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Abstract:

In international and highly-multilingual environments, it often happens, that a
talk, a document, or any other input, needs to be translated into a massive
number of other languages. However, it is not always an option to have a distinct
system for each possible language pair due to the fact that training and operating
such kind of translation systems is computationally demanding.

Combining multiple target languages into one translation model usually causes a
decrease in quality of output for each its translation direction. In this thesis, we
experiment with combinations of target languages to see, if a specific grouping of
them can lead to better results than just randomly selecting target languages.

We build upon a recent research on training a multilingual Transformer model
without any change to its architecture: adding a target language tag to the source
sentence.

We trained a large number of bilingual and multilingual Transformer models and
evaluated them on multiple test sets from different domains. We found that in
most of the cases grouping related target languages into one model caused a bet-
ter performance compared to models with randomly selected languages. However,
we also found that a domain of the test set, as well as domains of data sampled
into the training set, usually have a more significant effect on improving or de-
terioration of multilingual model’s translation quality compared to the bilingual
one.
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Introduction
With increasing availability of computational resources and enormous amount

of publicly available corpora it is now possible to obtain a machine translation
(MT) system, which produces translations of acceptable quality. But in the use
cases similar to conferences, where one speech is translated into multiple target
languages, the same amount of models needs to be deployed. Another option is
to use multilingual MT system for all needed languages together, which may lead
to a decreased quality of translations.

The aim of this master thesis is to explore whether the relatedness of target
languages in multitarget models could soften the translation quality decrease,
caused by adding more and more languages into the mix.

The presented work consists of five chapters:

• In the first chapter, we introduce the theoretical background for this thesis.

• In the second chapter, we describe the setup for the experiments. First, we
specify the questions to be answered and propose the experimets to do that:
bilingual systems, multilingual systems with unrelated target languages,
and then multilingual systems with related target languages. Then, we
describe the data that was used, its preprocessing and sampling. After that,
we describe the training pipeline and the experiment monitoring tools.

• In the third section, we present some selected results that were received after
training bilingual models and multilingual models with unrelated target
languages.

• In the fourth section, we present the most relevant results from the main
experiment – multilingual models with related targets.

• In the discussion section, we present the result, received during a set of
experiments, described in Chapter 3 and Chapter 4.
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1. Background
In this chapter, we will discuss the theory of methods used in the thesis.

1.1 History of machine translation
The history of machine translation (MT) started with the ‘Translation’ mem-

orandum by Weaver [1955], where the first goals and ideas were proposed. Only
in late 1988 the idea of statistical machine translation was brought back to the
research world by IBM’s research center [Brown et al., 1988].

After years of domination of a statistical approach to MT, first neural ma-
chine translation (NMT) systems were introduced: convolutional neural net-
work (CNN) based models [Kalchbrenner and Blunsom, 2013] and sequence-to-
sequence models (Sutskever et al., 2014; Cho et al., 2014). Later, recurrent neural
network (RNN) based models were improved by introducing an attention mech-
anism [Bahdanau et al., 2014].

Various window lengths in CNN architectures allowed capturing long range
relations as well as short range ones; still the range was limited by the maximum
window length. In RNN-like architectures, long short-term memory (LSTM) and
gated recurrent unit (GRU) cells were used, as their structure allowed to pass the
internal state on longer distances due to selective forgetting.

1.2 Transformer model
Introduced in Vaswani et al. [2017], Transformer model is used as a base for

numerous state-of-the-art systems as can be seen for example in WMT18 [Bojar
et al., 2018] and WMT19 [Barrault et al., 2019] results.

Transformer model uses the self attention mechanism to encode contextual
information in each word position. Position encoding allows passing the position
information without explicit sequential connections as in RNN. The architecture
of the Transformer model is shown on Figure 1.1. For tasks involving very long
sequences authors also proposed restricted self-attention, which considers only
a neighborhood of size r in the input sequence centered around the respective
output position. As was stated by Transformer ’s authors, there are three main
points why self-attention mechanism should be preferred (which are compared
with RNN and CNN in Table 1.1):

• total computational complexity per layer;

• the amount of computation that can be parallelized;

• the path length between long-range dependencies in the network.

1.3 Preprocessing: BPE
The words that are rare or belong to some other domain, than the domain of

the training data the model has seen during the training, are called OOV words.
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Layer type Complexity Sequential Maximum
per layer operations path length

Self-Attention O(n2 · d) O(1) O(1)
Recurrent O(n · d2) O(n) O(n)
Convolutional O(k · n · d2) O(1) O(logk(n))
Self-Attention (restricted) O(r · n · d) O(1) O(n/r)

Table 1.1: Maximum path lengths, per-layer complexity and minimum
number of sequential operations for different layer types. n is the
sequence length, d is the representation dimension, k is the kernel size of convo-
lutions and r the size of the neighborhood in restricted self-attention.

The byte pair encoding (BPE) algorithm [Gage, 1994] of data compression was
successfully adopted for approaching this issue by Sennrich et al. [2016]. Its
idea is that the less frequent words are segmented into subword units, while the
more frequently occuring ones remain to be represented as a single tokens (see
Example 1.3.1).

In short, the algorithm is the following:

• Specify the vocabulary size;

• Parse the training set and collect all unique characters.

Source: You can definitely ride a bicycle or a motorcycle in Zaporizhzhia.
Segmented: You can defi@@ nitely ride a bi@@ cycle or a motor@@
cycle in Z@@ a@@ p@@ o@@ r@@ i@@ z@@ h@@ z@@
h@@ i@@ a@@ .

Example 1.3.1. Suppose, this sentence appears in an English corpus
with rare proper names in other languages or even scripts. Then after
the segmentation it may look in the following way: the frequent words
would be left in the same form, some would be split by subwords, whereas
a rare personal pronoun could even be split by characters. The ‘@@’ at
the end of a subword is added when it is not the end of a word.

1.4 Translation evaluation

1.4.1 History
In 1966 first machine translation evaluation methods were proposed by the

Automatic Language Processing Advisory Committee (ALPAC). The proposed
metrics were “intelligibility” and “fidelity” [ALPAC, 1966, p 67]. Trained human
raters were needed to measure the metrics.

Later, after years of using manual evaluation, automatical evaluation metrics
were created, such as word error rate (WER) Su et al. [1992], translation edit rate
(TER) Snover et al. [2006], etc. Nowadays the most popular metric is bilingual
evaluation understudy (BLEU) which is described in the next section.
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Figure 1.1: Transformer model architecture.

1.4.2 BLEU - bilingual evaluation understudy
In Papineni et al. [2002], a novel method of automatic machine translation

evaluation was introduced – bilingual evaluation understudy (BLEU). Its advan-
tages are the high speed and low cost of evaluation, language independence and
high correlation with judgements of highly skilled human raters.

Shortly, BLEU score consists of modified n-gram precision scores corrected
by brevity penalty, which ensures the produced translation lenght is close to the
reference one. BLEU score is computed for the whole test corpus.

Modified n-gram precision score

The main element of the metric is the precision measure. It is computed in
the following way: the number of candidate translation words (unigrams) that are
present in any reference translation is divided by the total number of words in the
candidate translation. This approach leads to overrating candidate translation
which consists of only one or a couple of words that occur in reference translations,
as can be seen in Example 1.4.1.

Intuitively, after a word from the reference translation has occurred, it should
not be considered in the calculation anymore. This intuition is formalized as the
modified unigram precision. It is computed in the following way:

1. count the maximum number of occurrences of a word in any reference trans-
lation;
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2. clip the total count of every candidate word by the maximum reference
count;

3. sum the clipped counts;

4. divide this sum by the total (not clipped) number of candidate words.

As a result, the sentence which may receive a high precision score will receive a
more realistic evaluation measured by modified precision score, as can be seen in
Example 1.4.1.

