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Abstract: Quantum systems in nature interact with other quantum systems,
and these are examples of open quantum systems. In this work, we provide
an introduction to the theory of open quantum system with a particular focus
on the dynamics of molecular systems embedded in the protein environment,
such as those found in photosynthetic antennas. We devote some time to the
techniques of constructing equations of motion for the dynamics of a selected
quantum system under the interaction with the bath, where we restrict ourselves
to a finite number of degrees of freedom. We compare the exact calculation of
the whole finite system with the results of approximate equations derived from
an ansatz for the time evolution for the degrees of freedom of the bath part. We
also reformulate the exact equations into a time non-local master equation using
projection operator techniques, and we study the quality of results obtained with
the modified quantum master equation. The time evolution of studied systems
is also compared to the time evolution obtained by Schrödiger and Liouville-von
Neumann equations.
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1. Introduction
Quantum theory changed our understanding of how nature works inside out. In
classical physics, trajectories in three-dimensional space, or in so-called phase-
space, are defined by characteristic coordinates and momenta, which together de-
termine the degrees of freedom of macroscopic bodies. Quantum theory is suited
for the description of microscopic bodies, where classical mechanics is insufficient.
The fundamental change between the classical and qauntum theories, however,
lies in the definition of what is the physical state of the system. In the quan-
tum mechanical description, coordinates and momenta can not be determined
precisely at the same time, as they have to obey the Heisenberg uncertainty prin-
ciple. All characteristics of the system are set by Hilbert space wave-function or
state-vector. As every system is defined on its own Hilbert space, the composed
system is defined on the product of all Hilbert spaces of its contributions. Corre-
spondingly, the total state-vector becomes astonishingly complex as we strive for a
description of gradually bigger systems. Another aspect of the description of such
systems is the entanglement with the surrounding systems. With an expanding
system, it is harder to separate it from its surroundings. Small molecular systems
of interest, i.e. in the theory of photosynthetic antennas, show coherence dephas-
ing times on the order of hundreds of femtosenconds. The state-vector of the
system quickly becomes entangled with the rest of the universe, which prevents
us from defining it as a quantity describing the system alone [CCC+20, Man20].

The theory of open quantum systems is dealing with the influence of the envi-
roment or bath. We choose a few degrees of freedom (DOF), which are described
in fine detail and call them the system. The rest of the DOF represent the uni-
verse and thus becomes implicit in the description. Open quantum systems in
nature have one critical property in common, namely, the irreversibility of time
evolution, which is due to the interaction of infinite bath surrounding the system.
A natural external perturbation of our interest is caused by the interaction of
the system with the electromagnetic field. As the transition frequencies of the
system match the frequencies of the electromagnetic field, the resonance condi-
tion is fulfilled, the energy is transferred to the system, which becomes exited.
After the system is excited, the decoherence, energy relaxation and thermaliza-
tion take place. Spectroscopy and in particular time-resolved spectroscopy is an
excellent experimental tool for monitoring such features and properties of the
system. Molecular aggregates play an essential role in natural photosynthe-
sis, where photosynthetic antennae composed of pigment molecules absorb light
[Bla95]. These antennae enable cells and bacteria to catch light more efficiently
as the antenna has a broader cross-section than individual pigment molecules.
Energy is transferred into the reaction centre after photons are harvested. Ultra-
fast time evolution of electronic states of molecular aggregates is the subject of
study of non-linear optical spectroscopy, which noted many new advantages. In
particular the two-dimensional coherent spectroscopy [Jon03, COM04, BMSF04]
in infra-red regions, and in visible regions of spectra, permit us to obtain informa-
tion about third-order non-linear response. The time resolution of pump-probe
experiments is limited by the frequency resolution and vice versa. This is not
the case of two-dimensional spectroscopy, which allows us not only to determine
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the population of Frenkel excitons but also their composition in terms of quan-
tum superposition. These superpositions of electronic states are represented by
off-diagonal elements of the reduced density matrix, which are also called coher-
ences. The reduced density matrix is obtained from the density matrix of the
whole system with tracing out the degrees of freedom of the bath. Experiments
which were carried out with the Fenna-Matthews-Olson pigment-protein complex
confirmed the presence of such coherences in natural systems [ECR+07].

Modelling molecular aggregate spectroscopic response is a challenging task as
we need to simulate the time evolution of the whole system. Because the Hilbert
space of the system and the bath are not linearly separable, we can not apply
the Schrödinger equation in the usual way. The Quantum Master Equation can
be derived, e.g. by Nakajima-Zwanzig projection formalism [Fai02], and it an-
swers the exact time evolution of the system. However, it is an integrodifferential
equation that cannot be easily solved numerically. Approximations, namely Born
approximation and Markov approximation with strong coupling, are used in order
to overcome this difficulty, and we obtain Redfield rate equations [Red65]. Master
equation theory can be further reduced to simpler rate theories by another ap-
proximation called secular approximation, which decouples the coherence of the
reduced density matrix. These approximations make it possible to simulate an
open quantum system interacting with a bath. However, the weak part of these
theories are many fair assumptions about the bath, necessary due to its infinite
nature. In order to provide a test-bed for improvements of master equations, we
simulate finite baths. We strive for obtaining new equations of motion in the
case that the bath is finite and comparable to the size of the system degrees of
freedom.

In this work, we will perform exact calculations of the dynamics of finite sys-
tems, which can be reasonably split into an effective system, and a finite bath. We
derive equations of motion with one ansatz for the bath time evolution. Numeri-
cal results of these new set of equations will be compared to the exact dynamics
obtained by Liouville-von Neumann equation and quantum master equations. As
the system and the number of bath degrees of freedom are expanding with the
motivation to catch the essential aspects of the mentioned experiments, the total
basis of the system grows exponentially. After the evolution is calculated, we have
to extract meaningful information from this vast number of degrees of freedom,
which is usually done by tracing out the degrees of the bath. As we will show
later in this work, this operation can be computationally more intensive than the
time evolution itself. It is crucial to deal with these new problems, in such a way,
that the simulation overall remains feasible and practical.
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2. Open Quantum Systems

2.1 Density Operator Formalism
To learn something new about the underlying principles of quantum systems
which are the subject of this study, it is inevitable to use density operator formal-
ism. The formalism of quantum mechanics, which uses purely wave formalism,
can make predictions only on an ensemble - that, is a collection of identically
prepared physical systems. In such an ensemble, the same vector state char-
acterises all members |ψ⟩. We aim to study open quantum systems, which are
surrounded by a greater system (reservoir or bath). The total wave function of
such a system is ψ(si, bj) ∈ H, where H is Hilbert space with a given basis, si

are DOF of the inner open system and bi are DOF of the bath. In case the sys-
tem is non-interacting with the reservoir, it is possible to separate the basis into
ψS (si)ψB (bj) with ψS (si) ∈ ĤS and ψB (bj) ∈ ĤB. However, when the system
and bath are interacting with one another, it is impossible to separate the basis
and hence the wave function. We will illustrate this on a simple example with the
Stern-Gerlach experiment. At the beginning of an experiment, a person prepared
two electrons with state |ψ1⟩ and after the experiment took place, the electrons
are now in state |ψ2⟩

|ψ1⟩ = |↑⟩ |↑⟩ , |ψ2⟩ = 1
2 |↑⟩ |↑⟩+ 1

2 |↓⟩ |↓⟩ . (2.1)

The initial state of two electrons can be separated into |ψi⟩ = |↑⟩; however,
it is impossible to separate the second state. Omitting superposition of states
essentially ties our hands, and the suitable step is to change our perception of a
given problem. The second state is called a mixed state, which is described by
the density operator formalism [Sak10].

Now we present density operator formalism, pioneered by J. Neumann in 1927,
that quantitatively describes physical situations with mixed states of the system.
The density operator of the system is characterised in general by elements |αi⟩ of
some basis with coefficients wi which obey the following condition

1 =
∑︂

i

wi. (2.2)

Suppose that we measure some observable B, then we would like to know what is
the average value of B, when many measurements are carried out. That is given
by

⟨B̂⟩ ≡
∑︂

i

wi ⟨αi|B̂|αi⟩

=
∑︂

i

∑︂
j

wi |⟨βj|αi⟩|2 βj,
(2.3)

where |βj⟩ are eigenstates of operator B̂ and ⟨αi|B̂|αi⟩ is quantum mechanical
expectation value with respect to the state |αi⟩. Motivation is to define density
operator ρ̂ as

ρ̂ ≡
∑︂

i

wi |αi⟩⟨αi| . (2.4)
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The elements of the corresponding density matrix in basis |bi⟩ have the following
form

⟨bi|ρ̂|bj⟩ =
∑︂

k

wi ⟨bi|αk⟩ ⟨αk|bj⟩ . (2.5)

For pure state there exist such an n that
ρ̂ = |αn⟩⟨αn| . (2.6)

The density operator contains all physically significant information that we can
obtain, we can rewrite the average of the operator as follows[︂

B̂
]︂
≡
∑︂

i

∑︂
j

⟨bj|ρ̂|bi⟩ ⟨bi|Â|bj⟩

= Tr
{︂
ρ̂Â
}︂
.

(2.7)

Another important fact is that we can evaluate the trace in any given basis, which
can be convenient.

