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Introduction
Molecular clusters are ensembles of molecules bound together by intermolecular
forces such as e.g. hydrogen bonding or dipole–dipole interaction, but not by
covalent bonds (Johnston [2002], ch. 3). Such clusters in general can vary in
size and can be composed of molecules of the same type (homogeneous) or of
multiple different types (heterogeneous). The character and physical properties
of the molecular clusters are typically different from those of single molecules or
gas, liquid or bulk solid of the same chemical substance (Caprasecca [2010], p.
4). Note that so called cluster molecules which are bound by covalent bonds are
not the molecular clusters in this sense.

Clusters of various types and substances, including water clusters, are present
in many different environments, such as the atmosphere of Earth (Harrison and
Carslaw [2003]), interstellar clouds (Duley [1996]), dense gaseous media (Kreil
et al. [1998]) or biological structures (Nam et al. [2007], Freitas et al. [2009]). In
each of these environments the clusters are created by different main processes.
In the atmosphere clusters are produced by the charge driven reactions of po-
lar molecules with other molecules of the atmosphere ionized by the cosmic rays
(Harrison and Carslaw [2003]). These atmospheric molecular clusters continue
to grow into aerosols which then start the nucleation of water droplets that later
form clouds and fogs and affect a vast number of other processes in the atmo-
sphere (Morrell and Shields [2010], Castleman and Jena [2006]). In space, clusters
are formed from molecules released from solid surfaces after impacts of ions or
electrons. In dense gases they form spontaneously (Kreil et al. [1998]) and thus
they are often studied in this environment.

In biological environments, clusters are very important for chemical reactions,
and for structural stabilization and they affect processes leading to radiation
damage of biochemical structures (Caprasecca [2010], p. 5). For example water
clusters are probably responsible for the structure of the hydration layers sur-
rounding some biomolecules, including DNA (Yonetani et al. [2008], Sen et al.
[2009], Dragan et al. [2009]). There are even clusters of biomolecules, which also
behave differently then isolated molecules of the same type (Nam et al. [2007],
Freitas et al. [2009]).

Focusing on water clusters from now on, it must be pointed out that besides
these biological structures (H2O)n clusters are also present in all the other envi-
ronments mentioned above and take part in many more specific processes that
are not mentioned here (see e.g. Fárnı́k [2011] or Johnston [2002]), which makes
them very important for biology, meteorology and many other fields. That is the
reason why there has been a lot of effort to study these clusters experimentally
and theoretically.

In laboratory conditions, water clusters can be studied in dense gaseous me-
dia, where they form spontaneously (Caprasecca [2010]) as mentioned above, or
they can be created artificially by supersonic jet expansion in molecular beams
(Fárnı́k [2011]). This technique is capable of preparing molecular clusters with
well defined size distributions (number of molecules), typically exponential or
log-normal, which depends on the form of expansion of the molecular gas into the
vacuum. However, the exact structure of the clusters created in the molecular
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beam is practically beyond control. And that is the main motivation for this the-
sis and its main goal – to theoretically investigate (under certain approximations)
the possibilities of analysing the specific structure of small (H2O)n water clusters
(with small number of molecules n) using so called photoelectron spectroscopy.

According to Johnston [2002], section 3.3, most of the spectroscopic studies of
water clusters were focused either on infrared (see e.g. Huisken et al. [1996]) or
microwave spectroscopy, electron diffraction or mass spectroscopy. Some of them
even studied the specific geometric structure of the small or large water clusters
(see Johnston [2002], section 3.3.4, in particular paragraph 3.3.4.3 discussing the
(H2O)6 cluster), mostly combining the spectroscopic measurements and ab initio
theoretical calculations of the ground state structures of the water clusters.

Recently, photoionization spectroscopy has been established as an important
tool for studies of molecular clusters. There are some works on the photoelectron
spectroscopy of water clusters, both small (Hartweg et al. [2017]) and larger (see
Zhang et al. [2013] or Trabattoni et al. [2020]). In these cases, what is being
analysed are the electrons released by ionizing the cluster by absorption of a
single photon. If linearly polarized light is used, the angular distribution of the
photoelectrons is

I ∼ 1 + β(E)P2(cos θ′), (1)
where β(E) is the asymmetry (or anisotropy) parameter, E is the photon energy
and P2 is the second order Legendre polynomial. The angle θ′ is measured with

Figure 1: Adapted from Hartweg et al. [2017]. Experimental β-parameter for
the photoionization of the 1b1 molecular orbital for isolated H2O molecule, small
(H2O)n clusters with 2 ≤ n ≤ 20, (H2O)+

2 ions and calculated predictions for
liquid water. The green triangles show the results of Zhang et al. [2013] for larger
clusters and blue squares show the results of Faubel et al. [2012] for liquid water.
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respect to the direction if the electric field vector, identified with the z′ axis of
the lab frame.

Hartweg et al. [2017] measured the asymmetry parameters of the photoelec-
tron angular distribution for photoionization of three molecular orbitals of H2O
molecules – orbitals 1b1, 3a1 and 1b2 – for isolated H2O monomers and small
(H2O)n clusters of 2-20 molecules. The main result of Hartweg et al. [2017], see
fig. 1, is the observation of a gradual ”convergence” of the photoelectron angular
distribution from that for a single molecule to that of bulk (liquid) water with
clusters forming the intermediate step. This especially holds for ”the outermost”
orbitals 1b1, 3a1 for which the curves of the β-parameters systematically decrease
with increasing number of molecules n and converge to a universal curve at about
n ∼ 5 or 6. Zhang et al. [2013] got a similar trend of decrease of the β-parameter
also for larger water clusters. Currently there are no theoretical calculations of
the photoelectron distributions to support these observations.

As an explanation for that trend for larger clusters, Zhang et al. [2013] and
Hartweg et al. [2017] propose the effect of multiple scattering of the photoelectrons
in the cluster. In this thesis, this effect will be neglected, though only small, not
large clusters will be studied here. One of the possible explanations for the
trend of decreasing β and the change in its shape for small water clusters is an
”interference of partial waves from many centers” of photoionization, see p. 3 of
Hartweg et al. [2017].

The main goal of this thesis is to formulate a theory of photoionization of
water clusters in the approximation of independent molecules, which includes
the effect of multicenter ionization, and investigate whether this model explains
some of the experimental results obtained by Hartweg et al. [2017]. Besides

Figure 2: The 1b1 molecular orbital of an H2O molecule that we focus on in this
thesis. The oxygen atom is red, the hydrogen atoms are white. The visualization
was made by the code Gabedit (see e.g. Allouche [2011]) and provided to me by
my supervisor.
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that, we will also investigate the effects of the cluster conformation, especially of
the orientations of the individual H2O molecules with respect to the cluster, in
order to see whether the photoelectron spectroscopy could be used to verify the
theoretically calculated cluster geometries.

The putative geometric structures of small water clusters will be taken from
the recent work Rakshit et al. [2019a]. The authors used ”an improved version of
the Monte Carlo Temperature Basin Paving (MCTBP) method” (Rakshit et al.
[2019b]) together with an interaction potential labeled as TTM2.1-F for clusters
composed of 3-30 H2O molecules. The resulting most probable geometries are
freely accessible in the database on the website (Rakshit et al. [2019b]).

The tests of the method developed here will focus only on the 1b1 molecular
orbital of an H2O monomer (see figure 2). This orbital has the advantage that
it is very close to the atomic p-orbital which provides a fast convergence of the
partial wave expansion. The input data for that orbital needed for calculations
were given to me by my supervisor.
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1. Theory
The theory of photoionization is a part of the quantum theory of particle col-
lisions. The probability amplitude of photoionization can be calculated using
the non-stationary perturbation theory, considering the electromagnetic waves
as a classical external periodic-field perturbation added to the Hamiltonian (see
Friedrich [2006], chapter 2.4 or Cejnar [2013], p. 149-157). This approach leads
to the expression of the probability amplitude in terms of the dipole matrix ele-
ments between the initial (neutral) and final (ionic) wave functions of the system.
Manipulating these dipole matrix elements will be the central task of the theory
developed here.

This theory will be briefly summarized in Subsection 1.2.1 bellow, and after
that, a mathematical description of the photoelectron angular distribution for a
single molecule and its generalization for a cluster will be derived.

Unless explicitly stated, atomic units (a.u.) will be used in the entire thesis.
These units are defined by setting the following fundamental constants to unity:

Planck constant (reduced): ℏ = 1,

elementary charge: e = 1,

electron rest mass: me = 1,

Bohr radius: a0 = 1. (1.1)

The atomic unit of energy is Hartree defined as:

Eh = ℏ2

mea2
0

= 27.2113961 eV, (1.2)

where eV denotes electronvolts. For the cross sections, which have the units of
area, we adopt the megabarn units (Mb):

1 Mb = 10−22 m2. (1.3)

1.1 General form of the photoelectron angular
distribution

Since the orientation of molecules or clusters produced by a molecular beam with
respect to the lab frame usually cannot be fixed, the theory is forced to work with
randomly oriented molecules and clusters. Therefore, the differential cross section
of the photoelectron angular distribution must be averaged over all orientations
of the molecules or clusters (see e.g. Chandra [1987]), i.e. integrated over all
their Euler angles defined with respect to the lab frame.

Angular distributions of the products of binary reactions were first studied
generally by Yang [1948]. A special case of the general binary reaction is the
ionization of a molecule by a single photon:

M + hν −→ M+ + e−. (1.4)
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In this case Yang’s theorem implies that the photoelectron angular distribution
has the form:(︄

dσ

dk′
f

)︄
Av

= σ(E)
4π

(1 + β1(E)P1(cos θ′) + β2(E)P2(cos θ′)) , (1.5)

where
(︃

dσ
dk′

f

)︃
Av

is the averaged differential cross section, k′
f is the momentum

vector of the photoelectron in the lab frame, here written in the sense that the
differential cross section is measured with respect to the direction of k′

f , σ(E)
is the integral cross section, β1(E) and β2(E) are the so called asymmetry pa-
rameters, mentioned already in the introduction, E is the photon energy, P1, P2
are the Legendre polynomials and θ′ is the angle measured from the lab frame
z′-axis.

The relation (1.5) actually holds for photoelectron angular distribution in
general which means that the entire information about that distribution is con-
tained in the total cross section σ(E) and the asymmetry parameters β1(E) and
β2(E). And moreover, the β1 parameter is nonzero only in photoionization of chi-
ral molecules (i.e. molecules that don’t have a plane of symmetry) by circularly
polarized light, see Ritchie [1976]. Therefore in many cases, all the information
about the angular distribution is included only in σ(E) and β2(E). These prop-
erties are very important for both experimental and theoretical studies of the
photoelectron spectroscopy.

The three parameters σ(E), β1(E), β2(E) depend on the energy of ionizing
photons which can be well controlled e.g. by using a monochromatic laser or
a synchrotron. Hence these parameters can be obtained by measuring the en-
ergy and the angular distribution of photoelectrons in spectroscopic experiments,
providing some information about the ionized material.

The observables σ, β1, β2 are functions of the quantum transition amplitudes
(the dipole matrix elements). In the following sections we will provide derivation
of these observables first for a single molecule and then for a cluster.

1.2 Photoionization of a single molecule
Since the derivation of the photoionization amplitude is not the main subject of
this thesis, only its main ideas will be presented here. For a detailed derivation
see e.g. Friedrich [2006], section 2.4. Application of the first order perturbation
theory and the dipole approximation leads to the expression of the photoioniza-
tion amplitude in terms of the dipole matrix elements as mentioned above (see
e.g. Friedrich [2006], p. 131 or Cejnar [2013], p. 156). The relation connecting
the photoelectron angular distribution will be derived in detail using the partial
wave expansion of these dipole matrix elements.

1.2.1 Photoionization amplitude of a single molecule
To describe a single photon ionization it is sufficient to consider the electromag-
netic field as a classical external field. Then the non-relativistic Hamiltonian
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describing interaction of N electrons with the field is1:

Ĥ =
N∑︂

i=1

1
2[p̂i − qA(x̂i, t)]2 +

N∑︂
i=1

V (x̂i, t), (1.6)

where p̂i and x̂i are the momentum and coordinate vector operators of the i-
th electron (Friedrich [2006], p. 125 or Cejnar [2013], p. 155). The potential
V (x̂i, t) includes the scalar potential Φ(x̂i, t) and all field-free interaction terms.
Performing the square of the first term gives:

Ĥ =
N∑︂

i=1

[︄
p̂2

i

2 + V (x̂i, t)
]︄

−
N∑︂

i=1

q

2
[︂
A(x̂i, t)· p̂i + p̂i· A(x̂i, t) + qA(x̂i, t)2

]︂
. (1.7)

In the first order perturbation theory, the term qA(x̂i, t)2 can be neglected
(Friedrich [2006], p. 129, Cejnar [2013], p. 155), and furthermore, if we use the
Coulomb gauge condition:

∇· A(x̂i, t) = 0, (1.8)
the fourth term in the Hamiltonian (1.7) vanishes too and so does the scalar
potential since we assume a source-free field. Therefore, we can write:

Ĥ =
N∑︂

i=1

[︄
p̂2

i

2 + V (x̂i)
]︄

−
N∑︂

i=1

q

2A(x̂i, t)· p̂i. (1.9)

In this shape, the first two terms form the free Hamiltonian:

Ĥ0 =
N∑︂

i=1

[︄
p̂2

i

2 + V (x̂i)
]︄

(1.10)

and the second term is identified as the perturbation:

ĤI = −
N∑︂

i=1

q

2A(x̂i, t)· p̂i. (1.11)

To describe the photoionization we assume the electromagnetic wave in the
form of a plane wave (Cejnar [2013], p. 156):

A(r̂, t) = 2A0ξ cos
(︃

ω

c
n· r̂ − ωt

)︃
= A0ξ

[︃
e+i(ω

c
n·r̂−ωt) + e−i(ω

c
n·r̂−ωt)

]︃
, (1.12)

where ξ is the polarization vector, n is the direction of propagation of the wave
and ω is the angular frequency (i.e. the energy of the photon in atomic units).
Inserting this expression into the equation (1.11) yields a periodic perturbation:

ĤI = −q

2A0

N∑︂
i=1

[︃
e+i(ω

c
n·r̂i)(ξ· p̂i)e−iωt + e−i(ω

c
n·r̂i)(ξ· p̂i)e+iωt

]︃
, (1.13)

where the first term describes an absorption of the quantum of energy ω and the
second term a stimulated emission (Cejnar [2013], p. 154-156):

V̂ † = qe+i ω
c

n·r̂i(ξ· p̂i), (1.14)
V̂ = qe−i ω

c
n·r̂i(ξ· p̂i). (1.15)

1Since we use the atomic units defined by eq. (1.1), we omit writing the symbol me. However
we keep writing the charge q = −e, because it will be used bellow.
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Therefore, when calculating the single photon ionization amplitude, only the
absorption potential (1.14) from the first term in eq. (1.13) contributes.