Candidate: of of of of of of of of of of
Reference: London is the capital of England and of the United Kingdom
of Great Britain and Northern Ireland.
Precision: 10/10 = 1.0
Modified unigram precision: 3/10 = 0.3

Example 1.4.1. Precision and modified unigram precision. Similarly is
computed modified n-gram precision score for any n, but n-gram counts
are collected instead.

Sentence length

A produced translation should not be too short or too long. Any excessive
length will be automatically penalized by the modified precision: extra words
will not get the credit. However, too short outputs could game the metric. This
balance is usually achieved by pairing precision with recall. However, in BLEU,
multiple reference sentences can be used for one source sentence, so recalling
all possible translations from every reference is not what is needed. BLEU au-
thors introduced the brevity penalty factor for this purpose. In short, it penalizes
produced translations that are shorter than the references. To avoid excessive
penalization of shorter sentences, the brevity penalty is computed on the whole
translated set. In the equation below, r is the test corpus’ effective reference
length and c is the total length of the candidate translation corpus. To compute
r the best match lengths for each candidate sentence in the corpus are added.

BP =

⎧⎨⎩1, if c > r;
e1−r/c, otherwise

(1.1)

Equation

Combining all the above, the metric works in this way (Equation (1.2)):

1. compute the geometric mean of the modified n-gram precisions (pn), using
n-grams up to length N and positive weights (wn) summing to one.

2. compute brevity penalty as in Equation (1.1).

3. multiply results of steps 1. and 2.
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The authors proposed to use N = 4 and uniform weights wi = 1/4.
The metric value is in the range from 0 to 1. However, popular implemen-

tations such as SacreBLEU [Post, 2018] report it in percentage points from 0 to
100.

BLEU = BP · exp
(︄

N∑︂
n=1

wn log pn

)︄
(1.2)

1.5 Multi-target machine translation
In this section, we have a closer look at the area of MT, which this thesis

is dedicated to – multi-target MT. First, we will talk about multi-lingual MT in
general: multi-way, multi-source and multi-target. After that, we will describe the
specific approach from multi-lingual MT – complete sharing of model parameters,
which we rely on in this work.

1.5.1 Multi-lingual machine translation
With constant improvement of neural MT systems performance, researchers

started to experiment with incorporating multiple source languages, target lan-
guages, or both into one model, and the results are promising:

• having L1→L2 and L2→L3 corpora, of which only the two separate pairs
L1-L2 and L2-L3 are parallel, allows to train a model that can produce
L1→L3 translation of decent quality [Johnson et al., 2017];

• having a high-resource L1 and low-resource L2 from the same language
group helps increase Source→L2 translation quality with pretraining on
Source→L1 data [Dabre et al., 2017].

Even if the concept of combining multiple languages into one model and pos-
sible outcomes of such combination may seem intuitive, there exist multiple ap-
proaches of how exactly this might be performed. As for current time, Dabre
et al. [2019] categorizes MNMT (multi-lingual neural machine translation) in the
following way (Figure 1.2):

Multi-Way Translation. The goal is constructing a single NMT system for
one-to-many, many-to-one or many-to-many translation using parallel corpora for
more than one language pair.

Low or Zero-Resource Translation. Large amounts of parallel texts of
high quality are available for most of European languages. However, it is not
true for most of other languages in the world. Three main directions have been
studied for these cases:

Transfer learning: Transferring translation knowledge from a high-resource
language pair to improve the translation of a low-resource language pair;

Pivot translation: Using a high-resource language (usually English) as a pivot
to translate between a language pair;

Zero-shot translation: Translating between language pairs without parallel
corpora.
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Multi-Source Translation. Having the source side represented by multiple
languages may increase translation quality in general or help to remove ambigu-
ities present in one or another source language (e.g. cases, noun genders, etc.).

Figure 1.2: MNMT research categorized. According to resource scenarios
and underlying modeling principles. By Dabre et al. [2019]

1.5.2 Massively multi-lingual machine translation with
complete sharing

Johnson et al. [2017] proposed a way to build a multi-lingual machine trans-
lation model without any changes to the Transformer architecture. The only
change was performed on the input data. To make the Transformer model pro-
cess multi-lingual data, they added the desired target language tag to the source
sentence. This way they achieved a complete sharing of parameters and subword
vocabulary among all the source and target languages, i.e. the same encoder with
the same parameters is used for every source language, the same decoder is used
for every target direction, and the same vocabulary is used for both encoding and
decoding of any input and output.

For example, the following En→Cz sentence pair:

Hello world! → Ahoj světe!

is modified to:

<2cs> Hello world! → Ahoj světe!

With the given method, it is possible to produce translations in multiple
languages using the same model just by altering the prepended target language
tag. It was also demonstrated that this method slightly improves translation
quality for low resource languages when compared to monolingual translation
model.

In Aharoni et al. [2019], models with up to 103 languages were tested. English-
centric in-house dataset was used to train En→{Any} and {Any}→En multilin-
gual models. The average number of examples per language pair is 940k: for 13
out of the 102 pairs there was less than one million examples available.
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In one of the experiments, they varied the number of languages in the model
and measured the model’s performance on the specified set of translation direc-
tions. They started with a 5-to-5 model with English, Arabic, French, Russian,
and Ukrainian selected. Given that the dataset was English-centric, they trained
the 5-to-5 model to translate in En→{Ar, Fr, Ru, Uk} and {Ar, Fr, Ru, Uk}→En
directions. Therefore, name 5-to-5 refers to the model’s ability to accept source
sentence in 5 languages and to perform translations into the same five languages.
For 25-to-25 model they added 20 more randomly selected languages to the 5-
to-5 setup. In all the cases they trained a large Transformer model with 473.7M
parameters. As can be seen in Table 1.2, the quality of translation is significantly
worse when a model is trained to translate more languages.

En-Ar En-Fr En-Ru En-Uk
5-to-5 12.42 37.30 24.86 16.48

25-to-25 11.77 36.79 23.24 17.17
50-to-50 11.65 35.83 21.95 15.32
75-to-75 10.69 34.35 20.70 14.59

103-to-103 10.25 34.42 19.90 13.89

Table 1.2: BLEU scores for translation in one direction (part of Table
7 from [Aharoni et al., 2019]). We see that the model trained on 5-to-5
English centric dataset (English to any and any to English) scores 12.42 BLEU
for English-Arabic test set and the performance decreases as more languages
are added to the model. Every language from 5 languages of 5-to-5 data set is
included into 25-to-25 set, as well as every language from 25-to-25 data set is
included into 50-to-50 and so forth.

Figure 1.3: Translation performance for 102 languages from Arivazha-
gan et al. [2019]. Axis X is shared between left and right plot. On axis
X, there are languages sorted by the amount of training data. Left: amount of
training data (axis Y ) for a language. Right (best viewed in color): Effect of
increasing the number of languages on the translation quality. On the axis X the
languages are sorted the same way as on the left plot. The points visualized are
the 10 languages that are present in all setups from En ↔ 10 to En ↔ 102.
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1.6 Conclusion
In this chapter we introduced theoretical and historical background for this

thesis. Firstly, we took a short walk through the history of machine translation.
Then we described the most commonly used type of NMT models – self-attention
Transformer model. After that, we went over the history of translation evalua-
tion in general and the most used method of automatic evaluation – BLEU – in
particular. Finally, multi-lingual neural machine translation was reviewed with
more detailed view into ‘complete sharing’ scheme.
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2. Experiment setup
In this chapter, we describe the data used for experiments, training setup and

experiments that were run to answer the questions asked in this thesis.

2.1 Questions and constraints
Constraints:

Translation quality for multi-lingual system is better or insignificantly
worse than for mono-lingual one-to-one tranlsation system.
Maximum possible target languages are combined in one model.

Questions:
How, on average, does adding one more randomly selected target lan-
guage to the multitarget model affect its En→De performance?
How is it different if we add a linguistically similar, not a randomly
selected language?
How does adding one more language from the same language fam-
ily or group on average affect translation performance for a selected
language pair (e.g. En→De)?