2.1.1 Interaction Picture
The two main ways how to look at the so-called quantum system and work with
all so-calledinformation about system dynamics are Schrödinger picture or by
interaction picture. In the so-called Schrödinger picture, all system information
is held in time-dependent coefficients of wave-vector |ψ(t)⟩ with respect to some
basis {|n⟩}∞

n=0. We consider a Hamiltonian H such that it can be split into two
parts,

H = Ĥ0 + V (t), (2.8)
where Ĥ0 does not contain time explicitly. If we assume a problem where V (t) =
0, the dynamics can be formally solved by finding energy eigenkets |n⟩ and cor-
respondent eigenvalues En, which are defined by

Ĥ0 |n⟩ = En |n⟩ . (2.9)
We may possibly be interested in a simulation where at the beginning only one
of the states, to give an example, |i⟩, is populated. However, if we assume that
V (t) ̸= 0, generally speaking, other states will become populated too. The evolu-
tion operator is no longer as simple as e−iHt/ℏ when H is time-dependent. Suppose
that at t = 0 the wave-vector is given by

|ψ(t = 0)⟩ =
∑︂

n

cn(0) |n⟩ . (2.10)

To solve the dynamics of such a system means that we need to find such cn(t) for
t ≥ 0 so we can write wave-vector as

|ψ(t)⟩ =
∑︂

n

cn(t)e−iEnt ℏ |n⟩ . (2.11)

For operators (which represent observables) we define

AI ≡ eiĤ0t/ℏASe
−iĤ0t/ℏ. (2.12)

For operators that are time-independent in Schrödinger picture we sometimes
omit the subscript I and use the time-dependence of the operators alone to indi-
cate that they are in the interaction picture.
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2.2 Superoperators

2.2.1 Liouville-von Neumann Equation
The subject of the study is the time evolution of the density matrix operator, we
shall start with the pure state and later we will show that the derived equation
holds for mixed states as well. The time derivative of the density matrix operator
consists of a sum of contributions from the bra state and from ket state

∂ρ

∂t
=
(︄
∂

∂t
|ψ(t)⟩

)︄
⟨ψ(t)|+ |ψ(t)⟩

(︄
∂

∂t
⟨ψ(t)|

)︄
. (2.13)

Using the Schrödinger equation and its Hermitian conjugate we can state

∂

∂t
|ψ⟩ = − i

h
Ĥ |ψ⟩ , ∂

∂t
⟨ψ| ,= i

h
Ĥ ⟨ψ| (2.14)

and we can rewrite 2.13 using operators of system Hamiltonian Ĥ as

∂ρ

∂t
= − i

ℏ
Ĥ |ψ⟩⟨ψ|+ i

ℏ
|ψ⟩⟨ψ| Ĥ

= − i
ℏ

(Ĥρ− ρĤ).
(2.15)

The equation of motion for density matrix we derived above is called the Liouville-
von Neumann equation of motion

∂ρ

∂t
= − i

ℏ
[Ĥ, ρ]. (2.16)

We are motivated to define a new category of operators for the simplicity of
notation such that

L( · ) ≡ 1
ℏ
[︂
Ĥ, ·

]︂
,

∂

∂t
ρ(t) = −iLρ(t), (2.17)

where L is so-called Liouville superoperator or Liouvillian and this operator is
defined on co-called Liouville space [Bre02]. Given some Hilbert space, H the
Liouville space is the space of Hilbert-Schmidt operators, which is the space of
operators A in H for which Tr

{︂
A†A

}︂
is finite. With the scalar product

(A,B) ≡ Tr
{︂
A†B

}︂
, (2.18)

the space of Hilbert-Schmidt operators becomes a Hilbert space itself. It is plau-
sible to introduce orthonormal basis {Bi} in this space which satisfies orthonor-
mality and completeness condition

(Bi, Bj) = δij

A =
∑︂

i

Bi (Bi, A) . (2.19)
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2.2.2 Superoperator Representation
Our superoperators applied on density matrix are represented in a finite basis
by tensors of rank four. It is desirable to represent these superoperators with
matrices and density operators with vectors. After the theory is derived, simu-
lations will take place and it is inevitable to restrict ourselves to a finite basis.
There seem to be many practical advantages of using matrices and vectors in-
stead of multidimensional arrays. A reader can choose suitable mapping for this
description of the representation issue

(Lij,kl) = (La,b) , a = M(i, j), b = M(k, l). (2.20)

The simplest possible mapping would be Vectorization/Choi-Jamiolkowski iso-
morphism [Jam72]. What is neatly captured in following relation

|i⟩⟨j| = |i⟩ ⊗ |j⟩ . (2.21)

In this way, when we have an arbitrary density matrix

ρ =
∑︂
i,j

ρi,j |i⟩⟨j| , (2.22)

represented in a vector form as follows

vec(ρ) =
∑︂
i,j

ρi,j |i⟩ ⊗ |j⟩ . (2.23)

If we represent these objects in a given basis, we are ”stacking columns of the
matrix”.

vec
(︄
a b
c d

)︄
=

⎛⎜⎜⎜⎝
a
c
b
d

⎞⎟⎟⎟⎠ . (2.24)

This vectorization trick is handy, in particular for one main reason. The
Hilbert-Schmidt inner product can be represented by what one would intuitively
guess

tr
(︂
A†B

)︂
= vec(A)† vec(B), (2.25)

which becomes merely the inner product between the two vectors.

2.2.3 Projection Superoperators
The laws describing the dynamics of the open quantum system interacting with
the bath can be derived from the unitary dynamics of the total system. Reducing
degrees of freedom usually results in non-Markovian behaviour. Using projection
operator techniques, one can still derive exact equations of motion. Nakajima
introduced these techniques in 1958 and Zwanzig in 1960 ([Nak58], [Zwa60]) and
it was independently introduced by the Brussels school (Prigogine, 1962 [Pri17]).

The basic idea underlying the application of the projection operator is to trace
out degrees of freedom originating from the bath with formal projection ρ→ Pρ.
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The superoperator P has the property of projection operator on normal Hilbert
space, which is P2 = P . The density matrix Pρ is called a relevant part of the
density matrix. Similarly, we define Q = 1 − P and we call Qρ as irrelevant
part of the density matrix. The next step would be to derive closed differential
equations for the relevant part of the density matrix Pρ.

In regular Hilbert space, we have projector onto n-th state P̂S as follows(︂
P̂n

)︂
ij
≡ δinδjn. (2.26)

Correspondingly projection superoperator, acting on some operator A, is from
Liouville space and its components are defined as(︂

P ij,klA
)︂

i′j′,k′l′
≡ Aij,klδii′δjj′δkk′δll′ . (2.27)

In our work, we will be working also with superoperators of the following type

Cρ = ÂρB̂, (2.28)

where we can spot that some superoperator C has components A and B. Now
we want to project only the relevant part of this operator. We can do it in the
following way

P ij,klC = P̂iÂP̂kρP̂lB̂P̂j. (2.29)

The reader should keep in mind that with the basis of size N in Hilbert space, the
size of the general superoperator is N4. However, the properties of superoperators
usually allow us to write them down as nested sums working on Hilbert space.
That being said, 2.29 can be easily expressed in terms of sums iterating over
elements of ρ.

2.3 The Definition of Open System and Bath
Quantum chemistry methods currently represent the only valid alternative to
spectroscopic techniques to study structural and electronic properties of molecu-
lar systems. There appear to be plenty of MO-based models, e.g. Hartree-Fock,
which aims for a relevant description of photosynthetic models. Many alterna-
tive models have been proposed to achieve a better description of larger systems.
Considerable effort has been focused on obtaining methods accounting for elec-
tronic transfer that in HF and similar conventional quantum chemistry methods
were neglected [Cro18].

Molecular systems of our interest can be described with relatively small
amounts of DOF, but these DOF are described in exquisite detail. We shall
call these DOF system or open system, and we want to use a full quantum de-
scription of these DOF. Other DOF which take place in the model also plays an
important role, as an example in decoherence and relaxation towards equilibrium.
It is necessary to use less detailed descriptions for these DOF, and we call them
bath. The open system and the bath together create whole system. Next, we
denote Hilbert space of the system and Hilbert space of the bath as HS and HB
respectively.
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Figure 2.1: Open quantum system is entangled with the surrounding bath after some
time.

The subject of this study is focused on exciton systems. Among the photosyn-
thetic complexes, there appear to be many systems which consist of Chlorophyll
molecules embedded in a protein with a different structure (LHI, LH2, FMO,
and other). We can model these aggregates with N molecules which have two
states: the ground state |g⟩ and the excited state |e⟩. The tensor product of these
states then creates DOF of the whole system. If we take into account vibrational
degrees of freedom of these molecules, we will state that in a particular model.
The global aggregate electronic states have a form

|g⟩ =
N∏︂

i=1
|g⟩ ,

|en⟩ = |en⟩
N∏︂

i=1
i ̸=n

|gi⟩ ,
(2.30)

molecule and by |ei⟩ we denote the excited state of n-th molecule. We are inter-
ested only in modelling non-linear spectroscopy experiments up to third order in
electronic field density. Therefore, we can neglect any higher excited states than
one excited.

Specific desire after a simple description of vibrational basis plays a role in
effective theory derivation and consequent implementation. Every oscillator in
bath induces its locally orthogonal basis. It is unavoidable to restrict ourselves
to a finite local basis; when it comes to performing simulations, for every n-th
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molecule in the whole system we state Nξn as the maximum number of states for
both oscillator in the ground state and the excited state. The n-th vibrational
state has the following form

|ξn⟩ = |ξµ1⟩|ξµ2⟩ . . . |ξµp⟩, (2.31)

here we assumed that p is the number of all molecules in the whole system.
Together with the electronic state, we obtain

|n⟩ = |a⟩|ξn⟩ = |ξµ1
a1 ⟩|ξ

µ2
a2 ⟩ . . . |ξ

µp
ap
⟩, (2.32)

where |a⟩ can be the ground state |g⟩ or the excited state |ek⟩.

2.4 Local and Excitonic Basis
As long as we are working within boundaries of Hilbert space, we are free to
choose our own basis of states for calculations. Nevertheless, local and exciton
basis are two bases of particular importance. In exciton basis is the system Hamil-
tonian ĤS diagonal and local basis has the form of 2.30.

With a local basis, every excited basis state is located on a particular molecule.
Therefore, properties such as transition dipole, a coupling of molecules or the
correlation of the energy gap fluctuations directly relate to the geometrical ar-
rangement of the aggregate. The exciton basis is the natural choice in the case of
a weakly coupled system to the bath, because the population of eigenstates of the
system Hamiltonian, will change only slowly with time. We call these eigenstates
excitons. Another aspect which we should take into account is thermalization,
that drives the system towards canonical distribution

ρeq = e−H/kBT

Tr e−H/kBT
. (2.33)

2.5 Franck - Condon Factors
In this section, we will establish a notation for the Franck-Condon factors and
discuss what role they play in our model. We start with the Hamiltonian of LHO

Ĥ = ℏω
2
(︂
p̂2 + q̂2

)︂
, (2.34)

where p̂ is the momentum operator, q̂ is the position operator, and ω is the
frequency of LHO. We would like to define a shift operator which acts on state
vector as follows

D(α)ψ(Q) = ψ(Q− α), (2.35)

where α ∈ R is the shift value. Therefore, we define the shift operator as

D̂(α) = e−α ∂
∂q̂ . (2.36)
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Unquestionably, we want to write the final result in eigenstates of LHO so we will
use annihilation and creation operators with knowledge of the following identities

â = 1√
2 (q̂ + ip̂) q̂ = 1√

2

(︂
â+ â†

)︂
â† = 1√

2 (q̂ − ip̂) p̂ = 1
i
√

2

(︂
â− â†

)︂
.

(2.37)

Using these identities, we can now transform the shift operator in 2.36 into

D̂(α) = e−iαp̂

= e
− α√

2(â−â†).
(2.38)

Matrix elements of such operator D̂α in terms of LHO eigenstates are the so-
called Franck-Condon factors ⟨i|D̂α|j⟩. Eequation 2.38 is usefull in practical
numerical evaluation. In appendix A.4, we will show that recurrent formulas
may be practical when it comes to a higher number of eigenstates, however, for
N ≤ 20 the formula 2.38 is sufficient.

Later we will use Franck-Condon factors for general integrals of the type
⟨n|m⟩, where |n⟩, |m⟩ are states of the whole system as defined in 2.32. Assuming
that we have p molecules in the whole system and each molecule has defined shift
αi between the ground state and the excited state, the Franck-Condon factors
are defined as follows

⟨n|m⟩ =
p∏︂

i=1
⟨µi|D̂(eniαi − emiαi)|νi⟩ , (2.39)

where enk = 1 if k-th molecule of the aggregate is excited and enk = 0 otherwise.
States |µk⟩, |νk⟩ are locally orthonormal states for k-th molecule in the aggre-
gate for the ground or the excited state. The interested reader can find in the
appendix A.4 how to evaluate multidimensional Franck-Condon factors for the
whole system efficiently.

Figure 2.2: Gaussian wave-packet in the ground state and an excited state of LHO
potential transformed using Franck-Condon factors.
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2.6 Nakajima Zwanzig Identity
The purpose of this section is to derive suitable equations of motion for the re-
duced density operator ρ̂(t). The density operator of the whole system is denoted
by Ŵ (t) as we mentioned in 2.2.3. We first try to find the equation of motion
of the density matrix PŴ (t). As shown below, formal equations can be derived
in closedform. Solving these differential equations is equally tricky as solving the
full dynamics for Ŵ (t), but it can be used as a starting point for a consequential
approximate treatment [Val13]. The starting point will be Liouville von Neumann
equation 2.17 with Liouville superoperator that corresponds to the Hamiltonian
of the whole system

d

dt
Ŵ (t) = −iLŴ (t). (2.40)

At this point, we could rewrite equation 2.40 into interaction picture concerning
LS and LB, the meaning behind such a step would be to continue in perturbation
expansion to LSB after derivation of Nakajima-Zwanzig equations are complete.
Using the identity 1 = P +Q we can rewrite 2.40 as follows

d

dt
(P +Q)Ŵ (t) = −i(P +Q)L(P +Q)Ŵ (t). (2.41)

Under the properties of projection superoperators P and Q we can now separate

d

dt
PŴ (t) = −iPLPŴ (t)− iPLQŴ (t),

d

dt
QŴ (t) = −iQLPŴ (t)− iQLQŴ (t).

(2.42)

Pair of such ODE can be formally solved in a trivial manner, where from the
second equation in 2.42 we obtain

QŴ (t) = −ie−iQL(t−t0)QŴ (t0)− i
∫︂ t

t0
dτe−iQL(t−τ)QLPŴ (τ), (2.43)

and we plug it into the first equation of 2.42 obtaining the integrodifferential
equation, also called Nakajima-Zwanzig identity in Schrödinger picture

d

dt
PŴ (t) =− iPLPŴ (t)− PLe−iQL(t−t0)QŴ (t0)

− PL
∫︂ t−t0

0
dse−iQLsQLPŴ (t− s).

(2.44)

For the interaction picture, it would be desirable to transform 2.40 into the inter-
action picture with respect to LS and LB. Here we assumed that the Liouvillian
of the whole system is composed of three parts

L = LS + LR + LSB. (2.45)

Using the interaction picture as mentioned in 2.1.1 and rewriting 2.40 we obtain

d

dt
Ŵ (t) = −iLŴ (t). (2.46)
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As the reader is probably expecting, we could derive in a similar manner the full
Nakajima-Zwanzig identity for the interaction picture, what would yield onto

d

dt
PŴ (I)(t) =− iPLSB(t)PŴ (I)(t)

− iPLSB(t) exp+

(︃
−i
∫︂ t

t0
dτQLSB(τ)Q

)︃
QŴ (I) (t0)

−
∫︂ t

t0
dτPLSB(t) exp+

(︃
−i
∫︂ t−τ

t0
dτ ′QLSB (τ ′)Q

)︃
×

×QLSB(τ)PŴ (I)(τ)

(2.47)

2.7 Time-Nonlocal Quantum Master Equation
Our starting point will be the Liouville-von Neumann equation

∂

∂t
Ŵ (t) = − i

ℏ
[︂
Ĥ, Ŵ (t)

]︂
, (2.48)

where the Hamiltonian takes the usual form

Ĥ = ĤS + ĤB + ĤI, (2.49)

where ĤS is Hamiltonian of the system, ĤB is Hamiltonian of the bath and ĤI
is interaction Hamiltonian. The Hamiltonian of the whole system is transformed
into an interaction picture using evolution operators of system and bath

Ĥ(I)(t) = Û †
S(t)Û †

B(t)ĤÛB(t)ÛS(t) (2.50)

Transforming equation 2.48 into interaction picture and integrating for initial
time t0 = 0, we will obtain for Ŵ (I)(t) in its integral from

Ŵ (I)(t) = Ŵ (I)(0)− i

ℏ

∫︂ t

t0
ds
[︂
Ĥ

(I)
I (s), Ŵ (I)(s)

]︂
. (2.51)

Then we substitute this result into the right-hand side 2.48 and we will obtain
the following form of Liouville-von Neumann equation

∂

∂t
Ŵ (I)(t) =− i

ℏ
[︂
Ĥ

(I)
I (t), Ŵ (I)(0)

]︂
− 1

ℏ2

∫︂ t

t0
ds
[︂
Ĥ

(I)
I (t),

[︂
Ĥ

(I)
I (s), Ŵ (I)(s)

]︂]︂
.

(2.52)

We should stress that no approximations are made so far in equation 2.52. A
following step is to transform this equation of motion into an interaction picture
of the bath. The reasoning after this step will become clear after we introduce
the ansatz for a bath in the next chapter

∂

∂t
W

(B)
S (t) =− i

ℏ
[︂
ĤS(t), Ŵ (B)(t)

]︂
− 1

ℏ2

∫︂ t

t0
dsÛS(t)

[︂
Ĥ

(I)
I (t),

[︂
Ĥ

(I)
I (s), Ŵ (I)

I (s)
]︂]︂
Û †

S(t)

− i

ℏ
Û †

B(t)ĤIÛB(t)ÛS(t)Ŵ (0)Û †
S(t).

(2.53)

15



The key step of this section lies in the so-called separation of density matrix
Ŵ (t) into system part ρnm(t) and the bath part ŵnm(t), that is done under the
following condition

ρnm(t) = trB
{︂
⟨n|Ŵ (t)|m⟩

}︂
, ŵnm(t) = ⟨n|Ŵ (t)|m⟩

trB
{︂
⟨n|Ŵ (t)|m⟩

}︂ . (2.54)

Therefore, this so-called separation is only done in electronic parts of the basis
as shown here

Ŵ (t) =
∑︂
nm

ρnm(t)ŵnm(t) |n⟩⟨m| , (2.55)

and in the bath interaction picture, it is important to note that the evolution
operator corresponding to the bath only acts on elements ŵnm(t)

Ŵ (B)(t) =
∑︂
nm

ρnm(t)Û †
B(t)ŵnm(t)ÛB(t) |n⟩⟨m| . (2.56)

Now a tiny note on the properties of bath elements ŵnm(t), the trace of these
elements with respect to bath has to be equal to one

trB {ŵnm(t)} = 1
trB

{︂
Û †

B(t)ŵnm(t)ÛB(t)
}︂

= 1,
(2.57)

We now define the system part of matrix density in a similar fashion as it is done
with projection technique 2.6

ρ̂S(t) =
∑︂
nm

ρnm(t) |n⟩⟨m| . (2.58)

Tracing out the DOF of the bath we are left with the following integrodifferential
equation for system part of the density matrix

∂

∂t

∑︂
nm

ρnm(t) |n⟩⟨m| = − i
ℏ
[︂
ĤS, ρ̂S(t)

]︂
− 1

ℏ2

∑︂
nm

∫︂ t

t0
dsÛS(t)×

× trB
{︂[︂
Ĥ

(I)
I (t),

[︂
Ĥ

(I)
I (s), Û †

B(s)ŵnm(s)ÛB(s) |n⟩⟨m|
]︂]︂}︂

Û †
S(t)ρnm(s)

− i

ℏ
∑︂
nm

trB
{︂
Û †

B(t)ĤIÛB(t)ÛS(t)Ŵ (0)Û †
S(t)

}︂
.

(2.59)

We could consider this resulting integrodifferential equation as the prescription
for system simulation, however, there is still one minor detail. In case that the
bath and open quantum system are not entangled at the initial time t0 = 0,
following holds

trB
{︂
Û †

BĤIÛBŴ (0)
}︂

= 0. (2.60)
Considering this extra initial condition, the last piece of the equation 2.59 disap-
pears, and we are left with the final result

∂

∂t
ρkl(t) = −iωklρkl(t)

− 1
ℏ2

∑︂
nm

∫︂ t

t0
ds ⟨k| ÛS(t) trB

{︂[︂
Ĥ

(I)
I (t),

[︂
Ĥ

(I)
I (s), Û †

B(s)ŵnm(s)ÛB(s) |n⟩⟨m|
]︂]︂}︂

× Û †
S(t) |l⟩ ρnm(s).
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(2.61)
The function under integral sign in 2.59 and 2.61 is so-called Memory function
or Memory kernel
Mklnm(t, s) =
⟨k| ÛS(t) trB

{︂[︂
Ĥ

(I)
I (t),

[︂
Ĥ

(I)
I (s), Û †

B(s)ŵnm(s)ÛB(s) |n⟩⟨m|
]︂]︂}︂

Û †
S(t) |l⟩ ,

(2.62)

as the reader is probably expecting we can now rewrite 2.59 into the following
form

∂

∂t
ρkl(t) = − i

ℏ
[︂
ĤS, ρS(t)

]︂
− 1

ℏ2

∑︂
nm

∫︂ t

t0
dsMklmn(t, s)ρnm(s)

− i

ℏ
∑︂
nm

trB
{︂
Û †

B(t)ĤIÛB(t)ÛS(t)Ŵ (0)Û †
S(t)

}︂
,

(2.63)

and accordingly the integrodifferential equation 2.61 into the following form
∂

∂t
ρkl(t) =

− i

ℏ
[︂
ĤS, ρS(t)

]︂
− 1

ℏ2

∑︂
nm

∫︂ t

t0
dsMklmn(t, s)ρnm(s).