The transition amplitude is calculated using Fermi’s golden rule (Friedrich
[2006], section 2.4.1, Cejnar [2013], p. 153) which assumes that the interaction
has an infinite duration (the electromagnetic pulse is very long). In this approxi-
mation the photoionization amplitude will be proportional to the matrix element
of the V̂ † potential2:

aξ
fi(kf ) ∝

⟨︄
Ψ(−)

f,kf

⃓⃓⃓⃓
⃓q

N∑︂
j=1

e+i ω
c

n·r̂j (ξ· p̂j)
⃓⃓⃓⃓
⃓Ψi

⟩︄
, (1.16)

where |Ψi⟩ is the initial bound state of the molecule and ⟨Ψ(−)
f,kf

| is the final state
with one electron in the continuum with momentum kf and the residual molecule
in state f . Now we apply the dipole approximation where we assume that the
wavelength of the field:

λ = c

ω
(1.17)

is much larger than the characteristic dimension of the system being ionized and
write:

e+i ω
c

n·r̂j = 1 +
∞∑︂

k=1

1
k!

(︃
iω
c

n· r̂j

)︃k

≈ 1. (1.18)

Therefore, in the first order perturbation theory the photoionization amplitude
(1.16) reduces to:

aξ
fi(kf ) ∝

⟨︄
Ψ(−)

f,kf

⃓⃓⃓⃓
⃓qξ·

N∑︂
j=1

p̂j

⃓⃓⃓⃓
⃓Ψi

⟩︄
. (1.19)

Using the relation:
p̂j = −i

[︂
r̂j, Ĥ0

]︂
, (1.20)

which is a direct consequence of the commutator between r̂ and p̂, the result
(1.19) is rewritten as (Cejnar [2013], p. 156):

aξ
fi(kf ) ∝ i(E0f − E0i)

⟨︄
Ψ(−)

f,kf

⃓⃓⃓⃓
⃓ξ·

N∑︂
j=1

qr̂j

⃓⃓⃓⃓
⃓Ψi

⟩︄
= iω

⟨︄
Ψ(−)

f,kf

⃓⃓⃓⃓
⃓ξ·

N∑︂
j=1

qr̂j

⃓⃓⃓⃓
⃓Ψi

⟩︄
. (1.21)

The operator inside this bracket is the dipole operator:

d̂ =
N∑︂

j=1
qr̂j. (1.22)

Since the final ionized state depends on the photoelectron momentum kf , the
photoionization amplitude can be written as:

aξ
fi(kf ) ∝ iω⟨Ψ(−)

f,kf
|ξ· d̂|Ψi⟩ = iωξ· dfi(kf ), (1.23)

where dfi(kf ) is the dipole matrix element between the initial and the final state
which inherits the dependence on the photoelectron momentum from the final
state.

2The summation index is changed from i to j here in order for it not to be confused with
the index of the initial state i.
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The photoionization cross section is calculated as the ratio of absorption prob-
ability per unit time multiplied by the density of continuum states and the current
density of the incoming photons which leads to (Friedrich [2006], p. 131, 135):

σ = 4π2αω |ξ· dfi(kf )|2 , (1.24)

where α is the fine structure constant. In the following, we will identify the
photoionization amplitude only with the quantity entering the modulus squared:

aξ
fi(kf ) = ξ· dfi(kf ). (1.25)

1.2.2 Partial wave dipoles
The partial wave expansion is a method often used to solve problems of scattering.
In case of scattering from a combination of a Coulomb potential and a short-range
potential the asymptotic wave function for r → ∞ is given by a sum of Coulomb-
corrected plane wave and a modulated outgoing spherical wave (Friedrich [2006],
p. 268-269). A slightly modified approach can be used to describe photoionization.

The electron released into the continuum leaves behind a positively charged
ion which acts on it with the Coulomb force. Therefore the asymptotic form of
the ionized wave function Ψ(−)

f,k′
f
(r) can be written in a very similar way as in case

of scattering, only replacing the outgoing spherical wave by the incoming one:

Ψ(−)
f,kf

(r) −−−→
r→∞

1
(2π)3/2

[︄
eikf ·r+η ln[kf r(1−k̂f ·r̂)] +

+(fC(θ) + f(θ, φ))e−i[kf r−η ln(2kf r)]

r

]︄
, (1.26)

where r, θ, φ are the spherical coordinates, k̂f and r̂ are the unit vectors in the
directions of kf and r, fC(θ) is the Coulomb scattering amplitude and f(θ, φ) is
the amplitude originating in the short-range part of the interaction. The photo-
electron wave function can be expanded into partial waves:

Ψ(−)
f,kf

(r) =
∞∑︂

l=0

+l∑︂
m=−l

ile−iσlY ∗
lm(kf )Ψ(−)

f,kf ,lm(r) =

=
∞∑︂

l=0

+l∑︂
m=−l

ile−iσlY ∗
lm(kf )R(−)

lm (r)Ylm(r), (1.27)

where R
(−)
lm (r) form the radial part and the spherical harmonics Ylm(r) form the

angular part of the wave functions and σl is the Coulomb phase, see Friedrich
[2006], section 1.3.2:

σl = arg[Γ(l + 1 + iη)], (1.28)

η = − 1
kf

. (1.29)

The sum over the m indices must be present since we consider a general non-
spherical interaction. Substituting this partial wave expansion into the relation
for the dipole matrix elements (1.23) yields:

ξ· dfi(kf ) =
∑︂
lm

(−i)leiσlYlm(kf )ξ· dfi,lm(kf ), (1.30)
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where Ylm are the spherical harmonics and dlm(kf ) are the partial wave dipole
matrix elements between the initial state wave function and the partial waves of
the final wave function:

dfi,lm = ⟨Ψ(−)
f,kf ,lm|d̂|Ψi⟩ (1.31)

The phase factor in eq. (1.30) is complex conjugated because the final state
appears in BRA of the matrix elements (1.31). The use of vectors in the ar-
guments of the spherical harmonics is a simplified notation meaning that the
spherical harmonic depends only on the direction of the vector. For example
Ylm(kf ) = Ylm(θkf

, φkf
), where θkf

and φkf
are defined by

kfx = kf sin θkf
cos φkf

,

kfy = kf sin θkf
sin φkf

, (1.32)
kfz = kf cos θkf

.

This notation is used throughout the entire thesis.
The advantage of the partial wave dipole matrix elements dfi,lm(kf ) is that

they depend only on the magnitude of the photoelectron momentum, because
the dependence on its direction is described by the spherical harmonics in the
expansion (1.30). This finds its use in the averaging of the photoelectron angular
distribution over all orientations of the molecule which is performed bellow.

1.2.3 Transformation from the lab frame to the molecular
frame

To distinguish between the molecular frame and the lab frame the quantities in
the lab frame will be denoted as primed.

We consider a photoionization experiment using a laser with a fixed linear
polarization and electron detectors at fixed positions in the lab. In this case, the
unit photon polarization vector ξ′ and the photoelectron momentum k′

f are fixed
column vectors in the lab frame.

However, the dipole matrix elements are calculated in the molecular frame.
Therefore, the coordinates of the photon polarization and photoelectron momen-
tum vectors have to be transformed into that frame. That is done simply by
describing the rotation of the molecule as a rotation R(α, β, γ) of the molecular
frame in the lab parametrized by three Euler angles α, β, γ. The initial orien-
tation of the molecular frame is identified with the lab frame. First the frame
rotates around the lab-frame z′-axis by the angle α, then around the new tem-
porary y′′-axis by the angle β and finally around the final z-axis by the angle
γ (z′ − y′′ − z convention, explained e.g. in Varshalovich et al. [1988], section
1.4.1, or Brink and Satchler [1968], p. 20 or Cejnar [2013], p. 129), ending up
with a rotated molecular frame. The process equivalent to this is firstly rotating
the coordinate frame around the original lab-frame z′-axis by the angle γ, then
rotating it around the original y′-axis by the angle β and finally around the orig-
inal z′-axis by the angle α (z′ − y′ − z′ convention). In this second way, all the
Euler angles are defined with respect to the initial coordinate system (the lab).
Therefore, the 3x3 rotation matrix R(α, β, γ) is known explicitly, as it is written

11



Figure 1.1: Illustration of the meaning of passive and active rotation in the yz
plane. Lab frame is blue, molecular frame is red, vector k′

f fixed in the lab
frame is green. The basis vectors have the corresponding colors. The color of the
symbols of the vector and of the equalities (=) matches the color of the frame in
which they are defined. Passive rotation (left): the view from the lab-frame. The
mol-frame rotates from its initial position (which is identified with the lab frame)
by an angle +δ. The lab-frame and the vector k′

f stay fixed. Active rotation
(right): the view from the mol-frame. The mol-frame stays fixed. The vector k′

f

rotates from its initial position by an angle −δ, which transforms it to kf .

just as a simple matrix multiplication of these successive rotations:

R(α, β, γ) = A(α)B(β)C(γ) =

=

⎛⎜⎝c(α)c(β)c(γ) − s(α)s(γ) −c(α)c(β)s(γ) − s(α)c(γ) c(α)s(β)
s(α)c(β)c(γ) + c(α)s(γ) −s(α)c(β)s(γ) + c(α)c(γ) s(α)s(β)

−s(β)c(γ) s(β)s(γ) c(β)

⎞⎟⎠ ,

(1.33)

where the matrices A(α), B(β), C(γ) represent the elementary rotations around
the axes z′, y′ and z′. A shortened notation for the trigonometric functions is
used: c(x) = cos x, s(x) = sin x. The form of the rotational matrix in eq. (1.33)
is the same as in Varshalovich et al. [1988], p. 30, and it corresponds to the fact
that R(α, β, γ) is a rotation of the coordinate frame, i.e. a passive rotation (see
Man [2017]).

Throughout this entire thesis, we use the same conventions of rotations and
rotational operators as Varshalovich et al. [1988] and Brink and Satchler [1968].
The only difference, that must be pointed out, is that in these books the primed
coordinate frame is the rotated one, while in this thesis the primed values belong
to the lab frame, i.e. the initial (not-rotated) coordinate frame. This is the
standard notation used in the atomic and molecular community. Using these

12



conventions, the rotation of the molecular frame is:

x = R(α, β, γ)x′,

y = R(α, β, γ)y′,

z = R(α, β, γ)z′. (1.34)

These equations express the rotated molecular frame basis vectors x, y, z in the
lab frame.

Since a rotation of the molecular frame in one direction is equivalent to the
rotation of the vectors in that frame in the opposite direction (see Man [2017] and
figures 1.1 and 1.2), the coordinates of the lab-frame vectors in the rotated molec-
ular frame are obtained by the inverse rotation R(α, β, γ)−1 (see Varshalovich
et al. [1988], p. 28-31). Here we apply this to to the vectors of photon polariza-
tion and electron momentum:

ξ = R(α, β, γ)−1ξ′ = R(−γ, −β, −α)ξ′, (1.35)
kf = R(α, β, γ)−1k′

f = R(−γ, −β, −α)k′
f . (1.36)

Note the opposite order of application of the individual angles in the second
equalities. These equations are written in the molecular frame, and vice versa,
the inverse transformations k′

f = Rkf , ξ′ = Rξ are written in the lab frame (see
figure 1.2).

Using the relations (1.34)-(1.36) the lab-frame dipole matrix element for an
oriented molecule is written as:

aξ′

fi(k′
f ) = ξ′· d′

fi(k′
f , R) = ξ· dfi(kf ) = (1.37)

= (R−1ξ′)· dfi(R−1k′
f ). (1.38)

1.2.4 Averaging over all orientations of the molecule
To calculate the angular distribution (the differential cross section) of photoelec-
trons released from a gas of randomly oriented molecules, the transition proba-
bility must be averaged over all possible orientations of the molecule in the lab
frame, i.e. integrated over all possible rotations of the molecular frame:(︄

dσ

dk′
f

)︄
Av

= 4π2αω
1

8π2

∫︂
dR

⃓⃓⃓
aξ′

fi(k′
f )
⃓⃓⃓2

=

= 4π2αω
1

8π2

∫︂
dR

⃓⃓⃓
ξ′· d′

fi(k′
f , R)

⃓⃓⃓2
, (1.39)

where for simplicity
∫︁

dR denotes:
∫︁

dR =
∫︁ 2π

0 dα
∫︁ π

0 sin (β)dβ
∫︁ 2π

0 dγ. That can
be done either analytically or numerically. The analytic approach, using the
partial wave expansion of the dipoles and relations for the rotational operators
will be developed here in this subsection. The numerical approach, using adaptive
Gauss-Legendre quadrature, will be described in Chapter 2. For a single molecule
the numerical calculations were used primarily to verify the correctness of the
analytic results.

For simplicity in the following the photon polarization will be set either to
linear or left- or right-handed circular. To describe the photon polarization we

13



Figure 1.2: Illustration of the rotation of the molecular frame R(α, β, γ), its
inverse R−1(α, β, γ) = R(−γ, −β, −α) and the corresponding vector transfor-
mations in 3D. The molecular frame is red, the lab frame is blue. Their basis
vectors have the corresponding colors. The photoelectron momentum vector k′

f

is depicted as the green arrow in both frames and is fixed in the lab frame. The
color of the symbols of the vector and of the equalities (=) matches the color of
the frame in which they are defined.

take advantage of using the so called covariant spherical coordinates xp, where p ∈
{−1, 0, +1}, defined via their relations to the Cartesian and spherical coordinates
as (see Varshalovich et al. [1988], p. 5):

x+1 = − 1√
2

(x + iy) = − 1√
2

r sin θeiφ,

x0 = z = r cos θ, (1.40)

x−1 = 1√
2

(x + iy) = 1√
2

r sin θe−iφ,

where r, θ and φ are the spherical coordinates defined by:

x = r sin θ cos φ,

y = r sin θ sin φ, (1.41)
z = r cos θ,

where θ is the polar angle and φ is the azimuthal angle. For linearly polarized
light, the z-axis is identified with the direction of the polarization, while for
circularly polarized light, the z-axis is identified with the direction of the photon
propagation with the electric field vector rotating in the xy plane. Hence, in this
covariant spherical basis, the linear photon polarization corresponds to p = 0 and
circular polarization corresponds to p = ±1 (left or right circular polarization).

Therefore, when only one of these three special cases of the photon polarization
is chosen, the unit polarization vector ξ′ will have only one non-zero component
(e.g. polarization along the z’-axis corresponds to p = 0), which reduces the
relation (1.37) so that we can write:

ap
fi(k′

f ) = d′p
fi(k′

f , R), (1.42)
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where again, as before, the primed quantities and vectors are defined in the lab-
frame.

However, using directly the lab-frame dipoles to perform the rotational aver-
aging would require a separate calculation of the dipoles for each rotation R of the
molecule. This direct approach makes the analytic averaging impossible. Instead,
we can express the lab-frame dipoles using the dipoles calculated in the molecu-
lar frame in the partial wave basis and then apply the well-known properties of
spherical harmonics under rotations.

The expression of the lab-frame dipole in the partial-wave basis with respect
to the lab coordinate frame is:

d′p
fi(k′

f , R) =
∑︂
lm

(−i)leiσlY ′
lm(k′

f )d′p
lm(k′

f ), (1.43)

where for clarity Y ′
lm denote explicitly spherical harmonics in the lab-frame basis.