2.2 Experiments

2.2.1 Starting point
The approach described in Section 1.5.2 with combining multiple translation

directions into the standart Transformer model can also be used to train just
multi-target models, i.e. with one source language and multiple target languages.
In the following papers (Arivazhagan et al. [2019], Aharoni et al. [2019]), the
approach is furtherly developed, described and many different interesting cases
are tested. However, in each setting there is usually only one model of each kind
considered. For example, when Aharoni et al. [2019] compares 5-to-5, 25-to-25,
50-to-50, etc. models, there is only one 5-to-5 model, one 25-to-25, etc.

To conduct our experiments, we use this approach, but with the following
differences:

• We fix English as a source language, as we are exploring the multi-target
experiments only, .

• We train multiple models for every translation direction and every setting.
E.g. for the En→De translation direction and 1-to-5 setting there are couple
of En→{De + 4 randomly selected targets} models.

• We use only up to 5 target languages in the model because of:

– limited resources;
– our selected datasets (which will be described in the next section) do

not contain more than 5-6 languages of the same language group.
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2.2.2 Proposed experiments
Bilingual baseline

The purpose of training bilingual models is to have a reference point to be
able to reason how does every additional target language affects the model’s
performance. Siddhant et al. [2019] shows that using target language tags results
in the same model efficiency as separately encoding the target. Therefore, we use
target tags in this setting too, so that we can use the same training pipeline.

Multi-lingual baselines (RANDOM)

For training multilingual models with a random set of target languages the
purpose is twofold: to show BLEU score decrease with increasing number of target
languages and to serve as a baseline for multitarget models with target languages
grouped by in a non-random way, e.g. by language group or linguistic similarity.

Group by language group (SIMILAR)

Multilingual models with a set of target languages from the same language
group: due to shared parts of vocabulary and linguistic properties we expect
to receive better results in comparison with multi-lingual baselines. Ideally, the
results would be comparable with bilingual baselines.

2.3 Dataset(s)

2.3.1 English to 36 languages
To observe effects of linguistic similarity of target languages, it is important

to examine enough possible variations of those. The OPUS dataset (Tiedemann
[2012]) is an open and free collection of texts that covers more than 90 languages
with data from several domains.1

We made use of the sampling and splitting of the data created by the ELITR
project.2 For each of the language pairs and each sub-dataset the data was split
into training, validation and testing sets. For each of the two latter sets, 2000
random sentences were selected and the rest of the data remained for the training
set. In cases, where the sub-dataset contained less than 16000 sentence pairs, no
data was left for the validation set. Later, for each language pair there were
1000000 sentence pairs sampled from all training sub-sets.

The target domain in the ELITR project was combined of the public admin-
istration domain and the spoken speech. Due to this fact, the sentences were
sampled from OPUS sub-datasets in this order: firstly, if available, the sentences
were taken from Europarl, then EUbooks, OpenSubtitles, and then from all re-
maining sub-datasets. The same procedure was used for validation set sentences
per each language pair. The test sets were left separate, so that the result on
each domain would be observable.

1Available at http://opus.nlpl.eu/
2https://elitr.eu/wp-content/uploads/2019/07/D11.FINAL_.pdf
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The BPE algorithm was used on both target and source sides of the training
set. After that, this vocabulary was used to preprocess (segment into subwords)
the training set, the validation set, and all the test sets.

For our experiments we used only the part of the resulting ELITR dataset
where the source language is English. This way we received a dataset with one
source (English) and 36 target (see full list in ??) languages. Given that, we
decided to select these two groups of languages for the SIMILAR experiment:

• Germanic group: Danish (da), German (de), Icelandic (is), Norwegian (no),
Dutch (nl), and Swedish (sv).

• Slavic with cyrillic script: Bulgarian (bg), Macedonian (mk), Russian (ru),
and Ukrainian (uk).

Code Language Code Language Code Language Code Language
ar Arabic et Estonian ka Georgian ro Romanian
az Azerbaijani fi Finnish lt Lithuanian ru Russian
bg Bulgarian fr French lv Latvian sk Slovak
bs Bosnian ga Irish mk Macedonian sl Slovene
cs Czech he Hebrew mt Maltese sq Basque
da Danish hr Croatian nl Dutch sr Serbian
de German hu Hungarian no Norwegian sv Swedish
el Greek is Icelandic pl Polish tr Turkish
es Spanish it Italian pt Portugese uk Ukrainian

Table 2.1: Target languages of en-to-36 dataset

We found an overlap in the source side of different language pairs. Although
this would not directly lead to unfair increase of the test score, such sentence
pairs were removed from the training sets. This filtering decreased the number
of sentence pairs to 0.85-0.95 millions per language pair.

The data statistics for the resulting training set are displayed in Figure 2.1.
The first plot shows the amount of sentence pairs per translation direction, e.g.
the value for the ‘cs’ column refers to the En→Cs part of the training set. Because
the source side is always in English, from the ‘Average source sentence length’ plot
(in subwords) we can deduce that for some languages the sentences are almost
three times as long as for the others, e.g. En→Is vs. En→De. The shape of the
curve displays the difference in domains of parts of the training set. The ‘Average
target sentence length’ curve is a bit different: the most possible explanation is
that different source languages are segmented differently and may have different
number of words for the same translation. Unique subwords count at the source
side reflects the diversity of the respective part of the training set. For the last
plot, the higher number means that there were more words left as the whole words
and not split into subwords.

We also grouped the sub-datasets into groups by their domain (see Table 2.2).
In the first group, the sub-datasets mostly consist of either documents, or meet-
ing proceedings. The sentences are longer, drier and more formal. In the second
group, the datasets domains are news and commentaries to the news articles. The
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vocabulary is diverse and the sentences are less formal. Spoken language tran-
scripts are represented in the third group: informal speech, spoken vocabulary,
unfinished sentences.

As for groups 4 and 5, we expect to observe much lower results in any ex-
periment. The fourth group has much shorter sentences and a very different
vocabulary. In the fifth group: the ‘Tanzil’ consists of Quran texts, so its sen-
tences’ structure and the vocabulary is very different from the most data in the
training set; The ‘Books’ dataset contains sentences from 18th century books, so
the issue is the same. The ‘Wikipedia’ consists of automaticaly aligned sentences.

group sub-dataset names description
1 Europarl/vx, DGT, MultiUN, EUbook-

shop, JRC-Acquis, ECB, EMEA
Proceedings and documents
from Europarl, UN, etc.

2 NewsCommentary, GlobalVoices,
WMT-News

News articles and commentaries

3 OpenSubtitles, Tatoeba Short sentences, human speech,
general domain

4 OpenOffice, PHP, KDE4, Gnome Software documentation or in-
terface elements

5 Tanzil, Books, Wikipedia Other

Table 2.2: Groups of subdatasets in the en-to-36 dataset.

2.3.2 UN parallel corpus: English to 5 languages
For an additional experiment about adding non-related target languages into

the mix, we used ‘The UN Parallel Corpus v1.0’ [Ziemski et al., 2016]. It consists
of more that 11 millions sentence 6-tuples in six UN languages, i.e. every English
sentence has a translation into Arabic (ar), Chinese (zh), French (fr), Russian
(ru), and Spanish (es).

First, we split the data into training, validation and test sets. We selected
30000 sentence tuples into the test set, then from the remaining data we took
30000 sentence tuples into the validation set. After that all sentence tuples that
overlapped the test set in the same way as in the Section 2.3.1, were removed,
which gave us 10987284 sentence tuples

After that, we divided each 6-tuple into five sentence pairs, where English was
selected as a source language and all other languages were target languages. We
also added the target language tag as seen in Section 2.3.1.

As a result, we received a dataset in the same format as the en-to-36. The
main differences of the new dataset are:

• the size: training data for each translation direction contains ten times more
sentence pairs;

• variety: the training, validation, and test sets consist of data from the same
domain;

• only one test set, due to the previous point.
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Figure 2.1: Training data language statistics. Languages that could be
observed on the X axis, are sorted in the same way as in ??. From top to
bottom: total number of sentence pairs in training set per language, average
number of subwords per sentence on the source side, the same on the target side,
total number of unique subwords for this target language on the source side, the
same on the target side.

