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Abstract: This work is concerned with the theoretical analysis and practical
applications of the discontinuous Galerkin finite element method. We derive a
discontinuous Galerkin formulation for a model scalar convection-diffusion equa-
tion with nonlinear convection and diffusion. The resulting symmetric, nonsym-
metric and incomplete variants are theoretically analyzed and error estimates
in the L2(H1)- and L∞(L2)-norms are derived. Since these error estimates are
suboptimal in the latter norm, we use the Aubin-Nitsche technique to obtain
L∞(L2)-optimal estimates. The proof admits nonconforming meshes, however
this result is limited to the symmetric variant and linear diffusion. Numerical
experiments are performed to verify these theoretical results by the experimental
order of convergence. Further, we apply the discontinuous Galerkin method to the
compressible Euler equations using a semi-implicit discretization with respect to
time. We discuss the choice of boundary conditions and shock capturing. Several
numerical examples show the resulting scheme is capable of computing transonic,
supersonic and low-Mach flows. Finally, we treat the compressible Navier-Stokes
equations, incorporating viscous terms into the semi-implicit numerical scheme
for the Euler equations. The extension of the discontinuous Galerkin formulation
of second order terms to systems of equations is discussed and a new approach
is derived. Several numerical examples for the Navier-Stokes equations are pre-
sented.
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Introduction

The discontinuous Galerkin finite element method (DGFEM) is a promising nu-
merical method for the solution of conservation laws and singularly perturbed
problems. Such problems can be generally characterized by the presence of
boundary layers, where the solution contains steep gradients or discontinuities.
For nonlinear conservation laws with small dissipation, so-called shock waves (also
called internal boundary layers) may appear. Such phenomena present a chal-
lenge for numerical methods, especially when higher order spatial discretizations
are considered. The finite volume method (FVM) is often used in such cases.
This method uses piecewise constant approximations and its generalization to
higher orders is not straightforward. Another method often used is the finite
element method (FEM), which usually uses conforming piecewise polynomial ap-
proximations. However when such a discretization is applied to conservation laws,
undesired oscillations known as the Gibbs phenomenon arise near discontinuities
and corrupt the solution. From this point of view the discontinuous Galerkin fi-
nite element method (DGFEM) has advantages of both the FEM and FVM. We
obtain a higher order method without any requirements on inter-element continu-
ity. This is compensated as in the FVM, where inter-element behavior is treated
using an appropriate numerical flux. The DGFEM was applied to nonlinear con-
servation laws in 1989 by Cockburn and Shu [8]. Later, Bassi and Rebay used
it to solve compressible flow in [3] and [4]. During several recent years DGFE
schemes have been extensively developed and become more and more popular.
Some aspects of the DGFEM and applications to gas dynamics are discussed in
[1], [5], [23]. For a survey, see, for example [9] and [10].

In this thesis, we shall be concerned with the theoretical analysis and practical
applications of the discontinuous Galerkin. The structure of the work is as follows:
in Chapter 1, we shall derive a discontinuous Galerkin formulation of a model
scalar convection-diffusion problem with nonlinear convection and diffusion. The
DGFEM uses a piecewise polynomial finite element space without any assumption
on inter-element continuity, which is replaced by the use of a suitable numerical
flux as in the finite volume method. Three different discretizations of the second
order diffusion term are considered, the so-called symmetric, nonsymmetric and
incomplete interior penalty formulations. Numerical experiments are presented,
for which the experimental order of convergence is calculated and compared with

9
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theoretically obtained error estimates proved in Chapter 2.
The second chapter consists of two parts. After some necessary results and

assumptions are stated, error estimates are derived for the discontinuous Galerkin
discretization of the scalar nonlinear convection- diffusion equation as defined in
Chapter 1. Under sufficient regularity assumptions on the exact solution, we
prove O(hp) error estimates in the L2(H1)- and L∞(L2)-norms when the dis-
cretization uses piecewise polynomials of order p. In the second part of this
chapter, we refine the error estimate with respect to the L∞(L2)-norm and de-
rive an O(hp+1) bound, which is optimal. Due to the use of the Aubin-Nitsche
technique, this result is proved only for the symmetric variant and linear diffu-
sion. However, the technique presented here admits nonconforming meshes with
hanging nodes, which improves the result of [17].

In Chapter 3, we apply the DGFEM to the numerical solution of inviscid
compressible flows governed by the Euler equations. We discuss the choice of an
appropriate numerical flux and boundary conditions, which must be transparent
for acoustic phenomena. The semi-implicit linearization with respect to time
defined originally in [16] is applied and combined with appropriate shock captur-
ing. The resulting numerical scheme requires the solution of one linear system on
each time level, which is solved either using preconditioned GMRES or a sparse
direct solver. Several numerical examples for inviscid transonic, supersonic and
low-Mach flows are presented and whenever possible, compared with the known
exact solution of incompressible flow.

Finally, in the last chapter, we apply the discontinuous Galerkin method to the
full compressible Navier-Stokes equations describing viscous compressible flows.
Here the main problem lies in the discretization of viscous terms, which are non-
linear with respect to the unknown state vector. The extension of the symmetric
and nonsymmetric variants of the DGFEM from the scalar case to the case of
nonlinear systems is not straightforward, We discuss two possibilities derived in
[21], [14] and present another possibility based on a unified methodology for the
analysis of discontinuous Galerkin discretizations of the Poisson equation pre-
sented in [2]. The resulting space semidiscretization is semi-implicitly linearized
to yield a linear scheme with good stability properties. Again as in Chapter 3,
we apply the DGFEM to several test cases.



Chapter 1

Discontinuous Galerkin method
for a scalar model equation

In this chapter we shall be concerned with the discontinuous Galerkin finite
element method applied to a scalar nonstationary nonlinear convection-diffusion
equation, equipped with mixed Dirichlet-Neumann boundary conditions and an
initial condition. We describe the symmetric (SIPG), nonsymmetric (NIPG)
and incomplete interior penalty (IIPG) discontinuous Galerkin finite element
discretization of this problem. Further, we test the accuracy of the method and
verify orders of convergence theoretically obtained in Chapter 2.

1.1 Continuous problem

Let Ω ⊂ R2 be a bounded domain with a Lipschitz-continuous boundary ∂Ω =
ΓD∪ΓN , ΓD∩ΓN = ∅ and T > 0. We shall deal with the following initial-boundary
value problem: find u : QT = Ω× (0, T ) → R such that

∂u

∂t
+

2∑
s=1

∂fs(u)

∂xs

= div
(
β(u)∇u

)
+ g in QT, (1.1)

u|ΓD×(0,T ) = uD, (1.2)

β(u)
∂u

∂t

∣∣
ΓN×(0,T )

= gN , (1.3)

u(x, 0) = u0(x), x ∈ Ω. (1.4)

The function β(u) yields a nonlinear diffusion term. By setting β(u) = ε, for
a constant ε ∈ IR, we obtain the more standard linear case of equation (1.1).
Then the right-hand side diffusion term is div

(
β(u)∇u

)
= ε∆u. Usually, we are

concerned with the case 0 < ε ¿ 1, i.e. dominant convection.
Conditions (1.2) and (1.3) are the Dirichlet and Neumann boundary condi-

tions, respectively, g : QT → R, uD : ΓD×(0, T ), uN : ΓN×(0, T ) and u0 : Ω → R

11
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are given functions, f1, f2 ∈ C1(R) are given inviscid fluxes. Further, we assume
that the function uD is a trace of some u∗ ∈ C([0, T ], H1(Ω)) ∩ L∞(QT ). We say
that u is a classical solution of the scalar convection-diffusion problem, if it is
sufficiently regular and satisfies (1.1) - (1.4) pointwise.

1.2 Discretization

As we are confined to two dimensional problems, we assume Ω ⊂ R2 is a bounded
polygonal domain (the case when Ω is not polygonal and has to be approximated
by a different domain Ωh requires special treatment and will be dealt with in
Section 3.5).

Let Th be a partition of the closure Ω into a finite number of closed convex
polygons, whose interiors are mutually disjoint. In the implementation of all
algorithms in this work, we shall use triangular meshes with the usual conforming
properties known from the finite element method. Now we shall introduce some
notation convenient in DGFE formulations.

For any K ∈ Th, we set |K| = meas2(K) (two dimensional Lebesgue mea-
sure), hK = diam(K) –diameter of K, h = maxK∈Th

hK . We define an index
set I ⊂ Z+ = {0, 1, 2, . . .} such that all elements of Th are numbered by indices
from I, i.e. Th = {Ki}i∈I . If two elements Ki, Kj ∈ Th share a common face,
which by definition must be a linear segment, we call them neighbours and set
Γij = ∂Ki ∩ ∂Kj and d(Γij) = meas1Γij = length of Γij . For i ∈ I we de-
fine s(i) = {j ∈ I; Kj is a neighbour of Ki}. The boundary ∂Ω is formed by
a finite number of faces of elements Ki adjacent to ∂Ω. We denote all these
boundary faces by Sj, where j ∈ Ib ⊂ Z− = {−1,−2, . . .} and set γ(i) = {j ∈
Ib; Sj is a face of Ki}, Γij = Sj for Ki ∈ Th, such that Sj ⊂ ∂Ki, j ∈ Ib. If Ki is
not adjacent to ∂Ω, we set γ(i) = ∅. Furthermore we define S(i) = s(i) ∪ γ(i).

We can see that

s(i) ∩ γ(i) = ∅, ∂Ki =
⋃

j∈S(i)

Γij, ∂Ki ∩ ∂Ω =
⋃

j∈γ(i)

Γij. (1.5)

If we are concerned with different types of boundary conditions (in our case
Neumann and Dirichlet), for i ∈ I we denote by γD(i) and γN(i) the subsets of γ(i)
such that

⋃
j∈γD(i) Γij and

⋃
j∈γN (i) Γij form the parts ΓD and ΓN , respectively. It

is obvious that we suppose γ(i) = γD(i) ∪ γN(i), γD(i) ∩ γN(i) = ∅, for all i ∈ I.
By nij we denote the unit outer normal to ∂Ki on the face Γij. In our case, nij

is constant along Γij.
Over Th we define the broken Sobolev space

Hk(Ω, Th) = {v; v|K ∈ Hk(K) ∀K ∈ Th} (1.6)
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and for v ∈ H1(Ω, Th) we set

v|Γij
= trace of v|Ki

on Γij,

〈v〉Γij
=

1

2
(v|Γij

+ v|Γji
), average of traces of v on Γij,

[v]Γij
= v|Γij

− v|Γji
, jump of traces of v on Γij,

(1.7)

and also

|v|Hk(Ω,Th) =

( ∑
i∈I

|v|2Hk(Ki)

)1/2

. (1.8)

Finally, we define the space of discontinuous piecewise polynomial functions

Sh = Sp,−1(Ω, Th) = {v; v|K ∈ Pp(K) ∀K ∈ Th}, (1.9)

where Pp(K) is the space of all polynomials on K of degree ≤ p.

1.3 DGFE formulation

The discrete problem is based on concepts from the finite element and finite
volume methods. Let u be a classical solution of our problem. We multiply (1.1)
by an arbitrary ϕ ∈ H2(Ω, Th), integrate over element Ki ∈ Th, apply Green’s
theorem and obtain

∫

Ki

∂u

∂t
ϕ dx +

∫

∂Ki

2∑
s=1

fs(u)nsϕdS −
∫

Ki

2∑
s=1

fs(u)
∂ϕ

∂xs

dx

+

∫

Ki

β(u)∇u · ∇ϕdx−
∫

∂Ki

β(u)(∇u · n)ϕdS =

∫

Ki

g(t)ϕdx,

(1.10)

where n = (n1, n2) denotes the unit outer normal to ∂Ki. Since ∇u = 〈∇u〉 on
any interior edge, it follows that

∑
i∈I

∑

j∈s(i)

∫

Γij

∇u · nijϕds =
∑
i∈I

∑

j∈s(i)
j<i

∫

Γij

〈∇u〉 · nij[ϕ] ds. (1.11)
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Now we sum (1.10) over all i ∈ I and after some manipulation we get

∫

Ω

∂u

∂t
ϕ dx +

∑
i∈I

∑

j∈S(i)

∫

Γij

2∑
s=1

fs(u)nsϕ|Γij
dS

−
∑
i∈I

∫

Ki

2∑
s=1

fs(u)
∂ϕ

∂xs

dx +
∑
i∈I

∫

Ki

β(u)∇u · ∇ϕdx

−
∑
i∈I

∑

j∈s(i)
j<i

∫

Γij

〈β(u)∇u〉 · nij[ϕ] dS −
∑
i∈I

∑

j∈γD(i)

∫

Γij

β(u)∇u · nijϕdS

=

∫

Ω

g(t)ϕdx +
∑
i∈I

∑

j∈γN (i)

∫

Γij

β(u)∇u · nijϕdS.

(1.12)

In the second term on the right-hand side, we can use the Neumann boundary
condition and replace this term by

∑
i∈I

∑

j∈γN (i)

∫

Γij

gNϕdS. (1.13)

Due to the regularity of u, it is clear that [u(·, t)]Γij
= 0 and therefore,

∑
i∈I

∑

j∈s(i)
j<i

∫

Γij

〈β(u)∇ϕ〉 · nij[u] dS = 0. (1.14)

We can add this term to the left-hand side of (1.12). To incorporate the Dirichlet
boundary condition, we add the terms

∑
i∈I

∑

j∈γD(i)

∫

Γij

β(u)∇ϕ · niju dS and
∑
i∈I

∑

j∈γD(i)

∫

Γij

β(u)∇ϕ · nijuD dS (1.15)

to the left- and right-hand side, respectively. This procedure leads to the non-
symmetric (NIPG) discontinuous Galerkin discretization of diffusion terms. The
symmetric (SIPG) variant is obtained by adding terms (1.15) with the ’−’ sign
and in the incomplete interior penalty (IIPG) variant, we do not add these ar-
tificial terms to ou formulation.

Since we want to omit the continuity of the solution between elements of the
triangulation, we shall compensate it by stabilizing the scheme with the aid of
the interior penalty terms

ν
∑
i∈I

∑

j∈s(i)
j<i

∫

Γij

σ[u][ϕ] dS (1.16)
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and the boundary penalty terms

ν
∑
i∈I

∑

j∈γD(i)

∫

Γij

σuϕ dS = ν
∑
i∈I

∑

j∈γD(i)

∫

Γij

σuDϕdS. (1.17)

The parameter σ is a weight defined by

σ|Γij
= CW /d(Γij). (1.18)

The constant CW > 0 must be chosen large enough to ensure coercivity of the
resulting diffusion form (a detailed analysis will be carried out in Section 2.2).
The constant ν must somehow reflect properties of β(u). For instance in Section
2.2, we assume β0 < β(u) < β1 for some constants β0, β1 > 0. In this case we set
ν = β0. In the linear case (β(u) = ε) we simply set ν = ε for a given constant
ε ≥ 0 .

The boundary convective terms will be treated similarly as in the finite volume
method, i.e. with the aid of a numerical flux H(u, v,n):

∫

Γij

2∑
s=1

fs(u)nsϕ|Γij
dS ≈

∫

Γij

H(u|Γij
, u|Γji

,nij)ϕ|Γij
dS. (1.19)

The choice of H and u|Γji
for boundary edges differs slightly from the definition

in [14]. Here we use

u|Γji
=

{
uD on ΓD,

u|Γij
otherwise.

(1.20)

We shall discuss this choice in Section 1.5.1.
Now we can finally write down the following forms, defined for u, ϕ ∈ H2(Ω, Th).

Nonsymmetric diffusion form:

aN
h (u, ϕ) =

∑
i∈I

∫

Ki

β(u)∇u · ∇ϕdx

−
∑
i∈I

∑

j∈s(i)
j<i

∫

Γij

〈β(u)∇u〉 · nij[ϕ] dS +
∑
i∈I

∑

j∈s(i)
j<i

∫

Γij

〈β(u)∇ϕ〉 · nij[u] dS

−
∑
i∈I

∑

j∈γD(i)

∫

Γij

β(u)∇u · nijϕdS +
∑
i∈I

∑

j∈γD(i)

∫

Γij

∇β(u)ϕ · niju dS,

(1.21)
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symmetric diffusion form:

aS
h(u, ϕ) =

∑
i∈I

∫

Ki

β(u)∇u · ∇ϕdx

−
∑
i∈I

∑

j∈s(i)
j<i

∫

Γij

〈β(u)∇u〉 · nij[ϕ] dS −
∑
i∈I

∑

j∈s(i)
j<i

∫

Γij

〈β(u)∇ϕ〉 · nij[u] dS

−
∑
i∈I

∑

j∈γD(i)

∫

Γij

β(u)∇u · nijϕ dS −
∑
i∈I

∑

j∈γD(i)

∫

Γij

∇β(u)ϕ · niju dS

(1.22)

and incomplete diffusion form:

aI
h(u, ϕ) =

∑
i∈I

∫

Ki

β(u)∇u · ∇ϕdx

−
∑
i∈I

∑

j∈s(i)
j<i

∫

Γij

〈β(u)∇u〉 · nij[ϕ] dS −
∑
i∈I

∑

j∈γD(i)

∫

Γij

β(u)∇u · nijϕdS
(1.23)

Further we define the interior and boundary penalty jump terms:

Jh(u, ϕ) =
∑
i∈I

∑

j∈s(i)
j<i

∫

Γij

σ[u][ϕ] dS +
∑
i∈I

∑

j∈γD(i)

∫

Γij

σuϕ dS, (1.24)

nonsymmetric right-hand side:

lNh (u, ϕ)(t) =

∫

Ω

g(t)ϕdx +
∑
i∈I

∑

j∈γN (i)

∫

Γij

gN(t)ϕdS

+
∑
i∈I

∑

j∈γD(i)

∫

Γij

β(u)∇ϕ · nijuD(t) dS +
∑
i∈I

∑

j∈γD(i)

∫

Γij

σuD(t)ϕdS,

(1.25)

symmetric right-hand side:

lSh (u, ϕ)(t) =

∫

Ω

g(t)ϕdx +
∑
i∈I

∑

j∈γN (i)

∫

Γij

gN(t)ϕdS

−
∑
i∈I

∑

j∈γD(i)

∫

Γij

β(u)∇ϕ · nijuD(t) dS +
∑
i∈I

∑

j∈γD(i)

∫

Γij

σuD(t)ϕdS

(1.26)

and the incomplete interior penalty right-hand side:

lIh(u, ϕ)(t) =

∫

Ω

g(t)ϕdx

+
∑
i∈I

∑

j∈γN (i)

∫

Γij

gN(t)ϕdS +
∑
i∈I

∑

j∈γD(i)

∫

Γij

σuD(t)ϕdS.
(1.27)
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Finally we define the convective terms:

bh(u, ϕ) =−
∑
i∈I

∫

Ki

2∑
s=1

fs(u)
∂ϕ

∂xs

dx

+
∑
i∈I

∑

j∈S(i)

∫

Γij

H(u|Γij
, u|Γji

,nij)ϕ|Γij
dS.

(1.28)

Now we can introduce the discrete problem (space semidiscretization with
continuous time, also called the method of lines). For simplicity of notation, we
omit the superscripts N, S and I and use the generic notation for the diffusion
and right-hand side forms ah(uh, ϕ) and lh(u, ϕh). The symmetric, nonsymmetric
and incomplete variants can be obtained by taking in turn ah := aS

h , lh := lSh and
so on.

Definition 1.3.1 We say that uh is a DGFE solution of the convection-diffusion
problem (1.1) - (1.4), if

a) uh ∈ C1([0, T ]; Sh),

b)
d

dt
(uh(t), ϕh) + bh(uh(t), ϕh) + νJh(uh(t), ϕh) + ah(uh(t), ϕh)

= lh(u, ϕh)(t), ∀ϕh ∈ Sh, ∀t ∈ (0, T ),

c) uh(0) = u0
h,

(1.29)

where u0
h is an Sh approximation of the initial condition u0.

1.4 Time discretization

We proceed as in the finite element method. Let B = {wα}n
α=1 be a basis in the

space Sh, with n = dimSh. We seek the approximate solution uh ∈ Sh in the
form

uh(t) =
n∑

α=1

ξα(t)wα. (1.30)

Due to the linearity of the forms (1.21) - (1.28) in the variable ϕ, we can use, as
test functions in (1.29), only elements of the basis B. This leads to a system of
n ordinary differential equations for unknowns ξα(t), α = 1, . . . , n.

In practice, we also need a time discretization of the problem by a suitable
method. In the implementation of problem (1.29) we have used the simplest
approach, which is the Euler forward scheme. This has two disadvantages: it
is only first order accurate, and a severe limitation on the time step has to be
applied in order to respect a CFL-like stability condition. However, this method
is simple from an implementational point of view and we are mostly interested in
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the steady-state solution as t → ∞, if this exists, therefore first order accuracy
is not a drawback.

Let 0 = t0 < t1 < . . . be a partition of the time interval [0, T ], and τk =
tk+1 − tk. The Euler forward scheme has the simple form:

(uk+1
h ,ϕh) + τk

[
bh(u

k
h, ϕh) + νJh(u

k
h, ϕh) + ah(u

k
h, ϕh)

]

= τkl(ϕh)(tk) + (uk
h, ϕh), ∀ϕh ∈ Sh, k = 0, 1, . . . .

(1.31)

Let ξk = (ξk
1 , . . . , ξk

n), where ξk
α is an approximation of ξα(tk). Then the Euler

forward scheme can be written in the form of a system of n linear equations:

Mξk+1 = Mξk + τa(ξk), (1.32)

where a(ξk) is a vector-valued mapping corresponding to the forms (1.21) - (1.28)
and M = {mij}n

i,j=1 is a n × n matrix, the so-called mass matrix, with entries
mij =

∫
Ω

wiwj dx.
In the finite element method, we usually choose the basis functions with sup-

ports as small as possible. In the discontinuous case, the support of a basis
function can be exactly one element. If functions wα, wβ have different support
elements, then mαβ = 0. This is advantageous, because the mass matrix M will
not only be sparse, but by ”clustering” the basis functions with common support
elements, we can achieve that M will be block-diagonal with np×np blocks, where
np = dimPp(K). If M = diag{B1, . . . ,Bn}, then M−1 = diag{B−1

1 , . . . ,B−1
n } and

the system (1.32) can be solved quickly by inverting each Bi, the so-called local
mass matrices corresponding to element K. This can be done beforehand and
the inversions B−1

i can be calculated explicitly, so that we need not include any
iterative linear solvers in the process of solution.

1.5 Practical Implementation

1.5.1 Numerical flux

The numerical experiments in Section 1.6 were carried out with the following
numerical flux:

H(u1, u2,n) =

{∑2
s=1 fs(u1)ns, if A > 0∑2
s=1 fs(u2)ns, if A ≤ 0,

(1.33)

where

A =
2∑

s=1

f ′s(u), u =
1

2
(u1 + u2). (1.34)

This flux is based on the concept of upwinding and the Vijayasundaram numerical
flux, which will be used in the discretization of the Euler equations, can be viewed
as a generalization of this scalar case.
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j x
(1)
j -coordinate x

(2)
j -coordinate αj

1. 0.333333333333333 0.333333333333333 0.225
2. 0.470142064105115 0.470142064105115 0.132394152788506
3. 0.470142064105115 0.05971587178977 0.132394152788506
4. 0.05971587178977 0.470142064105115 0.132394152788506
5. 0.101286507323456 0.101286507323456 0.125939180544827
6. 0.101286507323456 0.797426985353087 0.125939180544827
7. 0.797426985353087 0.101286507323456 0.125939180544827

Table 1.1: Gauss seven point rule on the reference triangle K̂.

When computing convective terms, it is necessary to define the meaning of
u|Γji

if j ∈ γ(i) (i.e. when Γij ⊂ ∂Ω). In [14], extrapolation is used: u|Γji
:= u|Γij

.
However, this gives unsatisfactory results on ΓD. In the general case, numerical
experiments show, that the solution exhibits spurious overshoots undershoots at
ΓD when using extrapolation. The solution to this problem is to set u|Γji

:= uD

for Γji = Γij ⊂ ΓD. When this is done, such undesired phenomena do not occur,
as can be seen in Section 1.6.

1.5.2 Numerical integration

In practice, the DGFE formulation requires calculation of terms in the form∫
Ki

f(x) dx and
∫
Γij

s(x) dS. It is useful to evaluate element integrals over a

common reference element K̂, which is the triangle with vertices (0, 0), (1, 0),
(0, 1). Edge integrals are evaluated on the unit interval Γ̂ = [0, 1]. This is
realized by the substitution theorem, and the subject will be thoroughly treated
in Section 3.5 in the case of an isoparametric approximation of the boundary.

For the evaluation of integrals over Γ̂ and K̂ we use 1D and 2D Gaussian
quadrature formulae of high order of accuracy: both are accurate for polynomials
with degree ≤ 5. In 2D it is the seven point rule,

∫

K̂

f(x) dx ≈
7∑

j=1

αjf(xj), (1.35)

where αj and xj are given in Table 1.1. In 1D we use the three point rule,

∫ 1

0

s(x) dx ≈
3∑

j=1

βjf(xj), (1.36)

where βj and xj = (x
(1)
j , x

(2)
j ) are given in Table 1.2. Details on higher order

quadrature rules applicable in finite element methods can be found in [34].
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j xj αj

1. (1−
√

3/5)/2 5/18
2. 0.5 4/9

3. (1 +
√

3/5)/2 5/18

Table 1.2: Gauss three point rule on the unit interval Γ̂.

1.5.3 Basis functions

For P1, i.e. linear elements, the basis {ϕin ∈ Sh; i ∈ I, n = 1, 2, 3} is used, such
that ϕin(P n′

i′ ) = δii′δnn′ , where P n
i , n = 1, 2, 3, are vertices of element Ki and δ is

the Kronecker symbol. For P2, i.e. quadratic elements, the basis {ψin ∈ Sh; i ∈
I, n = 1, . . . , 6} is used, such that ψin(P n′

i′ ) = δii′δnn′ , where P n
i , n = 1, 2, 3, are

vertices of element Ki and P n
i , n = 4, 5, 6, are midpoints of edges of Ki. These

are standard local basis functions as known from the finite element method and
they work quite well. Experiments were done with the simple monomial basis
1, x, y, x2, y2, xy, . . . as an alternative, for which evaluation is simpler. However,
the latter basis is very ”non-orthogonal” compared to the first one, and the local
mass matrices Bi are ill-conditioned, causing a great loss of accuracy.

1.6 Numerical examples

The above DGFE space semidiscretization scheme is theoretically analyzed in
Chapter 2, where error estimates are derived. The main theorem gives the fol-
lowing estimates for eh(t) := uh(·, t)− u(·, t):

||eh(t)||L2(Ω) =

{
O(hp+1) for the symmetric variant,

O(hp) otherwise,
∫ t

0

|eh(ϑ)|2H1(Ω,Th) dϑ = O(h2p),

∫ t

0

Jh(eh(ϑ), eh(ϑ)) dϑ = O(h2p),

(1.37)

where p is the order of polynomials from P p(K) and t ∈ [0, T ]. However, the ques-
tion of optimal L2-error estimates for the nonsymmetric and incomplete variants
is still open, since the following numerical experiments indicate that these vari-
ants converge faster than O(hp) in the L2-norm when p is odd.

Let us consider the 2D viscous Burgers equation

∂u

∂t
+

1

2

2∑
s=1

∂(u2)

∂xs

= ε∆u + g in Ω× (0, T ), (1.38)
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NIPG IIPG SIPG

p=1 1.0 5.0 10.0
p=2 1.0 5.0 15.0

Table 1.3: Choice of CW for individual variants applied to the viscous Burgers
equation, ε = 0.002.

