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We construct an infinite crystal-like structure consisting of individual black holes held in stable equilibrium by the
repulsion of their electric charges. This solution belongs to the Majumdar-Papapetrou family but one needs to deal with
the infinite sums appearing in the metric. In addition to axial symmetry, the solution exhibits a discrete translational
symmetry, while far away from the axis, it is fully cylindrically symmetric. We study the singularities and horizons of
the spacetime, its asymptotics, and the behavior of charged test particles.
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I. INTRODUCTION

The issue of symmetries is of special importance in gen-
eral relativity since finding exact solutions to the Einstein-
Maxwell equations is difficult. One thus often starts from
assumptions on the symmetries of the spacetime in question,
simplifying the underlying reality. This is certainly the case
with the Schwarzschild solution but also with most of the ba-
sic cosmological models where we assume local homogeneity
and isotropy. The reasoning is that although the universe is
definitely not smooth on small scales, it becomes ever more
uniform when viewed on larger scales. It is then crucial to
see whether the local properties of spacetime conspire to pro-
duce the global symmetry of the standard FLRW metrics.
Therefore, it would be of interest to have an exact solution
that would locally be non-smooth while approximating ho-
mogeneity asymptotically.

One approach is to study the effect of a set of discrete indi-
vidual masses arranged either regularly or randomly. This line
of thought led to the lattice universes introduced by Lindquist
and Wheeler already in 19571. They considered a regular cu-
bic spatial lattice of Schwarzschild solutions glued together at
the boundaries of the neighboring cells. The resulting space-
time is non-stationary and it satisfies Einstein equations ev-
erywhere apart from the interfaces where the equations are
only satisfied approximately, see2 for a review. A similar, very
simple but exact solution was studied in3. Another approach
is based on an approximative, cellular-like solution expanding
the metric in M/L, with M mass of the cell and L its typi-
cal dimension4. These papers investigate a space-like hyper-
surface at the moment of time symmetry when it is instanta-
neously static5, see6 for a recent review. The solutions are
charged and contain a finite number of black holes distributed
upon a 3-sphere. The model generally does not include dy-
namics although there are papers on the evolution of some
special curves representing the evolution of the initial data7.
The solution thus does not describe the spacetime as a whole
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and it is not possible, for instance, to locate the position of
event horizons—one can find apparent horizons instead8.

In this paper, we apply a different method and construct a
solution involving an infinite number of sources with a dis-
crete local symmetry and translational invariance on large
scales. The simplest situation occurs in one dimension:
one puts identical point sources on an infinite straight line
and distributes them equidistantly. Due to the symmetry
of the sources, the system is in balance and thus remains
static. The basic example of this type is an infinite string of
Schwarzschild black holes studied in9. This solution, how-
ever, has two drawbacks: firstly, its balance is only due to
its reflection symmetry around any of the black holes so that
an arbitrary perturbation which would not be periodic along
the axis would either collapse or explode the whole system.
And, secondly, there is in fact additional motivation in our
search for this solution: we want to construct a source that
would approximate the field of an infinitely thin string with
linear mass and linear charge densities (ECS) studied in10,11

and that would perhaps avoid the singularity along the axis of
the spacetime. This has been done in10 with a source in the
form of a cylinder of dust yet this approach did not bring the
discrete translational symmetry along the axis that we wanted
to have. The discrete multi Schwarzschild spacetime of9, on
the other hand, has the right symmetries but also asymptotics
that are very different from the charged string. We thus need
to generalize this solution.

In order to keep the point sources in stable balance, we need
a means to counter their gravitational attraction so it is natural
to add an electromagnetic interaction by charging the sources
and ensuring Coulomb repulsion between them. For a finite
number of non-extremal Reissner-Nordström black holes, this
has been done in12. This solution is of course asymptotically
flat and it does not feature the discrete translational symmetry.
One can combine the methods of12 and9 to obtain an infinite
string of charged black holes along the axis of symmetry but
the asymptotics do not correspond to the ECS solution, which
is extreme. We thus have two options: one can take the non-
extreme solution and take the extreme limit in the end, or start
from a string of extremal black holes from the beginning. The
latter is the path we adopted in this paper.
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The spacetime due to an infinite string of extremally
charged black holes belongs to the Majumdar-Papapetrou
family but it requires a special treatment due to convergence
issues related to the infinite set of sources. Let us note that this
issue is non trivial since one cannot apply the results of13 as
there are no accumulation points in our sequence of sources
and their total mass is infinite. The sought exact solution
is static and describes the entire spacetime so it is straight-
forward to find black-hole horizons. It can also be general-
ized to a dynamical solution including a cosmological con-
stant. Moreover, it is asymptotically translationally invariant
along the axis of symmetry as required, mimicking thus the
large-scale homogeneity of the observed universe as an emer-
gent phenomenon due to the local properties of the sources.
In comparison, the models of5 are locally symmetric (the 3-
sphere hypersurface is) but lack any global symmetry. Our
model is the exact opposite: there is only a discrete transla-
tional symmetry along the axis of symmetry, which, as we go
farther away from the axis, passes into a translational sym-
metry with its corresponding Killing vector field and conser-
vation of the parallel component of the linear momentum for
test particles. We will further show that its asymptotics indeed
correspond to the ECS spacetime of10,11.