However, Y ′
lm and Ylm are obviously the same functions, hence we drop the prime

from now on. Just as d′p
fi in eq. (1.42), the partial wave dipoles d′p

lm in the
relation (1.43) are still in the lab-frame and depend only on the magnitude of the
photoelectron momentum k′

f = kf , which does not change by rotation. They are
defined as the matrix elements of the dipole operator:

d′p
fi,lm = ⟨Ψ′(−)

f,kf ,lm|µ̂p|Ψ′
i⟩, (1.44)

where

µ̂p =
√︄

4π

3 rY1p (1.45)

and Ψ′(−)
f,kf ,lm(r′) is the partial wave component of the wave function. The dipole

matrix elements in the molecular frame are, of course, defined in the very same
way, only without the primes:

dp
fi,lm =

√︄
4π

3 r⟨Ψ(−)
f,kf ,lm|Y1p|Ψi⟩. (1.46)

The indices fi in d′p
fi,lm and dp

fi,lm are still those of the initial |Ψi⟩ and final |Ψ(−)
f,kf

⟩
states. Since these states are considered fixed, the indices fi will be omitted from
now on.

In order to establish connection between the dipoles in the two frames of
reference the lab-frame spherical harmonics Y1p(r′) of the photon and Ylm(r′) of
the photoelectron have to be expressed in terms of the molecular-frame spherical
harmonics Y1p(r) and Ylm(r) and the lab-frame initial and final states have to be
replaced with those from the molecular frame. That is accomplished utilizing the
Wigner rotation matrices.

Since, as was already written above, rotation R is defined as the rotation from
the lab frame to the molecular frame (see eq. (1.34)), the angular momentum basis
in the rotated mol-frame is obtained applying a unitary operator (as it represents
a rotation) on the angular basis in the lab-frame (see Brink and Satchler [1968],
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p. 27-28, or Varshalovich et al. [1988], p. 27)3:

|lm⟩ = D(R)|lm⟩′ =
∑︂

µ

′⟨lµ|D(R)|lm⟩′|lµ⟩′ =
∑︂

µ

Dl
µ,m(R)|lµ⟩′, (1.47)

⟨r|lm⟩ = Ylm(r) =
∑︂

µ

Dl
µ,m(R)Ylµ(r′), (1.48)

where Dl
µ,m(R) are the Wigner rotation matrices. Therefore, the bra of the pho-

toelectron wave function that enters into eq (1.43) can be expressed using the
inverse of the transformation (1.48) as:

⟨Ψ′(−)
lm |r′⟩ =

[︂
R

(−)
lm (r)

]︂∗
Y ∗

lm(r′) =
[︂
R

(−)
lm (r)

]︂∗ [︄∑︂
µ

Dl
µ,m(R−1)Ylµ(r)

]︄∗

. (1.49)

The lab-frame spherical harmonic of the photon is written similarly, as the inverse
of the transformation (1.48):

Y1p(r′) =
∑︂

q

D1
q,p(R−1)Y1q(r). (1.50)

Thus, substituting equations (1.49) and (1.50) into (1.44) and finally into
(1.43) while simultaneously removing primes from the initial and final photoelec-
tron wave functions gives the relation for the lab-frame dipole amplitude in terms
of quantities calculated in the molecular frame:

d′p
fi(k′

f , R) =
∑︂
lm

(−i)leiσlYlm(k′
f )
∑︂
µ,q

[︂
Dl

µ,m(R−1)
]︂∗

D1
q,p(R−1)dq

lµ(kf ). (1.51)

Using the relations for the rotational matrices:[︂
Dl

µ,m(R−1)
]︂∗

= Dl
m,µ(R), (1.52)

D1
q,p(R−1) =

[︂
D1

p,q(R)
]︂∗

, (1.53)

which are consequences of the properties of the unitary character of the rotation
R, we further simplify the equation (1.51):

d′p
fi(k′

f , R) =
∑︂
lm

(−i)leiσlYlm(k′
f )
∑︂
µ,q

Dl
m,µ(R)

[︂
D1

p,q(R)
]︂∗

dq
lµ(kf ). (1.54)

Swapping the notation for m and µ and rearranging the sums gives the relation:

d′p
fi(k′

f , R) =
∑︂
lm

(−i)leiσl
∑︂

µ

Ylµ(k′
f )Dl

µ,m(R)
∑︂

q

[︂
D1

p,q(R)
]︂∗

dq
lm(kf ). (1.55)

For simplicity, from now on we absorb the phase factors (−i)leiσl into the
dipole matrix element:

(−i)leiσldq
lm → dq

lm. (1.56)
Finally, the relation for the lab-frame dipole amplitudes can be written as:

d′p
fi(k′

f , R) =
∑︂
lm

∑︂
µ

Ylµ(k′
f )Dl

µ,m(R)
∑︂

q

[︂
D1

p,q(R)
]︂∗

dq
lm(kf ). (1.57)

3Remember that the definition of primed and unprimed systems in Varshalovich et al. [1988]
is opposite to that in this thesis.
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With that, we can now move to the analytical averaging over all orientations
of the molecule. Substituting eq. (1.57) into the integral

∫︁
dR in eq. (1.39) yields:(︄

dσ

dk′
f

)︄
Av

= 4π2αω
1

8π2

∫︂
dRdp

fi
′(k′

f , R)
[︂
dp

fi
′(k′

f , R)
]︂∗

= (1.58)

= 4π2αω

8π2

∫︂
dR

⃓⃓⃓⃓
⃓∑︂

lm

∑︂
µ

Ylµ(k′
f )Dl

µ,m(R)
∑︂

q

[︂
D1

p,q(R)
]︂∗

dq
lm(kf )

⃓⃓⃓⃓
⃓
2

= (1.59)

= αω

2 Ylµ(k′
f )Y ∗

l′µ′(k′
f )
∫︂

dR
∑︂
lm

∑︂
l′m′

∑︂
µ

∑︂
µ′

∑︂
q

∑︂
q′

×

×Dl
µ,m(R)

[︂
Dl′

µ′,m′(R)
]︂∗ [︂

D1
p,q(R)

]︂∗
D1

p,q′(R)dq
lm(kf )

[︂
dq′

l′m′(kf )
]︂∗

. (1.60)

In the following, the relation (1.60) will be simplified using the relations for the
Wigner D-matrices (Brink and Satchler [1968]) in order to rewrite it into the
shape of the general formula (1.5).

Firstly, we can couple, separately, the photon and electron angular momenta:[︂
D1

p,q(R)
]︂∗

D1
p,q′(R) = (−1)p−qD1

−p,−q(R)D1
p,q′(R) =

= (−1)p−q
∑︂
K

(2K + 1)
(︄

1 1 K
−p p 0

)︄(︄
1 1 K

−q q′ MK

)︄ [︂
DK

0,MK

]︂∗
, (1.61)

[︂
Dl′

µ′,m′(R)
]︂∗

Dl
µ,m(R) = (−1)µ′−m′

Dl
µ,m(R)Dl′

−µ′,−m′(R) =

= (−1)µ′−m′ ∑︂
λ

(2λ + 1)
(︄

l l′ λ
µ −µ′ Mλ

)︄(︄
l l′ λ
m −m′ Mλ′

)︄
×

×
[︂
Dλ

Mλ,Mλ′

]︂∗
, (1.62)

where
(︄

l l′ L
m m′ M

)︄
are the Wigner 3-j symbols and the index M is fixed by the

selection rule (Varshalovich et al. [1988], p. 235-236):

m + m′ + M = 0. (1.63)

The orthogonality relation between Wigner D-matrices can now be used to per-
form the integral over R:∫︂

dR
[︂
Dλ

Mλ,Mλ′

]︂∗ [︂
DK

0,MK

]︂∗
=
∫︂

dR
[︂
Dλ

Mλ,Mλ′

]︂∗
DK

0,−MK
(−1)−MK =

= δλ,KδMλ,0δMλ′ ,−MK
(−1)−MK

8π2

2K + 1 . (1.64)

This result implies constraints on some of the indices:

λ = K,

µ′ = µ,

m′ − m = q′ − q, (1.65)

and the selection rules for the angular momenta in the 3-j symbols (Varshalovich
et al. [1988], p. 235-236) yield:

K ≤ 2,

λ ≤ 2. (1.66)
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We contract the spherical harmonics of the photoelectron momentum keeping
for a moment the index µ′ as it is (see Brink and Satchler [1968], Appendix IV):

Ylµ(k′
f )Y ∗

l′µ′(k′
f ) =

∑︂
L,M

(−1)µ′

√︄
(2l + 1)(2l′ + 1)(2L + 1)

4π
×

×
(︄

l l′ L
0 0 0

)︄(︄
l l′ L
µ −µ′ M

)︄
Y ∗

LM(k′
f ), (1.67)

which makes it possible to apply one of the orthogonality relations between the
Wigner 3-j symbols (see Brink and Satchler [1968], Appendix I) to one 3-j symbol
from eq. (1.62) and one from eq (1.67):

∑︂
µ,µ′

(2λ + 1)
(︄

l l′ λ
µ −µ′ Mλ

)︄(︄
l l′ L
µ −µ′ M

)︄
= δλ,LδMλ,M . (1.68)

This implies:

0 ≤ L = λ = K ≤ 2,

Mλ = M = µ′ − µ = 0, (1.69)

which means that the photoelectron angular distribution contains only real spher-
ical harmonics with K ≤ 2 and M = 0 in agreement with Yang’s theorem (1.5).

Inserting all these equations into the formula (1.60), while noticing that the
factor (−1)µ′ from the equation (1.67) and the same factor from the relation
(1.62) cancel out, gives:(︄

dσ

dk′
f

)︄
Av

= 4π2αω
1

8π2

∑︂
K

∑︂
l,m

∑︂
l′,m′

∑︂
q,q′

(−1)p−q 2K + 1
2K + 18π2(−1)q′−q(−1)−m′

×
√︄

(2l + 1)(2l′ + 1)(2K + 1)
4π

(︄
l l′ K
m −m′ m′ − m

)︄(︄
l l′ K
0 0 0

)︄

×
(︄

1 1 K
−p p 0

)︄(︄
1 1 K

−q q′ m − m′

)︄
dq

lm(kf )
[︂
dq′

l′m′(kf )
]︂∗

YK,0(k′
f ). (1.70)

Simplifying the numerical factors and expressing the spherical harmonics in terms
of Legendre polynomials (see e.g. Brink and Satchler [1968], Appendix IV) as:

YK0(k′
f ) =

√︄
2K + 1

4π
PK(cos θ′), (1.71)

where θ′ is the angle measured from the lab-frame z′ axis, finally leads to the
definitive result for orientationally averaged angular distribution of photoelec-
trons: (︄

dσ

dk′
f

)︄
Av

= 1
4π

4π2αω
∑︂
K

∑︂
l,m

∑︂
l′,m′

∑︂
q,q′

(−1)p+q′−m′
√︂

(2l + 1)(2l′ + 1)

×(2K + 1)
(︄

l l′ K
m −m′ m′ − m

)︄(︄
l l′ K
0 0 0

)︄(︄
1 1 K

−p p 0

)︄

×
(︄

1 1 K
−q q′ m − m′

)︄
dq

lm(kf )
[︂
dq′

l′m′(kf )
]︂∗

PK(cos θ′). (1.72)
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This result can be rewritten compactly as:(︄
dσ

dk′
f

)︄
Av

= 1
4π

∑︂
K

AKPK(cos θ′), (1.73)

where AK embraces all the other sums and the pre-factor 4π2αω. Comparison
with the standard formula (1.5) immediately gives expressions for the σ, β1, β2
parameters:

σ(E) = A0, (1.74)

β1(E) = A1

A0
, (1.75)

β2(E) = A2

A0
. (1.76)

This means that each β parameter can be calculated separately by fixing the
index K and carrying out the remaining summations in eq. (1.72).

However, since the H2O molecule has two planes of symmetry, the parame-
ter β1(E) is always zero for a single water molecule (see Ritchie [1976] or the
discussion in Section 1.1).

Before moving to molecular clusters, an important property can be proved. If
K = 0, the selection rules for the 3-j symbols immediately imply:

l = l′,

m = m′ ⇒ q = q′. (1.77)

This means that:

σ(E) = 4π2αω
∑︂
l,m

(2l + 1) |dq
lm(kf )|2 , (1.78)

i.e. the integral cross section is proportional to the sum of squares of the dipole
matrix elements.

1.3 Independent molecule model of cluster pho-
toionization

In this section, the relations for integral cross section and asymmetry parameters
of the the angular distribution of photoelectrons released from a single molecule
will be generalised to a simplified model of photoionization of water molecular
clusters.

The photoionization of a cluster can be described using a modification of the
so called independent scattering center approximation (see Massey et al. [1969],
section 10.1.1, p. 666-668) which was developed to describe electron scattering
from molecules. This model treats the scattering of electrons from molecules
as if each atom scattered independently, neglecting the multiple scattering from
the other atoms of the molecule and the redistribution of electrons caused by
the bonds between the atoms. An independent molecule model (IMM) of pho-
toionization of a molecular cluster based on similar assumptions is formulated
bellow.
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1.3.1 Photoionization amplitude for a cluster
In this section we derive an approximate expression for the photoionization am-
plitude for a cluster starting from the amplitude in the lab-frame:

aξ′

fi(k′
f ) = ⟨Ψ′(−),c

f,k′
f

|ξ′· d̂′|Ψ′c
i⟩, (1.79)

where |Ψc
i⟩ is the initial (bound) state of the cluster and ⟨Ψ(−),c

f,k′
f

| is the final
continuum state describing the electron outgoing with momentum k′

f and the
cluster in a ionic state f . The initial state can be approximated by a direct
product of the bound states of the constituent monomers:

|Ψ′c
i⟩ = |Ψ′

g,1⟩|Ψ′
g,2⟩ . . . |Ψ′

g,n⟩, (1.80)

where n is the number of molecules in the cluster. Doing this we neglect the
charge redistribution in the cluster and electron exchange between the monomers.
Similarly, the final state can be approximated as a coherent superposition of the
direct products of monomer states where one of them was ionized:

⟨Ψ′(−),c
f,k′

f
| =

n∑︂
j=1

⟨Ψ′
g,1| . . . ⟨Ψ′(−)

f,k′
f

,j| . . . ⟨Ψ′
g,n|. (1.81)

The form (1.81) additionally neglects the multiple scattering of photoelectrons
from the field of the cluster. Substituting the expressions (1.80) and (1.81) into
the relation (1.79) yields:

aξ′

fi(k′
f ) = ⟨Ψ′(−),c

f,k′
f

|ξ′· d̂′|Ψ′c
i⟩ =

n∑︂
j=1

⟨Ψ′(−)
f,k′

f
,j|ξ

′· d̂′|Ψ′
g,j⟩. (1.82)

These approximations are the main assumptions of our independent molecule
model.

