
with the highest amount of visits is selected as a move.

4.2.7 Results
We measured the capability of MonteCarloAI against a MinimaxAI with a set
search tree depth of three, which we chose as a benchmark AI for this test. We
tested different amount of iterations and for each one, our testing sample size was
n = 100:4.2)

4.3 Strategy
Strategy child is an AI based on a strategy developed through experience with
game.

4.3.1 Strategy description
We decide which move we are gonna choose based on how this move can cooper-
ate with other possible moves. Moves are first grouped by which tile on the wall
they will contribute to filling. These moves are then sorted by what percentage
of their pattern line they can fill.

For example, if all the moves that move red tiles to pattern line 1 can together
move 4 tiles to the pattern line, it means, the value of all these moves together

21

Table 4.2: Monte carlo success rate against minimax depth 3 out of 100 games

Iterations Win rate

100 37

150 38

200 49

250 58

300 71

350 61

400 68

450 81

500 81

is 4.0 / 1 = 4.0 and let’s say all the moves of blue tiles to pattern line 5 can
together fill only four out of five tiles, they are assigned a value 4.0 / 5 = 0.8.
Finally, from all the moves that fill the pattern line with the same color tiles and
can fill their respective pattern line to the highest percentage we choose the one
that has the biggest line fill, but the smallest overflow.

4.3.2 Reasoning behind algorithm
Here we will outline what led to certain decisions made in the algorithm devel-
opment.

• Grouping moves: The moves are grouped by the tile on the wall they will
effect. This way, we can first choose the color we are most likely to finish
for every pattern line.

• First sorting: The groups of moves are sorted by the portion of pattern
line, they are together capable of filling. This way we hope to choose moves
that are most likely to eventually fill the pattern line.

As it is possible for opponent to steal moves that seem profitable, we choose
the moves that have plenty enough profitable moves to render our opponent
as unlikely as possible to interrupt our filling of a chosen pattern line.

• Second sorting: From the group we then choose the most profitable
move. The assessment of which move is the most profitable consists of
considering two main criteria, the first one being a portion of the pattern
line that we fill, this assigns every move a value between zero and one
which we try to maximize to gain points and the overflow, which we try to

22

minimize. We first sort the moves by the first criterion, then by the second
one.

4.3.3 Pseudocode
Here is a strategyAI pseudocode for picking a best move

input: model
output:move
moves = get_moves()
grouped_moves = group_moves(moves)
sorted_groups = sort_gropus(grouped_moves)
move = sorted_groups[0].pick_move()

4.4 Results
The idea of a man-made strategy proved quite successful in the early stages of
development, considering how simple the algorithm and idea behind it. In later
phases of development the results of strategyAI playing against various opponents
at the point of writing this thesis are as follows:

As we can see, strategyAI falls short of more developed AI variants. How-

Table 4.3: StrategyAI results against various opponents, sample size (games
played) n = 50

Opponent StrategyAI win rate

RandomAI 100%

GreedyAI 18%

MinimaxAI,depth : 3 16%

MinimaxAI,time : 500 8%

MonteCarloAI, iterations : 200 4%

MonteCarloAI, iterations : 500 2%

ever, it lead me to some good ideas on quick move developments and could serve
as an interesting strategy to try and use and keep in mind. Despite its seemingly
low success rate against more advanced opponents, I believe this method of ar-
tificial intelligence will at least pose a moderate challenge to a beginning human
player.

23

4.4.1 Further development
In the future, StrategyAI could be improved in various ways. For example tak-
ing a score different tiles will acquire during wall tiling phase into consideration.
Another improvement of strategy I had on my mind, but didn’t manage to im-
plement into strategyAI itself was using the amount of free neighboring tiles (2
for corner pieces, 3 for side pieces, 4 for center pieces) as a criterion when picking
initial tiles.