Due to the alignment of the sources we call these solutions
“crystals,” as they resemble an infinite one-dimensional crys-
tallographic structure. To construct the crystals, we adopt two
different approaches and discuss their differences, shortcom-
ings, and merits. We study a Majumdar-Papapetrou (MP)
spacetime constructed directly as an infinite sum of point
sources. We look into two subcases: In Section II, all the
masses are identical while in Section III, there are alternating
positive and negative masses of an equal magnitude. We in-
vestigate convergence and other properties of the correspond-
ing mathematical expressions and determine the location of
singularities and other physical properties of the resulting
spacetime. In Section IV, we review a construction due to14

and based on a 5D MP solution15 and a subsequent reduction
of the number of dimensions. This results in an additional
scalar field that can be viewed as representing matter con-
tained in the spacetime. A similar situation involving a scalar
field has been studied in case of bouncing cosmologies16. The
corresponding metric has a closed form which enables us to
study its properties analytically. An analogous reduction was
applied in17 albeit from 4 to 3 dimensions.

Before turning to the crystal solutions, let us first briefly
review the properties of the Majumdar-Papapetrou solution in
arbitrary dimension D= n+1,n≥ 3? The corresponding met-
ric, Dg, reads18

Dg =−U−2dt2 + nhi jdxidx j, (1)

where t is a time-like Killing coordinate, so that the met-
ric is static with the function U = U(xi) only depending on
Cartesian-like spatial coordinates xi? . The spatial metric nhi j
is conformally flat

nh =U
2

n−2 · nδi jdxidx j. (2)

These coordinates describe well the region above the hori-
zons. The electromagnetic potential A and the electromag-

netic field tensor F read

A = cn
dt
U
, F = dA =−cn

n

∑
i=1

U,i

U2 dxi∧dt (3)

with cn =
√

n−1
2(n−2) . One particular solution, in which we are

interested, is a multi black-hole spacetime of the form

U(x) = 1+
N

∑
i=1

Qi

rn−2
i

, r2
i =

n

∑
a=1

(xa− xa
i )

2, (4)

with the corresponding charge current18√
−det Dg J0=− cn

4π
∆δU =

=
cnπ

n
2−1

Γ
( n

2 −1
) N

∑
i=1

Qi · nδ (x− xi) . (5)

Here Γ is the Gamma function, Qi are constants of dimension
(length)D−3 = (length)n−2, and nδ is the n-dimensional Dirac
delta function. It can be shown that Qi determines the mass
and also charge of each black hole and for Qi > 0 the source
located at ri = 0 looks like a point, but in fact it represents a
regular sphere Sn−1 of dimension n−1 (and for Qi < 0 the sur-
face ri = 0 corresponds to the location of a naked singularity).
In D = 4 there exists a coordinate transformation, which reg-
ularizes the metric at a (arbitrarily chosen) horizon ri = 0 and
the horizon is smooth19. However, in D > 4 this holds only
for a single black hole (N = 1). For N = 2,3 it was shown
that the horizon is not smooth20 while for a higher number of
black holes the situation is still unclear, see also21.

We now proceed to construct the crystal-like infinite struc-
ture consisting of charged point sources.

II. MAJUMDAR-PAPAPETROU CRYSTAL IN 4D

In a previous paper we constructed a solution describing an
extremally charged, infinite, straight string11 and discussed its
physical properties. One of interesting questions is whether
this solution can be obtained as a limiting case of a spacetime,
which would consist of an infinite number of extremal black
holes located on the axis of symmetry, as one would expect
intuitively. This can be achieved within the MP class as it
allows for superposition of solutions since the Einstein equa-
tions reduce to a single flat-space Laplace’s equation, which
also yields the corresponding scalar potential of the Maxwell
field. ECS should then be obtained in the limit of vanishing
distance between the point sources while keeping the mass
(and thus also the charge) per unit length of the axis con-
stant. We are, however, interested in studying a situation when
the spacing between sources is constant. Viewed by an ob-
server located radially far away from the symmetry axis com-
pared to the distance between two neighboring point sources,
one again expects to obtain the ECS solution and recover the
translational invariance along the axis. Therefore, we need
the corresponding electrostatic potential of such a configu-
ration in classical physics, describing an infinite number of
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point charges situated on the z-axis. We then construct the GR
solution by simply inserting this axially symmetric potential,
U(ρ,z), into the general MP metric (1) with n = 3

ds2 =−U−2dt2 +U2 (dρ
2 +ρ

2dφ
2 +dz2) , (6)

which we have written here in cylindrical coordinates. To this
end, we shall now sum directly the fields of separate point
sources located on the axis.