(2.64)

2.8 Time-Local Quantum Master Equation
In the previous section, we have derived the TNL QME, and this equation includes
convolution. Solving such equation numerically is a very a challenging task. In
case that the bath is infinite, we can assume that the RDM does not change
significantly in the interaction picture

ρ(I)(t− τ) ≈ ρ(I)(t). (2.65)
This assumption is also known as Markov approximation [May11]. Now we are
allowed to rewrite time-nonlocal form of equation 2.64 into time-local form∑︂

kl

∂

∂t
ρkl(t) |k⟩⟨l| = −

i

ℏ
[︂
ĤS, ρS(t)

]︂
+
∑︂
kl

Rklnm(t)ρnm(t) |k⟩⟨l| . (2.66)

The well-known Redfield equation initially derived for use in nuclear magnetic
resonance [Red65], is obtained from previous equation form of QME 2.66 with
integrating Redfield tensor to infinitely long timescale

R = lim
t→∞
R(t). (2.67)

The Redfield equation has the following form∑︂
kl

∂

∂t
ρkl(t) |k⟩⟨l| = −

i

ℏ
[︂
ĤS, ρS(t)

]︂
+Rklnmρnm(t) |k⟩⟨l| . (2.68)

This TL QME approximates the exact dynamics of the system in a weak-coupling
scenario. With strong coupling, the positivity of the density matrix is broken,
which leads to negative probabilities due to the numerical errors.

In our case the bath is finite, and we can express Redfield tensor in following
manner

Rabef (t)ρef (t) =
∫︂ t

t0
ds
∑︂
cd

Mabcd(t, s)Ucdef (−(t− s))ρef (t). (2.69)
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3. Models

3.1 Monomer Hamiltonian
The building block of all systems used in this work is a monomer. It is a matter
of great importance to take a closer look at monomer Hamiltonian with a purpose
to gain a better understanding of underlying principles. This monomer can be
in the electronic ground state and electronic excited state with energies εg and
εe. Besides electron DOF the monomer also possesses vibrational DOF connected
with the movement of molecule, e.g. chromophore. They are generally dependent
on many coordinates, but we will replace them with one coordinate Q [May11].
As mentioned in 2.3, we restrict system only to electronic DOF. Hamiltonian has
the following form

Ĥ =
(︂
εg + V̂g(Q)

)︂
|g⟩⟨g|+

(︂
εe + V̂e(Q)

)︂
|e⟩⟨e| . (3.1)

The goal will be to rewrite this Hamiltonian into a form where we can recognise
system part, bath part and interaction part

Ĥ = εg |g⟩⟨g|+ εe |e⟩⟨e|+ V̂g(Q)(|g⟩⟨g|+ |e⟩⟨e|) +
(︂
V̂e(Q)− V̂g(Q)

)︂
|e⟩⟨e|

= εg |g⟩⟨g|+ εe |e⟩⟨e|+ V̂g(Q)1 + Φ(Q) |e⟩⟨e|
= ĤS + ĤB + ĤI,

(3.2)

where these partial Hamiltonians are defined in the following way

ĤS ≡ εg |g⟩⟨g|+ εe |e⟩⟨e|
ĤB ≡ V̂g(Q)1
ĤI ≡ Φ(Q) |e⟩⟨e| .

(3.3)

An observant or skilled reader will notice that in the expanded Hamiltonian
in 3.2 there seem to be many identities working on Hilbert space HB, which is
omitted with a purpose for better readability. We also define a practical monomer
descriptor as

S = 1
2
d2mω

ℏ
, (3.4)

that is a dimensionless quantity called a Huang-Rhys factor; this step was done
in order to reduce the number of parameters.

3.2 The Aggregate of Frenkel Excitons
The subject of study is Frenkel exciton system which was named after Yakov
Frenkel [Fre31]. The Hamiltonian of such system takes the form

ĤS =
∑︂

k

εk |k⟩⟨k|+
∑︂
kl

Jkl |k⟩⟨l| , (3.5)
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where states |k⟩ are defined as in 2.30. Now Frenkel excitons are directly coupled
through pure dephasing interaction to the bath B, which consists of a given
number of harmonic oscillators. The Hamiltonian of the bath takes the form

ĤB =
∑︂

k

ĤBk
=
∑︂
kξk

ℏωξk

2
(︂
p̂2

ξk
+ q̂2

ξk

)︂
, (3.6)

and the Hamiltonian responsible for the interaction of bath and system is defined
as

ĤI = −ℏ
∑︂
k,ξk

ωξk
dξk
q̂ξk
|k⟩⟨k| . (3.7)

The bath is composed of individual non-interacting harmonic oscillators Bk with
individual Hilbert spaces HBk

. These oscillators are linked to the individual
molecules of the aggregate, q̂ξk

is the coordinate operator of the ξk oscillator on
the k-th molecule, ωξk

is its assigned frequency and dξk
is the shift of the potential

energy surface of the given vibrational mode when the k-th molecule is excited,
therefore in state |ek⟩. It should be noted that the shift is zero when the k-th
molecule of the aggregate is in the ground state |gk⟩.

Figure 3.1: The whole system can be visualised using non-oriented graph, here we
marked bath part with blue colour and system part red colour. This is only simplified
version of the whole model as we do not show here the superposition of ground and
excited states of excitons.

3.3 Aggregate and Bath
The more general model would contain not only the electronic and vibrational
DOF of chromophores but also DOF from surrounding proteins. We split Frenkel
excitons into system part and bath part, so now vibrational DOF of system
excitons are still the part of system DOF. The Hamiltonian of such OQS is
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defined as

ĤS,el =
∑︂
k∈I

εk |k⟩⟨k|+
∑︂

k,l∈I

Jkl |k⟩⟨l|

ĤS,vib =
∑︂

k∈I,ξk

ℏωξk

2
(︂
p̂2

ξk
+ q̂2

ξk

)︂
ĤS,int = −ℏ

∑︂
k∈I,ξk

ωξk
dξk
q̂ξk
|k⟩⟨k| .

(3.8)

where I is the set of electronic states corresponding to OQS. In a similar fashion
we can define the bath surrounding OQS

ĤB,el =
∑︂
k∈J

εk |k⟩⟨k|+
∑︂

k,l∈J

Jkl |k⟩⟨l|

ĤB,vib =
∑︂

k∈J,ξk

ℏωξk

2
(︂
p̂2

ξk
+ q̂2

ξk

)︂
ĤB,int = −ℏ

∑︂
k∈J,ξk

ωξk
dξk
q̂ξk
|k⟩⟨k| ,

(3.9)

here we have a condition that I ∪ J = {g, e1, . . . , ep} with p molecules in total in
the whole system. With total Hamiltonian defined as

H = ĤS + ĤS

= ĤS,el + ĤS,vib + ĤS,int + ĤB,el + ĤB,vib + ĤB,int
(3.10)

Figure 3.2: Another example of representation with a non-oriented graph for general
OQS with more general bath.
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4. Derived Theory

4.1 The Ansatz for the Bath
In the section where TNL QME is derived 2.7, the total density matrix Ŵ (t)
is separated between two part. The RDM ρ̂(t) and the bath part ŵ(t). The
advantage of this separation is that now, we can introduce ansatz for ŵ(t). The
bath part of density matrix is part of memory kernel, that can be calculated
exactly if needed. Using evolution superoperators of Liouville equation we can
calculate Ŵ (t) to desired precision. Consequently ŵ(t) can be calculated as in
2.54 for t > t0 with Mabcd(t, s).

The pivoting point of this work is the formulation of the ansatz for the bath.
The assumption is that the bath part of density matrix is constant

ŵcd = ŵcd(t), t ≥ t0, (4.1)

again Mabcd(t, s) can be calculated and compared to the exact memory kernel.
We should stress that the ansatz is made with respect to the site basis and not
to the exciton basis.

4.2 Memory Kernel of the First Kind
The previous section contains a prescription on how to evaluate the memory ker-
nel M(t, s), see 2.62. Dependency on two time variables can be uncomfortable
from a purely practical point of view. With scaling the system bath or adding
more molecules to the aggregate, the basis of the total system grows exponen-
tially. Even if the initial condition is pure state, it would be difficult to obtain
reasonable numerical results for larger systems. We are motivated to find time
dependence of memory kernel only on one time variable. Let us begin with the
same memory kernel, but before applying trace over bath from 2.53, so we start
with the expression

M′(t, t− s)Ŵ (t− s) =
ÛS(t)

[︂
Ĥ

(I)
I (t),

[︂
Ĥ

(I)
I (s), Û †

SB(t− s)Ŵ (t− s)ÛSB(t− s)
]︂]︂
Û †

S(t)
(4.2)

and again using expansion of Hamiltonian in the inner commutator we get

M′(t, t− s)Ŵ (t− s) =
ÛS(t)

[︂
Û †

SB(t)ĤIÛSB(t), Û †
SB(t− s)ĤIŴ (t− s)ÛSB(t− s)

]︂
Û †

S(t)

−ÛS(t)
[︂
Û †

SB(t)ĤIÛ
†
SB(t), Û †

SB(t− s)Ŵ (t− s)ĤIÛ
†
SB(t− s)

]︂
Û †

S(t).
(4.3)

With another rearrangement of evolution operators we will obtain the final form

M′(t, t− s)Ŵ (t− s) =

ÛB(t)
(︃ [︂
ĤI, Û

†
SB(−s)ĤIŴ (t− s)ÛSB(−s)

]︂
−
[︂
ĤI, Û

†
SB(−s)Ŵ (t− s)ĤIÛ

†
SB(−s)

]︂ )︃
Û †

B(t),

(4.4)
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and we rewrite the stated memory kernel, so that it is dependent only on one
time variable

M′(t, t− s) = ÛB(t)M(t− s)Û †
B(t) (4.5)

Key step is to rewrite the traced integral with the memory kernel to more com-
putationally favourable way∫︂ t

t0
ds ÛS(t) trB

{︂[︂
Ĥ

(I)
I (t),

[︂
Ĥ

(I)
I (s), ŴI(s)

]︂]︂}︂
Û †

S(t) =

= trB

{︃∫︂ t−t0

0
ds ÛS(t)

[︂
Ĥ

(I)
I (t),

[︂
Ĥ

(I)
I (t− s), ŴI(t− s)

]︂]︂
Û †

S(t)
}︃

= trB

{︃
ÛB(t)

(︃ ∫︂ t−t0

0
dsM(t− s)Ŵ (t− s)

)︃
Û †

B(t)
}︃
.

(4.6)

In the last part of this section, we will state explicitly the structure of memory
kernel M(t), that is, the following form

M(t)Ŵ = M̂1ŴM̂2 − M̂3ŴM̂4 − M̂5ŴM̂6 + M̂7ŴM̂8, (4.7)

with operators Mi defined in the following way

M1(t) = ĤIÛ
†
SB(−t)ĤI M2(t) = ÛSB(−t)

M3(t) = Û †
SB(−t)ĤI M4(t) = ÛSB(−t)ĤI

M5(t) = ĤIÛ
†
SB(−t) M6(t) = ĤIÛSB(−t)

M7(t) = Û †
SB M8(t) = ĤIÛSB(−t)ĤI,

(4.8)

again, this explicit notation of M̂i is only necessary in order to perform simulations
efficiently. We will stress that derived form of kernel is suitable only for dynamics
in the interaction picture of bath with ansatz defined in 2.55.

4.3 Memory Kernel of the Second Kind
More promising is a different approach, we start as in previous section with
Liouville-von Neumann equation for RDM, but in the interaction picture of the
system and the bath

∂

∂t
ρ(I)(t) = − i

ℏ
trB

{︂[︂
Ĥ

(I)
I (t), Ŵ (I)(0)

]︂}︂
− 1

ℏ2

∫︂ t

t0
dsM(t, s)Ŵ (I)(s)

M(t, s)Ŵ (s) = trB
[︂
Ĥ

(I)
I (t),

[︂
Ĥ

(I)
I (s), Ŵ (I)(s)

]︂]︂
.

(4.9)

Our motivation is to expand the compact notation of Memory kernel in 4.9 so
that RDM elements in the interaction picture can be obtained. The first step will
consist of expanding commutators inside the trace

M(t, s)Ŵ (s) = + trB
{︂
Ĥ

(I)
I (t)Ĥ(I)

I (s)Ŵ (I)
I (s)

}︂
− trB

{︂
Ĥ

(I)
I (t)Ŵ (I)

I (s)Ĥ(I)
I (s)

}︂
− trB

{︂
Ĥ

(I)
I (s)Ŵ (I)

I (s)Ĥ(I)
I (t)

}︂
+ trB

{︂
Ŵ

(I)
I (s)Ĥ(I)

I (s)Ĥ(I)
I (t)

}︂
M(t, s)Ŵ (s) =M1(t, s)Ŵ (s)−M2(t, s)Ŵ (s)−M3(t, s)Ŵ (s) +M4(t, s)Ŵ (s),
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(4.10)

where each part of a memory kernel will be expanded in the following part of
this section. We can realize that there is a neat property linking two pairs of the
memory kernel parts(︂

M1(t, s)Ŵ (s)
)︂†

=

=
(︂
trB

{︂
Ĥ

(I)
I (t)Ĥ(I)

I (s)Ŵ (I)
I (s)

}︂)︂†

= trB
{︂
Ŵ

(I)
I (s)Ĥ(I)

I (s)Ĥ(I)
I (t)

}︂
=M4(t, s)Ŵ (s),

(4.11)

hence we can rewrite 4.10 to a more compact version and we are left with evalu-
ating only two parts of the memory function

M(t, s)Ŵ (s) =M1(t, s)Ŵ (s) + h.c. +M2(t, s)Ŵ (s) + h.c.. (4.12)

For better readability, we will rewrite all Hamiltonians and density matrix in
M1(t, s)Ŵ (s) back to Schrodinger picture

M1(t, s)Ŵ (s) =

= trB

{︃
Û †

S(t)Û †
B(t)ĤIÛB(t)ÛS(t) Û †

S(s)Û †
B(s)ĤIÛB(s)ÛS(s)

Û †
S(s)Û †

B(s)Ŵ (s)ÛB(s)ÛS(s)
}︃

= trB
{︂
Û †

S(t)ĤIÛB(t− s)ÛS(t− s)ĤIÛS(s)Ŵ (S)(s)Û †
B(t− s)

}︂
= Û †

S(t) trB
{︂
Û †

B(t− s)ĤIÛB(t− s)ÛS(t− s)ĤIÛS(s)Ŵ (S)(s)
}︂
,

(4.13)

where the cyclic property of the trace was used at the last line. Similar can be
done in the second part of memory function multiplied by density matrix in the
interaction picture M2(t, s)W (s)

M2(t, s)Ŵ (s) =

= trB

{︃
ÛatU †

S(t)Û †
B(t)ĤIÛB(t)ÛS(t) Û †

S(s)Û †
B(s)Ŵ (s)ÛB(s)ÛS(s)

Û †
S(s)Û †

B(s)ĤIÛB(s)ÛS(s)
}︃

= trB
{︂
Û †

S(t− s)ĤIÛB(t− s)ÛS(t)Ŵ (S)(s)Û †
S(s)ĤIÛ

†
B(t− s)

}︂
= Û †

S(s) trB
{︂
ĤIÛ

†
B(t− s)Û †

S(t− s)ĤIÛB(t− s)ÛS(t)Ŵ (S)(s)
}︂
,

(4.14)

where we again used the fact that ÛS and ÛB are in fact operating on differ-
ent Hilbert spaces and the cyclicity of the trace operation. We will proceed by
expressing matrix values of ⟨a|Mi(t, s)W (s)|b⟩

⟨a|M1(t, s)Ŵ (s)|b⟩ =
= ⟨a| Û †

S(t) trB
{︂
Û †

B(t− s)ĤIÛB(t− s)ÛS(t− s)ĤIÛS(s)Ŵ (S)(s)
}︂
|b⟩

=
∑︂
nm

e
i
ℏ εate− i

ℏ εk(t−s)e− i
ℏ εns×

× trB

{︃
⟨a| Û †

B(t− s)ĤIÛB(t− s)ĤI |n⟩ ŵnm(s) ⟨m|b⟩
}︃
ρ(I)

nm(s),

(4.15)
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here we assumed that the ĤS is diagonal in the electronic basis. In the next step,
we will use the orthogonality of excitonic states and the substitution
ωab = (εa − εb)/ℏ. Let us proceed further with expressing operator multiplication
inside the trace in terms of electronic states

⟨a|M1(t, s)Ŵ (s)|b⟩ =
=
∑︂
nm

eiωakteiωkns×

× trB

{︃
Û †

B(t− s) ⟨a|ĤI|k⟩ ÛB(t− s) ⟨k|ĤI|n⟩ ŵnb(s)
}︃
ρ

(I)
nb (s).

(4.16)

Similar steps can be performed with the purpose of finding ⟨a|ĤI|b⟩ elements. We
assume that the interaction Hamiltonian can be written in terms of some states
|α⟩

ĤI =
∑︂

α

∆V̂α |α⟩⟨α| . (4.17)

Now we need to express this interaction Hamiltonian in terms of our electronic
basis

ĤI =
∑︂
ab

|a⟩⟨a|
∑︂

α

∆V̂α |α⟩⟨α| |b⟩⟨b|

=
∑︂
ab

(︄∑︂
α

∆V̂α ⟨a|α⟩ ⟨α|b⟩
)︄
|a⟩⟨b|

=
∑︂
ab

∆V̂ab |a⟩⟨b| .

(4.18)

This established notation with separated interaction Hamiltonian can be plugged
back into 4.16 so we will obtain

⟨a|M1(t, s)Ŵ (s)|b⟩ =
∑︂
nk

eiωakteiωkns×

× trB

{︃
Û †

B(t− s)∆V̂akÛB(t− s)∆V̂knŵnb(s)
}︃
ρ

(I)
nb (s).

(4.19)

The exact same procedure can be applied in the last line in the equation 4.14, we
will get following expression

⟨a|M2(t, s)Ŵ (s)|b⟩ =
∑︂
nk

eiωknteiωaks

× trB

{︃
∆V̂akÛ

†
B(t− s)∆V̂knÛB(t− s)ŵnb(s)

}︃
ρ

(I)
nb (s).

(4.20)
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5. Numerical Results

5.1 Initial Condition
Throughout this work, we have two different ways how to set the initial condi-
tion. In the first approach, we will set an initial condition that is restricted and
artificial, in a way that this sort of condition will not be possible to reconstruct
in an experiment. However, it may be beneficial to fulfil our aspiration to inspect
some specific aspects of the system.

This specific initial condition can, for an example, have the following form

|ψ(0)⟩ = |ξ0
e1⟩|ξ

0
g2⟩ . . . |ξ

0
gp
⟩, (5.1)

here the only first electronic state is populated with all LHOs only in the lowest
vibrational state. We could be interested in the condition that sets gaussian wave-
packet into the ground or excited state of a specific molecule in the aggregate.

|n(q)⟩ = 1√
2nn!

(︃
mω

πℏ

)︃1/4
Hn

(︃√︃
mω

ℏ
q
)︃

exp
(︄
−mωq

2

2ℏ

)︄
, (5.2)

here it is worth mentioning that we usually put m = ℏ = 1. Nevertheless, with
given distribution, in our case normal distribution

f(q, σ, µ) = 1
σ
√

2π
exp

[︄
−1

2

(︃
q − µ
σ

)︃2
]︄
, (5.3)

we are in a position to find corresponding weights with Fourier transform to
construct

|ψk⟩ =
N∑︂

i=1
wki|ξi

ak
⟩, (5.4)

where ak ∈ {gk, ek} and the total wave-function is after this procedure constructed
as

|ψ⟩ =
p∏︂

k=1
|ψk⟩ . (5.5)

There is one minor detail worth mentioning for readers that consider using the
previous condition. Because we are always working in a finite basis, it is indis-
putably crucial to normalise state-vector |ψk⟩. This obtained state is pure as we
only have W = |ψ⟩⟨ψ|.

The other sort of the initial condition is essential for simulating possible ex-
periments. The first step is to find the density matrix at the equilibrium Weq

using 2.33. After this step, we will simulate laser excitation. With excitation,
we use two kinds of excitation operator µ̂, which is symmetric and not symmet-
ric. Matrix elements of the symmetric excitation operator µ̂sym are defined in
electronic basis in the following way

µsym,nm =

⎧⎨⎩µ0 n = 1, m ≥ 2 or n ≥ 2, m = 1
0 otherwise,

(5.6)
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for non-symmetric excitation operator µ̂k we have the following definition

µk,nm =

⎧⎨⎩µ0 n = 1, m = k or n = k, m = 1
0 otherwise.