NIPG IIPG SIPG

p=1 1.0 5.0 20.0
p=2 1.0 5.0 20.0

Table 1.4: Choice of CW for individual variants applied to the viscous Burgers
equation, ε = 0.1.

where Ω = (0, 1)2, equipped with a Dirichlet boundary condition, i.e. ΓN = ∅.
The function g and the initial and boundary conditions are defined in such a way
that the exact solution has the form

u(x1, x2, t) =
[
sin

(
4(x1 + x2 − x1x2)

)
+ sin(5x1x2)

]
(1− e−t). (1.39)

We conduct two experiments, first we set ε = 0.002 and in the second case ε = 0.1.
We discretize equation (1.38) by all three variants of the scheme presented

in Section 1.3 using piecewise linear (p = 1) and piecewise quadratic (p = 2)
elements. The choice of the parameter CW from (1.18) in each of the six cases is
given in Table 1.3. In Section 2.2, where error estimates are derived, we assume
only that CW > 0 in the nonsymmetric variant. However, in the incomplete case,
we need CW larger than some constant (2.74) and in the symmetric case, the
lower bound for CW is twice as large (2.63). These results led us to the choices
given in Tables 1.3 and 1.4. In the symmetric variant we have experienced that
the lower bound for CW increases with p, since for p = 2, the choice CW = 10
sufficient for p = 1, ε = 0.002 proved to be insufficient and led to instabilities in
other cases.

l 1 2 3 4 5 6

hl 3,95E-01 2,54E-01 1,78E-01 1,27E-01 8,83E-02 5,72E-02
#Thl

126 289 597 1177 2354 5938

Table 1.5: Triangulation data.

The resulting system of ordinary differential equations is solved by the Euler
forward method presented in Section 1.4 with a very small time step ≈ τ = 10−5,
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in order to guarantee stability and sufficiently accurate resolution with respect
to time. We investigate the error at time t0 = 1 for ε = 0.002 and t0 = 0.1 for
ε = 0.1, respectively – this is due to the an extremely restrictive conditions on the
time step of the explicit method. We take Eh = ||eh(t0)||L2(Ω) or |eh(t0)|H1(Ω,Th)

or Jh(eh(t0), eh(t0))
1/2 and suppose that

Eh ≈ Chα, (1.40)

where C > 0 is a constant independent of h and α is the order of accuracy
of the method. The numerical solution was computed on 6 unstructured meshes
(Thl

, l = 1, . . . , 6) with descending hl. The values of hl and the number of elements
#Thl

are given in Table 1.5. We define the local order of accuracy by

αl =
log (ehl

/ehl−1
)

log (hl/hl−1)
, l = 2, . . . , 6 (1.41)

and α is defined as the average of αl, l = 2, . . . , 6.
For ε = 0.002, tables 1.6 - 1.8 show the results for piecewise linear elements,

and tables 1.9 - 1.11 show the results for piecewise quadratic elements. One can
see that, in the case of dominating convection, all three variants have an exper-
imental order of accuracy in the L2-norm O(hp+1), and the incomplete variant
has the smallest error in this norm.

For ε = 0.1, results are given in tables 1.12 - 1.14 (piecewise linear elements)
and 1.15 - 1.17 (piecewise quadratic elements). One can see that, in the piecewise
linear case, all three variants have an optimal experimental order of accuracy in
the L2-norm as O(hp+1), and again, the incomplete variant has the smallest error
in this norm among all three variants. However, in the piecewise quadratic case,
only the symmetric variant exhibits optimal convergence. This is in agreement
with previous results for the Poisson equation, which indicate the nonsymmetric
variant is suboptimal in the L2-norm if p is even. Since the incomplete variant can
be viewed as an average between symmetric and nonsymmetric, we can expect
the same behavior.

Finally we note that the symmetric variant exhibited worse stability prop-
erties with respect to the explicit time discretization than the other two cases.
Generally, the time step had to be chosen two to five times smaller than in the
other variants to achieve stability. In Figure 1.1 the exact solution and its con-
tours are depicted (top) along with three approximate solutions in the following
order from top to bottom: piecewise linear elements on Th1 , piecewise quadratic
elements on Th3 and piecewise quadratic elements on Th6 . We can observe that
the piecewise polynomial discontinuous solution tends to the continuous solution,
since interelement jumps diminish with h → 0. This is a consequence of the er-
ror estimate for Jh(eh, eh) in (1.37). The depicted approximate solutions were
obtained by the IIPG scheme with ε = 0.002
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1.7 Conclusion

We have introduced a discontinuous Galerkin discretization of a model scalar
convection-diffusion equation with three possibilities how to treat the second
order (diffusion) term. Numerical experiments have verified theoretical error
estimates for the H1(Ω, Th) seminorm and penalty terms Jh(·, ·)1/2. As for the
L2(Ω) norm, the incomplete and nonsymmetric variants exhibit optimal order of
convergence when p = 1 is odd, and suboptimal for p = 2. This phenomenon
has been conjectured for the Poisson equation and, to the authors knowledge,
has not yet been proved. Among the three tested variants, the incomplete case
seems to be the best compromise. As opposed to the symmetric variant, it is
more robust with respect to the choice of parameter CW and the choice of the
time step. The L2(Ω) norm of the error was smaller than in the other two cases,
whenever optimal convergence rate was attained (dominating convection and/or p
odd). And finally, unlike the (non)symmetric case, the generalization to systems
of equations is straightforward – Chapter 4.
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l ||eh(t)||L2(Ω) αl |eh(t)|H1(Ω,Th) αl Jh(eh(t), eh(t))
1/2 αl

1 1.28E-01 — 3.12E-00 — 6.55E-02 —
2 5.23E-02 2.028 2.02E-00 0.990 4.33E-02 0.941
3 2.42E-02 2.166 1.39E-00 1.056 2.89E-02 1.133
4 1.28E-02 1.907 1.00E-00 0.971 2.14E-02 0.897
5 6.76E-03 1.739 7.18E-01 0.908 1.57E-02 0.845
6 2.69E-03 2.125 4.27E-01 1.194 9.27E-03 1.216

α 1,993 1,024 1,006

Table 1.6: Computational errors for ε = 0.002, p = 1, nonsymmetric variant
(NIPG).

l ||eh(t)||L2(Ω) αl |eh(t)|H1(Ω,Th) αl Jh(eh(t), eh(t))
1/2 αl

1 1.30E-01 — 3.15E-00 — 6.24E-02 —
2 5.21E-02 2.071 2.04E-00 0.987 3.94E-02 1.047
3 2.34E-02 2.248 1.41E-00 1.046 2.52E-02 1.258
4 1.21E-02 1.968 1.02E-00 0.959 1.81E-02 0.993
5 6.11E-03 1.867 7.34E-01 0.902 1.26E-02 0.999
6 2.26E-03 2.287 4.38E-01 1.186 6.85E-03 1.390

α 2,088 1,016 1,137

Table 1.7: Computational errors for ε = 0.002, p = 1, incomplete variant (IIPG).

l ||eh(t)||L2(Ω) αl |eh(t)|H1(Ω,Th) αl Jh(eh(t), eh(t))
1/2 αl

1 1.33E-01 — 3.20E-00 — 5.95E-02 —
2 5.32E-02 2.081 2.07E-00 0.986 3.64E-02 1.115
3 2.38E-02 2.263 1.44E-00 1.034 2.27E-02 1.337
4 1.24E-02 1.959 1.04E-00 0.949 1.60E-02 1.043
5 6.19E-03 1.887 7.52E-01 0.894 1.06E-02 1.115
6 2.31E-03 2.273 4.51E-01 1.176 5.52E-03 1.507

α 2,093 1,008 1,224

Table 1.8: Computational errors for ε = 0.002, p = 1, symmetric variant (SIPG).
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l ||eh(t)||L2(Ω) αl |eh(t)|H1(Ω,Th) αl Jh(eh(t), eh(t))
1/2 αl

1 1.90E-02 — 7.91E-01 — 1.32E-02 —
2 5.46E-03 2.834 3.82E-01 1.649 6.68E-03 1.550
3 1.65E-03 3.368 1.72E-01 2.245 2.90E-03 2.351
4 6.73E-04 2.678 8.89E-02 1.975 1.50E-03 1.968
5 2.59E-04 2.600 4.40E-02 1.917 7.61E-04 1.850
6 8.37E-05 2.603 1.62E-02 2.307 2.77E-04 2.329

α 2,817 2,019 2,010

Table 1.9: Computational errors for ε = 0.002, p = 2, nonsymmetric variant
(NIPG).

l ||eh(t)||L2(Ω) αl |eh(t)|H1(Ω,Th) αl Jh(eh(t), eh(t))
1/2 αl

1 1.86E-02 — 8.01E-01 — 1.21E-02 —
2 4.78E-03 3.087 3.81E-01 1.689 5.72E-03 1.696
3 1.32E-03 3.627 1.72E-01 2.233 2.45E-03 2.389
4 5.00E-04 2.895 8.91E-02 1.966 1.27E-03 1.951
5 1.64E-04 3.041 4.41E-02 1.922 6.20E-04 1.967
6 6.52E-05 2.124 1.62E-02 2.301 2.25E-04 2.337

α 2,955 2,022 2,068

Table 1.10: Computational errors for ε = 0.002, p = 2, incomplete variant (IIPG).

l ||eh(t)||L2(Ω) αl |eh(t)|H1(Ω,Th) αl Jh(eh(t), eh(t))
1/2 αl

1 1.91E-02 — 8.12E-01 — 1.04E-02 —
2 5.26E-03 2.933 3.90E-01 1.665 4.70E-03 1.809
3 1.56E-03 3.416 1.79E-01 2.201 1.93E-03 2.510
4 5.94E-04 2.886 9.39E-02 1.918 9.87E-04 1.995
5 2.14E-04 2.789 4.71E-02 1.883 4.56E-04 2.110
6 8.05E-05 2.247 1.75E-02 2.283 1.54E-04 2.497

α 2,854 1,990 2,184

Table 1.11: Computational errors for ε = 0.002, p = 2, symmetric variant (SIPG).
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l ||eh(t)||L2(Ω) αl |eh(t)|H1(Ω,Th) αl Jh(eh(t), eh(t))
1/2 αl

1 2.02E-02 — 4.26E-01 — 1.28E-01 —
2 8.95E-03 1.851 2.78E-01 0.965 8.46E-02 0.932
3 4.18E-03 2.145 1.90E-01 1.073 5.86E-02 1.036
4 2.22E-03 1.884 1.39E-01 0.943 4.31E-02 0.914
5 1.15E-03 1.811 9.94E-02 0.906 3.10E-02 0.901
6 4.31E-04 2.249 6.07E-02 1.136 1.89E-02 1.138

α 1.988 1.005 0.984

Table 1.12: Computational errors for ε = 0.1, p = 1, nonsymmetric variant
(NIPG).

l ||eh(t)||L2(Ω) αl |eh(t)|H1(Ω,Th) αl Jh(eh(t), eh(t))
1/2 αl

1 1.46E-01 — 4.32E-1 — 7.33E-01 —
2 6.09E-03 1.980 2.81E-01 0.982 4.28E-02 1.224
3 2.77E-03 2.214 1.94E-01 1.048 2.71E-02 1.286
4 1.52E-03 1.793 1.41E-01 0.937 1.94E-02 0.992
5 7.61E-04 1.890 1.03E-01 0.870 1.34E-02 1.013
6 2.77E-04 2.326 6.21E-02 1.162 7.91E-03 1.216

α 2.040 1.000 1.146

Table 1.13: Computational errors for ε = 0.1, p = 1, incomplete variant (IIPG).

l ||eh(t)||L2(Ω) αl |eh(t)|H1(Ω,Th) αl Jh(eh(t), eh(t))
1/2 αl

1 2.48E-02 — 4.77E-01 — 9.71E-02 —
2 8.41E-03 2.458 3.12E-01 0.962 2.28E-02 3.291
3 3.88E-03 2.179 2.16E-01 1.046 1.19E-02 1.829
4 2.07E-03 1.873 1.57E-01 0.940 8.49E-03 1.010
5 1.08E-03 1.779 1.15E-01 0.864 5.01E-03 1.440
6 3.92E-04 2.331 6.86E-02 1.180 2.77E-03 1.362

α 2.124 0.998 1.786

Table 1.14: Computational errors for ε = 0.1, p = 1, symmetric variant (SIPG).



CHAPTER 1. DGFEM FOR A MODEL SCALAR EQUATION 27

l ||eh(t)||L2(Ω) αl |eh(t)|H1(Ω,Th) αl Jh(eh(t), eh(t))
1/2 αl

1 5.17E-03 — 1.13E-01 — 2.88E-02 —
2 1.96E-03 2.205 5.50E-02 1.632 1.32E-02 1.775
3 8.42E-04 2.376 2.59E-02 2.121 6.08E-03 2.175
4 4.35E-04 1.970 1.36E-02 1.930 3.17E-03 1.947
5 2.11E-04 1.980 6.91E-03 1.842 1.60E-03 1.871
6 8.35E-05 2.132 2.60E-03 2.247 5.93E-04 2.279

α 2.133 1.955 2.010

Table 1.15: Computational errors for ε = 0.1, p = 2, nonsymmetric variant
(NIPG).

l ||eh(t)||L2(Ω) αl |eh(t)|H1(Ω,Th) αl Jh(eh(t), eh(t))
1/2 αl

1 2.42E-03 — 1.03E-01 — 1.81E-02 —
2 1.05E-03 1.893 4.96E-02 1.662 8.53E-03 1.709
3 4.21E-04 2.581 2.31E-02 2.150 4.06E-03 2.094
4 2.26E-04 1.852 1.21E-02 1.923 2.17E-03 1.871
5 1.07E-04 2.041 6.19E-03 1.840 1.10E-03 1.855
6 4.32E-05 2.090 2.32E-03 2.258 4.22E-04 2.203

α 2.092 1.967 1.947

Table 1.16: Computational errors for ε = 0.1, p = 2, incomplete variant (IIPG).

l ||eh(t)||L2(Ω) αl |eh(t)|H1(Ω,Th) αl Jh(eh(t), eh(t))
1/2 αl

1 2.13E-03 — 1.08E-01 — 6.94E-03 —
2 6.88E-04 2.562 5.23E-02 1.653 3.41E-03 1.617
3 2.26E-04 3.130 2.42E-02 2.169 1.52E-03 2.278
4 9.12E-05 2.714 1.28E-02 1.895 8.28E-04 1.804
5 3.28E-05 2.787 6.56E-03 1.833 3.99E-04 1.996
6 7.50E-06 3.400 2.44E-03 2.277 1.50E-04 2.244

α 2.919 1.965 1.988

Table 1.17: Computational errors for ε = 0.1, p = 2, symmetric variant (SIPG).
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Figure 1.1: Function values and contours from top to bottom: 1) exact solution,
2) P 1 approximate solution on Th1 , 3) P 2 approximate solution on Th3 and 4) P 2

approximate solution on Th6 .



Chapter 2

Error Estimates for DGFEM

In this chapter, we analyze the three variants of the discontinuous Galerkin
method when applied to a scalar model problem. Section 2.2 deals with error
estimates in the L2(H1)- and L∞(L2)-norms. In this case we derive estimates
for all three variants applied to a convection diffusion equation with nonlinear
convection and nonlinear diffusion. The derived estimates are optimal in the
L2(H1)-norm, but suboptimal in the L∞(L2)-norm. This problem is addressed in
Section 2.3, where we derive L∞(L2)-optimal error estimates. Since specific tech-
niques are applied, the result holds only for the symmetric variant and for linear
diffusion. Additional assumptions need to be imposed also on the computational
domain: Ω is a convex polygonal domain and ΓN = ∅. On the other hand, all
presented results hold for rather general triangular meshes with hanging nodes,
which improves the result of [17] concerning L∞(L2)-optimal error estimates.

2.1 Some necessary results and assumptions

First we shall introduce some notation. Let G ⊂ Rd, d = 2, 3, be a bounded do-
main with a Lipschitz-continuous boundary ∂G. By G we denote the closure of
G. Further, let k ∈ {0, 1, 2, . . . } and p ∈ [1,∞]. We use the well-known Lebesgue
and Sobolev spaces Lp(G), Lp(∂G), W k,p(G), Hk(G) = W k,2(G), W k,p(∂G),
Bochner spaces Lp(0, T ; X) of functions defined in (0, T ) with values in a Banach
space X and the spaces Ck([0, T ]; X) of k-times continuously differentiable map-
pings of the interval [0, T ] with values in X (see e.g. [28]). The symbols ‖ · ‖X

and | · |X will denote a norm and a seminorm in a space X, respectively.
Let Ω ⊂ IRd (d = 2, 3) be a polyhedral domain. Throughout this chapter we

denote by C a generic constant independent of h and parameters of the problem,
p denotes the order of approximation, where Sh = {v; v|K ∈ Pp(K) ∀K ∈ Th}.

29
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2.1.1 Geometry of the mesh

Let us consider a system {Th}h∈(0,h0), h0 > 0, of partitions of the domain Ω into
a finite number of closed triangles (if d = 2) or tetrahedra (if d = 3) K with
mutually disjoint interiors., i.e. Th = {Ki}i∈I , I ⊂ Z+.

Let us assume that the system {Th}h∈(0,h0) has the following properties:

(A1) The system {Th}h∈(0,h0) is regular: there exists a constant C1 > 0 such that

hK

ρK

≤ C1 ∀K ∈ Th ∀h ∈ (0, h0). (2.1)

(A2) There exists a constant C2 > 0 such that

hKi
≤ C2 d(Γij), ∀i ∈ I, ∀j ∈ S(i), ∀h ∈ (0, h0). (2.2)

Let us note that we do not require the usual conforming properties from the
finite element method, particularly, hanging nodes are allowed. Condition (A2)
means that the faces Γij do not degenerate with respect to hKi

for h → 0+

2.1.2 Some auxiliary results

Now we can state two necessary results from [19] needed in the following analysis:

Lemma 2.1.1 (Multiplicative trace inequality) There exists a constant CM >
0 independent of h,K such that

||v||2L2(∂K) ≤ CM

(||v||L2(K)|v|H1(K) + h−1
K ||v||2L2(K)

)
,

∀K ∈ Th, v ∈ H1(K), h ∈ h0.
(2.3)

Lemma 2.1.2 (Inverse inequality) There exists a constant CI > 0 indepen-
dent of h,K such that

|v|H1(K) ≤ CIh
−1
K ||v||L2(K), ∀K ∈ Th, v ∈ P p(K).

The proof is a consequence of standard scaling arguments – see, e. g. [7],
proof of Theorem 3.2.5, from which it follows that the constant CI depends on
the polynomial degree p in such a way that it is an increasing function of p. Using
[32], Theorem 4.76 and standard scaling arguments, we can find that CI = C∗

I p
2,

where C∗
I is a constant independent of v, h, K and p.

Now, for v ∈ L2(Ω) we denote by Πhv the L2(Ω)-projection of v on Sh:

Πhv ∈ Sh, (Πhv − v, ϕh) = 0 ∀ϕh ∈ Sh. (2.4)

Obviously, if K ∈ Th, then the function Πhv|K is the L2(K)-projection of v|K on
P p(K). Let k ∈ [1, p] be an integer. It is possible to show ([22, Lemma 4.1]) that
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Lemma 2.1.3 There exists a constant C > 0 independent of h,K such that

||Πhv − v||L2(K) ≤ Chk+1
K |v|Hk+1(K), (2.5)

|Πhv − v|H1(K) ≤ Chk
K |v|Hk+1(K), (2.6)

|Πhv − v|H2(K) ≤ Chk−1
K |v|Hk+1(K), (2.7)

for all v ∈ Hk+1(K), K ∈ Th and h ∈ (0, h0), where k ∈ [1, p] is an integer.

Let [0, T ] be a given time interval, u ∈ C([0, T ]; Hp+1(Ω)) such that ∂u
∂t
∈

L2([0, T ]; Hp+1(Ω)) . We set η(t) = Πhu(t) − u(t) ∈ Hp+1(Ω, Th) for a.a. t ∈
(0, T ).

We have the following Lemma:

Lemma 2.1.4 There exists a constant C > 0 independent of h,K such that for
all h ∈ (0, h0)

a) ||η||L2(Ω,Th) ≤ Chp+1|u|Hp+1(Ω), (2.8)

b) |η|H1(Ω,Th) ≤ Chp|u|Hp+1(Ω), (2.9)

c) |η|H2(Ω,Th) ≤ Chk−1
K |v|Hp+1(Ω), (2.10)

d)

∣∣∣∣
∣∣∣∣
∂η

∂t

∣∣∣∣
∣∣∣∣ ≤ Chp+1

∣∣∣∣
∂u

∂t

∣∣∣∣
Hp+1(Ω)

. (2.11)

Proof: These results follow immediately from Lemma 2.1.3 and the fact that
hK ≤ h, ∀K ∈ Th. ¤

Lemma 2.1.5 (Properties of the form Jh) For all v, w ∈ H1(Ω, Th) we have

a) Jh(v, w) ≤ (
Jh(v, v)

)1/2(
Jh(w, w)

)1/2
, (2.12)

b) Jh(η, η) ≤ Ch2p|u|2Hp+1(Ω). (2.13)

Proof: Case a): the Cauchy inequality gives us

Jσ
h (w, v) =

∑
i∈I

∑
j∈s(i)

j<i

∫

Γij

σ[w] [v] dS +
∑
i∈I

∑

j∈γD(i)

∫

Γij

σ w v dS

≤




∑
i∈I

∑
j∈s(i)

j<i

∫

Γij

σ[w]2 dS +
∑
i∈I

∑

j∈γD(i)

∫

Γij

σ w2 dS




1/2

×




∑
i∈I

∑
j∈s(i)

j<i

∫

Γij

σ[v]2 dS +
∑
i∈I

∑

j∈γD(i)

∫

Γij

σ v2 dS




1/2

= (Jσ
h (w,w))1/2 (Jσ

h (v, v))1/2 .

.
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Case b):

Jh(η, η) =
∑
i∈I

∑
j∈s(i)

j<i

∫

Γij

CW

d(Γij)
[η]2 dS +

∑
i∈I

∑

j∈γD(i)

∫

Γij

CW

d(Γij)
η2 dS

≤ C
∑
i∈I

1

hKi

∫

∂Ki

η2 dS = C
∑
i∈I

1

hKi

||η||2L2(∂Ki)

Now the multiplicative trace inequality and Lemma 2.1.3 give us

Jh(η, η) ≤ C
∑
i∈I

1

hKi

(||η||L2(Ki)|η|H1(Ki) + h−1
Ki
||η||2L2(Ki)

)

≤ C h2p|u|2Hp+1(Ω)

¤

Lemma 2.1.6 There exist constants C > 0 independent of h,K such that

a)
∑
i∈I

hKi
||η||L2(∂Ki) ≤ Ch2p+2|u|2Hp+1(Ω), (2.14)

b)
∑
i∈I

hKi
||∇η||L2(∂Ki) ≤ Ch2p|u|2Hp+1(Ω), (2.15)

c)
∑
i∈I

hKi
||ϕh||L2(∂Ki) ≤ C‖ϕh‖2

L2(Ω), ∀ϕh ∈ Sh, (2.16)

d)
∑
i∈I

hKi
||∇ϕh||L2(∂Ki) ≤ C‖ϕh‖2

H1(Ω,Th), ∀ϕh ∈ Sh. (2.17)

Proof: We prove only a) and c), since b) and d) are analogous. a) follows from
Lemmas 2.1.1 and 2.1.3:

∑
i∈I

hKi
||η||L2(∂Ki) ≤ C

∑
i∈I

hKi

(‖η‖L2(Ki)|η|H1(K) + h−1
Ki
‖η‖2

L2(Ki)

)

≤ Ch2p+2|u|2Hp+1(Ω).

Case c) follows from Lemmas 2.1.1 and 2.1.2:
∑
i∈I

hKi
||ϕh||L2(∂Ki) ≤ C

∑
i∈I

hKi

(‖ϕh‖L2(Ki)|ϕh|H1(K) + h−1
Ki
‖ϕh‖2

L2(Ki)

)

≤ C
∑
i∈I

hKi

(‖ϕh‖L2(Ki)h
−1
Ki
‖ϕh‖L2(Ki) + h−1

Ki
‖ϕh‖2

L2(Ki)

) ≤ C‖ϕh‖2
L2(Ω).

¤
In the error estimates of the following sections, we will apply the following

version of Gronwall’s lemma:
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Lemma 2.1.7 (Gronwall’s lemma) Let y, q, z, r ∈ C([0, T ]), r ≥ 0 and let

y(t) + q(t) ≤ z(t) +

∫ t

0

r(s)y(s) ds, t ∈ [0, T ].

Then

y(t) + q(t) +

∫ t

0

r(ϑ)q(ϑ) exp
( ∫ t

ϑ

r(s) ds
)

dϑ

≤ z(t) +

∫ t

0

r(ϑ)z(ϑ) exp
( ∫ t

ϑ

r(s) ds
)

dϑ, t ∈ [0, T ].

(2.18)

Proof: Can be carried out in a similar way as in [20], Par. 8.2.29. ¤
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2.2 Error estimates for model nonlinear convection-

diffusion equation

2.2.1 Definitions

Let Ω ⊂ Rd, d = 2, 3, be a bounded polygonal (if d = 2) or polyhedral (if d = 3)
domain with Lipschitz-continuous boundary ∂Ω = ΓD ∪ ΓN , ΓD ∩ ΓN = ∅, and
T > 0. Let us assume that the (d − 1)-dimensional measure of ΓD is positive.
We treat the following nonlinear problem:

∂u

∂t
+

2∑
s=1

∂fs(u)

∂xs

− div(β(u)∇u)) = g in QT , (2.19)

u|ΓD×(0,T ) = uD, (2.20)

β(u)
∂u

∂n

∣∣
ΓN×(0,T )

= gN , (2.21)

u(x, 0) = u0(x), x ∈ Ω, (2.22)

where the function β satisfies

β : IR → [β0, β1], 0 < β0 < β1 < ∞, (2.23)

|β(u1)− β(u2)| ≤ L|u1 − u2|, ∀u1, u2 ∈ IR. (2.24)

Let g : QT → R, uD : ΓD × (0, T ) → R, gN : ΓN × (0, T ) → R and u0 : Ω → R be
given functions, and fs ∈ C1(R), s = 1, . . . , d, be prescribed Lipschitz-continuous
fluxes. Without the loss of generality let fs(0) = 0, s = 1, . . . , d. We assume that
the weak solution u is sufficiently regular, namely

∂u

∂t
∈ L2

(
[0, T ]; Hp+1(Ω)

)
,

where p ≥ 1 denotes the given degree of approximation. It is possible to show
that, under these conditions, u satisfies equation (2.19) pointwise and u ∈ C

(
[0, T ];

Hp+1(Ω)
)
.

To treat the nonlinear diffusion terms, we need one more regularity assump-
tion on the solution u of the continuous problem:

‖∇u(t)‖L∞(Ω) ≤ CR. for a.a. t ∈ (0, T ). (2.25)

We define the discontinuous Galerkin solution of our problem using the formula-
tion from Chapter 1.

Using forms (1.21)-(1.28) we can introduce the discrete problem (space semidis-
cretization with continuous time). For simplicity of notation, we use a generic
diffusion form ah(u, ϕ) and right-hand side lh(u, ϕ). In our framework, these can
be either the symmetric, nonsymmetric or incomplete variants. In the following,
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if we work with only one of the three variants we shall explicitly state this fact,
otherwise for results which hold for any of these variants, we use the generic
notation without the superscripts N,S or I.

The form bh approximates convective terms with the aid of a numerical flux
H(u, v,n). We assume that H has the following properties:

Assumptions (H):

(H1) H(u, v, n) is defined in R2 × B1, where B1 = {n ∈ Rd; |n| = 1}, and is
Lipschitz-continuous with respect to u, v:

|H(u, v, n)−H(u∗, v∗, n)| ≤ CL(|u− u∗|+ |v − v∗|),
u, v, u∗, v∗ ∈ R, n ∈ B1.

(H2) H(u, v, n) is consistent:

H(u, u, n) =
d∑

s=1

fs(u) ns, u ∈ R, n = (n1, . . . , nd) ∈ B1.

(H3) H(u, v, n) is conservative:

H(u, v, n) = −H(v, u,−n), u, v ∈ R, n ∈ B1.

In virtue of assumptions (H1) and (H2), we have 2CL ≥ Lf , where Lf is the
Lipschitz-continuity constant of the functions fs, s = 1, . . . , d.

Due to the assumption that fs(0) = 0 for s = 1, . . . , d, we have

H(0, 0,n) = 0 ∀n ∈ B1. (2.26)

Definition 2.2.1 We say that uh is a DGFE solution of the convection-diffusion
problem (2.19) - (2.22), if

a) uh ∈ C1([0, T ]; Sh),

b)
d

dt
(uh(t), ϕh) + bh(uh(t), ϕh) + β0Jh(uh(t), ϕh) + ah(uh(t), ϕh)

= lh(uh, ϕh)(t), ∀ϕh ∈ Sh, ∀t ∈ (0, T ),

c) uh(0) = u0
h,

(2.27)

where ah = aN
h , lh = lNh (nonsymmetric variant) or ah = aS

h , lh = lSh (symmetric
variant) or ah = aI

h, lh = lIh (incomplete variant). By u0
h we denote an Sh

approximation of the initial condition u0.
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Due to the consistency of the numerical flux we see that the exact solution u
satisfies

d

dt
(u(t), ϕh) + bh(u(t), ϕh) + β0Jh(u(t), ϕh) + ah(u(t), ϕh)

= lh(u, ϕh)(t), ∀ϕh ∈ Sh, ∀t ∈ (0, T ),
(2.28)

which implies the Galerkin orthogonality property of the error.

2.2.2 Properties of the convective term

We use the following notation:

‖w‖DG =

(
1

2

(
|w|2H1(Ω,Th) + Jh(w, w)

))1/2

. (2.29)

Since the (d − 1)-dimensional measure of ΓD is positive, ‖ · ‖DG is a norm in
H1(Ω, Th).

Now, we shall be concerned with the properties of the form bh. Under assump-
tions (H) and (A) the convective form bh is Lipschitz continuous in the following
sense:

Lemma 2.2.1 Let u, û, v ∈ H1(Ω, Th) and h ∈ (0, h0). Then there exists a
constant C > 0 independent of u, û, v, h such that

|bh(u, v)− bh(ū, v)| ≤ C
(
Jσ

h (v, v)1/2 + |v|H1(Ω,Th )

)

×
(
‖u− ū‖L2(Ω) +

( ∑
i∈I

hKi
‖u− ū‖2

L(∂Ki)

)1/2
)
.

(2.30)

Proof: By the definitions of bh (1.28) and the state u|Γij
(1.20), we have for

u, ū, v ∈ H1(Ω,Th ),

bh(u, v)− bh(ū, v) = −
∑
i∈I

∫

Ki

d∑
s=1

(fs(u)− fs(ū))
∂v

∂xs

dx

︸ ︷︷ ︸
:=σ1

+
∑
i∈I

∑

j∈s(i)

∫

Γij

(
H(u|Γij

, u|Γji
,nij)−H(ū|Γij

, ū|Γji
,nij)

)
v|Γij

dS

︸ ︷︷ ︸
:=σ2

+
∑
i∈I

∑

j∈γN (i)

∫

Γij

(
H(u|Γij

, u|Γij
, nij)−H(ū|Γij

, ū|Γij
, nij)

)
v|Γij

dS

︸ ︷︷ ︸
:=σ3

+
∑
i∈I

∑

j∈γD(i)

∫

Γij

(
H(u|Γij

, uD,nij)−H(ū|Γij
, uD,nij)

)
v|Γij

dS

︸ ︷︷ ︸
:=σ4

.
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From the Lipschitz-continuity of the functions fs, s = 1, . . . , d, we have

|σ1| ≤ Lf

∑
i∈I

∫

Ki

d∑
s=1

|u− ū|
∣∣∣∣
∂v

∂xs

∣∣∣∣ dx ≤
√

dLf‖u− ū‖L2(Ω)|v|H1(Ω,Th ). (2.31)

Using the conservativity (2.26) of H we find that

σ2 =
1

2

∑
i∈I

∑

j∈s(i)

∫

Γij

(
v|Γij

−v|Γji

) (
H(u|Γij

, u|Γji
,nij)−H(ū|Γij

, ū|Γji
, nij)

)
dS.

This, the Lipschitz-continuity (2.26) of H and the Cauchy inequality imply that

|σ2 + σ3 + σ4| ≤ C
∑
i∈I

{
1

2

∑

j∈s(i)

∫

Γij

∣∣∣[v]Γij

∣∣∣
(|u− ū|Γij

+ |u− ū|Γji

)
dS

+ 2
∑

j∈γN (i)

∫

Γij

|v|Γij
| |u− ū|Γij

dS +
∑

j∈γD(i)

∫

Γij

|v|Γij
| |u− ū|Γij

dS

}

≤ C
∑
i∈I

{ ∑

j∈s(i)

∫

Γij

∣∣∣[v]Γij

∣∣∣ |u− ū|Γij
dS + 2

∑

j∈γ(i)

∫

Γij

|v|Γij
| |u− ū|Γij

dS

}

≤ C
∑
i∈I

{( ∑

j∈s(i)

∫

Γij

CW

d(Γij)
[v]2 dS +

∑

j∈γ(i)

∫

Γij

CW

d(Γij)
v2 dS

)1/2

×
( ∑

j∈s(i)

d(Γij)

CW

∫

Γij

(u− ū)2 dS +
∑

j∈γ(i)

d(Γij)

CW

∫

Γij

(u− ū)2 dS

)1/2
}

≤ C Jσ
h (v, v)1/2

( ∑
i∈I

hKi
‖u− ū‖2

L2(∂Ki)

)1/2

.

From this estimate and (2.31) we get (2.30). ¤

Lemma 2.2.2 Let u be the solution of the continuous problem (2.19), uh the
solution of the discrete problem (2.27), Πhu be defined by (2.4), and ξ (= ξh) =
uh − Πhu ∈ Sh. Then there exists a constant C > 0, independent of h ∈ (0, h0),
such that

|bh(u, ξ)− bh(uh, ξ)| ≤ C‖ξ‖DG

(
hp+1|u|Hp+1(Ω) + ‖ξ‖L2(Ω)

)
. (2.32)

Proof: We can write

|bh(u, ξ)− bh(uh, ξ)|
≤ |bh(u, ξ)− bh(Πhu, ξ)|+ |bh(Πhu, ξ)− bh(uh, ξ)| .

(2.33)
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According to (2.30), Lemma 2.1.4, a) and Lemma 2.1.6, a),

|bh(u, ξ)− bh(Πhu, ξ)|

≤ C‖ξ‖DG


‖u− Πhu‖L2(Ω) +

(∑
i∈I

hKi
‖u− Πhu‖2

L2(∂Ki)

)1/2



≤ C‖ξ‖DG hp+1|u|Hp+1(Ω).

(2.34)

Finally, it remains to estimate the second term in (2.33). We use Lemma 2.30
and Lemma 2.1.6, c), which yields

|bh(Πhu, ξ)− bh(uh, ξ)|

≤ C‖ξ‖DG


‖ξ‖L2(Ω) +

(∑
i∈I

hKi
‖ξ‖2

L2(∂Ki)

)1/2



≤ C‖ξ‖DG ‖ξ‖L2(Ω).

(2.35)

Now, the combination of (2.33), (2.34) and (2.35) gives the desired estimate (2.32),
which we wanted to prove. ¤

2.2.3 Error estimates

Let us remind that in this section we denote by C a generic constant independent
of h, β0, β1, L, CR. Let u be the exact solution of the continuous problem and uh

the solution of the discrete problem. We set

ξ(t) = uh(t)− Πhu(t) ∈ Sh, η(t) = Πhu(t)− u(t) ∈ Hp+1(Ω, Th).

Then
eh(t) := uh(t)− u(t) = ξ(t) + η(t).

We subtract (2.28) from (2.27), set ϕh := ξ and use Lemmas 2.1.4, 2.2.2,
properties of the form Jh and the relation(

∂ξ(t)

∂t
, ξ(t)

)
=

1

2

d

dt
||ξ(t)‖2

L2(Ω). (2.36)

Then we get:

1

2

d

dt
||ξ(t)||2L2(Ω) + ah(uh, ξ)− ah(u, ξ)− lh(uh, ξ) + lh(u, ξ) + β0Jh(ξ, ξ)

= bh(u, ξ)− bh(uh, ξ)−
(

∂η(t)

∂t
, ξ(t)

)
− β0Jh(η, ξ)

≤ C

{(
Jh(ξ, ξ)

1/2 + |ξ|H1(Ω,Th)

)(
hp+1|u|Hp+1(Ω) + ||ξ||L2(Ω)

)

+ hp+1|∂u/∂t|Hp(Ω)||ξ||L2(Ω) + β0h
p|u|Hp+1(Ω)Jh(ξ, ξ)

1/2

}
.

(2.37)
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For the treatment of the left-hand side diffusion forms ah and lh in (2.37) we
need the following results of Lemmas 2.2.3, 2.2.4 and 2.2.5, which treat individual
variants of the diffusion and right-hand side forms. In Corollary 2.2.6, we unify
these results using the generic notation for simplicity.

Lemma 2.2.3 (Nonsymmetric case) Let the constant from (1.18) satisfy CW >
0. For the nonsymmetric diffusion form ah = aN

h and nonsymmetric right hand
side lh = lNh we have

aN
h (uh, ξ)− aN

h (u, ξ)− lNh (uh, ξ) + lNh (u, ξ) = A + B, (2.38)

where

A ≥ β0|ξ|2H1(Ω,Th),

|B| ≤ C

(
(2β1 − β0)h

p|u|Hp+1(Ω)+

+ LCR

(
hp+1|u|Hp+1(Ω) + ‖ξ‖L2(Ω)

))(|ξ|H1(Ω,Th) + Jh(ξ, ξ)
1/2

)
(2.39)

Proof: We break down aN
h (u, ξ)− lNh (u, ξ) into individual terms by setting

σ1(u, ξ) =
∑
i∈I

∫

Ki

β(u)∇u · ∇ξ dx,

σ2(u, ξ) = −
∑
i∈I

∑

j∈s(i)
j<i

∫

Γij

〈β(u)∇u〉 · nij[ξ] dS,

σ3(u, ξ) =
∑
i∈I

∑

j∈s(i)
j<i

∫

Γij

〈β(u)∇ξ〉 · nij[u] dS,

σ4(u, ξ) = −
∑
i∈I

∑

j∈γD(i)

∫

Γij

β(u)∇u · nijξ dS,

σ5(u, ξ) =
∑
i∈I

∑

j∈γD(i)

∫

Γij

β(u)∇ξ · niju dS−

−
∑
i∈I

∑

j∈γD(i)

∫

Γij

β(u)∇ξ · nijuD dS.

(2.40)

Therefore

aN
h (uh, ξ)− aN

h (u, ξ)− lNh (uh, ξ) + lNh (u, ξ) =
5∑

i=1

(σi(uh, ξ)− σi(u,ξ)) (2.41)
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and we shall treat these terms separately:
1) First term:

σ1(uh, ξ)− σ1(u, ξ) =
∑
i∈I

∫

Ki

(
β(uh)∇uh − β(u)∇u

) · ∇ξ dx

=
∑
i∈I

∫

Ki

((
β(uh)∇uh − β(uh)∇Πhu

)
+

(
β(uh)∇Πhu− β(u)∇Πhu

)

+
(
β(u)∇Πhu− β(u)∇u

)) · ∇ξ dx = σ1
1 + σ1

2 + σ1
3,

(2.42)

and we estimate using (2.23)

σ1
1 =

∑
i∈I

∫

Ki

β(uh)∇ξ · ∇ξ dx ≥ β0|ξ|2H1(Ω,Th). (2.43)

Further, using (2.23), (2.24), the Cauchy inequality, (2.25) and Lemma 2.1.4, we
get

|σ1
2| =

∣∣∣∣
∑
i∈I

∫

Ki

(
β(uh)− β(u)

)∇Πhu · ∇ξ dx

∣∣∣∣

=

∣∣∣∣
∑
i∈I

∫

Ki

((
β(uh)− β(u)

)∇η +
(
β(uh)− β(u)

)∇u

)
· ∇ξ dx

∣∣∣∣

≤
∑
i∈I

∫

Ki

(
(β1 − β0)|∇η|+ L|uh − u||∇u|

)
|∇ξ| dx

≤ (β1 − β0)|η|H1(Ω,Th)|ξ|H1(Ω,Th) + L
∑
i∈I

(
‖∇u‖L∞(Ki)

∫

Ki

|uh − u||∇ξ| dx

)

≤ (β1 − β0)|η|H1(Ω,Th)|ξ|H1(Ω,Th) + L‖∇u‖L∞(Ω)

∑
i∈I

∫

Ki

|η||∇ξ|+ |ξ||∇ξ| dx

≤
((

(β1 − β0) + LCRh
)
Chp|u|Hp+1(Ω) + LCR‖ξ‖L2(Ω)

)
|ξ|H1(Ω,Th).

(2.44)

Finally, using (2.23), the Cauchy inequality and Lemma 2.1.4,

|σ1
3| =

∣∣∣∣
∑
i∈I

∫

Ki

β(u)
(∇Πhu−∇u

) · ∇ξ dx

∣∣∣∣

≤
∑
i∈I

∫

Ki

β1|∇η||∇ξ| dx ≤ β1Chp|u|Hp+1(Ω)|ξ|H1(Ω,Th).

(2.45)
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2) Second term:

σ2(uh, ξ)− σ2(u, ξ) = −
∑
i∈I

∑

j∈s(i)
j<i

∫

Γij

〈
β(uh)∇uh − β(u)∇u

〉 · nij[ξ] dS

= −
∑
i∈I

∑

j∈s(i)
j<i

∫

Γij

〈(
β(uh)∇uh − β(uh)∇Πhu

)
+

(
β(uh)∇Πhu− β(u)∇Πhu

)

+
(
β(u)∇Πhu− β(u)∇u

)〉 · nij[ξ] dS = σ2
1 + σ2

2 + σ2
3,

(2.46)

where

σ2
1 = −

∑
i∈I

∑

j∈s(i)
j<i

∫

Γij

〈β(uh)∇ξ〉 · nij[ξ] dS, (2.47)

we do not estimate σ2
1, since it will cancel out a similar term in the following.

After applying (2.23) and (2.24), the estimates follow:

|σ2
2| =

∣∣∣∣
∑
i∈I

∑

j∈s(i)
j<i

∫

Γij

〈(
β(uh)− β(u)

)∇Πhu

〉
· nij[ξ] dS

∣∣∣∣

=

∣∣∣∣
∑
i∈I

∑

j∈s(i)
j<i

∫

Γij

〈(
β(uh)− β(u)

)∇η +
(
β(uh)− β(u)

)∇u

〉
· nij[ξ] dS

∣∣∣∣

≤
∑
i∈I

∑

j∈s(i)

∫

Γij

(β1 − β0)|∇η||[ξ]|+ L|uh − u||∇u||[ξ]| dS =: RHS.

(2.48)

Next, we apply the Cauchy inequality and (2.25):

RHS ≤

≤ (β1 − β0)

( ∑
i∈I

∑

j∈s(i)

d(Γij)

CW

||∇η||2L2(Γij)

)1/2( ∑
i∈I

∑

j∈s(i)

CW

d(Γij)
||[ξ]||2L2(Γij)

)1/2

+ L‖∇u‖L∞(Ω)

( ∑
i∈I

∑

j∈s(i)

d(Γij)

CW

||uh − u||2L2(Γij)

)1/2

×

×
( ∑

i∈I

∑

j∈s(i)

CW

d(Γij)
||[ξ]||2L2(Γij)

)1/2

≤ (β1 − β0)

CW

( ∑
i∈I

hKi
||∇η||2L2(∂Ki)

)1/2

Jh(ξ, ξ)
1/2

+
L‖∇u‖L∞(Ω)

CW

( ∑
i∈I

hKi
||uh − u||2L2(∂Ki)

)1/2

Jh(ξ, ξ)
1/2.

(2.49)
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Now we apply Lemma 2.1.6 a), c) and conclude the estimate of |σ2
2|:

|σ2
2| ≤

(β1 − β0)

CW

Chp|u|Hp+1(Ω)Jh(ξ, ξ)
1/2

+
LCR

CW

{( ∑
i∈I

hKi
||η||2L2(∂Ki)

)1/2

+

( ∑
i∈I

hKi
||ξ||2L2(∂Ki)

)1/2}
Jh(ξ, ξ)

1/2

≤ C

((
(β1 − β0) + LCRh

)
hp|u|Hp+1(Ω) + LCR||ξ||L2(Ω)

)
Jh(ξ, ξ)

1/2.

(2.50)

The last term is estimated using (2.23), the Cauchy inequality and Lemma 2.1.6
b):

|σ2
3| =

∣∣∣∣
∑
i∈I

∑

j∈s(i)
j<i

∫

Γij

〈
β(u)∇η

〉 · nij[ξ] dS

∣∣∣∣

≤
∑
i∈I

∑

j∈s(i)

∫

Γij

β1|∇η||[ξ]| dS

≤ β1

( ∑
i∈I

∑

j∈s(i)

d(Γij)

CW

||∇η||2L2(Γij)

)1/2( ∑
i∈I

∑

j∈s(i)

CW

d(Γij)
||[ξ]||2L2(Γij)

)1/2

≤ β1

CW

( ∑
i∈I

hKi
||∇η||2L2(∂Ki)

)1/2

Jh(ξ, ξ)
1/2

≤ β1Chp|u|Hp+1(Ω)Jh(ξ, ξ)
1/2

(2.51)

3) Third term:

σ3(uh, ξ)− σ3(u, ξ)

=
∑
i∈I

∑

j∈s(i)
j<i

∫

Γij

〈β(uh)∇ξ〉 · nij[uh]− 〈β(u)∇ξ〉 · nij[u] dS

=
∑
i∈I

∑

j∈s(i)
j<i

∫

Γij

〈
β(uh)∇ξ

〉 · nij[uh − Πhu]

+
〈(

β(uh)− β(u)
)∇ξ

〉 · nij[Πhu] +
〈
β(u)∇ξ

〉 · nij[Πhu− u] dS

= σ3
1 + σ3

2 + σ3
3,

(2.52)

Using (2.47) we get

σ3
1 =

∑
i∈I

∑

j∈s(i)
j<i

∫

Γij

〈β(uh)∇ξ〉 · nij[ξ] dS = −σ2
1. (2.53)
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Due to the regularity condition (2.25), the function u is continuous and, thus,
[u] = 0 and [Πhu] = [η]. We get the estimate:

|σ3
2| =

∣∣∣∣
∑
i∈I

∑

j∈s(i)
j<i

∫

Γij

〈(
β(uh)− β(u)

)∇ξ

〉
· nij[Πhu] dS

∣∣∣∣

=

∣∣∣∣
∑
i∈I

∑

j∈s(i)
j<i

∫

Γij

〈(
β(uh)− β(u)

)∇ξ

〉
· nij[η] dS

∣∣∣∣

≤
∑
i∈I

∑

j∈s(i)

∫

Γij

(β1 − β0)|∇ξ||[η]| dS

≤ (β1 − β0)

( ∑
i∈I

∑

j∈s(i)

d(Γij)

CW

||∇ξ||2L2(Γij)

)1/2( ∑
i∈I

∑

j∈s(i)

CW

d(Γij)
||[η]||2L2(Γij)

)1/2

≤ (β1 − β0)

CW

( ∑
i∈I

hKi
||∇ξ||2L2(∂Ki)

)1/2

Jh(η, η)1/2

≤ (β1 − β0)C|ξ|H1(Ω,Th)h
p|u|Hp+1(Ω),

(2.54)

where relation (2.23), the Cauchy inequality and Lemma 2.1.6 d) were applied.
Finally we have

|σ3
3| =

∣∣∣∣
∑
i∈I

∑

j∈s(i)
j<i

∫

Γij

〈
β(u)∇ξ

〉 · nij[η] dS

∣∣∣∣

≤
∑
i∈I

∑

j∈s(i)

∫

Γij

β1|∇ξ||[η]| dS

≤ β1

( ∑
i∈I

∑

j∈s(i)

d(Γij)

CW

||∇ξ||2L2(Γij)

)1/2( ∑
i∈I

∑

j∈s(i)

CW

d(Γij)
||[η]||2L2(Γij)

)1/2

≤ β1C|ξ|H1(Ω,Th)h
p|u|Hp+1(Ω).

(2.55)

4) Fourth term:

σ4(uh, ξ)− σ4(u, ξ) = −
∑
i∈I

∑

j∈γD(i)

∫

Γij

(
β(uh)∇uh − β(u)∇u

) · nijξ dS

= −
∑
i∈I

∑

j∈γD(i)

∫

Γij

(
β(uh)∇ξ +

(
β(uh)− β(u)

)∇Πhu + β(u)∇η
) · nijξ dS

= σ4
1 + σ4

2 + σ4
3

(2.56)
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and these terms can be treated similarly as σ2
1, σ2

2 and σ2
3 to obtain

σ4
1 = −

∑
i∈I

∑

j∈γD(i)

∫

Γij

β(uh)∇ξ · nijξ dS,

|σ4
2| ≤ C

((
(β1 − β0) + LCRh

)
hp|u|Hp+1(Ω) + LCR||ξ||L2(Ω)

)
Jh(ξ, ξ)

1/2,

|σ4
3| ≤ β1Chp|u|Hp+1(Ω)Jh(ξ, ξ)

1/2.

(2.57)

5) Fifth term:

σ5(uh, ξ)− σ5(u, ξ) =
∑
i∈I

∑

j∈γD(i)

∫

Γij

β(uh)∇ξ · nijuh

− β(u)∇ξ · niju−
(
β(uh)− β(u)

)∇ξ · nijuD dS

=
∑
i∈I

∑

j∈γD(i)

∫

Γij

β(uh)∇ξ · nijξ

+
(
β(uh)− β(u)

)∇ξ · nij

(
Πhu− uD

)
+ β(u)∇ξ · nijη dS

= σ5
1 + σ5

2 + σ5
3

(2.58)

and it follows, due to (2.57) that

σ5
1 = −σ4

1, (2.59)

Further

σ5
2 =

∑
i∈I

∑

j∈γD(i)

∫

Γij

(
β(uh)− β(u)

)∇ξ · nij

(
Πhu− uD

)
dS

=
∑
i∈I

∑

j∈γD(i)

∫

Γij

(
β(uh)− β(u)

)∇ξ · nijη

+
(
β(uh)− β(u)

)∇ξ · nij(u− uD) dS

=
∑
i∈I

∑

j∈γD(i)

∫

Γij

(
β(uh)− β(u)

)∇ξ · nijη dS,

(2.60)

since u = uD on ΓD. This, the Cauchy inequality and Lemma 2.1.6 d) give us

|σ5
2| ≤

∑
i∈I

∑

j∈γD(i)

∫

Γij

(β1 − β0)|∇ξ||η| dS

≤ (β1 − β0)

( ∑
i∈I

hKi

CW

||∇ξ||2L2(∂Ki)

)1/2

Jh(η, η)1/2

≤ (β1 − β0)C|ξ|H1(Ω,Th)h
p|u|Hp+1(Ω).

(2.61)
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Similarly

|σ5
3| =

∣∣∣∣
∑
i∈I

∑

j∈γD(i)

∫

Γij

β(u)∇ξ · nijη dS

∣∣∣∣

≤ β1

( ∑
i∈I

hKi

CW

||∇ξ||2L2(∂Ki)

)1/2

Jh(η, η)1/2

≤ β1C|ξ|H1(Ω,Th)h
p|u|Hp+1(Ω).

(2.62)

Finally the proof is completed by taking

A = σ1
1

using the appropriate cancellations (2.53), (2.59), which imply that

B =
5∑

i=1

3∑
j=1

σi
j − σ1

1 =
5∑

i=1

3∑
j=2

σi
j.

Applying the derived inequalities to individual terms give us the sought estimates
(2.39). ¤

We can derive similar results for the symmetric forms, however we must im-
pose a condition on the constant CW from (2.92).

Lemma 2.2.4 (Symmetric case) Let

CW ≥ 4

(
β1

β0

)2

CM(1 + CI), (2.63)

where CM and CI are constants from Lemmas 2.1.1 and 2.1.2, respectively, then
for the symmetric diffusion form ah = aS

h and symmetric right hand side lh = lSh
we have

aS
h(uh, ξ)− aS

h(u, ξ)− lSh (uh, ξ) + lSh (u, ξ) = A + B, (2.64)

where

A ≥ β0

2

(|ξ|2H1(Ω,Th) − Jh(ξ, ξ)
)
,

|B| ≤ C

(
(2β1 − β0)h

p|u|Hp+1(Ω)+

+ LCR

(
hp+1|u|Hp+1(Ω) + ‖ξ‖L2(Ω)

))(|ξ|H1(Ω,Th) + Jh(ξ, ξ)
1/2

)
.

(2.65)
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Proof: Using the notation from Lemma 2.2.3 we see that

aS
h(uh, ξ)− aS

h(u, ξ)− lSh (uh, ξ) + lSh (u, ξ) =

= σ1(uh, ξ)− σ1(u,ξ) +
5∑

i=2

(−1)i
(
σi(uh, ξ)− σi(u,ξ)

)
.

(2.66)

Using (2.53), (2.59), we can take

A = σ1
1 +

5∑
i=2

(−1)iσi
1 = σ1

1 + 2σ2
1 + 2σ4

1,

B =
5∑

i=1

3∑
j=2

σi
j.

(2.67)

The estimate for |B| is the same as in Lemma 2.2.3. However, the estimation of
A is more difficult, since terms that have cancelled out in the nonsymmetric form
are present in this case.

Using the estimate (2.43), the Cauchy and Young inequality, for any δ > 0
we get

A ≥ σ1
1 − 2|σ2

1| − 2|σ4
1| ≥ β0|ξ|2H1(Ω,Th)

− 2β1

( ∑
i∈I

∑

j∈s(i)
j<i

∫

Γij

d(Γij)

δ
|〈∇ξ〉|2 dS

)1/2( ∑
i∈I

∑

j∈s(i)
j<i

∫

Γij

δ

d(Γij)
[ξ]2 dS

)1/2

− 2β1

( ∑
i∈I

∑

j∈γD(i)

∫

Γij

d(Γij)

δ
|∇ξ|2 dS

)1/2( ∑
i∈I

∑

j∈γD(i)

∫

Γij

δ

d(Γij)
|ξ|2 dS

)1/2

.

(2.68)

Now using the fact that ∀α, β, γ, δ ∈ IR, 2(αγ + βδ) ≤ α2 + β2 + γ2 + δ2 applied
to the previous, we get

A ≥ β0|ξ|2H1(Ω,Th) − β1ω − β1
δ

CW

Jh(ξ, ξ), (2.69)

where

ω =
1

δ

∑
i∈I

( ∑

j∈s(i)
j<i

∫

Γij

d(Γij)

δ
|〈∇ξ〉|2 dS +

∑

j∈γD(i)

∫

Γij

d(Γij)

δ
|∇ξ|2 dS

)
. (2.70)
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Further using Lemma 2.1.1 and 2.1.2, we get

ω ≤ 1

δ

∑
i∈I

hKi

∫

∂Ki

|∇ξ|2 dS

≤ CM

δ

∑
i∈I

hKi

(|ξ|H1(Ki)|∇ξ|H1(Ki) + h−1
Ki
|ξ|2H1(Ki)

)

≤ CM(1 + CI)

δ
|ξ|2H1(Ω,Th).

(2.71)

Now if we choose

δ =
β1

β0

2CM(1 + CI), (2.72)

and use the condition (2.63), we get

A ≥ β0

2
|ξ|2H1(Ω,Th) −

2CM(1 + CI)β
2
1

CW β0

Jh(ξ, ξ)

≥ β0

2

(|ξ|2H1(Ω,Th) − Jh(ξ, ξ)
)
.

