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Abstract: We study the impact of quantum phase transitions (QPTs) and excited-
state quantum phase transitions (ESQPTs) on the validity of the adiabatic ap-
proximation for a slowly varying Hamiltonian. We compare two cases, when the
initial state is the ground state of the initial Hamiltonian and when the initial
state is a statistical mixture of excited states induced by a finite temperature.
We use the Lipkin-Meshkov-Glick model of a spin lattice and obtain an abruptly
decreasing scaling law of the ground-state population with a growing system
size N . We comment on the justifiability of using the Landau-Zener formula to
make a quantitative prediction in the case of a first-order and a second-order
QPT.

To achieve a truly adiabatic evolution in the thermodynamic limit, one would need
to perform the Hamiltonian change during an impossibly long time period. It is
possible, however, to obtain the same adiabatic final state in a given finite time
period by inducing the quantum evolution with another Hamiltonian specifically
devised for this purpose, thus employing the so called adiabatic shortcut. We
verify the validity of adiabatic shortcuts in the presence of QPTs and ESQPTs
and study the costs of performing such adiabatic shortcuts.
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Introduction
The development of quantum computers and related methods of manipulation
with matter on the quantum level has been, among other, opening a direct ex-
perimental access to real-time quantum dynamics [1–3] during the last decades.
The principle behind quantum computers is to store binary information as a state
of a two-level quantum system, a quantum bit (qubit). To carry out a compu-
tation, one applies a series of quantum gates (e.g. logical and arithmetic gates)
which change the state of a certain subset of qubits. In this manner, one ulti-
mately devises algorithms to run on a quantum computer [4]. In the end, one has
to decode the result of the computation from a repeated execution of such a quan-
tum program because of the probabilistic nature of a quantum measurement. In
this sense, quantum computers represent a quantum equivalent of classical com-
puters which are also based on a systematic application of logical and arithmetic
gates. The size of quantum computers has already reached several tens of qubits
and it keeps increasing [5–7].

There is another similar concept of using quantum properties of matter to
perform computations, the so called adiabatic quantum computers or quantum
annealers [8, 9]. Their sizes are currently reaching a few thousands of qubits [10–
12] (however the size of a quantum computer and that of an adiabatic quantum
computer are incomparable quantities). The principle lies in encoding a problem
into a Hamiltonian whose ground state represents the solution to the correspond-
ing problem (and one a priori does not know the form of such a ground state).
The method to bring the adiabatic quantum computer into the desired ground
state exploits the adiabatic theorem [13, 14]. It has to be possible to set the
physical system of an adiabatic quantum computer into a ground state of a given
conventional Hamiltonian (the default setting of the computer). Then one very
slowly varies the parameters of this system so that its Hamiltonian continually
changes from the initial conventional one to the final desired one. As one modi-
fies the Hamiltonian slowly, the system remains in its instantaneous ground state.
Consequently, we arrive at the desired ground state which we simply measure and
thus obtain the solution to our problem.

One significant detail was left unmentioned and that is how slowly we have
to vary the Hamiltonian in order to avoid system excitations and to obtain the
correct solution. The speed is determined by the energy gap between the ground
state and the first excited state, or more generally on the energy spacing in the
vicinity of the current state of the adiabatic quantum computer [15–17]. A serious
problem of inconceivably large time periods arises in the presence of QPTs [18,
19] and ESQPTs (see section 4.2.5) which represent non-analyticities respectively
in the ground state and in the excited-state spectrum with varying Hamiltonian
parameters. QPTs and ESQPTs are related with extreme eigenstate approaching.
The energy spacing even goes to zero in the true thermodynamic limit (infinite
system size N → ∞). We will demonstrate that such critical phenomena can
take place even in a very simple U(2)-based Lipkin-Meshkov-Glick (LMG) model
[20] and we will study the divergence rate for a Hamiltonian with an ESQPT
accompanying a QPT of a first order and of a second order.

Fortunately, there exists another method of driving the system with a specif-
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ically devised Hamiltonian which induces such an evolution during which the
system remains in exact instantaneous eigenstates of the true Hamiltonian of in-
terest. This procedure is called an adiabatic shortcut or a counter-diabatic driving
and it enables to perform the same transition between Hamiltonians in an arbi-
trary time period [21, 22]. In order to be able to perform an adiabatic shortcut,
one has to know the form of instantaneous eigenstates throughout the evolution
– which is tractable in a good deal of models. The concept of adiabatic shortcuts
was already experimentally verified [23] and a quantum shortcut through a QPT
was theoretically covered [24]. We will demonstrate the applicability of adiabatic
shortcuts in the presence of an ESQPT and we will study the complexity or costs
of their execution.
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1. Quantum phase transitions

1.1 Ground-state quantum phase transitions
Suppose a Hamiltonian which depends continuously on a real control parameter λ
(e.g. an internal coupling constant or an external field strength). Traditionally,
a quantum phase transition (QPT) is understood as a non-analyticity in the
ground-state energy as a function of non-thermal parameter λ. In other words,
one of the (higher) derivatives with respect to λ exhibits a discontinuity or a di-
vergence at a critical value λc. It has to be noted that a system can manifest
a true non-analyticity only in the thermodynamic limit. However, finite-sized
systems exhibit already certain precursors of a critical behaviour.

One can apply the Ehrenfest classification to QPTs after restricting oneself on
the cases with a jump discontinuity in one of the derivatives. If the first derivative
manifests a jump discontinuity, the QPT is said to be of the first order. The
corresponding function is continuous but non-smooth at λc. In a general n-th
order QPT the first n − 1 derivatives are continuous and the n-th one exhibits
a jump discontinuity.

To describe in which quantum phase the system is found, one makes use of
a well-chosen observable called the order parameter. It is such a quantity whose
value is identically zero in one of the phases and non-zero in the other. A jump
discontinuity (a divergence) in the n-th derivative of the ground-state energy is
equivalent to a jump discontinuity (a divergence) in the (n − 1)th derivative of
the order parameter.

Based on the behaviour of the order parameter at the critical point λc, one
can define a more general classification of QPTs. A continuous QPT corresponds
to a continuous order parameter with a discontinuity or a divergence in one of its
higher derivatives. On the contrary, for a discontinuous QPT, the discontinuity
or the divergence is present already in the order parameter itself. The first-order
QPT is categorized as a discontinuous transition whereas all the higher-order
QPTs are continuous transitions.

1.2 Excited-state quantum phase transitions
An excited-state quantum phase transition (ESQPT) represents a generalization
of the concept of a QPT to excited states, thus, an ESQPT is a non-analyticity
in the whole spectral plane E × λ. However, this non-analyticity doesn’t have to
show up in the individual excited states. It manifests as a non-analytic change
of spectral properties such as the level density, level flow or expectation values
of some observables. There exists an extensive literature on ESQPTs, see e.g.
[25–33] for general studies and [34–40] for ESQPTs in the LMG model. This
phenomenon defines a critical ESQPT energy which can depend non-trivially
on λ.

Non-analyticities in the quantum spectrum are tightly connected with station-
ary points of the classical Hamiltonian. This correspondence as well as ESQPT
classification is studied in detail in [32]. In particular, a non-analyticity in the
global minimum of the classical Hamiltonian translates as a ground-state QPT,
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whereas all the other non-analyticities belong to ESQPTs. ESQPTs correspond-
ing to degenerate stationary points are not classifiable. On the other hand, ES-
QPTs corresponding to non-degenerate stationary points can be classified based
on two parameters: the number of degrees of freedom f of the system and the
index r of the stationary point (the number of Hessian negative eigenvalues).

The irregular part of the smoothed level density ρ̄ in the vicinity of the critical
energy Ec reads [32]

∂f−1ρ̄

∂Ef−1 ∝

⎧⎨⎩(−1) r+1
2 log |E − Ec| for r odd ,

(−1) r
2 θ(E − Ec) for r even ,

(1.1)

where θ is the Heaviside step function. The (f − 1)th derivative of ρ̄ manifests
either a logarithmic divergence or a jump discontinuity. A significant result is that
the effect of ESQPTs decreases with a growing number of degrees of freedom. In
order to observe an ESQPT, the system has to manifest a sort of a collective
behaviour (a low number of degrees of freedom). Remember that at the same
time, one needs a large system (the thermodynamic limit) to obtain the non-
analyticity itself.

We will encounter ESQPTs of type (f, r) = (1, 1) and (f, r) = (1, 0), i.e.
a local maximum and a local minimum of a two-dimensional Hamiltonian (dim =
2f). The maximum manifests as a logarithmic divergence of the state density and
the minimum as a jump discontinuity. As we have to treat numerically a finite-
sized system, the precursor of the ESQPT of type (1, 1) will be shown as a sharp
increase in the energy level density. In spite of this high density, no two states will
become degenerate at any point thanks to the no-crossing theorem (appendix A).
Therefore, the ordering of the energy states is unambiguously conserved and
each pair of neighbouring states which approach each other will stop doing so
at a certain point and start separating again, thus creating a so called avoided
crossing or an anti-crossing.

1.3 Quantum simulation of quantum phase
transitions

The value of some types of control parameters (e.g. external field strengths) is
easily changed. Such control parameters can be used to drive a quantum system.
In contrast, other types of control parameters (e.g. coupling constants, hopping
parameters) typically have a fixed value in nature. To give an example, hopping
parameters in the Hubbard model [3] are given by the lattice spacing and by the
characteristics of the particles in the lattice. Consequently, they do not allow
continuous external driving. What is possible to study are the characteristics
of a system under different values of such control parameters. This allows one
to understand how can essentially the same microscopic system lead to totally
different dynamical characteristics of a macroscopic body. For instance, there is
a QPT between a conducting phase and an insulating phase in the case of the
Hubbard model.

The variation of an external field is sometimes equivalent to a variation of
an internal coupling constant as the Hamiltonian (up to the overall scale) depends
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only on the ratio of these terms. Apart from this, it might seem as if studying
a dynamical response of a system which is being driven through a QPT was
a purely theoretical endeavour. However, there is a way to experimentally access
this phenomenon with the use of quantum simulators.

Quantum simulation [41] is a process in which one quantum system is used
to emulate the behaviour of another quantum system based on a mathematical
mapping between these systems. In practice, one uses a well-controlled system to
obtain results for a system which can be otherwise experimentally inaccessible.
For example, quantum simulations of QPTs in the Ising model were realized using
ultracold atoms [42] or trapped ions [43, 44].

Physical implementations of quantum simulators are artificially created in
a way that their parameters can be tuned. In the case of ultracold atoms in
an optical lattice, the lattice spacing depends on the laser wavelength and the
depth of the trapping potential depends on the laser intensity [45]. Hence, a nat-
urally fixed parameter can be cast onto a modifiable one in a suitable quantum
simulator. In summary, it makes good sense to study external driving of all sorts
even for naturally inaccessible control parameters.

7



2. Transitionless external driving

2.1 Adiabatic approximation
Suppose a Hamiltonian Ĥ0(t) which depends explicitly on time t. Let |n(t)⟩ be
the n-th instantaneous eigenstate of Ĥ0(t), which satisfies

Ĥ0(t) |n(t)⟩ = En(t) |n(t)⟩ . (2.1)

Remember that the solution of the time-dependent Schrödinger equation in gen-
eral is not equal to the instantaneous eigenstates. We suppose that the energy
eigenstates do not cross each other (appendix A), hence there are no ambiguities
in the state numbering throughout the whole spectrum E × λ.

The concept of adiabatic evolution comes from the setting in which the char-
acteristic timescale τT of the Hamiltonian change (T for transition) is far greater
than the characteristic timescale τH of the quantum evolution of the system (some-
times called the Heisenberg time). Now, we only need to consider that τH changes
along with the changing Hamiltonian and that also the rate of the external driving
might vary in time,

τT(t)≫ τH(t) ∀t . (2.2)
A representative value τH(t) for a multi-level Hamiltonian can be obtained from
the smallest energy difference ∆E(t) between any state occupied at time t and
one of its neighbouring states,

τH(t) = 1
∆E(t) . (2.3)

Note that in literature the Heisenberg time is usually defined using the mean
spacing of nearest neighbours [46] instead of using simply the closest occupied
pair of states.

The adiabatic theorem [13, 14] states that if the system starts in its n-th
eigenstate at time t = 0,

|ψn(t = 0)⟩ = |n(t = 0)⟩ , (2.4)

then it will remain in the corresponding instantaneous eigenstate up to an addi-
tional geometric phase factor (and the usual dynamical phase factor),

|ψn(t)⟩ = exp
⎛⎝−i t∫

0

dt′En(t′)
⎞⎠ exp

⎛⎝− t∫
0

dt′
⟨
n(t′)

⏐⏐⏐⏐⏐ ∂∂t′
⏐⏐⏐⏐⏐n(t′)

⟩⎞⎠ |n(t)⟩ , (2.5)

where we hold ℏ = 1. As shown in appendix B, ⟨n(t′)| ∂
∂t′ |n(t′)⟩ is purely imagi-

nary and therefore the second term truly is an additional phase factor.

2.2 Landau-Zener transitions
It is only within the adiabatic approximation that the system remains in the
instantaneous eigenstate. If the Hamiltonian change happens in a finite time
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period, the remaining eigenstates will also get populated during the evolution
(a multi-level analogue of Landau-Zener transitions).

The classical Landau-Zener (LZ) problem [15–17] is that of an evolution of
a ground state in a class of time-dependent Hamiltonians represented by

ĤLZ(t) =
(

γt
2 β
β∗ −γt

2

)
, (2.6)

where γ > 0 and β ∈ C. The time-dependent eigenvalues are plotted in fig. 2.1.
Parameter γ represents the rate of growth of the energy difference between the
ground state and the excited state as t→ +∞. On the other hand, the minimum
value of the energy gap between the two eigenstates reads ∆E = 2|β| and it takes
place at t = 0.

−8
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−4

−2

0

2

4

6

8

−15 −10 −5 0 5 10 15

E
·|
β
|−

1

t · γ|β|−1

Figure 2.1: The avoided crossing in the spectrum of ĤLZ(t)

One starts with a system in the ground state at t = −∞ and is interested in
the population of the excited state at t = +∞. This probability reads

Pexc = exp
(
−2π∆E2

4γ

)
. (2.7)

The expression holds generally for any two-level avoided crossing, i.e. the eigenen-
ergy asymptotes can have arbitrary directions. In this general case, γ is given by

E∞
1 (t)− E∞

0 (t) = γt , (2.8)

where E∞
0 (t) and E∞

1 (t) represent the asymptotes of the ground state and of the
excited state.

In our case, the driving of the Hamiltonian Ĥ(λ) will be carried out by a time-
dependent control parameter λ(t). Let λ be varied from λi to λf = λi + ∆λ with
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a constant rate λ̇ over time period τ = ∆λ/λ̇. In this case, it is more practical
to define a purely geometrical analogue of γ,

α = τ

∆λγ = γ

λ̇
, (2.9)

for which it holds
E∞

1 (λ)− E∞
0 (λ) = αλ . (2.10)

The LZ excitation probability now reads

Pexc = exp
(
−2π∆E2

4αλ̇

)
. (2.11)

As already stated before, probability Pexc becomes negligible in the adiabatic
approximation λ̇→ 0 (τ →∞). However, now we see that LZ transitions might
occur even for slow Hamitonian changes if the energy distance of eigenstates gets
very close to zero during the evolution. This phenomenon happens in the presence
of QPTs as they imply avoided crossings of energy levels (or even real crossings,
for which ∆E = 0).

2.3 Adiabatic shortcuts
It is possible to devise a Hamiltonian Ĥ(t) closely related to Ĥ0(t) so that it
induces evolution which follows the instantaneous eigenstates of Ĥ0(t). In other
words, we want to reconstruct a Hamiltonian Ĥ(t) for which it holds

i
∂

∂t
|ψn(t)⟩ = Ĥ(t) |ψn(t)⟩ ∀n , (2.12)

where the instantaneous eigenstates |ψn(t)⟩ are defined by the adiabatic theorem
(2.5), i.e. we choose to keep the geometric phase. Berry [21] derives that such
a Hamiltonian is given by the following formula,

Ĥ(t) = Ĥ0(t) + i
∑

m ̸=n

∑
n

⟨
m(t)

⏐⏐⏐ ∂
∂t
Ĥ0(t)

⏐⏐⏐n(t)
⟩

En(t)− Em(t) |m(t)⟩⟨n(t)| , (2.13)

where En(t) is the n-th instantaneous eigenvalue of Ĥ0(t) as given by (2.1). Re-
mark also that the additional term is strictly off-diagonal in the instantaneous
eigenbasis.

Let us now suppose that the Hamiltonian is of the following form,

Ĥ0(t) = T̂ + λ(t)V̂ . (2.14)

It is possible to reexpress the correction Ĥ ′(t) = Ĥ(t)− Ĥ0(t) as

⟨
m(t)

⏐⏐⏐Ĥ ′(t)
⏐⏐⏐n(t)

⟩
= i

∂λ(t)
∂t

⟨
m(t)

⏐⏐⏐V̂⏐⏐⏐n(t)
⟩

En(t)− Em(t)

(
1− δmn

)
. (2.15)

Let us call the time derivative λ̇(t) the driving rate as it represents the speed of
the external driving.
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Suppose that in terms of matrix elements all three operators Ĥ0(t), T̂ and
V̂ are comparable in magnitude. Then the last expression clearly states that as
a necessary condition for the adiabatic approximation to hold we need to vary
the control parameter λ very slowly, that being

λ̇(t)≪ ∆E(t) , (2.16)

where ∆E(t) is the smallest instantaneous-energy difference between any two
states at time t (let us now discard the possibility that the energetically closest
states might not be occupied at all). An easy way to satisfy the adiabaticity
condition is to set a constant driving rate for which it holds

λ̇≪ ∆E = min
t

∆E(t) . (2.17)

In order to accelerate the whole process, it would also be possible to continually
readjust the driving rate according to ∆E(t).

Note however, that even with (2.17) satisfied, the small corrections (2.15)
can add up during the integration of the Schrödinger equation into adiabaticity
violation. As we will prove the LZ aproximation (2.11) to a certain extent, we
can already reveal that a stronger condition,

λ̇≪ ∆E2

α
, (2.18)

will have to hold.