(5.7)

We would like to stress again that we work only with one-excited states. The
laser field intensity E0 and dipole moment amplitude µ0 are chosen to be

E0µ0 = 1.5 cm−1fs . (5.8)

This sort of initial condition is a mixed state with a growing system basis; it
is gradually more challenging to perform numerical simulations with the whole
density matrix Ŵ (t). There is a way to overcome this difficulty, that being said,
every mixed state Ŵ can be decomposed into pure states |ψi⟩⟨ψi| with weights
wi. However, this decomposition is not unique, and in fact, there seem to be
infinitely many possible decompositions of such state. This can be valuable in
finding a minimum number of pure states to satisfy specific precision criteria for
reconstruction of Ŵ . As a result, pure states can be used with the Schrödinger
equation to give more precise numerical results as we can afford adaptive step
methods to solve ODEs. More on mixed state decomposition in the appendix
A.2.

5.2 Methods on Solving Differential Equations
In this work, we used mainly three types of solving techniques. In this section,
we will discuss technical aspects which are unavoidable for reproducing results
in this work. However, a reader who is only interested in numerical results and
conclusions can skip the rest of this section.

The first class of the problem is to evaluate wave-function |ψ(t)⟩ on the interval
t ∈ (t0, t1) with the Schrödinger equation

d

dt
|ψ(t)⟩ = − i

ℏ
Ĥ |ψ(t)⟩ , (5.9)

this is, in fact, well-posted ODE problem. We selected julia as a language capa-
ble of both outstanding performance and strong community support. The pack-
age DifferentialEquations.jl [RN17] contains plenty of ODE solvers, we choose
Verner’s ”Most Efficient” 9/8 Runge-Kutta method [Nak58] with adaptive step-
size. The tolerances were set to rtol = 10−8 and atol = 10−8 for the basis size
under thousand elements. In the case of a bigger size of basis, we tighten the
tolerances so that the fluctuations of the total energy of the system are negli-
gible. In case that we have an initial condition in the form of mixed state we
can decompose it into the set of pure states to meet some precision criterion
W (0) = ∑︁

i |ψi(0)⟩⟨ψi(0)| and similarly, we solve |ψi(t)⟩ on defined timescale; in
some cases, this approach can be more effective overall. In case that we are work-
ing in the locally orthogonal basis, it is preferable to choose sparse matrices for
Hamiltonian representation.
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The second class of the problem is to find a density matrix of the system Ŵ (t)
on a well-defined interval using evolution operators

Ŵ (t) = U(t)Ŵ (0) = Û(t)Ŵ (0)Û †(t) = e− i
ℏ ĤtŴ (0)e i

ℏ Ĥt. (5.10)

The difficulty of this task lies in evaluating these exponentials. In most cases
there seem to be no shortcuts, but depending on the size of basis and sparsity of
Hamiltonian, the reader should also consider diagonalisation.

The last class of the problem is the most challenging; in this work, we are
dealing with ansatz and altered Quantum Master Equations. In general, we want
to solve following integrodifferential equation

∂

∂t
Ŵ (t) = K(t)Ŵ (t) +

∫︂ t

t0
dsM(t, s)Ŵ (s), (5.11)

here we usually evaluate K(t) and M(t, s) beforehand, we are limited to a rel-
atively small number of steps N ∈ (200, 1000) and we usually can not afford to
use Runge-Kutta of 4th order.

5.3 On the Difficulty of Numerical Simulations
The ultimate difficulty, which prevents us from simulating irreversible systems, is
the exponential growth of basis. In this section, we will demonstrate how quickly
is this problem becoming unsolvable. Before the main simulations were carried
out in this work, the author was focused on the efficient calculation of Franck-
Condon factors for a limited number of elements of vibrational basis. Calculation
of Franck-Condon factors is the most CPU-intensive task during the evaluation
of Hamiltonian elements.

In order to obtain any meaningful information from calculated wave-function
|ψ(t)⟩ we have to perform the trace over the bath degrees of freedom. Without
the use of the product of Franck-Condon factors, this operation quickly becomes
the most CPU-intensive task in the whole simulation. For the given simulation,
this product can be calculated beforehand and applied after the simulation. The
author applied this method in the Python package quantarhei freely available on
Github, which is still sufficient for the relatively modest size of basis. Due to
the sparsity of Franck-Condon factors, some optimisations can be done on the
numerical side of the problem, more on that in the appendices A.1, A.3 and A.4.

The last and the most concerning problem is the solution of ODE, which
represents the Schrödinger equation as mentioned in the previous section. We
use Verner’s ”Most Efficient” 9/8 Runge-Kutta method, which we consider as
the best option due to the high precision to CPU cost value for high-dimensional
systems. This method uses adaptive step-size, which we strongly recommend for
the reader interested in a similar type of simulation.

Several simulations were carried out with the dimer model and trimer model
at the same machine using processor Intel Core i5-9300H without a turbo boost
working at 2.4 GHz. Timescale was set to t ∈ (0, 100) (a.u.) with precision
rtol = 10−8 and atol = 10−8, also the total density matrix was traced at one
thousand different time values. In the graph 5.1 we can observe the cost of
the Hamiltonian evaluation, Franck-Condon product calculation and the cost of
dynamics together with a trace operation.
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Figure 5.1: For the total system basis Hamiltonian evaluation, Franck-Condon factors
product calculation and the overall dynamics were performed. The CPU time used to
perform each of these tasks is here shown as the function of the basis size.

5.4 Methods of Exact the Numerical Solution
To discuss numerical results obtained from QME using the ansatz 4.1 we have to
compare these results to the exact dynamics. Exact dynamics can be obtained
with evolution operators of the whole system Û(t) acting on the initial density
matrix Ŵ (t)

ρ(t) = trB

{︃
Û(t)W0Û

†(t)
}︃
. (5.12)

The other approach is based on using QME in the following form
∂

∂t
Ŵ (I)(t) =

= − i
ℏ
[︂
H

(I)
I (t), Ŵ (I)(t)

]︂
− 1

ℏ2

∫︂ t

t0
ds
[︂
Ĥ

(I)
I (t),

[︂
Ĥ

(I)
I (s), Ŵ (I)(s)

]︂]︂
ρ(t) = ÛS(t) trB

{︃
Ŵ (I)(t)

}︃
Û †

S(t).

(5.13)

There is great importance in comparing both recipes. Solving IDE is a delicate
task concerning the numerical stability of the solution. The ideal scenario would
be using adaptive step-size with delayed differential equation solvers and some
standard method, e.g. RK4. Evaluating memory kernel with respect to two
time variables t, s is a CPU-intensive task for a reasonable size of vibrational
basis, even using julia language and corresponding libraries. The amortised time
complexity of these calculations has a quadratic dependency on the number of
time steps O(N2

steps).
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5.5 The Limit Case of Weak Bath Interaction
To verify the usefulness of the ansatz, we have to inspect the case where the bath
interaction as a result vanishes. That means we have to inspect the response of
the simulated system to the Huang-Rhys parameter. This parameter is usually
set to the value S = 0.05 in our case. In this section, we will test the response for
these values S ∈ {0.05, 0.025, 0.0125, 0.00625, 0}. Numerical simulations for the
system with ansatz for the bath 4.1 were carried out and compared to the exact
dynamics using evolution operators 5.12 and Liouville von Neumann equation
2.16. For a model, we choose dimer with one LHO coupled with each molecule,
and the frequencies are set to ω1,2 = 100 cm−1. Energies of the molecules are
E1 = 12500 cm−1 and E2 = 12400 cm−1. The coupling in system Hamiltonian
is set to J = 100 cm−1. The initial condition was set as a pure state created by
laser excitation from the ground electronic and vibrational state in site basis.

Figure 5.2: Compared dynamics of the exact solution with evolution operators (green,
dashed), exact TNL QME (blue, dashdotted) and the ansatz for the bath using TNL
QME (red, full). The Huang-Rhys factor in the interaction Hamiltonian was set to
S = 0.05.
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Figure 5.3: The Huang-Rhys factor in the interaction Hamiltonian was set to S =
0.025.

Figure 5.4: The Huang-Rhys factor in the interaction Hamiltonian was set to S =
0.0125.
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Figure 5.5: The Huang-Rhys factor in the interaction Hamiltonian was set to S =
0.00625.

Figure 5.6: The Huang-Rhys factor in the interaction Hamiltonian was set to S = 0.
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One important observation can be made after looking at the graphs on 5.2 -
5.6, that positivity of the RDM obtained by dynamics involving ansatz is bro-
ken, if the simulation is sufficiently long enough. However, plausible results are
obtained in the case that the interaction with bath is sufficiently weak.

5.6 The Limit Case of Weak Electronic Cou-
pling

In this section, we will study closely on the dynamics with use of the ansatz
for the bath 4.1 with vanishing coupling J in Hamiltonian of the system 3.5.
Coupling was set to the values J ∈ {150, 50, 12, 6} cm−1. Numerical simulations
for the system with ansatz for the bath 4.1 were carried out and compared to
the exact dynamics using evolution operators 5.12 and Liouville von Neumann
equation 2.16. For a model, we select a dimer model with one LHO coupled to
each molecule, and the frequencies are set to ω1,2 = 100 cm−1. Energies of the
molecules are E1 = 12500 cm−1 and E2 = 12400 cm−1. The Huang-Rhys factor is
set to S1,2 = 0.05. The initial condition was set as a pure state created by laser
excitation from the ground electronic and vibrational state in site basis.

Figure 5.7: Compared dynamics of the exact solution with evolution operators (green,
dashed), exact TNL QME (blue, dashdotted) and the ansatz for the bath using TNL
QME (red, full). Coupling in the system Hamiltonian was set to J = 25 cm−1.
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Figure 5.8: Coupling in the system Hamiltonian was set to J = 12 cm−1.

Figure 5.9: Coupling in the system Hamiltonian was set to J = 6 cm−1.

Looking at 5.7 - 5.9, we can conclude that the dynamics from ansatz resembles
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the actual dynamics gradually better with the slower electronic transfer. That
can be seen on the time-dependent population ρnn in excitonic basis.

5.7 Finite Step-Size in Solving Time-Nonlocal
Quantum Master Equation

When solving TNL QME it is crucial to find the suitable size of the step. Despite
the fact, that it is possible to the use adaptive step-size in solving IDE, due to the
relatively small number of steps needed to evaluate such dynamics, we will only
use constant step-size. In this section, we will show that Nsteps = 300 is sufficient
and the results are unaffected by the resolution of the solution. The dimer has one
LHO coupled to each molecule, and the frequencies are set to ω1,2 = 100 cm−1.
Energies of the molecules are E1 = 12500 cm−1 and E2 = 12400 cm−1. The
Huang-Rhys factor is set to S1,2 = 0.05 and coupling to J = 100 cm−1.

Figure 5.10: Compared dynamics of the exact solution with evolution operators
(green, dashed), exact TNL QME (blue, dashdotted) and the ansatz for the bath using
TNL QME (red, full). The length of the simulation was set to t1 = 2.65 ps and the
number of steps in solving QME is Nsteps = 300.