4.5 Other
In this section I’ll lightly touch on two other artificial intelligence agents, which
were implemented and were mainly used as a benchmark to compare effectiveness
of the three main ones and as debugging tool.

4.5.1 RandomAI
This chooses moves randomly, while not really a formidable opponent, it served
an important debugging purposes in early stages of development.

4.5.2 GreedyAI
The algorithm used to decide move for greedyAI can be generally described as a
minimax with a depth of one.

24

Conclusion
In this thesis we created a working simulation of a board game Azul. We also
created different artificial intelligences using well known algorithms, such as Mon-
teCarlo and minimax. We created a console user interface for testing purposes
and tested how the artificial intelligences performed against each other.

25

Bibliography
Monte Carlo Tree Search phases. URL https://commons.wikimedia.org/wiki/

File:MCTS-steps.svg#/media/File:MCTS-steps.svg.

S. Gelly and D. Silver. Combining online and offline knowledge in uct. Proceedings
of the International Conference on Machine Learning (ICML), page 273–280,
2007.

H.J. van den Herik J.W.H.M. Uiterwijk B. Bouzy G.M.J.-B. Chaslot,
M.H.M. Winands. Progressive strategies for monte-carlo tree search. New
Math. Nat. Comput., pages 343–357, 2008.

D.E. Knuth and R.W Moore. An analysis of alpha-beta pruning. pages 293–326,
1975.

Azul Rulebook. PlanBGames, 2018. URL https://www.planbgames.com/en/
index.php?controller=attachment&id_attachment=9.

Mark H. M. Winands. Monte-carlo tree search in board games. pages 51, 54,
2017.

26

https://commons.wikimedia.org/wiki/File:MCTS-steps.svg#/media/File:MCTS-steps.svg
https://commons.wikimedia.org/wiki/File:MCTS-steps.svg#/media/File:MCTS-steps.svg
https://www.planbgames.com/en/index.php?controller=attachment&id_attachment=9
https://www.planbgames.com/en/index.php?controller=attachment&id_attachment=9

List of Figures

1.1 Game board with legend . 6
1.2 Beginning of a round . 8
1.3 Wall tiling phase . 9

3.1 . 13

4.1 Selection [wik] . 19
4.2 Expansion [wik] . 19
4.3 Simulation [wik] . 20
4.4 Backpropagation [wik] . 20

27

List of Tables

2.1 Width of a search tree throughout a sample game 11

4.1 Minimax with time 500 ms results against various opponents, sam-
ple size (games played) n = 50 . 18

4.2 Monte carlo success rate against minimax depth 3 out of 100 games 22
4.3 StrategyAI results against various opponents, sample size (games

played) n = 50 . 23

28

List of Abbreviations

29

A. Attachments

A.1 Contents of the zip file:
• /bin: binary files and executables

• /text/text.pdf: thesis text

• /source: source code

• /source/doc/Developer documentation.odt: programmer documentation

• /source/doc/User guide.odt: user documentation

30

	Introduction
	About Azul
	Motivation
	Goals
	Acknowledgment
	Intended audience
	Thesis structure

	Game rules
	Terminology
	Beginning of the game
	Round
	Round setup
	Factory offer
	Wall tiling

	End of the game

	Analysis
	Classification
	Complexity

	Implementation
	Front end
	Graphics
	GUI functionality

	Back end
	Structure
	Model
	Controller
	View

	Artificial Intelligence
	Minimax
	Algorithm description
	Static evaluation function
	Alpha-beta pruning
	Move ordering
	Iterative deepening
	Results

	Monte Carlo tree search
	Algorithm description
	Selection
	Expansion
	Simulation
	Backpropagation
	Final Move Selection
	Results

	Strategy
	Strategy description
	Reasoning behind algorithm
	Pseudocode

	Results
	Further development

	Other
	RandomAI
	GreedyAI

	Conclusion
	Bibliography
	List of Figures
	List of Tables
	List of Abbreviations
	Attachments
	Contents of the zip file:

