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On a matrix approach for constructing
quadratic almost perfect nonlinear

functions

Department of Algebra

Supervisor of the bachelor thesis: Dr. rer. nat. Faruk Göloğlu
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Introduction
Boolean functions F2n → F2m used in cryptography are needed to be resistant to
the differential attack. When m = n, the most resistant functions are so called
almost perfect nonlinear (APN) functions (see [1]). Therefore, finding new APN
functions is an important topic in cryptography.

In [2] a matrix approach for finding new APN functions was introduced by
Y. Yu, M. Wang and Y. Li. The method focuses on finding new quadratic APN
functions on F2n . It led to finding more than 471 new APN functions on F27 and
more than 2252 new APN functions on F28 (see [2, p. 588]). The aim of Chapters
3 and 4 of this thesis is to show that similar results (as in [2]) could be obtained
from the ANF representation of a Boolean function.

In Chapter 1 we explain the basics of Boolean functions. We also give the
definition of APN functions and show some of their properties. Chapter 2 deals
with the matrix approach from [2]. We expand the original work and add our
own proofs when needed. The results lead to an algorithm the explanation of
which we have omitted, because it was out of scope of the thesis. The algorithm
can be found in [2, p. 597-599]. In Chapter 3 we prove that a similar matrix (as
in [2]) can be constructed from the ANF of a Boolean function. For Chapter 4
we choose APN functions

x ↦→ x3 and x ↦→ x3 + Tr(x9)

on F25 and compute the coresponding matrices from their finite field and ANF
representation.
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1. Preliminaries

1.1 Used notation
The following notation will be used throughout the thesis.

• Let n, m, k ∈ N.

• The finite field with two elements will be denoted by F2.

• We denote the finite field with 2n elements by F2n .
The multiplicative group of F2n will be denoted by F∗

2n .

• v⃗ denotes a column vector from Fm
2n (or v ∈ Fm

2 depending on the context).
vi denotes the i-th coordinate of v⃗.

• A zero vector will be denoted by 0⃗.

• ei⃗ denotes the i-th vector of the standard basis for Rn (see [3, p. 365]).

• Let A be a matrix. The i-th row of A will be denoted by Ai,∗. The j-th
column of A will be denoted by A∗,j. The element in the i-th row, j-th
column of this matrix will be denoted by Ai,j.

• In denotes an n × n identity matrix.

• P(N) stands for the power set of N = {1, . . . , n}.

• Let S be a set. |S| denotes the cardinality of S.

• The polynomial ring in variable x over F2n is denoted by F2n [x].

• A quadratic function (see Definition (7)) without linear and constant term
is said to be quadratic homogenous.

• Let L : V → W be a linear map between vector spaces, then

Ker(L) = {v⃗ ∈ V | L(v⃗) = 0⃗},

Im(L) = {L(v⃗) ∈ W | v⃗ ∈ V }.

1.2 Boolean functions
Definition 1. [4, p. 6] A function f : Fn

2 → F2 is called a Boolean function.

Definition 2. [1, p. 4] A function F such that

F : Fn
2 → Fm

2

F (x⃗) ↦→ (f1(x⃗), . . . , fm(x⃗))⊤

is called a vectorial Boolean function (for brevity further denoted by (n, m)-
function).
Binary Boolean functions f1, . . . , fm are said to be coordinate functions of F.
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For every Boolean function there exists a finite field representation and a
unique algebraic normal form (ANF) representation. Both of these representa-
tions can be used to examine Boolean functions. We will give the definitions and
properties of both in the next sections.

1.3 ANF representation
Definition 3. [4, p. 9] Suppose f : Fn

2 → F2 is a binary Boolean function. We
define the algebraic normal form (ANF) of f (denoted as ˜︁f) as an element of

F2[x1, . . . , xn]⧸(x1 + x2
1, . . . , xn + x2

n)

such that ˜︁f(x⃗) = f(x⃗) ∀x⃗ ∈ Fn
2 .

Remark. [4, p. 9] For aI ∈ F2 the ANF of f can be written as

˜︁f(x⃗) =
∑︂

I∈P(N)
aI

(︄∏︂
i∈I

xi

)︄
=

∑︂
I∈P(N)

aI x⃗I .

In other words, ˜︁f is a multivariate polynomial in F2[x1, . . . , xn] such that every
variable appears in it with exponent at most 1.

Theorem 1. [4, p. 10] For every binary Boolean function f there exists a unique
ANF representation of f .

Definition 4. [4, p. 12] The algebraic degree of a binary Boolean function f is
defined as d◦f = max{|I| | aI ̸= 0}.

We can extend the definition of ANF to the vectorial Boolean functions as
follows.

Definition 5. [1, p. 9] Let F be an (n, m)-function. The ANF of F (denoted as˜︁F ) is defined as an element of

Fm
2 [x1, . . . , xn]⧸(x1 + x2

1, . . . , xn + x2
n)

such that ˜︁F (x⃗) = F (x⃗) ∀x⃗ ∈ Fn
2 .

Remark. [1, p. 9] For aI⃗ ∈ Fm
2 the ANF of a vectorial Boolean function can be

written as ˜︁F (x⃗) =
∑︂

I∈P(N)
aI⃗

(︄∏︂
i∈I

xi

)︄
=

∑︂
I∈P(N)

aI⃗ x⃗I .

In other words, ˜︁F is a multivariate polynomial in Fm
2 [x1, . . . , xn] such that every

variable appears in it with exponent at most 1. The ˜︁F can be obtained from the
ANFs of the coordinate functions of F . Since the ˜︁fi exists and is unique for every
fi, i ∈ {0, . . . , m}, F is also uniquely represented by ˜︁F (see [1, p. 9]).

Definition 6. [1, p. 9] The algebraic degree of a vectorial Boolean function f is
defined as d◦F = max{|I| | aI ̸= 0⃗}.
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Definition 7. An (n, m)-function F satisfying d◦F = 1 is called linear.
An (n, m)-function F having d◦F = 2 is called quadratic.

Remark. A quadratic homogenous (n, n)-function (in terms of the ANF represen-
tation) can be represented as:

˜︁F (x⃗) =
∑︂

I∈P(N)
|I|=2

aI⃗ x⃗I .

1.4 Finite field representation
Lemma 2. [5, p. 31] The finite field F2n is a vector space of dimension n over
its subfield F2.

The lemma leads us to representing the elements of F2n with respect to a basis
of F2n over F2.

Definition 8. Let x ∈ F2n and B = (α1, . . . , αn) be a basis of F2n over F2. Then
the vector λ⃗ = (λ1, . . . , λn) ∈ Fn

2 such that

x =
n∑︂

i=1
λi · αi

is said to be the coordinate vector of x with respect to B and denoted by [x]B.

Theorem 3. [1, p. 10] Any (n, n)-function F admits a unique univariate poly-
nomial representation over F2n, of degree at most 2n − 1:

F (x) =
2n−1∑︂
i=0

cjx
j, cj ∈ F2n .

A useful property of the finite field F2n follows.

Lemma 4. [5, p. 16] Assume a, b ∈ F2n , i ∈ N. Then (a + b)2i = (a2i + b2i).

In this thesis we will work with quadratic homogenous (n, n)-functions, there-
fore we need to understand how to determine quadratic functions from their finite
field representation.

Definition 9. The Hamming weight of j ∈ N0, denoted by wH(j), is defined as
the number of nonzero coordinates of the binary expansion of j.

Theorem 5. [1, p. 11] Assume F is an (n, n)-function defined by

F (x) =
2n−1∑︂
j=0

cjx
j, cj ∈ F2n .

Then max0≤j≤2n−1{wH(j) | cj ̸= 0} = d◦F .

Corollary 6. If max0≤j≤2n−1{wH(j) | cj ̸= 0} equals

• 1, then F is linear,
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• 2, then F is quadratic.

Remark. Note that F being quadratic homogenous in terms of the ANF represen-
tation does not imply F being quadratic homogenous in terms of the finite field
representation. We will later show that APNness is affinely invariant, therefore
in both representation we can focus on quadratic homogenous functions only.
Remark. Every quadratic homogenous (n, n)-function F (in terms of the finite
field representation) can be represented as

n∑︂
1≤t<i≤n

ci,tx
2i−1+2t−1

.

1.5 APN functions and their properties
All of the following definitions can be similarly formulated for the finite field
representation just by changing Fn

2 to F2n .

Definition 10. Let F be an (n, n)-function. We define

AF
b,a = {x ∈ Fn

2 | F (x) + F (x + a) = b}.

Definition 11. [1, p. 26] F : Fn
2 → Fn

2 is said to be almost perfect nonlinear
(APN) if

∀a ∈ Fn
2 \ {0⃗}, ∀b ∈ F2n : |AF

b,a| ≤ 2.

Remark. Note that due to the characteristics of 2 if F (x) + F (x + a) + b = 0 for
x = x̃ ∈ F2n then it also holds for x = x̃ + a. Therefore,

|{x ∈ F2n | F (x) + F (x + a) + b = 0}|

is always even.

