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Abstract

This thesis examines the use of differential evolution in a real-world portfolio op-

timization task based on US stock data. We empirically test the capability of the

algorithm to find an inter-sector allocation that outperforms a broad-market stock

index. Two constrained sector ETF portfolios are constructed to simulate realis-

tic agent-based settings and performance of the competing portfolios is analyzed in

terms of both return and risk. The results are further extended to include Markowitz’

global minimum variance portfolio and a naive 1/N portfolio. We show that the con-

structed portfolios are indeed capable of outperforming the market whilst simultane-

ously maintaining lower tail risk, however, the performance significantly deteriorates

if the portfolios are rebalanced based on rolling data windows. Overall the algorithm

delivers satisfying results while providing the user with a relative freedom when

choosing portfolio constraints.
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Abstrakt

Tato práce se zabývá realistickým využitím diferenciální evoluce pro optimalizaci

akciového portfolia za užití amerických burzovních dat. Schopnost algoritmu nalézt

mezisektorovou alokaci, která by výkonnostně předčila akciový index, je empiricky

testována. Jsou zkonstruována dvě portfolia sektorových ETF s omezujícími podmín-

kami, které simulují nastavení, jimž čelí reální agenti a výkonnost těchto soupeřících

portfolií je analyzována jak z pohledu výnosnosti, tak z pohledu rizika. Výsledky

jsou dále rozšířeny o Markowitzovo portfolio s minimálním rozptylem a portfolio

naivní diversifikace. Ukážeme, že zkonstruovaná portfolia jsou schopna porazit trh a

současně vykazovat nižší míru chvostového rizika, avšak výkonnost významně klesá,

jsou-li portfolia rebalancována na základě nejnovějších historických dat. Celkově lze

říci, že algoritmu se daří dosáhnout uspokojivých výsledků a současně poskytuje

uživateli relativní svobodu při určování omezujících podmínek.
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Supervisor: PhDr. František Čech, Ph.D.

Proposed topic: Sector ETF Portfolio Optimization Using Differential Evo-

lution

Research question and motivation

Passive investing, especially in the form of broad market index-tracking, has grown

in popularity over the past few decades (see, e.g., Anadu et al., 2019). In my thesis,

I would like to focus on the following question: Would dynamic allocation of assets,

where each of them represents one of nine U.S. stock market sectors, beat the strat-

egy of simply investing in a broad market index? The answer to this question largely

depends on the approach chosen to find the optimal allocation of assets. Conven-

tional mean-variance approach to asset portfolio optimization established by Harry

Markowitz more then sixty years ago has its limitations. One of such limitations is its

inefficiency in finding solutions to problems with non-smooth objective functions and

often non-linear real world constraints, namely cardinality constraints, e.g., an upper

bound for the number of assets in the portfolio, upper bound on the number of short

positions to limit leverage etc. Since I would like to use these real world constraints

to simulate settings that real world agents such as mutual funds or hedge funds must

face, the task of finding the solution to our optimization problem will be given to

a metaheuristic algorithm called differential evolution (DE) (Storn & Price, 1997).

Numerous researchers have already found success using the DE to solve complex

optimization tasks. A research paper with a topic nearest to the one I propose here

was composed by Krink & Paterlini (2009), who focus on realistic portfolio optimiza-

tion, although they use altered version of the original DE algorithm to solve their

optimization tasks. They have shown that traditional quadratic programming solu-

tions obtained from mean-variance optimization are substantially worse compared to

solutions obtained from their DE-based algorithm when interpreted in the objective

function space of a realistic portfolio optimization problem.

mailto:rene.holesinsky@gmail.com
mailto:frantisek.cech@fsv.cuni.cz


Contribution

Constrained index-tracking using differential evolution (DE) has already been studied

by Krink et al. (2009) or Andriosopoulos et al. (2013). Answering a question,

whether “picking” among sectors would bring superior results in terms of risk and

return, could be valuable for portfolio managers or individual investors as well as

for the academia. Moreover, the investigation will bring further insight into using

nature-inspired algorithms for portfolio choice.

Methodology

The empirical section of the thesis will be dedicated to out-of-sample testing of the

sector portfolio and comparing the results to benchmarks: The S&P 500 index,

naive (equal weights) portfolio and Markowitz’ global minimum variance portfolio.

The testing will be carried out under two different scenarios. In the first scenario,

the portfolio is annually rebalanced and thus, additional transaction costs arise and

must be taken into account. The second scenario represents a passive buy and

hold approach. Two set of portfolio constraints will be constructed to represent two

diversely regulated agents. I will be using SPDR sector exchange-traded funds to

represent sectors within the S&P 500 index. Publicly available data will be used

to carry out the analysis and downside risk measures such as conditional value at

risk along with conventional mean-variance performance measures will be used to

evaluate the results.

Outline

1 Introduction

2 Literature Review

3 Theoretical Section

3.1 Portfolio optimization: mean-variance framework

3.2 Risk measures: VaR and CVaR

3.3 Differential Evolution

3.4 Exchange-traded funds
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1 Introduction

Modern methods of portfolio management rarely incorporate classical mean-variance

framework for portfolio optimization, despite its theoretical appeal. This is mainly

due to the following reasons. Firstly, errors in estimates of the mean returns have a

severe impact on performance of the model. Michaud (1989) states in his paper, that

mean-variance optimizers magnify the input errors so that the optimization technique

can, in many cases, be outperformed by an equally weighted portfolio. Secondly,

the model restricts the user from employing realistic risk measures and real world

constraints that managers have to consider. And thirdly, the model relies on the

assumption that asset returns are normally distributed. As presented in Cont (2001),

this assumption is flawed since returns exhibit certain stylized facts, e.g. fat tails and

excess kurtosis. In this thesis, a heuristic search algorithm called differential evolution

(DE) is used as an alternative quantitative approach to portfolio selection. Due to

a completely different nature, the algorithm bypasses the above mentioned issues of

the mean-variance framework which are often subject to criticism. In fact, it does

not even require the optimization problem to be specified as a mathematical formula.

Instead, it evolves a randomly generated population of solutions from the feasible

space until it converges to a proposed solution. The evolutionary mechanism applied

by the algorithm is inspired by the evolutionary processes from nature – mutation,

crossover and selection, and is motivated by the user-specified objectives (in our case,

to maximize mean return and minimize tail risk). The algorithm is employed to

provide an optimal allocation to a portfolio composed of US sector exchange-traded

funds (ETFs) which mimic the performance of the individual industry sectors. To

motivate the use of the algorithm, realistic agent-based constraints are introduced

along with a risk measure reflecting the investors’ asymmetric perception of risk – the

Conditional Value-at-Risk. The Conditional Value-at-Risk is chosen as it meets the

requirements to be recognized as a coherent risk measure (Artzner et al., 1999). Apart

from employing different rebalancing scenarios, we also test different data-collection

frequencies to increase robustness of the out-of-sample analysis. We further add the

equal weighted portfolio (1/N) and Markowitz’ global minimum variance portfolio to

serve as benchmark portfolio construction models. The results for the time period

under investigation are generally quite positive. The algorithm is capable of beating

the market in terms of returns if shorting is allowed (even though the short sales

are limited by a set of constraints defined by the author), while providing lower tail
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risk. The best result is achieved under the buy and hold scenario and although there

are a few exceptions, it can be said that increasing the rebalancing frequency or

data-collection frequency both lead to a significant deterioration of performance.

The thesis is structured in a following manner: first, the theoretical background is

provided and subsequently, an empirical investigation is presented together with the

results. Then next Section 2 gives a summary of the existing literature dedicated to

the topic. Specifically, we review the literature on the classical mean-variance opti-

mization and the shift to more modern and robust optimization techniques. Several

specific applications of differential evolution in finance and portfolio management are

also presented. Section 3 presents a description of the key theoretical concepts used

in this work – the competing optimization techniques (global minimum variance and

DE), measures of economic performance and risk and lastly, the exchange-traded

funds. The following part, Section 4, presents characteristics of the dataset, method-

ology and most importantly, analysis of performance. The attention is given mainly

to a description of the portfolio construction process under the different constraints

and portfolio management strategies and the corresponding out-of-sample results.

Section 5 concludes the paper, summarising the main findings.
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2 Literature Review

It has been more than sixty years since Harry Markowitz laid the foundations of

the Modern Portfolio Theory (MPT) with his Portfolio Selection (1952) – a ground-

breaking work following up on the already established concept of security portfolio

diversification. He later extended his work through the publication of his book,

Portfolio Selection: Efficient Diversification (1959). Another major contribution to

the MPT framework was the capital asset pricing model (CAPM), independently

introduced by Jack Treynor (1961), William F. Sharpe (1964), John Lintner (1965)

and Jan Mossin (1966). Sharpe, Markowitz and Merton Miller jointly received the

1990 Nobel Memorial Prize in Economics for their pioneering work in the theory

of financial economics1. The original Markowitz mean-variance model for portfolio

optimization is a linearly constrained quadratic programming (QP) problem and al-

though it remains a frequently discussed and revisited topic in the academia, the

available solution methods employing QP algorithms encounter limitations when be-

ing used to solve optimization problems with non-smooth objective functions and

often non-linear real world constraints. Attempts have been made to linearize the

portfolio optimization problem (see Mansini et al. (2014) and references therein).