A. Adding the charges

We place the individual identical charges of magnitude Q at
evenly spaced points along the z-axis (the separation between
neighboring points, k > 0, can be set to any positive value)
and construct the corresponding potential as follows

U (ρ,z) := 1+
Q
k

ϕ(ρ,z). (7)

From now on, we shall use dimensionless coordinates rescaled
by k. The above relation defines a new structure function, ϕ ,
describing formally the distribution of the sources

ϕ(ρ,z) =
∞

∑
n=−∞

ϕ̂n, ϕ̂0 =
1
r0
, ϕ̂n6=0 =

1
rn
− 1√

n2
. (8)

Here, rn =
√

ρ2 +(z−n)2 is the (k-rescaled) Cartesian dis-
tance from a specific point source, or puncture. Asymptoti-
cally, contribution of distant punctures goes as 1/n near the
origin and we thus need to subtract such term to ensure con-
vergence of the potential from distant charges here. We also
include a factor of unity to yield the Minkowski spacetime if
all the charges are equal to zero. It is convenient to rewrite the
sum for n≥ 1 and take out the ϕ̂0 term, since it is divergent at
the origin.? We thus obtain

ϕ(ρ,z)≡ ϕ0 +ϕ¬0, ϕ¬0 =
∞

∑
n=1

ϕn,

ϕn = ϕ̂n + ϕ̂−n, ϕ0 = ϕ̂0. (9)

The resulting potential has the mirror symmetry

ϕn(ρ,z) = ϕn(ρ,−z)⇒ ϕ(ρ,z) = ϕ(ρ,−z) (10)

and it is also periodic in z with ϕ(ρ,z+1) = ϕ(ρ,z), see22 for
details. It is thus also mirror-symmetric with respect to z =
1/2. On the axis with ρ = 0, we are able to find a closed-form
expression for the series, which is valid for z ∈ (−1,1) and
yields an expression for the full potential that can be extended
to the real axis using the above symmetries:

ϕ(0,z) =
1
|z|
−H(z)−H(−z), (11)

with H(z) the harmonic number? . We would like to establish
uniform convergence of the series so we need a bound inde-
pendent of ρ and z. We find ϕn ∼ 1/n but this is not sufficient.

Restricting to the strip 0 ≤ z ≤ 1/2, let us now look at the
derivatives of the potential for n≥ 1:

0≤ ∂ ϕ̂n

∂ z
≤ 4

(2n−1)2 , − 8
3
√

3(2n−1)2
≤ ∂ ϕ̂n

∂ρ
≤ 0

and

− 1
n2 ≤

∂ ϕ̂−n

∂ z
≤ 0, − 2

3
√

3n2
≤ ∂ ϕ̂−n

∂ρ
≤ 0.

Using definition (9) and the triangle inequality, we conclude∣∣∣∣∂ϕn

∂ z

∣∣∣∣≤ 8n2−4n+1
n2(2n−1)2 ,

∣∣∣∣∂ϕn

∂ρ

∣∣∣∣≤ 2
(
8n2−4n+1

)
3
√

3n2(2n−1)2
. (12)

This is already sufficient as the corresponding series converge
in both cases and we thus have uniform absolute-convergence
for the derivatives of the series (9) (the same applies to higher
derivatives of the series). We also know that the series itself
converges along the axis, which implies it converges locally
uniformly within the strip z ∈ [0,1/2] and we can exchange
the summation and derivatives, ∇µ ∇ν ϕ¬0 = ∑

∞
n=1 ∇µ ∇ν ϕn—

we have thus shown that the above series satisfies Laplace’s
equation here. Adding the term 1/r0 and using the symme-
tries of the potential it then follows that the full potential is a
solution of the Laplace’s equation throughout the entire space
save for the punctures. For details, we refer the reader to22.

The resulting plots of ϕ are shown in Figure 1a and 1b. This
brings us to the question of asymptotic behavior of the poten-
tial. We notice that ϕn,ρ are negative and increasing functions
of n so that we can use integral estimates to find

∂ϕ0

∂ρ
+

∂ϕ1

∂ρ
+
∫

∞

1

∂ϕn

∂ρ
dn≤ ∂ϕ

∂ρ
≤ ∂ϕ0

∂ρ
+
∫

∞

1

∂ϕn

∂ρ
dn. (13)

We now evaluate the integral to obtain

− 2
ρ
− 1

ρ2 +
3z2 +4

2ρ4 +O
(

1
ρ5

)
≤ ∂ϕ

∂ρ
≤

≤− 2
ρ
+

1
ρ2 −

3z2 +2
2ρ4 +O

(
1

ρ5

)
. (14)

It then follows that ϕ,ρ → 0 for ρ → ∞ and that ϕ,ρ ∼ −2/ρ

and thus ϕ ∼ −2lnρ . We can also see that for large ρ the
dependence on z vanishes as expected, confirming thus the
existence of an asymptotic axial Killing vector. Both these
facts are consistent with the ECS spacetime11 and the leading-
order asymptotics in ECS and the present spacetime are thus
identical far away from the axis. In fact, this is consistent with
the result obtained by applying the approach of9 with the seed
metric from12 and taking the limit to an extreme solution in
the end, see A.