2.4 Adiabatic shortcut costs
The employment of an adiabatic shortcut involves creating a new physical phe-
nomenon – which requires energy. For example, for a spin driven by a magnetic
field, the adiabatic shortcut is implemented by yet another time-dependent mag-
netic field [21]. The energy of the spin itself can even decrease after turning the
shortcut field on. On the other hand, the creation of the new magnetic field can
be quite costly in terms of energy.

However, Hamiltonian Ĥ0 (and thus also Ĥ ′) typically describes only the state
of the system (qubits), not of the magnetic field surrounding it. That is why
interpreting expressions like ⟨ψ|H ′|ψ⟩ as the energy cost of an adiabatic shortcut
does not work. Moreover, in this particular case, one obtains ⟨ψ|H ′|ψ⟩ = 0
because Ĥ ′ was constructed as strictly off-diagonal in the basis of instantaneous
eigenstates (and the system stays in the instantaneous ground state during the
counter-diabatic evolution). Further, the expression for such an energy cost has
to vary accordingly with the physical phenomenon implementing the adiabatic
shortcut (different for each system).

There is, however, another general way to quantify the complexity of an adi-
abatic shortcut. Let us first focus on the properties that one might expect from
such a quantity. If direct driving with Ĥ0 results in a practically adiabatic pas-
sage, the costs of the corresponding shortcut should be close to zero. On the
other hand, the closer two eigenstates are, the stronger they interact. Therefore,
preventing transitions in the neighbourhood of a QPT should be very difficult. To
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summarize, we will try to find a function of the Hamiltonian which has some sort
of a characteristic behaviour (e.g. an enhanced growth rate or even a distinctive
peak) at each avoided crossing through which the system is driven.

The form of Hamiltonian Ĥ ′(t) was derived so that it suppresses all transi-
tions induced by Ĥ0(t). Therefore, the moduli of matrix elements of Ĥ ′ repre-
sent exactly the strength of interaction between pairs of individual instantaneous
eigenstates in the case when the system is driven directly by Ĥ0. Without any
further insight, one might try computing the Frobenius norm of Ĥ ′(t),Ĥ ′


F

=
√

Tr
[
Ĥ ′Ĥ ′†

]
=
√∑

mn

⏐⏐⏐⟨m⏐⏐⏐Ĥ ′
⏐⏐⏐n⟩⏐⏐⏐2 , (2.19)

only to quickly find out that it incorporates a peak at each avoided crossing in
the entire excited spectrum of Ĥ0.

The remedy is to include only those elements of Ĥ ′ which correspond to the
transition of the current state |ψ(t)⟩ of the system into all possible states,

M =
√∑

m

⏐⏐⏐⟨m⏐⏐⏐Ĥ ′
⏐⏐⏐ψ⟩⏐⏐⏐2 =

√⟨
ψ
⏐⏐⏐Ĥ ′2

⏐⏐⏐ψ⟩ . (2.20)

We denoted this quantityM for it corresponds to an effective matrix element for
transitions of the current system state. In the relevant case for adiabtic quantum
computing, we simply let |ψ(t)⟩ = |0(t)⟩. Since Ĥ ′ is off-diagonal, M now has
a zero contribution from the “transition” from the ground state |ψ⟩ = |0⟩ to the
ground-state |m⟩ = |0⟩. Therefore M(t) represents the strength of adiabaticity-
violating transitions as a function of time.

It is possible to summarize function M(t) with a single number as well as to
reacquire physical insight into the cost of adiabatic shortcuts with the use of the
Fermi golden rule,

Γi→f = 2π
⏐⏐⏐ ⟨f |Ĥ ′|i⟩

⏐⏐⏐2 ρ(Ef ) . (2.21)
The rule states that the transition rate Γi→f from state |i⟩ to state |f⟩ is pro-
portional to the squared matrix element of the interaction Hamiltonian and to
the density of states at the energy of state |f⟩. Therefore, we can define cost C
of an adiabatic shortcut by integrating the Fermi rule over all possible (discrete)
final states and over the whole evolution time,

C = 2π
∫ τ

0

∑
m

⏐⏐⏐⟨m(t)
⏐⏐⏐Ĥ ′(t)

⏐⏐⏐ψ(t)
⟩⏐⏐⏐2 dt =

= 2π
∫ τ

0
M2(t)dt = 2π

λ̇

∫ λf

λi
M2(λ)dλ ,

(2.22)

and obtain the total volume of inhibited transitions. Since this cost originates
from the Fermi rule, its dimension is energy (there is a missing ℏ = 1 term in the
denominator). Coming back to (2.15), we see that the transition matrix element
is proportional to the driving rate, M ∝ λ̇. Hence also the adiabatic shortcut
cost is proportional to the driving rate, C ∝ λ̇.

We could have as well obtained another plausible definition of an adiabatic
shortcut cost by taking simply the maximum of M(λ). The results for either
cost would be probably qualitatively quite similar because M has a peak at the
QPT which accounts for the most part of the integral in (2.22). Some physical
insight into this shortcut cost stems froms noticing that M2(λ) is in fact the
energy variance of |ψ⟩ defined by the additional Hamiltonian term Ĥ ′.
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2.5 Thermal state
An ESQPT is by its nature a phenomenon affecting excited states. The energy
level spacing ∆E (restricted to occupied states and their neighbours) differs for
evolutions driven through distinct eigenstates. Therefore, one could investigate
how the dynamical impact of an ESQPT changes when the system enters the
critical region from states with different energies. In this respect, we will only
compare the end-state in the case where the systems starts from the ground
state (zero temperature) and where it starts from the thermal state corresponding
to a finite temperature T . The thermal state represents a canonical ensemble
(i.e. a statistical mixture) of individual excited eigenstates. It can be described
by a density matrix using the Maxwell-Boltzmann distribution [47, 48] as

ρ̂T (Ĥ0) = 1
Z(T ) exp

(
− Ĥ0

kT

)
, (2.23)

Z(T ) = Tr
[
exp

(
− Ĥ0

kT

)]
=
∑

n

exp
(
−En

kT

)
, (2.24)

where Z(T ) is the partition function and En are the eigenenergies of Ĥ0. For
computational purposes, we let the Boltzmann constant k = 1.

The thermalization of a system is a process of acquiring equilibrium with
a thermal reservoir. The process is described by a characteristic timescale. Sup-
posing that the timescale of quantum dynamics is significantly smaller than the
thermalization timescale, one can start with a fully thermalized initial state and
then simply carry out a purely quantum evolution on each of the states from the
original statistical mixture. In terms of the system density matrix ρ(t),

ρ̂(t = 0) = ρ̂T

(
Ĥ0(t = 0)

)
=

=
∑

n

1
Z(T ) exp

(
−En(0)

kT

)
|n(0)⟩⟨n(0)| def=

def=
∑

n

pn |n(0)⟩⟨n(0)| , (2.25)

ρ̂(t) =
∑

n

pnÛ |n(0)⟩⟨n(0)| Û † , (2.26)

where Û is the evolution operator from time 0 to t.
The described procedure represents a quantum evolution of a system in a weak

contact with a thermal reservoir (i.e. the thermalization timescale is very long).
Alternatively, it can be interpreted as first letting the system equilibrate in contact
with a thermal reservoir and only before starting the driven evolution putting
them apart and isolating the system again. This interpretation will have to be
considered when approaching the adiabtic limit by taking a very small driving
parameter λ̇.

2.6 Fidelity
Since adiabatic quantum computing is based on finding the ground state of a given
Hamiltonian, the aim of the external driving procedure is to obtain as high
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a ground-state population as possible. Hence, it is possible to quantify the qual-
ity of a performed external driving protocol by the fidelity [49, 4] of the obtained
final state ρ̂(τ) and the ground state ρ̂0(τ) = |0(τ)⟩⟨0(τ)| of the final Hamiltonian
Ĥ0(τ),

F0(τ) =
[
Tr
√√

ρ̂0(τ)ρ̂(τ)
√
ρ̂0(τ)

]2

. (2.27)

In the case of a closed quantum system in which we operate only with pure
quantum states, the density matrix of the final state |ψ(τ)⟩ = Û |ψ(0)⟩ is given
as ρ̂(t) = |ψ(τ)⟩⟨ψ(τ)| and the fidelity simplifies to a squared inner product of the
final state and the desired ground state,

F0(τ) =
⏐⏐⏐ ⟨0(τ)|ψ(τ)⟩

⏐⏐⏐2 . (2.28)

If the system is in contact with a thermal reservoir at temperature T , we
can use again the simplification that the thermalization timescale is significantly
larger than the timescale of system dynamics. Making use of (2.26) one obtains
essentially the same result as for a closed quantum system but summed over all
the components of the thermal statistical mixture,

F0(τ) =
∑

n

pn

⏐⏐⏐ ⟨0(τ)
⏐⏐⏐Û ⏐⏐⏐n(0)

⟩ ⏐⏐⏐2 . (2.29)

Remark that starting from a pure ground state |ψ(0)⟩ = |0(0)⟩ of the initial
Hamiltonian Ĥ0(0) corresponds to the thermal state in the zero-temperature limit
since for T = 0 the weights of the statistical mixture read pn = δn0.