The solution techniques employing linear programming (LP), however, often require

problem simplification or alteration in order to be applicable (Krink et al. (2009);

Mansini et al. (2007)). The focus has thus shifted to alternative optimization methods

such as metaheuristic algorithms (see, e.g., Yang (2010)). One of the metaheuristics

falling into the category of nature-inspired evolutionary algorithms is the differen-

tial evolution (DE), extensively described in the theoretical section of this paper.

There is a limited amount of literature concerning portfolio optimization using the

DE algorithm, however, the results presented in the research generally show that the

algorithm is capable of effectively finding solutions to optimization problems with

real world settings.

Hagströmer and Binner (2009) apply DE to solve full-scale optimization2 (FSO) asset

selection problems of 97 assets under complex utility functions. The authors show

that the problem is computationally feasible and that DE yields approximations that

appear to converge to the FSO optimum. Furthermore, their results demonstrate that
1Markowitz for the theory of portfolio choice, Sharpe for CAPM and Miller for his contributions

to the theory of corporate finance.
2Utility maximization approach to portfolio choice problems.
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when investors are loss averse, FSO improves stock portfolio performance compared

to mean-variance portfolios.

Ma et al. (2012) examine a portfolio optimal model with cardinality constraints3, in

which the minimum of Value-at-Risk is taken as the objective function. Using sixteen

stocks from Shanghai and Shenzhen stock market and a hybrid4 DE algorithm to

solve the model, they conclude that the given model is reasonable and the given

algorithm is effective.

Another study relevant to the topic was carried out by Krink and Paterlini (2011).

The researchers construct an algorithm for portfolio optimization based on DE which

they call DEMPO (Differential Evolution for Multiobjective Portfolio Optimization)

and use it to solve three different multiobjective optimization problems, comparing it

with the traditional quadratic programming (QP) and another well-known evolution-

ary algorithm for multiobjective optimization called NSGA-II. The most important

conclusion drawn by the researchers is that DEMPO can tackle a realistically defined

portfolio optimization problem and in reasonable runtime, whereas QP can only solve

simplified problem instances, such as mean-variance optimization.

In this study we use ETFs to mimic the performance of equity indexes. ETFs are

investment vehicles that pool various assets such as stocks, bonds or commodities

and issue shares that are openly traded on exchanges. The characteristics which

differentiate ETFs from mutual funds are thoroughly described in Section 3.4. Apart

from the use of ETFs, an alternative way to track a market index is to replicate it by

selecting a group of assets – a sample from all index constituents, and calibrating the

asset weights with the aim to keep the tracking-error as low as possible over time.

Since this approach imposes cardinality constraints, it is plausible to use a search

heuristic such as DE to tackle the optimization task. Krink et al. (2009) have done

so, using a method which is partly based on DE and on combinatorial search. They

analyze the in-sample and out-of-sample performance of the tracking portfolios for

the Dow Jones 65 and the Nikkei 225 indices, rebalancing them periodically under a

rolling window-scheme. They show that their extension of DE works remarkably well

for this quantitative approach to index-tracking, succeeding in reasonable runtime.
3Constraints on the number of stocks to hold in a portfolio, due to the costs of monitoring and

portfolio re-weighting (Fieldsend et al., 2004).
4Produced by combining penalty function method (described in the paper) and differential evo-

lution.
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Another interesting finding is that their algorithm obtains results as good as QP

for simplified formulations of the original index-tracking problem, although the com-

putation time is, as expected, significantly shorter for QP. Furthermore, they show

that increasing the maximum number of assets in the tracking portfolio leads to a

lower tracking-error volatility up to a certain limit, but not necessarily to a higher

out-of-sample excess return. A research paper touching a very similar subject was

written by Andriosopoulos et al. (2013). The group of authors focus on more specific

class of indexes, namely shipping stock indexes. They construct an international

market-capitalisation-weighted shipping index and its performance is replicated in

a similar manner as described above, employing the DE algorithm and a genetic

algorithm to pick and weight the stocks. Out-of-sample testing under annual, quar-

terly and monthly rebalancing frequencies reveals that in terms of RMSE, the best

tracker is the genetic algorithm basket with maximum number of assets set to ten,

when weights are rebalanced on a monthly basis. As one would expect, it is shown

that the higher the rebalancing frequency, the lower the RMSE. However, frequent

rebalancing overall pares down the excess return due to transaction costs.
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3 Theoretical Background

3.1 Global Minimum Variance Portfolio

Probably the most crucial concept of the MPT that originated from Markowitz’ early

work is the efficient frontier. It is a set of portfolios offering the highest expected

return for a given level of risk (expressed as a standard deviation of returns), repre-

sented by a curve in the mean-variance space. Analytical derivation of the frontier

can be found in Merton (1972). According to the MPT, the optimal portfolio for a

mean-variance investor is a combination of a tangency portfolio5 and a riskless asset.

The construction of such portfolio, however, requires knowledge of both mean and a

variance-covariance matrix of the expected returns which, in reality, are not known

to the investor. Parameter uncertainty arises and thus the main challenge behind

constructing the optimal portfolio in practice, lies in the estimation of the param-

eters from the data. As shown in Kan and Zhou (2007), the standard approach of

simply plugging the sample parameter estimates into the model and treating them

as the true parameters can lead to very poor out-of-sample results. Furthermore,

the authors show that a portfolio that optimally combines a riskless asset, a sample

tangency portfolio, and a sample global minimum variance portfolio dominates a

portfolio with just the riskless asset and the sample tangency portfolio. The global

minimum variance (GMV) portfolio is found on the left edge of the efficient frontier

(it is the vertex point of the mean-variance parabola) giving the investor the lowest

possible volatility for his selection of assets and as such, it solves the mean-variance

risk minimization task.

Despite its limitations, the mean-variance framework is still frequently used as a

benchmark in portfolio optimization research (see, e.g., Meucci, 2009). We have

decided to use the GMV portfolio as a portfolio construction benchmark since it can

be found analytically, using the matrix algebra and it does not require estimation

of means of expected returns, as the only input is the variance-covariance matrix

of asset returns. Additionally, numerous empirical studies suggest that the GMV

might produce better out-of-sample results than the tangency portfolio, which the

MPT describes as being superior to the GMV portfolio for its Sharpe efficiency
5A portfolio lying on the efficient frontier, maximizing the Sharpe ratio – a commonly used

return-to-risk performance measure.
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(Sharpe, 1964). This is due to the fact that the GMV portfolio optimization does

not suffer from the mean estimation errors problem. Jorion (1985) shows that the

errors in estimating expected returns have a critical impact on the portfolio analysis,

both in terms of out-of-sample performance and instability of the optimum weights.

Importantly, he concludes that both of these issues can be explained by a wide

variation in sample means and that the uncertainty in variances and covariances is

not as critical because they are more precisely estimated. And quite surprisingly,

it is shown that the GMV portfolio significantly outperforms the tangency portfolio

even in terms of profitability. Chopra and Ziemba (2013) also discovered that using

inaccurate forecasts of the expected returns can considerably degrade the mean-

variance optimization performance6 and that errors in means are approximately ten

times as important as errors in variances and covariances. These findings strengthen

the argument for using the GMV portfolio as a benchmark.

The following part of this section presents the analytic solution to finding the GMV

portfolio optimal weights as proposed in Merton (1972). The GMV optimization

task with a quadratic objective function for a portfolio consisting of N assets can be

written as:
min

w
w⊤Σw

s.t. w⊤ϵ = 1
(1)

where w = (w1, . . . , wN )⊤ ∈ RN is a vector of asset weights, Σ ∈ RN×N is a positive-

definite variance-covariance matrix of the expected returns and ϵ = (1, . . . , 1)⊤ ∈ RN

is a vector of ones, with the appropriate dimensions. Thus, our goal is to find the

vector of optimal weights w∗ = (w∗
1 , . . . , w∗

N )⊤ under the constraint that the weights

add up to one, while short selling and leverage is allowed. The optimal weights,

which are found using the Lagrange multipliers, are given as:

w∗ = Σ−1ϵ

ϵ⊤Σ−1ϵ
. (2)

Hence we arrive to a relatively straightforward solution, which is, as shown further

in the thesis, implemented using the R software. Specifically, we will be using R

functions developed by Zivot (2008) to simulate holding the GMV portfolio under

three different scenarios – buy and hold, annual and quarterly rebalancing.
6They measure the impact of the errors by a cash equivalent loss from holding the suboptimal

portfolio (with parameter estimates) instead of the true optimal portfolio.
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3.2 Differential Evolution

As mentioned earlier in the text, one of the alternatives to the classical mean-variance

approach are the evolutionary algorithms. These search heuristics utilize trial-and-

error selection to find the optimal solution (in our case, a vector of optimal asset

weights) in a parameter space given by the optimization constraints. Differential

evolution (Storn and Price, 1997) is a well suited choice for the purpose of our

work since it is a relatively simple algorithm and being based on genetic processes

from nature, its use in finance is indeed a fascinating subject of research. The DE

can be used to tackle optimization problems with real-world constraints since it

does not impose any assumptions on their mathematical properties. Moreover, it

does not require that the objective functions have certain restricting properties, such

as smoothness. It is therefore robust enough to allow for the use of coherent risk

measures (described further in the text) which reflect the investors’ actual perception

of risk, contrary to the classical variance. Nevertheless, the framework has certain

drawbacks. Firstly, the results might not be satisfyingly accurate and secondly, the

computation time can potentially be very long for complex tasks. The latter can be,

to some extent, lessened by parallelization7 for which the algorithm is suitable. In

fact, parallelizability is one of the four user requirements the DE was designed to

fulfill. They are (Storn and Price, 1997, p. 342):

1) Ability to handle non-differentiable, nonlinear and multimodal cost functions8.