We conclude by noting that in the vicinity of the origin of
(spherical) coordinates, r� 1, we can write

ϕ(r,θ) =
1
r
+

ζ̄ (3)
2

[1−3cos(2θ)]r2 +O(r4). (15)

It follows then that, locally, the situation near the individual
sources is identical to the original MP solution: the punctures
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are not singularities but horizons and the solution can be ex-
tended through it to the other side19. As ϕ ranges through-
out R, with Q 6= 0, the surface ϕ = −k/Q implies U = 0
and is thus a location of a singularity since this is where the
Maxwell invariant, Fαβ Fαβ = −2(∇U)2/U4, diverges. For
k/Q.−2.77 the surface is disconnected, otherwise it is con-
nected, see Figure 1c-1f. In fact, its surface area as well as
the length of any curve contained in it vanishes and it is thus
rather a point-like object than a true surface. It is then of in-
terest that although the Majumdar-Papapetrou solution with a
finite number of point sources does not contain naked singu-
larities, it is not the case here as suggested in13.

B. Physical properties of the field

The electric charge producing the field (3) and enclosed in
a sphere around the origin of (spherical) coordinates is

Qsph

k
=− 1

8π

∫
π

0

∫ 2π

0
r2U,r sinθdθdφ =

Q
k
+O(r2). (16)

We see that Q corresponds to the charge of each individual
black hole and the total electric charge of any volume is given
by the number of grid points on the section of the axis inter-
secting the volume. In fact, we can write the sources of the
field as

ρ =− 1
4π

∆ϕ =− 1
4π

(
∆ϕ0 +

∞

∑
n=1

(−1)n
∆ϕn

)
=

=
∞

∑
n=−∞

3
δ (x,y,z−n) =

1
2πρ

X1(z)δ (ρ), (17)

where X1(z) is the Dirac comb distribution with support lo-
cated at grid points along the axis.

We now proceed to study trajectories of test particles by
first writing the two integrals of motion due to the axial sym-
metry and staticity of the metric

E =
qU− ṫ

U2 ,Lz = ρ
2U2

φ̇ , (18)

with the dot denoting a derivative with respect to the affine
parameter. Additionally, the axial component of the 4-
momentum, pz, is also conserved asymptotically since ṗz ∼
U,z due to the asymptotic Killing vector field mentioned
above.

Test particles can remain static either anywhere if they have
the same specific charge as the sources of the field, or centered
between any two neighboring point sources on the axis and
then their charge can be arbitrary. Radial motion is only pos-
sible at z = 0 or z = 1/2, within the mirror planes. Photons
then have no turning points unlike massive particles, which
can only move below or above two radii defined by

U2
ρ̇

2 = (q−EU−1)(q−EU +1) = 0, (19)

since the potential is monotonic. As there is no horizon on
the axis for z = 1/2 a radially moving particle can oscillate

below the lower radius here, while it will cross the black-hole
horizon at z = 0. Motion parallel to the axis is only possi-
ble on the axis itself for both photons, which have no turning
points, and massive particles, which can have up to 4 turning
points between adjacent grid points depending on the velocity
of the particles and some of them can also oscillate between
the turning points.

Another interesting class of trajectories are circular
geodesics, which only exist within the mirror planes again.
Denoting φ̇ = ω , null geodesics satisfy

ṫ = ρωU2,U,z = 0,U +2ρU,ρ = 0, (20)

so they can only occur at radii determined by the last
relation—there can be two such radii, one radius or none.
Their coordinate angular velocity is fixed as 1/ρU2 due to
the first relation. Time-like geodesics require

U,ρ(−γqU +ρ
2
ω

2U4 + γ
2)+ρω

2U5 = 0, (21)

U,z(−γqU +ρ
2
ω

2U4 + γ
2) = 0, (22)

ρ
2
ω

2U2− γ2

U2 =−1, (23)

with γ = ṫ. The middle equation implies motion within the
mirror planes again. One can substitute for ω2 from the last
equation into the first one, obtaining a quadratic equation for
γ and substituting the resulting two solutions back into the
expression for ω . Therefore, these particles can exist within a
range of radii, including the circular null orbit radii, which is
a special case, and they generally admit two different angular
velocities for the same radius. Asymptotically, we get

γ = 1+
Q(1−q−2lnρ)

k
+O

(
Q2

k2

)
, (24)

ω
2 =

2(1−q)Q
kρ2 +O

(
Q2

k2

)
. (25)

Compared with ECS electrogeodesics11, we see that the
source is again compatible with linear mass and charge den-
sity of Q/k.