To plot the whole evolution of a statistical-mixture state, we will use the
fidelity of the current state ρ̂(t) and the k-th instantaneous eigenstate ρ̂k(t) =
|k(t)⟩⟨k(t)|,

Fk(t) =
[
Tr
√√

ρ̂k(t)ρ̂(t)
√
ρ̂k(t)

]2

. (2.30)

Simplifications analogous to (2.28) and (2.29) hold for all values of k. For further
details about fidelity see appendix C.
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3. Lipkin-Meshkov-Glick model
The Lipkin-Meshkov-Glick (LMG) model was originally created as a simple nu-
clear model [20]. Its simplicity allows for casting the fermionic operators e.g. onto
bosonic operators or spin operators and reinterpreting the model in different con-
texts. This context always incorporates a multitude of interacting entities which
can occur in only two distinct states. We will focus mainly on spin-1

2 particles in
a lattice.

The newly found virtue of the LMG model lies in our ability to simulate its
dynamics both with a classical computer (due to the linear scaling of the Hilbert
space dimension with the lattice size N , i.e. the number of spin sites in the lattice)
and with quantum simulators (which can be interpreted as a real experimental
realization of the system). Its simplicity therefore allows to directly verify first
principles of quantum mechanics on a real-time evolution of a quantum system
[50, 51].

Since we also want to study ESQPTs, we need to conduct our research on
a system with as little degrees of freedom as possible since ESQPT manifestations
quickly fade away with the number of degrees of freedom, see equation (1.1). This
is yet another reason to choose the LMG model over a more complex one.

3.1 Spin formulation
In the spin formulation, the LMG model describes a simple collective model of
spin-1

2 lattice placed in a homogeneous magnetic field. The spin-spin interaction
doesn’t depend on the spin distance at all and thus all the spins interact with
each other with the same strength. Therefore, the spin formulation corresponds
to the Ising model in the limit of an infinite interaction range.

Thanks to the form of the interaction, it possible to write the Hamiltonian
solely in terms of the total spin Ĵ of the lattice. Terms linear in Ĵ represent the
potential energy of the lattice in a magnetic field and quadratic terms represent
the interaction among individual spins. A more detailed analysis can be found in
[52, 53].

As a consequence of the form of the Hamiltonian, it holds
[
Ĥ, Ĵ2

]
= 0. Thus,

the magnitude of the angular momentum j is conserved and we can restrict
ourselves on a subspace with fixed j. Let us choose the maximum possible value
j = N

2 . This choice corresponds to a fully symmetrical subspace with respect
to an exchange of any pair of spins. The dimension of such a space is dim =
2j+ 1 = N + 1 which scales linearly with system size N . Furthermore, the model
has only one degree of freedom, the quantum number m (the z-projection of the
total angular momentum Ĵ).

We will be using the following two Hamiltonians throughout the thesis,

Ĥ1(λ) = Ĵ3 + λ

(
− 1

2j
[
Ĵ1 + c

(
Ĵ3 + j

)]2)
, (3.1)

Ĥ2(λ) = Ĵ3 + λ

(
− 1

2j Ĵ
2
1

)
, (3.2)
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where we set c = 4. Hamiltonian Ĥ2 represents a spin lattice in a transversal
magnetic field. Hamiltonian Ĥ1 has a slightly more complex interaction term
(the operator Ĵ3 + j represents the number of spins in state +1

2). In both cases,
control parameter λ represents the spin-spin interaction strength and we will
consider only λ > 0.

Parity conservation in Ĥ2

Rewriting Ĵ1 = 1
2(Ĵ+ + Ĵ−), where Ĵ± are the usual ladder operators, one sees

that all the terms in Ĥ2 change the quantum number m by 0 or ±2. Therefore,
Hamiltonian Ĥ2(λ) conserves a parity in the form

P̂ = (−1)Ĵ3+j . (3.3)

Equivalently written
[
P̂ , Ĥ2(λ)

]
= 0, and thus the two operators are simulta-

neously diagonalizable. Thanks to the no-crossing theorem (appendix A), the
eigenstates of Ĥ2(λ) aren’t degenerate and, consequently, they themselves have
a good value of parity. Therefore, if the initial state is taken as a state with
a good parity (e.g. any instantaneous eigenstate), then only states with the same
parity are populated throughout the evolution. In particular, a given instanta-
neous eigenstate keeps its parity value throughout the adiabatic evolution. For
this reason, we will restrict ourselves only on the positive-parity subspace.

3.2 Classical correspondence
It is possible to cast the spin operators in Ĥ1,2 onto position x̂ and momentum p̂ of
a quasiparticle in a potential well by starting from the quasispin ladder operators

Ĵ± = Ĵ1 ± iĴ2 , (3.4)
Ĵ0 = Ĵ3 , (3.5)

using the Holstein-Primakoff mapping [54] onto boson operators and rewriting
the boson operators in their standard coordinate-momentum representation,

(
Ĵ−, Ĵ0, Ĵ+

)
↦→
(√

2j − b̂†b̂ b̂, b̂†b̂− j, b̂†
√

2j − b̂†b̂
)
, (3.6)(

b̂†, b̂
)
↦→
√
j (x̂− ip̂, x̂+ ip̂) . (3.7)

With this choice of a mapping, the boson operators satisfy the standard com-
mutation relation

[
b̂, b̂†

]
= 1 and the commutation relation of position and mo-

mentum reads
[x̂, p̂] = i

2j = i

N
. (3.8)

The classical limit, which is usually realized by letting ℏ → 0, is in this case
equivalently obtained in the thermodynamic limit N → ∞. And since the true
non-analyticities in the Hamiltonian emerge only in the thermodynamic limit, it
is possible to employ semiclassical methods to study QPTs and ESQPTs.
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The corresponding classical Hamiltonians read

H1(x, p)
j

= −1 + (1− λ)x2 + λ

2 (1− c2)x4 − cλx3√2− x2 + T1(x, p)
j

, (3.9)

H2(x, p)
j

= −1 + (1− λ)x2 + λ

2x
4 + T2(x, p)

j
, (3.10)

where T1,2(x, p) represent generalized kinetic terms.

3.3 Quantum phase transition
The global minimum of a classical Hamiltonian H(x, p) satisfies

∂H

∂x
= 0 and ∂H

∂p
= 0 . (3.11)

Solving this set of equations for H1(x, p) and H2(x, p), one obtains for the value of
p in both cases p = 0 and thus both kinetic terms vanish as T1,2(x, 0) = 0. There-
fore, the search for the ground state reduces to an analysis of the corresponding
classical potential.

Potential V1(x) represents an asymmetric double-well system whose ground-
state solution manifests a jump discontinuity in x at λc1 = 1

1+c2 . Potential V2(x)
has the shape of a single well which continuously splits into a parity-symmetric
double-well system at λc2 = 1. The corresponding QPTs are of the first order
(discontinuous) for Ĥ1(λ) and of the second order (continuous) for Ĥ2(λ).

Irrespective of the exact value of λ within λ < λc, the ground state of both
Hamiltonians has a fixed value of energy E

j
= −1. For λ > λc the ground-state

energy begins to decrease below this value. Therefore Ĥ1(λ) and Ĥ2(λ) describe
a transition from a non-interacting phase to an interacting phase with a different
type of a QPT.

To return to the spin formulation, in the ground state of the non-interacting
phase all the spins are aligned in the direction of the magnetic field (along the
negative direction of the z-axis). As we expect this perfect alignment to be
broken in the interacting phase, a suitable order parameter is the number of
spin-flips in the ground state ⟨Î⟩gs (λ) def= ⟨Ĵ3 + j⟩gs (λ) which equals zero in the
non-interacting phase.

After crossing a QPT of the first order in Ĥ1, a sudden change of the mag-
netization takes place, ⟨Î⟩gs (λc1) .= 1.88j, and as the interaction grows stronger
(λ→∞), the system undergoes almost a full inversion ⟨Î⟩gs (∞) .= 1.97j.

As the QPT in Ĥ2 is of the second order, the number of spin-flips in this
case changes continually from ⟨Î⟩gs (λc2) = 0 to a state of zero-magnetization
⟨Î⟩gs (∞) = j.

3.4 Excited-state quantum phase transition
The ESQPTs correspond to the stationary points in the classical Hamiltonian,
i.e. to all of the solutions of (3.11) apart from the ground state and the maximum
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energy state. The full solution of this set of equations for both Ĥ1(λ) and Ĥ2(λ)
is plotted in figs. 3.1 and 3.2 together with all quantum eigenstates to illustrate
the changes that happen at ESQPT critical energies.
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Figure 3.1: The spectrum of Ĥ1(λ) together with the stationary points of the
corresponding classical Hamiltonian.
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Figure 3.2: The both-parity spectrum of Ĥ2(λ) together with the stationary
points of the corresponding classical Hamiltonian.
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The lines representing ESQPTs divide the spectral plane E × λ into distinct
regions representing quantum phases. As the stable long-lived state of a system is
its ground state, the most important phases are those which contain the ground
state in various intervals of the control parameter λ. In the case of Ĥ1, there
is also one phase which concerns only highly excited system states (apart from
a small neighbourhood of the QPT). We will not examine this excited phase.