When using the same model as for en-to-36, these differences may allow us seeing
how the model’s translation quality changes if we add more target languages in
the mix. In the following text the ‘en-to-5’ notation refers to this dataset. We
specify explicitly, if this dataset is used in a experiment; otherwise the en-to-36
dataset is used.

2.4 Method
In this section we describe how the models are trained, which metrics are

collected and how are they analyzed.

2.4.1 Training tasks
We define a task as a set of models that needs to be trained. In the training

pipeline, the task is represented by a plain text file, in which each row contains a
set of target languages for one model. In Example 2.4.1, a task for training three
bilingual models looks like in
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germanic 2.task:
—————
da de
da is
de is

Example 2.4.1. The task is to train three models with target languages
sampled from Germanic group: En→{Da, De} (from English to Danish
and German), En→{Da, Is} and En→{De, Is}.

2.4.2 Data preprocessing and selection
Preprocessing

Before any sampling both en-to-36 and en-to-5 datasets were preprocessed in
the following way:

• the vocabulary was created using the BPE on both target and source parts
of the training set only;

• using the vocabulary, the train set, the validation set, and the test set were
segmented and then stored in this preprocessed form.

It must also be noted, that due to the fact that every sentence starts from a
target tag, these target tags are not splitted by the BPE.

Dataset subsampling

Both training sets from Section 2.3 contain data for many language pairs, but
in order to train some specific model, we do not need them all. The same holds
for the validation sets.

Therefore, for each specific model En→{L1, L2, ...} we need to subsample the
En→{L1, L2, ...} training set from the whole training set (e.g. en-to-36), the
En→{L1, L2, ...} validation set.

Training set

To prepare a training set for a specific model, we need to select sentence pairs
with relevant source languages from the whole training set. This step is done
in the same way for both en-to-5 and en-to-36 datasets. Further, the notation
‘En→{L1, L2, ...} training set’ refers to a subsampled in this way training set.

For example, let us take the En→{Fr, De} setup, which means that the model
to be trained should take a source sentence in English and produce translation
either in French or in German. The language of the model’s output depends on
the target tag at the beginning of the input sentence, i.e. <2fr> tag in source
sentence leads to French target language.

To train such a model, only related sentence pairs are subsampled from the
whole training set. In this case, from the whole training set we select only those
sentence pairs, which source side starts with tags <2fr> or <2de>. Such a
subsampled dataset is then used to train this model, and referred to as the
En→{Fr, De} training set.
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Validation set

For any model the validation set is constructed from the big validation set by
selecting only relevant sentence pairs in the same way as the training set, i.e. pairs
with the target in one of the examined languages. For the example setup from
above, En→{De,Fr}, the validation set consists of an equal amount of En→De
and En→Fr sentence pairs. E.g., if in the complete validation set there are 1000
sentence pairs for each of possible target languages, then for En→{De,Fr} model
the validation set will contain 2000 sentence pairs, and for En→{De,Es,Fr} it will
contain 3000 sentence pairs.

Test set

For experiments with en-to-5 dataset (Section 2.3.2) the test sets are created
in the same way as the validation sets. For en-to-36 dataset (Section 2.3.1) the
test set is divided on subsets by the source dataset. It means, that for each of
the source datasets (like OpenSubtitles/v11, Europarl/v7, etc.) there exists a
separate test set.

Example

In the experiments proposed above the expected number of models to be
trained is quite big. First of all, there should be 36 models for mono-target
baseline for En→36 dataset. For the multi-target random experiment the number
is much bigger. For example, let us consider a case with En→3 models, where
each model translates from English to 3 target languages. Specifying that each
of 36 target languages from En→36 dataset should appear at least in 3 En→3
models, series of random generation of En→3 setups gave the smallest amount of
such setups equal to 44. For En→5 case with 5 target languages in each model
and with the same restriction of minimum occurance the same procedure gave
the minimum amount of needed models equal to 34.

2.4.3 Model settings
The initial parameter selection is made with respect to Popel and Bojar [2018].

First of all, the hyperparameters of MT model are tuned on couple of language
pairs from one dataset. The parameters leading to the same result in shorter time
were preferred. Then the selected parameters were used on all experimends with
the dataset.

Model settings

In all the experiments, models were trained with the same parameters. It is
a vanilla Transformer model from Section 1.2 with the following settings:

# General options
workspace: 7000
seed: 1111
# Model options
type: transformer
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layer-normalization: true
tied-embeddings-all: true
# Training options
sync-sgd: true
cost-type: ce-mean-words
dim-vocabs:

- 42671
- 42671

disp-freq: 100
save-freq: 100
overwrite: true
max-length: 500
devices:

- 0
- 1

cpu-threads: 0
mini-batch-fit: true
maxi-batch-sort: src
exponential-smoothing: 0.0001
learn-rate: 0.0004
lr-warmup: 4000
lr-decay-inv-sqrt: 4000
lr-report: true
clip-norm: 1
transformer-dropout: 0.1
label-smoothing: 0.1
optimizer-delay: 8
optimizer-params:

- 0.9
- 0.98
- 1e-09

# Validation set options
valid-freq: 1000
valid-metrics:

- translation
- ce-mean-words

early-stopping: 15
beam-size: 6
normalize: 0.6
keep-best: true

Tuning early stopping on early runs

The initial early stopping setting was such, that after 5 consecutive validation
steps without improvement of validation loss value the training process would
stop. However, during the training of the first couple of bilingual models the
following situation has happened quite often: further performance improvement
on validation set by couple of tenths of BLEU points took as much time as
reaching the pre-optimal state.
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In the Figure 2.2, it can be seen that the path from the beginning of training
to the optimal point B (26.9 BLEU) took as much time as its further improvement
by 0.2 BLEU at point D (27.1 BLEU). However, there were certain models with
a bit bigger improvement after a much longer time, e.g. 0.8 BLEU points on
Figure 2.3. In order to visually highlight when an increase in the validation score
is observed, we plot the number of “steps stalled”, see the red line in Figure 2.2.
The higher the diagonal line grows, the longer we have to wait for an improvement.
For instance, we see the path from A to B, where the validation metric was not
improving for 13 validation steps in Figure 2.2.

This behaviour makes our decision on where to stop the training process par-
ticularly complicated for multilingual models, as discussed in Section 2.4.6. After
considering also some of preliminary multilingual runs, the ‘patience’ parameter
of early stopping was set to 15. After 15 consequtive validation steps without a
metric improvement, the training process is stopped.

2.4.4 Training
During the training procedure, the checkpointing of the model occurs once

per specified number of updates. The model weights are saved to the disk and a
set of measurements is logged.

Those measurements are:

• training loss value (mean value for all updates since last checkpoint)

• learning rate value

• training speed (processed words per second)

• training time since last checkpoint

• number of updates happened from the beginning till this checkpoint

Hardware usage should also be recorded if possible:

• GPU usage

• CPU usage

• memory usage

• disk I/O

• network I/O

The hardware metrics are not important for model’s evaluation but may help
early spot mistakes like underuse of GPU or CPU, lack of RAM, etc. This is why
they could possibly be recorded continuously.
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Figure 2.2: Example change of model’s performance on validation set in
time. Preliminary En→De model.
Blue: validation metric (value on the left axis in BLEU)
Red: validation metric (BLEU) stalled. Each consecutive validation step when
the metric is not improved this value is incremented by 1. When the metric is
improved this value is reset to 0.
Green: loss function value on validation set is stalled. Same logic as for Red.
BLEU score values at the points of improvement: A – 26.8, B – 26.9, C – 27.0,
D – 27.1.

Figure 2.3: Small improvement during long training. In this case (En→Fi),
the difference is a bit more visible: 21.3 at the first point and 21.9 at the best.
Colors and scales are the same as at Figure 2.2.
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2.4.5 Validation
The validation set is used to track model’s performance during the training

on an unseen set of data and to perform early stopping. This model-specific
validation set is created as described in Section 2.4.2. These measurements are
only used during the training and not for the evaluation.