We have seen that although we are very limited due to the
form of the metric components in terms of an infinite sum (7)
and (8) we are still able to infer some interesting facts about
the resulting spacetime, which are in line with our intuitive ex-
pectations. However, in order to achieve uniform convergence
throughout the domain of the infinite sum (8), we needed to
introduce a regulator function. It is then natural to ask our-
selves the question: could we do without it?

III. CRYSTAL OF ALTERNATING CHARGES

If one admits negative mass of the sources then an infi-
nite crystal of alternating masses can be constructed the same
way as in the previous section. The advantage of using point
sources of opposite masses is that the sums appearing in the
metric converge better and one can expect asymptotic flatness
far away from the axis. On the other hand, we lose stability
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FIG. 1: (a) Conformal contour plot of ϕ; (b) conformal 3D plot of ϕ—we notice divergences in the asymptotic region ρ � 1
and around the lattice points. However, scalar invariants remain bounded at these locations. (c)-(f) 3D plots of various

isopotential surfaces of ϕ . These define the singular surface U = 0 given by ϕ =−k/Q. For k/Q.−2.77 the surface is
disconnected and the singularity splits. This requires black holes of a negative mass. Notice that although in this coordinate

system the singularities look like surfaces, they are in fact points of zero area.
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against perturbations. The master function from the general
MP form (6) now reads

U (ρ,z) = 1+
Q
k

∞

∑
n=−∞

(−1)n

rn
:= 1+

Q
k

χ(ρ,z), (26)

with rn is the Cartesian distance defined below (8). Using sim-
ilar arguments as above and the fact that this time we have a
sum with alternating signs, one can show that the series con-
verges uniformly on R+

0 × [0,1/2]—we refer the reader to22

for details. It may be also seen that χ(ρ,z) = χ(ρ,−z) =
−χ(ρ,z+ 1), i.e., the structure function has mirror symme-
try and has an antiperiod 1 and a period 2 in z, see Figure 2a
and 2b. However, due to the presence of 1 in (26), the master
function only has a period 2. On the axis, the series can be ex-
pressed in a closed form using the Lerch transcendent. There
is again the outer singularity but this time it only envelopes
every second grid point, see Figure 2c-2f.?

It can be shown that the sum (26) and its second derivatives
converge uniformly throughout its domain. Uniform conver-
gence is crucial since derivatives then commute with the sums
and it enables us to prove that the resulting potential satisfies
Laplace’s equation. Using the symmetries of the potential,
one then extends the definition of the potential for any ρ and
z, obtaining thus a full solution of the Einstein-Maxwell equa-
tions. For details of the entire proof, see22.

Using integral estimates, we get the following bounds on χ

− 2
ρ2 +

6z2 +17
2ρ4 +O

(
1

ρ5

)
≤ ∂ χ

∂ρ
≤

≤ 2
ρ2 −

6z2 +13
2ρ4 +O

(
1

ρ5

)
. (27)

We thus conclude that χ,ρ ∼ ρ−2 or faster. We can also see
that for large ρ the dependence on z vanishes again. In fact,
away from the axis, we can do better using Fourier series de-
composition of the sought potential, χ , which is periodic and
at least C2. Finding the Fourier coefficients directly via inte-
grals is hard so we choose a different approach. We assume
the potential contains separated modes of the form

χ ∼
∞

∑
n=1

An(z)Bn(ρ), (28)

where each mode satisfies Laplace’s equation, leading to

−α
2
n =

A′′n(z)
An(z)

=− 1
Bn(ρ)

(
B′′n(ρ)+

B′n(ρ)
ρ

)
. (29)

Here we already assumed z-periodicity of the solution in
choosing the correct sign of the separation constant. We can
thus write each mode as a product of the form

[an sin(αnz)+bn cos(αnz)] [cnI0(αnρ)+dnK0(αnρ)] .

The potential χ is reflection symmetric, χ(z) = χ(−z), so that
an = 0 while its anti-periodicity yields

An(z+1) =−An(z)⇒ cos(πn) =−1⇒ n = 1,3,5, . . . (30)

Finally, we know that I0 diverges at ρ → ∞, which implies
cn = 0. We thus arrive at the expression

χ =
∞

∑
l=1

fl cos [αlz]K0 [αlρ] ,αl = π(2l−1). (31)

Since we have

‖K0(πnρ)‖ ≤ K0(δ )exp [δ (1−n)] ,ρ ≥ δ > 0, (32)

the sum converges absolutely uniformly for ρ ≥ δ . Near the
axis, however, K0 diverges. We thus determine coefficients fl
from the electric charge only formally. The classical charge
inside a small cylinder located symmetrically along the axis
reads

4πQ(R,h) =

−2π

(∫ R

0
χ,z‖z=+h

z=−hρ dρ +
∫ h

−h
(χ,ρ ρ)‖ρ=Rdz

)
. (33)

The first term yields

2
∞

∑
l=1

fl sin [αlh]
[

RK1 [αlR]−
1
αl

]
, (34)

which vanishes in the limit R→ 0 thanks to the Bessel func-
tion. The second term reads