(2.73)

¤

Lemma 2.2.5 (Incomplete case) Let

CW ≥ 2

(
β1

β0

)2

CM(1 + CI), (2.74)

where CM and CI are constants from Lemmas 2.1.1 and 2.1.2, respectively, then
for the incomplete diffusion form ah = aI

h and incomplete right hand side lh = lIh
we have

aI
h(uh, ξ)− aI

h(u, ξ)− lIh(uh, ξ) + lIh(u, ξ) = A + B, (2.75)

where

A ≥ β0

2

(|ξ|2H1(Ω,Th) − Jh(ξ, ξ)
)
,

|B| ≤ C

(
(2β1 − β0)h

p|u|Hp+1(Ω)+

+ LCR

(
hp+1|u|Hp+1(Ω) + ‖ξ‖L2(Ω)

))(|ξ|H1(Ω,Th) + Jh(ξ, ξ)
1/2

)
.

(2.76)

Proof: The proof is almost identical to the proof of the previous Lemma 2.2.4.
We see that

aI
h(uh, ξ)− aI

h(u, ξ)− lIh(uh, ξ) + lIh(u, ξ) =
∑

i∈{1,2,4}

(
σi(uh, ξ)− σi(u,ξ)

)
. (2.77)
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We can take

A = σ1
1 + σ2

1 + σ4
1, and B =

∑

i∈{1,2,4}

3∑
j=2

σi
j. (2.78)

The estimate for |B| is the same as in Lemma 2.2.3, and the estimate of A as in
Lemma 2.2.4.

Using the estimate (2.43), the Cauchy and Young’s inequality, for any δ > 0
we get

A ≥ σ1
1 − |σ2

1| − |σ5
1| ≥ β0|ξ|2H1(Ω,Th)

− β1

( ∑
i∈I

∑

j∈s(i)
j<i

∫

Γij

d(Γij)

δ
|〈∇ξ〉|2 dS

)1/2( ∑
i∈I

∑

j∈s(i)
j<i

∫

Γij

δ

d(Γij)
[ξ]2 dS

)1/2

− β1

( ∑
i∈I

∑

j∈γD(i)

∫

Γij

d(Γij)

δ
|∇ξ|2 dS

)1/2( ∑
i∈I

∑

j∈γD(i)

∫

Γij

δ

d(Γij)
|ξ|2 dS

)1/2

.

(2.79)

Now using the fact that 2(AC+BD) ≤ A2+B2+C2+D2 holds for all A,B,C,D ∈
IR,we get

A ≥ β0|ξ|2H1(Ω,Th) −
β1

2
ω − β1

δ

2CW

Jh(ξ, ξ), (2.80)

where ω is defined in (2.70) and inequality (2.71) holds. Now if we choose

δ =
β1

β0

CM(1 + CI), (2.81)

and use the condition (2.74), we get

A ≥ β0

2

(|ξ|2H1(Ω,Th) − Jh(ξ, ξ)
)
. (2.82)

¤
Now we can put together the results of the previous three lemmas into one

corollary, which enables us to treat all three variants of the diffusion and right-
hand side forms simultaneously. We note the requirements on CW in order to
obtain ’coercivity’ of the individual variants: in the nonsymmetric case, it suffices
to take CW > 0, whereas in the incomplete case, we need CW to satisfy (2.74)
and in the symmetric case, the lower bound for CW is twice as large as for the
incomplete variant.

Corollary 2.2.6 Due to Lemma 2.2.3, Lemma 2.2.4 and 2.2.5 we have

ah(uh, ξ)− ah(u, ξ)− lh(uh, ξ) + lh(u, ξ) + β0Jh(ξ, ξ) = A + B, (2.83)



CHAPTER 2. ERROR ESTIMATES FOR DGFEM 49

where

A ≥ β0

2

(|ξ|2H1(Ω,Th) + Jh(ξ, ξ)
)
,

|B| ≤ C

(
(2β1 − β0)h

p|u|Hp+1(Ω)+

+ LCR

(
hp+1|u|Hp+1(Ω) + ‖ξ‖L2(Ω)

))(|ξ|H1(Ω,Th) + Jh(ξ, ξ)
1/2

)
.

(2.84)

This estimate holds for ah = aN
h with CW > 0, further for ah = aS

h , provided the
constant CW satisfies (2.63) and for ah = aI

h, provided the constant CW satisfies
(2.74).

2.2.4 Main theorem

Theorem 2.2.7 Let eh = uh − u be the error of the method presented. Then it
satisfies the estimate

max
t∈[0,T ]

||eh(t)||2L2(Ω) +
β0

2

∫ t

0

(|eh(ϑ)|2H1(Ω,Th) + Jh(eh(ϑ), eh(ϑ))
)
dϑ

≤ C h2p,

(2.85)

with a constant C > 0 independent of h.

Proof: From (2.37) in combination with Corollary 2.2.6 it follows that

1

2

d

dt
||ξ(t)||2L2(Ω) +

β0

2

(|ξ|2H1(Ω,Th) + Jh(ξ, ξ)
)

≤ C

{(
Jh(ξ, ξ)

1/2 + |ξ|H1(Ω,Th)

)(
hp+1|u|Hp+1(Ω) + ||ξ||L2(Ω)

)

+ hp+1|∂u/∂t|Hp+1(Ω)||ξ||L2(Ω) + β0h
p|u|Hp+1(Ω)Jh(ξ, ξ)

1/2

+

(
(2β1 − β0)h

p|u|Hp+1(Ω)

+ LCR

(
hp+1|u|Hp+1(Ω) + ‖ξ‖L2(Ω)

))(|ξ|H1(Ω,Th) + Jh(ξ, ξ)
)}

Applying Young’s inequality gives us

d

dt
||ξ(t)||2L2(Ω) + β0

(|ξ|2H1(Ω,Th) + Jh(ξ, ξ)
)

≤ β0

2

(
Jh(ξ, ξ) + |ξ|2H1(Ω,Th)

)
+ C

{(
1 +

1 + L2C2
R

β0

)
||ξ||2L2(Ω)

+
1

β0

(
h2p+2 + β2

0h
2p + (2β1 − β0)

2h2p + L2C2
Rh2p+2

)|u|2Hp+1(Ω)

+ h2p+2|∂u/∂t|2Hp+1(Ω)

}
.
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After integrating from 0 to t ∈ [0, T ] and noticing that ξ(0) = u0
h−Πhu

0 = 0, we
obtain

||ξ(t)||2L2(Ω) + β0

∫ t

0

(|ξ(ϑ)|2H1(Ω,Th) + Jh(ξ(ϑ), ξ(ϑ))
)
dϑ

≤ C

{(
1 +

1 + L2C2
R

β0

) ∫ t

0

||ξ(ϑ)||2L2(Ω) dϑ +
1

β0

h2p

∫ t

0

(
h2 + β2

0

+ (2β1 − β0)
2 + L2C2

Rh2
)|u(ϑ)|2Hp+1(Ω) dϑ + h2p+2

∫ t

0

|∂u/∂t|2Hp(Ω) dϑ

}
,

Now the application of Gronwall’s Lemma 2.1.7, where we set

y(t) = ||ξ(t)||2L2(Ω),

q(t) = β0

∫ t

0

(|ξ|2H1(Ω,Th) + Jh(ξ, ξ)
)
dϑ,

r(t) = C
β0 + 1 + L2C2

R

β0

,

z(t) = Ch2p

(
1

β0

(
h2 + β2

0 + (2β1 − β0)
2 + L2C2

Rh2
)‖u‖2

L2(0,T ;Hp+1(Ω))

+ h2‖∂u/∂t‖2
L2(0,T ;Hp+1(Ω))

)
,

implies that

||ξ(t)||2L2(Ω) + β0

∫ t

0

(|ξ(ϑ)|2H1(Ω,Th) + Jh(ξ(ϑ), ξ(ϑ))
)
dϑ

≤ Ch2p β0 + 1 + L2C2
R

β0

(
1

β0

(
h2 + β2

0 + (2β1 − β0)
2 + L2C2

Rh2
)

× ‖u‖2
L2(0,T ;Hp+1(Ω)) + h2‖∂u/∂t‖2

L2(0,T ;Hp+1(Ω))

)

× exp

(
C

β0 + 1 + L2C2
R

β0

t

)
, t ∈ [0, T ].

Finally, since eh = ξ + η, the above estimates and estimates from Lemma 2.1.4
yield the sought result. ¤
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2.3 Optimal L∞(L2) error estimates.

This section is concerned with the analysis of the discontinuous Galerkin
space semidiscretization of a nonstationary convection-diffusion problem with a
linear diffusion and nonlinear convection, equipped by mixed Dirichlet-Neumann
boundary conditions and an initial condition. We prove the optimal error esti-
mate of order O(hp+1) in the L∞(0, T ; L2(Ω))-norm for the symmetric interior
penalty (SIPG) method, when piecewise polynomial approximation of degree p
are used. We use the so-called Aubin-Nitsche technique, which involves the use
of an auxiliary dual problem. This imposes additional requirements on the do-
main Ω, namely that Ω is convex and we have no Neumann boundary condition,
i.e. ΓN = ∅. Otherwise, throughout this section we assume that the assumption
(H) on the numerical flux (page 35), and the assumption (A) on the finite ele-
ment mesh (page 30) hold. Namely, we allow nonconforming meshes with hanging
nodes, which improves the result of [17].

2.3.1 Continuous problem

Let Ω ⊂ Rd, d = 2, 3, be a bounded polygonal (if d = 2) or polyhedral (if d = 3)
convex domain with Lipschitz-continuous boundary ∂Ω = ΓD∪ΓN , ΓD∩ΓN = ∅,
and T > 0. Let us assume that the (d−1)-dimensional measure of ΓD is positive.
We are concerned with the following nonstationary nonlinear convection-diffusion
problem:
Find u : QT = Ω× (0, T ) → R such that

a)
∂u

∂t
+

d∑
s=1

∂fs(u)

∂xs

= ε∆u + g in QT ,

b) u
∣∣
ΓD×(0,T )

= uD, (2.86)

c) ε
∂u

∂n

∣∣
ΓN×(0,T )

= gN ,

d) u(x, 0) = u0(x), x ∈ Ω.

The diffusion coefficient ε > 0 is a given constant, g : QT → R, uD : ΓD×(0, T ) →
R, gN : ΓN × (0, T ) → R and u0 : Ω → R are given functions, and fs ∈ C1(R),
s = 1, . . . , d, are prescribed Lipschitz-continuous fluxes. Without the loss of
generality we assume that fs(0) = 0, s = 1, . . . , d.

In what follows, we shall assume that problem (2.86) has a unique sufficiently
regular solution u such that

ut =
∂u

∂t
∈ L2(0, T ; Hp+1(Ω)). (2.87)

Hence, u ∈ C([0, T ]; Hp+1(Ω)).
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DGFE formulation

In the following we use the notation of Chapter 1. In order to introduce the space
semidiscretization of problem (2.86) over the mesh Th by the DGFEM, we use
the following forms defined in Chapter 1:

ah(u, ϕ) =
∑
i∈I

∫

Ki

ε∇u · ∇ϕ dx

−
∑
i∈I

∑
j∈s(i)

j<i

∫

Γij

ε〈∇u〉 · nij[ϕ] dS −
∑
i∈I

∑
j∈s(i)

j<i

∫

Γij

ε〈∇ϕ〉 · nij[u] dS

−
∑
i∈I

∑

j∈γD(i)

∫

Γij

ε∇u · nij ϕ dS −
∑
i∈I

∑

j∈γD(i)

∫

Γij

ε∇ϕ · nij u dS,

(2.88)

Jh(u, ϕ) =
∑
i∈I

∑
j∈s(i)

j<i

∫

Γij

σ[u] [ϕ] dS +
∑
i∈I

∑

j∈γD(i)

∫

Γij

σ u ϕ dS, (2.89)

`h(ϕ)(t) =

∫

Ω

g(t) ϕ dx +
∑
i∈I

∑

j∈γN (i)

∫

ΓN

gN(t) ϕ dS (2.90)

−
∑
i∈I

∑

j∈γD(i)

∫

Γij

ε∇ϕ · nij uD(t) dS + ε
∑
i∈I

∑

j∈γD(i)

∫

Γij

σ uD(t) ϕ dS,

bh(u, ϕ) = −
∑
i∈I

∫

K

d∑
s=1

fs(u)
∂ϕ

∂xs

dx (2.91)

+
∑
i∈I

∑

j∈S(i)

∫

Γij

H
(
u|Γij

, u|Γji
, nij

)
ϕ|Γij

dS.

Again, the constant σ in (2.89) and (2.90) is defined by

σ|Γij
=

CW

d(Γij)
, (2.92)

where
CW ≥ 4CM(1 + CI) (2.93)

and CM and CI are constants from (2.1.1) and (2.1.2), respectively. In this
Section, we deal only with the symmetric variant and therefore we omit the
superscript S in the diffusion form aS

h and right-hand side form `S
h .

As in the previous section, we assume that the geometry of the mesh sat-
isfies conditions of Section 2.1.1 and the numerical flux H(u, v,n) is Lipschitz-
continuous, consistent and conservative (page 35).

Now we can introduce the discrete problem.
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Definition 1 Let u0
h ∈ Sh be the L2(Ω)-projection of the initial condition u0 onto

Sh, i.e. a function defined by

(u0
h − u0, ϕh) = 0 ∀ϕh ∈ Sh. (2.94)

We say that uh is a DGFE solution of the convection-diffusion problem (2.86), if

a) uh ∈ C1([0, T ]; Sh),

b)

(
∂uh(t)

∂t
, ϕh

)
+ bh(uh(t), ϕh) + ah(uh(t), ϕh) + εJh(uh(t), ϕh)=`h(ϕh) (t)

∀ϕh ∈ Sh, ∀ t ∈ (0, T ),

c) uh(0) = u0
h.

(2.95)

It is possible to show that a sufficiently regular exact solution u satisfies
condition (2.95), b):

(
∂u(t)

∂t
, ϕh

)
+ bh(u(t), ϕh) + ah(u(t), ϕh) + εJσ

h (u(t), ϕh)=`h(ϕh) (t) (2.96)

for all ϕh ∈ Sh and for a.a. t ∈ (0, T ),

which implies the Galerkin orthogonality property of the error.

2.3.2 Error analysis

In the following we shall use all the assumptions and results from Section 2.1.
Let us deal with properties of the forms ah and Jh. In [15, Corollary 3.10] it was
shown that under this assumption on CW the forms ah and Jh have the following
coercivity property:

ah(ϕh, ϕh) + Jh(ϕh, ϕh) ≥ ε

2

(
|ϕh|2H1(Ω,Th) + Jh(ϕh, ϕh)

)

∀ϕh ∈ Sh, ∀h ∈ (0, h0).
(2.97)

Moreover, in the same way as in [15, estimates (3.22) and (3.28)] we can prove
the existence of a constant C > 0 such that for any u ∈ Hp+1(Ω), ϕh ∈ Sh and
h ∈ (0, h0) we have

|ah(Πhu− u, ϕh)| ≤ εC hp|u|Hp+1(Ω)

(
Jh(ϕh, ϕh)

1/2 + |ϕh|H1(Ω,Th)

)
,(2.98)

|Jh(Πhu− u, Πhu− u)| ≤ C h2p|u|2Hp+1(Ω). (2.99)

Now, let us define the form

Ah(w, v) = ah(w, v) + εJh(w, v) v, w ∈ H2(Ω, Th), (2.100)
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and set

‖w‖DG =

(
1

2

(
|w|2H1(Ω,Th) + Jh(w, w)

))1/2

. (2.101)

Since the (d − 1)-dimensional measure of ΓD is positive, ‖ · ‖DG is a norm in
H1(Ω, Th). With the use of these notations we can rewrite estimates (2.97) and
(2.98) in the form

Ah(ϕh, ϕh) ≥ ε‖ϕh‖2
DG (2.102)

and
|ah(Πhu− u, ϕh)| ≤ εC hp|u|Hp+1(Ω) ‖ϕh‖DG, (2.103)

respectively.
For each h ∈ (0, h0) and t ∈ [0, T ] we define the function u∗(t) (= u∗h(t)) as

the “Ah-projection” of u(t) on Sh, i. e. a function satisfying the conditions

u∗(t) ∈ Sh, Ah(u
∗(t), ϕh) = Ah(u(t), ϕh) ∀ϕh ∈ Sh. (2.104)

(In what follows we shall usually omit the argument t of the functions u and u∗.)
First, we shall derive estimates of the functions χ = u − u∗ and χt = ∂χ

∂t
in

the norm ‖ · ‖DG and in the L2(Ω)-norm.

Lemma 2.3.1 There exists a constant C > 0 such that

‖χ‖DG ≤ C hp|u|Hp+1(Ω), (2.105)

‖χt‖DG ≤ C hp|ut|Hp+1(Ω) (2.106)

for all h ∈ (0, h0).

Proof: Let us set û = Πhu, the L2-projection of u onto the space Sh. By (2.102)
and (2.104) and the definition of u∗ we obtain

ε‖û− u∗‖2
DG ≤ Ah(û− u∗, û− u∗)

= Ah(û− u∗, û− u∗) + Ah(u
∗ − u, û− u∗) (2.107)

= Ah(û− u, û− u∗)

= ah(û− u, û− u∗) + εJh(û− u, û− u∗).

From (2.103) we have

ah(û− u, û− u∗) ≤ Cεhp|u|Hp+1(Ω)‖û− u∗‖DG. (2.108)

If we combine Lemma 2.1.5 with the definition of the norm ‖ . ‖DG and with
(2.99), we obtain

Jh(û− u, û− u∗) ≤ (Jh(û− u, û− u))1/2 (Jh(û− u∗, û− u∗))1/2

≤ C hp|u|Hp+1(Ω)‖û− u∗‖DG. (2.109)
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From (2.107) – (2.109) we get

‖û− u∗‖DG ≤ C hp|u|Hp+1(Ω). (2.110)

Further, in virtue of the regularity of u, Lemma 2.1.4, b) and (2.99), we have

‖u− û‖DG = ‖η‖DG ≤ Chp|u|Hp+1(Ω).

Now it is sufficient to use the triangle inequality

‖u− u∗‖DG ≤ ‖u− û‖DG + ‖û− u∗‖DG,

which implies that

‖χ‖DG = ‖u− u∗‖DG ≤ C hp|u|Hp+1(Ω).

Hence, (2.105) is proven.

Let us deal now with the norm ‖χt‖DG. As

Ah (u(t)− u∗(t), ϕh) = 0 ∀ϕh ∈ Sh, ∀ t ∈ (0, T ),

from the definitions of ah and Jh, for all ϕh ∈ Sh we have

0 =
d

dt
(Ah (u(t)− u∗(t), ϕh)) = Ah

(
∂(u(t)− u∗(t))

∂t
, ϕh

)
,

i. e.
Ah(χt, ϕh) = 0 ∀ϕh ∈ Sh.

Obviously
Πhut = (Πhu)t = ût ∈ Sh and u∗t ∈ Sh.

In the same way as in the estimation of the norm ‖χ‖DG we now obtain

ε‖ût − u∗t‖2
DG ≤ Ah (ût − u∗t , ût − u∗t ) + Ah (u∗t − ut, ût − u∗t )

= Ah (ût − ut, ût − u∗t )

≤ εC hp|ut|Hp+1(Ω)‖ût − u∗t‖DG,

which implies that
‖ût − u∗t‖DG ≤ C hp|ut|Hp+1(Ω),

and thus,

‖ut − u∗t‖DG ≤ ‖ut − ût‖DG + ‖ût − u∗t‖DG ≤ C hp|ut|Hp+1(Ω).

Hence, we have obtained the desired estimate (2.106). ¤
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In what follows, for an arbitrary z ∈ L2(Ω) we shall consider the dual problem:
Given z ∈ L2(Ω), find ψ such that

−∆ψ = z in Ω,

ψ|ΓD
= 0,

∂ψ

∂n

∣∣∣
ΓN

= 0.

(2.111)

Under the notation

V =
{
v ∈ C∞(Ω), supp v ⊂ Ω ∪ ΓN

}
,

the weak formulation of (2.111) reads: Find ψ ∈ H1(Ω) such that ψ|ΓD
= 0 and

(∇ψ, ∇v) = (z, v) ∀ v ∈ V. (2.112)

Let us assume that ψ ∈ H2(Ω) and there exists a constant C > 0, independent
of z such that

‖ψ‖H2(Ω) ≤ C‖z‖L2(Ω). (2.113)

As the domain Ω is convex, this is true, e.g. provided ΓN = ∅, as follows from
[25]. Let us note that H2(Ω) ⊂ C(Ω).

Further, let ψh be the piecewise linear L2-projection of the function ψ, i.e.
ψ|K ∈ P 1(K) and

(
ψ − ψh, ϕh

)
L2(K)

= 0, ∀ϕh ∈ P 1(K), ∀K ∈ Th. (2.114)

Lemma 2.3.2 The following estimates hold:

Jh(ψ − ψh, ψ − ψh) ≤ C h2|ψ|2H2(Ω)

‖ψ − ψh‖2
DG ≤ C h2|ψ|2H2(Ω)

(2.115)

Proof: Obviously ψh ∈ Sh. Due to Lemma 2.1.1 and estimates (2.6) we have

Jh(ψ − ψh, ψ − ψh)

=
∑
i∈I

∑

j∈s(i)
j<i

∫

Γij

CW

d(Γij)
[ψ − ψh]

2 dS +
∑
i∈I

∑

j∈γD(i)

∫

Γij

CW

d(Γij)
(ψ − ψh)

2 dS

≤ C
∑
i∈I

∫

∂Ki

1

hKi

(ψ − ψh)
2 dx

≤ C
∑
i∈I

CM

hKi

(
||ψ − ψh||L2(Ki)|ψ − ψh|H1(Ki) + h−1

Ki
||ψ − ψh||L2(Ki)

)

≤ C
∑
i∈I

1

hKi

h3
Ki
|ψ|2H2(Ki)

≤ Ch2|ψ|2H2(Ω)
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The second inequality in (2.115) follows from the preceding and estimate (2.6):

‖ψ − ψh‖2
DG =

1

2

(
|ψ − ψh|2H1(Ω,Th) + Jh(ψ − ψh, ψ − ψh)

)
≤ C h2|ψ|2H2(Ω)

¤
Now we shall use the dual problem (2.111) to obtain L2-optimal error esti-

mates for χ and χt.

Lemma 2.3.3 There exists a constant C > 0 such that

‖χ‖L2(Ω) ≤ Chp+1|u|Hp+1(Ω), (2.116)

‖χt‖L2(Ω) ≤ Chp+1|ut|Hp+1(Ω) (2.117)

for all h ∈ (0, h0).

Proof: We have

‖χ‖L2(Ω) = sup
z∈L2(Ω)

(χ, z)

‖z‖L2(Ω)

. (2.118)

Now, using (2.111), Green’s theorem, the homogeneous Neumann condition
and the fact that the continuity of functions from the space H2(Ω) yields

[ψ]Γij
= 0 ∀i ∈ I, j ∈ s(i), (2.119)

we obtain

(χ, z) =

∫

Ω

zχ dx = −
∫

Ω

∆ψχ dx

=
∑
i∈I

∫

Ki

∇ψ · ∇χ dx−
∑
i∈I

∑

j∈s(i)

∫

Γij

∇ψ · nij χ dS

−
∑
i∈I

∑

j∈γD(i)

∫

Γij

∇ψ · nij χ dS −
∑
i∈I

∑

j∈γN (i)

∫

Γij

∇ψ · nij χ dS

=
∑
i∈I

∫

Ki

∇ψ · ∇χ dx

−




∑
i∈I

∑
j∈s(i)

j<i

∫

Γij

〈∇ψ〉 · nij [χ] dS +
∑
i∈I

∑
j∈s(i)

j<i

∫

Γij

〈∇χ〉 · nij [ψ] dS




−

∑

i∈I

∑

j∈γD(i)

∫

Γij

∇ψ · nij χ dS +
∑
i∈I

∑

j∈γD(i)

∫

Γij

∇χ · nij ψ dS




+




∑
i∈I

∑
j∈s(i)

j<i

∫

Γij

σ [ψ] [χ] dS +
∑
i∈I

∑

j∈ΓD(i)

∫

Γij

σ ψ χ dS


 ,
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i. e.,

(χ, z) =
1

ε
Ah(ψ, χ). (2.120)

Further, the symmetry of Ah and (2.104) give

Ah(ψh, χ) = Ah(χ, ψh) = Ah(u− u∗, ψh) = 0, (2.121)

and thus

(χ, z) =
1

ε
Ah(ψ − ψh, χ) = A1 + A2 + A3 + A4,

where

A1 :=
∑
i∈I

∫

Ki

∇(ψ − ψh) · ∇χ dx

A2 := −
∑
i∈I

∑
j∈s(i)

j<i

∫

Γij

〈∇(ψ − ψh)〉 · nij[χ] dS −
∑
i∈I

∑

j∈γD(i)

∫

Γij

∇(ψ − ψh) · nijχ dS

A3 := −
∑
i∈I

∑
j∈s(i)

j<i

∫

Γij

〈∇χ〉 · nij[ψ − ψh] dS −
∑
i∈I

∑

j∈γD(i)

∫

Γij

∇χ · n(ψ − ψh) dS

A4 :=
∑
i∈I

∑
j∈s(i)

j<i

∫

Γij

σ[ψ − ψh] [χ] dS +
∑
i∈I

∑

j∈γD(i)

∫

Γij

σ(ψ − ψh) χ dS

Now we estimate these terms individually. First, due to Lemmas 2.3.1 and 2.3.2,
we have

A1 ≤ |ψ − ψh|H1(Ω)|χ|H1(Ω,Th) ≤ C h|ψ|H2(Ω) ‖χ‖DG

≤ C hp+1|u|Hp+1(Ω)‖z‖L2(Ω).

Next we write

A2 =−
∑
i∈I

∑
j∈s(i)

j<i

∫

Γij

(
d(Γij)

CW

)1/2

〈∇(ψ − ψh)〉 · nij

(
CW

d(Γij)

)1/2

[χ] dS

−
∑
i∈I

∑

j∈γD(i)

∫

Γij

(
d(Γij)

CW

)1/2

∇(ψ − ψh) · nij

(
CW

d(Γij)

)1/2

χ dS

≤ 1

C
1/2
W

(∑
i∈I

hKi
‖∇(ψ − ψh)‖2

L2(∂Ki)

)1/2

(Jh(χ, χ))1/2 .

According to the multiplicative trace inequality (2.1.1), [7, Theorem 3.1.6], Lemma
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2.3.1, (2.113) and (2.105), we can write

A2 ≤ 1

C
1/2
W

(∑
i∈I

hKi
‖∇(ψ − ψh)‖2

L2(∂Ki)

)1/2

(Jh(χ, χ))1/2

≤
√

2‖χ‖DG

C
1/2
W

(∑
i∈I

hKi

(
|∇(ψ − ψh)|H1(Ki) ‖∇(ψ − ψh)‖L2(Ki)+

+ h−1
Ki
‖∇(ψ − ψh)‖2

L2(Ki)

))1/2

≤ C‖χ‖DG

(∑
i∈I

h2
Ki
|ψ|2H2(Ki)

)1/2

≤ C hp+1|u|Hp+1(Ω) ‖z‖L2(Ω).

Now we estimate A3:

A3 = −
∑
i∈I

∑
j∈s(i)

j<i

∫

Γij

〈∇χ〉 · nij[ψ − ψh] dS −
∑
i∈I

∑

j∈γD(i)

∫

Γij

∇χ · n(ψ − ψh) dS

≤ 1

C
1/2
W

( ∑
i∈I

hKi
||∇χ||2L2(∂Ki)

)1/2(
Jh(ψ − ψh, ψ − ψh)

)1/2

≤ Ch|ψ|H2(Ω)

( ∑
i∈I

hKi
|∇χ|H1(Ki)||∇χ||L2(Ki) + ||∇χ||2L2(Ki)

)1/2

≤ Ch|ψ|H2(Ω)

( ∑
i∈I

hKi

(|∇(û− u∗)|H1(Ki) + |∇(u− û)|H1(Ki)

)||∇χ||L2(Ki)

+ ||∇χ||2L2(Ki)

)1/2

,

where û = Πhu is the L2 projection of u onto the space Sh. Now since û−u∗ ∈ Sh,
we can apply the inverse inequality, result (2.110) and estimate (2.7) and write

A3 ≤ Ch|ψ|H2(Ω)

(∑
i∈I

hKi

( CI

hKi

||∇(û− u∗)||L2(Ki) + |∇(u− û)|H1(Ki)

)
||∇χ||L2(Ki)

+ ||∇χ||2L2(Ki)

)1/2

≤ Ch|ψ|H2(Ω)

((
||∇(û− u∗)||L2(Ω) + h|u− û|H2(Ω)

)
||∇χ||L2(Ω) + ||∇χ||2L2(Ω)

)1/2

≤ Ch‖z‖L2(Ω) hp|u|Hp+1(Ω) = C hp+1‖z‖L2(Ω)|u|Hp+1(Ω)

To estimate the final term A4, we can apply Lemmas 2.1.5, 2.3.1 and 2.3.2 to
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obtain:

A4 = Jh(ψ − ψh, χ) ≤ (
Jh(ψ − ψh, ψ − ψh)

)1/2(
Jh(χ, χ)

)1/2

≤ Ch|ψ|H2(Ki)||χ||DG ≤ C hp+1|u|Hp+1(Ω) ‖z‖L2(Ω).