One might be tempted to take the limit c→ 0 to obtain fig. 3.2 from fig. 3.1.
However, this limit is not graphically very straightforward as there are three
QPTs in Hamiltonian Ĥ1(λ, c) which lie at c = 2 +

√
2, c = 1 and c = 1/

√
3.

3.5 Minimum energy gap
Remembering the adiabaticity condition (2.17), the system dynamics qualita-
tively depends on the smallest energy difference in the Hamiltonian spectrum.
Hence it is instructive to have a look at how the minimum energy gap ∆E be-
tween the ground state and the first excited state is scaling with the system
size N , see fig. 3.3.
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Figure 3.3: Scaling of the minimum energy gap ∆E with system size N for
Hamiltonians Ĥ1 and Ĥ2. The dependence is fitted by an exponential and a power
function, respectively. As we are interested in the scaling for large N , the fit for
Hamiltonian Ĥ1 is done only for N ≥ 10 (the deviation from the straight line for
small N is hidden by the logarithmic scale).

For Ĥ1 with a discontinuous QPT, the minimum energy gap ∆E decreases
approximately exponentially with a growing system size (and one quickly reaches
the numerical precision threshold ∼ 10−18). On the other hand, in the case of
a continuous QPT in Ĥ2, the decrease of ∆E is only algebraic in system size.
And in fact, all of the avoided crossings in the spectrum of Ĥ1 are significantly
tighter than those in the spectrum of Ĥ2.

Therefore to achieve the same level of adiabaticity, one needs to drive much
slower a system exhibiting a discontinuous QPT than that exhibiting a discon-
tinuous QPT.
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4. Adiabatic and non-adiabatic
driving
Both Hamiltonians Ĥ1 and Ĥ2 describe a transition from a non-interacting phase
to an interacting one, therefore we will seek to compare their behaviour. With
this in mind, we will use the common point of zero interaction as the initial point,
i.e. λi = 0. Then, we will evolve the quantum system with a fixed driving rate λ̇
across the ESQPT up to λf = 2λc. To define the final point in a rather general
manner, we used the critical ESQPT point of the corresponding Hamiltonian.

We will first study a direct slow change of the control parameter. As this
procedure is in practice simpler than having to employ adiabatic shortcuts, it is
of interest to study whether it allows to achieve sufficiently good results (high
final population of the ground state) and what are its limits.

4.1 System dynamics
Let us demonstrate the exponential dependence of Ĥ1 dynamics on system size N
and the corresponding fast loss of adiabaticity, see fig. 4.1. Note that the almost
adiabatic passage for N = 4 is achieved at λ̇ = 10−6 ≈ ∆E/15500 ≈ ∆E2/240.
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Figure 4.1: Instantaneous eigenstate fidelity Fk(t) as a function of time dur-
ing an evolution induced directly by Hamiltonian Ĥ1(λ) for various system sizes
driven at rate λ̇ = 10−6. The system starts in the ground state at λi = 0.

For numerical reasons, we demonstrate quantum evolution for various values
of the driving rate λ̇ for Hamiltonian Ĥ2 at N = 100. Figure 4.2 shows that
for fast driving (λ̇ = 2), the system remains centred at the initial ground-state
energy until λf . As an effect of a decreasing driving rate, lower excited states get
populated. And finally, one obtains an adiabatic passage at λ̇ = 0.002. Notice
again that roughly λ̇ = 0.002 ≈ ∆E/165 ≈ ∆E2/55. We already see an indication
that (2.18) is a more suitable condition on adiabaticity than (2.17).
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Figure 4.2: Instantaneous eigenstate fidelity Fk(t) as a function of time during
an evolution induced directly by Hamiltonian Ĥ2(λ) for N = 100 driven at various
rates. The system starts in the ground state at λi = 0, consequently only positive-
parity subspace is populated. We don’t depict negative-parity states.

4.2 Scaling of the ground-state population

4.2.1 Applicability of the Landau-Zener formula
The dependence of the final ground-state population on the driving rate λ̇ and
on the system size N is important for prospective applications in quantum adi-
abatic computing. Before inquiring into its study, it is worth reflecting on the
applicability of the LZ formula (2.11). As the LZ problem deals with a two-level
Hamiltonian, the comparison might make a good sense if the full LMG system
starts in the ground state and when we assume that the ground state interacts
practically exclusively with the first excited state (which has to be verified nu-
merically).

However, there is a deeper difference in the objective of adiabatic quantum
computing and of the LZ problem. In adiabatic quantum computing, the task
usually is to get from a given λi to a given λf . The goal of the LZ problem is to
cross the quantum critical point and to escape its effect on the system dynamics
(λf →∞).

Consequently, in our case, there exists a non-zero lower bound on the ground-
state fidelity given by the diabatic limit. On the contrary, for the LZ case, no such
lower bound exists and the ground-state fidelity can decrease arbitrarily close to
zero. With this difference in mind, we will try nevertheless to compare our results
(for λ̇ smaller than some critical value) with the prediction of LZ formula in the
following form

Pexc ≡ 1−F0(τ) = exp
(
−2π∆E2

4αλ̇

)
, (4.1)

where Pexc denotes the excitation probability and F0(τ) the final ground-state
fidelity.

Let us also comment a little on our more or less arbitrary choice of λf . For
Hamiltonian Ĥ1 with a discontinuous QPT, the interaction of the ground state
takes place almost only in the critical point (see fig. 4.3), therefore any choice
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Figure 4.3: Instantaneous ground-state fidelity F0 as a function of control pa-
rameter λ(t) = λ̇t during an evolution induced directly by Hamiltonian Ĥ1(λ) for
system size N = 20 driven at various rates. The system starts in the ground state
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of λf is practically equivalent.
The situation is a bit more complex in the case of Ĥ2 with a continuous QPT.

Figure 4.4 depicts how the ground-state population (fidelity) evolves as a function
of λ. The curves corresponding to different values of λ̇ are similar to each other.
From a first glance it looks as if they were simply rescaled as a function of the
driving parameter λ̇ (including the magnitude and the period of oscillations and
the stabilized value of F0). The oscillations can even begin well after λ = 10 for
high driving rates.

Even though we don’t have a reasonable extrinsic rule to set the value of λf ,
we can say that all the choices are qualitatively equivalent (the same evolution
can be reached only with a different value of the driving rate).

4.2.2 Two-level approximation
To help interpret the results for the full LMG Hamiltonian, we will run some of
the simulations also for a two-level approximative Hamiltonian in analogy with
the LZ problem. This can be done for Hamiltonian Ĥ1 as the avoided crossings it
comprises are asymptotically linear (even on the relatively small scales between
individual avoided crossings). The main difference from the full Ĥ1 Hamiltonian
is the absence of multilevel effects.

In this way, we can only approximate the evolution starting from the ground
state (as the ground state undergoes only one avoided crossing). A unique two-
level correspondence can be obtained by keeping the same approaching rate α,
as defined in (2.10), and the same minimum distance ∆E. The corresponding
two-level Hamiltonian reads

Ĥ
(2L)
1 (λ) =

(
−j 1

2∆E(j)
1
2∆E(j) α(j) · (λc − λ)− j

)
, (4.2)

where we denoted explicit dependence on the quasispin j. The minimum energy
gap ∆E(j) is plotted in fig. 3.3 as a function of N = 2j. The value of the
approaching rate can be determined from fig. 3.1 as α(j) .= 1.9215j/λc. The
resulting spectrum of Ĥ(2L)

1 is plotted in fig. 4.5.

4.2.3 Landau-Zener region
To verify the applicability of the LZ formula (4.1) we first map the variables to
linearize the dependence, in particular

log10

(
− logPexc

)
= log10

π

2 + log10
∆E2

α
− log10 λ̇ . (4.3)

We kept together ∆E and α which both depend on the system size N . Since it is
possible to adjust independently only λ̇ and N , it doesn’t make sense to separate
also ∆E from α in the general case. Having reasoned that the LZ formula can
hold only for processes with a certain range of the driving rate λ̇, we begin with
the dependence of the excitation probability on the driving rate.

We expect the validity of the LZ formula for Hamiltonian Ĥ1 due to the na-
ture of its QPT. Truly, fig. 4.6 clearly consists of three regions – the LZ region
(having the correct slope), the diabatic region (with a stabilized value of Pexc)
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compared with the spectrum of the original Hamiltonian Ĥ1(λ).

and a transition between these two. A comparison with the corresponding two-
level Hamiltonian (4.2) shows a total agreement in the LZ region. However, the
stabilized value for the full Hamiltonian is lower than that for the two-level cor-
respondence. We can conclude that this decrease in the ground-state population
is due to the presence of multiple levels. Its consequence is an apparition of the
transition region which is not present in the two-level case.

Notice that there are visible oscillations just before the transition to the sta-
bilized diabatic value. This effect can be understood from fig. 4.3. For small
values of λ̇, the ground-state population doesn’t fluctuate anymore at λ = 2λc
(the LZ region). For intermediary values of λ̇, the ground-state population is
still oscillating and the exact value is therefore shifted from the LZ value. The
particular value of this shift strongly depends on the exact value of λ̇. Finally,
for λ̇ high enough, the curves in fig. 4.3 don’t differ anymore at 2λc (the diabatic
region).