Once per specified number of steps the validation occurs: validation metrics
are recorded, for any metric which value was improved current model weights are
saved as best model by this metric. If early stopping condition occurred, then
the training process is stopped.

For the validation set, we collect not only the loss function value but also the
metric of interest, which is BLEU score. However, this BLEU scores are not used
for the model’s evaluation but only during the training process. The BLEU of
the whole model’s validation set is not something we are interested in. For the
discussed example we collect validation bleu:fr and bleu:de scores which represent
BLEU scores for French and German parts of validation set. E.g., to compute
bleu:fr we select only En→Fr sentence pairs from the validation set.

Also, an aggregated value of the bleu:xx scores, i.e. the mean of BLEU scores
over all target languages of the current model, is also recorded and may be used
for early stopping: ending the training process when the metric is not improved
during last N validation steps.

Altogether, the following validation metrics are recorded after the validation
step:

• loss function value

• bleu:xx which is BLEU score for each of model’s target languages

• aggregated value of all bleu:xx values

• translation time of the model’s validation set

2.4.6 Finishing the training
When should we stop the training? It is not possible to say precisely when

the model will acquire its best performance because of stochastic nature of the
training algorithm (SGD). Because of that we need to use some method to decide
when training process should be stopped.

Number of epochs

The easiest approach is to specify the number of epochs after which the train-
ing is stopped. This could be a good solution for the case when all models that
will be compared are trained on the same amount of data from the same domain.
But in our case, adding one more target language adds a constant amount of
sentence pairs to the training set. Roughly, if the number of epochs is specified
as a stop condition, a bilingual En→De model will see the German training data
x times, when multilingual En→De, Fr, Es will only see the German training
data x/3 times.
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Early stopping

Early stopping is a regularization technique used to avoid possible overfitting
of a model on the training data. In general, it works in the following way: after
every validation step it checks if the metric value improved during last N vali-
dations. The metric to be controlled and number of validation steps N are the
parameters of this method (see Figure 2.4).

Another situation is even more probable in the area of NMT with generally
large training datasets: model’s validation performance is either stalled or slightly
improved (see Figure 2.5). In this case early stopping helps to avoid unnecessary
spendings on computational resources.

Figure 2.4: Early stopping to prevent overfitting (Fig. 1 from Gençay
and Qi [2001]). At the ‘early stopping’ point the model’s performance on
unseen validation set of data does not improve anymore. Further training leads
to poorer performance on unseen data. Stopping the training at this point results
in better model’s performance on unseen data.

In our case, we could use early stopping to ensure more equal conditions for
models with different sizes of training data. A suitable number N could be found
experimentaly, but which metric should be used?

Given that the task is to train a model that is as good as possible in all of its
target directions, the BLEU score of the whole translated validation set for this
set of languages does not say anything about the model’s performance in each
specified translation direction.

Aggregated value of BLEU scores

Therefore, we should use separate BLEU scores which represent model’s per-
formance in each of translation directions. The most intuitive and naive way is
to compare BLEU scores for each target language.

However, most of frameworks and toolkits can monitor only one metric for the
early stopping. Considering that different validation BLEU scores are computed
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Figure 2.5: Early stopping as the model is not improving. Even though
the metric value on the training set is still slowly improving, its value on the
unseen validation set is stalled. Further spending of computational resources is
unjustified.

for different parts of the validation set which are also in different languages, they
cannot be directly compared and may have different scale.

For example, a model for the En→{De,Fr} direction is being trained. Before
the moment, an En→De model has already been trained and had the best BLEU
score of 25 on the German part of the validation set. A En→Fr model has also
been trained, and its result on the French part of the validation score is 35. So for
the currently training En→{De,Fr}, one percentage point change for the En→De
direction is not equal to the same change for the En→Fr direction.

Geometric mean is known to be good for aggregating multiple metrics with
different scale (see Equation (2.1)).

geometric mean =
(︄

n∏︂
i=1

xi

)︄ 1
n

= n
√

x1x2 · · · xn (2.1)

2.4.7 Testing
After the training is finished, the received models should be evaluated on

unseen test data. After translating the test set for each of target directions of the
model the following record is created:

• model name

• source language

• target languages

• tested target language

• BLEU score for this part of translation

• metric, based on which the best model was saved

• dataset name (for en-to-36)
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Let us return to the example setup is En→{De, Fr} and suppose the reported
validation metrics are the mean loss function value on test set and ’translation’
(geometric mean of all reported BLEU scores, see Section 2.4.5). After the train-
ing is finished, there will be two models: the best by the loss value and the best by
’translation’. Records are then created for each of them: for En→Fr translation
and for En→Es. In total, 4 results are recorded.

If the model was trained and tested on en-to-36 dataset, then n records are
created 4 times, where n is the number of the OPUS subdataset from which the
data was sampled.

2.4.8 Analysis
After the required set of models is trained and their test metrics are collected,

data should be analysed.
For example, let us take these four models: En→{De, Fr}, En→{De, Az},

En→{De, Bg}, and En→{Bg, Az}. After the training, they provide us with three
results for En→De direction 2-target baseline, one value for En→Fr, two values
for En→Bg and two for En→Az. These aggregated En→{De, X} results will be
later compared with aggregated En→{De, X1, X2} for three target languages,
En→{De, X1, X2, X3} for four target languages, where X1, ... Xi are some other
targets.

Next, the En→{De, RANDOM} notation refers to a multilingual model that
was trained in the RANDOM experiment (randomly selected targets), where
one of the targets is German. In the same way, En→{De, GERMANIC} refers
to a model from the GERMANIC experiment (targets selected from Germanic
languages list).

2.5 Training tools
In the following section we describe the tools that are used for implementing

what was shown in Section 2.4.

2.5.1 Toolkits
There is a number of different tools that can be used for training a NMT

model. General purpouse deep learning programming libraries like Tensorflow3

and PyTorch4 are the most popular for deep learning related research. With
their help it is possible to construct any of today’s state-of-the-art NMT models;
pre-built and pre-trained models are initially present in such frameworks, but it
is also possible to describe a model from scratch.

Another option is presented by specialized NMT toolkits. They usually con-
tain efficient and tested implementations of NMT models as well as some of the
usefull preprocessing tools. For the experiments described in 2.2 there is a need
to train a significant amount of models with the same architecture and settings
but different datasets. Due to that fact, in this work the use of specialized NMT

3https://tensorflow.org/
4https://pytorch.org/
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toolkit is more suitable. Let us consider the foolowing list of broadly used tool
kits as for year 2020, presented in Koehn [2020]:

• OpenNMT (based on Torch/pyTorch)5

• Sockeye (based on MXNet)6

• Fairseq (based on pyTorch)7

• Marian (stand-alone implementation in C++)8

• Google’s Transformer (based on Tensorflow)9

• Tensor2Tensor (based on Tensorflow) 10

We chose MARIAN-NMT tool kit11 as a fast solution with stable and effi-
cient Transformer Vaswani et al. [2017] implementation, minimum of third-party
dependencies, and ability to train models on multiple GPU units in parallel.

2.5.2 Computational cluster
To be able to train large number of models in a reasonable amount of time we

needed to use computational cluster with GPU cards. The computational clusters
available at the institution are operating under SGE12 scheduling software and
are equipped with GPU cards with minimum CUDA compute capability 6.1.