Combining the previous estimates, we find that

(χ, z) = A1 + A2 + A3 + A4 ≤ C hp+1|u|Hp+1(Ω)‖z‖L2(Ω).

Hence,

‖χ‖L2(Ω) = sup
z∈L2(Ω)

(χ, z)

‖z‖L2(Ω)

≤ C hp+1|u|Hp+1(Ω),

which completes the proof of (2.116).
In the derivation of the estimate of the norm ‖χt‖L2(Ω) we proceed similarly

as in the estimations of the norms ‖χt‖DG and ‖χ‖L2(Ω). ¤

Let us note that the assumption of the symmetry of the form Ah is crucial in
the presented proof. It enables us to exchange arguments in (2.121). This is the
reason, why we are unable to prove optimal error estimates for the nonsymmetric
and incomplete variants of the DG scheme using the presented technique.

Now, we shall be concerned with the properties of the form bh. Let assump-
tions (A) and (H) be satisfied. We formulate the following result, which is similar
to Lemma 2.2.2, only, instead of ξ = Πhu− uh we use ζ = u∗ − uh.

Lemma 2.3.4 (Properties of the convective terms) Let u be the solution
of the continuous problem (2.86), uh the solution of the discrete problem (2.95),
u∗ be defined by (2.104), and ζ (= ζh) = u∗ − uh ∈ Sh. Then there exists a
constant C > 0, independent of h ∈ (0, h0), such that

|bh(u, ζ)− bh(uh, ζ)| ≤ C‖ζ‖DG

(
hp+1|u|Hp+1(Ω) + ‖ζ‖L2(Ω)

)
. (2.122)

Proof: We can write
∣∣bh(u, ζ)− bh(uh, ζ)

∣∣
≤ |bh(u, ζ)− bh(u

∗, ζ)|+ |bh(u
∗, ζ)− bh(uh, ζ)| . (2.123)
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According to (2.30), (2.101) and (2.1.1),

∣∣bh(u, ζ)− bh(u
∗, ζ)

∣∣

≤ C‖ζ‖DG


‖u− u∗‖L2(Ω) +

(∑
i∈I

hKi
‖u− u∗‖2

L2(∂Ki)

)1/2



= C‖ζ‖DG


‖χ‖L2(Ω) +

(∑
i∈I

hKi
‖χ‖2

L2(∂Ki)

)1/2



≤ C‖ζ‖DG

(
‖χ‖L2(Ω)+

+

(
CM

∑
i∈I

hKi

(
‖χ‖L2(Ki)|χ|H1(Ki) + h−1

Ki
‖χ‖2

L2(Ki)

))1/2
)

.

(2.124)

Further, by the Cauchy inequality and Lemmas 2.3.1 and 2.3.3, we have

∑
i∈I

hKi

(
‖χ‖L2(Ki)|χ|H1(Ki) + h−1

Ki
‖χ‖2

L2(Ki)

)

≤
( ∑

i∈I

‖χ‖2
L2(Ki)

)1/2( ∑
i∈I

h2
Ki
|χ|2H1(Ki)

)1/2

+
∑
i∈I

‖χ‖2
L2(Ki)

≤ ‖χ‖L2(Ω) h |χ|H1(Ω,Th) + ‖χ‖2
L2(Ω)

≤ ‖χ‖L2(Ω)

√
2h‖χ‖DG + ‖χ‖2

L2(Ω)

≤ C h2(p+1)|u|2Hp+1(Ω).

(2.125)

Hence, by (2.124), (2.125) and Lemma 2.3.3,

|bh(u, ζ)− bh(u
∗, ζ)| ≤ C‖ζ‖DG hp+1|u|Hp+1(Ω). (2.126)

Finally, it remains to estimate the second term in (2.123). We use Lemma 2.30
and Lemma 2.1.6, c), which yields

|bh(u
∗, ζ)− bh(uh, ζ)|

≤ C‖ζ‖DG

(
‖ζ‖L2(Ω) +

(∑
i∈I

hKi
‖ζ‖2

L2(∂Ki)

)1/2
)

≤ C‖ζ‖DG ‖ζ‖L2(Ω).

(2.127)

Now, the combination of (2.123), (2.126) and (2.127) gives the desired estimate
(2.122), which we wanted to prove. ¤
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Optimal error estimate for the method of lines

Now we can proceed to the main result of this section, which is an optimal error
estimate of the method in the norm of the space L∞(0, T ; L2(Ω)). In the proof
we shall apply the following simplified version of Gronwall’s lemma (2.1.7).

Lemma 2.3.5 Let y, q ∈ C([0, T ]), y, q ≥ 0 in [0, T ], Z, R ∈ R, R ≥ 0 and

y(t) + q(t) ≤ Z + R

∫ t

0

y(s) dS, t ∈ [0, T ].

Then
y(t) + q(t) ≤ Z exp(Rt), t ∈ [0, T ].

Proof: In Lemma (2.1.7) we simply set z(t) := Z and r(t) := R and write
inequality (2.18) for t ∈ [0, T ]:

y(t) + q(t) +

∫ t

0

Rq(ϑ) exp
( ∫ t

ϑ

R ds
)

dϑ

︸ ︷︷ ︸
≥0

≤ Z +

∫ t

0

RZ exp
( ∫ t

ϑ

R ds
)

dϑ.

Now we can neglect the positive term on the left-hand side and write

y(t) + q(t) ≤ Z +

∫ t

0

RZ exp
( ∫ t

ϑ

R ds
)

dϑ

= Z + RZ

∫ t

0

eR(t−ϑ) dϑ = Z + Z
(
eRt − 1

)
= ZeRt.

¤

Theorem 2.3.1 (Main theorem) Let assumptions (H) and (A) be satisfied
and (2.93) hold. Let u be the exact solution of problem (2.86) satisfying the reg-
ularity condition (2.87) and let uh be the approximate solution defined by (2.95).
Moreover, let the solution of the dual problem (2.111) satisfy (2.113). Then the
error eh = u− uh satisfies the estimate

‖eh‖L∞(0,T ;L2(Ω)) ≤ Chp+1, (2.128)

with a constant C > 0 independent of h.

Proof: Let u∗ be defined by (2.104) and let χ and ζ be as in Lemmas 2.3.1, 2.3.3
and 2.3.4, i. e. χ = u − u∗, ζ = u∗ − uh. Then eh = u − uh = χ + ζ. Let us
subtract (2.96) from (2.95, b), substitute ζ ∈ Sh for ϕh and use the relation

(
∂ζ(t)

∂t
, ζ(t)

)
=

1

2

d

dt
‖ζ(t)‖2

L2(Ω).
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Then we get

1

2

d

dt
‖ζ(t)‖2

L2(Ω) + Ah(ζ(t), ζ(t)) (2.129)

=
1

2

d

dt
‖ζ(t)‖2

L2(Ω) + ah(ζ(t), ζ(t)) + εJh(ζ(t), ζ(t))

= bh(u(t), ζ(t))− bh(uh(t), ζ(t))− (χt(t), ζ(t))− Ah (u(t)− u∗(t), ζ(t))

= [bh(u(t), ζ(t))− bh(uh(t), ζ(t))]− (χt(t), ζ(t)),

because Ah(u(t) − u∗(t), ζ(t)) = 0. The first right-hand side term can be esti-
mated by Lemma 2.3.4 and Young’s inequality as follows (we omit the argument
t)

bh(u, ζ)− bh(uh, ζ) ≤ C‖ζ‖DG

(
hp+1|u|Hp+1(Ω) + ‖ζ‖L2(Ω)

)
(2.130)

≤ ε

2
‖ζ‖2

DG +
C

ε

(
h2(p+1)|u|2Hp+1(Ω) + ‖ζ‖2

L2(Ω)

)
.

For the second right-hand side term in (2.129), by the Cauchy and Young’s in-
equalities and Lemma 2.3.3, we have

|(χt, ζ)| ≤ ‖χt‖L2(Ω) ‖ζ‖L2(Ω) ≤ 1

2

(
‖χt‖2

L2(Ω) + ‖ζ‖2
L2(Ω)

)
(2.131)

≤ 1

2

(
C h2(p+1)|ut|2Hp+1(Ω) + ‖ζ‖2

L2(Ω)

)
.

Finally, the coercivity property (2.102) of Ah gives the estimate of the left-hand
side of (2.129).

Hence, combining (2.129) – (2.131) and (2.102), we obtain

d

dt
‖ζ‖2

L2(Ω) + ε‖ζ‖2
DG (2.132)

≤ C h2(p+1)

(
1

ε
|u|2Hp+1(Ω) + |ut|2Hp+1(Ω)

)
+ C

(
1 +

1

ε

)
‖ζ‖2

L2(Ω).

The integration of (2.132) from 0 to t ∈ [0, T ] yields

‖ζ(t)‖2
L2(Ω) + ε

∫ t

0

‖ζ(ϑ)‖2
DG dϑ (2.133)

≤ C h2(p+1)

(
1

ε

∫ t

0

|u(ϑ)|2Hp+1(Ω) dϑ +

∫ t

0

|ut(ϑ)|2Hp+1(Ω) dϑ

)

+C

(
1 +

1

ε

) ∫ t

0

‖ζ(ϑ)‖2
L2(Ω) dϑ + C h2(p+1)|u0|2Hp+1(Ω),

since
‖ζ(0)‖2

L2(Ω) ≤ C h2(p+1)|u0|2Hp+1(Ω). (2.134)
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To prove (2.134), we first write

ζ(0) = uh(0)− u∗h(0) = (uh(0)− u0) +
(
u0 − u∗(0)

)
= (u0

h− u0) + (u(0)− u∗(0)) .
(2.135)

Then, by (2.5) and Lemma 2.3.3,

‖u0
h − u0‖L2(Ω) = ‖Πhu

0 − u0‖L2(Ω) ≤ C hp+1|u0|Hp+1(Ω),

‖u(0)− u∗(0)‖L2(Ω) = ‖χ(0)‖L2(Ω) ≤ C hp+1|u(0)|Hp+1(Ω) = C hp+1|u0|Hp+1(Ω).

This together with (2.135) already implies estimate (2.134).

Now we apply Gronwall’s Lemma 2.3.5 with

y(t) = ‖ζ(t)‖2
L2(Ω),

R = C

(
1 +

1

ε

)
,

Z = Ch2(p+1)N(ε, u),

q(t) = ε

∫ t

0

‖ζ(ϑ)‖2
DG dϑ,

where

N(ε, u) =
1

ε
‖u‖2

L2(0,T ;Hp+1(Ω)) + ‖ut‖2
L2(0,T ;Hp+1(Ω)) + |u0|2Hp+1(Ω).

This yields

‖ζ(t)‖2
L2(Ω) + ε

∫ t

0

‖ζ(ϑ)‖2
DG dϑ ≤ C h2(p+1) N(ε, u) exp

(
C̃

(
1 +

1

ε

)
t

)
(2.136)

(C and C̃ are constants independent of t, h, ε, u).
Since eh = χ+ζ, to complete the proof, it is sufficient now to combine (2.136)

with the estimate of ‖χ(t)‖L2(Ω) from Lemma 2.3.3. ¤

The effect of numerical integration

In practical computations the integrals appearing in (2.88) – (2.91) are evaluated
with the aid of numerical integration. We shall show how to choose quadra-
ture formulae in order to preserve the accuracy of the method. For the sake of
simplicity, we shall restrict ourselves to the case d = 2.

Let F ∈ C(K) and G ∈ C(Γ), where K ∈ Th and Γ is a side of K. We
consider the following approximations of integrals

∫

K

F dx ≈ |K|
nK∑
α=1

ωK
α F (xK

α ), (2.137)

∫

Γ

G dS ≈ |Γ|
mΓ∑
α=1

βΓ
αG(xΓ

α). (2.138)
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The constants ωK
α , βΓ

α ∈ R represent here integration weights and xK
α ∈ K, xΓ

α ∈ Γ
are integration points. In order to be able to evaluate the effect of the numerical
integration, let us assume that:

(B1) The integration points xΓ
α are chosen and numbered in such a way that for

each i ∈ I and j ∈ s(i) the integration points on Γij = Γji satisfy the
condition

xΓij
α = xΓji

α . (2.139)

(B2) There exist constants ω, β > 0 such that ∀K ∈ Th, ∀Γ ∈ {Γij; j ∈ S(i), i ∈
I} and ∀h ∈ (0, h0) we have

nK∑
α=1

|ωK
α | ≤ ω,

mΓ∑
α=1

|βΓ
α | ≤ β, (2.140)

(B3) The quadrature formulae (2.137) and (2.138) are exact for polynomials of
degree ≤ 2p and ≤ 2p + 1, respectively.

Using formulae (2.137) and (2.138), we obtain the approximations (·, ·)I , aI ,
Jσ

I , bI , `I of the forms (·, ·), ah, Jσ
h , bh, `h. With the aid of these forms we can

formulate the semidiscrete problem with numerical integration:
Find uI such that

a) uI ∈ C1([0, T ]; Sh),

b)
(∂uI(t)

∂t
, ϕh

)
I
+ bI(uI(t), ϕh) + aI(uI(t), ϕh) + εJσ

I (uI(t), ϕh)=`I(ϕh) (t)

∀ϕh ∈ Sh, ∀ t ∈ (0, T ),

c) uI(0) = u0
I ,

(2.141)
where the function u0

I ∈ Sh is defined by

(u0
I − u0, ϕh)I = 0 ∀ϕh ∈ Sh. (2.142)

In a similar way as in [33] it is possible to show that under some additional
assumptions on the regularity of the exact solution and of data, the rate of
convergence of the method with numerical integration is the same as in the case
of exact evaluation of integrals. We have

Theorem 2.3.2 Let assumptions (H), (A) and (B1) - (B3) be satisfied and
(2.93) hold. Let u be the exact solution of problem (2.86) satisfying the regu-
larity condition (2.87) and f`(u) ∈ L2(0, T ; W p+2,∞(Ω)), ` = 1, 2, and let the
solution of the dual problem (2.111) satisfy (2.113). Moreover, let uI be the ap-
proximate solution obtained by scheme (2.141) with numerical integration. Let
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g ∈ L2(0, T ; Hp+1(Ω)), gN ∈ L2(0, T ; Hp+2(ΓN)), uD ∈ L2(0, T ; Hp+3(ΓD)) and
u0 ∈ Hp+1(Ω). Then the error eI = u− uI satisfies the estimate

‖eI‖L∞(0,T ;L2(Ω)) ≤ Chp+1, (2.143)

with a constant C > 0 depending on u, g, gN , uD, T, ε and h0, but independent
of h.

Let us note that the Gauss quadrature formulae defined in Section 1.5.2 satisfy
assumptions (B1)-(B3), if we take p = 2. The preceding theorem states that we
can use these formulae to carry out the numerical experiments in Section 1.6,
since we use piecewise linear and quadratic elements.

Conclusion

In this section we have derived optimal error estimates in the L∞(0, T ; L2(Ω))-
norm of the symmetric interior penalty (SIPG) discontinuous Galerkin space
semidiscretization of a nonstationary convection-diffusion problem. There are
several open problems connected with the analysis of optimal error estimates of
the DGFEM for convection-diffusion problems:

• Derivation of optimal error estimates in the case of a weaker regularity of the
exact solution of the considered convection-diffusion problem. This would
be connected with the error analysis for solutions, which are elements of the
Sobolev-Slobodetskii spaces of functions with “non-integer derivatives”.

• Derivation of optimal error estimates in the case of a weaker regularity of
the solution of the dual problem. Namely, we are interested in the case of
a polygonal nonconvex domain Ω and/or ΓN 6= ∅.

• An extension of optimal error estimates to nonstationary problems with
nonlinear convection as well as diffusion.

• What can one say if the nonsymmetric or incomplete variants of the dif-
fusion terms are applied? We cannot use the presented technique – does
this mean that the L∞(L2)-norm of the error is suboptimal in these cases?
Numerical experiments conducted in Section 1.6 indicate that this may not
be the case.



Chapter 3

Discontinuous Galerkin method
for the Euler equations

In this chapter we shall be concerned with the discontinuous Galerkin finite
element method applied to the solution of inviscid compressible flows. The dis-
cretization of the Euler equations is described along with important topics - the
numerical flux, boundary conditions, shack-capturing and semi-implicit time dis-
cretization. In the last section, numerical experiments are presented.

3.1 System of Euler equations

We shall be concerned with inviscid compressible two-dimensional flow. Let
T > 0, Ω ⊂ R2 and QT be the same as in Section 1.1. Furthermore, we de-
fine disjoint boundary components ΓI , ΓO, ΓW , the inlet, outlet and impermeable
wall respectively, such that ∂Ω = ΓI ∪ ΓO ∪ ΓW . We also define ΓIO = ΓI ∪ ΓO.
The system of Euler equations describing 2D inviscid compressible flow can be
written in the form of a conservation law for the state vector w(x, t):

∂w

∂t
+

2∑
s=1

∂f s(w)

∂xs

= 0 in QT , (3.1)

where f s, s = 1, 2, are the inviscid fluxes and

w = (ρ, ρv1, ρv2, e)
T ∈ R4,

f i(w) = (fi1(w), . . . , fi4(w))T

= (ρvi, ρv1vi + δ1ip, ρv2vi + δ2ip, (e + p)vi)
T.

(3.2)

Here the following notation has been used: ρ - density, p - pressure, v = (v1, v2) -
velocity, ρv = (ρv1, ρv2) - momentum, e - total energy. The system in this form is
not complete (four equations for five variables) and we need to add the following

67
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relation derived from the equation of state:

p = (γ − 1)(e− ρ|v|2/2), (3.3)

where γ = cp/cv > 1 is the Poisson adiabatic constant. For example, for air,
γ = 1.4. System (3.1) is time-dependant, thus we prescribe the initial condition

w(x, 0) = w0(x), x ∈ Ω, (3.4)

and of course, we also need convenient boundary conditions - this subject, how-
ever, will be treated in Section 3.4. System (3.1) and (3.3) represents the conser-
vation of mass, momentum and energy of a perfect compressible gas.

In the following, we will need a property of the fluxes f s called homogeneity :

f s(αw) = αf s(w), α ∈ R, α 6= 0, s = 1, 2. (3.5)

This property implies the useful relation

f s(w) = As(w)w, where As(w) =
Df s(w)

Dw
, s = 1, 2. (3.6)

We define the speed of sound and the Mach number :

a =
√

γp/%, M =
|v|
a

. (3.7)

The speed of sound is the velocity of the propagation of perturbations in density
and pressure. In other words, the speed of sound is the highest speed that
”information” travels in a compressible fluid. Further we define the entropy

S = cv ln
p

ργ
. (3.8)

Assume n = (n1, n2)
T ∈ IR2 with |n| = 1. Let

As(w) :=
Df s

Dw
, s = 1, 2,

P(w,n) :=
2∑

s=1

As(w)ns,

P(w,n) :=
2∑

s=1

fs(w)ns,

(3.9)

then we have the following result [21]:

Lemma 3.1.1 (Diagonal hyperbolicity) Let n = (n1, n2)
T ∈ IR2 with |n| =

1. Then the matrix P(w,n) is diagonilazable with real eigenvalues, i.e. there
exists a matrix T ∈ IR4,4 and λ1, . . . , λ4 ∈ IR such that

P(w,n) = TDT−1, D = diag(λ1, . . . , λ4). (3.10)
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3.2 Discretization

We proceed similarly as in the scalar case. We seek the approximate solution wh

in the finite dimensional space of vector valued piecewise polynomial functions
Sh = [Sh]

4, where Sh is the space from Section 1.2. We multiply (3.1) by a test
function ϕ ∈ [H1(Ω, Th)]

4 and integrate over Ki ∈ Th. With the aid of Green’s
theorem and summing over all i ∈ I, we obtain

d

dt

∑
Ki∈Th

∫

Ki

w ·ϕ dx =
∑

Ki∈Th

∫

Ki

2∑
s=1

f s(w) · ∂ϕ

∂xs

dx

−
∑

Ki∈Th

∑

j∈S(i)

∫

Γij

2∑
s=1

f s(w)n
(s)
ij ·ϕ dS,

(3.11)

where nij = (n
(1)
ij , n

(2)
ij ) is the outer unit normal to ∂Ki on Γij. In the second

right-hand side term, we use the approximation

∫

Γij

2∑
s=1

f s(w)nij
s ·ϕ dS ≈

∫

Γij

H(w|Γij
,w|Γji

,nij) ·ϕ dS, (3.12)

incorporating a numerical flux H, discussed in Section 3.3. Now we introduce
the form

bh(w,ϕ) = −
∑
i∈I

∫

Ki

2∑
s=1

f s(w) · ∂ϕ

∂xs

dx

+
∑
i∈I

∑

j∈S(i)

∫

Γij

H(w|Γij
,w|Γji

,nij) ·ϕ dS,

(3.13)

where w|Γji
for Γij ⊂ ∂Ω is defined in Section 3.4 using appropriate boundary

conditions. Finally we define the discrete problem:

Definition 3.2.1 We say that wh is the approximate solution of problem (3.1),
if

a) wh ∈ C1([0, T ];Sh),

b)
d

dt
(wh(t),ϕh) + bh(wh(t),ϕh) = 0, ∀ϕh ∈ Sh, ∀t ∈ (0, T ),

c) wh(0) = w0
h,

(3.14)

where w0
h is an Sh approximation of the initial condition w0.
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3.3 Numerical fluxes

In the implementation of the methods presented here, we use the following nu-
merical fluxes. Details concerning these numerical fluxes can be found in [21].
These numerical fluxes have a convenient form for the semi-implicit linearization
with respect to time presented in Section 3.6.2. Particularly, they can all be
written in the form

H(wL,wR,n) = AL(wL,wR,n)wL + AR(wL,wR,n)wR (3.15)

with some matrices AL,AR : IR4 × IR4 × IR2 → IR4,4.
In the following we define four numerical fluxes: the numerical flux of Vi-

jayasundaram, Steger-Warming, Lax-Friedrichs and Roe. In numerical tests, the
Steger-Warming numerical flux exhibited instabilities, unlike the remaining three.
The Vijayasundaram and Roe numerical fluxes provided nearly identical results,
while solutions computed using the Lax-Friedrichs numerical flux contained small
stationary oscillations near curved boundaries on coarse meshes. Therefore all
numerical experiments included in Section 3.8 and 4.4 are computed using the
Vijayasundaram numerical flux.

3.3.1 Vijayasundaram numerical flux HV S

This numerical flux is based on the flux vector splitting concept, and can be
viewed as an extension of the flux from Section 1.5.1. We use Lemma 3.1.1 and
define the ”absolute value”, ”positive” and ”negative” parts of matrix P:

|P|(w,n) = T|D|T−1, |D| = diag(|λ1|, . . . , |λ4|),
P±(w,n) = TD±T−1, D± = diag(λ±1 , . . . , λ±4 )

(3.16)

and define the Vijayasundaram numerical flux HV S:

HV S(wL,wR,n) = P+

(
wL + wR

2
,n

)
wL + P−

(
wL + wR

2
,n

)
wR. (3.17)

Explicit formulae for T,D,T−1 can be found in [21] or [20]. The eigenvalues λi

have the form

λ1 = λ2 − a,

λ2 = λ3 = n1v1 + n2v2,

λ4 = λ1 + a,

(3.18)

where a =
√

γp/% is the speed of sound.
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3.3.2 Steger-Warming numerical flux HSW

This numerical flux is similar to the Vijayasundaram numerical flux, which can
be viewed as a central form of the Steger-Warming numerical flux. We define
HSW :

HSW (wL,wR,n) = P+ (wL,n)wL + P− (wR,n)wR. (3.19)

3.3.3 Lax-Friedrichs numerical flux HLF

According to (3.9), the Lax-Friedrichs numerical flux is defined as

HLF (wL,wR,n) =
1

2

(P (wL,n) + P (wR,n) + α(wL,wR)(wL −wR)
)
, (3.20)

where
α(wL,wR) = max

w=wL,wR

{|λmax(w)|}, (3.21)

where λmax(w) is the largest (in absolute value) eigenvalue of P (w,n).

3.3.4 Roe numerical flux HRoe

Roe’s numerical flux introduced in [31] is defined, using notation from (3.16), as

HRoe(wL,wR,n) =
1

2

(P (wL,n) + P (wR,n) + |P| (ŵ,n) (wL −wR)
)
, (3.22)

where the state ŵ is the so called Roe average state defined by the following
relations:

√
ρ̂ =

1

2
(
√

ρL +
√

ρL),

û =

√
ρL
√

uL +
√

ρR
√

uR√
ρL +

√
ρR

,

v̂ =

√
ρL
√

vL +
√

ρR
√

vR√
ρL +

√
ρR

,

Ĥ =

√
ρL

√
HL +

√
ρR

√
HR√

ρL +
√

ρR

, where H =
E + p

ρ
.

(3.23)

3.4 Boundary conditions

The choice of appropriate boundary conditions is a delicate problem which plays
a key role in the presented algorithms. Boundary conditions are incorporated
into the DGFEM via the choice of H(wL,wR,n) or wR = w|Γji

for boundary
edges.
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Boundary Character Extrapolated Prescribed

supersonic — ρ, v1, v2, pINLET
subsonic p ρ, v1, v2

supersonic ρ, v1, v2, p —
OUTLET

subsonic ρ, v1, v2 p

Table 3.1: Boundary conditions for 2D flow.

3.4.1 Solid impermeable wall

For Γ ⊂ ΓW we prescribe the so-called no-stick condition: v ·n = 0 on Γ. Taking
this into account, the normal component of the inviscid flux has the form

2∑
s=1

f s(w)ns = (v · n)w + p(0, n1, n2,v · n)T = p(0, n1, n2, 0)T. (3.24)

If we extrapolate the value of pressure by pR := pL, we can define the numerical
flux

H(wL,wR,n) = p(0, n1, n2, 0)T. (3.25)

3.4.2 Inlet/outlet conditions

In the case of inlet and outlet conditions the problem is, which quantities should
be prescribed (Dirichlet condition) and which should be extrapolated onto Γ from
the adjacent element (Neumann-type condition). One possibility used often in
practice is given in [21] and [20] using the method of characteristics. We shall
discuss the derivation of these boundary conditions in Section 3.4.3, where new
inlet and outlet conditions are presented. For 2D flow the conditions are given
in Table 3.1.