Figure 4.7 represents a similar figure for Hamiltonian Ĥ2. Since the avoided
crossings are now continuous, there is no straightforward two-level LZ-like Hamil-
tonian. However, the plot manifests the same three regimes as for the Hamiltonian
with a first-order QPT, i.e. the LZ regime, a transition and a diabatic regime.

As the minimum energy distance between the ground state and the first ex-
cited state (of the same parity) decreases only algebraically, the excitation proba-
bility is significantly lower than for Ĥ1. Therefore, the LZ region is approximately
corresponding to Pexc ∈ [0, 1/e], meaning that the ground-state population has
to be higher than approximately 63%. Since obtaining such a high population
is the goal of adiabatic quantum computing, we can say that in the interesting
region of parameters, the LZ formula holds (so far) and we will hopefully be able
to use it for making predictions for various values of λ̇.
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4.2.4 Scaling with system size
For further study of the ground-state population scaling with the system size,
we will restrict the possible values of λ̇ on the LZ region corresponding to each
particular system size. Since we already established the validity of the LZ formula
for λ̇, we will devise a new variable suitable for studying scaling with N , that
being

log10 y ≡ log10

(
− λ̇ logPexc

)
= log10

π

2 + log10
∆E2

α
. (4.4)

Based on this form of the LZ formula, we will also devise particular functions
of N with which we will fit the data. We already know that ∆E scales exponen-
tially or algebraically with N for Ĥ1 or Ĥ2, respectively (see fig. 3.3). Remember
also that α1(N) .= 1.9215N/2λc for Hamiltonian Ĥ1. On the other hand for Ĥ2,
there is no such thing as α2 because the interacting-phase ground-state energy is
not linear in λ. We can however make an assumption that an effective value of α2
exists and instead of being linear in N , we will let it be a general power N ξ. This
will, hopefully, reflect the continuous nature of the QPT. Putting this information
together, the final form of the LZ-based fitting functions is

log10 y1(N) = a1N − log10 N + c1 , (4.5)
log10 y2(N) = b2 log10 N + c2 . (4.6)

Figures 4.8 and 4.9 successfully verified the validity of the LZ formula for
both Hamiltonians. All data points for different values of λ̇ truly lie on a single
curve which is correctly fitted by the LZ-based fitting functions. We can go
further in this examination for Hamiltonian Ĥ1 and compare the fitted values
a1 = −0.938(2), c1 = −0.72(3) with those computed from ∆E1(N) fit. These
values roughly correspond (the leading term is a′

1 = −1.005(1)) but don’t give
a satisfying match. The discrepancy comes from the deviation of the true ∆E1(N)
from the fitted exponential function.

To overcome this difficulty, we used the true values of ∆E and fitted only the
constant factor π/2 in the LZ formula (4.4). This time we obtained k ·π/2 where
k = 1.05(3), i.e. a very good correspondence with the LZ formula. Figure 4.8
contains a comparison with the exact LZ formula (for which k = 1).

The datapoints in fig. 4.9 have a slightly bigger fluctuation around the LZ-
based fit, nevertheless, all of them clearly lie on a single curve. Consequently,
a variant of the LZ formula holds in this case, too. We can infer how the effective
value of α2 scales with the system size from the fitted coefficients b2 = −1.19(1),
c2 = 0.97(2) and from ∆E2(N) fit, in particular α2(N) = ᾱ2N

ξ where ξ = 0.47(1)
and ᾱ2 = 0.52(4).
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4.2.5 Adiabatic driving rate
Let us define F0 = const a value we wish to obtain at the end of the external
driving procedure. Of interest is a high enough value F0 in order to be able
to identify correctly the solution of an adiabatic quantum computation. The
question is how slowly we need to drive our system (depending on the system
size) in order to obtain the desired ground-state population (e.g. F0 = 0.9, or
equivalently Pexc = 0.1). This information is a simple result of the previous
analysis. Within the LZ region, it holds for the adiabatic driving rate

λ̇A(N) = − π

2 logPexc

∆E2(N)
α(N) = y(N)

− logPexc
. (4.7)

Now, we immediately see, that λ̇A(N) for Ĥ1 decreases exponentially, whereas
for Ĥ2 only algebraically,

λ̇A
1 (N) ∼ 1

Ne2.160 N
, (4.8)

λ̇A
2 (N) ∼ 1

N1.19 . (4.9)

This makes a significant difference in practice. Acquiring an adiabatic passage
through a QPT of the second order (continuous QPTs in general) is possible
simply by driving the control parameter λ slowly enough. On the other hand, if
we wanted an adiabatic passage through a QPT of the first order, we would need
to employ an adibatic shortcut.

4.3 Non-zero temperature
Before we delve into adiabatic shortcuts, we will investigate the effect of non-zero
temperature on the final ground-state population. At non-zero temperature, the
ground-state dynamics gets mixed with the dynamics of excited states. A few
examples of the system evolution starting from the energetically lowest states are
depicted in figs. 4.10 and 4.11. We see that, sometimes, the evolution starting
from an excited state can possibly produce higher ground-state fidelity in the
end. This is caused by the fact that avoided crossings in excited states aren’t as
strong as the avoided crossing of the ground-state.

An interesting result for the ground-state fidelity holds in the limit of infinite
temperature. All initial eigenstates are populated equally, that is pn = 1/ dimH,
where H denotes the Hilbert space. Equation (2.29) can then be rewritten as
follows

F0(τ) = 1
dimH

∑
n

⏐⏐⏐ ⟨0(τ)
⏐⏐⏐Û ⏐⏐⏐n(0)

⟩ ⏐⏐⏐2 = 1
dimH , (4.10)

where we used the fact that vectors Û |n(0)⟩ form a basis of Hilbert space H. The
remaining sum then simply represents squared projections of vector ⟨0(τ)| onto
each basis vector which add up to 1. By the same logic, it holds Fk(t) = 1/ dimH
for a general k-th eigenstate fidelity.

This value of fidelity doesn’t depend on the driving rate (or time τ of the
transition) at all. Therefore, for a sufficiently high temperature, carrying out an
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Figure 4.10: Instantaneous eigenstate fidelity Fk(t) as a function of time during
an evolution induced directly by Hamiltonian Ĥ1(λ) for N = 4 driven at rate
log10 λ̇ = −4.5. The system starts in various instantaneous eigenstates.
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Figure 4.11: Instantaneous eigenstate fidelity Fk(t) as a function of time during
an evolution induced directly by Hamiltonian Ĥ2(λ) for N = 100 driven at rate
λ̇ = 0.2. The system starts in various instantaneous eigenstates.

adiabatic passage is a waste of time and resources as one would obtain the exact
same result even with an instantaneous change straight to the final Hamiltonian.
Also 1/ dimH is typically much higher than the original diabatic limit for zero
temperature, hence high temperature raises the diabatic limit in figs. 4.6 and 4.7.

4.3.1 Thermal state dynamics
Once again for numerical reasons, we will demonstrate the system dynamics
for Ĥ1 as a function of the system size and for Ĥ2 as a function of the driv-
ing rate. We have already seen, while investigating the LZ formula, that both
these parameters can have a similar impact on the system dynamics. The differ-
ence is only in the strength of this dependence and on the region of values that
we are able to probe numerically.

Given that the evolution of Ĥ2 conserves parity subspaces, we can restrict
ourselves on the case of a thermal reservoir which conserves the same parity. The
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situation remains qualitatively the same as the only difference is the initial redis-
tribution of population among individual eigenstates (due to a different energy
spacing and a different number of states in the given parity subspace).

Figures 4.12 and 4.13 depict the evolution of instantaneous eigenstate fidelity
in analogy with the ground-state case in figs. 4.10 and 4.11. The figures depict
a boost in F0 of two kinds. One corresponds to a low temperature and it visibly
makes use of wider energy gaps in the excited spectrum to directly maximize the
ground-state fidelity. The second type of boost corresponds to quite a high tem-
perature causing a nearly uniform redistribution of states resulting in eq. (4.10).
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Figure 4.12: Instantaneous eigenstate fidelity Fk(t) as a function of time during
an evolution induced directly by Hamiltonian Ĥ1(λ) for two different system sizes
driven at log10 λ̇ = −4.5. The system starts in a thermal state at λi = 0 and at
temperature T chosen to maximize F0.