2π

∞

∑
l=1

∫ h

−h
fl cos [αlz]αlRK1 [αlR]dz (35)

and in the limit R→ 0 we obtain

2π

∞

∑
l=1

∫ h

−h
fl cos [αlz]dz. (36)

Now, similarly to the homogeneous crystal and 17, we can
write the charge density as

ρ =
X2(z)−X2(z−1)

2πρ
δ (ρ) (37)

But we can also express the Dirac comb function as

X2(z)−X2(z−1) =
∞

∑
l=1

2cos [αlz] . (38)

Comparing the corresponding terms in 38 and 36, we con-
clude fl = 4. We thus have

χ = 4
∞

∑
l=1

cos [αlz]K0 [αlρ] , αl = π(2l−1). (39)

Returning now to the asymptotic behavior of the potential 27,
we use the leading-order term for the Bessel function and
since the dependence on z vanishes asymptotically, we express
the potential in the plane z = 0 to obtain

χ =
∞

∑
l=1

4
√

πe−αlρ

(
1√

2αlρ
+O

(
1

(αlρ)3/2

))
. (40)
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FIG. 2: (a) Conformal contour plot of χ; (b) conformal 3D plot of χ; (c)-(f) 3D plots of singular surfaces χ =−k/Q for various
values of Q/k. The surface is always disconnected and envelopes every second lattice point.
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The sum has no closed formula, but we can get a lower and
upper integral estimates as follows, omitting the higher-order
terms

√
2

π

e−πρ

ρ3/2 ≤ χ ≤ 2
√

2
e−πρ

ρ1/2 . (41)

Numerical evaluation finally suggests χ ≈ 2.74e−πρ ρ−1/2,
which is close to the upper estimate. The exponential de-
cay of the master function with radial distance from the axis
means that the spacetime is radially asymptotically flat and
it approaches Minkowski faster than for any isolated system.
Applying the same procedure to the uniform crystal, we find
ϕ =−2lnρ +4∑

∞
l=1 cos [αlz]K0 [αlρ] with αl = 2πl. Taking

now the limit k→ 0+, the entire spacetime apart from the axis
gets squashed to form the radial cylindrical infinity of the ECS
spacetime as expected intuitively.

We have shown above that the alternating structure has cer-
tain advantages over the homogeneous crystal, particularly
better convergence and asymptotic properties. Another option
is to construct a smooth crystal consisting of Yukawa-like po-
tentials of the form

+∞

∑
n=−∞

e−αrn

rn
. (42)

Thanks to the exponentials, the potential converges absolutely
uniformly and is always positive so there is no naked singular-
ity. This, however, comes at the expense of additional matter
content in the form of charged dust. On the other hand, it
would be much more comfortable to work with closed-form
expressions appearing in the terms above. To this end, we
now proceed to obtain a similar crystal-like 4D structure from
a very different starting point.

IV. 5D MAJUMDAR-PAPAPETROU CRYSTAL REDUCED
TO 4D

As we have seen, one is able to study some of the prop-
erties of the spacetime even though its metric is in the form
of an infinite series. It is however not possible to give, for
instance, closed-form solutions of geodesic motion or the in-
dividual metric components. We thus tried to approach the
problem in a different way by looking for a solution to the
Laplace’s equation with the required smooth azimuthal and
discrete axial symmetries, yet the resulting series involved the
same problems as the solution presented above. However, we
did find a way of circumventing these issues by using a closed-
form 5D Majumdar-Papapetrou solution of the required sym-
metry and reducing its dimension to 4. The clear advantage
of this technique is that it yields the correct symmetries while
the metric coefficients are analytic expressions. On the other
hand, it introduces an additional scalar field as a source of the
gravitational field in the resulting 4D Einstein equations.

In 5 dimensions, the corresponding general expression for
the master function of an infinite crystal (4) consisting of
point sources located at evenly distributed points along the

axis yields the following expression in dimensionless hyper-
cylindrical coordinates rescaled by k, the distance between the
sources

U(ρ,z) = 1+
Q
k2

+∞

∑
n=−∞

1
r2

n
= 1+

Q
k2 η(ρ,z), (43)

where Q has the dimension of area, rn is defined below (8),
and we defined a new structure function, η(ρ,z). This can be
summed to a closed form14,15

η(ρ,z) =
π

ρ

sinh(2πρ)

cosh(2πρ)− cos(2πz)
. (44)

This situation is rather typical in higher dimensions where odd
dimensions often differ profoundly from their even counter-
parts. The metric does not depend on one of the angular coor-
dinates and takes the following form

ds2

k2 =U
(
dρ

2 +ρ
2dφ2

2 +ρ
2 sin2

φ2dφ3
2 +dz2)

−U−2dt2. (45)

We now reduce to 4D using the φ3 coordinate to obtain the 4D
metric and drop the index in φ2 to write

ds2

k2 =−U−2dt2 +U
(
dρ

2 +ρ
2dφ

2 +dz2) , (46)

with an additional dilaton field

Φ(ρ,φ ,z) =
√

Uρ sinφ . (47)