If the electron exchange between the monomers in the initial state was not
neglected, the equation (1.82) would also have to include the cross-terms:

⟨Ψ′(−)
f,k′

f
,i|ξ

′· d̂|Ψ′
g,j⟩, i ̸= j. (1.83)

These terms involve overlap of the photoelectron wave function centered on one
molecule with the bound state wave function centered on another molecule. This
yields a two-center integral, thus the cross-terms would be more difficult to eval-
uate.

However, the relation (1.82) is still not the correct representation of the cluster
photoionization amplitude. Just as for a single molecule (eq. 1.26), the photo-
electron wave function for a cluster is defined by the Coulomb-corrected incoming
wave asymptotic boundary conditions (Friedrich [2006], p. 269):

Ψ′(−),c
f,k′

f
(r′) −−−→

r′→∞

1
(2π)3/2

[︄
eik′

f ·r′+η ln[kf r(1−k̂′
f

·r̂′)] +

+(fC(θ′) + f(θ′, φ′))e−i[kf r−η ln(2kf r)]

r

]︄
, (1.84)
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where r′ is measured from the cluster center of mass and k̂′
f and r̂′ are the unit

vectors in the directions of k′
f and r′, fC(θ′) is the Coulomb scattering amplitude

and f(θ′, φ′) is the contribution from the short-range part of the electron-cluster
interaction. Clearly, the monomer wave functions which are centered on the
centers of mass of the molecules do not satisfy the condition (1.84). Instead,
their asymptotic forms are shifted:

Ψ′(−),c
f,k′

f
,j(r

′) −−−→
r′→∞

1
(2π)3/2

[︄
eik′

f ·(r′−ρj)+η ln[kf ∥r′−ρ′
j∥(1−k̂′

f
· ˆ︂(r′−ρ′

j))] +

+(fC(θ′) + f(θ′, φ′))e−i[kf ∥r′−ρ′
j∥−η ln(2kf ∥r′−ρ′

j∥)]

r

]︄
,(1.85)

where ρ′
j is the position of the center of mass of j-th molecule of the cluster.

Hence, the wave function Ψ(−)
f,k′

f
,j(r′) must be modified to give the proper asymp-

totic form (1.84) before substituting it into the equation (1.82). In particular,
since in the time-dependent formulation only the plane-wave part survives at
t → ∞ (i.e. at the time of observation), it must be ensured that the first terms
from the equations (1.84) and (1.85), corresponding to the Coulomb-corrected
plane wave, are the same.

In order to do that, we neglect the logarithmic correction which is not sep-
arable. Therefore, we replace the Coulomb-corrected plane wave with a regular
plane wave:

eik′
f ·(r′−ρ′

j)+η ln[kf ∥r′−ρ′
j∥(1−k̂′

f
· ˆ︂(r′−ρ′

j))] ∼ eik′
f ·(r′−ρ′

j). (1.86)

Considering that in a real cluster environment the Coulomb potential might be
shielded, this approximation is crude but may not be unreasonable. This yields
that the monomer wave functions Ψ(−)

f,k′
f

,j(r′), entering the relation (1.82), must
be replaced with:

eik′
f ·ρ′

j Ψ′(−)
f,k′

f
,j(r

′). (1.87)

The additional phase factor has the interpretation of the phase difference between
the electron waves emitted from the different monomers. Thus the final expression
for the photoionization amplitude for a cluster in the independent molecule model
is:

aξ′

fi(k′
f ) =

n∑︂
j=1

eik′
f ·ρ′

j ⟨Ψ′(−)
f,k′

f
,j|ξ

′· d̂′|Ψ′
g,j⟩, (1.88)

which is a coherent superposition of the amplitudes for the individual molecules
of the cluster.

1.3.2 Averaging over all orientations of the cluster
Except for the molecular frame dipole matrix elements, in order to preserve their
denotation without primes, from now on, the unprimed values will be written
in the cluster frame. If it is needed to write a value in a molecular frame of a
certain molecule of the cluster, it will be indicated by a superscript MFj, meaning
molecular frame of the j-th molecule.

21



Starting from the relation (1.88) we can write the expression for the photo-
electron angular distribution of the cluster in our IMM model as:(︄

dσ

dk′
f

)︄
Av

= 4π2αω
1

8π2

∫︂
dRCF

⃓⃓⃓⃓
⃓

n∑︂
j=1

ei(k′
f ·ρ′

j)d′p
fi(k′

f , Rj)
⃓⃓⃓⃓
⃓
2

, (1.89)

where n is the number of molecules in the (H2O)n cluster, Rj is the orientation
of j-th molecule with respect to the lab frame (the rotation of the j-th molecular
frame from the lab frame), RCF is the orientation of the entire cluster with
respect to the lab frame (the rotation of the cluster frame from the lab frame),
d′p

fi(k′
f , Rj) is the lab-frame dipole of j-th molecule. This means, that one dipole

element for a single molecule is just replaced by a coherent superposition of the
dipole elements of all molecules in the cluster.

Now we need to deal with the rotations Rj. In our model, the cluster rotates
in the lab frame as a single solid body, with molecules fixed in it. Hence, the
orientation of each molecule with respect to the lab frame Rj can be written as
a composition of a rotation of the cluster frame in the lab (RCF ) and a rotation
(orientation) of the particular molecular frame in the cluster (R̃MF j):

Rj(α, β, γ) = R̃MF j(αMF j, βMF j, γMF j)RCF (αCF , βCF , γCF ), (1.90)

where the tilde in R̃MF j(αMF j, βMF j, γMF j) denotes, that R̃MF j (and its Euler
angles) of each molecule is defined with respect to the cluster frame (not the
lab frame, see fig. 1.3). This is important, because it actually enables the in-
tegration over RCF to be performed independently from R̃MF j. However, the
angles αCF , βCF , γCF of the rotation of the cluster are defined with respect to
the lab frame. This means that the operator of the second rotation R̃MF j must
be transformed from the intermediate cluster frame basis into the lab frame ba-
sis (see Varshalovich et al. [1988], section 1.4.7). That is done by the operator
transformation:

R̃MF j = RCF RMF jR
−1
CF . (1.91)

Therefore, the rotations in (1.90) actually swap the order after rewriting both
into the same basis:

Rj = RCF RMF jR
−1
CF RCF = RCF RMF j (1.92)

The order of the rotations is crucial since in 3D the rotations generally do not
commute. Note, that this is actually the same principle swapping the elementary
rotations by the Euler angles α and γ from the z′ − y′′ − z form to the z′ − y′ − z′

form (see e.g. Cejnar [2013], p. 129 and the discussion above eq. 1.33).
Hence, with the relation (1.90) the rotations of the photon polarization vec-

tor and the photoelectron momentum vector from the lab frame into the j-th
molecular frame can be written as:

ξMF j = R−1
j ξ′ = R−1

MF jR
−1
CF ξ′, (1.93)

kMF j
f = R−1

j k′
f = R−1

MF jR
−1
CF k′

f (1.94)

With the relations (1.89) and (1.92), the formula for the orientationally av-
eraged differential cross section for a cluster can be derived in a similar way as
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Figure 1.3: Illustration of the successive rotation Rj = R̃MF jRCF . The lab frame
is blue, the cluster frame is green, the molecular frame is red. Basis vectors have
the corresponding colors. The color of the signs of the photoelectron momentum
vectors and of the equalities (=) matches the color of the frame in which they are
defined. The Euler angles of RCF are defined with respect to the lab frame and
the angles of R̃MF j are defined with respect to the cluster frame. The text in the
picture shows the formulae of the vector and axes transformations between each
pair of the coordinate frames. The principle of the individual transformations
(forward and inverse) is the same as in the case of rotations of a single molecule
(see fig. 1.2).

before for one molecule, only here we need to deal with the extra phase factors
and the composed rotation mentioned above. Expanding the modulus squared
from eq. (1.89) and combining the exponentials gives:(︄

dσ

dk′
f

)︄
Av

= 4π2αω
1

8π2

∫︂
dRCF

n∑︂
j=1

n∑︂
j′=1

ei(k′
f ·ρ′

j)e
−i(k′

f ·ρ′
j′ ) ×

×d′p
fi(k′

f , Rj)
[︂
d′p

fi(k′
f , Rj′)

]︂∗
=

= 4π2αω
1

8π2

∫︂
dRCF

n∑︂
j=1

n∑︂
j′=1

e
i(k′

f ·(ρ′
j−ρ′

j′ )) ×

×d′p
fi(k′

f , Rj)
[︂
d′p

fi(k′
f , Rj′)

]︂∗
. (1.95)

23



The exponential factor can be expanded in spherical harmonics using the plane
wave expansion (Cejnar [2013], p. 157, Varshalovich et al. [1988], p. 165):

e
ik′

f ·R′
jj′ = 4π

∑︂
L

L∑︂
M=−L

iLjL(kfRjj′)YLM(R′
jj′)Y ∗

LM(k′
f ), (1.96)

where jL is the L-th order spherical Bessel function, R′
jj′ = (ρ′

j − ρ′
j′) is the

difference between the position vectors of j-th and j′-th molecules and k and R′
jj′

are their magnitudes. The lab frame vector R′
jj′ is related to the cluster-frame

position vectors using the rotation RCF :

R′
jj′ = RCF (αCF , βCF , γCF )Rjj′ = RCF (αCF , βCF , γCF )(ρj − ρj′). (1.97)

In the next step we would like to expand the dipole matrix elements for
each molecule in the cluster using the partial wave expansion (1.57) and couple
the partial wave dipoles and spherical harmonics to perform the orientational
averaging.

However, we must realize that the molecules in the cluster are not only rotated
with respect to each other but also shifted (translated) with respect to the cluster
center of mass. This introduces an additional complication in comparison to
averaging for a single water molecule: to couple the spherical harmonics from
mutually shifted molecular frames they all have to be expressed with respect to
the same basis centered on the cluster center of mass. This can be achieved by
translating the spherical harmonics from the molecular frame to the cluster frame
(Varshalovich et al. [1988], p. 142):

Ylm(rc) = Ylm(r + ρj) =
l∑︂

l′=0

[︄
4π(2l′ + 1)(2l − 2l′ + 1)

2l + 1

]︄ 1
2

×
(︄

ρj

rc

)︄l(︄
r

ρj

)︄l′ ∑︂
m1,m2

C lm
l′m1(l−l′)m2Yl′m1(r)Y(l−l′)m2(ρj), (1.98)

where rc denotes a position vector measured in the cluster frame and r a posi-
tion vector in the molecular frame. However, as evident from these equations the
translation depends on the radius r of the point r in the molecular frame. This
means that to express the dipoles in the cluster frame we cannot use straightfor-
wardly the dipoles generated in the spherical basis in the molecular frame since
the radius r enters the integration over all space as implied by the definition of
the partial wave dipole matrix element, see equation (1.44).

In order to perform the analytic averaging for the cluster we assume in the
following that the partial wave dipole matrix elements have been generated in a
solid spherical harmonic basis Slm(r) which is defined as (Helgaker et al. [2000],
section 6.4.2):

Slm(r) =
√︄

4π

2l + 1rlYlm(r). (1.99)

When this basis is used the formula (1.98) takes the form:

Slm(rc) = Slm(r + ρj) =
l∑︂

l′=0

l′∑︂
m′=−l′

∑︂
m′′

Al′m′m′′(ρj)Sl′,m′(r)Sl−l′,m′′(ρj), (1.100)
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where the coefficients Al′m′m′′ can be obtained from equation (1.98) after its mul-
tiplication by

√︂
4π

2l+1rl
c. This translation formula has a trivial meaning: the solid

harmonics are complex polynomials of order l (e.g. S20(r) ∼ 2z2 − x2 − y2) and
their translation is therefore a linear combination of solid harmonics up to that
order. Therefore the last formula can be employed to express the solid harmonics
of the dipoles in the cluster frame, ∆q

lm, using the solid harmonics of the dipoles
from the molecular frame d

lqq′

SH;l′m′ :

∆q
lm =

∑︂
l′m′m′′

1∑︂
lq=0

∑︂
q′q′′

[Al′m′m′′(ρj)Sl−l′,m′′(ρj)]∗ Alqq′q′′(ρj)Sl−lq ,q′′(ρj)dlqq′

SH;l′m′ .

(1.101)
The translation can be neglected for the spherical harmonic of the photoelec-

tron momentum Ylm(kf ) which can be equivalently written in terms of a position
of the electron on the detector: the detector is typically ≈ 1 m away from the
interaction region while the displacement of a single molecule in the cluster is in
the order of 10−10 m.

In the following we therefore assume that the molecular frame dipoles have
been generated in the solid harmonic basis (dlqq′

SH;l′m′) and their angular parts have
been translated into the cluster frame using equation (1.101). It is these dipoles
∆q

lm which are used in the subsequent derivations.
The partial wave expansion of ∆′p

fi(k′
f , Rj) has exactly the form of equation

(1.57). Using the formula (1.96) together with (1.57), we can rewrite the relation
(1.95) as:(︄

dσ

dk′
f

)︄
Av

= 4π2αω
1

8π2

∫︂
dRCF

n∑︂
j=1

n∑︂
j′=1

4π
∑︂
L,M

iLjL(kfRjj′)YLM(R′
jj′) ×

×Y ∗
LM(k′

f )
∑︂
l,m

∑︂
µ

Ylµ(k′
f )Dl

µ,m(Rj)
∑︂

q

[︂
D1

p,q(Rj)
]︂∗

∆q
lm(kf ) ×

×
∑︂
l′,m′

∑︂
µ

Y ∗
l′µ′(k′

f )
[︂
Dl′

µ′,m′(Rj′)
]︂∗∑︂

q′
D1

p,q′(Rj′)
[︂
∆q′

l′m′(kf )
]︂∗

. (1.102)

Now it is time to deal with the composed rotations Rj and Rj′ . The same
principle of basis transformation as described above for a rotational operator in
the Cartesian basis by the equations (1.90)-(1.92) holds for any representation of
the rotation operator. Therefore, the Wigner D-matrix of our composed rotation
is (see Brink and Satchler [1968], Appendix V or Varshalovich et al. [1988], p. 33):

⟨lm1|R̃MF jRCF |lm2⟩ = Dl
m1,m2(R̃MF jRCF ) = Dl

m1,m2(RCF RMF j) =
=

∑︂
m

Dl
m1,m(RCF )Dl

m,m2(RMF j). (1.103)

Besides that we also need to express the spherical harmonics YLM(R′
jj′) depend-

ing on the direction of the vector R′
jj′ = ρ′

j −ρ′
j′ using the vector Rjj′ = ρj −ρj′

which does not depend on the rotation RCF . In analogy with equations (1.48)
and (1.50):

YLM(R′
jj′) =

∑︂
MY

[︂
DL

M,MY
(RCF )

]︂∗
YLMY

(Rjj′). (1.104)
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Using the formula (1.103) and substituting the relation (1.104) into the ex-
pression (1.102) implies:(︄

dσ

dk′
f

)︄
Av

= 4π2αω
1

8π2

∫︂
dRCF

∑︂
j,j′

∑︂
L,M

∑︂
l,m

∑︂
l′,m′

∑︂
µ,µ′

∑︂
q,q′

4πiLjL(kfRjj′) ×

×Y ∗
LM(k′

f )Ylµ(k′
f )Y ∗

l′µ′(k′
f )
∑︂
MY

[︂
DL

M,MY
(RCF )

]︂∗
YLMY

(Rjj′) ×

×
∑︂
µe

Dl
µ,µe

(RCF )Dl
µe,m(RMF j)

∑︂
µγ

[︂
D1

p,µγ
(RCF )

]︂∗ [︂
D1

µγ ,q(RMF j)
]︂∗

×

×
∑︂
µ′

e

[︂
Dl′

µ′,µ′
e
(RCF )

]︂∗ [︂
Dl′

µ′
e,m′(RMF j′)

]︂∗∑︂
µ′

γ

D1
p,µ′

γ
(RCF )D1

µ′
γ ,q′(RMF j′) ×

×∆q
lm(kf )

[︂
∆q′

l′m′(kf )
]︂∗

. (1.105)

Similarly as in case of one molecule, the expression (1.105) must be simplified
before the orientational integral can be performed.