2) Parallelizability to cope with computation intensive cost functions.

3) Ease of use, i.e. few control variables to steer the minimization. These variables

should also be robust and easy to choose.

4) Good convergence properties, i.e. consistent convergence to the global mini-

mum in consecutive independent trials.

As explained below in greater detail, the DE is a stochastic search heuristic which

evolves a randomly chosen population of solution candidates by iteratively replacing

inferior candidates by new ones created by the processes of mutation and crossover,
7A computation method in which calculations are carried out simultaneously, using multi-core

processors (see Asanovic et al. (2006)).
8The authors refer to their objective function as cost function since it is minimized.
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until a convergence criterion is met (e.g., after a given number of population gen-

erations is explored). The following description, coming from the original paper,

explains the search process to minimize a given cost function.

For each generation G, there is a population of solution candidates consisting of NP

D-dimensional parameter vectors {xi,G| i = 1, . . . , NP }. The initial population is

chosen randomly from the parameter space and NP remains constant throughout the

minimization process. We assume a uniform probability distribution for all random

decisions.

Mutation

To each candidate vector xi,G, i = 1, . . . , NP from generation G a mutation operator

is applied according to the following formula:

vi,G+1 = xr1,G + F · (xr2,G − xr3,G), (3)

where r1, r2, r3 ∈ {1, 2, . . . , NP } are randomly chosen integer indexes, such that

r1 ̸= r2 ̸= r3 ̸= i. This imposes a condition that the parameter NP must be at

least greater or equal to four. F ∈ R is a predefined factor such that F ∈ [0, 2]. It

controls the amplification of the differential variation (xr2,G − xr3,G) from which the

algorithm got its name.

Crossover

The original vector xi,G is then recombined with the mutant vector vi,G+1 from

Equation 3 to increase the diversity of the evolving parameter vectors. This pro-

cess is driven by the crossover operator, according to which a trial vector ui,G+1 =

(u1i,G+1, u2i,G+1, . . . , uDi,G+1) is generated, where

uji,G+1 =

⎧⎪⎨⎪⎩ vji,G+1 if Ψ(j) ≤ CR or j = Ω(i),

xji,G if Ψ(j) > CR or j ̸= Ω(i)
(4)

j = 1, 2, . . . , D.

The Ψ operator in Equation 4 draws a uniform random number ∈ [0, 1] for each

j = 1, 2, . . . , D. CR is the crossover constant ∈ [0, 1] preselected by the user. It

regulates the impact of vi,G+1 on the original vector. Ω draws a random number

9



such that Ω(i) ∈ j = 1, 2, . . . , D. Therefore, the trial vector ui,G+1 must get at least

one parameter from the mutant.

The newly created trial vector, however, only replaces the original vector in the next

generation if it passes through the selection filter.

Selection

The selection mechanism is simple – a comparison of the trial vector ui,G+1 against

the original vector xi,G is made on the basis of the greedy criterion. If ui,G+1 yields

a lower cost function (e.g., lower risk for the selected asset weights) than xi,G, xi,G+1

is set equal to ui,G+1 so that the inferior original vector is replaced. Otherwise, it is

retained so that xi,G+1 = xi,G.

These processes are repeated until the algorithm converges. The choice of DE’s

control variables is discussed in the empirical part of the study.

3.3 Returns and Risk Measures

This section describes investment performance measures that we use for the optimal

portfolio construction and the evaluation of results.

Returns

Returns are a tool used to measure economic performance of an investment. As such,

they measure a profit or loss on an investment over a period of time as a relative

change in an asset’s price9, expressed as a proportion of the amount invested. The two

most frequently used types of returns used to measure a single period performance

are linear (simple) returns

Rt = Pt − Pt−1

Pt−1
(5)

and logarithmic returns

Lt = log

(︃
Pt

Pt−1

)︃
, (6)

where Pt is the asset’s price for period t (usually last or closing price). For smaller

values, simple and logarithmic returns are virtually equal. However, for larger values,
9For simplicity, we consider a plain vanilla stock investment that does not pay dividends.

10



using logarithmic returns as an approximation of simple returns can lead to significant

estimation errors (Pini, 2009). Linear returns will be used in this thesis since they

possess a property of additivity across assets and have a more intuitive interpretation.

The former can be conveniently used to calculate a return of a whole asset portfolio

over period t:

RP,t =
N∑︂

i=1
wi,tRi,t (7)

where wi,t is a weight of asset i at the beginning of period t. When analysing

portfolio performance, however, we hardly ever look at individual periodic returns.

We compare investment returns over longer holding periods, typically longer than

one year and thus it is required to use measures of central tendency over standardized

periods to conveniently compare returns of two different investments. One of such

measures, very frequently used, is the geometric average or annualised return. As

described in Bacon (2008), the average annual return over a number of years can be

calculated as follows:

RG =
[︄

T∏︂
t=1

(1 + Rt)
]︄ f

T

− 1 (8)

where T is the number of periods and f is the number of periods within a year (for

instance, f = 12 if we work with monthly periodic returns). A useful property of the

geometric average is that when compounded with itself for a cumulative (holding)

period, it results in a cumulative return. In the empirical part of the thesis, geometric

chaining is always used to compute the average or cumulative return, unless stated

otherwise.

Risk Measures

There are numerous ways to quantify financial risk. In this thesis, we are con-

cerned with one particular type of financial risk – the market risk, arising from the

ever-changing market prices of securities. The Markowitz’ era is characterized by

measuring risk associated with an asset investment as a deviation from the mean

return – variance (or standard deviation) and in the case of a portfolio of assets, as a

covariance between all pairs of assets – i.e., we want to capture the extent to which

each asset contributes to the overall portfolio risk. Despite still being widely used as

a universal risk-quantification method, variance is not consistent with the investor’s

actual perception of risk and the theoretical assumptions that support its use as a
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risk measure are rather restrictive (Harlow, 1991). Namely, either returns have to

be normally distributed or investors’ behaviour has to be describable by quadratic

utility function. There is a large volume of literature documenting that the former

is a flawed assumption as normal distribution cannot adequately describe features

that the asset returns exhibit, such as excess kurtosis and heavy tails (see Baillie and

Bollerslev (2002) or Cont (2001)). Concerning the latter assumption, investors with

this utility function require higher risk premia as their wealth increases – inconsistent

with both intuition and observed investor behaviour (see Sarnat (1974)).

In the context of asset management, the investors’ risk perception is shifted towards

asymmetric risk measures, which do not take into account the upside potential of the

investment and rather focus on a tail of the appropriate return distribution, below a

predefined threshold level. Such quantile-based risk measures include the ubiquitous

Value-at-Risk (VaR) and Conditional Value-at-Risk (CVaR, also known as Expected

Shortfall). Artzner et al. (1999) developed a framework for a construction of such

risk measures that ensures that these measures are coherent. In order for a risk

measure ρ to be coherent, it must satisfy a following set of properties:

For investments10 x and y:

• Positive homogeneity: ρ(λx) = λρ(x) for λ ∈ R.

• Subadditivity: ρ(x + y) ≤ ρ(x) + ρ(y)

• Monotonicity: x ≤ y implies ρ(x) ≤ ρ(y)

• Transitional invariance: ρ(x+ rC) = ρ(x) −C for all riskless rates r and C ∈ R

Let me make a few comments about the economic implications of these properties.

The homogeneity condition simply states that an investment position risk is propor-

tional to its size. Subadditivity signifies that diversification reduces overall risk – a

risk of two different investments made together can never exceed adding the two risks

separately. The monotonicity requirement rules out any semi-variance type of risk

measure (Szegö, 2002). And finally, the transitional invariance implies that adding

a riskless investment C decreases overall risk for any riskless rate r. In other words,

adding cash to a portfolio only decreases risk. In what follows, the formerly men-
10Investments (portfolios) x and y have unknown outcomes and are random variables.
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tioned risk measures VaR and CVaR are described in detail, together with remarks

about their coherence.

Value-at-Risk

As described in Dowd (2007), the development of VaR as a risk measurement system

started in the late 1980s, as financial firms became more complex and lacked the

means to aggregate their risks, seeking for a reliable method that would allow them

to do so. In 1994, JP Morgan published a simplified version of the firm’s own

internal risk model – the so called RiskMetrics, which contained information about

a methodology for building and operating VaR-based risk management systems. A

rapid adoption of VaR systems by financial institutions, such as securities houses

and investment banks, followed.