Lemma 7. Let L be an affine (n, n)-function. Suppose F, G are (n, n)-functions
such that F is quadratic homogenous, G is quadratic such that

∀x ∈ Fn
2 : G(x) = F (x) + L(x).

Then F is APN if and only if G is APN.

Proof.
It is easily seen that AG

b,a = AF
L(a)+b,a:

G(x) + G(x + a) + b = F (x) + L(x) + F (x + a) + L(x + a) + b

= F (x) + L(x) + F (x + a) + L(x) + L(a) + b

= F (x) + F (x + a) + L(a) + b.

Therefore,(︂
∀a, b ∈ Fn

2 , a ̸= 0⃗ : |AG
b,a| ≤ 2

)︂
⇐⇒

(︂
∀a, c ∈ Fn

2 , a ̸= 0⃗ : |AF
c,a| ≤ 2

)︂
.

Remark. Lemma (7) shows that when studying quadratic APN functions we can
focus on quadratic homogenous (n, n)-functions only.
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1.6 Equivalence respecting APNness
There are two notions of equivalence respecting the APNness of a function. The
CCZ-equivalence is stronger then the EA-equivalence, but in terms of quadratic
functions they are the same.

Definition 12. [2, p. 588] Two (n, n)-functions F1, F2 are called

• Extended affine equivalent (EA-equivalent) if there exist A1, A2 affine per-
mutations on F2n and A3 an affine function on F2n such that

F2(x) = A1(F1(A2(x))) + A3(x),

• Carlet-Charpin-Zinoniev equivalent (CCZ-equivalent) if there exists an
affine permutation which maps the graph GF1 onto the graph GF2 , where

GFi
= {(x, Fi(x)) | x ∈ F2n}, for i ∈ {1, 2}.

Remark. CCZ-equivalence is a generalization of EA-equivalence.

Theorem 8. [1, p. 42] If two (n, n)-functions F, G are CCZ-equivalent, then F
is APN if and only if G is APN.

Theorem 9. [2, p. 588] Let F, G be quadratic (n, n)-functions. Then F, G are
CCZ-equivalent if and only if they are EA-equivalent.

Remark. Finding a new (not CCZ-equivalent to a known one) quadratic APN
function is simplified to finding an APN function that is EA-inequivalent to any
known quadratic APN function.
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2. Finite field approach
In this chapter we will explain the basics of the method introduced in [2]. We
will follow the structure of the original paper and add theorems and lemmas for
easier understanding. We will also slightly change the notation. From now on let

F (x) =
n∑︂

1≤t<i≤n

ci,tx
2i−1+2t−1

be a finite field representation of a quadratic homogenous (n, n)-function.

2.1 Matrix representation of F

In this section we will explain how to construct the corresponding matrix for given
function F . Most of this section can be found in [2, p. 589-591]. In comparison
with the original paper, we will divide the content into separate statements and
add proofs when needed. We will also add Lemma (13) that will be later useful
in Chapter (4).

Definition 13. [2, p. 589] Let us denote by EF = (ei,t)n×n ∈ Fn×n
2n the coefficient

matrix of F obtained as follows:

ei,t =
{︄

ci,t if 1 ≤ t < i ≤ n,
0 otherwise.

Remark. Note that because of F being quadratic homogenous, EF becomes lower
triangular with zeros in the main diagonal. If it were not quadratic homogenous,
the coefficients of the linear terms would be in the main diagonal.

Definition 14. For x ∈ F2n we define x = (x20
, x21

, . . . , x2n−1)⊤.

Lemma 10. [2, p. 590] Let x ∈ F2n. Then F (x) = x⊤EF x.

Proof.
We have

x⊤EF x = (x20
, x21

, . . . , x2n−1)

⎛⎜⎜⎜⎜⎝
0 0 . . . 0

e2,1 0 . . . 0
... ... . . . ...

en,1 en,2 . . . 0

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎝

x20

x21

...
x2n−1

⎞⎟⎟⎟⎟⎟⎠
=

∑︂
1≤i<t≤n

ei,tx
2i−1+2t−1

=
∑︂

1≤i<t≤n

ci,tx
2i−1+2t−1

= F (x).

8



Definition 15. [2, p. 589] Let B = (α1, . . . , αn) ∈ Fn
2n be a basis of F2n over F2.

We define

MB =

⎛⎜⎜⎜⎜⎝
α1 α2 . . . αn

α2
1 α2

2 . . . α2
n

... ... . . . ...
α2n−1

1 α2n−1
2 . . . α2n−1

n

⎞⎟⎟⎟⎟⎠ .

Lemma 11. Let B = (α1, . . . , αn) be a basis of F2n over F2. Then x = MB · [x]B.

Proof.
Let us denote [x]B = (λ1, . . . , λn) ∈ Fn

2 . Because of the finite characteristic of
F2n , we obtain:

x2k = (
n∑︂

i=1
λiαi)2k =

n∑︂
i=1

(λiαi)2k =
n∑︂

i=1
λ2k

i α2k

i =
n∑︂

i=1
λiα

2k

i .

And therefore

x =

⎛⎜⎜⎜⎜⎜⎝
x20

x21

...
x2n−1

⎞⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎝
∑︁n

i=1 λiαi∑︁n
i=1 λiα

2
i

...∑︁n
i=1 λiα

2n−1
i

⎞⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎝
α1 α2 . . . αn

α2
1 α2

2 . . . α2
n

... ... . . . ...
α2n−1

1 α2n−1
2 . . . α2n−1

n

⎞⎟⎟⎟⎟⎠ [x]B.

Corollary 12. [2, p. 590] By combining the results we obtain ∀x ∈ F2n:

F (x) = [x]⊤BM⊤
B EF MB[x]B.

Definition 16. [1, p. 17] The derivative of F at a ∈ F2n is defined as

DaF : F2n → F2n ,

DaF (x) = F (x) + F (x + a).

Definition 17. [2, p. 590] Let B be a basis of F2n over F2. We will denote the
matrix EF + E⊤

F by CF . The matrix

HF,B = M⊤
B (EF + E⊤

F )MB

will be called the corresponding matrix of F (with respect to the basis B).

Lemma 13. Let B be a basis of F2n over F2. Let F1, F2, F3 : F2n → F2n be
quadratic homogenous functions with corresponding matrices HF1,B, HF2,B, HF3,B

respectively. If F3(x) = F1(x)+F2(x) for all x ∈ F2n, then HF3,B = HF1,B +HF2,B.

Proof. By definition EF3 = EF1 + EF2 . Therefore

HF3,B = M⊤
B (E⊤

F3)MB

= M⊤
B (EF1 + EF2 + E⊤

F1 + E⊤
F2)MB

= M⊤
B (EF1 + E⊤

F1)MB + M⊤
B (EF2 + E⊤

F2)MB

= HF1,B + HF2,B.
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To continue we first need to prove an auxiliary lemma.

Lemma 14. Let A ∈ Fn×n
2n . Then ∀u⃗, v⃗ ∈ Fn

2n : v⃗⊤Au⃗ = u⃗⊤A⊤v⃗.

Proof.
We have

v⃗⊤Au⃗ =
n∑︂

i=1
vi ·

n∑︂
t=1

ut · Ai,t,

u⃗⊤A⊤v⃗ =
n∑︂

i=1
ui ·

n∑︂
t=1

vt · At,i =
n∑︂

i=1
vi ·

n∑︂
t=1

ut · Ai,t,

v⃗⊤Au⃗ = u⃗⊤A⊤v⃗.

The following definition and lemma explain the definition of matrix HF,B.

Definition 18. Let a ∈ F2n , we define a mapping

La : F2n → F2n ,

x ↦→ Da(x) + F (a).

Lemma 15. [2, p. 590] If a ∈ F2n, then ∀x ∈ F2n :

La(x) = [x]⊤BHF,B[a]B.

Proof.
Using the definition of DaF (x) we obtain:

La(x) = F (x) + F (x + a) + F (a)
= x⊤EF x + (x + a)⊤EF (x + a) + a⊤EF a

= x⊤EF x + x⊤EF x + x⊤EF a + a⊤EF x + a⊤EF a + a⊤EF a

= x⊤EF a + a⊤EF x.

Now we can use Lemma (14):

a⊤EF x = x⊤E⊤
F a.

And therefore, we obtain:

La(x) = x⊤EF a + x⊤E⊤
F a

= x⊤(EF + E⊤
F )a

= x⊤CF a

= (MB[x]B)⊤CF MB[a]B
= [x]⊤BHF,B[a]B.

10



Corollary 16. [2, p. 590] For given a ∈ F2n the function La : F2n → F2n is a
linear mapping between vector spaces.

Proof.
To prove the linearity of scalar multiplication we need to consider two cases for
b ∈ F2:

• If b = 0, then

La(b · x) = La(0⃗) = 0 = b · (La(x)),

• if b = 1, then

La(b · x) = [x]⊤BHF,B[a]B = b · (La(x)).

Let x, y ∈ F2n . We prove the linearity of addition as follows:

La(x + y) = [x + y]⊤BHF,B[a]B
= ([x]B + [y]B)⊤HF,B[a]B
= [x]⊤BHF,B[a]B + [y]⊤BHF,B[a]B
= La(x) + La(y).

Lemma 17. MB is invertible over F2n.

Proof.
MB is a square n × n matrix. Therefore, we only need to prove that the mapping
v⃗ ↦→ MB · v⃗ is injective for v⃗ ∈ Fn

2n . Let MB · v⃗ = 0⃗,

v1 ·

⎛⎜⎜⎜⎝
α1
α2

1
. . .

α2n−1
1

⎞⎟⎟⎟⎠+v2 ·

⎛⎜⎜⎜⎝
α2
α2

2
. . .

α2n−1
2

⎞⎟⎟⎟⎠+ · · · + vn ·

⎛⎜⎜⎜⎝
αn

α2
n

. . .

α2n−1
n

⎞⎟⎟⎟⎠ = 0⃗.

Because of α1, . . . , αn being a basis and therefore linearly independent, we obtain
v⃗ = 0⃗. We have proved that the mapping is injective.

Theorem 18. [2, p. 591] From the matrix HF,B and the basis B we can uniquely
construct the quadratic homogenous function F : F2n → F2n. Vice versa the
quadratic homogenous function F : F2n → F2n and the basis B give us the unique
matrix HF,B.

Proof.
Construction of HF,B with respect to B and F has already been shown. Suppose
HF,B ∈ Fn×n

2n is a symmetric matrix with only zeros in the main diagonal. Let B
be a basis of F2n such that:

HF,B = M⊤
B (EF + E⊤

F )MB.

11



According to Lemma (17) there exists M−1
B and it is evident that there exists

(M⊤
B )−1 = (M−1

B )⊤. We obtain:

(M⊤
B )−1

HF,B · M−1
B = EF + E⊤

F .

By definition EF is a lower triangular matrix. Therefore, the above equality im-
mediately gives us EF .

2.2 Correspondence between QAMs and APN
functions

The one to one correspondence between quadratic homogenous functions and so
called quadratic APN matrices will be proved in this section. It will cover the
rest of [2, p. 589-591]. The proof of Theorem (21) is based on the proof of [2,
Theorem 1], but extra steps for better understanding will be added. From now on
we will abbreviate MB, EF , CF , HF,B and [x]B to M, E, C, H and [x], respectively.

Definition 19. [2, p. 589] Let v⃗ = (v1, . . . , vm)⊤ ∈ Fm
2n . We define:

• SpanF2(v⃗) = SpanF2(v⃗⊤) = SpanF2(v1, . . . , vm) = {∑︁m
i=1 λi · vi | λi ∈ F2},

• RankF2(v⃗) = RankF2(v⃗⊤) as the dimension of SpanF2(v⃗) over F2.

Remark. [2, p. 589] Let B = (α1, . . . , αn) be a basis of F2n over F2. Suppose

∀i ∈ {1, . . . , m} : [vi]B = (γi,1, . . . , γi,n)

and define a matrix Γ = (γi,j)m×n. Then RankF2(v⃗) = Rank(Γ).

Lemma 19. Let P ∈ Fn×n
2 be invertible. Then ∀v⃗ ∈ Fn

2n :

RankF2(v⃗) = RankF2(P v⃗).

Proof.
Let Γ be a matrix as in the remark above. We can see that RankF2(P v⃗) =
Rank(P · Γ). We know that multiplying by an invertible matrix does not change
the rank of a matrix (see [3, p. 467, 502]). Therefore,

RankF2(P v⃗) = Rank(P · Γ) = Rank(Γ) = RankF2(v⃗).

Definition 20. [2, p. 589] A matrix J ∈ Fn×n
2n is said to be a quadratic APN

matrix (QAM) if all of the following hold:

• J is symmetric,

• the elements in the main diagonal are zero,

12



• for any nonzero λ⃗ ∈ Fn
2 : RankF2(J · λ⃗) = n − 1.

Remark. The third condition is equal to every nonzero linear combination of the
n rows (or columns due to the symmetry) having rank n − 1 over F2.

Theorem 20 (Rank-nullity theorem). [6, p. 52] Assume that V, W are vector
spaces such that V has a finite dimension. Let L : V → W be a linear mapping,
then

dim(Ker(L)) + dim(Im(L)) = dim(V ).

Theorem 21. [2, p. 590] H is a QAM if and only if (quadratic homogenous) F
is APN.

Proof.
Let a ∈ F∗

2n , we define a linear mapping La as in Definition (18). It is easily seen
that {0, a} ⊆ Ker(La):

La(0) = F (0 + a) + F (0) + F (a) = 0,

La(a) = F (a + a) + F (a) + F (a) = 0.

First, suppose F is APN. Note that H is by definition symmetric with only zeros
in the main diagonal:

H⊤ = (M⊤CM)⊤ = M⊤(E + E⊤)⊤M = M⊤(E + E⊤)M = M⊤(C)M = H,

Hi,i = (M⊤EM)i,i + (M⊤E⊤M)i,i = (M⊤EM)i,i + (M⊤EM)⊤
i,i = 0.

Therefore, we only need to check the third property of a QAM . Because of the
APNness of F the following holds:

|{x ∈ F2n | x ∈ Ker(La)}| = |{x ∈ F2n | La(x) = 0}|
= |{x ∈ F2n | F (x) + F (x + a) + F (a) = 0}| ≤ 2.

The inequality and {0, a} ⊆ Ker(La) implies:

Ker(La) = {0, a} ⇒ dimF2(Ker(La)) = 1.

Finally, from Lemma (15) and Theorem (20):

RankF2(H · [a]) = RankF2(La) = n − dimF2(Ker(La)) = n − 1.

In the same manner if H is a QAM, Theorem (20) gives us dim Ker(La) = 1.
We only need to show that F (x) + F (x + a) = b has 0 or 2 solutions for any
a ∈ F∗

2n , b ∈ F2n . Because

{F (a) + b | b ∈ F2n} = {b ∈ F2n},

it is sufficient to compute the number of solutions of

F (x) + F (x + a) = F (a) + b.

First, let us consider b /∈ Im(La). Then

|{x ∈ F2n : F (x) + F (x + a) = F (a) + b}| = |{x ∈ F2n : La(x) = b}| = 0.

13



Second, let b ∈ Im(La). Then there exists x̃ such that F (x̃)+F (x̃+a) = F (a)+b
which also yields x̃ + a as a solution. If y ∈ F2n , y /∈ {x̃, x̃ + a}, then the linearity
of La implies that:

La(y + x̃) = b + b = 0 ⇒ y + x̃ ∈ Ker(La) ⇒ y + x̃ ∈ {0, a} ⇒ y ∈ {x̃, x̃ + a},

which contradicts our assumption. Thus, F (x) + F (x + a) + b = 0 has always 0
or 2 solutions.

Corollary 22. [2, p. 591] There is a one to one correspondence between QAMs
and quadratic homogenous APN functions.

2.3 EA equivalence in terms of QAMs
From Remark (1.6) we know that finding new quadratic APN functions can be
restricted to finding EA-inequivalent ones. Therefore, in this section we will
focus on how to determine the EA-equivalence from the corresponding matrices
of the functions. Most of this section is rewritten (with little changes in the
formulations) from [2, p. 591-595]. The proofs of Theorem (24) and Theorem
(23) are based on the original ones with extra steps added.

Lemma 23. [2, p. 591] Assume H, W1, W2 ∈ Fn×n
2n such that H = W1 + W ⊤

1 =
W2 + W ⊤

2 . Then ∃A ∈ Fn×n
2n symmetric such that W2 = W1 + A.

Proof.
Let us set S = {W ∈ Fn×n

2n : W + W ⊤ = H}. Note that W1, W2 ∈ S.
Suppose A is n × n symmetric matrix over F2n . Then

(W1 + A) + (W1 + A)⊤ = W1 + A + W ⊤
1 + A⊤

= W1 + A + W ⊤
1 + A

= W1 + W ⊤
1

= H.

Therefore, W1 + A ∈ S. Let ˜︁S denote the set

{W1 + A : A ∈ Fn×n
2n is symmetric}.

We have proved that W1 + A ∈ ˜︁S ⇒ W1 + A ∈ S, thus S ⊆ ˜︁S. It is easily seen
that

|S| = 2n2·(n−1)/2 = | ˜︁S|.

We obtain S = ˜︁S. Finally by the above W2 ∈ S ⇒ W2 ∈ ˜︁S ⇒ W2 = W1 + A for
A symmetric.

Theorem 24. [2, p. 592] Let HF1 ∈ Fn×n
2n be a symmetric matrix with zeros in

the main diagonal, let HF2 ∈ Fn×n
2n . Suppose P ∈ Fn×n

2 is an invertible matrix
such that HF2 = P ⊤HF1P . Then the quadratic functions F1, F2 defined by these
matrices relative to the basis B are EA-equivalent.
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Proof.
Let F1, F2 be quadratic homogenous (n, n)-functions with coefficient matrices
EF1 , EF2 respectively. For brevity of notation let us set W1 = M⊤EF1M and
W2 = M⊤EF2M. Under the assumptions of the theorem we get:

W2 + W ⊤
2 = HF2 = P ⊤HF1P = P ⊤W1P + P ⊤W ⊤

1 P.

Lemma (23) states there exists A = (ai,j)n×n ∈ Fn×n
2n symmetric such that W2 =

A + P ⊤W1P . Using the expression from Corollary (12) we obtain:
F1(x) = [x]⊤M⊤EF1M [x] = [x]⊤W1[x],
F2(x) = [x]⊤M⊤EF2M [x]

= [x]⊤W2[x]
= [x]⊤(A + P ⊤W1P )[x]
= [x]⊤A[x] + [x]⊤P ⊤W1P [x].

Let TA(x) = [x]⊤A[x] and TP (x) = P [x] for brevity. That means:
F2(x) = F1(TP (x)) + TA(x).

To complete the proof it is sufficient to show that TA is an affine mapping and
TP is an affine permutation. Let x, y ∈ F2n .

• Due to symmetry of A we obtain

TA(x) = [x]⊤A[x] =
n∑︂

i=1

n∑︂
j=1

ai,j[x]i[x]j =
n∑︂

i=1
ai,i[x]2i =

n∑︂
i=1

ai,i[x]i.

We use the above expression to prove the linearity of addition.

TA(x + y) =
n∑︂

i=1
ai,i[x + y]i =

n∑︂
i=1

ai,i([x] + [y])i

=
n∑︂

i=1
ai,i[x]i +

n∑︂
i=1

ai,i[y]i = TA(x) + TA(y).

For the linearity of the scalar multiplication we just need to consider:
TA(0 · x) = TA(0) = 0 = 0 · TA(x),
TA(1 · x) = TA(x) = 1 · TA(x).

• It is clear that
TP (x + y) = P ([x] + [y]) = P [x] + P [y] = TP (x) + TP (y),
TP (0 · x) = TP (0) = 0 = 0 · TP (x),
TP (1 · x) = TP (x) = 1 · TP (x).

It is assumed that P is invertible. Therefore, we can prove surjectivity of
the mapping. Suppose TP (x) = TP (y), then

P [x] = P [y],
P −1P [x] = P −1P [y],

[x] = y,

x = y.

That implies that TP is bijective, because it is a surjective mapping between
finite spaces.
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Lemma 25. [2, p. 593] Let Lin(x) ∈ F2n [x] be a linear function. Every quadratic
function Q[x] ∈ F2n [x] with Q(0) = 0 can be denoted as

Q(x) =
∑︂

1≤t<i≤n

ci,tx
2i−1+2t−1 + Lin(x).

Theorem 26. [2, p. 594] Let H = (hi,j)n×n ∈ Fn×n
2n be symmetric with only

zeros in the main diagonal. Suppose L : F2n → F2n is a linear permutation. Let
H ′ = (L(hi,j))n×n. Then the quadratic homogenous functions defined by H and
H ′ relative to the basis B are EA-equivalent.

Corollary 27. [2, p. 594] Let H, H ′ be matrices as in the theorem above. Then
H is a QAM if and only if H ′ is a QAM.

Corollary 28. [2, p. 595] Let F1, F2 be two quadratic homogenous functions with
corresponding matrices HF1 , HF2, respectively. If there exist an invertible matrix
P ∈ Fn×n

2 and a linear permutation L : F2n → F2n such that

∀i, j ∈ {1, . . . , n} : (HF2)i,j = L((P ⊤HF1P )i,j),

then F1 is EA-equivalent to F2.

2.4 Properties of QAMs
This section will show how to determine whether a given matrix is a QAM. This
section corresponds to [2, 595-597]. Furthermore, Theorems (29) and (30) will
be proved to make the statement of Corollary (34) clear. The results stated in
this section were used to design an efficient algorithm for constructing new QAMs
from already known ones. The algorithm will be omitted in this thesis, for details
see [2, p. 597-599]. Throughout this section let r, c ∈ N such that r, c ≤ n.

Definition 21. [2, p. 596] The matrix A ∈ Fr×c
2n satisfying

∀λ⃗ ∈ Fc
2 \ {0⃗} : RankF2(λ⃗ · A) ≥ r − 1

is called proper. Otherwise we say the matrix is improper.

Remark. The definition of improper matrix was not originally used in [2].
Remark. Any QAM is by definition proper.

Definition 22. [6, p. 29] A submatrix of a matrix A is a matrix B obtained by
deleting from A some (or none) rows and columns.

Theorem 29. Assume that H ∈ Fn×n
2n is a QAM. Then every A ∈ Fr×n

2n submatrix
of H is proper.
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Proof.
The definition of a QAM states that

∀λ⃗ ∈ Fn
2 , λ⃗ ̸= 0⃗ : RankF2(λ⃗ · H) = n − 1.

For r = n the submatrix A equals H and therefore the assertion is true (because
being a QAM implies being proper). Assume r < n, v⃗ ∈ Fr

2\{0⃗}. IR ⊆ {1, . . . , n}
denotes the set of indices of the undeleted rows. Let λ⃗ ∈ Fn

2 such that

λi =
{︄

vi i ∈ IR,
0 otherwise.

It can be easily seen that λ⃗ ̸= 0⃗. The choice of the vector λ⃗ yields:

RankF2(v⃗⊤ · A) = RankF2(λ⃗
⊤

· H) = n − 1.

This gives that A is proper.

Remark. Equivalently if there exists A a submatrix of H such that A is not
proper, then H is not a QAM. However, we will give few theorems that will show
we can avoid going through all the submatrices and check just some of them.
Theorem 30. If A ∈ Fr×c

2n , r < c is proper, then any square r × r submatrix of
A is also proper.

Proof.
Let B denote the square submatrix and v⃗ ∈ Fr

2, v⃗ ̸= 0⃗. IC stands for the
set of indices of undeleted columns. We assume A to be proper, which means
RankF2(v⃗ · A) ≥ c − 1. We can see that for i ∈ IC :

(v⃗⊤ · B)i = (v⃗⊤ · A)i.

We obtain the following inequality:

RankF2(v⃗⊤ · B) ≥ RankF2(v⃗⊤ · A) − (c − r) ≥ r − 1.

Corollary 31. Let A ∈ Fr×r
2n be a submatrix of H ∈ Fn×n

2n . If A is not proper,
then there exists a r × n submatrix of H that is not proper.

To prove the next theorem we first need to show a useful property of proper
matrices.
Lemma 32. [2, p. 596] Let A ∈ Fr×c

2n be a proper matrix. Let P ∈ Fc×c
2 and

P ′ ∈ Fr×r
2 be invertible. Then matrices AP and P ′A are both proper.

Proof.
Lemma (19) states that

∀λ⃗ ∈ Fr
2 : RankF2(λ⃗

⊤
· A) = RankF2(λ⃗

⊤
· (AP )).

Therefore, A being proper implies that AP is proper. In the same manner we
can see that P ′A is also proper.
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Theorem 33. [2, p. 596] Suppose that A ∈ Fr×c
2n , r < c is a proper matrix

satisfying
∀i ∈ {1, . . . r} : ai,i = 0

∀i, j ∈ {1, . . . r} : ai,j = aj,i.

Then also A⊤ is proper.

Proof.
Let λ⃗ ∈ Fc

2. For brevity let us denote b⃗ = A · λ⃗. We only need to show that for
any nonzero λ⃗:

RankF2(λ⃗
⊤

· A⊤) ≥ r − 1.

An equivalent formulation is:

RankF2(b⃗) ≥ r − 1.

We can divide this proof into two separate parts.

1. Suppose (λr+1, . . . , λc) = 0⃗. Let us denote by Ar the matrix obtained from
A by choosing only the first r columns and rows. It can be easily seen that

b⃗ = Ar · (λ1, . . . , λr) = (λ1, . . . , λr)⊤ · Ar.

Where the last equality holds due to the symmetry of Ar. Because we
assumed A to be proper we obtain:

RankF2((λ1, . . . , λr)⊤ · Ar) ≥ RankF2(λ⃗
⊤

· A) − (c − r)
≥ c − 1 − (c − r)
= r − 1.

2. Now consider the other case when (λr+1, . . . , λc) ̸= 0⃗. We will show that in
this case RankF2(b⃗) = r. We will prove it by contradiction. Suppose that

RankF2(b⃗) < r.