The electromagnetic part yields

A =

√
3

2
dt
U
, F =

√
3

2
dt
U2 ∧

(
U,ρ dρ +U,zdz

)
. (48)

For details of the reduction and the corresponding field equa-
tions, we refer the reader to22. The solution thus has the in-
teresting property of being axially symmetric as regards the
gravitational field while the scalar field does depend on the
azimuthal coordinate. The reduced Einstein-Maxwell equa-
tions yield a single linear relation

U,ρρ +U,zz +2
U,ρ

ρ
= 0. (49)

We interpret the reduced electromagnetic part of the solu-
tion as a vacuum Maxwellian field. The dilaton field satis-
fies 3�Φ = ΦR. Both the dilatonic and electromagnetic fields
appear on the RHS of Einstein equations as sources of the re-
sulting gravitational field.

A. The reduced geometry

The structure function, η(ρ,z), has the following obvious
symmetries:

η(ρ,z) = η(ρ,−z) = η(ρ,z+1) = η(ρ,z−1). (50)
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FIG. 3: (a) Conformal contour plot of η ; (b) conformal 3D plot of η . Far away from the axis, ρ � 1, the structure function
vanishes, producing an asymptotically flat spacetime.

On the axis and in the mirror plane, we find

η(0,z) =
π2

sin2 (πz)
, η(ρ,0) =

π

ρ

sinh(2πρ)

cosh(2πρ)−1
, (51)

while far from the axis, ρ� 1, the spacetime is asymptotically
flat again as expected

η =
π

ρ
+O(ρ−2), (52)

with the electromagnetic field vanishing as well, whereas the
scalar field diverges as ρ . For Q > 0 the function η is always
positive, so there is no singularity for ρ > 0, see Figure 3. Just
as in the previous sections, transforming to spherical coordi-
nates centered at ρ = z = 0, we find for r� 1

η(r,θ) =
1
r2 +

π2

3
+

π4

45
[1+2cos(2θ)]r2 +O(r4). (53)

The Ricci and Kretschmann scalars are finite at r = 0

R =−6k2

Q
, K =

68k4

Q2 . (54)

Therefore, r = 0 is a non-singular null surface with an area
4πQ. It is possible again to extend the spacetime to negative
values of r down to U = 0, which is a singular point. To see
this, let us use the Ricci scalar, for instance?

R =−3
U2
,z +U2

,ρ

2U3 , (55)

and this expression diverges for U = 0, which is a hypersur-
face of zero volume. The distance to the horizon is infinite

and its surface gravity vanishes which is consistent with an ex-
treme horizon as expected. We conclude that, in this respect,
the solution behaves analogously to the standard Majumdar-
Papapetrou multi-black-hole solution, where, however, R = 0
and one rather uses a Maxwell invariant. Since it contains no
naked singularities and since it is asymptotically flat far away
from the axis the present spacetime is more well behaved than
the previous 4D MP solution obtained as a sum of infinitely
many individual 4D black holes. Let us now look at other
features of the solution.

B. Physical properties of the field

The reduced Maxwell equations imply that the charge en-
closed in a volume V reads

4πQV =
∫

∂V
ΦFµν rµ nν dΣ, (56)

where nν is the timelike normal and rµ is the spacelike normal
to the surface Σ = ∂V . Therefore, the charge Qsph in a small
sphere around r = 0 and thus the charge of each black hole in
the crystal is

Qsph

k
=−

∫
π

0

∫ 2π

0

√
3r3 sin2

θ |sinφ |U,r

8π
dθdφ =

=

√
3

2
Q
k2 +O(r). (57)

To interpret the spacetime physically, we investigate motion
of charged test particles now, starting with static test particles.
We assume the standard form of the electrogeodesic equation
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with the Lorentz force due to the Maxwell tensor (48). Any
particle can stand still at the points of symmetry on the axis
in between the neighboring punctures while particles with a
specific charge

q2 =
4
3

(58)

can be located anywhere outside of horizons. In order for the
test bodies to stand still the specific charge of the black holes
must be 1/q2 in analogy with the usual 4-dimensional MP
solutions—it is different from 1 since the black holes interact
through electromagnetic, gravitational, and dilatonic fields,
see14.

As expected due to the symmetry, radial geodesics only ex-
ist in mirror planes and they can pierce the horizons or escape
to radial infinity in case of null geodesics, while time-like ra-
dial geodesics are bounded. We can also have axial geodesics
moving along the z-axis.