Again we will start by coupling the D-matrices depending on the orientation
of the cluster RCF of the photon and photoelectron angular momenta:[︂

D1
p,µγ

(RCF )
]︂∗

D1
p,µ′

γ
(RCF ) = (−1)p−µγ D1

−p,−µγ
(RCF )D1

p,µ′
γ
(RCF ) =

= (−1)p−µγ
∑︂
K

(2K + 1)
(︄

1 1 K
−p p MK

)︄(︄
1 1 K

−µγ µ′
γ M ′

K

)︄
×

×
[︂
DK

MK ,M ′
K

(RCF )
]︂∗

, (1.106)

Dl
µ,µe

(RCF )
[︂
Dl′

µ′,µ′
e
(RCF )

]︂∗
= (−1)µ′−µ′

eDl
µ,µe

(RCF )Dl′

−µ′,−µ′
e
(RCF ) =

= (−1)µ′−µ′
e
∑︂

λ

(2λ + 1)
(︄

l l′ λ
µ −µ′ Mλ

)︄(︄
l l′ λ

µe −µ′
e M ′

λ

)︄
×

×
[︂
Dλ

Mλ,M ′
λ
(RCF )

]︂∗
. (1.107)

Following these contractions we are left with only three D-matrices depending
on RCF . The integral

∫︁
dRCF can be performed using the relation from Brink

and Satchler [1968], Appendix V, for the angular integral over three Wigner D-
matrices: ∫︂

dRCF

[︂
DL

M,MY
(RCF )

]︂∗ [︂
DK

MK ,M ′
K

(RCF )
]︂∗ [︂

Dλ
Mλ,M ′

λ
(RCF )

]︂∗
=

=
[︃∫︂

dRCF DL
M,MY

(RCF )DK
MK ,M ′

K
(RCF )Dλ

Mλ,M ′
λ
(RCF )

]︃∗
=

= 8π2
(︄

L K λ
M MK Mλ

)︄(︄
L K λ

MY M ′
K M ′

λ

)︄
. (1.108)

And similarly as before, we must contract the spherical harmonics depending
on the photoelectron momentum down to a single spherical harmonic. That can
be done by contracting first Ylµ(k′

f ) and Y ∗
l′µ′(k′

f ), which is performed just the
same way as before for one molecule (see eq. (1.67)):

Ylµ(k′
f )Y ∗

l′µ′(k′
f ) =

∑︂
L′,M ′

(−1)µ′

√︄
(2l + 1)(2l′ + 1)(2L′ + 1)

4π
×

×
(︄

l l′ L′

0 0 0

)︄(︄
l l′ L′

µ −µ′ M ′

)︄
Y ∗

L′M ′(k′
f ), (1.109)
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and then contracting this result with the remaining Y ∗
LM(k′

f ):

Y ∗
LM(k′

f )Y ∗
L′M ′(k′

f ) =
∑︂

Λ,MΛ

(−1)M+M ′+MΛ

√︄
(2L + 1)(2L′ + 1)(2Λ + 1)

4π
×

×
(︄

L L′ Λ
0 0 0

)︄(︄
L L′ Λ

−M −M ′ −MΛ

)︄
YΛMΛ(k′

f ). (1.110)

Before substituting the results (1.106)-(1.110) into the relation (1.105) we can
also get rid of some numerical factors. The factor 8π present in the result (1.108)
is divided by the same number from the formula (1.105). The phase factor (−1)µ′

from (1.109) cancels with the same factor from (1.107). Finally, since MΛ must
satisfy the selection rule:

MΛ = −M − M ′, (1.111)

it is evident that the phase factor (−1)M+M ′+MΛ is always equal to 1. Realizing
this and using the equations (1.106)-(1.110) gives:(︄

dσ

dk′
f

)︄
Av

= 4π2αω
∑︂
j,j′

∑︂
L,M

∑︂
l,m

∑︂
l′,m′

∑︂
µ,µ′

∑︂
q,q′

iLjL(kfRjj′)
∑︂
MY

YLMY
(Rjj′) ×

×
∑︂

µe,µ′
e

∑︂
µγ ,µ′

γ

Dl
µe,m(RMF j)

[︂
D1

µγ ,µ′
γ ,q(RMF j)

]︂∗ [︂
Dl′

µ′
e,m′(RMF j′)

]︂∗
D1

µ′
γ ,q′(RMF j′) ×

×
∑︂

L′,M ′

∑︂
Λ,MΛ

√︂
(2l + 1)(2l′ + 1)(2L + 1)(2Λ + 1)(2L′ + 1)(−1)p−µγ+µ′

e ×

×
∑︂
K

∑︂
λ

(2K + 1)(2λ + 1)
(︄

l l′ L′

0 0 0

)︄(︄
l l′ L′

µ −µ′ M ′

)︄(︄
L L′ Λ
0 0 0

)︄
×

×
(︄

L L′ Λ
−M −M ′ −MΛ

)︄(︄
1 1 K

−p p MK

)︄(︄
1 1 K

−µγ µ′
γ M ′

K

)︄(︄
l l′ λ
µ −µ′ Mλ

)︄
×

×
(︄

l l′ λ
µe −µ′

e M ′
λ

)︄(︄
L K λ
M MK Mλ

)︄(︄
L K λ

MY M ′
K M ′

λ

)︄
YΛMΛ(k′

f ) ×

×∆q
lm(kf )

[︂
∆q′

l′m′(kf )
]︂∗

. (1.112)

Now one of the orthogonality relations between 3-j symbols (see Brink and
Satchler [1968], Appendix I) can be used to get rid of two of the 3-j symbols from
eq. (1.112):

∑︂
µ,µ′

(2L′ + 1)
(︄

l l′ L′

µ −µ′ M ′

)︄(︄
l l′ λ
µ −µ′ Mλ

)︄
= δL′λδM ′Mλ

. (1.113)

The Kronecker deltas from this relation enable us to use the same orthogonality
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relation between yet another pair of 3-j symbols:

∑︂
M,M ′

(2K + 1)
(︄

L K λ
M MK Mλ

)︄(︄
L L′ Λ

−M −M ′ −MΛ

)︄
=

=
∑︂

M,M ′
(2K + 1)

(︄
L K L′

M MK M ′

)︄(︄
L L′ Λ

−M −M ′ −MΛ

)︄
=

=
∑︂

M,M ′
(2K + 1)(−1)L+L′+K

(︄
L L′ K
M M ′ MK

)︄(︄
L L′ Λ

−M −M ′ −MΛ

)︄
=

=
∑︂

M,M ′
(2K + 1)(−1)2(L+L′+K)

(︄
L L′ K
M M ′ MK

)︄(︄
L L′ Λ
M M ′ MΛ

)︄
=

= δKΛδMKMΛ , (1.114)

where we used the result (1.113) in the first step, the rule for swapping of the
columns of a 3-j symbol (Brink and Satchler [1968], Appendix I) in the second
step and the rule for changing the signs of the indices in the lower row of a 3-
j symbol in the third step, which both give the same phase factor (−1)L+L′+K ,
which therefore cancels out. And finally, the selection rules for 3-j symbols applied
onto the first of the 3-j symbols from the relation (1.106) also imply:

0 ≤ K ≤ 2
MK = −(p − p) = 0. (1.115)

Combining the relations (1.113)-(1.115) together gives:

λ = L,

Mλ = M ′,

0 ≤ Λ = K ≤ 2,

MΛ = MK = 0. (1.116)

This leads to the coveted result:

YΛMΛ(k′
f ) = YKMK

(k′
f ) = YK0(k′

f ) =
√︄

2K + 1
4π

PK(cos θ′), (1.117)

where θ′ is the angle measured from the lab-frame z′ axis in agreement with the
general formula (1.5).

Furthermore, the selection rules for the 3-j symbols can be used to determine
two non-summation indices:

M ′
K = µγ − µ′

γ,

M ′
λ = µ′

e − µe, (1.118)

and also to get an important constraint on the MY summation index:

MY = −M ′
K − M ′

λ = −µγ + µ′
γ + µe − µ′

e. (1.119)

This relation leaves only one nonzero term of the sum over MY and fixes this in-
dex. Therefore, the formula (1.112) can be finally rewritten in a needed simplified
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form:(︄
dσ

dk′
f

)︄
Av

= 1
4π

8π5/2αω
∑︂
K

∑︂
j,j′

∑︂
L,L′

∑︂
l,m

∑︂
l′,m′

∑︂
q,q′

∑︂
µe,µ′

e

∑︂
µγ ,µ′

γ

iLjL(kfRjj′) ×

×YLMY
(Rjj′)Dl

µe,m(RMF j)
[︂
D1

µγ ,q(RMF j)
]︂∗ [︂

Dl′

µ′
e,m′(RMF j′)

]︂∗
D1

µ′
γ ,q′(RMF j′) ×

×
√︂

(2l + 1)(2l′ + 1)(2L + 1)(2L′ + 1)(2K + 1)(−1)p−µγ+µ′
e ×

×
(︄

l l′ L′

0 0 0

)︄(︄
L L′ K
0 0 0

)︄(︄
1 1 K

−p p 0

)︄(︄
1 1 K

−µγ µ′
γ µγ − µ′

γ

)︄
×

×
(︄

l l′ L′

µe −µ′
e −µe + µ′

e

)︄(︄
L K L′

MY µγ − µ′
γ −µe + µ′

e

)︄
PK(cos θ′) ×

×∆q
lm(kf )

[︂
∆q′

l′m′(kf )
]︂∗

, (1.120)

This is the expected result corresponding again to the general formula (1.5):(︄
dσ

dk′
f

)︄
Av

= 1
4π

∑︂
K

Ac
KPK(cos θ′), (1.121)

where Ac
K , with the superscript c for cluster, embraces again all the other sums

and the second constant factor. This yields the relations for the total cross section
and the β parameters in the same form as in the equations (1.74)-1.76) before:

σ(E) = Ac
0, (1.122)

β1(E) = Ac
1

Ac
0
, (1.123)

β2(E) = Ac
2

Ac
0
. (1.124)

Here, unlike for a single molecule which has two planes of symmetry, the β1
parameter can potentially be nonzero in case of circularly polarized light (see
Ritchie [1976]), because a molecular cluster as a whole in general can be a chiral
object, depending on its exact geometric structure. Therefore, in principle, the
derived relations could be used to calculate also β1 as they include the case of
circular polarization. However, the β1 parameter is problematic since it is very
sensitive to the effects that are neglected by the approximations within our IMM
(see e.g. Powis [2000]). Thus any results for the β1 parameter using the IMM
would necessarily be very, even qualitatively inaccurate, which is why we focus
only on the case of linearly polarized light.

1.3.3 Reality of the observables for a cluster
The photoelectron angular distribution is a real observable. However, the reality
of the result (1.120) may not be clear at first sight and thus it deserves a detailed
discussion.

Swapping of the indices jj′ inverts the direction of the vector Rjj′ (see
eq. (1.96)):

Rj′j = −Rjj′ . (1.125)
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Because of the parity of the spherical harmonics (Varshalovich et al. [1988],
p. 141):

YLMY
(−Rjj′) = (−1)LYLMY

(Rjj′), (1.126)

the relation (1.125) implies that swapping of the j-th and j′-th molecule in the
summations over jj′ gives an additional phase factor (−1)L changing the factor
iL to (−i)L. The D-matrices belonging to the j-th and j′-th molecule also switch,
which exchanges the primed and unprimed µ-indices. Therefore, the equation
(1.119) ensures that swapping of the molecules also changes the sign of the index
MY . This together with the phase factor (−1)−µγ+µ′

e and the relation for complex
conjugation of the spherical harmonics (Varshalovich et al. [1988], p. 140) implies:

(−1)−µγ+µ′
eYL−MY

(Rjj′) = (−1)−µγ+µ′
e−MY Y ∗

LMY
(Rjj′) =

= (−1)−µ′
γ+µeY ∗

LMY
(Rjj′). (1.127)

This means that swapping of the j-th and j′-th molecules is equivalent to complex
conjugation of the terms non-diagonal in jj′ indices, leaving only summations of
the type z + z∗ = 2Re(z).

The diagonal terms of the summation over molecules are also real. For j = j′

we have Rjj′ = Rjj = 0⃗, implying:

iLjL(kfRjj′)YLMY
(Rjj′)

⃓⃓⃓⃓
⃓
j=j′

= 1√
4π

, (1.128)

because asymptotically (Cejnar [2013], p. 170):

jL(0) =
{︄

1, L = 0,
0, L > 0.

(1.129)

Therefore L = 0 and thus

YLMY
= Y00 = 1√

4π
, (1.130)

with iL = i0 = 1. This factor is real and the summation of the products of the
four Wigner D-matrix elements reduces itself to the sum of numbers in the form
of z + z∗ = 2Re(z) or zz∗ = |z|2 in case of j = j′.

This shows that the final result (1.120) is a real observable as it should.