Therefore, ∃v⃗ ∈ Fr
2 \ {0⃗} such that ∑︁r

i=1 vi · bi = 0. Consider the following
matrices A′, A′′, A′′′. First,

A′ = A · P1 = A ·

⎛⎜⎜⎜⎜⎜⎝
1 · · · 0 λ1
... . . . ... ...
0 · · · 1 ...
0 · · · 0 λc

⎞⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎝
a1,1 · · · a1,c−1 b1

... . . . ... ...
ar,1 · · · ar,c−1 br

⎞⎟⎟⎠ .

Without loss of generality let λc = 1, otherwise we would permute the
columns of P1. This assumption implies P1 being invertible and Lemma
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(32) states that A′ is proper. Second,

A′′ = P2 · A′ =

⎛⎜⎜⎜⎜⎜⎝
v1 · · · · · · vr

0 1 · · · 0
... ... . . . ...
0 0 ... 1

⎞⎟⎟⎟⎟⎟⎠ · A′

=

⎛⎜⎜⎜⎜⎝
∑︁r

i=1 viai,1 · · · ∑︁r
i=1 viai,c−1

∑︁r
i=1 vibi

a2,1 · · · a2,c−1 b2
... . . . ... ...

ar,1 · · · ar,c−1 br

⎞⎟⎟⎟⎟⎠ .

We can again without loss of generality assume that v1 = 1 and thus P2
is invertible. Again according to Lemma (32) A′′ is proper. Third, let us
compute A′′′ as follows:

A′′′ = A′′ · P3 = A′′ ·

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

v1 0 · · · · · · 0
v2 1 0 · · · 0
... ... ...

vr
... . . . ...

0 ... . . . ...
... ... ...
0 0 · · · · · · 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛⎜⎜⎜⎜⎝
∑︁r

j=1 vj(
∑︁r

i=1 viai,j) · · · ∑︁r
i=1 viai,c−1

∑︁r
i=1 vibi∑︁r

j=1 vja2,j · · · a2,c−1 b2
... . . . ... ...∑︁r

j=1 vjar,j · · · ar,c−1 br

⎞⎟⎟⎟⎟⎠ .

Using similar arguments as for A′, A′′ we obtain that A′′′ is proper. However,
v⃗ is a vector such that ∑︁r

i=1 vibi = 0. Therefore, A′′′
1,c = 0. Similarly, from

zero diagonal and symmetry of A we can see that A′′′
1,1 = 0. This contradicts

A′′′ being proper, because

RankF2(e1⃗
⊤ · A′′′) ≤ c − 2.

We have proved that A⊤ is proper.

Corollary 34. [2, p. 596] Let H ∈ Fn×n
2n be a QAM. Then every submatrix of H

must be proper.

Proof.
Let r < c. Theorems (29) and (30) state that every r × n and r × r submatrix
of H must be proper. Suppose A ∈ Fr×c

2n is a submatrix of H. Then there is a
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proper matrix K ∈ Fr×n
2n such that A is a submatrix of K. And clearly for any

nonzero λ⃗ ∈ Fr
2:

RankF2(λ⃗
⊤

· A) ≥ RankF2(λ⃗
⊤

· K) − (n − c) ≥ n − 1 − n + c = c − 1.

Which implies that A is proper. Finally, from Theorem (33) we obtain that any
c × r submatrix of H is proper.

Corollary 35. Let A ∈ Fc×r
2n , r < c be a submatrix of H ∈ Fn×n

2n . If A is not
proper, then there exists a r × c submatrix of H that is not proper.

Remark. Given a matrix over H ∈ Fn×n
2n we only need to check all r×c submatrices

of H with r < c to decide whether there exists a improper submatrix of H. In
other words, going through all submatrices would not give us new information.
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3. ANF approach
In this chapter we will show that the matrices from Chapter (2) can be obtained
directly from the ANF representation of a Boolean function. We will show that
the one to one correspondence with APN functions also holds in this case. From
now on let ˜︁F be the ANF of a quadratic homogenous (in terms of the ANF)
(n, n)-function such that

˜︁F (x⃗) =
∑︂

I∈P(N)
|I|=2

aI⃗

(︄∏︂
i∈I

xi

)︄
=

∑︂
I∈P(N)

|I|=2

aI⃗ x⃗I .

3.1 Matrix representation of ANF
Definition 23. Let us denote by E˜︁F = (ei,j)n×n ∈ (Fn

2 )n×n the coefficient matrix
of ˜︁F obtained as follows:

ei,j =
{︄

a⃗{i,j} if 1 ≤ j < i ≤ n,
0 otherwise.

Similarly C˜︁F will stand for E˜︁F + E⊤˜︁F .

Remark. In this representation the elements of E˜︁F , C˜︁F are vector from Fn
2 .

Example. Let n = 3. We define

˜︁F : F3
2 → F3

2,⎛⎜⎝x1
x2
x3

⎞⎟⎠ ↦→

⎛⎜⎝ x1x2
x1x2 + x1x3

x2x3

⎞⎟⎠ .

Using the ANF notation we can rewrite ˜︁F (x⃗) as:

˜︁F ((x1, x2, x3)⊤) =

⎛⎜⎝1
1
0

⎞⎟⎠ · x1x2 +

⎛⎜⎝0
1
0

⎞⎟⎠ · x1x3 +

⎛⎜⎝0
0
1

⎞⎟⎠ · x2x3.

We can see that

a⃗{1,2} = (1, 1, 0)⊤,

a⃗{1,3} = (0, 1, 0)⊤,

a⃗{2,3} = (0, 0, 1)⊤.

And therefore

C˜︁F =

⎛⎜⎝ 0⃗ (1, 1, 0)⊤ (0, 1, 0)⊤

(1, 1, 0)⊤ 0⃗ (0, 0, 1)⊤

(0, 1, 0)⊤ (0, 0, 1)⊤ 0⃗

⎞⎟⎠ .
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Definition 24. Let A ∈ (Fn
2 )n, v⃗ ∈ Fn

2 . We define

A ·

⎛⎜⎜⎜⎜⎝
v1
v2
...

vn

⎞⎟⎟⎟⎟⎠ =
n∑︂

i=1
vi · A∗,i.

Remark. Here ∑︁n
i=1 vi · A∗,i denotes a scalar multiplication.

Lemma 36. Given x⃗ = (x1, . . . , xn)⊤ ∈ Fn
2 :

˜︁F (x⃗) = x⃗⊤ · E˜︁F · x⃗.

Proof.
We have

x⃗⊤ · E˜︁F · x⃗ = (x1, . . . , xn)

⎛⎜⎜⎜⎜⎝
0 0 . . . 0

e2,1 0 . . . 0
... ... . . . ...

en,1 en,2 . . . 0

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎝

x1
...

xn

⎞⎟⎟⎠
=

∑︂
1≤i<j≤n

ei,j · xi · xj

=
∑︂

1≤i<j≤n

a⃗{i,j} · xi · xj

=
∑︂

I∈P(N)
|I|=2

aI⃗ x⃗I

= ˜︁F (x).

Definition 25. [1, p. 17] We define the derivative of ˜︁F at a⃗ ∈ Fn
2 as

Da
˜︁F (x⃗) = ˜︁F (x⃗ + a⃗) + ˜︁F (x⃗).

Lemma 37. If a⃗ ∈ Fn
2 , then ∀x⃗ ∈ Fn

2 :

Da
˜︁F (x⃗) + ˜︁F (a⃗) = a⃗⊤ · C˜︁F · x⃗.

Remark. It can be easily seen that Lemma (14) holds for the matrix E˜︁F and
vectors u⃗, v⃗ ∈ Fn

2 as well.

Proof.
From the definition of Da

˜︁F :

Da
˜︁F (x⃗) + ˜︁F (a⃗) = ˜︁F (x⃗) + ˜︁F (x⃗ + a⃗) + ˜︁F (a⃗)

= x⃗⊤E˜︁F x⃗ + (x⃗ + a⃗)⊤E˜︁F (x⃗ + a⃗) + a⃗⊤E˜︁F a⃗

= a⃗⊤E˜︁F x⃗ + x⃗⊤E˜︁F a⃗.
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Using Lemma (14) we obtain:

Da
˜︁F (x⃗) + ˜︁F (a⃗) = a⃗⊤E˜︁F x⃗ + a⃗⊤E⊤˜︁F x⃗

= a⃗⊤C˜︁F x⃗.

Definition 26. The mapping obtained in the lemma above will be denoted by:

La⃗ : Fn
2 → Fn

2 ,

x⃗ ↦→ a⃗⊤ · C˜︁F · x⃗.

Lemma 38. La⃗ is a linear mapping between vector spaces.

Proof.
Given a scalar b ∈ F2 we consider two cases:

• if b = 0, then La⃗(b · x⃗) = La⃗(0⃗) = 0⃗ = b · La⃗(x⃗),

• if b = 1, then clearly La⃗(b · x⃗) = La⃗(x⃗) = b · La⃗(x⃗).