The VaR is a quantile-based risk measure trying to answer a question: “For a given

level of confidence, what proportion of our portfolio value is at risk over a given

period of time?” As such, it focuses on extreme losses and contrary to variance,

it allows for a use of more general distributions that capture the non-normality of

returns. A mathematical formulation that follows comes from Pflug (2000) since I

found it elegant and rather easily comprehensible.

Let Y be a random loss variable11 and let FY be its cumulative distribution function,

i.e. FY (u) = P{Y ≤ u}. Let F −1
Y (p) be its right continuous inverse – a quantile

function for the loss r.v., i.e. F −1
Y : [0, 1] → R, F −1

Y (p) = inf{u : FY (u) > p}. For a

given confidence level α, the VaRα is defined as

VaRα(Y ) = F −1
Y (α). (9)

And so, the VaRα is simply the α-quantile of the loss distribution. Calculating VaR

in practice involves choosing the two arbitrary parameters – the confidence level

and the holding period – a period over which the potential loss is calculated. As

presented in Dowd (2007), using confidence levels in a region of 95% to 99% is the

industry standard. The choice of the holding period depends on the context of use,

yet for backtesting it is essentially given by the frequency of returns which are used
11A loss distribution is a return distribution with a “flipped” x-axis – losses are positive and profits

are negative. It is used here for a more intuitive definition of VaR and CVaR. For the purpose of

calculations, a return distribution is always used in its stead.

13



as the model input. VaR, however, has serious limitations. Firstly, it only tells us

the maximum value of a loss if the tail event does not occur – it gives no indication

about a magnitude of a loss we could suffer if the tail event occured. Secondly, VaR

is not a coherent risk measure since it does not satisfy the subadditivity condition

unless we impose a strict assumption on the return distribution. Specifically, the

subadditivity condition only holds for elliptical distributions (Artzner et al., 1999).

An important practical implication of this is that VaR does not reward diversification

and also, it means that at least from a standpoint of coherence, VaR does not have to

be regarded as a proper risk measure at all. Fortunately, the introduction of CVaR

tackles both of these issues.

Conditional Value-at-Risk

Rockafellar and Uryasev (2000) defined Conditional Value-at-Risk as an expected

loss exceeding the VaR. Again, using mathematical notation from Pflug (2000), it is

given as

CVaRα(Y ) = E[Y | Y ≥ VaRα(Y )]. (10)

Alternatively, i.e.

CVaRα(Y ) = E[Y | Y ≥ F −1
Y (α)] (11)

= 1
1 − α

∫︂ 1

α

F −1
Y (p) dp. (12)

CVaR is therefore more sensitive to the shape of the tails than VaR as it measures the

conditional expectation of a loss in case of tail event occurrence, while VaR is simply

a quantile. It holds that CVaRα(Y ) ≥ VaRα(Y ). CVaR satisfies the subadditivity

condition along with all other properties of coherence and is therefore coherent (the

proof can be found in Acerbi (2004)). In terms of its properties, CVaR is preferred

to VaR and is used here as one of the optimization objectives (is minimized).

Both measures are, however, subject to estimation risk. In this work, a function

that is used to estimate the return distributions uses sample estimates to calculate

the first moments. Additionally, it implements statistical factor model based on the

work of Boudt et al. (2015) to calculate the second, third and fourth moments which

are used to model the distributions (in a case when CVaR is chosen as the objective

function).

14



3.4 Exchange-Traded Funds

The last section of the theoretical part of this thesis is dedicated to a description of

financial instruments that we use to represent the individual sectors of the American

economy. In order to grasp how a single financial asset’s performance can reflect the

performance of a whole economic sector, it is important for the reader to understand

how ETFs work.

ETFs are pooled investment vehicles that issue shares that are publicly traded on

exchanges. Since their introduction in the 1990s, ETFs have substantially grown

in popularity, with total assets under management breaching the $4 trillion mark

in July 2019, according to a report by ETF.com (Rosenbluth, 2019a). This would

mean approximately 26-fold increase of the ETF market size compared to the data

from year-end 2003 (Antoniewicz and Heinrichs, 2014). There are numerous factors

explaining the rising popularity of ETFs. Primarily, it is the shift from active to

passive investing over the course of the past couple of decades (see Anadu et al.

(2019)). This shift could be explained by the inability of actively managed funds to

beat the benchmarks, especially over long-term horizons – according to Morningstar,

Inc., only 23 % of all active funds managed to outperform the average of passive

funds over the 10 year period ended June 2019 (Johnson, 2019). Intraday tradability,

transparency and extensive variety of covered markets are other factors contributing

to the surging demand for ETFs.

Just like a mutual fund12, an ETF enables the investor to buy a portion (a share)

of a pool of stocks, bonds and other instruments. The major difference, however,

lies in the pricing mechanism. Shares of mutual funds are bought and sold at net

asset value (NAV) per share (typically computed at the end of each business day),

either directly from the fund company or an intermediary, e.g. a financial advisor.

ETFs are bought and sold throughout a day via broker-dealers at market-determined

prices (a secondary market activity relevant for most investors, dual structure of the

ETF market is explained below). ETF can either be actively managed or have a

passive investment objective – typically a market index replication. Yet, active funds

amounted for approximately $100 billion in assets at the end of 2019 (Rosenbluth,

2019b) – a mere fraction of the ETF market.
12Mutual fund is a term used mainly in the U.S., a European alternative being the SICAV

(investment company with variable capital).
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The primary market

The following explanation of an ETF dual market structure comes from Antoniewicz

and Heinrichs (2014). An ETF originates from a sponsor – an entity with investing

expertise (a fund manager) that sets the investment objective for the ETF. Another

agent that comes into play after the origination is an authorized participant (AP),

also called participating dealer – a large institutional investor such as a brokerage

house that provides liquidity to finance the creation/redemption mechanism. This

mechanism regulates the amount of shares outstanding in the ETF based on demand.

The shares are created when the AP applies for a creation unit – a specified number of

shares, usually ranging from 25 to 200 thousand. A creation basket, settled to equal

the fund’s NAV per creation unit, is transferred to the sponsor and simultaneously,

the shares are transferred to the AP. The creation basket contains either the physical

securities that constitute the ETF portfolio13 (an in-kind transfer) or it is limited to

a subset of the portfolio’s securities and the remainder is covered by a corresponding

amount of cash. The latter is permitted or even required by the sponsor particularly

when certain instruments in the basket are traded on less liquid markets as it is often

the case with, for instance, high-yield bonds, or when the securities are odd lots that

do not fit into the basket. In the case of stock ETFs, accumulated dividends can be

another reason for a cash component to be a part of the basket. The redemption

mechanism simply works in the opposite way. The AP redeems a creation unit by

acquiring the corresponding number of shares through private purchases or from

exchanges (the secondary market, discussed below) and transferring them to the

sponsor and receives the redemption basket of securities and/or cash in return. At the

end of each business day, the sponsor is required to publish a portfolio composition

file – a list of securities and their quantities (plus the cash component) that equals

the ETF’s NAV per creation unit. This file informs the AP about the composition

of the creation and redemption baskets for the next business day and thus serves as

a pricing tool for the primary market.

The secondary market

As mentioned earlier in the text, mutual funds and ETFs differ in the way they

are priced for individual investors, since ETFs can be traded on exchanges on an
13In the case of an index-based ETF, the securities in the basket are weighted to match their

weighting in the index.
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intraday basis. Therefore, once APs receive the created ETF shares, they can sell

them in large blocks to big institutional investors or to individual investors in the

secondary market – the exchanges. The imbalances in supply and demand can cause

the floating price of an ETF share to deviate from its NAV per share. There are,

however, counter-forces that eliminate any significant deviations and thus prevent

from any long-lasting arbitrage opportunities for investors. The ability of APs to

create or redeem shares keeps the floating price closely aligned with the share’s

underlying value. If, for example, the shares trade at a premium to their intraday

value, the AP can use the creation mechanism to sell the freshly created shares at

a higher price than the value of the securities comprising the corresponding basket.

This creates a risk-free profit opportunity for the APs and it should, eventually, drive

the price down in reaction to the newly-emerged excess supply.
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4 Empirical Investigation

4.1 Data

The focus of this study is to examine whether our algorithm is able to generate

alpha14 through the allocation among the US sectors. For this purpose we use

historical price data covering the period from January 3, 2012 to December 31, 2019

for the SPDR Sector Select ETFs to represent the individual US sectors and for the

SPDR S&P 500 Trust (SPY) ETF, tracking the S&P 500 index15, to represent the

benchmark. Even though the data collection period starts from 2012, the investment

period starts on January 2, 2015 since a 3 year-long estimation window is used for

the portfolio construction. Each sector ETF is a capitalization-weighted selection of

stocks from the S&P 500 index that belong to the corresponding sector16. The main

reasons for choosing ETFs are their favorable price data availability and the fact that

the ETF market is well accessible even to retail investors. The entire dataset was

obtained from the publicly available database provided by Yahoo! Finance.

A few adjustments to our data were made to make them usable as an input into

our model. Firstly, the raw dataset was cleaned to only contain daily closing prices.