Numerical results conducted on the GAMM channel (channel with 10% circu-
lar bump, Mach number at inlet =0.67) show that the inlet and outlet boundary
conditions tend to reflect incoming density waves that are a result of starting the
computation with a nonphysical initial condition. This effect is more pronounced
at the inlet, which causes a cascade of reflecting and interfering of these waves
that produce undesired ”noisy” perturbations of the solution, since the solid walls
also reflect density waves. Consequently, it takes a long time for the solution to
stabilize as t → ∞. Nonetheless in the common test case, when M = 0.67, the
oscillations eventually diminish and the solution becomes stationary. However,
when we lower the Mach number, the undesired density oscillations are of the
same magnitude as the variations of ρ in the steady-state solution and obtaining
a stationary state is difficult.
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3.4.3 Characteristic-based transparent boundary condi-
tions

In this section we present alternative boundary conditions derived in [27].
Let Γ = Γij ⊂ ΓIO and n = nij be the outer unit normal to Ki on Γ. In order

to compute H(wi,wj,n), we need to specify the value wj, when wi is known.
Let n = nij be the outer unit normal to Ki on Γ = Γij. Let us introduce

a new Cartesian coordinate system x̃1, x̃2 in R2 with the origin at the center of
gravity of edge Γ, the coordinate x̃1 is oriented in the direction of the normal n
and x̃2 tangent to Γ. The Euler equations transformed into this new coordinate
system have the form

∂q

∂t
+

2∑
s=1

∂f s(q)

∂x̃s

= 0, (3.26)

as follows from the rotational invariance of the Euler equations. Here

q = Q(n)w (3.27)

where

Q(n) =




1 0 0 0
0 n1 n2 0
0 −n2 n1 0
0 0 0 1


 . (3.28)

Now we neglect the tangential derivative ∂/∂x̃2 and get the system with one
space variable x̃1 in the form

∂q

∂t
+

∂f 1(q)

∂x̃1

= 0. (3.29)

Using the homogeneity of the fluxes (3.6) we write system (3.29) in the noncon-
servative form

∂q

∂t
+ A1(q)

∂q

∂x̃1

= 0. (3.30)

Finally we linearize this system around the state qi = Q(n)wi and obtain the
linear system

∂q

∂t
+ A1(qi)

∂q

∂x̃1

= 0, (3.31)

which will be considered in the set (−∞, 0)×(0,∞) and equipped with the initial
condition

q(x̃1, 0) = qi, x̃1 ∈ (−∞, 0) (3.32)

and the boundary condition

q(0, t) = qj, t > 0. (3.33)
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The goal is to choose qj in such a way that the initial-boundary problem (3.31)–
(3.33) is well posed, i.e. has a unique solution. The solution can be written in
the form

q(x̃1, t) =
4∑

s=1

µ(x̄1, t)rs, (3.34)

where rs = rs(qi) are the eigenvectors of the matrix A1(qi) corresponding to its
eigenvalues λ̃s = λ̃s(qi) and creating a basis in R4. Moreover,

qi =
4∑

s=1

αsrs, qj =
4∑

s=1

βsrs. (3.35)

Substituting (3.34) into (3.31) and using the relation A1(qi)rs = λ̃srs, we find
that problem (3.31)–(3.33) is equivalent to 4 mutually independent linear initial-
boundary value scalar problems for s = 1, . . . , 4:

∂µs

∂t
+ λ̃s

∂µs

∂x̃1

= 0 in(−∞, 0)× (0,∞),

µs(x̃1, 0) = αs, x̃1 ∈ (−∞, 0),

µs(0, t) = βs, t ∈ (0,∞),

(3.36)

which can be solved by the method of characteristics. The solution is

µs(x̃1, t) =

{
αs, x̃1 − λ̃st < 0,

βs, x̃1 − λ̃st > 0.
(3.37)

The conclusion is that if
a) λ̃s > 0, then βs = αs (βs is not prescribed, but it is obtained by the

extrapolation of µs to the boundary x̃1 = 0),
b) if λ̃s = 0, then βs is not prescribed (but can be defined as βs = αs by the

continuous extension of µs to the boundary x̃1 = 0),
c) if λ̃s < 0, then βs must be prescribed.

Furthermore, we incorporate the fact that

λ̃s(qi) = λs(wi,n), s = 1, . . . , 4, (3.38)

where λs(wi,n) are the eigenvalues of the Jacobi matrix P(wi,n) defined in (3.9).
In [21] the conclusion is drawn, that we prescribe npr quantities characterizing w,
where npr is the number of negative eigenvalues λs, and extrapolate nex = 4−npr

quantities. One choice of these quantities is given in Table 3.1. We propose to
prescribed variables based on the local linearized problem.

We shall take some state q0
j = Q(n)w0

j . The state w0
j is the state vector

of the far-field flow, or the incoming fluid at the inlet, or the initial condition,
depending on the situation and interpretation. With this state we repeat the
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presented derivation. We calculate the eigenvectors rs, s = 1, . . . , 4 from the
state qi and αs, βs such that

qi =
4∑

s=1

αsrs, q0
j =

4∑
s=1

βsrs. (3.39)

This is simple, since we have explicit formulae for the matrix T, which has rs for
its columns, and the inverse T−1, as given in [21] or [20]. This is the same matrix
that is used in the evaluation of the Vijayasundaram numerical flux in Section
3.3.1. We can thus see that for β = (β1, . . . , β4)

T and α = (α1, . . . , α4)
T we have

qi = Tα ⇒ α = T−1qi,

q0
j = Tβ ⇒ β = T−1q0

j .
(3.40)

Now we calculate the state qj according to the presented process:

qj :=
4∑

s=1

γsrs = Tγ, (3.41)

where γ = (γ1, . . . , γ4)
T and

γs =

{
αs, λs ≥ 0,

βs, λs < 0.
(3.42)

Finally wj = Q−1(n)qj and we can use this to calculate H(wi,wj,n).
In the framework of the presented theory, these boundary conditions seem to

give the natural choice for wj. However, we must keep in mind two simplifications
that we have made during the derivation:

a) we have neglected tangential derivatives of the solution in order to get a
simplified equation (3.29),

b) we have avoided the nonlinearity of problem (3.29) by local linearization.
Nonetheless, experiments show that this method applied to the approximation

of inlet and outlet boundary conditions lets density and pressure waves pass
through the boundaries without reflection.

3.5 Approximation of the boundary

So far we have worked only with polygonal domains Ω ⊂ R2. This is rather limit-
ing, when we approach practical problems, in which we seldom meet completely
polygonal (polyhedral) shapes. In practice, this means that we have a domain
Ω with a curved boundary and have to approximate it with some Ωh, which is
polygonal. In the finite volume method this works well, since we seek piecewise
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constant solutions. Also in the conforming finite element method with P 1 ele-
ments applied to elliptic or parabolic problems, polygonal approximations of the
boundary yield optimal error estimates. However in the case of DGFE higher-
order approximations, numerical experiments show, that this method does not
give good results in the vicinity of curved parts of ∂Ω. As stated in [21], refining
the mesh locally does not help and undesired phenomena occur - for instance non-
physical entropy production. In order to get good behavior near curved segments
of the boundary when using higher orders discretizations, it is necessary to intro-
duce a higher order approximation of the boundary ∂Ω and adjacent elements.
This is discussed for the case of bilinear mappings of the reference element.

Isoparametric elements

Let Ω ⊂ R2 and Th be its partition formed by triangles Ki, i ∈ I. Let K̂ be the
reference triangle mentioned in Section 1.5.2. Let

P̂ 0 = (0; 0), P̂ 1 = (1; 0), P̂ 2 = (0; 1) (3.43)

be the vertices of K̂ and
P̂ 12 = (1/2; 1/2). (3.44)

Let {Ki, i ∈ Ic} with Ic ⊂ I be a set of triangles adjacent to a curved part of ∂Ω.
For i ∈ Ic let P k

i , k = 0, 1, 2, be the vertices of Ki such that P 0
i ∈ Ω, P 1

i , P 2
i ∈ ∂Ω.

We suppose that the the center P 12
i of the curved side with endpoints P 1

i , P 2
i is

close to the center of the linear segment P 1
i P 2

i - this is natural for triangulations
that are dense enough. Under these assumptions we can find a unique bilinear
mapping Fi defined on K̂, Fi = (F 1

i , F 2
i ) such that

Fi(P̂
k) = P k

i , k = 0, 1, 2,

Fi(P̂
12) = P 12

i .
(3.45)

Triangles Ki, i ∈ Ic, are replaced by the curved triangles defined by

K̄i := Fi(K̂), (3.46)

which have two straight sides and one curved side approximating the curved
segment of ∂Ω adjacent to Ki, Figure 3.1. If i 6∈ Ic then Fi is a linear mapping
and therefore K̄i = Ki.

In the described discretization we need to evaluate volume and boundary
integrals over elements and their boundaries - here we describe the modification
of the method for curved elements K̄i, i ∈ Ic - the simpler case when i 6∈ Ic is
treated in the same manner, only the mapping Fi is linear. We denote by

JFi
(x̂) :=

DFi

Dx̂
(x̂), x̂ ∈ K̂, (3.47)
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K̂P̂ 0 P̂ 1
P̂ 2 P̂ 12 Fi KP 0

P 1
P 2P 12

Figure 3.1: Bilinear mapping Fi : K̂i → Ki

the Jacobi matrix of the mapping Fi. Test functions ϕ and the approximate
solution w(·, t) are defined on K̂i as

ϕ(x) = ϕ̂(F−1
i (x)), x ∈ K̄i,

wh(x, t) = ŵi(F
−1
i (x), t), x ∈ K̄i, t ∈ [0, T ],

(3.48)

where ϕ̂, ŵ(·, t) ∈ [P p(K̂)]m.
The forms in (3.14) are evaluated in the following way: The L2(Ki)-scalar

product is expressed, using the substitution as
∫

K̄i

wh(x, t) ·ϕh(x) dx =

∫

K̂

ŵi(x̂, t) · ϕ̂h(x̂) det JFi
(x̂) dx̂, i ∈ I. (3.49)

In the inviscid volume terms in bh we have to use the fact that

(∇̂ϕ̂h)(x̂) = JFi
(x̂)(∇ϕh)(Fi(x̂)), (3.50)

thus
(∇ϕh)(Fi(x̂)) = [JFi

(x̂)]−1(∇̂ϕ̂h)(x̂) (3.51)

and

∫

K̄i

2∑
s=1

f s(wh(x, t)) · ∂ϕh(x)

∂xs

dx

=

∫

K̂

(
f 1(ŵi), f 2(ŵi)

)
[JFi

(x̂)]−1∇̂ϕ̂h(x̂) det JFi
(x̂) dx̂

=

∫

K̂

2∑
s=1

f s(ŵi(x, t)) ·
2∑

j=1

∂ϕ̂h(x)

∂xj

∂(F−1
i )j

∂xs

(Fi(x̂)) det JFi
(x̂) dx̂, i ∈ I,

(3.52)

where (F−1
i )j denotes the j-th component of the inverse mapping F−1

i . However,
the evaluation using the inverse [JFi

(x̂)]−1 is simpler then calculating the inverse
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F−1
i and than its Jacobi matrix. One can see that these two approaches are

equivalent since
DF−1

i

Dx
(Fi(x̂)) =

[
DFi

Dx̂
(x̂)

]−1

(3.53)

following from the identity x = Fi(F
−1
i (x)).

Boundary integrals over a curved side Γij ⊂ ∂Ki in the boundary terms of
the form bh are computed with the aid of a suitable parameterization of Γij and

the side Γ̂ of K̂ corresponding to Γij in the mapping Fi:

x = x(ξ) = Fi(x̂(ξ)), ξ ∈ [0, 1]. (3.54)

If we put
u(x) := H(w|Γij

(x, t),w|Γji
(x, t),nij) ·ϕh(x) (3.55)

(for a fixed t), we get

∫

Γij

u(x) dS =

∫ 1

0

u(x(ξ))|x′(ξ)| dξ =

∫ 1

0

u(Fi(x̂(ξ)))

{ 2∑
j=1

( 2∑

k=1

∂F j
i (x̂(ξ))

∂x̂k

x̂′k(ξ)
)2}1/2

dξ.

(3.56)

The parametrization x̂ = x̂(ξ) of Γ̂ is expressed in the form

x̂(ξ) = A + ξ(B − A), (3.57)

where A, B are the endpoints of Γ̂. The integrals over K̂ and Γ̂ are evaluated
using the quadrature formulae given in Section 1.5.2.

3.6 Time discretization

As in the scalar case, the DGFE discretization (3.14) represents a system of
ordinary differential equations. If we want to solve this system, we need to use a
time discretization. We describe two possibilities: the Euler forward method and
a semi-implicit linearization of the backward Euler scheme.

3.6.1 Explicit time discretization

For the forward Euler scheme we proceed as in Section 1.4. The scheme has the
form

(wk+1
h ,ϕh) + τkbh(w

k
h, ϕh) = (wk

h, ϕh), ∀ϕh ∈ Sh, k = 0, 1, . . . . (3.58)
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Let B = {wα}n
α=1 be a basis in the space Sh, where n = dimSh. We seek the

approximate solution wh ∈ Sh in the form

wh(t) =
n∑

α=1

ξα(t)wα. (3.59)

Due to the linearity of the form bh in the variable ϕ, we can use, as test functions
only elements of the basis B.

Let 0 = t0 < t1 < . . . be a partition of the time interval [0, T ], and τk =
tk+1 − tk. Let ξk = (ξk

1 , . . . , ξk
n), where ξk

α is an approximation of ξα(tk). Then
the Euler forward scheme can be written in the form of a system of n linear
equations:

Mξk+1 = Mξk + τka(ξk), (3.60)

where a(ξk) is a vector-valued mapping corresponding to the form bh and M =
{mij}n

i,j=1 is the n× n mass matrix with entries mij =
∫

Ω
wi ·wj dx.

In the scalar case an appropriate choice of basis functions leads to the block-
diagonality of M. Here we must take into account that the basis functions are in
the space Sh = [Sh]

4. We use the P 1 and P 2 basis functions for Sh as in Section
1.5.3 ’separately’ for each component and get the basis for [Sh]

4. Then we write
(3.59) as

wk
h(x) =

∑
i∈I

np∑
j=1

4∑

l=1

ξijl(tk)wijl(x), (3.61)

where suppwijl ⊂ Ki, np =number of degrees of freedom for P p(Ki), n0 = 1, n1 =

3, n2 = 6 and w
k,(m)
ijl = 0 if m 6= l, where u(m) = m-th component of vector u.

Using this representation we are able to ’cluster’ the basis functions with common
support elements and representing the same unknown (i.e. with common nonzero
component) thus achieving the block-diagonality of M - with np × np blocks.
Here we can proceed as in Section 1.4. We need to calculate the inverse of the
mass matrix, which is simple since M is block-diagonal. At the beginning of
the calculation we can explicitly calculate the inversion of each block using a
inversion algorithm based on Gaussian elimination. Let us note that in practice
the order p of approximation can be chosen separately for every component of
the state vector. Thus np becomes np(l). This option was incorporated into the
implementation of the presented scheme.

In order to guarantee the stability of scheme (3.58) we need to impose a limit
on τk. In [16] the CFL condition in the case of P 1 approximations is proposed
in the form

6τk max
i∈I

1

|Ki|
(

max
j∈S(i)

d(Γij)λ
max
ij

)
≤ CFL, (3.62)

where λmax
ij = maxx∈Γij

(a(x) + |v(x)|), where a(x) is the local speed of sound.
CFL is a given constant ≤ 1, usually CFL ≈ 0.85. This condition causes
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problems if the Mach number is small, in this case the need arises for a semi-
implicit or implicit scheme that would allow larger time steps.

3.6.2 Semi-implicit time discretization

We shall work with the DGFE discretization of the Euler equations as presented
in Section 3.2. Thus, we seek a function wh such that

a) wh ∈ C1([0, T ];Sh),

b)
d

dt
(wh(t),ϕh) + bh(wh(t),ϕh) = 0, ∀ϕh ∈ Sh, ∀t ∈ (0, T ),

c) wh(0) = w̃0
h,

(3.63)

where the inviscid form bh is defined, using some numerical flux H, as follows:

bh(w,ϕ) = −
∑
i∈I

∫

Ki

2∑
s=1

f s(w) · ∂ϕ

∂xs

dx

+
∑
i∈I

∑

j∈S(i)

∫

Γij

H(w|Γij
,w|Γji

,nij) ·ϕ dS,

(3.64)

where w|Γji
for Γij ⊂ ∂Ω is defined in Section 3.4 using appropriate boundary

conditions.
Relations (3.63) represent a system of ordinary differential equations, which

must be, in practice, solved using an appropriate time discretization. In Section
3.6 an explicit forward Euler method is used. As stated earlier, we need a method
which is not so limiting in terms of the time step τk. We therefore use the implicit
backward Euler method.

Let 0 < t0 < t1 < . . . be a partition of the time interval (0, T ) and τk =
tk+1 − tk. We seek wk

h ≈ wh(tk) such that

a) wk+1
h ∈ Sh,

b)

(
wk+1

h −wk
h

τk

,ϕh

)
+ bh(w

k+1
h ,ϕh) = 0

∀ϕh ∈Sh, k = 0, 1, . . . ,

c) w0
h = w̃0

h.

(3.65)

This scheme however leads to a large system of highly nonlinear equations due
to the nonlinearity of the form bh in the variable wk+1

h . The numerical solution
of such a system is very complicated and time consuming, therefore in [16] a
simplified linearization of problem 3.65 is presented in order to obtain a large
(sparse) system of linear equations rather than solving the nonlinear system.
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We shall treat the interior and boundary terms in (3.64) separately:

bh(w
k+1
h ,ϕh) = −

∑
i∈I

∫

Ki

2∑
s=1

f s(w
k+1
h ) · ∂ϕh

∂xs

dx

︸ ︷︷ ︸
:=eσ1

+
∑
i∈I

∑

j∈S(i)

∫

Γij

H(wk+1
h |Γij

,wk+1
h |Γji

,nij) ·ϕh dS

︸ ︷︷ ︸
:=eσ2

.

(3.66)

For σ̃1 we use the property of the Euler fluxes f s given in (3.6). We set

σ1 :=
∑
i∈I

∫

Ki

2∑
s=1

As(w
k
h)w

k+1
h · ∂ϕh

∂xs

dx. (3.67)

In order to treat the term σ̃2 we must choose a numerical flux suitable for
linearization. One possibility is the Vijayasundaram flux, as presented in Section
3.3.1, although any of the presented fluxes can be used, since they all have a
similar form (3.15). The Vijayasundaram numerical flux is written in the form

HV S(wL,wR,n) = P+

(
wL + wR

2
,n

)
wL + P−

(
wL + wR

2
,n

)
wR, (3.68)

which is suitable for the linearization of the terms in σ̃2. For interior edges this
reads:

∑
i∈I

∑

j∈s(i)

∫

Γij

[
P+

(〈wk
h〉ij,nij

)
wk+1

h |Γij
+ P−

(〈wk
h〉ij,nij

)
wk+1

h |Γji

] ·ϕh dS.

For edges Γij ⊂ ΓIO we cannot simply apply this linearization since we have no
information about wk+1

h |Γji
– this is caused by the fact that the Inlet and Outlet

are not a priori given and can change roles for complex flows. A simple solution
is to treat these terms explicitly, i.e. wk+1

h |Γji
≈ wk

h|Γji
, where the latter state

is calculated using a method from Section 3.4. In contrast to [16], we consider
more suitable to use here wk+1

ij (instead of wk
ij from [16]). Thus, inlet and outlet

terms have the form:
∑
i∈I

∑

j∈γIO(i)

∫

Γij

[
P+

(〈wk
h〉ij,nij

)
wk+1

h |Γij
+ P−

(〈wk
h〉ij,nij

)
wk

h|Γji

] ·ϕh dS,

where γIO(i) = {j ∈ S(i); Γij ⊂ ΓIO}.
For Γij ⊂ ΓW special treatment is needed – according to Section 3.4.1 we put

∑
i∈I

∑

j∈γW (i)

∫

Γij

H(wk+1
h |Γij

,wk+1
h |Γji

,nij) ·ϕh dS

≈
∑
i∈I

∑

j∈γW (i)

∫

Γij

F W (wk+1
h ,nij) ·ϕh dS
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where F W (w,n) = (0, pn1, pn2, 0)T and γW (i) = {j ∈ S(i); Γij ⊂ ΓW}. To lin-
earize these terms, we use the fact that F W (w,n) is a homogeneous mapping with
respect to w. This is natural, since F W (w,n) is derived from the homogeneous
mapping

∑2
s=1 f sns with the additional assumption that v · n = 0. Similarly to

(3.6), it follows that

F W (wk+1
h ,nij) =

DF W

Dw
(wk+1

h ,nij)w
k+1
h . (3.69)

and we can use the semi-implicit approximation

F W (wk+1
h ,nij) ≈ DF W

Dw
(wk

h,n)wk+1
h . (3.70)

Finally we can define the linearized edge terms as

σ2 :=
∑
i∈I

∑

j∈s(i)

∫

Γij

[
P+

(〈wk
h〉ij,nij

)
wk+1

h |Γij

+ P−
(〈wk

h〉ij,nij

)
wk+1

h |Γji

] ·ϕh dS.

+
∑
i∈I

∑

j∈γIO(i)

∫

Γij

[
P+

(〈wk
h〉ij,nij

)
wk+1

h |Γij

+ P−
(〈wk

h〉ij,nij

)
wk

h|Γji

] ·ϕh dS,

+
∑
i∈I

∑

j∈γW (i)

∫

Γij

DF W

Dw
(wk

h,nij)w
k+1
h ·ϕh dS.

(3.71)

Finally, we define the semi-implicitly linearized form as

bSI
h (wk

h,w
k+1
h , ϕh) = −σ1 + σ2, (3.72)

where σ1 and σ2 are given in (3.67) and (3.71) respectively. We can now define
the semi-implicit linearized scheme:

Definition 3.6.1 For each k = 0, 1, . . . find wk+1
h such that

a) wk+1
h ∈ Sh,

b) (wk+1
h , ϕh)+τkb

SI
h (wk

h,w
k+1
h , ϕh) = (wk

h, ϕh)

∀ϕh ∈Sh, k = 0, 1, . . . ,

c) w0
h = w̃0

h.

(3.73)

where w0
h is an Sh approximation of the initial condition w0.
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Matrix representation

The choice of appropriate basis functions for the space Sh as presented in Section
3.6 leads to the matrix representation of scheme (3.73):

A(ξk)ξk+1 = g(ξk), (3.74)

where g : Rn → Rn and A : Rn → Rn×n, is a n×n nonsymmetric matrices. This
matrix has the form A = M + τkB, where M is the symmetric, positive definite
block diagonal mass matrix and B represents the form bSI

h . Since M is regular,
we can expect that for small τk the matrix A is also regular. Furthermore, for
sufficiently small τk the matrix will be close to the block diagonal matrix. One
can therefore expect better behavior of the linear solver. On the other hand we
want to avoid the limitations imposed on τk via the CFL-condition. We want
to choose large τk, but we may expect slower convergence of an iterative linear
solver.

Linear solver

System (3.74) needs to be efficiently solved on every time level. For this purpose
we need a fast iterative or direct linear system solver. Since the resulting sys-
tem is nonsymmetric, restarted preconditioned GMRES is used as an iterative
solver. The block-Jacobi method is used as a left-hand preconditioner, where
each block on the diagonal corresponds to all the variables on one element. The
inverses of these blocks are explicitly calculated using an inversion method based
on Gaussian elimination and stored on each time level. We restart GMRES after
10 iterations to avoid stagnation and permit up to 20 restarted GMRES cycles.

In situations where the iterative solver is not sufficient (e.g. low-Mach flows),
we use the software package UMFPACK, which is an implementation of the
Unsymmetric-pattern MultiFrontal method. This direct method uses graph algo-
rithms to find a column pre-ordering which reduces fill-in during LU factorization
[11], [12]. The method is suitable for sparse unsymmetric linear systems and the
fact that the matrix A(ξk) of system (3.74) has a symmetric nonzero structure
may be used.

3.7 Shock capturing

From the theory of hyperbolic equations it is known that smooth initial condi-
tions may lead in a finite time to solutions which have discontinuities. In the
case of the Euler equations, one may expect for high speed flows the occurrence
of so called shack waves and contact discontinuities. In this case the finite volume
method works well, since it is only first order accurate in space and has a sufficient
amount of numerical viscosity. However, when higher order schemes are used, the
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so-called Gibbs phenomenon arises in the vicinity of discontinuities - oscillations,
over- and under-shoots of the discrete solution. When using conforming finite ele-
ments, this behavior must be avoided by using additional stabilization techniques
(streamline diffusion, Galerkin least squares, ...), otherwise these effects corrupt
the solution. In the DGFEM, the situation is better, since these spurious over-
and under-shoots remain localized in the vicinity of the discontinuity because
we have relaxed inter-element continuity. However, additional shock capturing
terms must be included in the scheme to avoid this phenomenon. In this section
we present two possible techniques.

3.7.1 Limiting of the order of accuracy

In [21], the following approach is derived for the explicit time discretization.
The idea is to preserve high order of accuracy in regions where the solution
is regular and modify the scheme in a small neighbourhood of steep gradients
and discontinuities. The local modification is based on the fact that first order
methods (finite volume) have a sufficient amount of numerical viscosity to avoid
the Gibbs phenomenon. Based on a discontinuity indicator, we locally project
the higher order solution to a piecewise constant function in every time step,
formally obtaining a first order scheme, where necessary.

Let us denote by uk
h some scalar quantity characterizing the approximate

solution wk
h. As follows from numerical experiments, in our case the density ρ is

a good choice. Using the notation from Section 1.2, we define the jump function
on ∂Ki as [uk

h]∂Ki
(x) = [uk

h]Γij
(x) for x ∈ ∂Ki ∩Γij. Numerical experiments show

that interelement jumps are of the order O(1) on discontinuities, but O(h2) in
regions, where the solution is regular. On unstructured grids it is suitable to
measure the interelement jumps in the integral form

∫

∂Ki

[uk
h]

2 dS, Ki ∈ Th. (3.75)

In areas of regularity we have

g1(i) =

∫

∂Ki

[uk
h]

2 dS/h5 ≈
∫

∂Ki

(O(h2))2 dS/h5 ≈ O(1), (3.76)

whereas

g2(i) =

∫

∂Ki

[uk
h]

2 dS/h ≈
∫

∂Ki

(O(1))2 dS/h ≈ O(1), (3.77)

for discontinuities or very steep gradients. These results lead to the idea that
the switch between the higher and lower order scheme should be tested with the
indicator

gk(i) =

∫

∂Ki

[uk
h]

2 dS/hα, Ki ∈ Th, (3.78)
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where α ∈ [0, 5] - the natural choice being α = 5/2. However on general unstruc-
tured grids it is suitable to define the indicator in terms of hKi

and |Ki|. For
α = 5/2 we define the discontinuity indicator

gk(i) =

∫

∂Ki

[uk
h]

2 dS/(hKi
|Ki|3/4), Ki ∈ Th, (3.79)

It was shown in [18] that the indicator gk(i) identifies discontinuities safely on
unstructured and anisotropic meshes.

Now we can define an adaptive strategy for an automatic limiting of the order
of accuracy of scheme (3.58):

a) wk+1
h ∈ Sh = Sp,−1

h ,

b) (wk+1
h ,ϕh) = (w̃k

h,ϕh)− τkbh(w̃
k
h,ϕh), ∀ϕh ∈ Sh,

(3.80)

where w̃k
h is a modification of wk

h defined in two steps:

a) Set w̃k
h|Ki

:= wk
h|Ki

, ∀i ∈ I,

b) If gk(i) > 1 for some i ∈ I, then w̃k
h|Ki

:= Πhw
k
h|Ki

,
(3.81)

where Πh is the [L2]4-projection operator, Π0 : [L2]4 → [S0,−1(Ω, Th)]
4 (= the

space of piecewise constant vector functions) defined by (2.4). Therefore,

π0v|Ki
=

∫

Ki

v dx/|Ki|, ∀i ∈ I. (3.82)

Using this procedure, the solution is modified only on elements close to discon-
tinuities, thus formally giving first order accuracy, but preserving a higher order
elsewhere.

This approach gives good results in the explicit case, however it is not clear
how to incorporate this technique into the semi-implicit scheme presented in
Section 3.6.2. We propose a different approach presented in the following.