We now turn to the linearity of addition. Let x⃗, y⃗ ∈ Fn
2 , then:

La⃗(x⃗ + y⃗) = a⃗⊤C˜︁F (x⃗ + y⃗) = a⃗⊤C˜︁F x⃗ + a⃗⊤C˜︁F y⃗ = La⃗(x⃗) + La⃗(y⃗).

Definition 27. Given vectors v⃗1, . . . , v⃗m from Fn
2 and matrix A = (v⃗1| · · · |v⃗m) ∈

Fn×m
2 we define

Rank((v⃗1, . . . , v⃗m)) = Rank(A).

3.2 Correspondence between QAMs and ANFs
Definition 28. J ∈ (Fn

2 )n×n is said to be a QAM (quadratic homogenous APN
matrix) if all of the following holds:

• J is symmetric

• J has all diagonal elemenents equal to zero

• ∀λ⃗ ∈ Fn
2 \ {0⃗} : RankF2(J · λ⃗) = n − 1.

Remark. The only difference from Definition (20) is that now the elements of the
matrix are from Fn

2 .

Theorem 39. A quadratic homogenous (n, n)-function (homogenous in terms of
the ANF representation) ˜︁F is APN if and only if C˜︁F is QAM .
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Proof.
We prove this in the same way as Theorem (21). First, let ˜︁F be APN. Since ˜︁F
is quadratic homogenous, C˜︁F = E˜︁F + E⊤˜︁F has zero diagonal. Also, it is evident
that C˜︁F is symmetric. Therefore, we only need to prove that

∀λ⃗ ∈ Fn
2 \ {0⃗} : RankF2(C˜︁F · λ⃗) = n − 1.

Choose a⃗ ∈ Fn
2 \ {0⃗}. A trivial verification shows that Ker(La⃗) = {0⃗, a⃗} and

therefore dimF2(Ker(La⃗)) = 1.

• Since ˜︁F (0⃗) = 0⃗, we get:

La⃗(a⃗) = ˜︁F (a⃗) + ˜︁F (a⃗) + ˜︁F (0⃗) = 0⃗,

La⃗(0⃗) = ˜︁F (0⃗) + ˜︁F (a⃗) + ˜︁F (a⃗) = 0⃗.

• Since ˜︁F is APN:

|Ker(La⃗)| = |{x⃗ ∈ Fn
2 | ˜︁F (x⃗) + ˜︁F (a⃗) + ˜︁F (x⃗ + a⃗) = 0⃗}|

= |{x⃗ ∈ Fn
2 | ˜︁F (x⃗) + ˜︁F (x⃗ + a⃗) = ˜︁F (a⃗)}|

≤ 2.

We have proved that La⃗ is linear, so we can use Theorem (20):

RankF2(La⃗) = n − dimF2(Ker(La⃗)) = n − 1.

From the definition of La⃗ it is obvious that RankF2(C˜︁F · a⃗) = RankF2(La⃗). Con-
versely, let C˜︁F be QAM. In the same way as above obtain:

Ker(La⃗) = n − RankF2(La⃗) = n − RankF2(C˜︁F · a⃗) = n − (n − 1) = 1.

Again it can be easily shown that {0⃗, a⃗} ⊆ Ker(La⃗), thus Ker(La⃗) = {0⃗, a⃗}. Now
using the notation from Definition (10) we show that ˜︁F is APN:

max
a⃗,b⃗∈Fn

2
a̸⃗=0⃗

|A˜︁F
b⃗,a⃗

| = max
a⃗,b⃗∈Fn

2
a̸⃗=0⃗

|{x⃗ ∈ Fn
2 | ˜︁F (x⃗) + ˜︁F (x⃗ + a⃗) = b⃗}|

= max
a⃗,b⃗∈Fn

2
a̸⃗=0⃗

|{x⃗ ∈ Fn
2 | ˜︁F (x⃗) + ˜︁F (x⃗ + a⃗) + ˜︁F (a⃗) = b⃗}|

= max
a⃗,b⃗∈Fn

2
a̸⃗=0⃗

|{x⃗ ∈ Fn
2 | La⃗(x⃗) = b⃗}|.

Choose a⃗ ∈ Fn
2 \ {0⃗}. We only need to consider two cases.

• Suppose b⃗ /∈ Im(La⃗). Then |{x⃗ ∈ Fn
2 | La⃗(x⃗) = b⃗}| = 0.

• Suppose b⃗ ∈ Im(La⃗). Let z⃗ ∈ Fn
2 such that b⃗ = La⃗(z⃗). It is obvious that

{z⃗, z⃗ + a⃗} ⊆ {x⃗ ∈ Fn
2 | La⃗(x⃗) = b⃗}.
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Let y⃗ ∈ Fn
2 \ {z⃗, z⃗ + a⃗} such that La⃗ = b⃗. Clearly,

La⃗(z⃗ + y⃗) = La⃗(z⃗) + La⃗(y⃗) = b⃗ + b⃗ = 0⃗.

Which contradicts the choice of y⃗:

(y⃗ + z⃗) ∈ Ker(La⃗) = {0⃗, a⃗} ⇒ y⃗ ∈ {0⃗ + z⃗, a⃗ + z⃗}.

Therefore, |A˜︁F
b⃗,a⃗

| = 2 for all b⃗ ∈ Im(La⃗).
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4. Examples
In this chapter we will compute the corresponding matrices for chosen APN func-
tions F1, F2 : F25 → F25 which are EA-inequivalent. We will show how the finite
field approach corresponds to the ANF approach. The functions F1, F2 will be
APN and EA-inequivalent.

4.1 Finite field approach

4.1.1 Trace and Bases
Before we give the examples we need to formulate some useful definitions and
lemmas. Most of these statements can be found in [5, p. 54-63].

Definition 29. [5, p. 54] For x ∈ F2n the trace of x over F2 is defined by

Tr(x) = x + x2 + · · · + x2n−1
.

Lemma 40. [5, p. 55] For all x, y ∈ F2n and c ∈ F2 :

• Tr(x + y) = Tr(x) + Tr(y),

• Tr(c · x) = c · Tr(x).

Definition 30. [5, p. 58] Let B = (γ1, . . . , γn) be a basis of F2n over F2. B is
said to be a self-dual basis if for 1 ≤ i, j ≤ n we have

Tr(γi · γj) =
{︄

0 for i ̸= j,
1 for i = j .

Definition 31. [5, p. 59] A basis of F2n over F2 of the form (β, β2, . . . , β2n−1) is
called a normal basis of F2n over F2.

Remark. Suppose B = (β, β2, . . . , β2n−1) is a normal basis of F2n over F2. Because
∀x ∈ F2n : x2n = x (see [5, 48]), we can simplify the matrix MB (see Definition
(15)) as

MB =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

β β2 · · · β2m−1

β2 β4 · · · β
... ... · · · ...

β2m−2
β2m−1 · · · β2m−3

β2m−1
β · · · β2m−2

⎞⎟⎟⎟⎟⎟⎟⎟⎠ .

Theorem 41. [5, p. 76] If n is odd, then there exists a self-dual normal basis of
F2n over F2.
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4.1.2 Basis choice
Definition 32. We will consider

F25 ≃ F2[α]⧸(α5 + α2 + 1).

Firstly, let us choose a basis of F25 over F2 denoted by B = (α0, α1, α2, α3, α4).
It will be useful to choose a self-dual normal basis (the existence is guaranteed by
Theorem (41)). The normality will imply that (αi)2 = αi+1 for all i ∈ {0, . . . , 4}
which will be used in several proofs. On the other hand, the self-duality will be
helpful in the proof of Lemma (43). Since F25 is rather small, we can find the
basis by searching through all of the possible options. We tried the following
algorithm for all β ∈ F25 and found a self-dual normal basis

B = (α0, α1, α2, α3, α4)
= (β, β2, β4, β8, β16)
= (α + 1, α2 + 1, α4 + 1, α3 + α2, α4 + α3 + α)

generated by β = α + 1.

Algorithm 1: Search for a self-dual normal basis
Input: β ∈ F25

Output: self-dual/not self-dual
for i = 0, . . . , 4 do

if Tr(β2i · β2i) ̸= 1 then
return not self-dual

else
for j = i + 1, . . . , 4 do

if Tr(β2i · β2j ) ̸= 0 then
return not self-dual

return self-dual

Remark. If we find a sequence having these properties it has to be a basis (see
e.g. [5, p. 61]). This explains why we could run the algorithm for all β ∈ F25 .
Remark. We abbreviate MB to M .