The whole dependence of F0 on the temperature is shown in figs. 4.14 and 4.15.
There are three possible ways in which the temperature can affect the ground-
state fidelity. If the zero-temperature F0 is greater than the high-temperature
limit (4.10), then there is a step-wise decrease of the groud-state fidelity starting
from a certain critical value of temperature. If the zero-temperature fidelity is
comparable to the high-temperature limit, then a clear maximum of F0 arises
at an optimum value of temperature. At last, if the zero-temperature value is
considerably lower than the high-temperature one, there is a step-wise growth at
a certain critical temperature. This analysis applies to both Hamiltonians.
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Figure 4.13: Instantaneous eigenstate fidelity Fk(t) as a function of time during
an evolution induced directly by Hamiltonian Ĥ2(λ) for N = 100 driven at two
different rates. The system starts in a thermal state at λi = 0 and at tempera-
ture T chosen to maximize F0. We don’t depict negative-parity states.
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Figure 4.14: The dependence of ground-state fidelity F0 on temperature T for
Hamiltonian Ĥ1 and system size N = 4.
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4.3.2 Optimum temperature
It is possible to choose an optimum value of temperature to maximize the result-
ing ground-state fidelity. Figure 4.16 depicts the dependence of such an optimal
fidelity on the driving rate for Hamiltonian Ĥ2. Notice that black and partly also
violet points correspond practically to the ground-state evolution (zero tempera-
ture). Therefore the oscillations in F0 are not an effect of temperature optimiza-
tion. On the contrary, they are the same oscillations as in fig. 4.7 (be careful
about comparing the logarithmic and linear scale of λ̇). The upper half of the
figure also roughly corresponds to the LZ region (F0 ≳ 0.63).

A similar graph of the optimal fidelity for Ĥ1 is shown in fig. 4.17. Due to the
exponential scaling with N , a common case scenario for Ĥ1 is that the system is
found close to the limit given by (4.10) over a wide range of driving rates. The
only exception are very slowly driven very small systems (such as N = 4 and
log10 λ̇ ∼ −5.5).

In conclusion, the effect of temperature can actually boost the final ground-
state fidelity. In practice, this case is of little significance to adiabatic quantum
computing as one aims to obtain as high fidelity as possible. Therefore, adia-
batic quantum computers will have to be cooled down below a certain critical
temperature to be able to obtain for instance F0 ∼ 0.9.

In theory, if combined with classical computers, high-temperature adiabatic
quantum computing could be used to find solutions to NP problems [55, 56],
provided that the dimension of the Hilbert space is kept reasonably low. The
principle is that a repeated execution of adiabatic quantum computing will result
in a set of possible solutions (as we don’t know which measurement corresponds
to the ground-state solution). Therefore, if we are able to “easily” check if a given
candidate solution is a true solution (the definition of an NP problem), we could
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simply pick the correct solution from all the possible candidates whose number
is at most dimH. The bottleneck of this approach is that dimH itself grows
exponentially with the number of degrees of freedom of the adiabatic quantum
computer. Only, it is quite safe to assume that problems of practical interest will
require a considerably large adiabatic quantum computers (with a high number
of degrees of freedom).
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5. Counter-diabatic driving

5.1 System dynamics
Let us now turn to a guaranteed way to obtain 100% ground-state fidelity of
the final Hamiltonian. This is achieved with the use of counter-diabatic driving
(adiabatic shortcuts). Figure 5.1 gives an example of such an evolution. The case
of Ĥ2 corresponds exactly to the last subfigure in fig. 4.2. The counter-diabatic
evolution of Ĥ1 can be compared with the middle subfigure in fig. 4.1 which was
driven even more slowly and yet resulted in almost no population of the ground
state.

Ĥ1
N = 10
log10 λ̇ = −4.5

0 0.04 0.08
λ

−3

−2

−1

0
E
j

Ĥ2
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Figure 5.1: Instantaneous eigenstate fidelity Fk(t) as a function of time during
a counter-diabatic driving corresponding to Hamiltonians Ĥ1(λ) and Ĥ2(λ) for
one chosen system size N and one driving rate λ̇. The system starts in the ground
state at λi = 0.

5.2 Shortcut cost
We demonstrated that adiabatic shortcuts work well even in the presence of
QPTs and ESQPTs. But there is another very important aspect, and that is
how difficult or how costly it is to employ such a shortcut. Figure 5.2 shows the
evolution of the transition matrix element during the external driving procedure.
A very sharp and very high peak is found at the QPT of the first order. For
the continuous QPT a distinct peak arises as well, albeit not nearly as sharp as
for Ĥ1. Comparing fig. 5.2 with fig. 3.3, one sees that the maximum value of M
is a bit greater than 1/∆E in agreement with (2.15).

The integrated cost C of adiabatic shortcuts is proportional to the first power
of the driving rate λ̇ as a general theoretical result. It remains only to study the
scaling of the adiabatic shortcut cost with the system size N for a fixed value of λ̇.
This dependence, as shown in fig. 5.3, is once again found to scale exponentially
with the system size for Ĥ1 and algebraically for Ĥ2.
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Ĥ1
N = 20

lo
g 1

0
M

λ

0

2

4

6

8

0 0.5 1 1.5 2

Ĥ2
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Ĥ1

lo
g 1

0
C

N

e1.145 N 1.6

2

2.4

2.8

3.2

1.6 2 2.4 2.8

Ĥ2
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Figure 5.3: Scaling of the adiabatic shortcut cost C with system size N for Hamil-
tonians Ĥ1 and Ĥ2 driven at rate λ̇ = 1. The dependence is fitted by an expo-
nential and a power function, respectively.

To summarize, it is possible to avoid the usage of adiabatic shortcuts for Ĥ2
simply by driving Ĥ2(λ) slowly enough. However, if we wanted to arrive at the
correct result faster, it would be possible to employ an adiabatic shortcut as its
cost grows practically only linearly with the system size. On the other hand,
the manipulation of Ĥ1 is way more demanding. To obtain a high ground-state
fidelity, one has to employ an adiabatic shortcut. On top of that, their cost grows
exponentially with system size. Therefore such adiabatic shortcuts might even
turn out too expensive to perform them at all.
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Conclusion
We verified numerically the validity of the adiabatic approximation in the pres-
ence of QPTs and ESQPTs in the LMG model. The time period τ of the transi-
tion between the initial and final value of the control parameter λ which is needed
for a practically adiabatic passage depends on the minimum gap in the energy
spectrum throughout the external driving procedure. This minimum gap ∆E
decreases exponentially in system size N for a Hamiltonian with a discontinuous
QPT and algebraically for a Hamiltonian with a continuous QPT. In agreement
with this dependence, also the time period τ needed for adiabaticity grows ex-
ponentially in N for Hamiltonian Ĥ1 and algebraically for Ĥ2. This allows for
obtaining high ground-state population for systems without any QPT or with a
continuous QPT. On the other hand, to obtain the same results for systems with
a discontinuous QPT, one has to employ an adiabatic shortcut.

We studied in detail the dependence of the final ground-state population P0
on the driving rate λ̇ (proportional to τ−1). There are three major regimes based
on the dependence of P0 on the driving rate. For a very slow driving, the full
system obeys the LZ formula (derived for an avoided crossing corresponding to
a discontinuous QPT in two-level systems). In contrast, for a fast driving, the
ground-state population doesn’t depend on λ̇ as it already reached the diabatic
limit. There is a transition between these two regimes for intermediary values
of λ̇. The transition manifests oscillatory behaviour and its presence is an effect
of multiple energy levels. These results hold for both Hamiltonians Ĥ1 and Ĥ2.

Since we are interested in high ground-state populations, we can restrict our-
selves only on the region compliant with the LZ formula. We investigated the
scaling of P0 with the system size N in this region. It is straightforward to com-
pare results for Ĥ1 with the LZ formula as both describe a discontinuous QPT.
The ground-state population in Ĥ1 satisfies rather exactly the prediction of the
LZ formula. Such an analogy for Hamiltonian Ĥ2 is more difficult. We, nonethe-
less, succeeded in identifying the formula obeyed by P0. This allowed us to define
an effective form of the LZ formula also for Hamiltonian Ĥ2.

Achieving a true zero temperature is not possible in practice, hence we are
interested also in the effect of non-zero temperature on the performance of adia-
batic quantum computers. We made a first step in this direction by considering
the initial system in equilibrium with a thermal reservoir at temperature T . The
system is then separated from the reservoir and it undergoes the external driving
starting from the statistical mixture of states induced by the thermal reservoir.
One effect of non-zero temperature is that the diabatic limit can be significantly
increased by optimizing the temperature of the reservoir. The dependence of the
ground-state population on the initial temperature can be either a step-like func-
tion (both decreasing or increasing) or it can exhibit a definite peak at a certain
temperature. The case important for adiabatic quantum computing (i.e. a high
ground-state population) corresponds, however, to a decreasing step-like func-
tion. Therefore, there is a certain critical temperature below which one needs
to cool the system down. In summary, only a little practical advantage can be
gained from a non-zero temperature.

We demonstrated numerically a successful counter-diabatic driving procedure
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for both Hamiltonians Ĥ1 and Ĥ2. Having defined a suitable measure for the
difficulty of implementing an adiabatic shortcut, we found that the adiabatic
shortcut cost C grows exponentially with system size N for Hamiltonian Ĥ1 and
only algebraically for Ĥ2. This allows for the use of counter-diabatic driving once
again only for systems without any QPT or with a continuous QPT. Counter-
diabatic driving through a discontinuous QPT would probably be too “expensive”
to execute.
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A. No-crossing theorem
For the reader’s convenience we present the same technique of formulating and
proving the no-crossing theorem which we already presented in [52] which itself
was a more detailed analysis of a proof published in [57].