1.3.4 Reduction of the result for a cluster to the case of
a single molecule

Here we show that the result (1.120) is a generalisation of eq. (1.72) for a single
molecule. For n = 1, only the diagonal term with j = j′ = 1 contributes. In that
case:

L = 0 ⇒ MY = 0 (1.131)

and the factor including the spherical Bessel function and a spherical harmonic
from the plane wave expansion (1.96) is reduced to 1/

√
4π (see eq. (1.129)-

(1.130)).
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To deal with the D-matrices depending on RMF j, we could couple them using
the same relations as (1.61)-(1.62) or (1.106)-(1.107). However, a much easier
approach is to identify the cluster frame with the molecular frame, which surely
can be done since there is only one molecule. This reduces the dipoles ∆q

lm from
eq. (1.101) back to dq

lm and all the Wigner matrices D(RMF j) to identity matrices
(Kronecker deltas), which implies:

µe = m,

µ′
e = m′,

µγ = q,

µ′
γ = q′. (1.132)

These constraints remove the summations over µe, µ′
e, µγ and µ′

γ and together
with the equations (1.131) and (1.119) they also imply:

0 = MY = −q + q′ + m − m′ =⇒ m − m′ = q − q′. (1.133)

Therefore the result for the photoelectron angular distribution is reduced to:(︄
dσ

dk′
f

)︄
Av

⃓⃓⃓⃓
⃓
n=1

= 1
4π

4π2αω
∑︂
K

∑︂
L′

∑︂
l,m

∑︂
l′,m′

∑︂
q,q′

(2L′ + 1)(2K + 1) ×

×
√︂

(2l + 1)(2l′ + 1)(−1)p−q+m′
(︄

l l′ L′

0 0 0

)︄(︄
0 L′ K
0 0 0

)︄(︄
1 1 K

−p p 0

)︄
×

×
(︄

1 1 K
−q q′ m − m′

)︄(︄
l l′ L′

m −m′ −m + m′

)︄(︄
0 K L′

0 m − m′ −m + m′

)︄
×

×PK(cos θ′)dq
lm(kf )

[︂
dq′

l′m′(kf )
]︂∗

, (1.134)

The selection rules for the second and the last Wigner 3-j symbol imply that:

L′ = K. (1.135)

However, the forms of the 3-j symbols containing zero angular momentum are
explicitly known (Brink and Satchler [1968], Appendix I):(︄

A B 0
a b 0

)︄
= (−1)A−aδABδa−b

1√
2A + 1

. (1.136)

With this relation and with the rules for swapping of the columns of the 3-j
symbols (Brink and Satchler [1968], Appendix I), the two 3-j symbols can be
explicitly rewritten as:(︄

0 L′ K
0 0 0

)︄
=
(︄

L′ K 0
0 0 0

)︄
= (−1)L′

δL′Kδ00
1√

2L′ + 1
, (1.137)

(︄
0 K L′

0 m − m′ −m + m′

)︄
=
(︄

K L′ 0
m − m′ −m + m′ 0

)︄
=

= (−1)K−m+m′
δKL′

1√
2K + 1

, (1.138)
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where in the last step we used δ(m−m′)−(−m+m′) = 1. Put together these relations
yield: (︄

0 L′ K
0 0 0

)︄(︄
0 K L′

0 m − m′ −m + m′

)︄
= (−1)m′−m 1

2K + 1 , (1.139)

where we used (−1)L′+K = (−1)2K = 1. Hence, the final result in case of n = 1
is: (︄

dσ

dk′
f

)︄
Av

⃓⃓⃓⃓
⃓
n=1

= 1
4π

4π2αω
∑︂
K

∑︂
l,m

∑︂
l′,m′

∑︂
q,q′

(2K + 1) ×

×
√︂

(2l + 1)(2l′ + 1)(−1)p−q−m

(︄
l l′ K
0 0 0

)︄(︄
1 1 K

−p p 0

)︄
×

×
(︄

1 1 K
−q q′ m − m′

)︄(︄
l l′ K
m −m′ m′ − m

)︄
×

×PK(cos θ′)dq
lm(kf )

[︂
dq′

l′m′(kf )
]︂∗

. (1.140)

And since the equation (1.133) implies:

(−1)p−q−m = (−1)p+q−m = (−1)p+q′−m′
, (1.141)

it is evident, that the result (1.140) is equivalent (1.72).
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2. Results and discussion
In this chapter the results of calculations using the theoretical model developed
above are presented. Since the β1 parameter is very sensitive to the effects ne-
glected by our IMM (Powis [2000]), we focused on the case of the ionization by
linearly polarized light in which β1 is equal to zero (Ritchie [1976]), as mentioned
at the end of Subsection 1.3.2. Results for a single H2O molecule, obtained using
the analytic relations (1.72), (1.74) and (1.76), are verified using the numerical
results and reference data which were provided by my supervisor Dr. Zdeněk
Mašı́n. The results for small (H2O)n clusters are presented after that and the
dependence of the results on cluster geometries is studied. First of all, the input
data and the numerical method used for the orientational averaging are described.

2.1 Structure of the input partial wave dipole
elements

The input data containing the partial wave dipole moments for a single H2O
molecule were supplied by my supervisor, who obtained them from the code
UKRmol+ (Mašı́n et al. [2020]). The provided partial wave dipoles were gener-
ated for the angular momenta l in the range 0 ≤ l ≤ 6 and for 700 photon energies
evenly spaced in the range from 13.403 eV to 82.403 eV, where the lower value
corresponds to the ionization potential of the 1b1 orbital, i.e. the minimal energy
needed to release the electron. In this subsection we will briefly summarize the
different forms of the dipoles output by this code.

The UKRmol+ code uses the basis of real spherical harmonics, see Blanco
et al. [1997], for both the photoelectron momentum and the photon polarization
and produces the dipoles in the KET form for the photoelectron wave function:

dfi(kf )KET = ⟨Ψi|d̂|Ψ(−)
f,kf

⟩, (2.1)

d̂ = (d̂x, d̂y, d̂z). (2.2)

Consequently, these dipole matrix elements are expanded into partial wave dipoles
using the real spherical harmonics Xlm:

dfi(kf )KET = ⟨Ψi|d̂|Ψ(−)
f,kf

⟩ =
∑︂
l,m

ile−iσlXlm(kf )dCOMP AK
lm = (2.3)

=
∑︂
l,m

Xlm(kf )dDIP OLE−T OOLS
lm , (2.4)

where dCOMP AK
lm are the partial wave dipole matrix elements returned by the

code COMPAK and dDIP OLE−T OOLS
lm are partial wave dipoles returned by the code

DIPOLE TOOLS, where both of these codes are subprograms of the code UKRmol+.
The elements dDIP OLE−T OOLS

lm absorb the phase factors from the partial wave
expansion:

dDIP OLE−T OOLS
lm = ile−iσldCOMP AK

lm , (2.5)

in agreement with the convention introduced in Chapter 1, eq. (1.57).
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The molecular coordinate frame, in which the UKRmol+ calculations were
performed, is depicted in figure 2.1. The z-axis is aligned with the C2 axis of
symmetry of the water molecule and the yz plane of symmetry σyz contains both
hydrogen atoms. The same form of the molecular frame is used in all illustrations
of the coordinate frames throughout the entire thesis.

The lab-frame photoionization amplitude can be written as:

aξ′

fi(k′
f ) = ξ′· d′

fi(k′
f , R)KET = ξ· dfi(kf )KET = (2.6)

= (R−1ξ′)· dfi(R−1k′
f )KET = (2.7)

=
∑︂
l,m

Xlm(R−1k′
f )
[︂
dDIP OLE−T OOLS

lm · (R−1ξ′)
]︂

, (2.8)

which allows to express the lab-frame dipole using the quantities generated by the
UKRmol+ code. These forms can be used to perform the numerical calculation
as described in the following subsection. However, the analytic results derived
in Chapter 1 use the BRA form of the dipole matrix elements and the basis of
complex spherical harmonics. Therefore, to ensure consistency with the analytic
results, the dipoles output by the DIPOLE TOOLS code must be transformed into
their BRA forms and into the basis of complex spherical harmonics for both the
photoelectron momentum and the photon polarization. This is performed using
the relation:

dq
lµ =

∑︂
m′

∑︂
q′

(C1
q,q′)−1

[︂
(C l

µ,m′)−1
]︂∗ [︂

dq′,DIP OLE−T OOLS
lm′

]︂∗
, (2.9)

where C l
µ,m′ are elements of the unitary transformation matrix Cl which are given

explicitly in the paper by Blanco et al. [1997]. These transformed partial wave

Figure 2.1: The molecular frame chosen for the construction of the dipole matrix
elements (cf. the orbital 1b1 depicted in figure 2). The oxygen atom is red, the
hydrogen atoms are white. The origin is identified with the center of mass of
the molecule and all the atoms lie in the yz plane. The same geometry of the
molecular frame was used in all the previous figures illustrating the rotations and
will be used in all the following figures depicting the cluster geometry.
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dipole matrix elements dq
lµ(kf ) are those entering the equation (1.57), hence these

are used to perform the analytic calculations for a single molecule.
For clusters the main results were generated using the numerical averaging

procedure. The analytic calculation requires dipoles generated in the basis of solid
harmonics for reasons explained in the Subsection 1.3.2. However, the UKRmol+
code that we use to generate the partial wave dipoles is not able to work in the
basis of solid harmonics. Therefore we could not produce consistent results for
clusters using analytic averaging in this work.

2.2 Description of the numerical calculation
To perform the orientional averaging for a single molecule numerically, we use
the relation (1.24) together with the equations (2.6)–(2.8):(︄

dσ

dk′
f

)︄
Av

= 4π2αω
1

8π2

∫︂
dR

⃓⃓⃓
ξ′d′

fi(k′
f , R)KET

⃓⃓⃓2
= (2.10)

= αω

2

∫︂
dR

⃓⃓⃓
(R−1ξ′)· dfi(R−1k′

f )KET
⃓⃓⃓2

= (2.11)

= αω

2

∫︂
dR

⃓⃓⃓⃓∑︂
l,m

Xl,m(R−1k′
f )
[︂
dDIP OLE−T OOLS

lm · (R−1ξ′)
]︂ ⃓⃓⃓⃓2

, (2.12)

where α from equations (2.10)–(2.12) is the fine structure constant not to be
confused with the Euler angle α bellow. The symbol

∫︁
dR stands for the integral

over all orientations of the molecule:∫︂
dR =

∫︂ 2π

0
dα

∫︂ π

0
sin (β)dβ

∫︂ 2π

0
dγ. (2.13)

For molecular clusters, the numerical calculation is performed identically, only
the integrand is the square of the coherent superposition of dipoles resulting
from the independent molecule model (see eq. (1.88)) and the averaging over all
orientations RCF of the cluster frame:(︄

dσ

dk′
f

)︄
Av

= αω

2

∫︂
dRCF ×

×
⃓⃓⃓⃓∑︂

l,m

n∑︂
j=1

ei[(R−1
CF k′

f )·ρj ]Xl,m(R−1
j k′

f )
[︂
dDIP OLE−T OOLS

lm · (R−1
j ξ′)

]︂ ⃓⃓⃓⃓2
. (2.14)

Note that the dipole for each molecule is evaluated using an independent par-
tial wave expansion in the molecular frame of each molecule in the basis of real
spherical harmonics depending on the direction of the photoelectron momentum
kMF j

f = R−1
j k′

f . Therefore, the translation of the molecular frames does not cause
a problem in the numerical calculation.

The 3D integral above can be written as a sequence of two integrations, a 1D
integral over α and a 2D integral over β and γ:(︄

dσ

dk′
f

)︄
Av

= αω

2

∫︂
dRCF f(α, β, γ) =

∫︂ 2π

0
dαg(α), (2.15)

g(α) =
∫︂ π

0
sin (β)dβ

∫︂ 2π

0
dγf(α, β, γ), (2.16)
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where the integrand f(α, β, γ) is

f(α, β, γ) =
⃓⃓⃓⃓∑︂

l,m

n∑︂
j=1

ei[(R−1
CF k′

f )·ρj ]Xl,m(R−1
j k′

f )
[︂
dDIP OLE−T OOLS

lm · (R−1
j ξ′)

]︂ ⃓⃓⃓⃓2
.

(2.17)
Our initial attempt was to use fixed-order 1D and 2D quadratures to perform the
3D integral. The outer 1D integral over α can be approximated straightforwardly
by a Gauss-Legendre quadrature:(︄

dσ

dk′
f

)︄
Av

=
∫︂ 2π

0
dαg(α) ≈

N∑︂
j=1

wjg(αj), (2.18)

where N is the order of the Gauss-Legendre rule and wj are the corresponding
quadrature weights for the interval [0; 2π]. The integral (2.16) has the form of
an integral over sphere which can be approximated by the Lebedev quadrature
(see Lebedev [1976]) which is a generalization of the Gauss-Legendre quadrature
rule to sphere:

g(α) =
∫︂ π

0
sin (β)dβ

∫︂ 2π

0
dγf(α, β, γ) ≈ 1

4π

NL∑︂
i=1

wL
i f(α, βi, γi), (2.19)

where NL is the order of the Lebedev rule, wL
i are the quadrature weights and

(βi, γi) are the quadrature points. A Lebedev rule of order NL is constructed to
integrate exactly a spherical harmonic of angular momentum NL.

However, using the fixed-point quadrature rules has proved impractical: the
integrand f(α, β, γ) has sharp spikes which are difficult to integrate over with a
fixed-point Lebedev rule. Therefore we abandoned this approach and replaced the
fixed-point 1D and 2D quadratures with their adaptive versions based on Gauss-
Legendre quadrature rules using a FORTRAN code developed by my supervisor.
These codes require on input the parameters for the required relative precisions
ϵα and ϵβ,γ of the 1D and 2D integrals respectively. Since we’re computing an ob-
servable (cross-section) a very high relative precision of the result is not needed.
Therefore, it was sufficient to use ϵα = 10−3 and ϵβ,γ = 10−4. The numerical
quadrature has to be performed for each choice of the lab-frame polarization ξ′

and the lab-frame electron momentum k′
f . We have chosen the lab-frame polar-

ization to point along the z’-axis while the directions of the lab-frame electron
momenta were taken from a Lebedev quadrature of order 4. Using this procedure
we explicitly generated, for each chosen photon energy, the photoelectron angular
distribution ( dσ

dk′
f
)Av on a grid of lab-frame photoelectron directions.

The general form of the photoelectron angular distribution is given by the
equation (1.5) and since we focus only on the case of ionization by the linearly
polarized light when the parameter β1 is equal to 0, the formula is reduced to:(︄

dσ

dk′
f

)︄
Av

= σ(E)
4π

(1 + β2(E)P2(cos θ′)) . (2.20)

If the differential cross section ( dσ
dk′

f
)Av is integrated over all directions of the k′

f

vector in the lab, i.e. over the full solid angle in the lab frame, the result is:∫︂
dΩk′

f

(︄
dσ

dk′
f

)︄
Av

= σ(E)
4π

. (2.21)
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Doing the same but with the integrand multiplied by the second order Legendre
polynomial P2(cos(θ′)), where θ′ is the angle measured from the lab-frame z’ axis
(see Section 1.2.4), we get:∫︂

dΩk′
f

(︄
dσ

dk′
f

)︄
Av

P2(cos(θ′)) = β2(E)σ(E)
4π

. (2.22)

These integrals can be calculated exactly using the fixed-order Lebedev quadra-
ture. Comparing the equations (2.21) and (2.22), it is clear that the β2 parameter
can be calculated as:

β2(E) =

∫︁
dΩk′

f
( dσ

dk′
f
)AvP2(cos(θ′))∫︁

dΩk′
f
( dσ

dk′
f
)Av

=
1

4π

∑︁
i wL

i ( dσ
dk′

i
)AvP2(cos θ′

i)
1

4π

∑︁
j wL

j ( dσ
dk′

j
)Av

. (2.23)

The numerical calculations were used to verify the results obtained analyti-
cally using the relation (1.72) for a single molecule and to obtain the main results
for small water clusters.

2.3 Results for a single water molecule
The cross sections σ(E) and beta-parameters β2(E) for a single molecule were
calculated for photon energies in range from the ionization potential 13.403 eV to
82.403 eV. The analytic results were calculated for all 700 energies using my own
code written in Python 2.7. The numerical calculation using the adaptive quadra-
tures was performed by the code written by my supervisor in FORTRAN 90 but
only for 70 energies (every 10th from those 700) in order to speed up the cal-
culation. This code was based on my original Python implementation of the
numerical averaging which used the fixed-order 1D and 2D quadratures.