M =

⎛⎜⎜⎜⎜⎜⎜⎝
β β2 β4 β8 β16

β2 β4 β8 β16 β
β4 β8 β16 β β2

β8 β16 β β2 β8

β16 β β2 β8 β16

⎞⎟⎟⎟⎟⎟⎟⎠
4.1.3 Function F1

Let us define F1 : F25 → F25 such that F1(x) = x3 = x · x2. This function is
proved to be APN (it is a Gold function - see [2, p. 50]). It is clear that F1 is
also quadratic homogenous. Therefore, we can use the approach from Chapter
(2) and construct the corresponding matrix HF1,B.
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We first need to construct EF1 . From the definition of F1 it is clear that

EF1 =

⎛⎜⎜⎜⎜⎜⎜⎝
0 0 0 0 0
1 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎠ .

Remark. We will abbreviate HF1,B to HF1 .
To construct HF1 we will compute the element

(HF1)i,j = (M⊤EF1M)i,j + (M⊤(EF1)⊤M)i,j = (M⊤EF1M)i,j + (M⊤EF1M)j,i .

Because ∀(i, j) ̸= (2, 1) : (EF1)i,j = 0, we can simplify the expression as follows:

(M⊤EF1M)i,j =
5∑︂

k=1
M⊤

i,k

5∑︂
l=1

(EF1)k,lMl,j

= M⊤
i,2 · M1,j

= (β2)2i−1
· (β2j−1)

20

= β2i · β2j−1

= β2i+2j−1
,

(HF1)i,j = β2i+2j−1 + β2j+2i−1
.

Finally, we can see that

HF1 =

⎛⎜⎜⎜⎜⎝
0 α2+α+1 α3+α+1 α4+α α4+α3

α2+α+1 0 α4+α2+1 α3+α2+α+1 α3+1
α3+α+1 α4+α2+1 0 α4+α3+α2 α4+α3+α2+α+1

α4+α α3+α2+α+1 α4+α3+α2 0 α4+α2+α+1
α4+α3 α3+1 α4+α3+α2+α+1 α4+α2+α+1 0

⎞⎟⎟⎟⎟⎠ .

4.1.4 Function F2

We define the second function as

F2 : F25 → F25 ,

x ↦→ x3 + Tr(x9).

According to [7, Corollary 1] this function is APN. For n ≥ 7 it has been proven
to be EA-inequivalent to x ↦→ x3 (see [7, Corollary 3]). However, we decided to
set n = 5 and have checked that F1, F2 are EA-inequivalent too. Expanding the
trace function yields

F2(x) = x3 + x9 + x18 + x5 + x10 + x20.

All of the exponents have Hamming weight equal to 2. Therefore, F2 is quadratic
homogenous. Note that also Tr(x9) itself is quadratic homogenous. Therefore,
for both of these functions a unique corresponding matrix with respect to B can
be constructed.

28



Remark. For the simplicity of notation we will denote Tr(x) by FT . Hence, we
obtain for all x ∈ F2n : F2(x) = F1(x) + FT (x). We will again denote matrices
HF2,B and HFT ,B by HF2 and HFT

, respectively. It can be easily seen that

EFT
=

⎛⎜⎜⎜⎜⎜⎜⎝
0 0 0 0 0
0 0 0 0 0
1 0 0 0 0
1 1 0 0 0
0 1 1 0 0

⎞⎟⎟⎟⎟⎟⎟⎠ .

We first compute (HFT
)i,j and then use Lemma (13) to obtain HF2 . We

will again make use of the fact that ∀(i, j) /∈ {(3, 1), (4, 1), (4, 2), (5, 2), (5, 3)} :
(EFT

)i,j = 0. We have

(HFT
)i,j = (M⊤EFT

M)i,j + (M⊤EFT
M)j,i,

(M⊤EFT
M)i,j =

5∑︂
k=1

M⊤
i,k

5∑︂
l=1

(EFT
)k,lMl,j

= M⊤
i,3M1,j + M⊤

i,4M1,j + M⊤
i,4M2,j + M⊤

i,5M2,j + M⊤
i,5M3,j

= β2i+1
β2j−1 + β2i+2

β2j−1 + β2i+2
β2j + β2i+3

β2j + β2i+3
β2j+1

= β2i+1+2j−1 + β2i+2+2j−1 + β2i+2+2j + β2i+3+2j + β2i+3+2j+1
.

The obtained expression yields:

HFT
=

⎛⎜⎜⎜⎜⎜⎜⎝
0 0 1 1 0
0 0 0 1 1
1 0 0 0 1
1 1 0 0 0
0 1 1 0 0

⎞⎟⎟⎟⎟⎟⎟⎠ .

Now we can easily compute HF2 from HF1 and HFT
:

HF2 = HF1 + HFT

=

⎛⎜⎜⎜⎜⎜⎝
0 α2+α+1 α3+α α4+α+1 α4+α3

α2+α+1 0 α4+α2+1 α3+α2+α α3

α3+α α4+α2+1 0 α4+α3+α2 α4+α3+α2+α
α4+α+1 α3+α2+α α4+α3+α2 0 α4+α2+α+1
α4+α3 α3 α4+α3+α2+α α4+α2+α+1 0

⎞⎟⎟⎟⎟⎟⎠ .

4.2 ANF approach

4.2.1 ANF computation
To find the ANF representation of F1, F2, FT we could first compute the truth
tables and then apply a simple divide-and-conquer algorithm to compute the ANF
(see [4, p. 10]). However, we will take an advantage of the self-dual normal basis
and find the ANF straight from the finite field representation. We will denote
the ANF of F1, F2, FT by ˜︂F1, ˜︂F2, ˜︂FT , respectively.
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Remark. Given a function F : F2n → F2n we compute ˜︁F : Fn
2 → Fn

2 by represent-
ing the elements of F2n with respect to a basis over F2. We continue to use the
self-dual normal basis B from previous section.

Lemma 42. The ANF of F1 is equal to

˜︂F1(x0, x1, x2, x3, x4) = x0

⎛⎜⎜⎜⎜⎜⎝
1
0
0
1
0

⎞⎟⎟⎟⎟⎟⎠+ x1

⎛⎜⎜⎜⎜⎜⎝
0
1
0
0
1

⎞⎟⎟⎟⎟⎟⎠+ x2

⎛⎜⎜⎜⎜⎜⎝
1
0
1
0
0

⎞⎟⎟⎟⎟⎟⎠+ x3

⎛⎜⎜⎜⎜⎜⎝
0
1
0
1
0

⎞⎟⎟⎟⎟⎟⎠+ x4

⎛⎜⎜⎜⎜⎜⎝
0
0
1
0
1

⎞⎟⎟⎟⎟⎟⎠+ x0x1

⎛⎜⎜⎜⎜⎜⎝
0
0
1
1
1

⎞⎟⎟⎟⎟⎟⎠

+ x0x2

⎛⎜⎜⎜⎜⎜⎝
0
0
1
0
1

⎞⎟⎟⎟⎟⎟⎠+ x0x3

⎛⎜⎜⎜⎜⎜⎝
1
0
1
0
0

⎞⎟⎟⎟⎟⎟⎠+ x0x4

⎛⎜⎜⎜⎜⎜⎝
0
1
1
1
0

⎞⎟⎟⎟⎟⎟⎠+ x1x2

⎛⎜⎜⎜⎜⎜⎝
1
0
0
1
1

⎞⎟⎟⎟⎟⎟⎠+ x1x3

⎛⎜⎜⎜⎜⎜⎝
1
0
0
1
0

⎞⎟⎟⎟⎟⎟⎠

+ x1x4

⎛⎜⎜⎜⎜⎜⎝
0
1
0
1
0

⎞⎟⎟⎟⎟⎟⎠+ x2x3

⎛⎜⎜⎜⎜⎜⎝
1
1
0
0
1

⎞⎟⎟⎟⎟⎟⎠+ x2x4

⎛⎜⎜⎜⎜⎜⎝
0
1
0
0
1

⎞⎟⎟⎟⎟⎟⎠+ x3x4

⎛⎜⎜⎜⎜⎜⎝
1
1
1
0
0

⎞⎟⎟⎟⎟⎟⎠ .

Proof.
Let [x]B = (x0, x1, x2, x3, x4) for given x ∈ F25 . From the definition of F1 :

F1(x) = x3 = x2 · x.

Let us first compute

x2 = (x0α0 + x1α1 + x2α2 + x3α3 + x4α4)2

= x0α1 + x1α2 + x2α3 + x3α4 + x4α0.

The last equality holds due to the normality of the basis. Now it is obvious that

x2 · x = (x0α1 + x1α2 + x2α3 + x3α4 + x4α0)
· (x0α0 + x1α1 + x2α2 + x3α3 + x4α4)

=
4∑︂

i=0

4∑︂
j=0

x(i−1 mod 5)xjαiαj

=
4∑︂

i=0
x(i−1 mod 5)xiα(i+1 mod 5) +

4∑︂
i=0

4∑︂
j=0
j ̸=i

x(i−1 mod 5)xjαiαj.