2.5.3 Training pipeline
Considering data storage quota limitation and high utilization of computa-

tional resources by the cluster’s users, the following training pipeline was de-
signed:

• Prepare task list

• Iterate over the list working with at most N tasks in parallel

• For each task:

– Subsample the dataset taking only those sentence pairs with target
languages specified in the task;

– Run the training procedure for limited amount of time (e.g. for one
hour only) starting with previous checkpoint if it already exists;

– Regularly compute metrics on the developement set and report them;
5https://opennmt.net
6https://github.com/awslabs/sockeye
7https://github.com/pytorch/fairseq
8marian-nmt.github.io
9https://github.com/tensorflow/models/tree/master/official/transformer

10https://github.com/tensorflow/tensor2tensor
11Junczys-Dowmunt et al. [2018]
12https://arc.liv.ac.uk/trac/SGE
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– On the event of evaluation on the developenemt set save the best model
for each metric;

– After time is out the training is stopped and subsampled datasets are
removed.

• If the model is already trained for the next selected task, select the next
task from the list;

• If the model is currently being trained for the next selected task, decrease
the number N of tasks processed in parallel.

2.5.4 Inspecting the training process
As the number of trained models, as well as models that are being trained is

growing, monitoring of the training process becomes more and more complicated.
If the experiments are also being run on different computational clusters it be-
comes very possible that a parameter mistakenly set up to different value or a
corrupted dataset, or even hardware version may lead to an unexpected difference
in results.

To address these and other issues that may occur during the training process
we use Weights&Biases13 experiment tracking tool. Its main features that are
useful in this prospective are the following:

• Metric visualization

– Training and validation loss curves (Figure 2.6 left subplot)
– Scatter plots (Figures 2.7 and 2.6 middle subplot)

• Artifact storage

– Model checkpoints storage
∗ stores ’heavy’ model files which cannot be stored in git
∗ along with git it makes possible to move training to the different

computational cluster system
– Sample translations of validation set

∗ helps to observe improvements of translation quality in time
∗ lets verify that model is actually produces meaningfull translation

• Customizable reports

• Hardware utilization

13Biewald [2020]
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Figure 2.7: Overall convergence dashboard. In these two interactive graphs,
each point represents one model. Models that are currently training are visualized
here together with completely converged models and those which training process
is currently on hold.
Top: the X axis represents the training loss value, the Y axis represents the
value for the same loss function calculated on the validation set. The color of
each point represents current training epoch for the model. Normally for any
model the point moves from top right part of this graph to the bottom left part,
representing both training and validation loss being gradually decreased during
the training procedure. The point that moves to the middle left part of the graph
may signalize about either overfitting of the model on training set, or difference in
data distribution in training and validation set, or else some mistake in training
settings. This is useful for finding which training runs need attention and perhaps
debugging.
Bottom: in this plot loss value on the validation set (axis X) is compared with
geometric mean of BLEU scores for each of target languages. For any model
during the training, its point usually moves from bottom right corner into the
cluster of other points with each validation step. The model, the point of which
‘arrives’ to any other location than the cluster may need special attention.
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3. Bilingual and multi-lingual
baselines

In this chapter, we describe the baseline experiments. Bilingual baselines are
needed to specify the starting point: how good can a model perform on a specific
translation direction for each test set.

After bilingual results are collected and inspected, it is time for multi-lingual
baselines. For this purpose, we trained models with randomly selected sets of
target languages. This way, we can see how much adding more target languages
to the model changes its performance on the same specific translation direction.

Most of the experiments are done on the en-to-36 dataset with a couple of
additional experiments on the en-to-5 dataset.

3.1 Bilingual baseline
We trained bilingual models on the en-to-36 dataset and received a number

of values for each translation direction, each value reflecting the performance on
a particular domain of the corpus. Test results for relevant target directions (i.e.
languages from ‘Germanic’ and ‘Slavic with Cyrillic script’ from Section 2.2.2)
are shown in Table 3.1. For example, for En→De direction, we trained a bilingual
model. After that, we evaluated the model on the test set and received BLEU
scores for each sub-dataset, as shown in Figure 3.1. Later, when an En→{De,
others} model is trained and evaluated on the same test set, its En→De perfor-
mance on each sub-dataset will be compared with these values.
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Figure 3.1: En→De bilingual results. Datasets on the X axis are sorted by
declining BLEU score.
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target bg da de is mk nl no ru sv uk
dataset
Books/v1 — — 5.4 — — 4.8 — 8.3 — —
DGT/v4 33.1 27.4 24.1 — — 25.9 — — 28.9 —
ECB/v1 — 20.9 17.9 — — 21.2 — — — —
EMEA/v3 15.1 16.4 15.6 — — 15.8 — — 17.6 —
EUbookshop/v2 38.2 24.1 18.3 — — 18.9 — — 24.7 —
Europarl/v3 — 24.6 18.7 — — 23.4 — — 23.6 —
Europarl/v7 41.4 32.5 25.7 — — 26.0 — — 33.3 —
GNOME/v1 — — 5.6 2.4 — 8.9 — — — —
GlobalVoices/v2015 — — 15.2 — 10.6 18.6 — 13.2 — —
GlobalVoices/v2017q3 — — 15.1 — 10.7 19.1 — 14.4 — —
JRC-Acquis/v3.0 30.8 27.3 23.6 — — 25.7 — — 29.1 —
KDE4/v2 6.9 8.5 6.6 4.2 4.8 8.1 — 4.1 8.4 1.3
MPC1/v1 — — 9.8 — — — — — — —
MultiUN/v1 — — 25.4 — — — — 14.6 — —
News-Commentary/v11 — — 18.4 — — 19.2 — 23.9 — —
News-Commentary/v9.0 — — 13.2 — — — — 18.2 — —
News-Commentary/v9.1 — — 19.3 — — — — 22.1 — —
OpenOffice/v2 — — 8.7 — — — — — 8.6 —
OpenSubtitles/v1 19.3 17.1 10.8 — — 12.5 23.1 16.2 13.4 —
OpenSubtitles/v2016 23.2 14.8 13.0 24.3 24.3 13.7 27.0 19.5 14.8 11.2
OpenSubtitles/v2018 23.7 15.6 13.1 23.1 24.6 13.4 29.6 19.2 15.3 12.2
PHP/v1 — — 7.2 — — 12.6 — 3.3 8.9 —
ParaCrawl/v1 — — 12.5 — — 17.9 — 11.1 — —
SETIMES/v1 23.2 — — — 6.4 — — — — —
SETIMES/v2 27.5 — — — 10.4 — — — — —
TED2013/v1.1 — — 16.9 — — 19.1 — 14.7 — —
Tanzil/v1 5.7 — 5.8 — — 4.6 6.1 2.4 4.4 —
Tatoeba/v2 — — 22.6 — — 28.9 — 27.7 — 13.3
UN/v20090831 — — — — — — — 9.9 — —
Ubuntu/v14.10 — — — — — 8.6 — — — —
WMT-News/v2014 — — 13.9 — — — — — — —
WikiSource/v1 — — — — — — — — 5.3 —
Wikipedia/v1.0 11.7 — 7.8 — — 9.6 — 10.6 — —

Table 3.1: BLEU scores for bilingual models
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In Figure 3.1 we can see that BLEU scores for datasets in group 1 (Table 2.2),
i.e. Europarl/v7, MultiUN/v1, DGT/v4 and JRC-Acquis/v3.0 are the highest;
at the same time, sub-datasets from groups 4 and 5, such as PHP/v1, KDE/v4,
Tanzil/v1, GNOME/v1, and Books/v1 received the lowest BLEU scores.

BLEU score values for different test sets cannot be compared directly. How-
ever, too big or too small, value can give us some insight about the data.

Let us look closer at some example translations from different sub-datasets
of the En→De test set. In Example 3.1.1, we can see a translation produced
by our bilingual En→De model compared with the reference translation and two
unnamed online translation systems. The sentence pair is from the Europarl/v7
sub-dataset of En→De test set. As it was previously stated in Section 2.3.1,
Europarl/v7 was a prioritized source of data to be sampled to the training set.
Even though our translation has different wording in comparison with the refer-
ence one, the sense is preserved. Interestingly, at the same time, our translation
is much closer to the ones produced by online MT systems.