Figure 2.2: Results for a single H2O molecule. The β2 parameters are in the left
panel, the cross sections σ are in the right panel. For the asymmetry parameter
β2 both analytic and numerical results are compared with the reference values
calculated by the code UKRmol+ and experimental results from Hartweg et al.
[2017].

First we calculated σ(E) and β2(E) using all the angular momenta 0 ≤ l ≤ 6
for which we had the dipole moments. Both the numerical and the analytic re-
sults of this calculation are shown in figure 2.2. The results calculated analytically
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using the relations (1.72) and (1.74), (1.76) are compared with the numerical re-
sults calculated by the equations (2.21) and (2.23). The β2 parameters, which
are in the left panel of figure 2.2, are also compared with the experimental results
from the Supporting Information for Hartweg et al. [2017] and with the reference
values obtained by the code UKRmol+ in order to test the precision of our cal-
culations. All our calculated results are in agreement with each other and with
the experimental results from Hartweg et al. [2017] within the error bars of the
experiment or close to them in the low energy range bellow 20 eV. This confirms
that the relations (1.72)-(1.76) derived by us are correct. The reason for larger
experimental values around 20-25 eV and 35 eV are the autoionizing resonances
(Friedrich [2006], section 3.3.2) which are effectively removed from the dipoles
from the code UKRmol+ by a smoothing procedure, see Mašı́n et al. [2020].

We also tested the convergence of the analytic expression (1.72) with the
angular momentum l. These results are shown in figure 2.3. It is clear that both
σ and β2 are well converged already for lmax = 3. The reason for this is that the
chosen molecular orbital 1b1, see fig. 2, is very similar to the atomic p orbital
(l = 1) which, due to the dipole selection rules implied by the equations (1.44)-
(1.45), can be ionized either to an s orbital (l = 0) or to a d orbital (l = 2). The
clear dominance of the l = 2 contribution is in agreement with the general Fano
propensity rule which states that the transitions l → l+1 are much stronger than
l → l−1, see Fano [1985]. The contributions of the higher angular momenta l are
corrections caused by the presence of the hydrogen atoms in the H2O molecule.
This suggests that the results for clusters will also converge for around l = 3,
however this must be tested as well.

Figure 2.3: Results of the test of convergence of the analytic calculation with l
for a single H2O molecule.

2.4 Results for small water clusters
In this section we present the results calculated using the IMM for a few of
the geometric structures of the small water clusters taken from the database of
Rakshit et al. [2019b]. The results were calculated numerically using the equations
(2.14)-(2.23). The IMM depends on several parameters: on the positions of the
molecules in the cluster and on their orientation. In this section we explore
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the dependence on these parameters and on the convergence of the partial wave
expansion for the dipoles.

2.4.1 Geometries of the water clusters
The files from Rakshit et al. [2019b] contain the Cartesian coordinates of each
atom of the cluster. From that, we calculate the position of the cluster center
of mass and then translate the origin into that point. This creates the cluster
frame. The individual molecular frames are then calculated similarly with their
origins identified with the centers of mass of the corresponding molecules (the
vectors ρj). The Euler angles of the molecular frame axes in the cluster frame
are then found using a procedure described bellow, using the z −y −z convention
of the successive rotations of the molecular frame from the cluster frame by the
Euler angles as described in the Subsection 1.2.3 or in Varshalovich et al. [1988],
section 1.4.1. An example of the cluster geometry is depicted in figure 2.4.

Figure 2.4: Illustration of the geometry of (H2O)5 cluster. The cluster frame is
green, the molecular frame is red. The position vector of the molecule in the
cluster frame ρj is black. The Euler angles of the molecule with respect to the
cluster frame are blue.

The angles αMF j, βMF j are calculated directly as the spherical coordinates of
the zMF j axis in the cluster frame:

βMF j = arccos ((zMF j)z), (2.24)

αMF j = arctan
(︄

(zMF j)y

(zMF j)x

)︄
, (2.25)

where both equations are written in the cluster frame and (zMF j)x, (zMF j)y,
(zMF j)z are the components of the molecular frame zMF j = RMF jz basis vector
in the cluster frame basis. This basis vector is obtained simply as the sum of
the position vectors of the hydrogen atoms in the cluster frame shifted into the
center of mass of the j-th molecule (cf. figures 2.1 and 2.4). Then the matrix
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Figure 2.5: Illustration of the method of calculating the Euler angles αMF j, βMF j,
γMF j for the j-th molecule in the cluster. The cluster frame is green, the molecular
frame is red. The position vector of the molecule in the cluster frame ρj is black.
The angles αMF j, βMF j are blue, the angle γMF j and the auxiliary molecular
frame oriented without γMF j are magenta.

RMF j(αMF j, βMF j, 0) is used to express the orientation of the molecular frame
inside the cluster frame without the rotation by γMF j:

xα,β = RMF j(αMF j, βMF j, 0)x,

yα,β = RMF j(αMF j, βMF j, 0)y,

zα,β = RMF j(αMF j, βMF j, 0)z, (2.26)

where xα,β, yα,β, zα,β are the basis vectors of this auxiliary molecular frame
rotated only by RMF j(αMF j, βMF j, 0) (see figure 2.5). After that, to calculate the
angle γMF j, it must be distinguished whether γMF j is greater than or less than π.
To do that, we calculate the angle between the xMF j basis vector and the vector
xα,β, which we denote γcheck1, and the angle between xMF j and the yα,β vector,
denoted γcheck2. These angles are then used in an if statement calculating the
angle γMF j as:

γMF j =
{︄

γcheck1, γcheck2 ≤ π
2 ,

2π − γcheck1, γcheck2 > π
2 .

(2.27)

All these calculations are performed in the cluster frame. We have explicitly
tested the correctness of this approach by reproducing the cluster geometries
starting from the molecules in the molecular frame.

A visualization of the lowest energy cluster geometries from Rakshit et al.
[2019b] for (H2O)n clusters with 3 ≤ n ≤ 22 is shown in figure 2.6.

2.4.2 Convergence with angular momentum for clusters
First of all, we tested the convergence of σ(E) and β2(E) with the angular mo-
mentum l for the lowest-energy structures from Rakshit et al. [2019b] resulting
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Figure 2.6: Visualizations of the putative structures of the (H2O)n clusters for
3 ≤ n ≤ 22 from the database on Rakshit et al. [2019b]. All these pictures
correspond to the lowest energy structures from the results of the TTM2.1-F
Potential method with the energy range 1.0 KJ/mol above the minimum (Rakshit
et al. [2019a], Rakshit et al. [2019b]). Each picture is scaled independently.

from the TTM2.1-F method (Rakshit et al. [2019a]) with the range of 1.0 KJ/mol
above the putative minimum for four clusters with n = 3, . . . , 6. Note, that the
distances in the files on Rakshit et al. [2019b] are given in Angstroms, hence we
converted them to atomic units first. The results of the partial wave convergence
test for the cluster with n = 5 molecules is exemplified in figure 2.7 and the
results for other clusters (n = 3, 4, 5) are in figure A.1 in Attachment A.1.

From these figures it is clear that for all the tested clusters the main contri-
bution is that of l = 2 and all the higher angular momenta give only corrections.
That is expected since our independent molecule model reconstructs the dipoles
of the individual molecules in their molecular frames: we have shown in Sec-
tion 2.3 that the photoelectron angular distribution for a single molecule is also
well converged for l = 3. With this result, despite we had the dipoles up to l = 6,
we decided to use:

l ≤ lmax = 3, (2.28)

for all other calculations, which significantly decreased the computational de-
mands.
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Figure 2.7: Results of the test of convergence of the IMM results with l for the
(H2O)5 cluster. Left panel: β2, right panel: σ. The results were calculated for the
lowest energy structures from Rakshit et al. [2019b] resulting from the TTM2.1-
F method (Rakshit et al. [2019a]) with energies up to 1.0 KJ/mol above the
minimum.

2.4.3 Effects of the number of molecules
Motivated by the experimental results of Hartweg et al. [2017], we tested the
effects of the number of constituent molecules on the photoelectron angular dis-
tribution for the clusters within the IMM. The results are shown in figure 2.8 for
clusters with n = 3, . . . , 10 monomers.

While the calculated cross sections σ(E) systematically increase with the in-

Figure 2.8: Effect of the number of molecules on the IMM results for clusters
with n = 3, . . . , 10 molecules. The β2 parameters (left panel) for the clusters
are compared with that for a single molecule. The results were calculated for the
lowest-energy structures from Rakshit et al. [2019b] resulting from the TTM2.1-F
method (Rakshit et al. [2019a]) with energies up to 1.0 KJ/mol.
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creasing number of monomers in the clusters, the β2(E) parameters within our
model do not exhibit the systematic decrease as measured by Hartweg et al.
[2017] (cf. figure 1). Instead, the β2 parameters for clusters in figure 2.8 oscil-
late around the value for a single molecule and the same trend continues also
for higher n. This suggests, that the interference of partial waves from multi-
ple ionized molecules in the cluster is not the main reason for the decrease of the
experimental asymmetry parameters. The convergence of the β2 around n ∼ 5 ob-
served by Hartweg et al. [2017] might therefore be caused mainly by the multiple
scattering of the photoelectrons in the field of the cluster and by the change of the
shape of the molecular orbitals due to the intermolecular interactions and charge
redistribution in the cluster, which the IMM neglects and which are the other
two reasons for the decrease of β2 suggested by Hartweg et al. [2017]. However,
the IMM results suggest that the interference of the photoionization amplitudes
is responsible for modulation of the shape of the β2 parameter, in particular in
the region between 20-40 eV.

2.4.4 Effects of the geometric structure of the clusters
Following the study of the trends with the increasing number of monomers in the
cluster, we move to the next topic which is investigating the effects of the geometry
of the clusters and discussing the sensitivity of the photoelectron spectroscopy to
the different conformations of the clusters calculated by Rakshit et al. [2019a].

Effects of different cluster conformations

To test the effects of the geometry of the clusters on the photoelectron angular
distribution we used different geometries obtained from the database Rakshit
et al. [2019b]. The paper Rakshit et al. [2019a] presents results of two methods for
determining the possible structures of water clusters: (a) the TTM2.1-F Potential
method, (b) the MP2/aug-cc-pVTZ method. A detailed description of those
methods is beyond the scope of this work.

Method (a) has been used to determine putative geometries (local minima)
of water clusters in three different energy ranges: 1.0 KJ/mol, 1.0 Kcal/mol,
5.0 Kcal/mol.1 The structures from the lowest-energy range up to 1.0 KJ/mol
have been used for most calculations presented here. For each cluster size starting
from n = 5 the method gives several possible structures (local minima). For
n = 3 and n = 4 only a single geometry is given in this energy range. Method
(b) has been used by Rakshit et al. [2019a] to determine putative geometries of
the lowest-energy structures only.

The effect of conformation on the photoelectron spectra was tested comparing
results for the different conformations obtained using the method (a). Only in
case of n = 3 and n = 4, where method (a) gives only a single structure, we used
for n = 3 also the geometry obtained from method (b) and for n = 4 we used the
structure from the method (a) from the third energy range up to 5.0 Kcal/mol.

All results of these tests are shown in comparison with the experimental re-
sults from Hartweg et al. [2017] and the analytic results for a single molecule
in figures A.2 and A.3 in Attachment A.1. Here we present the results for the

11 KJ/mol = 0.01036427 eV, 1 Kcal/mol = 0.04336410 eV
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Figure 2.9: Calculated β2 parameters for the conformations of the (H2O)3 and
(H2O)4 clusters from Rakshit et al. [2019b] and their comparison with experimen-
tal results from Hartweg et al. [2017] and analytic result for a single molecule.
The structures are shown in the right panel. The geometries of (H2O)3 result from
the MP2/aug-cc-pVTZ method and the TTM2.1-F Potential method within the
range of 1.0 KJ/mol above the minimum. The structures of (H2O)4 result from
the TTM2.1-F Potential method within the range of 5.0 Kcal/mol above the
minimum (Rakshit et al. [2019a]).

β2(E) asymmetry parameter for clusters (H2O)3 and (H2O)4 in figure 2.9 and for
(H2O)5 and (H2O)6 in figure 2.10, all of these also in comparison with Hartweg
et al. [2017] and the single molecule. The right panels of these figures show
visualizations of the used geometries from Rakshit et al. [2019b].

Similarly as the results of testing the effects of the number of molecules n
within our IMM (cf. fig. 2.8), the results here oscillate around the analytic values
for a single molecule. Nevertheless, the shape of the curves for the individual
cluster geometries differ from that for a single molecule and from each other.
Only the results for the 1st and 3rd geometry of the (H2O)5 cluster seem to
be very close to each other, yet not identical. This is probably because these
structures differ only by small differences in the angles γMF j (rotations about the
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Figure 2.10: Calculated β2 parameters for the conformations of the (H2O)5 and
(H2O)6 clusters from Rakshit et al. [2019b] and their comparison with experimen-
tal results from Hartweg et al. [2017] and analytic result for a single molecule. The
cluster structures are shown in the right panel. All these geometries result the
TTM2.1-F Potential method within the range of 1.0 KJ/mol above the minimum
(Rakshit et al. [2019a]).

mol-frame zMF j axes) of a few of their molecules which means that in both cases
the p-type 1b1 ionizing orbitals maintain approximately the same orientations.

These results mean that within the independent molecule model the photo-
electron angular distribution is affected by the exact geometry. And moreover,
our results provide a qualitative correspondence with the experiment of Hartweg
et al. [2017]. Even though quantitatively our theory does not match the ex-
perimental results, the shape of the experimental curves of the β2 parameter
(especially the decrease at around 20-30 eV) is qualitatively reproduced for some
of the cluster conformations. This suggests that the photoelectron spectroscopy
might be a sensitive probe of the geometric structures of small water clusters. In-
teresting is, that in some cases (n = 3, 4) this correspondence with Hartweg et al.
[2017] occurs for the second lowest-energy structure according to Rakshit et al.
[2019b]. The reason for this might be that the structure of the clusters prepared

45



in the experiments does not correspond to the lowest-energy one or is mixture of
different conformations within clusters with the same number of molecules.

Effects of distances of molecules from the origin

The effect of the distances ρj of the molecules from the cluster-frame origin was
tested on the lowest-energy structures from Rakshit et al. [2019b] for clusters
with n = 3, . . . , 6 molecules in which we only scaled the distances of the molecules
from the center of mass of the cluster. Here we present the result for n = 4 in
figure 2.11. The other results are shown in figure A.4 in the Attachment A.1. The
results were calculated for the distances 1.0ρj, 1.1ρj, 1.2ρj, . . . , 2.0ρj, however
in order to preserve clarity of the figures we present only every second step of the
scaling (1.0ρj, 1.2ρj, . . . , 2.0ρj).