34



Figure 5.11: The length of the simulation was set to t1 = 2.65 ps and the number of
steps in solving QME is Nsteps = 500.

Changing the number of steps from Nsteps = 300 to Nsteps = 500 does not
change the character of the QME solution at the graph 5.10 5.11. That justifies
the size of step we used for the rest of the TNL QME simulations.

5.8 Slow Dynamics in Exciton Basis
Let us begin with thermalised density matrix Weq at temperature for example
T = 50 K. Suppose we would be in a position to excite our dimer in exciton
basis, and we would assume that the coupling of system and bath is weak. That
would certainly lead to very slow and uninteresting dynamics in exciton basis.
However, we can test how well will the ansatz of bath in QME be in a position
to resemble the original dynamics through the site basis. We will again use the
model of the dimer as in previous sections. The frequencies of bath LHOs are
set to ω1,2 = 100 cm−1 and the coupling is set to J = 100 cm−1. Energies of the
molecules are E1 = 12500 cm−1 and E2 = 12400 cm−1. The Huang-Rhys factor is
set to S1,2 = 0.00625.
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Figure 5.12: Compared dynamics of the exact solution with evolution operators
(green, dashed), exact TNL QME (blue, dashdotted) and the ansatz for the bath using
TNL QME (red, full). In the beginning, mostly one exciton state is populated due to
the strong laser excitation. The coupling with the bath is weak, so the exciton transfer
is correspondingly slow.

At figure 5.12 we can see that the TNL QME with ansatz reflect the exact
dynamics only for a brief amount of time. In the exciton basis, there seem to be
oscillations with a constant amplitude.

5.9 Trimer Model
The certain point of interest to is inspect how well will QME with ansatz reflect
the exact dynamics with growing number of the bath DOF. With growing number
of DOF, the total basis grows exponentially. However, in QME with relatively
narrow basis it is convenient to work with full density matrix rather than with
decomposition of density matrix into a set of pure states with weights. On top
of that we have to solve convolution in QME so the number of steps to evaluate
grows quadratically. To put it into perspective, it takes to run trimer model
QME with Nsteps = 300 for 53.7 hours realtime. The implemented code has
been already optimised using vectorization and OpenBLAST package on Intel(R)
Core(TM) i7-6700 CPU @ 3.40GHz single threaded. The excited energies of
trimer molecules were set to E1 = 12400 cm−1, E2 = 12300 cm−1 and E3 =
12200 cm−1. The frequency of LHOs in bath were set to ω1 = 90 cm−1, ω2 =
100 cm−1 and ω3 = 110 cm−1. The coupling between molecules was set to J12 =
J23 = 100 cm−1 and the Huang-Rhys factor was set to S1,2,3 = 0.05.
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Figure 5.13: Compared dynamics of the exact solution with evolution operators
(green, dashed), Liouville von Neumann equation (blue, dotted) and the ansatz for
the bath using TNL QME (red, full). The whole system was thermalised and initially
excited in excitonic basis.

5.10 Comparison of Exacat Memory Kernel
with Approximative Memory Kernel

We strive to analyse the elements of the exact memory kernel and the memory
kernel induced by the ansatz for the bath (ansatz memory kernel). For given time
variables t and s there are 81 different elements Mabcd(t, s) for the dimer model.
Instead of comparing single elements of the exact and ansatz memory kernel, we
will inspect whether the same elements are nonzero in both kernels. Memory
kernels were calculated before solving of ansatz TNL QME took place.

Starting with a mixed state used in simulation in figure 5.12 the initial RDM
matrix does not have any zero elements. We compared both kernels on the whole
timescale od simulation, and we have found out that all elements in both kernels
are nonzero. In the pure state as an example in the simulation on the figure on
5.5 we have found out that nonzero elements of ansatz Mabcd(t, s) are only that
for which elements of RDM ρab(0) or ρcd(0) are nonzero. Also, we observed that
the elements Mabcd(t, s) for which ρab(0) are nonzero were a few orders lower
than the rest of nonzero elements. In the exact memory kernel were all elements
nonzero.
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6. Conclusion
In this thesis, we focused on the derivation and validation of a more precise de-
scription for finite systems than what current approximate methods provide. We
hope that this pioneering work will help in consequent improvements of equations
of motion for finite systems, which could lead to a better description of systems
with infinite baths. The most popular theories for the system with infinite baths
have only a limited ability to correctly describe the relaxation, energy transfer
and decoherence induced by coupling of the molecular aggregate to the phonon
bath on the sub-picosecond time-scales, which are probed by non-linear spectro-
scopic experiments. This presumably is a very challenging task, and there is still
a place for more research in this area.

In the first part of this thesis, we derived a new equation of motion for the
open quantum system which describes the electron-phonon interaction. An ansatz
for the time evolution of a bath is chosen and incorporated in Quantum Master
Equation to derive a set of integrodifferential equations. The ansatz essentially
tells us that the bath part of the density matrix with respect to the site basis
remains constant. This separation differs from one created using projection su-
peroperators. For any further practical usage of these equations, it is necessary
to transform the kernel into a more computationally favourable form. That was
done in two distinct ways, and we obtained the so-called Memory kernel of the
first kind and Memory kernel of the second kind. The first kernel is suited for
small systems where the basis size is sufficiently small due to the slow tracing of
bath degrees of freedom. The second kernel is slower to evaluate for the system
size of our interest, however, memory kernel can be further used to derive Red-
field tensor.

With the derived theory incorporating ansatz for the bath into TNL QME,
we implement methods to solve IDE in Julia language. We successfully showed
that the ansatz gives for few pico-seconds realistic results even for small systems
such as dimer and trimer. The success with mixed states was made only to some
extent. The next logical step would be to derive the method for improvement of
the memory kernel containing ansatz for the bath without any prior knowledge
of the exact solution. This could show us how to iteratively improve the memory
kernel only with the knowledge of RDM from the previous step of the iteration.
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A. Appendices

A.1 Efficient Multiplication of Sparse Matrices
Evaluation of the trace over bath DOF takes into account integrals of the form
⟨a, ν|µ, b⟩ or with compact indices ⟨a|b⟩. These integrals are equal to Franck-
Condon factors wνµ

ab or using compact indices wab. Most of the Franck-Condon
factors will be inevitably equal to zero as we are working in a locally orthogonal
basis. Perhaps there is a better way to store all these factors when it comes to
evaluating trace over bath DOF. That being said, we choose a sparse matrix F
as a data structure for their storage. We will restrict ourselves to a finite number
of states N for the whole system. One property of such matrices is that it is
symmetric. We can trivially rewrite 1D FC factor into the integral form

⟨n|m⟩ =NnNm

∫︂ ∞

−∞
Hn(√α1x1)Hm (√α2x2)

× exp
[︃
−1

2
(︂
α1x

2
1 − α2x

2
2

)︂]︃
dx,

(A.1)

where Hn(x) are Hermite’s polynomials, Nn is normalisation factor defined in the
following way

Ns =
(︄ √

α

2nn!
√
π

)︄ 1
2

. (A.2)

Parameter α is a function of the frequency of each LHO

α = ω

ℏ
. (A.3)

Finally, we can recognise that FC factors of our interest consist of many separated
1D FC factors, the symmetry is apparent. For a trace evaluation concerning two
chosen states, one has to evaluate the following

ρnm(t) =
∑︂

k

ρnm ⟨k|n⟩ ⟨m|k⟩

=
∑︂

k

ρnmFknFmk

=
∑︂

k

ρnmPnm,

(A.4)

where P is a sparse matrix, the so-called FC Product matrix of size N ×N and
due to the symmetry of F we can evaluate the matrix P simply as

P = F 2. (A.5)

The rest of this section is devoted to sparse matrix multiplication. Our cho-
sen type for sparse matrix representation is a Compressed sparse column format
(CSC). The reason behind this choice stems in the mean access time, here we
assume that the data are roughly equally distributed among rows. In the end,
we introduce an algorithm for sparse matrix multiplication of the CSC format
[Gus78], see Algorithm 1.
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Algorithm 1 Multiplication of CSC type sparse matrices
function matmul(A::SparseMatrixCSC, B::SparseMatrixCSC)

(mA, nA) ← size(A)
(mB, nB) ← size(B)
IA ← A.colptr; JA ← A.rowval; A← A.nzval; NA ← length(A)
IB ← B.colptr; JB ← B.rowval; B ← B.nzval; NB ← length(B)
NC ← NA +NB

IC ← Array(Int64, nB+1)
JC ← Array(Int64, NC)
C ← Array(ComplexF64, NC)
ip ← 1
xb ← zeros(Int64, mA)
x← zeros(ComplexF64, mA)
for i = 1 to nB do

IC [i] ← ip
for jp = IA[i] to IA[i+ 1]− 1 do

j ← JA[jp]
Aval ← A[jp]
for kp = IA[i] to IB[i+ 1]− 1 do

k ← JB[kp]
Bval ← B[kp]
if (xb[k] ̸= i) then

JC [ip]← k
ip ← ip + 1
xb[k]← i
x[k]← AvalBval

else
x[k]← x[k] + AvalBval

end if
end for

end for
for vp = IC [i] to ip − 1 do

C[vp]← x[JC [vp]]
end for

end for
end function
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A.2 Mixed State Decomposition
When it comes to the mixed state represented by matrix density ρ, there are
essentially two ways of dealing with consequent dynamics. Suppose we have a
fixed orthonormal basis {ξi}N

i=1 in which we represent state |ψ⟩. One can pre-
sumably execute a simulation of dynamics with full Liouville equation 2.16 using
given initial density matrix. Alternatively, one can decompose an initial density
matrix into a convex set of pure states [Bre02] and then execute a simulation with
the Schrödinger equation on every pure state separately. Such decomposition of
mixed state appears as follows

ρ =
k∑︂

i=1
pi |ϕi⟩⟨ϕi| , (A.6)

where p⃗ = (p1, p2, . . . , pk) is a probability vector and it is convenient to work with
non-normalised states |ϕi⟩. However, with great power comes great responsibility
and the reader should keep in mind that such decomposition does not have to
be unique in general [HJW93, Nie10]. In contrast to the classical case, there
exist infinitely many decompositions of any mixed state ρ ̸= ρ2. The number k
can be arbitrarily large, and one can choose his own pure states |ϕi⟩. However,
there exists one distinguished decomposition. By diagonalisation of the density
matrix, we find its eigenvalues λi ≥ 0 and eigenvectors |ψi⟩. Now we can write
eigendecomposition of mixed state

ρ =
n∑︂

j=1
λj |ψj⟩⟨ψj| . (A.7)

The number of such eigenvectors n is the so-called rank of the state rho. This
is the usual definition of the rank of the matrix, and by accident, it agrees with
the definition of rank in convex set theory: the rank of a point in a convex set is
the smallest number of pure points needed to form the given point as a mixture
[BWZ13].