Consider Hamiltonian Ĥ(λ) which depends on a single real parameter λ and
denote p(λ,E) its characteristic polynomial,

p(λ,E) = det
(
Ĥ(λ)− E

)
. (A.1)

Each eigenenergy Ek(λ) of Hamiltonian Ĥ(λ) by definition satisfies

p(λ,Ek(λ)) = 0 . (A.2)

Now suppose a real crossing between Ei(λ) and Ej(λ) at λ = Λ and denote ε
the energy of the crossing, i.e. ε = Ei(Λ) = Ej(Λ). We examine crossings of
energy levels and so we suppose Ei(λ) ̸= Ej(λ) in a deleted neighbourhood of Λ.

Because ε represents a real crossing, it has to be a double root of p(Λ, E).
Mathematically written,

p(Λ, ε) = 0 , (A.3)
∂p

∂E
(Λ, ε) = 0 . (A.4)

Equation (A.2) has to hold for each λ along any energy level Ek(λ), that is,
in particular for k ∈ {i, j} and for λ = Λ + δλ close to Λ,

0 = p
(
λ,Ek(λ)

)
≈

≈ p(Λ, ε)  
0

+ d
dλ

[
p
(
λ,Ek(λ)

)]⏐⏐⏐⏐⏐
Λ,ε

δλ =

=

⎛⎜⎜⎝∂p∂λ(Λ, ε) + ∂p

∂E
(Λ, ε)  
0

dEk

dλ (Λ)

⎞⎟⎟⎠ δλ =

= ∂p

∂λ
(Λ, ε)δλ .

(A.5)

Thus, we obtained another independent condition for a real energy crossing,

∂p

∂λ
(Λ, ε) = 0 . (A.6)

In order for a real energy crossing to occur, the roots of characteristic polyno-
mial p(λ,E) would have to satisfy two independent conditions (A.4), (A.6) at
the same time. Put another way, unless there is a very special symmetry in the
Hamiltonian, one needs at least two control parameters to possibly obtain real
energy-level crossings in the Hamiltonian spectrum.
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B. Geometric phase

B.1 Imaginary exponent
Quantum evolution of a closed system is unitary and hence it conserves the nor-
malization condition on the system state |ψ(t)⟩ at any time t

⟨ψ(t)|ψ(t)⟩ = 1 . (B.1)

Simply by taking the time derivative of this formula we obtain

0 = d
dt ⟨ψ(t)|ψ(t)⟩ =

⟨
ψ(t)

⏐⏐⏐⏐⏐⏐
←−
∂

∂t

⏐⏐⏐⏐⏐⏐ψ(t)
⟩

+
⟨
ψ(t)

⏐⏐⏐⏐⏐⏐
−→
∂

∂t

⏐⏐⏐⏐⏐⏐ψ(t)
⟩

=

=
⟨
ψ(t)

⏐⏐⏐⏐⏐⏐
−→
∂

∂t

⏐⏐⏐⏐⏐⏐ψ(t)
⟩∗

+
⟨
ψ(t)

⏐⏐⏐⏐⏐⏐
−→
∂

∂t

⏐⏐⏐⏐⏐⏐ψ(t)
⟩

= 2 Re
⟨
ψ(t)

⏐⏐⏐⏐⏐ ∂∂t
⏐⏐⏐⏐⏐ψ(t)

⟩
.

(B.2)

It is therefore a general result that the quantity
⟨
ψ(t)

⏐⏐⏐ ∂
∂t

⏐⏐⏐ψ(t)
⟩

is purely imaginary.
The adiabatic evolution (2.5) reads

|ψn(t)⟩ = exp
⎛⎝−i t∫

0

dt′En(t′)
⎞⎠ exp

⎛⎝− t∫
0

dt′
⟨
n(t′)

⏐⏐⏐⏐⏐ ∂∂t′
⏐⏐⏐⏐⏐n(t′)

⟩⎞⎠ |n(t)⟩ . (B.3)

We see that the second term represents an additional phase factor called the
geometric phase. To underline this fact, let us write

|ψn(t)⟩ = exp
⎛⎝−i t∫

0

dt′En(t′)
⎞⎠ exp

(
iνn(t)

)
|n(t)⟩ , (B.4)

where we defined the geometric phase as

νn(t) = i

t∫
0

dt′
⟨
n(t′)

⏐⏐⏐⏐⏐ ∂∂t′
⏐⏐⏐⏐⏐n(t′)

⟩
. (B.5)

B.2 Time independence
Moreover, it is possible to show that the geometric phase does not depend on the
evolution speed but only on the path taken in the configuration space (the space
of parameters of the Hamiltonian).

Suppose a Hamiltonian Ĥ(R) with N parameters R1, . . . RN and denote the
instantaneous eigenstates |n(R)⟩ corresponding to the exact values of parameters
given by vector R. External driving allows us to change the value of parame-
ters R in time which introduces time-dependence also into the system Hamilto-
nian Ĥ(R(t)). Denote Γ the curve in the configuration space along which we
drive the parameter vector R(t).
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Let us reexpress the geometric phase νn in the language of externally driven
Hamiltonian parameters by using the chain rule for ∂

∂t′ and subsequent substitu-
tion rule,

νn = i

t∫
0

⟨
n(R(t′))

⏐⏐⏐⏐⏐ ∂∂t′
⏐⏐⏐⏐⏐n(R(t′))

⟩
dt′ =

= i

t∫
0

∑
i

⟨
n(R(t′))

⏐⏐⏐⏐⏐ ∂∂Ri

⏐⏐⏐⏐⏐n(R(t′))
⟩

dRi

dt′ dt′ =

=
∫

Γ
i ⟨n(R)|∇R|n(R)⟩ · dR = νn(Γ) .

(B.6)

The final formula clearly manifests time-independence as it is a path integral
in the configuration space (thus depends only on Γ). This property is the rea-
son behind the name geometric phase. The last integrand is called the Berry
connection,

An(R) = i ⟨n(R)|∇R|n(R)⟩ . (B.7)
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C. More on Fidelity
The fidelity is a possible measure of closeness of two mixed quantum states [49].
It is a suitable quantity for quantum computing during which initially pure quan-
tum states are turned into mixed ones. The reason for this phenomenon is the
unavoidable presence of decoherence stemming from a trade-off between isolation
from the environment and interaction strength among individual qubits. The
properties of fidelity are therefore dealt with in quantum computing textbooks,
such as [4].

The fidelity of two quantum states described by density matrices σ̂ and ρ̂
reads

F(σ̂, ρ̂) =
[
Tr
√√

σ̂ ρ̂
√
σ̂
]2
≡ Tr2

√√
σ̂ ρ̂
√
σ̂ , (C.1)

where we used symbol Tr2 to simplify the notation. Note that the fidelity is some-
times in literature defined without the outer second power. Since density matrices
are positive semi-definite, the square roots in (C.1) are defined as positive.

Thanks to the cyclic property of the trace, the fidelity is symmetric

F(σ̂, ρ̂) = Tr2
[

4
√
σ̂
√
ρ̂

4
√
σ̂
]

= Tr2
[√

σ̂
√
ρ̂
]

= Tr2
[√

ρ̂
√
σ̂
]

= F(ρ̂, σ̂) . (C.2)

As a consequence of Uhlmann’s theorem [49, 4] it holds F(σ̂, ρ̂) ∈ [0, 1]. By
making use of the fact that the trace of a general density matrix is equal to 1,
we obtain that the upper limit for fidelity is reached if the two states are equal,
F(ρ̂, ρ̂) = 1.

Let us have a time-dependent Hamiltonian whose instantaneous eigenstates
at time t are denoted |k(t)⟩ and let Û(t) be the evolution operator induced by this
Hamiltonian from time 0 to time t. Suppose now, that σ̂ corresponds to a pure
quantum state |k(t)⟩ and ρ̂ is a mixed quantum state whose density matrix is
diagonal in basis Û(t) |k(0)⟩,

σ̂ = |k(t)⟩⟨k(t)| , (C.3)
ρ̂ =

∑
n

pn Û(t) |n(0)⟩⟨n(0)| Û †(t) . (C.4)

The fidelity of these two states read

Fk(t) ≡ F(σ̂, ρ̂) = Tr2
√
σ̂ρ̂σ̂ = Tr2

√
|k(t)⟩ ⟨k(t)|ρ̂|k(t)⟩ ⟨k(t)| =

= Tr2
[
|k(t)⟩⟨k(t)|

√
⟨k(t)|ρ̂|k(t)⟩

]
= ⟨k(t)|ρ̂|k(t)⟩ ,

(C.5)

where we twice made use of the fact that a square root of a diagonal matrix
corresponds to a square root of the individual diagonal elements. The last result
holds for a general density matrix ρ̂ and a pure state |k(t)⟩. Let us now substitute
for our particular case of ρ̂,

Fk(t) =
∑

n

pn

⏐⏐⏐ ⟨k(t)
⏐⏐⏐Û(t)

⏐⏐⏐n(0)
⟩ ⏐⏐⏐2 . (C.6)

The first case of interest is pn = δn0, corresponding to the evolution of the
ground state. The second case of interest is the evolution of the thermal state,
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for which
pn = 1

Z(T ) exp
(
−En(0)

kT

)
, (C.7)

where T is the temperature, Z(T ) the corresponding partition function, k the
Boltzmann constant and En(0) is the instantaneous energy corresponding to
state |n(0)⟩.
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