We now only need to find the [αuαv]B for all u, v ∈ {0, . . . , 4}. We did that by
brute force and found the following.
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αuαv [αuαv]⊤B
α0α1 (1, 0, 0, 1, 0)
α0α2 (0, 0, 0, 1, 0)
α0α3 (0, 1, 1, 0, 0)
α0α4 (0, 0, 1, 0, 1)
α1α2 (0, 1, 0, 0, 1)
α1α3 (1, 0, 0, 0, 1)
α1α4 (0, 0, 1, 1, 0)
α2α3 (1, 0, 1, 0, 0)
α2α4 (1, 1, 0, 0, 0)
α3α4 (0, 1, 0, 1, 0)

Using the representations from the table we obtain the algebraic normal formal
written in this Lemma.

Lemma 43. Let [x]B = (x0, x1, x2, x3, x4). Then

˜︂FT (x0, x1, x2, x3, x4) = x0x2

⎛⎜⎜⎜⎜⎜⎝
1
1
1
1
1

⎞⎟⎟⎟⎟⎟⎠+ x0x3

⎛⎜⎜⎜⎜⎜⎝
1
1
1
1
1

⎞⎟⎟⎟⎟⎟⎠+ x1x3

⎛⎜⎜⎜⎜⎜⎝
1
1
1
1
1

⎞⎟⎟⎟⎟⎟⎠+ x1x4

⎛⎜⎜⎜⎜⎜⎝
1
1
1
1
1

⎞⎟⎟⎟⎟⎟⎠+ x2x4

⎛⎜⎜⎜⎜⎜⎝
1
1
1
1
1

⎞⎟⎟⎟⎟⎟⎠ .

Proof.
We will first compute the ANF of x9 = x8 · x the same way as we did for x3:

x8 = (x0α0 + x1α1 + x2α2 + x3α3 + x4α4)8

= x0α3 + x1α4 + x2α0 + x3α1 + x4α2.

Now we see that

x8 · x = (x0α3 + x1α4 + x2α0 + x3α1 + x4α2)
· (x0α0 + x1α1 + x2α2 + x3α3 + x4α4)

=
4∑︂

i=0

4∑︂
j=0

x(i−3 mod 5)xjαiαj

=
4∑︂

i=0
x(i−3 mod 5)xiα

2
i +

4∑︂
i=0

4∑︂
j=0
j ̸=i

x(i−3 mod 5)xjαiαj.

Due to the self-duality of B and the linearity of trace (see Lemma (40)) we obtain

FT (x) = Tr(x9) =
4∑︂

i=0
x(i−3 mod 5)xiTr(α2

i ) +
4∑︂

i=0

4∑︂
j=0
j ̸=i

x(i−3 mod 5)xjTr(αiαj)

=
4∑︂

i=0
x(i−3 mod 5)xi · 1

= x0x2 + x1x3 + x2x4 + x3x0 + x4x1.

Finally, [1]B = (1, 1, 1, 1, 1)⊤ yields the expression stated in this lemma.

31



Corollary 44. Now we can use ˜︂F1, ˜︂FT to compute

˜︂F2(x0, x1, x2, x3, x4) = x0

⎛⎜⎜⎜⎜⎜⎝
1
0
0
1
0

⎞⎟⎟⎟⎟⎟⎠+ x1

⎛⎜⎜⎜⎜⎜⎝
0
1
0
0
1

⎞⎟⎟⎟⎟⎟⎠+ x2

⎛⎜⎜⎜⎜⎜⎝
1
0
1
0
0

⎞⎟⎟⎟⎟⎟⎠+ x3

⎛⎜⎜⎜⎜⎜⎝
0
1
0
1
0

⎞⎟⎟⎟⎟⎟⎠+ x4

⎛⎜⎜⎜⎜⎜⎝
0
0
1
0
1

⎞⎟⎟⎟⎟⎟⎠+ x0x1

⎛⎜⎜⎜⎜⎜⎝
0
0
1
1
1

⎞⎟⎟⎟⎟⎟⎠

+ x0x2

⎛⎜⎜⎜⎜⎜⎝
1
1
0
1
0

⎞⎟⎟⎟⎟⎟⎠+ x0x3

⎛⎜⎜⎜⎜⎜⎝
0
1
0
1
1

⎞⎟⎟⎟⎟⎟⎠+ x0x4

⎛⎜⎜⎜⎜⎜⎝
0
1
1
1
0

⎞⎟⎟⎟⎟⎟⎠+ x1x2

⎛⎜⎜⎜⎜⎜⎝
1
0
0
1
1

⎞⎟⎟⎟⎟⎟⎠+ x1x3

⎛⎜⎜⎜⎜⎜⎝
0
1
1
0
1

⎞⎟⎟⎟⎟⎟⎠

+ x1x4

⎛⎜⎜⎜⎜⎜⎝
1
0
1
0
1

⎞⎟⎟⎟⎟⎟⎠+ x2x3

⎛⎜⎜⎜⎜⎜⎝
1
1
0
0
1

⎞⎟⎟⎟⎟⎟⎠+ x2x4

⎛⎜⎜⎜⎜⎜⎝
1
0
1
1
0

⎞⎟⎟⎟⎟⎟⎠+ x3x4

⎛⎜⎜⎜⎜⎜⎝
1
1
1
0
0

⎞⎟⎟⎟⎟⎟⎠ .

Remark. Although F1, F2 are quadratic homogenous, ˜︂F1, ˜︂F2 are quadratic with
linear terms. Let us denote by ˜︂G1, ˜︂G2 the functions obtained from ˜︂F1, ˜︂F2 by
deleting the linear terms. According to Lemma (7) functions ˜︂G1, ˜︂G2 are APN
too.

4.2.2 Corresponding matrices for ˜︃G1,
˜︃G2

Now we can use ˜︂G1 to construct the matrix C˜︂G1
:

C˜︂G1
=

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0⃗⊤ (0, 0, 1, 1, 1)⊤ (0, 0, 1, 0, 1)⊤ (1, 0, 1, 0, 0)⊤ (0, 1, 1, 1, 0)⊤

(0, 0, 1, 1, 1)⊤ 0⃗⊤ (1, 0, 0, 1, 1)⊤ (1, 0, 0, 1, 0)⊤ (0, 1, 0, 1, 0)⊤

(0, 0, 1, 0, 1)⊤ (1, 0, 0, 1, 1)⊤ 0⃗⊤ (1, 1, 0, 0, 1)⊤ (0, 1, 0, 0, 1)⊤

(1, 0, 1, 0, 0)⊤ (1, 0, 0, 1, 0)⊤ (1, 1, 0, 0, 1)⊤ 0⃗⊤ (1, 1, 1, 0, 0)⊤

(0, 1, 1, 1, 0)⊤ (0, 1, 0, 1, 0)⊤ (0, 1, 0, 0, 1)⊤ (1, 1, 1, 0, 0)⊤ 0⃗⊤

⎞⎟⎟⎟⎟⎟⎟⎟⎠ .

Similarly, we construct C˜︂G2
from ˜︂G2:

C˜︂G2
=

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0⃗⊤ (0, 0, 1, 1, 1)⊤ (1, 1, 0, 1, 0)⊤ (0, 1, 0, 1, 1)⊤ (0, 1, 1, 1, 0)⊤

(0, 0, 1, 1, 1)⊤ 0⃗⊤ (1, 0, 0, 1, 1)⊤ (0, 1, 1, 0, 1)⊤ (1, 0, 1, 0, 1)⊤

(1, 1, 0, 1, 0)⊤ (1, 0, 0, 1, 1)⊤ 0⃗⊤ (1, 1, 0, 0, 1)⊤ (1, 0, 1, 1, 0)⊤

(0, 1, 0, 1, 1)⊤ (0, 1, 1, 0, 1)⊤ (1, 1, 0, 0, 1)⊤ 0⃗⊤ (1, 1, 1, 0, 0)⊤

(0, 1, 1, 1, 0)⊤ (1, 0, 1, 0, 1)⊤ (1, 0, 1, 1, 0)⊤ (1, 1, 1, 0, 0)⊤ 0⃗⊤

⎞⎟⎟⎟⎟⎟⎟⎟⎠ .

It can be easily verified that[︃(︂
H ˜︁F1

)︂
i,j

]︃
B

=
(︂
C˜︂G1

)︂
i,j

and
[︃(︂

H ˜︁F2

)︂
i,j

]︃
B

=
(︂
C˜︂G2

)︂
i,j

for all i, j ∈ {1, . . . , 5}. Therefore, the matrices HF1 , HF2 could have been ob-
tained straightly from the ANF representation of F1, F2.
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Conclusion
In this thesis we explained in detail the method introduced in [2]. We added
extra statements and proofs when we thought it was needed.

We showed how to construct QAMs from the ANF representation. Further-
more, we proved that there is a one to one correspondence between quadratic
homogenous APN functions and QAMs obtained from the ANF representation.

Computing the examples in Chapter 4, we showed that QAMs from [2] are in
fact very similar to the ANF representation. In future work it would be interesting
to describe how preserving APNness and EA-equivalence is connected to matrix
operations.
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