And secondly, simple (linear) daily returns as described in the theoretical section

were calculated from the closing prices together with weekly and monthly returns

to test different sampling frequencies. The list of instruments as well as summary

statistics of returns are presented in Table 1. The nature of our data differs with

the sampling frequency. Daily returns are economically insignificant, exhibit slightly

negative skewness and have heavy tails. This is consistent with Cont (2001). Running

the Jarque-Bera (JB) test on the daily returns results in rejecting the null hypothesis

of normality at the 1% significance level for all instruments. The same conclusions

are made when analyzing the weekly returns. However, we fail to reject the null

hypothesis for the monthly returns and the magnitude of excess kurtosis is also
14Not to be confused with the α-quantile previously used in the VaR and CVaR formulas, here

the term alpha refers to a return in excess of the broad market (represented by the SPY ETF in

this paper). It is a commonly used term in asset management.
15The S&P 500 index is capitalization-weighted US stock market index that tracks the perfor-

mance of 500 large companies listed in the US.
16The sector division is consistent with the Global Industry Classification Standard (GICS) tax-

onomy as it applied at the beginning of the period covered by our data.
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lessened when compared to the lower sampling frequencies. Nevertheless, it has been

shown (see, e.g., Thadewald and Büning (2007)) that the JB test lacks power when

small-sized samples are used and there are less than 100 observations of the monthly

returns in out dataset. The results thus suggest using higher moments to estimate

return distributions in our optimization model.

Table 1: Summary Statistics

Daily Returns

Ticker Sector Mean St. dev. Maximum Minimum Skewness Kurtosis Jarque-Berra*

XLU Utilities 0.03% 0.84% 2.98% -4.18% -0.50 4.75 0.00

XLP Consumer Staples 0.04% 0.72% 2.95% -3.63% -0.40 4.92 0.00

XLK Technology 0.07% 1.01% 6.04% -5.05% -0.32 6.33 0.00

XLY Consumer Discretionary 0.06% 0.90% 5.93% -3.99% -0.35 5.60 0.00

XLB Basic Materials 0.04% 1.02% 4.48% -4.36% -0.21 4.27 0.00

XLF Financial Services 0.06% 1.03% 4.53% -5.36% -0.30 5.20 0.00

XLI Industrial 0.05% 0.94% 4.66% -4.54% -0.36 4.96 0.00

XLV Healthcare 0.06% 0.89% 4.36% -4.43% -0.32 5.13 0.00

XLE Energy 0.00% 1.25% 6.22% -6.42% -0.15 4.85 0.00

SPY 0.05% 0.81% 5.05% -4.21% -0.40 6.31 0.00

Weekly Returns

Ticker Sector Mean St. dev. Maximum Minimum Skewness Kurtosis Jarque-Berra*

XLU Utilities 0.15% 1.74% 4.72% -5.30% -0.38 3.24 0.01

XLP Consumer Staples 0.17% 1.55% 5.43% -7.93% -0.55 5.25 0.00

XLK Technology 0.33% 2.03% 6.02% -8.32% -0.58 4.58 0.00

XLY Consumer Discretionary 0.30% 1.90% 5.85% -8.37% -0.51 4.29 0.00

XLB Basic Materials 0.17% 2.14% 9.06% -7.74% -0.23 4.41 0.00

XLF Financial Services 0.28% 2.25% 11.19% -7.26% -0.20 4.81 0.00

XLI Industrial 0.23% 2.02% 8.11% -7.16% -0.34 4.15 0.00

XLV Healthcare 0.28% 1.91% 6.95% -7.06% -0.45 4.56 0.00

XLE Energy 0.01% 2.55% 8.85% -9.81% -0.38 4.44 0.00

SPY 0.24% 1.68% 4.71% -7.59% -0.72 5.14 0.00

Monthly Returns

Ticker Sector Mean St. dev. Maximum Minimum Skewness Kurtosis Jarque-Berra*

XLU Utilities 0.67% 3.51% 8.03% -9.05% -0.52 3.01 0.13

XLP Consumer Staples 0.74% 3.09% 6.41% -9.74% -0.60 3.76 0.03

XLK Technology 1.42% 3.99% 10.51% -8.77% -0.37 3.11 0.35

XLY Consumer Discretionary 1.29% 3.78% 9.87% -10.10% -0.40 3.70 0.18

XLB Basic Materials 0.73% 4.32% 13.43% -10.71% -0.05 3.85 0.42

XLF Financial Services 1.21% 4.35% 14.03% -11.68% -0.37 3.72 0.21

XLI Industrial 1.00% 3.97% 11.43% -11.21% -0.36 4.03 0.10

XLV Healthcare 1.19% 3.59% 8.08% -9.76% -0.58 3.74 0.04

XLE Energy -0.01% 5.27% 11.21% -13.25% -0.26 3.16 0.60

SPY 1.04% 3.19% 8.51% -9.33% -0.63 4.04 0.01

* Note: P-values for the Jarque-Bera test of normality.
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4.2 Methodology

In this section, we employ the concepts described in the theoretical part of the thesis

to give a detailed explanation of the portfolio construction process.

We construct four different sector ETF portfolios and examine each portfolio’s capa-

bility to generate alpha whilst keeping the risk as low as possible, over a five year-long

investment horizon starting in January 2012. Two of these portfolios serve as bench-

marks for optimization techniques: a 1/N portfolio and a GMV portfolio. The other

two are DE-optimized portfolios, each with a different set of constraints to simulate

a realistic agent-based setting. The 1/N portfolio, also called a naive portfolio, is

simply a portfolio giving equal weighting to each asset. The GMV portfolio seeks to

minimize the portfolio volatility over the investment period. The DE-optimized port-

folios are both assigned two objectives – to maximize the mean return and minimize

the Conditional Value-at-Risk (CVaR) calculated at a 95% confidence level. The

first DE-optimized portfolio, to which we refer to as a Long Only portfolio (LO), is

designed to simulate a strictly regulated market participant, e.g. a pension fund. It

is therefore constrained to only contain long position investments and to keep lever-

age below 2%.17 The other portfolio simulates a more loosely regulated participant –

e.g. a hedge fund and as such its set of constraints allows for shorting, although each

single short position’s size is limited to a 20% of the capital invested and the overall

leverage exposure, where leverage is defined as the sum of the absolute values of asset

weights, is capped at 2. Just as with the LO portfolio, the weight sum constraint is

relaxed to the 98% - 102% range. This portfolio is referred to as a With Shorting

(WS) portfolio further in the text.

There are three strategies under which the portfolios are managed: a passive buy

and hold approach, annual rebalancing and quarterly rebalancing. The rebalancing

strategies employ a 3 year-long rolling window of returns to construct the portfo-

lios18. The portfolios are thus re-optimized on each rebalancing date with the most

recent observations (this of course does not apply to the 1/N portfolio, which is

just rebalanced to keep the assets equally weighted). Regarding the buy and hold
17This is just a 98% - 102% relaxation of the 100% weights sum constraint to enable for situations

where it is impossible to keep the capital invested at exactly 100%. These situations emerge, for

instance, due to round lots. Relaxing the weight sum constraint also helps the algorithm to find

more feasible candidate solutions.
18Additionally, a 1 year-long window is also tested when rebalancing quarterly.
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strategy, a single 3 year-long estimation window is used for the portfolio construction.

In what follows, there is an explanation of the optimization techniques utilized in

this study. The GMV portfolio allowing for short sales is found using the analytic

approach. For this purpose, we use R functions developed by Zivot (2008) with

a covariance matrix as input. The covariance matrix is estimated from the data

windows using a sample covariance method. The DE portfolios are constructed in

accordance with the set of objectives and constraints described above, using an R

function package called PortfolioAnalytics (Peterson and Carl, 2018). The package

provides a common interface to specify optimization constraints and objectives that

can be solved by a supported solver (DE, particle swarm, QP methods etc.). The

original version of the DE algorithm (Storn and Price, 1997) is extensively described

in the theoretical section of the thesis. We use a few extensions to the original scheme,

coming from Zhang and Sanderson (2009), to make the algorithm more convenient

and less time consuming to use.

Primarily, we use adaptive parameter control so the algorithm does not require the

user to prespecify the control parameters CR and F . Instead, feedback from the

evolutionary search is used to dynamically change the parameters throughout the

search process. The crossover probability CR from Equation 4 and the mutation

factor F from Equation 3 become random variables CRi and Fi, respectively. Both

parameters are independently generated at each population generation and are as-

sociated with each individual candidate vector xi. The CRi parameter is randomly

drawn from a normal distribution Ni(µCR, 0.1) of mean µCR and standard deviation

of 0.1., according to a following scheme:

CRi = Ni(µCR, 0.1). (13)

Let SCR be a set of all successful crossover probabilities CRi’s at generation G.