Source (En): <2de> Finally, I fully support the compromise agreement
reached by our committee on Article 5 (4).
Reference translation (De): Ich unterstütze ohne jede Einschränkung
die von unserem Ausschuss zu Artikel 5 Absatz 4 erzielte Kompro-
missvereinbarung.
Our bilingual En→De: Schließlich unterstütze ich die von unserem
Ausschuss erzielte Kompromiss zu Artikel 5 Absatz 4 voll und ganz.
OMT-G: Schließlich unterstütze ich voll und ganz die Kompromissvere-
inbarung, die unser Ausschuss zu Artikel 5 Absatz 4 getroffen hat.
OMT-D: Schließlich unterstütze ich voll und ganz die von unserem Auss-
chuss erzielte Kompromissvereinbarung zu Artikel 5 Absatz 4.

Example 3.1.1. Bilingual En→De model’s output of test set sentence
translation (from Europarl/v7 sub-dataset) compared with the reference
one and online translation systems OMT-G and OMT-D. Here and fur-
ther for the online translation system, the target tag is omitted, and the
target language is selected directly in the system. For our system, the
following sentence is firstly preprocessed (see Section 2.4.2).

The next prioritized sources for sampling training data were Eurobookshop
and OpenSubtitles. The first dataset has domain and vocabulary similar to the
Europarl dataset. OpenSubtitles dataset has data of a different domain: tran-
scribed human speech from films and series; it has much shorter sentences and
the speech of a different register.

In Example 3.1.2, we can see a possible issue of another kind: a short sentence
might not have all the needed information. Here English ‘you’ in the reference
translation translates as ‘ihr’ (2. person, plural), and in our translation as ‘Sie’
(3. person, plural) which refers to a polite form of ‘you’. One of the online
MT systems translates it as ‘du’ (2. person, singular). The difference in exact
translation of ‘you’ affects the translation of ‘know’, because in German the verb
has different conjugation for each person and case, comparing to English, where
s/es are only added to the verb for 3. person, singular.
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Source (En): <2de> Do you know it?
Reference translation (De): Kennt ihr das?
Our bilingual En→De: Wissen Sie das?
OMT-G: Weißt du es?
OMT-D: Kennen Sie es?

Example 3.1.2. Example sentence from OpenSubtitles/v2018 sub-
dataset of the En→De test set.

The main reason for introducing these detailed and domain-specific baselines
is that we want to make comparisons of BLEU scores as reliable as possible.
Specifically, since different languages are differently covered by the text domains,
a single BLEU over a mixed test set would likely hide important observations.

3.2 Multilingual baseline
Next, after we have trained bilingual models and collected the results, we

trained multilingual baseline models – the models with randomly selected sets of
targets. We generated RANDOM task in a way we described in Section 2.4.1.

As we have seen in Section 1.5.2, models with more languages in the mix
usually perform slightly or significantly worse than bilingual ones.

However, there might be different unexpected effects due to slight domain-wise
differences in corpora content for different target languages.

In Table 3.2 there are selected results for En→Bg and En→Ru. Across all
considered configurations (e.g. English to 5 target languages), there are too many
specific settings controlling how to conduct the experiment. Already the choice
of the particular languages offers too many setups and we cannot afford to run
them all. We thus randomly sample and report the average BLEU and standard
deviation over all the particular runs we performed. The actual number of runs
is given in the column ‘count’.

n targets mean std count
1 41.40 — 1
2 40.60 0.20 3
3 39.39 0.62 8
4 39.40 0.71 2
5 38.45 0.52 6

(a) En→Bg for Europarl/v7 dataset.

n targets mean std count
1 19.50 – 1
2 18.88 0.39 4
3 17.45 0.52 4
4 17.80 0.42 2

(b) En→Ru for OpenSubtitles/v2016
dataset.

Table 3.2: BLEU score change with adding target languages. (a) First
row: for mono-lingual En→Bg model test BLEU score is 41.40. Second row: for
3 (column count) En→Any models with two target languages (column n targets)
one of which is Bulgarian the mean BLEU score is 40.60 with standard deviation
0.20. (b): same way as but evaluating the translation into Russian instead of
Bulgarian and on OpenSubtitles test set instead of Europarl. (a)
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Figure 3.2: En→De multilingual baseline results (RANDOM). BLEU
scores for En→De of multigarget models with randomly selected target languages
and German as one of the targets. Datasets with BLEU lower than 10 are removed
from this figure.

3.3 Additional experiments with richer dataset
In addition to the previus results, we trained a couple of 1-to-1, 1-to-2 and

1-to-3 models on the bigger dataset from Section 2.3.2 – en-to-5. This dataset
has two main differences:

• it has much more sentence pairs per target language;

• it is created from a parallel corpus.

The first point refers to the fact, that for each target language it contains 10
millions of sentence pairs; 5 thousand of which were used for a validation set,
another 5 thousand were used for a test set, and all the remaining is a test set.

The second point means, that for every sentence pair from one of the languages
there is a sentence pair with the same source side in every other target language.
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model targets Es Fr Ru
Es, Fr, Ru 56.33 45.03 40.35

Es, Fr 57.94 46.84 —
Fr, Ru — 45.66 41.95
Es, Ru 57.31 — 42.16

Es 59.94 — —
Fr — 48.64 —
Ru — — 44.20

Table 3.3: Results of an additional experiment on the larget corpus.
Targets in the first column refer to model’s targets, given that English is always
the source language. E.g. the first row shows results for a En→{Es, Fr, Ru}
model. Further columns show BLEU scores for specific target direction, written
in the column’s header. For example, the En→{Es, Fr, Ru} model’s BLEU score
for En→Fr part of the test set is 45.03. The En→{Es, Fr} model has a En→Es
score of 57.94 and a En→Fr score of 46.84, but does not have any score for
En→Ru part of test set.
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4. Group by language groups
In this section we describe the results of the multilingual models with related

target languages, i.e.: 1 to 2, 3, 4, 5, etc. models on en-to-36 dataset (0.9 mil.
sentences per target language) compared with random runs.

4.1 Germanic group
Here Germanic group consists of German, Dutch, Swedish, Danish, Norwegian

and Islandic. Models En→{Germanic} are compared to En→{non-Germanic},
where non-Germanic consists of any langauge except of the languages from the
Germanic group. In Figure 4.1 and Figure 4.2, some selected results are visual-
ized along with vocabulary changes. Results for OpenSubtitles/v2018 mean the
BLEU score on test set part was sampled from OpenSubtitles/v2018. In both
figures, the subfigure (a) shows the result for spontaneous or pseudo-spontaneous
speech transcripts, i.e. subtitles, while sub-figure (b) shows the result for prepared
speeches or documents from Europarl or UN meetings.

In this cases observations are twofold:

• For test sets with lower bilingual BLEU score, adding more target languages
to the model improves the score; adding related target languages improves
it even more.

• Adding more target languages improves translation result on test sets from
spontaneous speech domain but worsens them for prepared speech or doc-
uments.

From the (c), we can see, that when comparing the vocabulary size of mod-
els where languages related to the target German are added with models where
random languages are added, the vocabulary clearly grows faster with random
languages. This behaviour is expected and confirms that related languages con-
tain similar patterns of subwords.
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(a) OpenSubtitles/v2018, the baseline is
the bilingual score: 13.1 BLEU

(b) MultiUn, bilingual score: 25.4 BLEU

Figure 4.1: En→De BLEU score
difference: Random vs. Ger-
manic. On X axis is the number
of target languages. On Y axis id the
difference score when comparing with
bilingual baseline BLEU. Black vertical
lines show standard deviation across
the runs we sampled. (a) Adding ran-
dom target languages as well as re-
lated ones slightly improves German
translation score on speech transcript.
(b) Adding neither random target lan-
guages nor related ones helps with pre-
pared speeches transcripts and docu-
ments in German. (c) Adding a related
target language into the mix introduces
fewer new unique subwords.