The most interesting case are circular electrogeodesics,
which we calculate for large ρ within the mirror plane, z = 0,
as required by the symmetry. Writing φ̇ = ω , we find for null
orbits

ṫ = ρωU3/2,

0 = 2U +3ρU,ρ . (59)

There is a null geodesic coinciding with the horizon, similarly
to extreme Reissner-Nordström. Massive particles yield

0 = 2U,ρ+2U2
ω

2
ρ+3UU,ρ ω

2
ρ

2−
√

3U,ρ q
√

1+ρ2ω2U ,

ṫ =U
√

1+ρ2ω2U . (60)

For large ρ , we obtain

ω
2 =

πQ
(

1±
√

3
2 q
)

k2ρ3 +O
(
ρ
−4) . (61)

Due to the asymptotic flatness, the leading order corresponds
to the Reissner-Nordström black hole with the dimensionless
angular velocity ω2 = M±Qq

ρ3 . We can thus see that far away
from the axis the crystal source behaves as a point source of
mass πQ/k and charge

√
3

2 πQ/k. The specific charge of the
source thus agrees with (58).

V. CONCLUSIONS

Our aim was to find a solution exhibiting locally a discrete
translational symmetry along a symmetry axis containing the
sources of the field while if looked upon from a distance, it
would approach the full cylindrical symmetry of a charged
line, the ECS. We approached our goal in two complementary
ways—firstly, we constructed the solution as a sum of separate
extremal black holes distributed evenly along an infinite line
and held in equilibrium by their electric charges. And, sec-
ondly, we took a 5-dimensional solution of the required sym-
metry and reduced the number of dimensions by one. Both
approaches have their advantages and drawbacks.

The constructive approach produces a solution in the form
of an infinite sum the uniform convergence of which needs
to be dealt with in order to show it is indeed a solution of
Einstein-Maxwell equations. There is no closed-form rela-
tion for the metric or any subsequent terms derived from the
metric, such as geodesic motion, etc. On the other hand, the
physical meaning of the parameters appearing in the solution
is quite as expected and the gravitational field is due to the
masses and electric field of the point sources only. Despite
having to work with the infinite sums, we were able to infer
the asymptotic properties of the solution and show that the
field diverges far away from the axis, approximating the ECS
solution.

The second approach overcomes the obstacle of infinite
sums since we can readily express the results of the 5D sums
in a closed form, which is then simply reduced to 4D. We then
work with the metric in the usual manner and it is straightfor-
ward to calculate field strengths or motion of test particles.
On the other hand though, the dimensional reduction intro-
duces an additional scalar field that becomes another source
of curvature and, moreover, even the equations governing the
“electromagnetic” field differ from Maxwell equations. Ein-
stein equations retain their usual form but the source terms
contain the scalar field as well now. It is of interest that the
scalar field does not share the symmetry of the gravitational
field it helps to produce. Asymptotically, this is not the ECS
although in 5D this is the case. In fact, the dimensionally re-
duced solution is asymptotically flat far away from the axis
while, in contrast, the scalar field diverges.
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Appendix A: Ernst potential approach

Following9, we now show that their approach gives asymp-
totics consistent with our solution. The method is based on
Ernst equation because any cylindrically symmetric solution
is automatically axially symmetric. The original paper su-
perposed an infinite number of Schwarzschild solutions but
we need to use a different potential—here, we add Reissner-
Nordström black holes, adopting the method of12 who, how-
ever, only had a finite number of black holes. For the metric,
we can write in Weyl coordinates

ds2 = f−1 [Q(dρ
2 +dz2)+ρ

2dφ
2]− f dt2, (A1)

with f and Q functions of ρ and z. To linearize the ensuing
equation for f , one transforms the potential

f =
R2−d2

(R+m)2 , (A2)
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defining a new function R, the mass of the black hole m, and
a constant d2 := m2− e2, where e is the charge of the black
hole. The last step is to define

R = d
1+ f̄
1− f̄

. (A3)

The resulting equation for f̄ is linear and we can thus add solu-
tions. The potential corresponding to the Reissner-Nordström
black hole is

f̄ =

(
d + z−

√
(d + z)2 +ρ2

)(
d− z−

√
(d− z)2 +ρ2

)
ρ2 .

(A4)
We superpose these solutions, shifting them by multiples of
the lattice constant k along the axis and define expω0 := f̄ in
keeping with9:

ω(z,ρ) = ω0(z,ρ)+
∞

∑
n=1

[
ω0(z+nk,ρ)+ω0(z−nk,ρ)+

4d
nk

]
.(A5)

The sum converges according to the same arguments as per9

and we now explore its asymptotic behavior, taking deriva-
tive of it with respect to the cylindrical radial coordinate. The
leading-order term is

∂ω(z,ρ)
∂ρ2 ∼

∞

∑
n=−∞

d

((z+ kn)2 +ρ2)3/2 . (A6)

We estimate the sum through an integral to obtain

f̄ = ρ
4d
k . (A7)

Finally, expressing the original potential f = −gtt = 1/U2

through A3 and A2, we find

f =
4d2ρ

4d
k(

−mρ
4d
k +dρ

4d
k +d +m

)2 . (A8)

We now take the extreme-charge limit of d→ 0 and keep the
lowest-order term

f =
(

k
2m log(ρ)

)2

, (A9)

which yields U ∼ ±2(m/k) log(ρ) in accordance with our
conclusions below 14.
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