Additionally, let c ∈ [0, 1] be a constant preselected by the user – in our case chosen

to be 0.4 and meanA(·) be the usual arithmetic mean operator. The mean µCR is

initialized to be 0.5 and then updated at the end of each generation as follows:

µCR = (1 − c) · µCR + c · meanA(SCR). (14)

The adaptation of the Fi parameter follows a similar arrangement. At each genera-

tion G, it is drawn from a Cauchy distribution Ci(µF , 0.1) with location parameter
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µF and scale parameter 0.119, i.e.,

Fi = Ci(µF , 0.1). (15)

Let SF be a set of all successful mutation factors Fi’s at generation G and meanL(·)

be the Lehmer mean:

meanL(SF ) =
∑︁

F ∈SF
F 2∑︁

F ∈SF
F

. (16)

The location parameter µF is initialized to be 0.5 and then updated at the end of

each generation as follows:

µF = (1 − c) · µF + c · meanL(SF ). (17)

The logic behind choosing the Cauchy distribution over the normal distribution in

Equation 16, is to achieve better diversification in the mutation factors and thus

avoid premature convergence. Lehmer mean is used in order to place more weight on

larger successful mutation factors, and in consequence, to speed up the convergence

of the algorithm.

Another extension we use alters the mutation process so that it incorporates the

information about the best solutions. The mutant vector is therefore generated as:

vi,G+1 = xi,G + Fi · (xp
best,G − xi,G) + Fi · (xr1,G − xr2,G), (18)

where xp
best,G is a pbest solution randomly chosen from the top 100p% candidate

vectors from the current population. We set p ∈ (0, 1] to be equal to 0.2 as it is

recommended in the literature. Fi is the mutation factor generated by the above

described adaptive mechanism and r1, r2 ∈ {1, 2, . . . , NP }\{i} are distinct random

integers.

Finally, since we specify two optimization objectives, an extension that ensures com-

parability between candidate solutions in a multi-dimensional space needs to be em-

ployed. This extension is based on a Pareto dominance and crowding density20 and

its explanation is beyond the scope of this thesis (see Zhang and Sanderson (2009)

for a detailed overview).
19Location and scale parameters are used to specify the Cauchy distribution since both its mean

and variance are undefined.
20To compare two solutions where neither dominates the other, crowding density is used. The

solution with lower density is preferred.
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4.3 Performance Analysis

This section presents empirical findings on the out-of-sample performance of the sec-

tor ETF portfolios under three different portfolio management strategies: buy and

hold, annual rebalancing and quarterly rebalancing. To analyse economic perfor-

mance, annualised (geometric average) returns are used, together with cumulative

returns to capture the effect of not realizing any capital gains/losses throughout the

investment period. Conditional Value-at-Risk is used as a measure of risk and we also

examine standard deviation of portfolio returns since the aim of the GMV portfolio

is its minimization. Our focus is to analyse whether the DE-optimized portfolios

generate higher returns than the benchmark index (SPY), while also keeping the

tail risk below the benchmark’s values. In all of the above mentioned strategies,

the investment period is 5 years, starting in January 2015 and ending in December

2019. This is in accordance with the GIPS performance presentation standards that

require at least 5 years of performance history21 to avoid “cherry picking” of time

periods and ensure transparency and comparability.

Buy and Hold

In the buy and hold strategy, the weights are estimated using a 3 year-long in-sample

window of asset returns covering the period from January 2012 till December 2015.

Having obtained the portfolio weights, we use the portfolio returns formula from

Equation 7 to calculate the portfolio returns with the same periodicity as the asset

returns time series. The portfolio returns are then used to calculate the performance

measures. These calculations are realized using monthly, weekly and daily returns as

inputs. Table 2 presents a performance summary for the constructed portfolios and

the benchmark. The weight allocations can be found in Appendix in the Table A1.

When using monthly data, the DE-optimized portfolios outperform the benchmark in

terms of both return and tail risk, although the WS portfolio is slightly more volatile

and the alpha of the two portfolios is not very significant. While the LO portfolio

generates nearly identical return as the WS portfolio, it has lower tail risk with the

CVaR reduced by almost 1% compared to its counterpart. The best-performing in-

vestment is the GMV portfolio, generating a 2.4% alpha and a cumulative return of

almost 75% over the 5-year holding period with a monthly tail risk down approxi-
21Global Investment Performance Standards (GIPS), as cited in Bacon (2008).
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mately 1.3% against the benchmark. It does not, however, beat the LO portfolio in

terms of standard deviation, even though it is still less volatile than the benchmark.

The outperformance of the GMV portfolio can be linked to its heavy allocation in

the technology sector ETF (44% weight22 at the initiation of the investment), which

generated an alpha of almost 8% throughout the holding period. Due to the allowed

short sales, the leverage exposure at the beginning of the investment period is 1.36

and 1.47 for the GMV and the WS portfolio, respectively. The 1/N portfolio per-

forms the worst of the four constructed portfolios, lagging behind the benchmark in

terms of returns while being almost as risky. This finding is not surprising since only

two of the individual sector ETFs outperform the broad market over the holding

period, namely the technology ETF and the consumer discretionary ETF.

The weekly data exhibit substantially different results. Only the WS and the GMV

portfolios now outperform the market with the WS portfolio being a clear winner of

the buy and hold scenario from the viewpoint of the risk-return tradeoff. It delivers a

12% annualized return, beating the benchmark by almost 3% whilst simultaneously

having a 0.5% lower weekly CVaR. The WS portfolio is exposed to a leverage of

1.55 under the initial weight allocation, noticeably less than the GMV’s leverage of

1.71, making it not just a better performing contender but also less costly in terms

of borrowed capital. Yet it should be mentioned that the GMV is the least risky of

the sector portfolios, both in terms of tail risk and volatility. The outperformance

of the WS portfolio is a result of its 34.6% allocation in the technology ETF which

performs best of all the sector ETFs and a 20% allocation in a short sale of the energy

ETF which, on the other hand, is the only ETF that generates a negative annualized

return of -0.5% over the period.

The use of daily data as input into the models leads to uniformly worse results. None

of the sector portfolios outperform the market, even though both return volatility

and CVaR are slightly reduced compared to the benchmark. This finding is quite

surprising as data of higher frequency carry more information. Nevertheless, it is

precarious to suggest any reasoning for the DE portfolios outperformance when lower

data frequency is used, since the algorithm is practically a black box. The fact that
22Due to the presence of short sales in this portfolio, this number should be interpreted as a

fraction of own capital invested rather than as a percentage of the total amount invested. If the

number is summed with all other assets’ absolute values of weights, it gives a value of 136% indicating

the portfolio’s exposure to leverage.
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monthly data work best for the GMV portfolio might, however, be the result of

monthly returns being closest to normality – an assumption of the mean-variance

framework.

Table 2: B&H – performance summary

Monthly data

Annualized Return Annualized St. Dev. Conditional Value-at-Risk Cumulative Return

Long Only 9.9% 10.9% 6.5% 60.5%

With Shorting 10.0% 12.5% 7.4% 61.3%

1/N 7.8% 11.6% 7.4% 45.6%

GMV 11.8% 11.3% 6.2% 74.6%

SPY 9.4% 12.1% 7.5% 56.6%

Weekly data

Annualized Return Annualized St. Dev. Conditional Value-at-Risk Cumulative Return

Long Only 8.2% 11.6% 4.6% 48.5%

With Shorting 12.0% 12.1% 4.4% 76.4%

1/N 7.5% 12.2% 4.7% 44.1%

GMV 9.7% 11.6% 4.3% 59.2%

SPY 9.1% 12.8% 4.9% 54.9%

Daily data

Annualized Return Annualized St. Dev. Conditional Value-at-Risk Cumulative Return

Long Only 6.0% 11.0% 1.9% 33.5%

With Shorting 8.5% 11.7% 1.9% 50.4%

1/N 7.8% 12.8% 2.3% 45.6%

GMV 8.8% 11.9% 2.0% 52.6%

SPY 9.4% 13.5% 2.5% 56.6%

Note: This table presents the performance of the sector portfolios under the buy and hold sce-

nario based on different data collection frequencies. 1/N and GMV are the benchmark portfolio

construction models and SPY is the performance benchmark, representing the broad market. The

annualized return is calculated according to the formula in Equation 8 and the cumulative return

is calculated as the annualized return compounded over the investment period. The annualized st.

deviation is scaled by the approximate number of observations in one year. These calculation meth-

ods come from Bacon (2008). Calculation of the Conditional Value-at-Risk is described in Section

3. The in-sample period (ISP) is set as 3 years and the holding period as 5 years, covering January

2015 to December 2019. All values in bold font indicate outperformance of the broad market.
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Annual rebalancing

Subsequently, we select a more dynamic strategy where portfolios are rebalanced at

the end of each calendar year23. First, it is important to illustrate the difference in the

approaches to rebalancing the individual sector portfolios. The portfolios which use

historical data to estimate optimal weights (the DE portfolios and GMV) are initially

constructed using a 3 year-long data window and then re-optimized on a 3 year-long

rolling window at each rebalancing date. When rebalancing takes place, the weights

obtained from the models are used to reallocate the assets to reflect the most recent

history and thus account for the development on the equity markets. Therefore, for

these portfolios the term rebalancing does not refer to the process of readjusting

the asset weights for the sole purpose of maintaining the initial weightings, as it

is often defined in the literature. The classical definition, however, applies to the

naive portfolio, where assets are bought and sold to prevent the asset weights from

drifting away from the desired 1/N allocation. This simple approach ensures that

the risk profile of the investment remains generally constant over the investment

period. Its disadvantage is that it is not responsive to current market conditions and

price movements. The investment period is again 5 years and so the portfolios are

rebalanced 4 times. The results of this strategy can be found in Table 3.