(c) Subword dictionary size used for target
side
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(a) OpenSubtitles/v2018, bilingual score:
15.6 BLEU

(b) Europarl/v3, bilingual score: 32.5
BLEU

(c) Subword dictionary size used for target
side

Figure 4.2: En→Da BLEU score
difference: Random vs. Ger-
manic. The axis are same as above.
(a) For OpenSubtitles test set, which
consists of human speech transcripts,
adding similar target language to the
mix significantly imporves the result.
(b) For Europarl/v7 which consists of
prepared speeches transcripts and doc-
uments, adding more Germanic lan-
guages to the mix did not worsen Dan-
ish translation quality (unlike the case
with German). (c) Adding random tar-
get language to the mix adds more sub-
words to the target subword dictionary.
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4.2 Slavic with Cyrillic script
The Slavic with Cyrillic script group consists of Bulgarian, Macedonian, Rus-

sian and Ukrainian. Models En→{Cyrillic} are compared to En→{non-Cyrillic},
where non-Cyrillic consists of any language except of those selected from the
group above. In Figures 4.3 and 4.4, some selected results are visualized along
with vocabulary changes. Test sets for subfigures (a) and (b) were selected the
same way as in Section 4.1.

From the two opposite observations of 4.1 in this case the second one is ob-
served: low results of bilingual baselines are getting slightly better or remain the
same, good results are getting slightly or significantly worse as more languages
are added to the mix.

(a) OpenSubtitles/v2018, bilingual score:
23.7 BLEU

(b) Europarl/v7, bilingual score: 41.4
BLEU

(c) Subword dictionary size used for target
side

Figure 4.3: En→Bg BLEU score
difference: Random vs. Slavic
with Cyrillic script. The axes are
same as for Figures 4.2 and 4.1. There
is no data for Cyrillic and 5 targets
as there are only 4 such languages in
the en-to-36 dataset. Both (a) and (b)
show a significant decrease in trans-
lation quality as more languages are
added to the setup. In (c) it is clearly
visible how adding a random language
with non-cyrillic script increases target
subword vocabulary size.
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(a) OpenSubtitles/v2018, bilingual score:
19.2 BLEU

(b) MultiUN, bilingual score: 14.6 BLEU

(c) Subword dictionary size used for target
side

Figure 4.4: En→Ru BLEU score
difference: Random vs. Slavic
with Cyrillic script. The axes are
same as for Figures 4.2, 4.1 and 4.3.
There is only one value for Cyrillic with
four targets as there are only four lan-
guages in the selected group. Both (a)
and (b) show a significant decrease in
translation quality. In (c), it is clearly
visible how adding a random language
with non-Cyrillic script increases tar-
get subword vocabulary size.
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5. Discussion
In this section we discuss the results from Chapter 3 and Chapter 4, and

suggest possible ways of further development of the topic.

5.1 Results
Results of the whole master thesis should be viewed in frames of the results,

discussed in Chapters 3 and 4 of the current paper.
As for Chapter 3, we observed the results that we expected: with adding

more target languages in the mix, the translation quality, in general, decreases.
However, there were couple of exceptions, like EUbookshop. Even though both
Europarl and EUbookshop were preferred sources of sentence pairs during the
training set creation, the opposite results in this case lead us to a more detailed
view into the specific dataset contents. Also, for the sub-datasets with lower
bilingual score, the improvement was observed.

The additional experiment with en-to-5 dataset, which consists of 10 times
bigger number of sentence pairs per each translation direction, we observed the
expected significant decrease of the translation quality with adding more lan-
guages to the targets.

As for Chapter 4, the results for two selected groups are the opposite. For the
‘Germanic group’, adding a related language to the mix caused smaller quality
decrease or higher increase. For the ‘Slavic with Cyrillic script’ we observed the
opposite effect of adding a related language. The possible reason can be the fact,
that in the En→Uk dataset there were found some En→Ru sentences.

5.2 Further work
In general, we would propose the following:

• construct more domain-balanced datasets

• to give an additional attention to the data quality

• try to randomize the segmentation before each epoch: this way the words
from richer datasets could be split in different ways, thus enriching the
subwords of datasets with smaller presence in the shared vocabulary.
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Conclusion
After completing a course of setting and running a number of MT experiments,

described in this thesis, it is now possible to draw the following conclusions:
On the technical side:

• Created a setup for running a very large number of experiments on a mod-
erate GPU cluster;

• Proposed and re-assessed a stopping criterion for the experiments;

• Found and utilized a tool for visual inspection of a massive number of
experiment results.

On the experimental side, carried out and interpreted the results for many
English-to-X multilingual models:

• Setups were run on a domain-diverse training set for up to 36 target lan-
guages, and also sometimes complemented on a multi-parallel set for up to
5 target languages;

• Confirmed that generally, the more target languages in the model, the worse
the performance.

• Observed the improved results for a Germanic set of languages

• Identified interesting exceptions:

– Targeting the spoken domain, the quality does not decrease;
– Targeting the same script (Cyrillic), the quality decreases less or does

not decrease;
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baseline In machine learning this term refers to a simple or näıve initial solution,

which efficiency it then taken as a reference point and later improved. . 13,
49

early stopping Regularization technique to avoid model overfit. Usualy con-
sists of stopping the training process when the value of some selected metric
on the validation set is not improved for last number of validation steps. .
19, 20, 23, 24, 48, 49

en-to-36 The dataset with source sentences in English and target sentences in
36 languages, described in Section 2.3.1 . 15–18, 24, 25, 30, 49

en-to-5 The dataset created from UN parallel corpus, with source sentences
in English and target sentences in one of following 5 languages: Spanish,
French, Russian, Arabic and Chinese; described in Section 2.3.2 . 17, 18,
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epoch Refers to one pass of full training dataset to the learning algorightm . 22,
49

gradient descent An algorithm of iterative optimization of differentiable objec-
tive function (loss). 49

latex Is a mark up language specially suited for scientific documents. 49

loss Loss function, also often called ’objective function’ and ’error function’. It is
optimized during the training process. In our experiments it is mean word
cross-entropy score.. 19, 49

overfitting Occurs when the model’s performance on unseen validation set stops
improving while on the training set it still improves. . 23, 29, 49

self attention A mechanism in sequential models, which alters every element’s
representation with respect to the other relevant elements in the sequence.
. 4, 49

stochastic gradient descent Method for iterative optimizing an objective
function. Differs from gradient descent by approximating the gradient on
mini-batch of data.. 49
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CNN convolutional neural network. 4, 49
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LSTM long short-term memory. 4, 49

MT machine translation. 3, 4, 8, 33, 49
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OOV out-of-vocabulary. 4, 49

RNN recurrent neural network. 4, 49

SGD stochastic gradient descent. 22, 49
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A. Attachments

A.1 Content of the Electronical Attachment
• multitarget mt/ - scripts and the experimentation pipeline and with results

but without models and datasets. also available at https://github.com/b0hd4n/multitarget mt

• abstract cz.pdf - the abstract in Czech language

• abstract en.pdf - the abstract in English language

52


	Introduction
	Background
	History of machine translation
	Transformer model
	Preprocessing: BPE
	Translation evaluation
	History
	BLEU - bilingual evaluation understudy

	Multi-target machine translation
	Multi-lingual machine translation
	Massively multi-lingual machine translation with complete sharing

	Conclusion

	Experiment setup
	Questions and constraints
	Experiments
	Starting point
	Proposed experiments

	Dataset(s)
	English to 36 languages
	UN parallel corpus: English to 5 languages

	Method
	Training tasks
	Data preprocessing and selection
	Model settings
	Training
	Validation
	Finishing the training
	Testing
	Analysis

	Training tools
	Toolkits
	Computational cluster
	Training pipeline
	Inspecting the training process


	Bilingual and multi-lingual baselines
	Bilingual baseline
	Multilingual baseline
	Additional experiments with richer dataset

	Group by language groups
	Germanic group
	Slavic with Cyrillic script

	Discussion
	Results
	Further work

	Conclusion
	Bibliography
	List of Figures
	List of Tables
	Glossary
	List of abbreviations
	Attachments
	Content of the Electronical Attachment