3.7.2 Artificial diffusion

The technique is motivated by the paper [26], on the basis of which the left-hand
side of (3.63), b) is augmented by an artificial viscosity term of the form

∑
i∈I

hKi

∫

Ki

resKi
∇w · ∇ϕ dx, (3.83)

where resKi
is some function of the residual of the equation, for instance the

absolute value of the residual. The idea is that this quantity is small in regions
where the solution is smooth and large near steep gradients and discontinuities,
we therefore add artificial viscosity where it is needed.
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However, since this form is nonzero also in regions, where the exact solution is
regular, undesired effects, such as nonphysical entropy production, can appear in
these regions. Therefore, we combine this technique with the approach described
in the previous section. We use the discontinuity indicator gk(i) defined in (3.79)
and introduce the discrete discontinuity indicator

Gk(i) =

{
0 if gk(i) < 1,

1 otherwise.
(3.84)

To the left-hand side of (3.73), b) we add the artificial viscosity form

Φ1
h(w

k
h,w

k+1
h ,ϕ) = ν1

∑
i∈I

hKi
Gk(i)

∫

Ki

∇wk+1
h · ∇ϕ dx (3.85)

with ν1 = O(1) a given constant. Numerical experiments show that this artificial
viscosity form is rather local and does not behave well on locally refined grids.
We therefore propose to augment the left-hand side of (3.73), b) the form

Φ2
h(w

k
h,w

k+1
h ,ϕ) = ν2

∑
i∈I

∑

j∈s(i)

1

2

(
Gk(i) + Gk(j)

) ∫

Γij

[wk+1
h ] · [ϕ] dS, (3.86)

where ν2 = O(1), which allows to strengthen the influence of neighbouring el-
ements and improves the behaviour of the method in the case, when strongly
unstructured and/or anisotropic meshes are used.

Thus, the resulting scheme obtained from (3.73), b) reads:

a) wk+1
h ∈ Sh, (3.87)

b)

(
wk+1

h −wk
h

τk

,ϕh

)

h

+ bh(w
k
h,w

k+1
h ,ϕh) + Φ1

h(w
k
h,w

k+1
h , ϕh)

+Φ2
h(w

k
h,w

k+1
h ,ϕh) = 0, ∀ϕh ∈ Sh, k = 0, 1, . . . ,

c) w0
h = Πhw

0.

This method overcomes problems with the Gibbs phenomenon in the context
of the semi-implicit scheme. It is important that Gk(i) vanishes in regions, where
the solution is regular. Therefore, the scheme does not produce nonphysical
entropy in these regions. For examples see Figures 3.8, 3.9 and 3.20 in the
following Section.

3.8 Numerical experiments

In this section we present the solution of some test problems in order to demon-
strate the accuracy and robustness of the proposed method. The computational
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grids were constructed with the aid of the anisotropic mesh adaptation technique
[13]. In all examples quadratic elements (r = 2) were applied. Steady state solu-
tions were obtained via time stabilization for ”t →∞”. This means that scheme
(3.87) was used as an iterative process for ”k →∞”. This process was stopped,
when the approximation of the time derivative satisfied the condition

∥∥∥∥
wk+1

h −wk
h

τk

∥∥∥∥
L∞(Ω)

< 10−8. (3.88)

We have tried to collect examples, for which the analytical solution of the flow
equations is known. Usually these are derived under certain constraints, namely,
the flow is required to be incompressible and in some cases irrotational. In order
to compare these exact incompressible solutions with the approximate solution of
the compressible Euler equations, we take the Mach number to be small (usually
M = 10−4), since for M → 0, the compressible Euler equations tend to the
incompressible limit. In these cases, the maximum density variation is negligible
in comparison with the transonic examples. This means that the computed low
Mach number flow behaves as incompressible flow.

3.8.1 Irrotational flow past a Joukowski profile

1) Irrotational flow past a nonsymmetric Joukowski airfoil. First we
consider flow past a negatively oriented Joukowski profile given by parameters
∆ = 0.07, a = 0.5, h = 0.05 (under the notation from [20], Section 2.2.68) with
zero angle of attack. The far field quantities are constant, which implies that
the flow is irrotational and homoentropic. Using the complex function method
from [20], we can obtain the exact solution of incompressible inviscid irrotational
flow satisfying the Kutta–Joukowski trailing condition, provided the velocity cir-
culation around the profile, related to the magnitude of the far field velocity,
γref = 0.7158. We assume that the far field Mach number of compressible flow
M∞ = 10−4. The computational domain is of the form of a square with side of the
length equal to 10 chords of the profile. The mesh (in the whole computational
domain) was formed by 5418 triangular elements and refined towards the profile.
Figure 3.2 shows a detail near the profile of the velocity isolines for the exact
solution of incompressible flow and for the approximate solution of compressible
flow. In Figure 3.3, pressure isolines of incompressible and compressible flow are
plotted. Figure 3.4 shows streamlines of the computed compressible flow. We
see that the flow past the trailing edge is smooth. Further, in Figures 3.5 and
3.6, the velocity distribution and pressure coefficient distribution, respectively,
past the profile is plotted in the direction from the leading edge to the trailing
edge (◦◦◦ – exact solution of incompressible flow, —— – approximate solution of
compressible flow). The pressure coefficient was defined as 107 · (p− p∞), where
p∞ denotes the far field pressure.
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In the computed example the maximum density variation is 1.04 ·10−8, which
is in agreement with theoretical results (e. g. [29]), which state that the max-
imum density variation behaves as O(M2). The computed velocity circulation
related to the magnitude of the far field velocity is γrefcomp = 0.7205, which gives
the relative error 0.66% with respect to the theoretical value γref obtained for
incompressible flow. The CFL number from the stability condition (3.62) was
during the computational process successively increased from 1 (the start of the
compuation) to 6 · 106.

In order to establish the quality of the computed pressure of the low Mach
compressible flow in a quantitative way, we introduce the function

B =
p

ρ
+

1

2
|v|2, (3.89)

which is constant for incompressible, inviscid, irrotational flow, as follows from
the Bernoulli equation. In the considered compressible case, the relative variation
of the function B, i.e. (Bmax − Bmin)/Bmax = 3.84 · 10−6. This means that the
Bernoulli equation is satisfied with a small error in the case of the compressible
low Mach number flow computed by the developed method.

Figure 3.2: Velocity isolines for the exact solution of incompressible flow (left)
and approximate solution of compressible flow (right).

2) Irrotational flow past a symmetric Joukowski airfoil We consider
flow past a negatively oriented Joukowski profile given by parameters ∆ =
0.07, a = 0.5, h = 0.0 (under the notation from [20], Section 2.2.68) with zero
angle of attack. This means that the flow, as well as the profile, is symmetric
along the horizontal axis. We assume that the far field Mach number of com-
pressible flow M∞ = 10−4. Figure 3.7 shows a detail near the profile of the
velocity isolines for the approximate solution of compressible flow and for the ex-
act solution of incompressible flow, respectively. The mesh was formed by 4103
triangular elements.

3) Transonic flow past a nonsymmetric Joukowski airfoil



CHAPTER 3. DGFEM FOR THE EULER EQUATIONS 89

Figure 3.3: Pressure isolines for the exact solution of incompressible flow (left)
and approximate solution of compressible flow (right).

Figure 3.4: Compressible flow past a Joukowski profile, approximate solution,
streamlines.
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Figure 3.5: Flow past a Joukowski profile, velocity distribution along the profile:
◦ ◦ ◦ – exact solution of incompressible flow, —— – approximate solution of
compressible flow.



CHAPTER 3. DGFEM FOR THE EULER EQUATIONS 90

–4

–2

0

2

4

–1 –0.8 –0.6 –0.4 –0.2 0 0.2 0.4 0.6 0.8 1

Figure 3.6: Flow past a Joukowski profile, pressure distribution along the profile:
◦ ◦ ◦ – exact solution of incompressible flow, —— – approximate solution of
compressible flow.

We shall consider stationary flow past a negatively oriented Joukowski profile
given by parameters ∆ = 0.07, a = 0.5, h = 0.05 (under the notation from [20],
Section 2.2.68) with zero angle of attack.

In order to demonstrate that the presented method allows the solution of
high-speed flow with shock waves, we present the results obtained for the tran-
sonic (M∞ = 0.8) and hypersonic (M∞ = 2.0) flow with shock waves past the
Joukowski profile. In these cases the starting CFL number was chosen 0.08 due
to the initial condition, which was constant in the whole computational domain.
Then during the computational process the CFL number was successively in-
creased up to 1500 and 2040 in the case of M∞ = 0.8 and M∞ = 2.0, respectively.
The computational domain is of the form of a square with side of the length equal
to 10 chords of the profile. The numbers of elements were 4451 for M∞ = 0.8
and 4537 for M∞ = 2.0. In both cases the constants from (3.85) and (3.86) had
values ν1 = ν2 = 0.1. The maximum density variation was 0.94 and 2.61 in the
case M∞ = 0.8 and M∞ = 2.0, respectively.

Figure 3.8 shows Mach number and entropy isolines of transonic flow past
the nonsymmetric Joukowski profile for the far field Mach number M∞ = 0.8.
Figure 3.8 shows Mach number and entropy isolines of supersonic flow past the
nonsymmetric Joukowski profile for the far field Mach number M∞ = 2.0. Since
the stabilization proposed in Section 3.7 has a local character, entropy is pro-
duced only on shock waves, which is correct from the physical point of view.
Figure 3.10 shows elements on which the discrete discontinuity indicator Gk

i , de-
fined by (3.84), is equal to one. By definition, stabilization is applied only on
these elements. In figure 3.11 the density distribution along the profile surface is
plotted.
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Figure 3.7: Velocity isolines for the approximate solution of compressible flow
(left) and for the exact solution of incompressible flow (right).

3.8.2 Irrotational flow past a circular cylinder

Let us consider stationary inviscid flow past a circular cylinder with the far field
velocity parallel to the axis x1 and the Mach number M∞ = 10−4. The problem
was solved in a computational domain in the form of a square with sides of the
length equal to 20 diameters of the cylinder. We show here details of the flow in
the vicinity of the cylinder. Figure 3.12 shows isolines of the absolute value of
the velocity for the compressible flow computed by scheme (3.73) with piecewise
quadratic elements (i. e. r = 2), on a coarse mesh formed by 361 elements and on a
fine mesh with 8790 elements, compared with the exact solution of incompressible
flow (computed by the method of complex functions – see [20], Section 2.2.35).

In Figure 3.13, the distribution of the absolute value of the velocity along the
cylinder, computed on the fine mesh with 8790 elements is shown in dependence
on the variable ϑ − π, where ϑ is the angle from cylindrical coordinates. We
see that the compressible and incompressible velocity distributions are almost
identical.

Moreover, Table 3.2 presents the behaviour of the error and experimental
order of convergence of the approximate solution wh of compressible flow to
the exact incompressible solution, measured in L∞(Ωh)-norm. The maximum
variation of the density ρmax− ρmin = 2.3 · 10−8, which corresponds to theoretical
results, and maxK∈Th

|∇ρh|K | < 1.99 · 10−6. This indicates that the computed
flow field behaves as incompressible flow.
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Figure 3.8: Transonic flow past nonsymmetric Joukowski airfoil with M∞ = 0.8,
Mach number isolines (left) and entropy isolines (right).

Figure 3.9: Supersonic flow past nonsymmetric Joukowski airfoil with M∞ = 2.0,
Mach number isolines (left) and entropy isolines (right).
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Figure 3.10: Flow past nonsymmetric Joukowski airfoil, elements with active
discontinuity indicator, M∞ = 0.8 (left) and M∞ = 2.0 (right).
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Figure 3.11: Flow past nonsymmetric Joukowski airfoil, density distribution along
the profile, M∞ = 0.8 (top) and M∞ = 2.0 (bottom).
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Figure 3.12: Velocity isolines for the approximate solution of compressible flow
– coarse mesh (upper left), fine mesh (upper right), compared with the exact
solution of incompressible flow (lower)

#T
h ‖error‖L∞(Ωh) EOC

1251 5.05E-01 –
1941 4.23E-01 0.406
5031 2.77E-02 2.86
8719 6.68E-03 2.59

Table 3.2: Error in L∞-norm and corresponding experimental order of conver-
gence for the approximation of incompressible flow by low Mach number com-
pressible flow with respect to h → 0, irrotational flow past a cylinder.

3.8.3 Rotational flow past a circular half-cylinder

In the following example we present the comparison of the exact solution of in-
compressible inviscid rotational flow past a circular half-cylinder, with center at
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Figure 3.13: Velocity distribution along the cylinder (full line – compressible flow,
dotted line – incompressible flow).

the origin and diameter equal to one, with an approximate solution of compress-
ible flow. The analytically exact solution was obtained in [24] by L. Fraenkel
under the assumptions of incompressibility and (nonzero) constant vorticity of
the flow. Fraenkel notes that this second assumption is not unnatural, since it
can be shown that viscous flows bounded by closed streamlines have constant
vorticity in the limit of infinite Reynolds number. This flow is interesting for its
corner vortices, which develop even though the flow is inviscid.

The far field Mach number is 10−4 and the far field velocity has the compo-
nents v1 = x2, v2 = 0. The computational domain was chosen in the form of a
rectangle with the length 10 and width 5, from which the half-cylinder was cut
off. The mesh was formed by 3541 elements. We present here computational
results in the vicinity of the half-cylinder. Figures 3.14 and 3.15 show stream-
lines of incompressible and compressible flow, respectively. In Figure 3.16 and
3.17 we see the comparison of velocity isolines. Figure 3.18 shows the velocity
distribution along the surface of the half-cylinder in dependence on the variable
ϑ− π/2, where ϑ is the angle from cylindrical coordinates (◦ ◦ ◦ – exact solution
of incompressible flow, —— – approximate solution of compressible flow). The
maximum density variation is 3.44 · 10−9.

3.8.4 Transonic flow through the GAMM channel

The 2D channel used in the following example was proposed by the Gesellschaft
für Angewandte Mathematic (GAMM) as a test channel for transonic compress-
ible flow simulation. The channel consists of a 10% circular bump in a rectangular
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Figure 3.14: Rotational incompressible flow past a half-cylinder, exact solution,
streamlines.

Figure 3.15: Rotational compressible flow past a half-cylinder, approximate so-
lution, streamlines.

Figure 3.16: Rotational incompressible flow past a half-cylinder, velocity isolines
of the exact solution.

Figure 3.17: Rotational compressible flow past a half-cylinder, velocity isolines
of the approximate solution.

domain and the inlet Mach number is taken to be equal to 0.67. In this setup
a stable shockwave develops, we therefore apply the shock capturing terms from
Section 3.7. Figures 3.19 and 3.20 show Mach number isolines and entropy iso-
lines computed by scheme (3.87). One can see that this scheme yields the entropy
production on the shock wave only. In Figure 3.21, the density distribution on
the lower wall is plotted. We see that the shock wave is very thin and is ended
by the well resolved Zierep singularity (small local maximum). The maximum
density variation is 0.693 in this case. In the computational process, the CFL
number was successively increased from 30 up to 3 · 103.
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Figure 3.18: Rotational flow past a half-cylinder, velocity distribution on the
half-cylinder: ◦ ◦ ◦ – exact solution of incompressible flow, —— – approximate
solution of compressible flow.

Figure 3.19: Transonic flow through the GAMM channel, Mach number isolines.

Figure 3.20: Transonic flow through the GAMM channel, entropy isolines.
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Figure 3.21: Transonic flow through the GAMM channel, density distribution on
the lower wall.



Chapter 4

Compressible Navier-Stokes
equations

In this chapter we shall apply the discontinuous Galerkin finite element method
to compressible viscous flows governed by the compressible Navier-Stokes equa-
tions. This system of equations is similar to the nonlinear convection diffusion
equation studied in Chapters 1 and 2. However, the treatment of second order
terms is not so straightforward for systems of equations as in the scalar case.
Again we present three variants how to discretize viscous (diffusion) terms –
symmetric, nonsymmetric and incomplete.

4.1 Continuous problem

Let Ω ⊂ R2, T > 0, QT and the boundary parts ΓI , ΓO, ΓW be the same as in
Chapter 3. We want to find a vector-valued function w : QT → R4 such that

∂w

∂t
+

2∑
s=1

∂f s(w)

∂xs

=
2∑

s=1

∂Rs(w,∇w)

∂xs

+ F(w) in QT , (4.1)

where

w = (ρ, ρv1, ρv2, e)
T ∈ R4,

f i(w) = (fi1(w), . . . , fi4(w))T,

= (ρvi, ρv1vi + δ1ip, ρv2vi + δ2ip, (e + p)vi)
T,

Ri(w,∇w) = (0, τi1, τi2, τi1v1 + τi2v2 + k∂θ/∂xi)
T,

τij = λδijdivv + 2µdij(v), dij(v) =
1

2

(
∂vi

∂xj

+
∂vj

∂xi

)
,

F(w) = ρ(0, f1, f2, q)
T.

(4.2)

99
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To system (4.1) we add the thermodynamical relations

p = (γ − 1)(e− ρ|v|2/2), θ =

(
e

ρ
− 1

2
|v|2

)
/cv. (4.3)

We use the following notation: θ – absolute temperature, cv – specific heat at
constant volume, µ, λ – viscosity coefficients, k – heat conduction coefficient,
q = q(x, t) – density of heat sources. We assume µ, k > 0, 2µ + 3λ ≥ 0. Usually
we set λ = −2/µ3. An important quantity in viscous flow is the so-called Reynolds
number, defined as

Re =
U?L?ρ?

µ?
, (4.4)

where U? is the characteristic velocity, L? is the characteristic length, ρ? is the
characteristic density and µ? is the characteristic viscosity of the given configu-
ration.

System (4.1) is equipped with the initial condition

w(x, 0) = w0(x), x ∈ Ω, (4.5)

and the following set of boundary conditions on appropriate parts of the bound-
ary:

Case ΓI : a) ρ|ΓI×(0,T ) = ρD, b) v|ΓI×(0,T ) = vD = (vD1, vD2)
T,

c)
2∑

j=1

(
2∑

i=1

τijni

)
vj + k

∂θ

∂n
= 0 on ΓI × (0, T );

(4.6)

Case ΓW : a) vΓW×(0,T ) = 0, b)
∂θ

∂n
= 0 on ΓW × (0, T ); (4.7)

Case ΓO : a)
2∑

i=1

τijni = 0, j = 1, 2, b)
∂θ

∂n
= 0 on ΓO × (0, T ); (4.8)

The viscous fluxes Ri(w,∇w) have a property similar to the homogeneity of
the inviscid fluxes (3.6). The term Ri(w,∇w) can be expressed in the form

Ri(w,∇w) =
2∑

j=1

Kij(w)
∂w

∂xj

, (4.9)

where Kij are 4× 4 matrices dependent on w and independent of ∇w. Explicit
formulae for Kij can be found e.g. in [14] or [21]. This property enables us to
apply similar concepts as in the semi-implicit linearization of the Euler equations
also in the case of viscous flows.
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4.2 Discretization

In the DGFE discretization we proceed similarly as in Chapter 1 and 3. The
approximate solution wh as well as test functions ϕh are elements of the finite
dimensional space of vector-valued functions Sh = [Sh]

4. By γD(i) we denote the
subset of indices from j ∈ γ(i) such that for at least one component wr of the
solution w the Dirichlet condition is prescribed on the edge Γij ⊂ ∂Ω.

As usual we assume that w is a sufficiently regular classical solution of
the Navier-Stokes equations (4.1), which we multiply by a test function ϕ ∈
H2(Ω, Th)

4, integrate over Ki ∈ Th and using Green’s theorem arrive at the iden-
tity

∫

Ω

∂w

∂t
·ϕ dx +

∑
i∈I

∑

j∈s(i)

∫

Γij

4∑
s=1

f s(w)n
(s)
ij ·ϕ dS

−
∑
i∈I

∫

Ki

2∑
s=1

f s(w) · ∂ϕ

∂xs

dx +
∑
i∈I

∫

Ki

2∑
s=1

Rs(w,∇w) · ∂ϕ

∂xs

dx

−
∑
i∈I

∑

j∈s(i)
j<i

∫

Γij

2∑
s=1

〈Rs(w,∇w)〉n(s)
ij · [ϕ] dS

−
∑
i∈I

∑

j∈γ(i)

∫

Γij

2∑
s=1

Rs(w,∇w)n
(s)
ij ·ϕ dS

=

∫

Ω

F(w) ·ϕ dx.

(4.10)

In the boundary convective terms, we use the approximation

∫

Γij

2∑
s=1

f s(w)nij
s ·ϕ dS ≈

∫

Γij

H(w|Γij
,w|Γji

,nij) ·ϕ dS, (4.11)

incorporating a numerical flux H as in the case of the Euler equations. Again we
use the numerical fluxes discussed in Section 3.3.

If the viscous fluxes Rs were linear, we could proceed similarly as in Chapter
1. Since this is not the case, we cannot simply exchange the roles of w and ϕ,
since the resulting terms would not be linear with respect to ϕ. This problem is
treated in two ways in [21] and [14]. We briefly describe these methods and derive
a different approach. The first method uses the fact that Rs(w,∇w), s = 1, 2,
are linear with respect to ∇w. This leads to the idea of adding the following
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terms to the left-hand side of (4.10):

∑
i∈I

∑

j∈s(i)
j<i

∫

Γij

2∑
s=1

〈
Rs(w,∇ϕ)

〉
n

(s)
ij · [w] dS

+
∑
i∈I

∑

j∈γ(i)

∫

Γij

2∑
s=1

Rs(w,∇ϕ)n
(s)
ij ·w dS.

(4.12)

In the second term we use the zero natural Neumann boundary conditions (4.6),
c), (4.7), b) and (4.8). This approach seems natural, however, in [21] it is stated
that the scheme based on this linearization does not give satisfactory results. The
presumed reason is the fact that the continuity equation is perturbed by other
than stabilizing terms. This fact led to development of the second method, a
partial linearization with respect to ∇wi for i = 2, 3, 4.

This linearization is obtained by the differentiation inside the definition of
Rs(w,∇w). In the 2D case, when λ = −2µ/3 we obtain from (4.2):

R1(w,∇w)

=




0
2
3

µ
w1

[
2(∂w2

∂x1
− w2

w1

∂w1

∂x1
)− (∂w3

∂x2
− w3

w1

∂w1

∂x2
)
]

µ
w1

[
(∂w3

∂x1
− w3

w1

∂w1

∂x1
) + (∂w2

∂x2
− w2

w1

∂w1

∂x2
)
]

w2

w1
R

(2)
1 + w3

w1
R

(3)
1 + k

cvw1

[
∂w4

∂x1
− w4

w1

∂w1

∂x1
− 1

w1
(w2

∂w2

∂x1
+ w3

∂w3

∂x1
)

+ 1
w2

1
(w2

2 + w2
3)

∂w1

∂x1

]




,
(4.13)

R2(w,∇w)

=




0
µ
w1

[
(∂w3

∂x1
− w3

w1

∂w1

∂x1
) + (∂w2

∂x2
− w2

w1

∂w1

∂x2
)
]

2
3

µ
w1

[
2(∂w3

∂x2
− w3

w1

∂w1

∂x2
)− (∂w2

∂x1
− w2

w1

∂w1

∂x1
)
]

w2

w1
R

(2)
2 + w3

w1
R

(3)
2 + k

cvw1

[
∂w4

∂x2
− w4

w1

∂w1

∂x2
− 1

w1
(w2

∂w2

∂x2
+ w3

∂w3

∂x2
)

+ 1
w2

1
(w2

2 + w2
3)

∂w1

∂x2

]




,
(4.14)

where R
(r)
s = R

(r)
s (w,∇w) denotes the r-th component of Rs (s = 1, 2, r = 2, 3).

Now for w and ϕ we define the vector-valued functions

D1(w,∇w,ϕ,∇ϕ)

=




0
2
3

µ
w1

[
2(∂ϕ2

∂x1
− ϕ2

w1

∂w1

∂x1
)− (∂ϕ3

∂x2
− ϕ3

w1

∂w1

∂x2
)
]

µ
w1

[
(∂ϕ3

∂x1
− ϕ3

w1

∂w1

∂x1
) + (∂ϕ2

∂x2
− ϕ2

w1

∂w1

∂x2
)
]

w2

w1
D

(2)
1 + w3

w1
D

(3)
1 + k

cvw1

[
∂ϕ4

∂x1
− ϕ4

w1

∂w1

∂x1
− 1

w1
(w2

∂ϕ2

∂x1
+ w3

∂ϕ3

∂x1
)

+ 1
w2

1
(w2ϕ2 + w3ϕ3)

∂w1

∂x1

]




,
(4.15)
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D2(w,∇w,ϕ,∇ϕ)

=




0
µ
w1

[
(∂ϕ3

∂x1
− ϕ3

w1

∂w1

∂x1
) + (∂ϕ2

∂x2
− ϕ2

w1

∂w1

∂x2
)
]

2
3

µ
w1

[
2(∂ϕ3

∂x2
− ϕ3

w1

∂w1

∂x2
)− (∂ϕ2

∂x1
− ϕ2

w1

∂w1

∂x1
)
]

w2

w1
D

(2)
2 + w3

w1
D

(3)
2 + k

cvw1

[
∂ϕ4

∂x2
− ϕ4

w1

∂w1

∂x2
− 1

w1
(w2

∂ϕ2

∂x2
+ w3

∂ϕ3

∂x2
)

+ 1
w2

1
(w2ϕ2 + w3ϕ3)

∂w1

∂x2

]




,
(4.16)

where D
(r)
s denotes the r-th component of Ds (s = 1, 2, r = 2, 3). Obviously D1

and D2 are linear with respect to ϕ,∇ϕ and furthermore

Ds(w,∇w,w,∇w) = Rs(w,∇w), s = 1, 2. (4.17)

Now we add the following terms to the left-hand side of (4.10):

∑
i∈I

∑

j∈s(i)
j<i

∫

Γij

2∑
s=1

〈
Ds(w,∇w,ϕ,∇ϕ)

〉
n

(s)
ij · [w] dS

+
∑
i∈I

∑

j∈γD(i)

∫

Γij

2∑
s=1

Ds(w,∇w, ϕ,∇ϕ)n
(s)
ij ·w dS

(4.18)

(these terms represent a modification of terms (4.12) with appropriate Neumann
boundary conditions taken into account). To balance the second term and incor-
porate the Dirichlet boundary condition we need additional terms on the right-
hand side of (4.10). Moreover in analogy with Chapter 1 we add the vanishing
interior penalty terms ∑

i∈I

∑

j∈s(i)
j<i

∫

Γij

σ[w] · [ϕ] dS (4.19)

with σ|Γij
= CW (Re.d(Γij))

−1 and boundary penalty terms balanced by addi-
tional right-hand side terms containing the Dirichlet boundary data.

We can see that the extension from the scalar case to systems is not straight-
forward. In the next section, we present a different possibility how to discretize
the viscous terms.

4.2.1 Discretization of viscous terms

In [2], a framework is provided for a unified treatment of discontinuous Galerkin
formulations for elliptic problems. The authors use this approach to derive several
discontinuous Galerkin discretizations of the Poisson equation, and as special
cases they derive the SIPG and NIPG schemes defined in Chapter 1. Applying
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this methodology in the case of the SIPG and NIPG methods gives another
possibility how to discretize elliptic terms in the case of systems. The situation
in the IIPG case is simpler, since we use directly equation (4.10).

The methodology used in [2] is based on introducing an auxiliary variable,
which approximates the gradient of the sought solution in a weak sense. This
equation is coupled with the weak formulation for the Poisson equation, which
results in a system of the first order equations. After discretizing this system with
the discontinuous Galerkin method with a special choice of the numerical flux, one
can eliminate the auxiliary variable to obtain the so called primal formulation.
For an appropriate choice of the numerical flux for the auxiliary equation, one
obtains e.g. the NIPG or SIPG methods. In the following, we apply this method
to systems of second order equations to obtain a possible generalization of these
schemes to systems.

In this section we are interested mainly in the discretization of viscous terms,
since convective terms are discussed in Chapter 3. We therefore treat a simpli-
fied equation consisting only of the viscous terms contained in the Navier-Stokes
equations equipped with a homogeneous Dirichlet boundary condition:

−
2∑

s=1

∂Rs(w,∇w)

∂xs

= 0 in Ω,

w = 0 on ∂Ω

(4.20)

In order to derive a discontinuous Galerkin formulation, we shall introduce an
auxiliary variable σ ≈ ∇w, under the notation σ(k) ≈ ∂w

∂xk
, for k = 1, 2. We

assume that w is a sufficiently regular classical solution of (4.20) and write an
equivalent formulation of (4.20) for unknowns w,σ1,σ2:

−
2∑

s=1

∂Rs(w,σ)

∂xs

= 0 in Ω,

σ(k) =
∂w

∂xk

for k = 1, 2.