When using monthly data, only the WS portfolio now beats the benchmark both in

terms of return and risk. It generates a 1.6% alpha and a cumulative return of 68.6%

while its monthly tail risk is 1.1% lower compared to the benchmark and, in fact, the

lowest of all the portfolios. It is also less volatile than the benchmark, even though

its long only counterpart exhibits a lower standard deviation value of 10.3%. Both

shorting portfolios reach maximum leverage exposure during 2016 – 1.85 for WS and

2.06 for GMV. This is most likely due to the fact that 2015 was not very prosperous

year for equities and the inflow of the most recent data into the models suggested

more shorting. A complete overview of asset allocations throughout the investment

period can be found in Appendix (tables A2, A3 and A4).

A few interesting remarks can be made when analyzing weekly and daily data results.
23This approach is often referred to as calendar rebalancing. Another popular approach is the

so-called percentage of portfolio rebalancing where the portfolio proportions are maintained through

buying or selling assets if their weights breach predefined tolerance bands, to adjust them to the

original weighting. Thus in the case of the percentage strategy, the rebalancing transactions are

not prearranged but rather triggered by rising volatility.

26



Firstly, the performance of the DE portfolios deteriorates with higher data frequency.

And secondly, the sector portfolios reduce risk in practically all cases even though the

reduction is not very significant. Overall, it cannot be said that annual rebalancing

improves performance of the portfolios and neither considerably reduces risk.

Table 3: Annual rebalancing – performance summary

Monthly data

Annualized Return Annualized St. Dev. Conditional Value-at-Risk Cumulative Return

Long Only 7.2% 10.3% 6.9% 41.5%

With Shorting 11.0% 11.3% 6.4% 68.6%

1/N 7.5% 11.6% 7.5% 43.5%

GMV 7.7% 10.8% 6.8% 45.2%

SPY 9.4% 12.1% 7.5% 56.6%

Weekly data

Annualized Return Annualized St. Dev. Conditional Value-at-Risk Cumulative Return

Long Only 6.7% 11.0% 4.3% 38.6%

With Shorting 6.8% 11.9% 4.0% 39.1%

1/N 7.3% 12.1% 4.7% 42.1%

GMV 4.7% 10.9% 3.9% 25.7%

SPY 9.1% 12.8% 4.9% 54.9%

Daily data

Annualized Return Annualized St. Dev. Conditional Value-at-Risk Cumulative Return

Long Only 3.8% 11.5% 2.0% 20.7%

With Shorting 3.6% 12.1% 2.1% 19.6%

1/N 7.5% 12.7% 2.3% 43.5%

GMV 6.1% 11.2% 2.0% 34.2%

SPY 9.4% 13.5% 2.5% 56.6%

Note: This table presents the performance of the sector portfolios under the annual rebalancing

scenario based on different data collection frequencies. The in-sample period (ISP) is set as 3 years

for each rebalancing and the investment period as 5 years, covering January 2015 to December 2019.

All values in bold font indicate outperformance of the broad market. See Table 2 for additional

notes regarding the performance measures.
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Quarterly rebalancing

Quarterly rebalancing is implemented in a very similar manner to annual rebalanc-

ing. The portfolios are rebalanced at the end of each quarter, although this time we

employ not only 3 year-long rolling windows, as in the previous case, but also 1 year-

long rolling windows to test whether shorter in-sample period (ISP) works better if

we rebalance weights more frequently24. With the 1 year-long ISP we thus create

a more dynamic system with the allocations reflecting only the more recent stock

market development. The quarterly rebalancing strategy would be preferred to the

ones described above only if it suggested superior out-of-sample performance since it

generates higher transaction costs paring down the returns. The results of quarterly

rebalancing are presented in Tables 4 and 5 for 3-year ISP and 1-year ISP, respec-

tively. Asset allocations under the quarterly rebalancing strategies can be found in

an auxiliary Excel file that can be provided upon request.

Overall, the results are disappointing for all data frequencies and both ISP lengths.

In the case of 1-year ISP, the monthly data now feed each model with only 12 past

observations, rendering the models ineffective and making the resulting performance

very poor – the WS portfolio has the highest monthly CVaR of 8.8% while generating

even lower return than the average risk-free rate25 of approximately 2%. The GMV

shows rather confusing results, generating an impressive 20.8% annualized return but

failing to limit the risks. An annualized standard deviation of 20% suggests that the

data window is indeed too short for monthly inputs. Moreover, the model proposes

unacceptably high leverage exposure – for instance, for the third quarter of 2016,

the allocation generates a leverage of 22.82. The 3-year ISP brings no significant

improvement.

With weekly and daily inputs, the 1-year ISP really does improve performance of the

DE portfolios compared to the 3-year ISP, even though the figures are still unsatis-

factory. The GMV produces very similar results for both estimation window lengths.

Ultimately, it can be said that neither annual nor quarterly rebalancing consistently

enhances the performance of any of the sector portfolios in comparison with the buy

and hold approach.
24The window lengths apply to both initial portfolio construction and regular rebalancing.
2510-year US treasury yield is used here to represent the risk-free rate. The average yield over

the investment period is approximately 2%.
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Table 4: Qaurterly rebalancing (3-year ISP) – performance summary

Monthly data

Annualized Return Annualized St. Dev. Conditional Value-at-Risk Cumulative Return

Long Only -0.2% 10.5% 7.1% -0.9%

With Shorting 4.3% 12.6% 7.7% 23.3%

1/N 7.5% 11.5% 7.4% 43.7%

GMV 5.6% 11.0% 6.6% 31.4%

SPY 9.4% 12.1% 7.5% 56.6%

Weekly data

Annualized Return Annualized St. Dev. Conditional Value-at-Risk Cumulative Return

Long Only 0.2% 10.8% 4.0% 1.1%

With Shorting 1.3% 11.7% 4.1% 6.8%

1/N 7.3% 12.1% 4.6% 42.3%

GMV 3.8% 10.8% 4.0% 20.5%

SPY 9.1% 12.8% 4.9% 54.9%

Daily data

Annualized Return Annualized St. Dev. Conditional Value-at-Risk Cumulative Return

Long Only -0.9% 11.8% 2.2% -4.6%

With Shorting -0.6% 12.2% 2.2% -2.7%

1/N 7.5% 12.7% 2.3% 43.7%

GMV 5.9% 11.1% 1.9% 33.1%

SPY 9.4% 13.5% 2.5% 56.6%

Note: This table presents the performance of the sector portfolios under the quarterly rebalancing

scenario based on different data collection frequencies. The in-sample period (ISP) is set as 3 years

for each rebalancing and the investment period as 5 years, covering January 2015 to December 2019.

All values in bold font indicate outperformance of the broad market. See Table 2 for additional

notes regarding the performance measures.
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Table 5: Qaurterly rebalancing (1-year ISP) – performance summary

Monthly data

Annualized Return Annualized St. Dev. Conditional Value-at-Risk Cumulative Return

Long Only 2.6% 10.7% 6.8% 13.7%

With Shorting 1.7% 13.1% 8.8% 8.8%

1/N 7.5% 11.5% 7.4% 43.7%

GMV 20.8% 20.0% 8.4% 157.0%

SPY 9.4% 12.1% 7.5% 56.6%

Weekly data

Annualized Return Annualized St. Dev. Conditional Value-at-Risk Cumulative Return

Long Only 1.5% 10.9% 3.9% 7.7%

With Shorting 4.6% 12.0% 4.4% 25.1%

1/N 7.3% 12.1% 4.6% 42.3%

GMV 3.1% 11.1% 4.4% 16.7%

SPY 9.1% 12.8% 4.9% 54.9%

Daily data

Annualized Return Annualized St. Dev. Conditional Value-at-Risk Cumulative Return

Long Only 1.0% 11.8% 2.2% 5.0%

With Shorting 4.5% 12.2% 2.1% 24.5%

1/N 7.5% 12.7% 2.3% 43.7%

GMV 6.2% 11.1% 2.0% 34.8%

SPY 9.4% 13.5% 2.5% 56.6%

Note: This table presents the performance of the sector portfolios under the quarterly rebalancing

scenario based on different data collection frequencies. The in-sample period (ISP) is set as 1 year

for each rebalancing and the investment period as 5 years, covering January 2015 to December 2019.

All values in bold font indicate outperformance of the broad market. See Table 2 for additional

notes regarding the performance measures.
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Note on the transaction costs

Transaction costs associated with investing in ETFs are largely dependent on market

liquidity as well as on specific conditions determined by financial intermediaries.