Figure 2.11: Effect of the distances of the molecules from the origin of the cluster
frame ρj in the independent molecule model for the (H2O)4 cluster. The geometry
for 1.0ρj is the lowest energy structure from Rakshit et al. [2019b] resulting from
the TTM2.1-F Potential method.

The results in fig. 2.11 and fig. A.4 clearly differ for each different scale of
ρj. The differences are more significant in case of the β2 parameters but they
are present also in the cross sections σ. This shows that within the IMM the
asymmetry parameters and the cross sections are affected not only by the number
of molecules n but also by the overall size of the clusters with the same n. This
result may have implications for inclusion of the vibrational motion of the clusters.

2.4.5 Inconsistency of the analytic result using the avail-
able dipoles

The reason why the numerical calculation works correctly is that the spherical
harmonics defined on each molecule are not coupled together. Instead, the full
momentum-space dipoles are calculated for each molecule and coherently com-
bined. The problem with the analytic calculation is the presence of spherical

46



harmonics in the partial wave dipoles which must be translated in order to per-
form the averaging, as explained in Subsection 1.3.2. This was verified explicitly
by setting all the translation vectors ρj to 0⃗ which gave an agreement between
the analytic and the numerical results.

Figure 2.12: Comparison of the correct numerical results and incorrect analytic
results for the cluster (H2O)3. The results were calculated for the lowest-energy
structure of (H2O)3 from Rakshit et al. [2019b] resulting from the TTM2.1-F
Potential method.

The difference between the numerical and the incorrect analytic results is
shown in figure 2.12 for the lowest-energy (H2O)3 structure from Rakshit et al.
[2019b]. For larger numbers of molecules the inconsistency of the analytic calcu-
lation using the improper dipoles was mostly increasing.

2.5 Discussion of the results
The analytic results for a single molecule in comparison with the numerical results
and with the reference data obtained by my supervisor from the code UKRmol+
verify that the relations (1.72)-(1.76) for a single molecule are correct. The ana-
lytic formulae for clusters, however, could not be used for calculations correctly
because of the unavailability of the partial wave dipole matrix elements in the ba-
sis of solid spherical harmonics. Nevertheless, the results for small water clusters
were obtained numerically using an adaptive quadrature method as described in
Section 2.2.

The tests of our independent molecule model on some of the putative ge-
ometries of water clusters from Rakshit et al. [2019b], presented in Section 2.4,
suggest that the IMM may be able to at least qualitatively describe some of the
recent experimental results from Hartweg et al. [2017] and that the photoelectron
angular distribution might be sensitive to the geometry of the clusters.

Figures 2.9-2.11 and figures A.2-A.4 show that the IMM asymmetry param-
eters β2 and cross sections σ differ depending on the conformation of the water
cluster. Figures 2.9-2.10 and A.2-A.3 show even that the results of the IMM for
some cluster structures qualitatively match the shape of the experimental results
from Hartweg et al. [2017].
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On the other hand, the results of the independent molecule model do not
exhibit the systematic decrease of β2 with the increasing number of molecules
which was observed by Hartweg et al. [2017]. Since the IMM uses the partial
wave expansion of the monomer states and neglects the charge redistribution in
the cluster and multiple scattering of the released photoelectrons from the field
of the cluster, this might mean that the decrease of the asymmetry parameter is
caused mostly by the multiple scattering or by changes of the molecular orbitals,
as proposed by Hartweg et al. [2017], and the effect of the interference of the
partial waves from multiple photoionization centers is weak in comparison with
these two phenomenons.

Our results therefore suggest that the direct interference of photoionization
amplitudes is responsible for the modulation of the shape of the β2 parameters
while the multiple scattering for their overall magnitudes. Nevertheless, the IMM
results need to be carefully compared to accurate calculations before this hypoth-
esis can be confirmed.
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Conclusion
We have developed an approximate independent molecule model of molecular
cluster photoionization and used it to investigate some aspects of the single pho-
ton ionization of small water clusters.

First we derived formulae for β-parameters and cross section for photoioniza-
tion of a gas of randomly oriented molecules. We then generalized this approach
to the IMM of ionization of molecular clusters. This model is applicable to both
homogeneous and heterogeneous clusters.

I have developed Python codes for evaluation of the analytic formulae for a
single molecule and rewritten it in FORTRAN for the formulae for clusters and
we have extended an existing FORTRAN numerical code for a single molecule
molecule to the case of clusters.

Unfortunately, the analytic formula for the photoelectron angular distribution,
which is the main theoretical result of our IMM model, could not be properly
tested due to the absence of the partial wave dipole matrix elements in the basis of
solid harmonics. In order to generate the dipoles in this basis of solid harmonics,
changes of the UKRmol+ code would be needed. Nevertheless, we used at least
the equivalent numerical approach and applied it on the putative geometries of
the small water clusters from Rakshit et al. [2019b].

Although our results do not exhibit the observed decrease of the experimental
asymmetry parameters with the increasing number of molecules in the clusters,
they do show some qualitative correspondence with the recent experiments. The
β2 parameters calculated for some cluster conformations have similar shape as the
experimental curves. This suggests that direct interference of photoionization
amplitudes may modulate the shape of the β2 parameters while the multiple
scattering may be the main effect affecting the overall magnitudes of β2. The
differences between the asymmetry parameters and cross sections calculated for
different conformations of the clusters of the same size also suggest that the
photoionization spectra are sensitive even to small changes of the geometry of the
clusters. This might mean that the photoelectron spectroscopy could potentially
be used to study or verify the geometric structures of the small water clusters
experimentally. However, further research, using e.g. the R-matrix method, see
Mašı́n et al. [2020], is needed to study the validity of our model before its results
can be interpreted conclusively.
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List of Figures
1 Adapted from Hartweg et al. [2017]. Experimental β-parameter for

the photoionization of the 1b1 molecular orbital for isolated H2O
molecule, small (H2O)n clusters with 2 ≤ n ≤ 20, (H2O)+

2 ions
and calculated predictions for liquid water. The green triangles
show the results of Zhang et al. [2013] for larger clusters and blue
squares show the results of Faubel et al. [2012] for liquid water. . 3

2 The 1b1 molecular orbital of an H2O molecule that we focus on
in this thesis. The oxygen atom is red, the hydrogen atoms are
white. The visualization was made by the code Gabedit (see e.g.
Allouche [2011]) and provided to me by my supervisor. . . . . . . 4

1.1 Illustration of the meaning of passive and active rotation in the
yz plane. Lab frame is blue, molecular frame is red, vector k′

f

fixed in the lab frame is green. The basis vectors have the cor-
responding colors. The color of the symbols of the vector and of
the equalities (=) matches the color of the frame in which they are
defined. Passive rotation (left): the view from the lab-frame. The
mol-frame rotates from its initial position (which is identified with
the lab frame) by an angle +δ. The lab-frame and the vector k′

f

stay fixed. Active rotation (right): the view from the mol-frame.
The mol-frame stays fixed. The vector k′

f rotates from its initial
position by an angle −δ, which transforms it to kf . . . . . . . . . 12

1.2 Illustration of the rotation of the molecular frame R(α, β, γ), its
inverse R−1(α, β, γ) = R(−γ, −β, −α) and the corresponding vec-
tor transformations in 3D. The molecular frame is red, the lab
frame is blue. Their basis vectors have the corresponding colors.
The photoelectron momentum vector k′

f is depicted as the green
arrow in both frames and is fixed in the lab frame. The color of
the symbols of the vector and of the equalities (=) matches the
color of the frame in which they are defined. . . . . . . . . . . . . 14

1.3 Illustration of the successive rotation Rj = R̃MF jRCF . The lab
frame is blue, the cluster frame is green, the molecular frame is
red. Basis vectors have the corresponding colors. The color of the
signs of the photoelectron momentum vectors and of the equalities
(=) matches the color of the frame in which they are defined. The
Euler angles of RCF are defined with respect to the lab frame and
the angles of R̃MF j are defined with respect to the cluster frame.
The text in the picture shows the formulae of the vector and axes
transformations between each pair of the coordinate frames. The
principle of the individual transformations (forward and inverse)
is the same as in the case of rotations of a single molecule (see fig.
1.2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
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2.1 The molecular frame chosen for the construction of the dipole ma-
trix elements (cf. the orbital 1b1 depicted in figure 2). The oxygen
atom is red, the hydrogen atoms are white. The origin is identified
with the center of mass of the molecule and all the atoms lie in the
yz plane. The same geometry of the molecular frame was used in
all the previous figures illustrating the rotations and will be used
in all the following figures depicting the cluster geometry. . . . . . 34

2.2 Results for a single H2O molecule. The β2 parameters are in the
left panel, the cross sections σ are in the right panel. For the
asymmetry parameter β2 both analytic and numerical results are
compared with the reference values calculated by the code UKR-
mol+ and experimental results from Hartweg et al. [2017]. . . . . 37

2.3 Results of the test of convergence of the analytic calculation with
l for a single H2O molecule. . . . . . . . . . . . . . . . . . . . . . 38

2.4 Illustration of the geometry of (H2O)5 cluster. The cluster frame
is green, the molecular frame is red. The position vector of the
molecule in the cluster frame ρj is black. The Euler angles of the
molecule with respect to the cluster frame are blue. . . . . . . . . 39

2.5 Illustration of the method of calculating the Euler angles αMF j,
βMF j, γMF j for the j-th molecule in the cluster. The cluster frame
is green, the molecular frame is red. The position vector of the
molecule in the cluster frame ρj is black. The angles αMF j, βMF j

are blue, the angle γMF j and the auxiliary molecular frame oriented
without γMF j are magenta. . . . . . . . . . . . . . . . . . . . . . . 40

2.6 Visualizations of the putative structures of the (H2O)n clusters for
3 ≤ n ≤ 22 from the database on Rakshit et al. [2019b]. All
these pictures correspond to the lowest energy structures from the
results of the TTM2.1-F Potential method with the energy range
1.0 KJ/mol above the minimum (Rakshit et al. [2019a], Rakshit
et al. [2019b]). Each picture is scaled independently. . . . . . . . . 41

2.7 Results of the test of convergence of the IMM results with l for the
(H2O)5 cluster. Left panel: β2, right panel: σ. The results were cal-
culated for the lowest energy structures from Rakshit et al. [2019b]
resulting from the TTM2.1-F method (Rakshit et al. [2019a]) with
energies up to 1.0 KJ/mol above the minimum. . . . . . . . . . . 42

2.8 Effect of the number of molecules on the IMM results for clusters
with n = 3, . . . , 10 molecules. The β2 parameters (left panel) for
the clusters are compared with that for a single molecule. The re-
sults were calculated for the lowest-energy structures from Rakshit
et al. [2019b] resulting from the TTM2.1-F method (Rakshit et al.
[2019a]) with energies up to 1.0 KJ/mol. . . . . . . . . . . . . . . 42
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2.9 Calculated β2 parameters for the conformations of the (H2O)3 and
(H2O)4 clusters from Rakshit et al. [2019b] and their comparison
with experimental results from Hartweg et al. [2017] and analytic
result for a single molecule. The structures are shown in the right
panel. The geometries of (H2O)3 result from the MP2/aug-cc-
pVTZ method and the TTM2.1-F Potential method within the
range of 1.0 KJ/mol above the minimum. The structures of (H2O)4
result from the TTM2.1-F Potential method within the range of
5.0 Kcal/mol above the minimum (Rakshit et al. [2019a]). . . . . 44

2.10 Calculated β2 parameters for the conformations of the (H2O)5 and
(H2O)6 clusters from Rakshit et al. [2019b] and their comparison
with experimental results from Hartweg et al. [2017] and analytic
result for a single molecule. The cluster structures are shown in
the right panel. All these geometries result the TTM2.1-F Poten-
tial method within the range of 1.0 KJ/mol above the minimum
(Rakshit et al. [2019a]). . . . . . . . . . . . . . . . . . . . . . . . . 45

2.11 Effect of the distances of the molecules from the origin of the cluster
frame ρj in the independent molecule model for the (H2O)4 cluster.
The geometry for 1.0ρj is the lowest energy structure from Rakshit
et al. [2019b] resulting from the TTM2.1-F Potential method. . . 46

2.12 Comparison of the correct numerical results and incorrect analytic
results for the cluster (H2O)3. The results were calculated for
the lowest-energy structure of (H2O)3 from Rakshit et al. [2019b]
resulting from the TTM2.1-F Potential method. . . . . . . . . . . 47

A.1 Results of the test of convergence of the numerical calculation with
l for the lowest-energy (H2O)3, (H2O)4 and (H2O)5 cluster struc-
tures from Rakshit et al. [2019b] from the TTM2.1-F Potential
method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

A.2 Effect of the different conformations from Rakshit et al. [2019b]
on the asymmetry parameter and the cross section for the (H2O)3,
(H2O)4 and (H2O)5 clusters. The results of the IMM for clus-
ters are compared with the experimental data from Hartweg et al.
[2017] and with the analytic results for a single molecule. One
geometry for (H2O)3 results from the MP2/aug-cc-pVTZ method,
the others from the TTM2.1-F Potential method. . . . . . . . . . 57

A.3 Effect of the different conformations from Rakshit et al. [2019b]
on the asymmetry parameter and the cross section for the (H2O)6,
(H2O)7 and (H2O)8 clusters. The results of the IMM for clus-
ters are compared with the experimental data from Hartweg et al.
[2017] and with the analytic results for a single molecule. The
geometries used come from the TTM2.1-F Potential method. . . . 58

A.4 Effect of the distances of the molecules from the origin of the cluster
frame ρj in the independent molecule model for the (H2O)3, (H2O)5
and (H2O)6 clusters. The geometries for 1.0ρj are the lowest energy
structures from Rakshit et al. [2019b] resulting from the TTM2.1-F
Potential method. . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
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A. Attachments

A.1 Additional figures

Figure A.1: Results of the test of convergence of the numerical calculation with l
for the lowest-energy (H2O)3, (H2O)4 and (H2O)5 cluster structures from Rakshit
et al. [2019b] from the TTM2.1-F Potential method.
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Figure A.2: Effect of the different conformations from Rakshit et al. [2019b] on the
asymmetry parameter and the cross section for the (H2O)3, (H2O)4 and (H2O)5
clusters. The results of the IMM for clusters are compared with the experimental
data from Hartweg et al. [2017] and with the analytic results for a single molecule.
One geometry for (H2O)3 results from the MP2/aug-cc-pVTZ method, the others
from the TTM2.1-F Potential method.
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Figure A.3: Effect of the different conformations from Rakshit et al. [2019b] on the
asymmetry parameter and the cross section for the (H2O)6, (H2O)7 and (H2O)8
clusters. The results of the IMM for clusters are compared with the experimental
data from Hartweg et al. [2017] and with the analytic results for a single molecule.
The geometries used come from the TTM2.1-F Potential method.
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Figure A.4: Effect of the distances of the molecules from the origin of the cluster
frame ρj in the independent molecule model for the (H2O)3, (H2O)5 and (H2O)6
clusters. The geometries for 1.0ρj are the lowest energy structures from Rakshit
et al. [2019b] resulting from the TTM2.1-F Potential method.
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