(4.21)

To derive a suitable weak formulation, we multiply the first equation by a test
function ϕ ∈ [Sh]

4 and the second equation by the test function τ ∈ Σh, where
Σh is an appropriate function space, which we shall discuss later. We integrate
over an element Ki ∈ Th, apply Green’s theorem and sum over all elements:

∑
i∈I

∫

Ki

2∑
s=1

Rs(w,σ) · ∂ϕ

∂xs

dx−
∑
i∈I

∫

∂Ki

2∑
s=1

Rs(w,σ)n
(s)
Ki
·ϕ dS

= 0, ∀ϕ ∈ [Sh]
4,

∑
i∈I

∫

Ki

σ(k) · τ dx = −
∑
i∈I

∫

Ki

w · ∂τ

∂xk

dx +
∑
i∈I

∫

∂Ki

wn
(k)
Ki
· τ dS, ∀τ ∈ Σh.

(4.22)
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To derive a discontinuous Galerkin formulation of (4.22), we proceed as in the
case of convective terms. We introduce numerical fluxes Hw

ij and Hσ
ij into the

boundary integrals in each equation:

∫

Γij

2∑
s=1

Rs(w, σ)n
(s)
ij ·ϕ dS ≈

∫

Γij

Hw
ij ·ϕ dS

∫

Γij

wn
(k)
ij · τ dS ≈

∫

Γij

Hσ
ijn

(k)
ij · τ dS.

(4.23)

The choice of different numerical fluxes Hw
ij and Hσ

ij leads to different numerical
schemes. For instance, according to [2], for the Poisson equation, the following
choices lead to the nonsymmetric variant of Chapter 1:

Hw
ij :=

{∑2
s=1 Rs(wij,∇wij)n

(s)
ij for Γij ⊂ ∂Ω,∑2

s=1

〈
Rs(w,∇w)

〉
n

(s)
ij otherwise.

Hσ
ij :=

{
2wij for Γij ⊂ ∂Ω,

〈w〉+ [w] otherwise.

(4.24)

To obtain the symmetric variant, we use a different numerical flux definition.
Namely, Hw

ij is the same as in (4.24) and Hσ
ij is defined as

Hσ
ij :=

{
0 for Γij ⊂ ∂Ω,

〈w〉 otherwise.
(4.25)

By replacing boundary terms in (4.23) by the numerical fluxes defined in (4.24),
we obtain after some manipulation the following discrete formulation of system
(4.21), which leads to the NIPG scheme:

∑
i∈I

∫

Ki

2∑
s=1

Rs(w, σ) · ∂ϕ

∂xs

dx−
∑
i∈I

∑

j∈s(i)
j<i

∫

Γij

2∑
s=1

〈Rs(w,∇w)〉n(s)
ij · [ϕ] dS

−
∑
i∈I

∑

j∈γ(i)

∫

Γij

2∑
s=1

Rs(wij,∇wij)n
(s)
ij ·ϕij dS = 0, ∀ϕ ∈ [Sh]

4,

∑
i∈I

∫

Ki

σ(k) · τ dx = −
∑
i∈I

∫

Ki

w · ∂τ

∂xk

dx +
∑
i∈I

∑

j∈s(i)
j<i

∫

Γij

(〈w〉+ [w]
)
n

(k)
ij · [τ ] dS

+
∑
i∈I

∑

j∈γ(i)

∫

Γij

2wijn
(k)
ij · τ ij dS, k = 1, 2, ∀τ ∈ Σh,

(4.26)
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Similarly as in [2] for the Poisson equation, we shall eliminate the auxiliary vari-
able σ from system (4.26) due to the choice of numerical fluxes (4.24). This
procedure then leads to the so-called primal formulation, which will, in our case,
give a generalization of the NIPG and SIPG schemes from the scalar case derived
in Chapter 1 to systems of equations.

To eliminate the variable σ from the first equation in (4.26), we notice that
this variable figures only in the first term. Using property (4.9), we write

∑
i∈I

∫

Ki

2∑
s=1

Rs(w,σ) · ∂ϕ

∂xs

dx

=
∑
i∈I

∫

Ki

2∑
s=1

( 2∑

k=1

Ksk(w)σ(k)

)
· ∂ϕ

∂xs

dx

=
∑
i∈I

∫

Ki

2∑

k=1

σ(k) ·
( 2∑

s=1

KT
sk(w)

∂ϕ

∂xs

)
dx.

(4.27)

Now we take the second equation in (4.26) and apply Green’s theorem to its first
right-hand side term:

∑
i∈I

∫

Ki

σ(k) · τ dx

= −
∑
i∈I

∫

Ki

w · ∂τ

∂xk

dx +
∑
i∈I

∑

j∈s(i)
j<i

∫

Γij

(〈w〉+ [w]
)
n

(k)
ij · [τ ] dS

+
∑
i∈I

∑

j∈γ(i)

∫

Γij

2wijn
(k)
ij · τ ij dS

=
∑
i∈I

∫

Ki

∂w

∂xk

· τ dx +
∑
i∈I

∑

j∈s(i)
j<i

∫

Γij

[w]n
(k)
ij · 〈τ 〉 dS

+
∑
i∈I

∑

j∈γ(i)

∫

Γij

wijn
(k)
ij · τ ij dS, ∀τ ∈ Σh.

(4.28)

If we set set τ :=
∑2

s=1KT
sk(w) · ∂’

∂xs
in (4.28), we can express (4.27) without the

use of σ. We proceed in the following way. We introduce the notation similar to
(4.9):

R̃k(w,∇ϕ) :=
2∑

s=1

KT
sk(w)

∂ϕ

∂xs

. (4.29)

Now, the use of (4.28) in (4.27) gives us
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∑
i∈I

∫

Ki

2∑
s=1

Rs(w,σ) · ∂ϕ

∂xs

dx

=
∑
i∈I

∫

Ki

2∑

k=1

σ(k) ·
( 2∑

s=1

KT
sk(w)

∂ϕ

∂xs

)
dx

=
∑
i∈I

∫

Ki

2∑

k=1

∂w

∂xk

·
( 2∑

s=1

KT
sk(w)

∂ϕ

∂xs

)
dx

+
∑
i∈I

∑

j∈s(i)
j<i

∫

Γij

2∑

k=1

[w]n
(k)
ij ·

〈 2∑
s=1

KT
sk(w)

∂ϕ

∂xs

〉
dS

+
∑
i∈I

∑

j∈γ(i)

∫

Γij

2∑

k=1

wijn
(k)
ij ·

( 2∑
s=1

KT
sk(w)

∂ϕ

∂xs

)
dS

=
∑
i∈I

∫

Ki

2∑
s=1

Rs(w,∇w) · ∂ϕ

∂xs

dx

+
∑
i∈I

∑

j∈s(i)
j<i

∫

Γij

2∑

k=1

[w]n
(k)
ij · 〈R̃k(w,∇ϕ)

〉
dS

+
∑
i∈I

∑

j∈γ(i)

∫

Γij

2∑

k=1

wn
(k)
ij · R̃k(w,∇ϕ) dS.

(4.30)

Finally, if we use this expression in the first equation of (4.26), we obtain the
following discontinuous Galerkin formulation of problem (4.20):

∑
i∈I

∫

Ki

2∑
s=1

Rs(w,∇w) · ∂ϕ

∂xs

dx

−
∑
i∈I

∑

j∈s(i)
j<i

∫

Γij

2∑
s=1

〈Rs(w,∇w)〉n(s)
ij · [ϕ] dS −

∑
i∈I

∑

j∈γ(i)

∫

Γij

2∑
s=1

Rs(w,∇w)n
(s)
ij ·ϕ dS

+
∑
i∈I

∑

j∈s(i)
j<i

∫

Γij

2∑
s=1

〈
R̃s(w,∇ϕ)

〉
n

(s)
ij · [w] dS +

∑
i∈I

∑

j∈γ(i)

∫

Γij

2∑
s=1

R̃s(w,∇ϕ)n
(s)
ij ·w dS

= 0, ∀ϕ ∈ [Sh]
4.

(4.31)
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As in Chapter 1, we need to add an interior and boundary penalty term Jh(w,ϕ)
to the left-hand side of (4.31):

Jh(w,ϕ) =
∑
i∈I

∑

j∈s(i)
j<i

∫

Γij

σ[w] · [ϕ] dS +
∑
i∈I

∑

j∈γD(i)

∫

Γij

σw ·ϕ dS, (4.32)

where σ is an appropriate parameter defined by

σ|Γij
=

CW

Re.d(Γij)
, (4.33)

Where CW > 0. This procedure leads to the nonsymmetric formulation, the
symmetric can be derived analogously, and the incomplete variant is the simplest,
since it does not use artificially added terms. As in Section 2.2, the constant
CW > 0 must be chosen large enough in the symmetric and incomplete variants
to ensure coercivity of the resulting diffusion form.

4.2.2 Discrete problem

On the basis of the preceding section, we introduce the following forms defining
the discrete formulation of problem (4.1) equipped with boundary conditions

(4.6)-(4.8). Here R̃s(w,∇ϕ) is defined in (4.29).
Nonsymmetric variant of the diffusion form:

aN
h (w,ϕ) =

∑
i∈I

∫

Ki

2∑
s=1

Rs(w,∇w) · ∂ϕ

∂xs

dx

−
∑
i∈I

∑

j∈s(i)
j<i

∫

Γij

2∑
s=1

〈Rs(w,∇w)〉n(s)
ij · [ϕ] dS −

∑
i∈I

∑

j∈γD(i)

∫

Γij

2∑
s=1

Rs(w,∇w)n
(s)
ij ·ϕ dS

+
∑
i∈I

∑

j∈s(i)
j<i

∫

Γij

2∑
s=1

〈R̃s(w,∇ϕ)〉n(s)
ij · [w] dS +

∑
i∈I

∑

j∈γD(i)

∫

Γij

2∑
s=1

R̃s(w,∇ϕ)n
(s)
ij ·w dS,

(4.34)
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symmetric variant of the diffusion form:

aS
h(w, ϕ) =

∑
i∈I

∫

Ki

2∑
s=1

Rs(w,∇w) · ∂ϕ

∂xs

dx

−
∑
i∈I

∑

j∈s(i)
j<i

∫

Γij

2∑
s=1

〈Rs(w,∇w)〉n(s)
ij · [ϕ] dS −

∑
i∈I

∑

j∈γD(i)

∫

Γij

2∑
s=1

Rs(w,∇w)n
(s)
ij ·ϕ dS

−
∑
i∈I

∑

j∈s(i)
j<i

∫

Γij

2∑
s=1

〈R̃s(w,∇ϕ)〉n(s)
ij · [w] dS −

∑
i∈I

∑

j∈γD(i)

∫

Γij

2∑
s=1

R̃s(w,∇ϕ)n
(s)
ij ·w dS,

(4.35)

incomplete variant of the diffusion form:

aI
h(w,ϕ) =

∑
i∈I

∫

Ki

2∑
s=1

Rs(w,∇w) · ∂ϕ

∂xs

dx

−
∑
i∈I

∑

j∈s(i)
j<i

∫

Γij

2∑
s=1

〈Rs(w,∇w)〉n(s)
ij · [ϕ] dS −

∑
i∈I

∑

j∈γD(i)

∫

Γij

2∑
s=1

Rs(w,∇w)n
(s)
ij ·ϕ dS,

(4.36)

interior and boundary penalty jump terms:

Jh(w,ϕ) =
∑
i∈I

∑

j∈s(i)
j<i

∫

Γij

σ[w] · [ϕ] dS +
∑
i∈I

∑

j∈γD(i)

∫

Γij

σw ·ϕ dS (4.37)

Further we define the nonsymmetric right-hand side form:

lNh (w,ϕ) =

∫

Ω

F(w) ·ϕ dx +
∑
i∈I

∑

j∈γD(i)

∫

Γij

2∑
s=1

σwB ·ϕ dS

+
∑
i∈I

∑

j∈γD(i)

∫

Γij

2∑
s=1

R̃s(w,∇ϕ)n
(s)
ij ·wB dS,

(4.38)

symmetric right-hand side form:

lSh (w,ϕ) =

∫

Ω

F(w) ·ϕ dx +
∑
i∈I

∑

j∈γD(i)

∫

Γij

2∑
s=1

σwB ·ϕ dS

−
∑
i∈I

∑

j∈γD(i)

∫

Γij

2∑
s=1

R̃s(w,∇ϕ)n
(s)
ij ·wB dS,

(4.39)
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incomplete right-hand side form:

lIh(w,ϕ) =

∫

Ω

F(w) ·ϕ dx +
∑
i∈I

∑

j∈γD(i)

∫

Γij

2∑
s=1

σwB ·ϕ dS. (4.40)

Finally, we define the convective terms:

bh(w, ϕ) =−
∑
i∈I

∫

Ki

2∑
s=1

f s(w) · ∂ϕ

∂xs

dx

+
∑
i∈I

∑

j∈S(i)

∫

Γij

H(w|Γij
,w|Γji

,nij) ·ϕ dS,

(4.41)

here Γij ⊂ ∂Ω than w|Γji
is determined on the basis of inviscid boundary condi-

tions as presented in Section 3.4.
The boundary state wB = (wB1, . . . , wB4)

T is defined as follows: we set

wBr|Γij
= w∗

Br|Γij
, (4.42)

if the r-th component wr of w is prescribed on Γij in the boundary conditions
(4.6) – (4.8). By w∗ we mean the function satisfying the Dirichlet boundary
conditions. Otherwise, we set

wBr|Γij
= wr|Γij

, (4.43)

i.e. we use ”extrapolation” of wr onto Γij from Ki ∈ Th. In particular, we have

wB = (ρij, 0, 0, cvρijθij) on ΓW ,

wB =

(
ρD, ρDvD1, ρDvD2, cvρDθD +

1

2
ρD|vD|2

)
on ΓI ,

wB = wij on ΓO.

(4.44)

As for the Neumann-type boundary conditions (4.6),c), (4.7),b) and (4.8),a),b),
they are incorporated into the definition of boundary terms in the definition
diffusion forms. Finally, in the convective terms (4.41) we incorporate the inviscid
characteristic-based boundary conditions as defined in Section 3.4.3.

For simplicity of notation, we omit the superscripts N, S and I in the following
definition and use the generic notation for the diffusion and right-hand side forms
ah(uh, ϕ) and lh(ϕh). The symmetric, nonsymmetric and incomplete variants can
be obtained by taking in turn ah := aS

h , lh := lSh and so on. Now we can define
the discrete DGFE Navier-Stokes problem:
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Definition 4.2.1 We say that wh is a DGFE solution of the compressible Navier-
Stokes equations (4.1) - (4.2), if

a) wh ∈ C1([0, T ];Sh),

b)
d

dt
(wh(t),ϕh) + bh(wh(t), ϕh) + Jh(wh(t),ϕh) + ah(wh(t),ϕh)

= lh(wh,ϕh)(t), ∀ϕh ∈ Sh, ∀t ∈ (0, T ),

c) wh(0) = w0
h,

(4.45)

where w0
h is an Sh approximation of the initial condition w0.

4.3 Time discretization

The semi-implicit scheme presented in Section 3.6.2 is a discretization of the Euler
equations. Here we incorporate the viscous terms into the semi-implicit scheme.

This method is based on relation (4.9), which gives a possibility to linearize
the viscous terms similarly as in the semi-implicit linearization of the Euler equa-
tions. We linearize only the nonsymmetric variant, the symmetric and incomplete
variants are analogous. For simplicity of notation we again omit the superscript
N and write only aSI

h .
Let us define the following linearized forms based on definition (4.34) and the

definition of R̃k(w,∇ϕ) given in (4.29):

aSI
h (wk

h,w
k+1
h , ϕh) =

∑
i∈I

∫

Ki

2∑
s=1

2∑
t=1

Kst(w
k
h)

∂wk+1
h

∂xt

· ∂ϕh

∂xs

dx

−
∑
i∈I

∑

j∈s(i)
j<i

∫

Γij

2∑
s=1

〈 2∑
t=1

Kst(w
k
h)

∂wk+1
h

∂xt

〉
n

(s)
ij · [ϕh] dS

−
∑
i∈I

∑

j∈γD(i)

∫

Γij

2∑
s=1

2∑
t=1

Kst(w
k
h)

∂wk+1
h

∂xt

n
(s)
ij ·ϕh dS

+
∑
i∈I

∑

j∈s(i)
j<i

∫

Γij

2∑
s=1

〈 2∑
t=1

KT
ts(w

k
h)

∂ϕh

∂xt

〉
n

(s)
ij · [wk+1

h ] dS

+
∑
i∈I

∑

j∈γD(i)

∫

Γij

2∑
s=1

2∑
t=1

KT
ts(w

k
h)

∂ϕh

∂xt

n
(s)
ij ·wk+1

h dS,

(4.46)
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(nonsymmetric linearized diffusion form),

JSI
h (wk+1

h ,ϕh) =
∑
i∈I

∑

j∈s(i)
j<i

∫

Γij

σ[wk+1
h ] · [ϕh] dS

+
∑
i∈I

∑

j∈γD(i)

∫

Γij

σwk+1
h ·ϕh dS

(4.47)

(linearized interior and boundary penalty jump terms),

lSI
h (wk

h,w
k+1
h ,ϕh) =

∫

Ω

F(wk
h) ·ϕh dx

+
∑
i∈I

∑

j∈γD(i)

∫

Γij

2∑
s=1

2∑
t=1

KT
ts(w

k
h)

∂ϕh

∂xt

n
(s)
ij ·wB dS

+
∑
i∈I

∑

j∈γD(i)

∫

Γij

2∑
s=1

σwB ·ϕh dS

(4.48)

(right-hand side form).
With the aid of the linearized inviscid form bSI

h defined in Section 3.6.2, we
define the semi-implicit linearized scheme:

Definition 4.3.1 For each k = 0, 1, . . . find wk+1
h such that

a) wk+1
h ∈ Sh,

b) (wk+1
h , ϕh) + τkb

SI
h (wk

h,w
k+1
h , ϕh) + τka

SI
h (wk

h,w
k+1
h , ϕh)

+ τkJ
SI
h (wk+1

h , ϕh) = τkl
SI
h (wk

h,w
k+1
h , ϕh) + (wk

h,ϕh),

∀ϕh ∈ Sh, k = 0, 1, . . . ,

c) w0
h = w̃0

h.

(4.49)

where w̃0
h is an Sh approximation of the initial condition w0.

This scheme is linear with respect to wk+1
h and can be implemented with the

aid of an efficient linear solver as in the inviscid case.

4.4 Numerical experiments

In this section we present the solution of some test problems in order to demon-
strate the performance of the proposed discontinuous Galerkin formulation of the
compressible Navier-Stokes equations. As in Section 3.8, the computational grids
were constructed with the aid of the anisotropic mesh adaptation technique [13]
and quadratic elements (r = 2) were applied in the following examples. Steady
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state solutions were obtained using scheme the incomplete variant of scheme
(4.49) for ”tk →∞”.

In the viscous case, the matrix sparsity structure of the resulting system of
equations is more complicated than in the case of inviscid flows, when Lagrange
basis functions are used. This caused the poor performance of the UMFPACK
direct solver, which was not able to handle larger systems with the memory
available. Therefore block Jacobi preconditioned GMRES was used, however this
iterative solver proved to be insufficient in the case of low-Mach flows. There-
fore in following examples the exact incompressible solutions are compared with
numerical solutions of the compressible equations with Mach number M = 0.1,
which is much larger than in Section 3.8, where M = 10−4 is commonly attainable
with the direct linear solver.

4.4.1 Viscous boundary layer

In the first example we consider a simple configuration consisting of a boundary
layer near an impermeable wall. In our case, the wall (or flat plate) is represented
by the set ΓW = {(x1, x2) ∈ IR2 : x1 ∈ [0, +∞), x2 = 0} and the far field

velocity has components v∞ = (v
(1)
∞ , 0). In the numerical computation we choose

the freestream Mach number M = 0.1 and Reynolds number Re = 103. The
computational mesh has 2479 elements and was adaptively refined along the flat
plate. If we can neglect the compressibility of the flow, the computed stationary
solution can be compared to the Blasius solution for a laminar incompressible flat-
plate boundary layer derived by H. Blasius in [6]. Specifically, we are interested
in the distribution of the skin-friction coefficient cf along the wall. This quantity
cf is defined as

cf =
τW

1
2
ρ∞|v∞|2

, (4.50)

The wall shear stress τW is defined in our case as

τW = µt.(τn), (4.51)

where t and n is the tangent and normal to the wall surface , respectively, and τ
is the stress tensor with components τij given in (4.2). For the Blasius solution,
the distribution of the skin friction coefficient is given by

cexact
f = 0.664Re−1/2

x , where Rex =
|v∞|x1

µ
. (4.52)

Figure 4.1 shows a detail of the velocity isolines of the computed numerical solu-
tion, while in Figure 4.2, the theoretical (◦◦◦) and computed (——) skin friction
coefficients are compared.
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Figure 4.1: Laminar flat-plate boundary layer, velocity isolines.
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Figure 4.2: Laminar flat-plate boundary layer, distribution of the skin friction
coefficient along the wall surface, ◦◦◦ – exact Blasius solution, —— – approximate
solution.

4.4.2 Channel flow

In this numerical example, we shall be concerned with the stationary flow through
a straight narrow channel. From the theory of laminar incompressible viscous
flow, the so-called Poiseuille flow described in [30], is known as the stationary
solution of flow through an infinitely long channel Ω = {(x1, x2) ∈ IR2 : x1 ∈
IR, 0 < x2 < 1} with walls at ΓW = {(x1, x2) ∈ IR2 : x2 = 0 ∨ x2 = 1}. If we
assume that the flow is stationary and derivatives of quantities are zero in the
x1-direction, we obtain as an exact solution the well known parabolic profile of
the velocity and linearly descending pressure. The boundary layer does not affect
the pressure in the sense that the derivative of the pressure in the x2-direction is
zero.

The computational domain is Ωh = {(x1, x2) ∈ IR2 : −5 < x1 < 5, 0 < x2 <
1}, the mesh is nonuniform and is formed by 2131 triangular elements. At the
inlet we prescribe a constant state, the freestream Mach number is M = 0.1 and
the Reynolds number related to the thickness of the channel is Re = 100. Figure
4.3 shows velocity isolines (top) and pressure isolines (bottom) of the computed
solution. The effect of the constant inlet boundary condition is visible at the
inlet (left side) and at the outlet a small perturbation of the pressure is also
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visible. In Figure 4.4, we see a section of the channel near the outlet along the
line x1 = 4. The parabolic profile of the velocity is clearly visible (solid line) and
for comparison an exact parabolic profile fitted to the numerical solution is also
plotted (circles).

Figure 4.3: Poiseuille flow in channel, velocity isolines (top) and pressure isolines
(bottom).
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Figure 4.4: Poiseuille flow in channel, cross section near outlet, —— – values of
velocity, ◦ ◦ ◦ – exact parabolic profile fitted to the numerical solution.

4.4.3 Flow past a NACA0012 profile

1) Stationary flow. Let us consider a viscous subsonic flow past the NACA0012
airfoil with small angle of attack (2◦). In this case the flow is stationary, obtained
by time stabilization with ”tk → ∞”. Here the upper and lower surfaces of the
airfoil geometry are given by the functions f±, respectively, where

f±(ϑ) = ±0.6 ∗ (0.2969
√

ϑ− 0.126ϑ− 0.3516ϑ2 + 0.2843ϑ3− 0.1015ϑ4)+, (4.53)



CHAPTER 4. COMPRESSIBLE NAVIER-STOKES EQUATIONS 116

where (.)+ denotes the positive part. This function is re-scaled in order to yield
a chord of unit length. The far-field flow has Mach number M = 0.5, angle of
attack α = 2◦ and Reynolds number Re = 5000. The computational mesh has
2367 elements and is adaptively refined near the profile. Figure 4.5 – left – shows
Mach number isolines, the boundary layer and wake behind the airfoil are visible.
Figure 4.5 – right – shows pressure isolines. As in Section 4.4.1 in the case of
a single impermeable wall, the boundary layer and wake should not be visible
in the pressure distribution. Finally in Figure 4.6 the entropy is plotted. This
should be produced only in the boundary layer and convected by the flow field.

Figure 4.5: NACA0012 α = 2◦ viscous flow, Mach number isolines (left), pressure
isolines (right).

Figure 4.6: NACA0012 α = 2◦ viscous flow, entropy isolines.

2) Nonstationary flow. We treat the compressible flow around a NACA0012
profile with a large angle of attack (25◦). Unlike the preceding example, the flow
is nonstationary with vortex formation and shedding at the upper wall of the
profile. The far-field flow has Mach number M = 0.5, angle of attack α = 25◦

and Reynolds number Re = 5000. The computational mesh has 2898 elements
and is adaptively refined near the profile. Due to the nonstationary character
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of the flow, the following figures illustrate the flow situation at time t = 8.5.
Figure 4.7 shows a detail of the Mach number isolines, the boundary layer and
complicated flow structure behind the airfoil are visible. In Figure 4.8 a detail of
streamlines with the vortex structure at t = 8.5 is shown. Finally in Figure 4.9
we plot the entropy, which should be produced only in the boundary layer and
convected by the flow field as in the previous stationary case.

Figure 4.7: NACA0012 α = 25◦ viscous flow, Mach number isolines.

Figure 4.8: NACA0012 α = 25◦ viscous flow, streamlines.

Figure 4.9: NACA0012 α = 25◦ viscous flow, entropy isolines.



Conclusions

In the first two chapters of this thesis, we have formulated and theoretically an-
alyzed the discontinuous Galerkin finite element method for a scalar convection-
diffusion equation with nonlinear convection and diffusion. Error estimates in
the L2(H1)- and L∞(L2)-norms are derived, however these are suboptimal with
respect to the latter norm. In Section 2.3 optimal error estimates in the L∞(L2)-
norm for the symmetric variant (SIPG) of the DGFEM are derived, but due to
the use of specific techniques there are several limitations in this result. Namely,
we assume that Ω is convex, we do not permit a Neumann boundary condition
and the diffusion must be linear. Further work will be aimed at removing these
additional assumptions. As for the nonsymmetric (NIPG) and incomplete (IIPG)
variants, numerical experiments indicate that these methods may have L∞(L2)-
optimal convergence when the approximation order p is odd. To the authors
knowledge, this phenomenon has not yet been theoretically analyzed.

The discontinuous Galerkin method combined with semi-implicit linearization
applied to the Euler equations yields a accurate and robust method capable
of solving a wide range of problems. In the computationally challenging case
of small Mach number flows, the performance of the presented method relies
mainly on the use of an efficient linear solver. In these cases we have mainly used
the direct solver UMFPACK, which limits the size of the problems solved due
to high memory consumption. Therefore further work must be invested in the
development of an efficient preconditioner to be used in an iterative solver, e.g.
GMRES. The shock capturing technique presented in Section 3.7 must be further
refined to obtain a more robust method, especially with respect to the size of the
time step and choice of the constants involved.

In the last chapter, we have applied the methods theoretically justified in
chapters 1 and 2 to the compressible Navier-Stokes equations. Several extensions
from the scalar case were discussed, including a new approach based on a unified
methodology of [2]. Numerical experiments were performed using the incomplete
interior penalty (IIPG) method, because of its simplicity and robustness with re-
spect to the choice of the penalty parameter σ. Since the resulting matrices have
a more complicated structure than those arising from the Euler equations, the
direct linear solver was unable to compute solutions of larger problems, therefore
an iterative solver was used, which has insufficient performance in the case of

118
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small Mach numbers. Again the need for effective preconditioning arises.

We believe that the discontinuous Galerkin finite element method yields an
effective higher order scheme for the solution of conservation laws and singularly
perturbed problem due to its local character. Especially of interest in applica-
tions is the capability to solve compressible flows which are near the so-called
incompressible limit as well as transonic and supersonic flows.
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