Market liquidity affects transaction costs through bid-ask spreads, making the costs

time-varying and their estimation rather challenging. For these reasons, we have

decided to disregard transaction costs in all performance calculations. However, it is

not inadequate to make a supposition regarding the costs. As already stated above,

the higher the rebalancing frequency, the higher the overall costs, simply due to the

rising number of transactions. The additional reduction in returns generated by the

rebalancing strategies would make the use of rebalancing even less desirable, most

likely leading to a rejection of quarterly and potentially even annual rebalancing of

the portfolios.
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5 Conclusion

The aim of this thesis is to examine whether a nature-inspired heuristic search al-

gorithm is capable of finding an inter-sector allocation that outperforms a broad

market index whilst simultaneously being less risky. For this purpose we construct

two sector ETF portfolios, each with a different set of constraints to simulate a

realistic agent-based setting: a long only portfolio and a shorting portfolio. The re-

sults are further extended to include Markowitz’ global minimum variance portfolio

(GMV) and a naive 1/N portfolio. We test three different data input frequencies

– monthly, weekly and daily and additionally, we employ three different strategies

under which the portfolios are managed – a passive buy and hold approach, annual

rebalancing and quarterly rebalancing. Although the long only portfolio provides

similar results in terms of tail risk, the shorting portfolio delivers higher annualized

returns in nearly all cases. The best performance is reached under the buy and

hold approach, with the shorting portfolio outperforming the benchmark by almost

3% while providing lower tail-risk. Even though this result is achieved when using

weekly data as an input, the monthly periodicity provides the best results overall.

Rebalancing impairs the performance of the tested portfolios while simultaneously

adding transaction costs. This suggests that the historical data covering the period

from 2012 to 2014, used for the initial portfolio construction, provide the model with

the best guidance for the future equity market development. Ultimately it can be

said that picking among sectors to outperform the broad market is a challenging

task in case the portfolios are heavily constrained. On the other hand the algorithm

is able to deliver satisfying results while providing the user with a relative freedom

when choosing portfolio constraints. The study could further be extended by testing

different lengths of in-sample periods used for estimating the optimal allocations or

by adding different asset classes to construct the portfolios.
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Appendix

Table A1: B&H – asset weights

Monthly data

XLU XLP XLK XLY XLB XLF XLI XLV XLE Leverage Exposure

Long Only 23% 0% 22% 11% 4% 0% 3% 34% 1% 0,98

With Shorting 7% 8% 8% -6% 3% 2% 23% 73% -18% 1,47

GMV 38% -2% 44% -7% 13% -4% 18% 5% -5% 1,36

Weekly data

XLU XLP XLK XLY XLB XLF XLI XLV XLE Leverage Exposure

Long Only 11% 55% 22,6% 3% 1% 1% 3% 1% 0% 0,98

With Shorting 23% 31% 34,6% 5% -8% 0% 18% 15% -20% 1,55

GMV 26% 45% 33% -12% 17% -8% -4% 15% -12% 1,71

Daily data

XLU XLP XLK XLY XLB XLF XLI XLV XLE Leverage Exposure

Long Only 34% 43% 0,2% 1% 2% 7% 0% 10% 1% 0,98

With Shorting 30% 46% 21,2% -3% 5% -14% 3% 16% -4% 1,42

GMV 30% 51% 25% 3% -4% -15% -2% 10% 3% 1,43

Note: This table presents the beginning-of-period asset weights under the buy and hold scenario.

The beginning-of-period leverage exposure where leverage is defined as the sum of absolute values

of asset weights is also presented.
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Table A2: Annual rebalancing – asset weights; monthly data

Long Only

XLU XLP XLK XLY XLB XLF XLI XLV XLE Leverage Exposure

12/31/2014 17% 5% 11% 3% 5% 0% 5% 54% 0% 0,99

12/31/2015 38% 0% 33% 21% 1% 3% 2% 0% 0% 0,99

12/30/2016 29% 8% 24% 26% 2% 1% 0% 5% 3% 0,98

12/29/2017 32% 16% 1% 12% 1% 1% 16% 1% 19% 0,98

12/31/2018 58% 0% 2% 18% 19% 0% 2% 0% 0% 0,99

With Shorting

XLU XLP XLK XLY XLB XLF XLI XLV XLE Leverage Exposure

12/31/2014 17% 1% 15% 22% 5% 2% -8% 58% -16% 1,45

12/31/2015 27% -19% 40% 29% -18% 0% 16% 29% -6% 1,85

12/30/2016 43% -5% 39% 27% -3% 22% -12% -1% -9% 1,62

12/29/2017 33% 31% -10% 34% -5% 11% 13% -5% -3% 1,47

12/31/2018 42% -1% 33% 22% 25% 11% -18% -1% -14% 1,66

GMV

XLU XLP XLK XLY XLB XLF XLI XLV XLE Leverage Exposure

12/31/2014 38% -2% 44% -7% 13% -4% 18% 5% -5% 1,36

12/31/2015 37% -10% 71% -13% -30% 17% 5% 10% 13% 2,06

12/30/2016 23% 34% 7% -15% -15% 21% 7% 25% 14% 1,62

12/29/2017 36% 21% -15% 19% -8% 10% 8% 13% 16% 1,46

12/31/2018 41% 21% 4% 15% 22% 19% -19% -6% 4% 1,50

Note: This table presents the beginning-of-period asset weights under the annual rebalancing sce-

nario, using monthly data. The beginning-of-period leverage exposure where leverage is defined as

the sum of absolute values of asset weights is also presented.
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Table A3: Annual rebalancing – asset weights; weekly data

Long Only

XLU XLP XLK XLY XLB XLF XLI XLV XLE Leverage Exposure

12/26/2014 12% 40% 40% 1% 0% 3% 0% 1% 0% 0,98

12/31/2015 41% 6% 2% 35% 4% 0% 10% 0% 1% 0,98

12/30/2016 36% 30% 2% 23% 1% 0% 2% 3% 0% 0,98

12/29/2017 47% 3% 0% 39% 0% 2% 2% 1% 4% 0,99

12/28/2018 52% 35% 0% 2% 2% 6% 0% 1% 0% 0,99

With Shorting

XLU XLP XLK XLY XLB XLF XLI XLV XLE Leverage Exposure

12/26/2014 7% 32% 27% 14% -13% -19% 18% 51% -19% 2,00

12/31/2015 28% 7% 44% 33% -16% -8% 16% 13% -18% 1,83

12/30/2016 36% 29% -3% 33% -20% 1% 10% 19% -8% 1,58

12/29/2017 29% 31% -19% 23% 0% -10% 40% 12% -7% 1,71

12/28/2018 65% 25% -6% 7% 2% 17% -15% -3% 4% 1,45

GMV

XLU XLP XLK XLY XLB XLF XLI XLV XLE Leverage Exposure

12/26/2014 26% 45% 33% -12% 17% -8% -4% 15% -12% 1,71

12/31/2015 27% 43% 2% 18% 22% 17% -29% 6% -6% 1,69

12/30/2016 25% 55% -23% 12% 14% 19% -20% 19% 0% 1,86

12/29/2017 27% 42% -19% 10% 12% 14% -14% 21% 7% 1,65

12/28/2018 47% 18% -9% 11% 18% 2% -9% 8% 15% 1,36

Note: This table presents the beginning-of-period asset weights under the annual rebalancing sce-

nario, using weekly data. The beginning-of-period leverage exposure where leverage is defined as

the sum of absolute values of asset weights is also presented.
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Table A4: Annual rebalancing – asset weights; daily data

Long Only

XLU XLP XLK XLY XLB XLF XLI XLV XLE Leverage Exposure

12/31/2014 46% 43% 7% 0% 1% 0% 0% 0% 1% 0,98

12/31/2015 34% 54% 4% 0% 1% 2% 0% 1% 2% 0,98

12/30/2016 14% 70% 0% 3% 4% 0% 0% 6% 0% 0,98

12/29/2017 22% 59% 0% 3% 2% 2% 1% 8% 1% 0,98

12/31/2018 47% 10% 1% 0% 2% 1% 1% 37% 0% 0,99

With Shorting

XLU XLP XLK XLY XLB XLF XLI XLV XLE Leverage Exposure

12/31/2014 47% 34% 14% 5% 4% 6% -19% 17% -8% 1,53

12/31/2015 28% 53% 14% 17% 32% -7% -20% 0% -19% 1,90

12/30/2016 23% 72% -18% 32% 7% 16% -18% -5% -9% 2,00

12/29/2017 23% 45% -19% 38% 9% -7% 31% -7% -14% 1,93

12/31/2018 54% 10% -15% 16% 2% 26% -18% 36% -13% 1,89

GMV

XLU XLP XLK XLY XLB XLF XLI XLV XLE Leverage Exposure

12/31/2014 30% 51% 25% 3% -4% -15% -2% 10% 3% 1,43

12/31/2015 23% 59% 17% 9% 4% -12% -1% -1% 1% 1,28

12/30/2016 20% 58% -10% 10% 6% 2% 7% 9% -2% 1,25

12/29/2017 22% 43% -10% 15% 2% 2% 13% 14% -2% 1,25

12/31/2018 36% 26% -17% 21% 2% 11% 3% 19% 0% 1,34

Note: This table presents the beginning-of-period asset weights under the annual rebalancing sce-

nario, using daily data. The beginning-of-period leverage exposure where leverage is defined as the

sum of absolute values of asset weights is also presented.
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