The difficulty of mixed state diagonalisation depends on two main factors.
That is the size N and sparsity of the matrix in which the mixed state is repre-
sented. With minor N or sufficient sparsity, the diagonalisation of matrices can
be exact. At present, there seem to be many algorithms which solve this task
well, e.g. Jacobi Algorithm with O(N3). However, we aim to decompose mixed
states with even greater basis with one advantage, obtained decomposition does
not have to be exact. Our criterion for terminating such decomposition is with
given error ϵerr > 0 as follows⃦⃦⃦⃦

⃦ρ−
r∑︂

i=1
pi |ψi⟩⟨ψi|

⃦⃦⃦⃦
⃦

F

≤ ϵerr, (A.8)

where ∥ · ∥F is a Frobenius norm, the number of sufficient pure states can be less
than or equal to the number of states in exact decomposition r ≤ n and |ψi⟩ is
orthonormal state in chosen basis. Frobenius norm is defined for A ∈ CN×N as

∥A∥F =
⎛⎝ N∑︂

i=1

N∑︂
j=1
|aij|2

⎞⎠ 1
2

. (A.9)
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This problem can be split into consecutive steps, where we find one non-
normalised state |ϕi⟩ such that we minimise |ρk−1 − pk |ψk⟩⟨ψk||F where ρk =∑︁k

i=1 pi |ψi⟩⟨ψi|. We chose Frobenius norm for the obvious convexity of | · |2F ,
because convexity is property which is sufficient for systematic treatment of such
optimisation task. Our problem for k-th step of decomposition can be formulated
as follows

min
pk, c

∥ρk−1 − pkc⊗ c∥F

s.t.
N∑︂
i

|ci|2 = 1,

ck ∈ CN , pk > 0,

(A.10)

where |psik⟩ = ∑︁N
i=1 cki |xii⟩ and ck is k-th tensor of rank one ck = (ck1, . . . , ckN)

which represents the amplitudes of state vector elements. Nonlinear optimisation
tasks of similar character can be solved with Simplex [Tar05] with Levenberg-
Marquardt algorithm or for more robust approach with algorithms of full Newton-
type [Pre92]. With even larger size of basis we would advise the reader to use
The bootstrap method which belongs into the family of Monte Carlo methods.

A.3 Non-Zero Franck-Condon Factors
Before performing any simulations, it is crucial to obtain a Hamiltonian H of the
whole system with respect to a chosen basis |n⟩. Most of this work assumes the
basis of size 103-106. Moreover, these calculations include knowledge of Franck-
Condon factors. In this section, we will reveal a more sophisticated way how to
obtain all Hamiltonian elements than by doing a naive evaluation of all elements.
The elementHnm will be nonzero if and only if corresponding Franc-Condon factor
⟨n|m⟩ is nonzero. From the nature of the models we are working with, most of
the Franck-Condon factors will be zero. Undoubtedly, evaluations of Hnm also
include different calculations, but we stress the importance of evaluation only
nonzero factors.

The system state |n⟩ consists of electron signature and vibrational signature
and has a well-defined structure as we discussed previously in 2.3

|n⟩ = |a⟩ |ξn⟩ = |ξµ1
g1 ⟩|ξ

µ2
g2 ⟩ . . . |ξ

µp
gp
⟩, (A.11)

here we assume that there are p molecules in the whole system.
The critical step of this section rests in the factorisation of Franck-Condon

factors. We will demonstrate it on an example, in each state the excited molecule
differs from one another

⟨n|m⟩ = ⟨ek|⟨ξn|ξm⟩|el⟩
= ⟨ξµ1

g1 | . . . ⟨ξ
µk
ek
| . . . ⟨ξµp

gp
|ξν1

g1 ⟩ . . . |ξ
νl
el
⟩ . . . |ξνp

gp
⟩

= ⟨ξµl
ek
|ξνl

gk
⟩⟨ξµl

gl
|ξνl

el
⟩
∏︂
i=1

i ̸=k,l

⟨ξµi
gi
|ξνi

gi
⟩

= ⟨µk|D̂(αk)|νk⟩ ⟨µl|D̂(−αl)|νl⟩
∏︂
i=1

i ̸=k,l

⟨µi|D̂(0)|νi⟩ .

(A.12)
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Here we used the notation for Franck-Condon factors from the section 2.5. For
the ease of notation, we will use the following compact form of 1D Franck-Condon
factors

Fα
ij ≡ ⟨i|D̂(α)|j⟩ . (A.13)

More importantly, most of the factors Fαi
µiνi

in the last product of equation A.12
will be zero, more precisely F 0

muinui
̸= 0 if and only if i = j. Perhaps the better

way of evaluating these factors a priori is to save nonzero Fαi
muinui

and then as a
result iterate only over the nonzero factors in creating multidimensional Franck-
Condon factor ⟨n|m⟩, see Algorithm 2.

A.4 Efficient Calculation of Multidimensional
Franck-Condon Factors

Evaluating 1D Franck-Condon factors can be done in many different ways. One
dimensional LHO wave-functions can be described as

|n⟩ = NnHn(
√
αx) exp

(︃
−1

2αx
2
)︃
, Nn =

(︄ √
α

2nn!
√
π

)︄ 1
2

, (A.14)

where Nn is normalization factor, Hn(x) is Hermite’s polynomial and α is reduced
frequency

α = ω

ℏ
. (A.15)

As the reader is probably expecting, the Franck-Condon factor can be rewritten
to the following integral

⟨n|m⟩ = NnNm

∫︂ ∞

−∞
Hn(√α1x1)Hm (√α2x2) exp

[︃
−1

2
(︂
α1x

2
1 + α2x

2
2

)︂]︃
dx, (A.16)

where x1 = x and x2 = x + d. Without any doubt, this integral is not the end
point, in work [Cha08] Chang successfully has rewritten this integral into partial
sums of Hermite’s polynomials as follows. Now we choose substitutions

K = exp
(︂
− α1α2d2

2(α1+α2)

)︂
y = x+ α2d

α1+α2

β1 = −
√

α1α2d

α1+α2
β2 = −α1

√
α2,d

α1+α2

(A.17)

and due to the property of Hermite’s polynomials

Hn(x+ y) =
n∑︂

k=0

(︄
n

k

)︄
Hk(x)(2y)(n−k) (A.18)

we can rewrite A.16 using substitutions into the following form

⟨n|m⟩ = NnNmK
∫︂ ∞

−∞
Hn(√α1y + β1)Hm (√α2y + β2)

× exp
(︃
−1

2(α1 + α2)y2
)︃

dy,
(A.19)
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Algorithm 2 Evaluation of multidimensional
Franck-Condon factors

calculate Franck-Condon factors Fαi
µiνi

and F−αi
µiνi

and save all (µ, ν) for Fα
µν ̸= 0 into Mα

function core(i, nState, mState, fc)
(eni, emi)← (0, 0)
if nState.excited == i then eni = 1 end if
if mState.excited == i then emi = 1 end if
α = αi(eni − emi)
for (µi, νi) in Mα do

(nCopy, mCopy) ← (nState, mState)
insert eni into nCopy.elState and emi into mCopy.elState
insert µi into nCopy.vibState and νi into mCopy.vibState
fcNew ← fc*Fα

µiνi

if i == p then
yield (nCopy, mCopy, fcNew)

else
yield FORK(i+1, nCopy, mCopy, fcNew)

end if
end for

end function
function fork(i, nState, mState)

yield CORE(i, nState, mState, fc)
if nState.excited == 0 then

nCopy ← nState
nCopy.excited = i
yield CORE(i, nCopy, mState, fc)

end if
if mState.excited == 0 then

mCopy ← mState
mCopy.excited = i
yield CORE(i, nState, mCopy, fc)

end if
if nState.excited == 0 and mState.excited == 0 then

(nCopy, mCopy) ← (nState, mState)
nCopy.excited = i; mCopy.excited = i
yield CORE(i, nCopy, mCopy, fc)

end if
end function
initialise empty nState and mState
save all FC factors with FORK(1, nState, mState, 1)
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using the property in A.18 we obtain

⟨n|m⟩ = NvNmK
n∑︂

k=0

m∑︂
l=0

(︄
n

k

)︄(︄
m

l

)︄
Hn−k(β1)Hm−l (β2)

× (2√α1)k (2√α2)l
∫︂ ∞

−∞
yk+l exp

(︃
−1

2(α1 + α2)y2
)︃

dy.
(A.20)

The last integral in this equation A.20 is Gaussian integral and it is nonzero when
k + l is even∫︂ ∞

−∞
x2ne−ax2

dx = (2n− 1)!!
(2a)n

√︃
π

a
(A.21)

after some rearrangement, we will be left with the final formula

⟨n|m⟩ = K

(︄√
α1 + α2

α1 + α2

2
2n+mn!m!

)︄1/2 n∑︂
k=0

m∑︂
l=0

(︄
n

k

)︄(︄
m

l

)︄
Hv−k(β1)Hm−l (β2)

× (2√α1)k(2√α2)lC(k + l),
(A.22)

where multiplication constant C(k + l) is defined as

C(n) =

⎧⎨⎩
(n−1)!!

(α1+α2)n/2 n = 1, n is even
0 otherwise.

(A.23)

We recognise this as an opportunity in case higher orders of Franck-Condons
factors have to be evaluated; however, in our case we are working with a limited
amount of LHO eigenstates, that is N ≤ 12. It is convenient to use the formula

⟨i|D̂(d)|j⟩ = ⟨i|exp
[︄
− d√

2
(︂
â− â†

)︂]︄
|j⟩ , (A.24)

here the shift is denoted with the variable d. Inside A.24 we are calculating
exponential of matrix, sufficiently large size of the basis N has to be chosen for
the convergence of ⟨i|D̂d|j⟩ in a smaller basis of size n. For numerical approval
of this method we select Frobenius norm, so that the change in k-th step of
convergence is defined as

δk =
⎛⎝ n∑︂

i=1

n∑︂
j=1

⃓⃓⃓
F k

ij − F k−1
ij

⃓⃓⃓2⎞⎠1/2

, (A.25)

where F k
ij is Franck-Condon factor evaluated with k elements of basis.
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Figure A.1: Convergence of Franck-Condon factors calculated using an exponential
of shift operators. On each figure we can observe the absolute change of relevant
Franck-Condon factors with Frobenius norm.
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